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LA CONJECTURE DE SMITH EN FAIBLE

RÉGULARITÉ

La Conjecture de Smith

La conjecture de Smith s’inscrit dans l’étude et la classification des homéomorphismes
d’ordre fini des variétés de dimension 3.

Soit σ un homéomorphisme d’ordre fini de S3 dans lui-même avec des points fixes et
préservant l’orientation. En 1939, Paul Althaus Smith démontra [Smi39, 7.3 Theorem 4]
que l’ensemble des points fixes d’une telle application était nécessairement homéomorphe
à un cercle S1. Ses résultats ne renseignent cependant que sur la topologie intrinsèque
de l’ensemble des points fixes, mais ne donnent pas d’information sur la manière dont ce
cercle est plongé dans S3. P. A. Smith demanda donc [Eil49, Problem 36] si ce cercle de
points fixes peut être noué, ou s’il est nécessairement isotope au plongement standard du
cercle. C’est ce que l’on appelle la conjecture de Smith.

Conjecture (Conjecture de Smith). Les points fixes d’un homéomorphisme non trivial
d’ordre fini de S3 dans lui-même avec des points fixes et préservant l’orientation ne peuvent
pas former un cercle noué.

Plus généralement, cette conjecture adresse la question de savoir si tous les homéomor-
phismes d’ordre fini de S3 sont conjugués à un élément du groupe des transformations
orthogonales O4.

En l’état, la réponse à cette conjecture est négative. En 1952, R. H. Bing donna un
exemple [Bin52] d’une involution de S3 renversant l’orientation et dont l’ensemble des
points fixes est homéomorphe à une sphère S2 plongée de manière "sauvage" dans S3. Cet
exemple fut modifié peu après par Montgomery et Zippin [MZ54], démontrant l’existence
d’un contre-exemple à la Conjecture de Smith dans lequel les points fixes forment un cercle
"sauvagement noué".

Dans ce contexte, le terme "sauvage" désigne un objet qui ne peut pas être envoyé sur
un polyèdre par le moyen d’un homéomorphisme ambiant de S3. Ce caractère sauvage
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peut apparaître car la continuité est la seule régularité demandée sur l’application σ.
Sous des hypothèses plus fortes, la conjecture de Smith peut cependant avoir une

réponse positive. Ainsi, s’il on suppose que l’application σ est lisse, la conjecture est
démontrée.

Théorème (Conjecture de Smith lisse). Les points fixes d’un difféomorphisme non trivial
d’ordre fini de S3 dans lui-même avec des points fixes et préservant l’orientation ne peuvent
pas former un cercle noué.

Ce théorème fut démontré en 1984 par John Morgan et Hyman Bass grâce à d’importantes
avancées dans l’étude des variétés de dimension 3 par de nombreux mathématiciens. Au-
jourd’hui, ce résultat découle plus généralement des travaux de géométrisation de William
Thurston et Grigori Perelman.

Nous pouvons alors nous demander ce qu’il advient de la Conjecture de Smith dans un
cadre où l’application σ a davantage de régularité qu’un homéomorphisme, sans être lisse.

Dans une série de conférences données en 2013 à Santa Barbara [Fre13, Conjecture
3.21], Michael Freedman énonce la conjecture suivante.

Conjecture (Freedman). Toute action bilipschitzienne d’un groupe fini sur une variété
compacte de dimension 3 est conjugué à une action lisse.

La présente thèse se propose de répondre partiellement à cette question. Nous nous
intéresseront au cas d’une application σ d’ordre fini et p1 ` εq-bilipschitzienne. Plus
précisément, notre résultat principal est le théorème suivant.

Théorème. Pour ε “ 1
4000 , toute action finie d’un groupe cyclique par homéomorphismes

p1` εq-bilipschitziens sur une variété compacte de dimension 3 est conjuguée à une action
lisse.

Nous démontrons ce théorème grâce à la notion de plongement sage.

Plongements sages

Soit N une partie d’une variété M . Si N est une variété topologique pour la topologie
induite par M , on dit que N est une sous-variété topologique de M . S’il existe un
homéomorphisme ambiant de M envoyant N sur un polyèdre, on dit que le plongement de
N dans M est un plongement sage. Sinon, ce plongement sera qualifié de sauvage.
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Un des plongements sauvages les plus célèbres est la sphère cornue d’Alexander,
représenté dans la Figure 1. Il s’agit d’un plongement sauvage de la sphère S2 dans la
3-sphère S3. En effet, cette partie de S3 est homéomorphe à S2, mais une composante de
son complémentaire (la partie extérieure sur la Figure 1) n’est pas simplement connexe. Il
est donc impossible de l’envoyer sur une sphère sage via un homéomorphisme ambiant.

Figure 1 – La sphère cornue d’Alexander.

Notons W cette composante non simplement connexe du complémentaire de la sphère
cornue d’Alexander BW et notons W “ W

Ť

BW son union avec la sphère cornue. Bing
démontra que le recollement W

Ů

BW

W de deux copies de W selon leur bord BW est homéo-

morphe à la 3-sphère S3.
L’échange de ces deux copies de W produit donc une involution i : l’involution de Bing.

Cette involution de S3 a la propriété d’avoir un ensemble de points fixes sauvagement
plongé dans S3, ce qui montre que cette involution n’est pas conjuguée à une involution lisse.

L’involution de Bing : WVV

i

HH
Ů

BW

W» S3

La théorie de Smith nous assure que les points fixes d’un homéomorphisme d’ordre
fini sur une 3-variété compacte forment une sous-variété topologique compacte, mais
nous souhaitons éviter les cas pathologiques similaires à l’involution de Bing. En fait, il
suffit de s’assurer que l’ensemble des points fixes est sagement plongé pour montrer que
l’homéomorphisme qui nous intéresse est conjuguée à un difféomorphisme. Plus précisément,
nous avons le résultat suivant.

Théorème. [KL88, Corollary 2.3] Une action par homéomorphismes d’un groupe cyclique
G sur une 3-variété compacte M est lissable si et seulement si, pour tout sous-groupe H
de G, l’ensemble des points fixes MH est sagement plongé dans M .

Pour utiliser ce théorème, nous démontrerons et utiliserons le critère de sagesse suivant.

11



TABLE OF CONTENTS

Proposition. Soit Σ un sous-variété topologique compacte d’une 3-variété compacte M .
Si son complémentaire MzΣ est homéomorphe à l’intérieur d’une variété compacte X à
bord et que l’inclusion i : MzΣ ÑM s’étend continûment en une application de X dans
M

X

""
MzΣ

OO

i //M

alors Σ est sagement plongé dans M .

En particulier, s’il existe un flot dans un voisinage de Σ pour lequel toutes les lignes de
flot convergent uniformément vers un point de Σ, cela démontrera que Σ est sagement
plongé dans M , concluant la preuve de notre résultat principal.

Les homéomorphismes bilipschitziens

Soit σ : M Ñ M un homéomorphisme bilipschitzien d’ordre fini sur une 3-variété
riemannienne compacte. Notre but est d’utiliser le critère précédent pour démontrer la
conjecture formulée par Freedman.

En fait, nous démontrons la proposition suivante :

Proposition. Pour ε “ 1
4000 et pour toute action p1 ` εq-bilipschitzienne d’un groupe

fini G sur une variété Riemannienne compacte M , il existe un flot dans un voisinage de
l’ensemble des points fixes MG pour lequel toutes les lignes de flot convergent uniformément
vers un point de MG.

Le flot ainsi construit va nous permettre d’identifier la topologie du complémentaire de
MG dans un voisinage de MG et de montrer comment une compactification de cet ouvert
peut s’étendre au voisinage de MG tout entier.

Pour définir ce flot, nous raisonnons par analogie avec les isométries de Rn : soit x un
point de Rn et σ une isométrie d’ordre fini sur Rn. Le barycentre de l’orbite de x par σ
est alors un point fixe pour σ. Comme une application p1` εq-bilipschitzienne est presque
une isométrie, cette analogie nous indique une direction vers laquelle on peut souhaiter
voir se diriger notre flot.
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Ainsi, nous définissons un champ de vecteurs vvv dans un voisinage de MG dont
l’expression dans une carte est :

vvvpxq “ Bpxq ´ x

où Bpxq est le barycentre de l’orbite de x par G.

