Thèse soutenue

Processus de conversion d'énergie liés aux fronts de dipolarisation dans la queue géomagnétique

FR  |  
EN
Auteur / Autrice : Soboh Alqeeq
Direction : Patrick CanuOlivier Le Contel
Type : Thèse de doctorat
Discipline(s) : Astronomie et astrophysique
Date : Soutenance le 21/12/2022
Etablissement(s) : Sorbonne université
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique des plasmas (Palaiseau, Essonne ; 1997-....)
Jury : Président / Présidente : Karine Issautier
Examinateurs / Examinatrices : Cecilia Norgren, Christian Jacquey, Suleiman Baraka
Rapporteurs / Rapporteuses : Thierry Passot, Claire Foullon

Résumé

FR  |  
EN

Des écoulements rapides de plasma ont été détectés depuis longtemps dans le côté nuit de la magnétosphère terrestre, la queue géomagnétique. Différents processus de formation tels que la reconnexion magnétique ou l'instabilité cinétique de ballonnement-interchange sont toujours étudiés. Lors de leur propagation vers la Terre, ces écoulements produisent une brusque augmentation de la composante nord du champ magnétique appelée front de dipolarisation (DF). Ces structures cinétiques contribuent de manière significative à la dissipation d'énergie dans la magnétosphère. Cette étude a pour but de mieux comprendre les processus de conversion d'énergie décrits par le terme J · E (J étant la densité de courant et E le champ électrique) qui se produisent au voisinage de ces fronts et à déterminer leur rôle dans le cycle global de l'énergie dans la magnétosphère. En utilisant les mesures in situ de la mission Magnétosphérique Multiscale, constituée de quatre satellites identiques évoluant dans une configuration tétraédrique et séparés à l'échelle des électrons, j'ai d'abord étudié les structures de densité de courant, les différents termes de la loi d'Ohm, et les processus de conversion d'énergie de 6 fronts. J'ai montré que les ions étaient découplés du champ magnétique principalement par l'effet du champ électrique de Hall mais que la contribution du gradient de pression électronique était aussi significative. Cela implique aussi que les électrons sont aussi découplés par leur propre gradient de pression au niveau du front. En ce qui concerne les processus de conversion d'énergie dans le référentiel du satellite, l'énergie est transférée des champs électromagnétiques au plasma en amont du front (région de dissipation ou de charge) alors qu'elle est transférée du plasma aux champs (région de dynamo ou de générateur) en aval. Cette inversion de la conversion d'énergie est causée par l'inversion du courant diamagnétique dominé par le gradient de pression des ions au niveau du front. Dans le référentiel fluide (électrons ou ions), l'énergie est transférée aux champs en raison du champ électrique associé au gradient de pression électronique ce qui pourrait contribuer au ralentissement de l'écoulement. De plus, il est montré que les processus de conversion d'énergie ne sont pas homogènes à l'échelle électronique principalement en raison des variations du champ électrique. Ces résultats d'études de cas ont été étendus grâce à une étude statistique réalisée sur l'ensemble de la saison 2017 durant laquelle MMS était localisée dans la queue géomagnétique. A partir de cette étude, il s'avère que deux classes de DF peuvent être distinguées. La classe I (74,4%) correspond aux propriétés standards des DF et à une dissipation d'énergie. La classe II (25,6%), qui est nouvelle, inclut les 6 DF précédemment discutés et correspond à une bosse du champ magnétique associée à un minimum des pressions ionique et électronique et à une inversion du processus de conversion d'énergie (dissipation puis dynamo). L'origine possible de cette deuxième classe est discutée. Pour les deux classes de DF, il est montré que le processus de conversion d'énergie dans le référentiel du satellite est gouverné par le courant diamagnétique dominé par le gradient de pression des ions. Dans le référentiel fluide, il est lié au gradient de pression des électrons.