Bpxq “
1
n

ÿ

gPG

pxq

Les applications g ÞÑ gx étant bilipschitziennes, l’application B hérite de ce caractère bilip-
schitzien. Le champ de vecteurs vvv obtient donc également une régularité bilipschitzienne.
On peut donc intégrer le champ de vecteurs vvv pour en obtenir les lignes de flot. De plus,
cette régularité permet de montrer que ce champ de vecteurs induit un flot ϕ agissant par
homoméomorphismes.

La borne sur ε va nous permettre de démontrer que, pour tout point x suffisamment
proche de MG, la ligne de flot R` ÑM : t ÞÑ ϕtpxq converge vers un point de MG. Plus
précisément, nous démontrons le Lemme suivant.

Lemme. Il existes des constants τ ą 0 et k ă 1 ainsi qu’un voisinage V de MG tels que
nous avons l’inégalité

}vvv
`

ϕτ pxq
˘

} ď k}vvvpxq}

pour tout x de V .

En particulier, la convergence du flot vers MG est localement uniforme.

Nous définissons ensuite une surface X intersectant chaque ligne de flot en un unique
point. Par l’action du flot ϕ, le voisinage deMG privé deMG est homéomorphe à Xˆr0, 1r.

X ˆ r0, 1r ÑM

px, tq ÞÑ ϕ 1
1´t
pxq

Cet homéomorphisme peut alors être étendu en une application de X ˆ r0, 1s dans un
voisinage entier de MG.
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X ˆ r0, 1s ÑM

px, tq ÞÑ

#

ϕ 1
1´t

si t ă 1
lim
tÑ8

ϕtpxq si t “ 1

Nous pouvons alors appliquer le critère présenté dans la section précédente, ce qui
montre que MG est sagement plongé dans M , terminant la preuve de notre théorème
principal.
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APPRENTISSAGE STATISTIQUE DES

VARIÉTÉS

Considérons un jeu de données X représenté par une suite de n points dans l’espace à
s dimension Rs. Un des buts de la science des données est d’extraire des informations de
ce jeu de données pour mieux le comprendre où pour extrapoler de futur résultats.

Dans de nombreuses situations, les données ont tendance à s’aligner selon certaines
directions particulières dans Rs ou à s’organiser autour de structures aux propriétés
géométriques remarquables. En particulier, de nombreux jeux de données semblent avoir
été tirés sur des sous-variétés de dimension d de Rs. Si s est très grand devant d, il peut
être intéressant de projeter nos données dans un espace à d dimensions pour faciliter les
calculs. Certains algorithmes donnent également de meilleurs résultats si la dimension
intrinsèque d des données est connue. Dès lors, développer des méthodes permettant de
déterminer cette dimension intrinsèque devient un problème important dans le domaine
de l’apprentissage statistique des variétés (manifold learning).

Estimation de la dimension intrinsèque

Figure 2 – Quelle est la dimension
d’un grillage ?

Soit M une sous-variété de dimension d de Rs et
soit X une suite de n points dans M . Notre but est
d’estimer d depuis la seule connaissance de X.

Il convient tout d’abord de remarquer que, sans
plus de contraintes, il n’est pas possible de résoudre
ce problème. En effet, pour tout nuage de points X
et pour tout entier d̃ ď s, il existe toujours une sous-
variété de dimension d̃ passant par tous les points
de X. Ceci n’est cependant plus toujours possible si
l’on impose une borne inférieure sur la courbure de
M . Cela revient en fait à fixer une échelle ε à laquelle
on étudie la sous-variété M . Les objets géométriques
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peuvent en effet faire apparaître des dimensions différentes selon la taille caractéristique
que l’on considère. Par exemple un grillage peut paraître de dimension 0, 2, 1 ou 3 selon
qu’il soit observé à l’échelle du kilomètre, du mètre, du centimètre ou du micromètre.

Nous définissons alors la portée τ de M comme le plus grand nombre tel que tout point
à distance au plus τ de M ait un unique plus proche point sur M . Pour fixer une distance
caractéristique, nous pouvons donc limiter notre étude aux variétés pour lesquelles τ est
plus grand qu’une valeur donnée.

Méthodes d’approximations

Il existe de nombreux algorithmes dans la littérature pour estimer la dimension intrin-
sèque d d’un jeu de données X. Ces méthodes utilisent différentes informations extraites
de X, comme par exemple :

— La distance entre les points, utilisée par exemple pour le calcul de la dimension
de corrélation. Le nombre points dans une boule de rayon r étant de l’ordre de
C ¨ rd pour une constante C, il est possible d’estimer la dimension d en comptant le
nombre de points dans différentes boules de rayons différents. Par exemple, s’il y a
N1 paires de points à distance au plus ε1 et N2 paires de points à distance au plus
ε2, la dimension de X peut être approximée grâce à la formule

d » Arrondi
ˆ

logpN1q ´ logpN2q

logpε1q ´ logpε2q

˙

. (1)

— L’angle entre les points, il est possible d’estimer la dimension de X en calculant
la variance des angles entre les points proches, grâce à une méthode décrite dans
[DQV19a].

— Les directions de variance maximale, utilisée dans l’analyse en composantes
principales (PCA). La dimension est estimée en comptant le nombre de valeurs
propres élevées dans la matrice de covariance du jeu de données.

— Le type d’homotopie global deM peut être calculé si l’on dispose de suffisamment
de points. On peut alors en extraire la dimension de X. Cette méthode est étudiée
dans [NSW08a].

16
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Taille minimale du jeu de données

La question consistant à déterminer la taille minimale que doit avoir un jeu de données
pour pouvoir estimer sa dimension grâce à ces méthodes a été relativement peu étudiée
dans la littérature.

Dans [NSW08a], les auteurs proposent une estimation du nombre de points nécessaires
pour retrouver avec une probabilité donnée le type d’homotopie deM depuis un échantillon
X de points tirés indépendamment et uniformément sur M . Dans [Bre+18a], les auteurs
estiment que pour une sous-variété de dimension 4, de volume 1000 avec τ ą 1, si on
souhaite retrouver le type d’homotopie de M avec une probabilité de 90%, le nombre de
points nécessaires donné par la méthode de [NSW08a], doit être d’au moins 1 592 570 365.
En précisant ce calcul, il est possible de réduire cette estimation à 21 415 600 points.

Il n’est cependant pas nécessaire de déterminer complètement le type d’homotopie de
M pour connaître sa dimension. L’estimation proposée dans [NSW08a] calcule en fait le
nombre de points nécessaires pour que M soit totalement recouvert par un ε-voisinage de
X avec une certaine probabilité. La dimension d’une sous-variété étant une caractéristique
locale, il n’est pas nécessaire d’avoir des points sur la totalité de cette sous-variété pour
en estimer la dimension. Un algorithme calculant la dimension de corrélation grâce à
l’estimateur (1) devrait donc nécessiter beaucoup moins de points pour estimer la dimension
de M avec la même probabilité.

Résultats

Nous nous proposons donc de fournir une estimation du nombre de points nécessaires
pour retrouver la dimension intrinsèque de X en calculant sa dimension de corrélation
grâce à l’estimateur (1).

Notre premier résultat est une borne supérieur sur le nombre de point minimal nécessaire
pour obtenir la bonne dimension avec probabilité d’au moins 90%. Ce résultat se base sur
l’étude des propriétés géométriques des variétés de portée 1 et sur les propriétés statistiques
de l’estimateur (1).

Il est important de noter que cet estimateur nécessite le choix de deux échelles de
calcul ε1 et ε2. Les performance de l’estimateur dépendant de ce choix, nous avons dû
optimiser ces valeurs pour obtenir les bornes les plus basses possibles. Cette optimisation
a été réalisée de manière numérique, et nous obtenons le théorème suivant.
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Théorème. Pour d “ 1, ¨ ¨ ¨ , 10 posons ε1 et ε2 fournis dans le tableau suivant. Soit M
une sous-variété compacte de dimension d dans Rs, de portée τ ą 1 et de volume volpMq.
Posons n fourni par le tableau. Si nous tirons n points indépendamment et uniformément
sur M , alors l’estimateur (1) donnera la dimension d avec probabilité d’au moins 90%.

d ε1 ε2 n
1 1.5 0.19 9` 21 ¨ volpMq 1

2

2 0.78 0.2 94` 58 ¨ volpMq 1
2

3 0.63 0.23 635` 146 ¨ volpMq 1
2

4 0.54 0.23 2786` 392 ¨ volpMq 1
2

5 0.46 0.22 7013` 1119 ¨ volpMq 1
2

6 0.4 0.21 13221` 3366 ¨ volpMq 1
2

7 0.36 0.21 25138` 10644 ¨ volpMq 1
2

8 0.33 0.2 50033` 34890 ¨ volpMq 1
2

9 0.31 0.19 63876` 119533 ¨ volpMq 1
2

10 0.29 0.18 139412` 425554 ¨ volpMq 1
2

Pour une variété M de dimension 4 et de volume 1000, on obtient donc que 15 182
points suffisent à déterminer la dimension de M avec probabilité 90%, ce qui est une
estimation plus de 1 000 fois moins élevée que ce qui est nécessaire pour retrouver le type
d’homotopie de M grâce au théorème de [NSW08a].

Notre second résultat provient d’un modèle basé sur un raisonnement heuristique. Ce
modèle se base sur l’idée selon laquelle la donnée importante à estimer n’est pas le nombre
de points n du jeu de données mais le nombre de paires de points N à distance au plus ε1.

On peut estimer ce nombre N grâce à la formule

N »
npn´ 1q

2
vol

`

Bpε1q
˘

volpMq (2)

où vol
`

Bpε1q
˘

est le volume d’une boule euclidienne de dimension d et de rayon ε1. On
raisonne ensuite comme si l’on avait tiré indépendamment N nombres dont la loi suit
celle de la distance entre deux points à distance au plus ε1 dans Rd. Il est alors possible
d’estimer la valeur de N nécessaire pour obtenir un probabilité de 90% et en déduire la
valeur de n grâce à la formule (2).
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Nous obtenons les valeurs suivantes

d n

1 5 ¨ volpMq 1
2

2 12 ¨ volpMq 1
2

3 22 ¨ volpMq 1
2

4 50 ¨ volpMq 1
2

5 128 ¨ volpMq 1
2

6 355 ¨ volpMq 1
2

7 964 ¨ volpMq 1
2

8 2949 ¨ volpMq 1
2

9 9458 ¨ volpMq 1
2

10 33021 ¨ volpMq 1
2

Pour une variétéM de dimension 4 et de volume 1000, on obtient donc que 1 581 points.
L’estimation est donc encore réduite d’un facteur 10 par rapport à la borne obtenue dans
le théorème précédent.

Ce modèle est simplifié par rapport à la situation réelle car on ne peut pas considérer
les paires indépendamment les unes des autres et car les boules de rayons ε1 dans M ne
sont pas nécessairement euclidiennes. Cependant, les résultats obtenus sont confirmés par
l’expérience : nous avons créé un programme informatique [Gri22] permettant de tirer des
points sur différentes variétés puis de calculer la dimension de corrélation. Avec le nombre
de points estimés par ce modèle heuristique, nous avons obtenus des taux de réussite de
l’ordre de 90% sur chaque exemple, comme prévu.

19





Part I

The Smith conjecture in low
regularity
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Every first appearance of a new technical term will be written in bold.

We will note

— Rn the Euclidean space of dimension n.

— Sn the sphere of dimension n:
 

x P Rn`1 | }x}2 “ 1
(

— B̊n the open ball of dimension n:
 

x P Rn | }x}2 ă 1
(

— B
n (or Dn) the closed ball (or disk) of dimension n:

 

x P Rn | }x}2 ď 1
(

— Xσ the fixed set of X under the self-map σ:
 

x P X | σpxq “ x
(

— AzB the difference of two sets A and B:
 

x P A | x R B
(

Let A be a subset of a topological space X, we will note

— Å the interior of A

— A the closure of A

— BA the boundary of A : AzÅ
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Part I,

In 1939, P. A. Smith proved [Smi39, 7.3 Theorem 4] that the fixed set Mσ of a finite-
order and orientation-preserving homeomorphism σ of the 3-sphere S3 was empty or a
circle S1. He then asked [Eil49, Problem 36] if this circle could be knotted. This question
is known as the Smith conjecture. More generally, the question is whether such a map
is conjugate to an orthogonal map. Since the work on geometrization by Thurston and
Perelman, we know that this is the case for smooth maps [BLP05]. On the other hand,
Bing [Bin52] gave an example of a continuous orientation-reversing involution with a wildly
embedded 2-sphere as fixed set. Therefore, this involution could not be conjugate to an
orthogonal map. Montgomery and Zippin [MZ54] also modified Bing’s example to obtain
an orientation-preserving involution with a wild circle as a fixed set. Jani Onninen and
Pekka Pankka showed in 2019 [OP19] that there also exists wild involutions in the Sobolev
class W 1,p.

One can then wonder what happens for maps with more regularity but which are not
differentiable. In [Ham08], D. H. Hamilton announced that quasi-conformal reflections are
tame, but the proof seems to remain unpublished. In fact, even the Lipschitz case seems to
be considered open. For example, as recently as 2013, Michael Freedman asked in [Fre13,
Conjecture 3.21] if the Bing involution could be conjugate to a Lipschitz homeomorphism.
Jani Onninen and Pekka Pankka reiterate this question in 2019 [OP19]. We give a partial
answer to Freedman’s question, proving that for ε ą 0 small enough, such wild finite-order
maps can not be p1` εq-bilipschitz. More precisely, we will show the following theorem.

Theorem 1. For ε “ 1
4000 , any action of a finite cyclic group by p1 ` εq-bilipschitz

homeomorphisms on a closed 3-manifold is conjugate to a smooth action.

Theorem 1 is proved by showing that the fixed set of such an action in always tamely
embedded. We will show in Section 2.2.4 how Theorem 1 can be reduced to the tameness
of this fixed set.

The first chapter of this part is a discussion about topological tameness. We present
the different notions of tameness in topology and how they are linked together. We also
give important examples that one has to keep in mind. Secondly, we expose results on the
shrinkings of manifolds and in Section 1.4, we state and prove Proposition 1, a tameness
criterion that will be at the core of the proof of Theorem 1.
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Proposition 1. Let Σ be a closed topological submanifold of a closed 3-manifold M .
Suppose that its complement MzΣ is homeomorphic to the interior of a compact manifold
X with boundary. If the inclusion i : MzΣ ÑM extends to a continuous map from X to
M

X

""
MzΣ

OO

i //M

then Σ is tamely embedded in M .

The second chapter is dedicated to the Smith conjecture and to the proof of Theorem
1. We introduce the ideas which led to this conjecture and we present the results known
about it in literature. After stating some results about Lipschitz vector fields, we expose
the proof of Theorem 1.

This proof is done by proving the following proposition

Proposition 2. For ε “ 1
4000 and for every p1 ` εq-bilipschitz action of a finite group

G on a compact Riemannian manifold M , the fixed set MG satisfies the conditions of
Proposition 1.

and by showing how Theorem 1 can be reduced to Proposition 1 and Proposition 2.
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Chapter 1

TOPOLOGICAL TAMENESS

1.1 Introduction

1.1.1 The Jordan-Brouwer separation theorem

A simple closed curve in the plane is an injective continuous map from the circle
S1 into R2. The well-known Jordan-Brouwer separation theorem states that such a curve
divides the plane into two components. Only one of these two components is bounded and
is called the interior of γ. The other component is called the exterior.

Theorem 2 (Jordan-Brouwer separation theorem [Jor87]). Let γ be a simple closed curve
in R2. Then R2zγ has exactly two connected components.

This theorem is not the strongest result that one can get. For example it does not
describe the topology of the two components. However, we will see in section 1.1.2 that it
generalizes well to higher dimensions.

An other result, the Jordan-Schoenflies theorem, completely describes the situation
from topological point of view. It tells us that any simple closed curve has every topological
property of the standard embedding of S1 into R2.

Theorem 3 (Jordan-Schoenflies theorem [Sch06]). Let γ be a simple closed curve in
R2. Then there is a homeomorphism of R2 into itself that sends γ on the standard circle
 

x P R2 | }x}2 “ 1
(

.

This theorem is stronger than the Jordan-Brouwer separation theorem. For example, it
gives us the following properties:

(A) The interior of a simple closed curve is homeomorphic to an open disk.

(B) The union of a simple closed curve with its interior is homeomorphic to an closed
disk.
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Part I, Chapter 1 – Topological tameness

Figure 1.1 – Illustration of the Jordan-Schoenflies theorem

In other words, the point (B) says that the homeomorphism from the open disk to the
interior of γ obtained in point (A) can be chosen so that it extends homeomorphically to
γ.

1.1.2 Generalizations to higher dimensions

The Jordan-Brouwer separation theorem can be generalized to higher dimensions.
Namely, one can show that any injective map from the sphere Sn´1 into the sphere Sn

cuts the latter into two pieces. This can be proved using Alexander duality, which is a
result in homology theory linking the cohomology of a subset of the n-sphere Sn with the
homology of its complement.

Theorem 4 (Alexander duality [Hat02][Corollary 3.45]). Let X be a compact and locally
contractible subset of Sn. There is a isomorphism

H̃kpS
n
zXq » H̃n´k´1

pXq

for every k ě 0 and where H̃ stands for reduced (co)homology with coefficient in Z.

In particular, this theorem asserts that the homology of the complement of X only
depends on the topology of X, and not on the way it is embedded. Applying this theorem
with X being homeomorphic to the pn´ 1q-sphere Sn´1, we see that the complement of
X has the homology of the complement of the standard pn´ 1q-sphere. The complement
of a subset of of Sn homeomorphic to a pn ´ 1q-sphere is thus always the union of two
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1.1. Introduction

homology balls.

The Jordan-Schoenflies theorem, however, does not generalize to higher dimensions.
Indeed, homology balls can have wild topologies. For example, the wild complement of the
Alexander horned sphere (see Section 1.1.3) is not simply connected and its fundamental
group is not even finitely generated.

However, under stronger conditions on the regularity of the embedding of Sn´1 this
theorem generalizes to every dimension. The generalized Schoenflies theorem state that
this is the case if X il locally flat.

We say that an embedding of Sn´1 in Sn is locally flat if it can be extended to a an
embedding of Sn´1 ˆ r´1, 1s, which agrees with the first embedding on Sn´1 ˆ t0u.

Theorem 5 (generalized Schoenflies theorem [Bro60]). Let X be a subset of Sn homeo-
morphic to Sn´1. If X is locally flat, there is a homeomorphism of Sn into itself that sends
X on the standard pn´ 1q-sphere.

1.1.3 The Alexander horned sphere

We saw that any subset X of S3 homeomorphic to S2 must divide S3 into two connected
components. However, Alexander duality does not provide an ambient homeomorphism of
S3 sending X on the standard S2 as in the Jordan-Schoenflies theorem. In particular, we
cannot conclude that the complement of X in S3 is the disjoint union of two open balls.
We will present an important example with this behavior.

Figure 1.2 – The Alexander horned sphere

In [Ale24], James Waddell Alexander described a subset of S3 homeomorphic to S2

with a complement which is not simply connected. This object is called the Alexander
horned sphere. To construct it, start with a sphere and grow two horns out of it. Divide
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Part I, Chapter 1 – Topological tameness

each of these horns into two other horns and interlace one horn of the first division with
one horn of second division. Repeat this process with each new pair of horns over and over
infinitely many times with smaller and smaller horns until they accumulate on a Cantor
set.

Figure 1.3 – Two interlaced pairs of pants.

To understand better this object, we can decompose it into "pairs of pants". A pair of
pants is a surface homeomorphic to a 2-sphere with 3 open disks removed or, equivalently,
to a closed disk with two open disks removed.

Figure 1.4 – Decomposition of the Alexander horned sphere.
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1.1. Introduction

As shown on Figure 1.4, the Alexander horned sphere can be decomposed into a disk,
uncountably many pairs of pants, and a limit Cantor set. This decomposition defines an
explicit homeomorphism between the Alexander horned sphere and the standard 2-sphere
S2.

Proposition 3. The exterior of the Alexander horned sphere is not simply connected.

Proof. Define a loop γ around one of the first horns, as in Figure 1.5. We will show that γ
cannot be shrunk in the exterior of the Alexander horned sphere.

Following the decomposition of Figure 1.4, define a sequence of boxes containing each
pair of pants. Note B1,1 the box containing the first pair of pairs of pants, B2,1 and B2,2

the two boxes containing each of following smaller pair of pairs of pants, and continue this
notation with boxes Bi,j for 1 ď i and 1 ď j ď 2i´1. We choose the boxes Bi,j so that their
diameters go to zero with i.

Note A the Alexander horned sphere and suppose that there exists a homotopy
h : S1 ˆ r0, 1s Ñ S3zA with h0 “ γ and h1 constant. Note X “ hpS1 ˆ r0, 1sq.

It is clearly impossible to shrink γ in the complement of A
Ť

j Bi,j for any 1 ď i, so X
intersects

Ť

j Bi,j for every 1 ď i. For every i, choose a index Jpiq such that X intersects
Bi,Jpiq. So X intersects every closed set Kn “

Ş

iěnBi,Jpiq and, as X is closed and as
Kn`1 Ă Kn for every n, X intersects

Ş

nKn. As A is also closed and intersects every Bi,j,
A also intersects

Ş

nKn. As the diameter of Kn goes to zero with n,
Ş

nKn is a point, so
X must intersect A. So γ cannot be shrunk in S3zA.

Figure 1.5 – Decomposition of the Alexander horned sphere
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Part I, Chapter 1 – Topological tameness

1.2 Wildness and tameness

The Alexander horned sphere is an example of what we call a wild object. In the
following, we will often use the terms wild and tame to qualify some objects or maps.
These terms may have different meaning in different contexts. The two main concepts
related to these terms are the concepts of tame manifolds and of tame embeddings. The
term wild will be use in the same contexts to refer to "non-tame" objects.

1.2.1 Wild and Tame embeddings

Let Σ be a compact subset of a m-manifold M . If Σ is a topological n-manifold for the
topology induced by M , we say that Σ is a topological submanifold of M . We say that
Σ is tamely embedded (or simply that Σ is tame) if there is a self-homeomorphism of
M sending Σ to a polyhedron.

Figure 1.6 – A wild arc.

In R2, every continuous arc (i.e. a continuous map from r0, 1s to R2) is tame, but wild
behaviors can appear in higher dimensions. For example, the arc illustrated on Figure 1.6
is a wild arc (see [FA48]). In this example, the arc is tame everywhere, except at its two
endpoints. This means that every other point has a tamely embedded neighborhood in the
arc.

A method to detect if a topological submanifold is wild is to study the topology of its
complement. If this complement is not homeomorphic to the complement of a polyhedron,
the topological submanifold is necessarily wild. For example, the complement of the arc
illustrated on Figure 1.6 in S3 is not simply connected, but the complement of a polyhedral
arc in S3 is necessarily a ball.

Figure 1.7 – A wild arc with a complement homeomorphic to a ball.
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1.2. Wildness and tameness

However, this condition is not sufficient. Indeed, there exist wild arcs in S3 whose
complement are homeomorphic to open balls. (see Section 1.2.3)

Wild embeddings of spheres can also be obtain by thickening the previous wild arcs,
with the same discussion concerning their complements.

1.2.2 Wild and tame manifolds

We saw that a topological submanifold is wild if we can show that its complement has
a sufficiently "bad" behavior, this lead to the notion of wild and tame manifolds. We say
that manifold M is a tame manifold if it is homeomorphic to the interior of a compact
manifold with boundary or, more generally, if it is homeomorphic to the complement of a
closed subset of the boundary of a compact manifold. We also say that M is a missing
boundary manifold.

The problem of knowing whether a manifold is tame or not, known as the missing
boundary problem, is not always an easy task. Even if the answer is affirmative, finding the
missing boundary explicitly can be challenging. In dimension three, a necessary condition
for M to be tame is to have a finitely generated fundamental group. For example, one can
show that the fundamental group of the exterior component of the complement of the
Alexander horned sphere is not finitely generated, which shows that this component is
wild manifold.

More generally, the following tameness criterion due to Tucker [Tuc74] states it is
sufficient to consider the fundamental groups of complements of compact polyhedron.

Theorem 6 (Tucker). Let M be a connected, P 2-irreducible 3-manifold. Then M is tame
if and only if for any compact polyhedron C inM , the fundamental group of each component
of MzC is finitely generated.

We say that a manifold M is P 2-irreducible if every smooth sphere in M bounds a
ball and if M contains no 2-sided real projective plane. In the theorem, we can replace
"polyhedron" by "smooth compact submanifold", by "tame compact submanifold" or even
by "tame arcs" (see [Mes77][§3]).

We now give some examples of wild manifolds.
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Part I, Chapter 1 – Topological tameness

Example 1. Consider an infinite concatenation of knots C in R3 as in Figure 1.8.

Figure 1.8 – An infinite concatenation of knots.

More precisely, let l be a smooth injective arc joining p0, 0, 0q to p1, 0, 0q in r0, 1s ˆ R2

and let C “
Ť

n l` pn, 0, 0q. We choose l so that l and l` p1, 0, 0q only intersect in p1, 0, 0q
and so that they meet smoothly at this point. We also ask l to be non-trivially knotted.

The space R3zC is not a tame manifold. Indeed, we will show that its fundamental
group is not finitely generated. Choose a base point x0 and suppose by contradiction that
there exists a finite number of generators pγ1, ..., γnq. As

Ť

i γi is bounded, there is a N P N
such that, for any loop γ based on x0, there is a homotopy sending γ inside s ´8, N s ˆR2.

Figure 1.9 – A loop γ far away from generators of π1 ps ´ 8, N s ˆ R2q.

By Seifert-Van Kampen theorem, the fundamental group of R3zC is

π1

´

`

s ´ 8, N s ˆ R2˘
zC

¯

˚
π1

`

ptNuˆR2qzC
˘

π1

´

`

rN,`8rˆR2˘
zC

¯

.

In the light of the foregoing, this means that the map from π1

´

ptNu ˆ R2q zC
¯

to π1

´

prN,`8rˆR2q zC
¯

is surjective. However, this fact is known to be false: there exist loops in prN,`8rˆR2qzC

(for example, the loop γ on Figure 1.9) that are not homotopic to a loop of ptNu ˆ R2qzC

inside prN,`8rˆR2qzC.

Remark 1. Note that, in the preceding example, C is smooth but not compact and R3 is
a tame manifold. This shows the importance of the compactness of C in Theorem 6.
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1.2. Wildness and tameness

It is also important to remark that we cannot only consider polyhedrons in the interior
of M . After proving a preliminary lemma, we illustrate this fact by an example.

Lemma 1. Let X be a topological space and let pBiqiPN be a sequence of subsets of X such
that

— X “
Ť

iBi

— each Bi is homeomorphic to an open 3-ball
— Bi Ă Bi`1 for every i.

Then X is homeomorphic to a open 3-ball.

Proof. Let Bp0, iq be the open 3-ball tp P R3 | ‖p‖2 ă iu. Each Bi is homeomorphic to
Bp0, iq, but this fact cannot be used to define a global homeomorphism between X and R3,
because Bi`1zBi is not necessarily homeomorphic to S2ˆs0, 1s. For example, the inclusion
Bi Ñ Bi`1 could be an Alexander horned sphere.

Let fi : Bp0, 1q Ñ Bi`1 be a homeomorphism between the standard open 3-ball and
Bi`1. There is an εi ą 0 such that Bi Ă fi pBp0, 1´ εiqq. The sequence pfi pBp0, 1´ εiqqqiPN
then verifies the three hypothesis of the proposition and each sphere B pfi pBp0, 1´ εiqqq is
flat. Then, by Schoenflies theorem, we can find for each i a homeomorphism gi : Bp0, iq Ñ
fi pBp0, 1´ εiqq which agrees with every gj for j ă i.

This defines a global homeomorphism between R3 and X.

Example 2. Consider two cylinders C0 and C1, and a smooth embedding f : C0 Ñ C1 as
shown on Figure 1.10.

Figure 1.10 – Embedding f : C0 Ñ C1.

Let hi : D2ˆr0, 1s Ñ Ci be a homeomorphism, note Ai and Bi the two disks hipD2ˆt0uq
and hipD2 ˆ t1uq. The embeddings hi are chosen so that A0 is smoothly embedded in the
interior of A1 and so that B0 is smoothly embedded in the interior of B1.
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Part I, Chapter 1 – Topological tameness

The disjoint union of C0 and C1 quotiented by the map f is then homeomorphic to C1.
Now, consider a sequence pCnqnPN of cylinders and f : Cn Ñ Cn`1 as previously. Finally,
let X be the disjoint union of every Cn quotiented by f . Here, "quotienting by f" we mean
quotienting by the equivalence relation

x „ y ô Dn P N, x “ fnpyq or y “ fnpxq,

X “

ğ

i

Ciä„.

We note π the quotient map associated to this equivalence relation.
The space X is a smooth manifold, but it is not a tame manifold. Indeed, the arc

γ “ tp0, 0qu ˆ r0, 1s is smooth in C0, and πpγq is smooth in X. However, the fundamental
group of the complement of πpγq is not finitely generated.

Figure 1.11 – The arc γ in C0.

Indeed, the interior of X can be written as

X̊ “
ď

i

π
`

hipD
2
ˆ r

1
i
, 1´ 1

i
sq
˘

.

So, by Lemma 1, X̊ is homeomorphic to R3, and one can show that X̊zπpγq is homeomorphic
to R3zC in the previous example. So, the complement of πpγq has a fundamental group
which is not finitely generated. Finally, by Theorem 6, X is a wild manifold, even if its
interior is tame.

1.2.3 The Fox-Artin sphere

We saw with Theorem 6 that the complement of a compact tame submanifold of tame
manifold is also a tame manifold. We will now discuss the opposite question: if a compact
topological submanifold of a tame manifold has a tame complement, is this submanifold
tamely embedded ?

For example, consider the following question.
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1.2. Wildness and tameness

Question 1. Let K be a compact subset of R3. If

— K̊ is homeomorphic to an open ball B3

— BK is homeomorphic to a 2-sphere S2

Is K homeomorphic to a closed ball D3 ?

A difficulty involved in trying to answer this question is that the homeomorphism
between B3 and K̊ does not necessarily extend to a homeomorphism from D3 to K.

Remark that the Alexander horned sphere does not provide a counterexample to this
question. Indeed, the union of the Alexander horned sphere with its "nice" complement
is homeomorphic to a closed 3-ball, and its wild complement is not homeomorphic to an
open 3-ball.

In 1948, Ralph Fox and Emil Artin described a wild sphere providing a negative answer
the preceding question [FA48][Example 3.2]. They started with an arc created from an
infinite number of interlacing loops getting smaller and smaller, converging to an end
point.

Figure 1.12 – A half Fox-Artin arc.

This arc, which is half of what is known as a Fox-Artin arc, is tame everywhere except
at one of its end points. By thickening this arc with a thickness approaching zero near
its wild end point, we obtain a Fox-Artin sphere, which has the following remarkable
properties :

— It is homeomorphic to a 2-sphere

— Its complement in S3 is homeomorphic to the disjoint union of two open 3-balls

— It is wildly embedded : its union with its exterior does not yield a closed 3-ball

We provide short proofs of these facts

Lemma 2. The solid Fox-Artin sphere (the Fox-Artin sphere together with its interior) is
a closed 3-ball.

Proof. The solid Fox-Artin sphere is the one-point compactification of an infinite connected
sum of closed balls. It is thus also a closed ball.
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Part I, Chapter 1 – Topological tameness

Figure 1.13 – The Fox-Artin sphere.

It is clear that the exterior of the Fox-Artin sphere is simply connected, as every closed
arc inside it can be slid all over the ball. However, this is not sufficient to show that it is
homeomorphic to a ball.

Lemma 3. The exterior of the Fox-Artin sphere is an open 3-ball.

Proof. We begin by showing that the complement of a half Fox-Artin arc is an open ball.
As only one of the ends of the arc is wild, we can slide the other one to shrink the arc
to a point. More precisely, the solid Fox-Artin sphere is a closed ball containing the half
Fox-Artin arc, and this arc is tamely embedded in the solid Fox-Artin sphere, meaning
that the homeomorphism between the solid Fox-Artin sphere and the standard closed ball
brings the half Fox-Artin arc to a tame arc.

Figure 1.14 – Homeomorphism between the solid Fox-Artin sphere and the standard closed
ball.

Every tame arc in a closed ball meeting its boundary only at one of its end points
can be shrunk: there is always a continuous map from the closed ball to itself fixing its
boundary, sending the tame arc to a point and being a homeomorphism out of the arc.
This map can be pulled back in the solid Fox-Artin sphere to define a homeomorphism
between the complement of the half Fox-Artin arc and the complement of a point in S3,
which is an open 3-ball.
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1.2. Wildness and tameness

In fact, the exact same argument also work if we replace the half Fox-Artin arc by a
solid Fox-Artin sphere, using a thicker solid Fox-Artin sphere containing the first one.

Lemma 4. The Fox-Artin sphere is wildly embedded.

Proof. The Fox-Artin sphere together with its exterior is not a closed ball. Indeed, the
complement of any tame arc in a tame manifold has finitely-generated fundamental group.
However, we can define a tame arc γ in the exterior of the Fox-Artin sphere that meet
the sphere at its two endpoints and whose complement in the exterior of the sphere is not
finitely generated.

Figure 1.15 – A tame arc with a wild complement.

A complete proof of this lemma can be found in [FA48].

1.2.4 Some objects seem wild but are not

Wild arcs and wild spheres often contain infinitely repeating patterns, but it is not
always easy to determine if such objects are really wild. For example, consider the arc
created by the concatenation of infinitely many knots, getting smaller and smaller, as in
Figure 1.16.

Figure 1.16 – Is it wild ?

This arc seems to be wild, but it is not easy to prove this fact since its complement
is clearly simply connected. In fact, this arc is tame, and we can describe an explicit
homeomorphism of R3 sending it to a linear segment.
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First, remark that we can separate each knot with spheres as in Figure 1.17. Each
sphere intersects the arc transversely at a unique point. These spheres divide the space in
an infinite number of regions homeomorphic to S2 ˆ r0, 1s crossed by a smooth arc joining
its to boundaries. The topology of the complement of this arc in these regions is in fact
easily determined by what is known as the lamp-cord trick.

Figure 1.17 – Dividing R3 into a decreasing sequence of balls.

Proposition 4 (Lamp-cord trick). Let X be the manifold S2ˆr0, 1s and let γ be a smooth
arc joining the two boundaries of X. Then the pair pX, γq is homeomorphic to the standard
pair pX, γ1q where γ1 is a straight arc tpu ˆ r0, 1s for a point p P S2.

Proof. The lamp-cord trick is named after its very visual proof. If we embedded X in R3

and make the inner sphere very small, the arc γ resembles a cable joining the outer sphere
to a light-bulb. This lamp-cord can then be unknotted inside the outer sphere to obtain a
straight arc. This unknotting defines a self-homeomorphism of X sending γ to a straight
arc.

The homeomorphism described by the lamp-cord trick can be chosen so that it fixes the
boundaries of S2 ˆ r0, 1s. For the arc of Figure 1.16, this homeomorphism can be applied
in each region separated by the spheres simultaneously. This defines a homeomorphism of
R3 sending the arc on a straight line.

This trick can however only be used for concatenations of knots that can be separated
by spheres.
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1.2. Wildness and tameness

Figure 1.18 – Illustration of the lamp-cord trick.

Figure 1.19 – An arc on which the lamp-cord trick cannot be used.

1.2.5 Local flatness

A criterion to show that a topological submanifold is tamely embedded is to check if it
has a tubular neighborhood. We say that a topological n-submanifold Σ of a m-manifold
M has a tubular neighborhood if there is a vector bundle E of basis Σ and of fibers
Rm´n whose total space can be embedded as an open set in M and whose null section is Σ.

One can give a direct proof of this fact, but we prefer to sketch a quicker argument in
dimension 3, using the uniqueness of smooth structures.

Proposition 5. Let Σ be a closed topological submanifold of a 3-manifold M . If Σ has a
tubular neighborhood E, then Σ is tamely embedded.

Proof. Let A be the unit disk subbundle of E and let B “ MzA. As A and B have
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Part I, Chapter 1 – Topological tameness

topological product structures on their boundaries, they are topological manifolds with
boundaries. We choose any smooth structure on B and we choose a smooth structure on
A that makes Σ smooth.

For these smooth structures, we can choose a diffeomorphism g from BB to BA which
is isotopic to the identity map (see [Mun60, Theorem 6.3]). Gluing A and B along this
diffeomorphism gives us a smooth manifold M 1 homeomorphic to M . To define this
homeomorphism, remark that BA has a neighborhood in A homeomorphic to BAˆ r0, 1s.
Define a map h from M 1 homeomorphic to M by sending B on itself via the identity map
and, in the collar BAˆ r0, 1s, send px, tq on

`

gtpxq, t
˘

, where pgtqt is an isotopy from g to
the identity, and using the identity map elsewhere on A. The topological submanifold Σ is
then a smooth submanifold of M 1.

AsM andM 1 are homeomorphic and as the smooth structure on a 3-manifold is unique,
there is a diffeomorphism d between M 1 and M . The map d ˝ h is thus a homeomorphism
of M that makes Σ smooth. This shows that the submanifold Σ is tame.

1.3 Shrinkings of manifolds

Before introducing our tameness criterion needed for the proof of Theorem 1, we will
discuss the topic of shrinkings of manifolds.

Let X be a topological space and pAiqiPI be a collection of disjoint subsets of X.
Consider the equivalence relation „ on X by the following condition.

x „ y ô px “ yq or pDi P I, x P Ai and y P Aiq

By "shrinking the Ai", we mean considering the quotient space Xä„.

It is sometimes convenient to define a space as such a shrinking. The principal questions
that we will discuss here are the conditions under which a shrinking preserves the topology
of the starting space, and under which the quotient map π : X Ñ Xä„ is approximable
by homeomorphisms.

An elementary example of such a behavior is the shrinking of a closed ball in Euclidean
space Rn. In dimension 1, consider the shrinking of the closed interval A “ r0, 1s in X “ R.
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1.3. Shrinkings of manifolds

The resulting space Xä„ is still homeomorphic to R, with the following relabeling.

x̄ ÞÑ

$

’

&

’

%

x if x ă 0
0 if x P r0, 1s
x´ 1 if x ą 1

This formula is also the expression of the quotient map π : X Ñ Xä„ for this new
labeling of Xä„.

π : X Ñ Xä„

x ÞÑ

$

’

&

’

%

x if x ă 0
0 if x P r0, 1s
x´ 1 if x ą 1

,

/

.

/

-

“ x`
|x´ 1| ´ |x| ´ 1

2

Which is approximable as close as desired by homeomorphisms πε.

πε : X Ñ Xä„

x ÞÑ x`

a

px´ 1q2 ` ε´
?
x2 ` ε´ 1

2

Figure 1.20 – Graphs of π and πε.

This argument easily generalizes to shrinkings of closed balls in higher dimensional
Euclidean spaces.

If A is homeomorphic to a closed ball and is tamely embedded in a manifold, the
shrinking of A still yields the manifold X. However, this process fails when A is wildly
embedded. For example, if A is the union of the Alexander horned sphere with the tame
component of its complement, the shrinking of A in S3 will yield a space in which the
complement of a point can be non-simply connected, which is impossible in S3.
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The process also becomes harder if there are (possibly uncountably) many subsets Ai
to shrink.

1.3.1 Cell-like maps and Moore’s Theorem

In dimension 2, a famous shrinking criterion is Moore’s Theorem. It states that shrink-
ing a collection pAiqiPI of contractible subsets of a closed surface X yields this same
surface X and that the quotient map is approximable by homeomorphisms. This the-
orem is usually stated in term of cell-like maps. For this section, we mainly refer to [Dav86].

Let X be a topological space, we say that a subset of X is cell-like if it can be
contracted inside any of its neighborhoods. We also say that a map is cell-like if the
preimage of any point is a cell-like set. In particular, a contractible subset is cell-like.

A similar but more restricting notion is the cellularity. We say that a subset of a
manifold is cellular if it has a basis of neighborhoods pUiqi homeomorphic to balls. We
also say that a subset of a manifold is point-like if its complement is homeomorphic to
the complement of a point.

In a manifold, these notions are linked in the following way.

Proposition 6. Let A be a compact subset of a manifold, the three following statements
verify the following implications: p1q ô p2q ñ p3q ô p4q

1. A is point-like

2. A is cellular

3. A is cell-like

4. A is contractible

Proof. The equivalences p1q ô p2q and p3q ô p4q are proved in [Edw80].
The implication p2q ñ p3q is direct: let U be a neighborhood of A, and let V be

neighborhood of A contained in U and homeomorphic to a ball. As V is contractible, it
can be contracted to a point within U , so the same is true for A.

The union of the Alexander horned sphere with the tame component of its complement
or the Fox-Artin arc (Figure 1.21) are examples of cell-like but non-cellular subsets. Indeed,
they are contractible (they are homeomorphic to a closed ball and to r0, 1s) but not
point-like (their complement are not simply connected).
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Figure 1.21 – A contractible but non-cellular arc

Cell-like sets are important in the theory of decomposition of surfaces: the shrinking of
a family of cell-like sets in a surface always yields the same surface, and the quotient map
is approximable by homeomorphisms.

Theorem 7 (Moore [Dav86]). Let f : M Ñ X be a cell-like map defined on a closed
surface M . Then X is also a surface, and f is approximable by homeomorphisms.

This theorem can be generalized to non-compact manifolds by asking f to be a proper
map.

Remark that this theorem is specific to dimension 2. For example, let γ be a wild arc
in R3 whose exterior is not simply connected. The shrinking of this arc is a cell-like maps,
but the resulting space is not homeomorphic to R3 as it has a point with a non-simply
connected complement.

1.4 A tameness criterion

This section is dedicated to the proof of the following tameness criterion.

Proposition 1. Let Σ be a closed topological submanifold of a closed 3-manifold M .
Suppose that its complement MzΣ is homeomorphic to the interior of a compact manifold
X with boundary. If the inclusion i : MzΣ ÑM extends to a continuous map from X to
M

X

""
MzΣ

OO

i //M

then Σ is tamely embedded in M .

With the notations and setting of Proposition 1, we denote by f the continuous map
from BX toM defined by the extension of i. Remark that f is a surjective map from BX to
Σ. The boundary BX has a neighborhood in X homeomorphic to BX ˆ r0, 1s (see [Bro62]).
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The subset Σ thus has a closed neighborhood U in M such that UzΣ is homeomorphic to
BX ˆ r0, 1r via a homeomorphism which extends to a continuous map π from BX ˆ r0, 1s
to U .

π : BX ˆ r0, 1r ÝÑ UzΣ is a homeomorphism

π : BX ˆ t1u ÝÑ Σ is the continuous map f

The neighborhood U of Σ is then homeomorphic to the quotient of BX ˆ r0, 1s by π
(that is, by gluing the points of BX ˆ t1u having the same image by f).

U » BX ˆ r0, 1säπ

The topological submanifold Σ is a finite disjoint union of connected manifolds of
possibly different dimensions. We will study these connected components separately. As
the components of dimension 0 and 3 are automatically tame, the only cases of interest
are the components of dimension 1 and 2.

1.4.1 First case : Σ is a surface

In this subsection, we suppose that the topological submanifold Σ of M is a connected
surface.

To show that Σ is tamely embedded, we want to show that it has a tubular neighborhood,
as explained in Section 1.2.5. Morally, the map π is not a homeomorphism due to two
obstructions. The first is the fact that the map f should be of degree two, as Σ should
locally have two sides. The second is that the preimages of f are not necessarily discrete
(for example, f can shrink a disk of BX to a point).

...

...

...

...

...

...

...

...

Figure 1.22 – BX ˆ r0, 1s before and after the quotient by π.
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1.4. A tameness criterion

We will deal with the first obstruction by defining a double cover Σ̃ of Σ together with
a new map f̃ from BX to Σ̃ giving raise to a new map π̃ defining a new quotient space Ũ .

...

...

...

...

...

...

...

...

Figure 1.23 – BX ˆ r0, 1s before and after the quotient by π̃.

We will deal with the second obstruction by approximating the map f̃ by homeomor-
phisms.

As we do not give conditions on the orientability of Σ and M , we do not know if Σ cuts
U into one or two connected components. However, a local version of the Jordan-Brouwer
separation theorem determines this behavior at a local sale. This theorem is a direct
consequence of [Lem18, Theorem 2].

Theorem 8 (Local Jordan-Brouwer separation theorem). Let S be a closed topological
pn´1q-submanifold of a n-manifoldM . Then every point x of S has a basis of neighborhoods
pV x

k qk in M such that V x
k zS has exactly two connected components which both approach x

arbitrary closely.

We begin by unfolding Σ to a surface Σ̃ with underlying set

Σ̃ “
ď

xPΣ
lim
Ð
π0pUxzΣq.

Here, the inverse limit is taken over the neighborhoods Ux of x in M .
Theorem 8 tells us that each point of Σ has a basis of open neighborhoods pV x

k qk in
M such that V x

k zΣ has exactly two connected components. As each component of V x
k zΣ

approaches x arbitrary closely for every k, the inclusion map from π0pV
x
k zΣq to π0pV

x
k´1zΣq

is a bijection. Then, for each point x P Σ, lim
Ð

π0pUxzΣq has two elements.
Let y P V x

k

Ş

Σ. Each element of lim
Ð

π0pUyzΣq naturally maps to one of the components
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of V x
k zΣ. The subset Ṽ defined by

Ṽ “
ď

yPV x
k

Ş

Σ
lim
Ð
π0pUyzΣq

separates into two subsets, depending on the component of V x
k zΣ to which its elements map.

We endow Σ̃ with the topology for which each of these subsets are open neighborhoods,
for every x and every k. This makes the projection map p : Σ̃ Ñ Σ a double covering space
of Σ.

For a point y P BX, the sequence πpy, 1´ 1
n
q ends up in only one component of V fpyq

k ,
where π is the map defined in the beginning of Section 1.4. This defines a new continuous
map f̃ : BX ÞÑ Σ̃. This allows us to define a new quotient Ũ of BX ˆ r0, 1s by gluing the
points of BX ˆ t1u having the same image by f̃ instead of f . We denote by π̃ the quotient
map from BX ˆ r0, 1s to Ũ .

Ũ “ BX ˆ r0, 1säπ̃

The surface Σ̃ will be identified with the subset π̃pBX ˆ t1uq. Note that the quotient
of Ũ by the covering map p : Σ̃ Ñ Σ is homeomorphic to U .

The map f̃ is not a homeomorphism, but is approximable by homeomorphisms. To
prove this, we will show that f̃ is cell-like (see Section 1.3.1).

Lemma 5. The map f̃ is cell-like.

To show lemma 5, we begin by proving Lemma 6 and Lemma 7.

Lemma 6. For any point x P Σ̃, the fiber f̃´1ptxuq is connected.

Proof. From Theorem 8, every point of Σ̃ has a basis of closed neighborhoods pCkqk in Ũ
such that CkzΣ̃ is connected.

Suppose that the fiber π̃´1ptxuq Ă BX ˆ t1u can be written as a disjoint union of two
non-empty compact sets A1 and A2. Choosing a distance d on BX ˆ r0, 1s, the closed set
Y defined by

Y “
 

y P BX ˆ r0, 1s | dpy, A1q “ dpy, A2q
(

is disjoint from A1 and A2. The sets π̃´1pCkq are a basis of closed neighborhoods of π̃´1ptxuq,
and the sets π̃´1pCkzΣ̃q are homeomorphic to the sets CkzΣ̃ and are thus connected. The
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sets π̃´1pCkq thus always intersect Y and the intersections π̃´1pCkqXY are therefore closed
and non-empty. Finally, the intersection

Ş

k π̃
´1pCkq X Y is non-empty and contained in

Ş

k π̃
´1pCkq “ π̃´1ptxuq and in Y , which is impossible since Y is disjoint from A1 and A2.

The fiber π̃´1ptxuq “ f̃´1ptxuq is then connected.

Lemma 7. Let g : AÑ B be a continuous surjective map with connected fibers between
compact Hausdorff spaces. Let B1 Ă B and A1 “ g´1pB1q. If B1 is connected, then A1 is
also connected. And if B1 is non-separating in B, then A1 is also non-separating in A.

Proof. We consider that B1 is connected. Suppose that A1 is the disjoint union of two
non-empty subsets A1 and A2 closed in A1. This means that A1, the closure of A1 in
A, does not intersect A2 and that A2, the closure of A2 in A, does not intersect A1.
As A and B are Hausdorff and compact, gpA1q and gpA2q are closed in B. As B1 is
connected, the sets gpA1q

Ş

B1 and gpA2q
Ş

B1 cannot be disjoints. So, let x be an element
of gpA1q

Ş

gpA2q
Ş

B1. The fiber g´1pxq is connected and then cannot intersect both A1

and A2. We can consider without loss of generality that it is contained in A1. However, as
x is in gpA2q, there is an element y of A2 such that gpyq “ x. But g´1pxq is contained in
A1 and we saw that A1 and A2 were disjoint. So this situation is impossible, which means
that A1 must be connected.

We now consider that B1 is a non-separating. This means that BzB1 is connected.
Using the first part of this lemma, we obtain that AzA1 “ g´1pBzB1q is connected. So A1

is non-separating.

Now, we can show that f̃ is cell-like.

Proof of Lemma 5. Let x be a point of Σ̃. Let pUiqiPN be a decreasing sequence of open
disks in Σ̃ whose intersection is txu. We want to show that the sets f̃´1pUiq are also
homeomorphic to disks. The set f̃´1ptxuq will then be the intersection of a decreasing
family of disks, which implies that the map f̃ is cell-like.

First, we know that f̃´1pUiq is a connected surface thanks to Lemma 7. This surface
has only one end. Indeed, Ui is an increasing union of non-separating compacts set, and so
is f̃´1pUiq by Lemma 7.

Consider the subset π
`

f´1`ppUiq
˘

ˆ r0, 1s
˘

of M , where p : Σ̃ Ñ Σ is the cover map.
This neighborhood is a manifold since its boundary π

`

f´1`ppUiq
˘

ˆ t0u
˘

has a collared
neighborhood π

`

f´1`ppUiq
˘

ˆ r0, εs
˘

. Endow this manifold with a smooth structure so
that the map π is smooth on this collar. Suppose that f̃´1pUiq is not a disk, it is then
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homeomorphic to a non-simply connected compact surface with a point removed. We
can then find two smooth simple curves γ1 and γ2 in f̃´1pUiq with a non-zero modulo 2
intersection number. Let us define the smooth curve γ1 “ πpγ1ˆt

ε
3uq and a smooth surface

S 1 in the following way. First, we define a topological surface S by two pieces S1 and S2.
The first piece S1 is πpγ2 ˆ r0, 1sq. The curve πpγ2 ˆ t1uq is contained in Ui and can be
contracted into a point, as Ui is a disk. This homotopy defines the second piece S2. This
surface S defined by the two pieces S1 and S2 can be approximated by a smooth surface S 1

without being modified on πpγ2 ˆ r0, 2ε
3 sq. Finally, γ

1 and S 1 have an intersection number
of 1, but this is not possible since γ1 can also be homotoped to Ui and then contracted to
a point in the same way we constructed S. So f̃´1pUiq is a disk.

We can now prove Proposition 1.

Proof of Proposition 1 if Σ is a surface. Moore’s theorem (Theorem 7) states that cell-
like maps between surfaces are approximable by homeomorphisms. The surface Σ̃ is then
homeomorphic to BX and the map f̃ is thus approximable by homeomorphisms fn. Choose
any homeomorphism h from BX to Σ̃ and define the following maps.

hn : BX Ñ BX

x ÞÑ f´1
n ˝ hpxq

ϕn : BX Ñ Ũ

x ÞÑ π̃px, 1´ 1
n
q

The map ϕn sends points of BX close to Σ̃, and the map hn is a reparametrization of BX.
As the limits of ϕn and of fn are both f̃ , the limit of the sequence ϕn ˝ hn “ ϕn ˝ f

´1
n ˝ h

is the map h, as shown in Lemma 8 bellow.
From here, one can apply a Bing’s approximation theorem [Bin59, Theorem 11.1] to

obtain the tameness of Σ, but we will provide a more direct proof.
For any positive real number t P rn, n` 1s, we can interpolate the maps ϕn and ϕn`1

and the maps hn and hn`1 to obtain maps ϕt and ht with the same properties. To define ϕt,
we just replace n by t in the definition, and ht is defined using local arcwise connectivity
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of HomeopBXq (see Lemma 10 bellow). We can then define the following homeomorphism.

Ψ : BX ˆ r0, 1s Ñ Ũ

px, tq ÞÑ

#

ϕ 1
1´t
˝ h 1

1´t
if t ă 1

hpxq if t “ 1

For Ψ to be continuous at t “ 1, the paths between the maps hn and hn`1 must however be
chosen carefully so that their diameters go to zero with n. This is done thanks to Lemma
10 bellow.

Finally, taking the quotient of Ũ by the covering map p : Σ̃ Ñ Σ yields the total space
of a vector bundle over Σ. As this quotient is homeomorphic to U , this proves that Σ has
a tubular neighborhood. By proposition 5, Σ is then tamely embedded.

The final arguments of this proof are justified by the following results. First, we make
use of Lemma 8 to show the convergence of ϕn ˝hn. Indeed, we have ϕn ˝hn “ ϕn ˝ f

´1
n ˝h

and ϕn converges to f .

Lemma 8. Let f be a map between two compact metric spaces X and Y . Suppose that f is
approximable by homeomorphisms, meaning that there is a sequence fn of homeomorphisms
converging uniformly to f . Then the sequence f ˝ f´1

n converges uniformly to the identity
function of Y .

Proof. Let ε ą 0 and y P Y . There is a n P N such that d
`

fpxq, fnpxq
˘

ă ε for every x of
X. Let z “ f´1

n pyq. We have
d
`

fpzq, fnpzq
˘

ă ε.

We then have
d
`

f ˝ f´1
n pyq, y

˘

ă ε.

So f ˝ f´1
n converges uniformly to the identity function.

Remark 2. The sequence f´1
n ˝ f does not necessarily converge to the identity function of

X. Indeed, if f is not injective, f´1
n ˝ f cannot converge to an injective map. For example,

consider the following function f

f : r0, 2s Ñ r0, 1s

x ÞÑ

#

0 if x ă 1
x´ 1 if x ě 1
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which is approximable by the homeomorphisms fn.

fn : r0, 2s Ñ r0, 1s

x ÞÑ

#

x{n if x ă 1
n´1
n
px´ 2q ` 1 if x ě 1

Then the sequence f´1
n ˝ f does not converge to the identity function of r0, 2s. Indeed to

Figure 1.24 – Graphs of f and fn.

converges to the following map g.

g : r0, 2s Ñ r0, 2s

x ÞÑ

#

0 if x ď 1
x if x ą 1

Secondly, we prove that σ can be approached by appropriate surfaces. To obtain our
final product structure, we need to fill the gaps between these surfaces. The flow ϕ already
gives us the supports of the desired intermediate surfaces, what remains to be done is to
connect the homeomorphisms hn. We will show that the surface homeomorphism groups
are locally path connected and that we have some control on the length of these paths.

The first Lemma is known as the Alexander trick [Ale23].

Lemma 9 (Alexander trick [Ale23]). Let g : Rn Ñ Rn be a homeomorphism such that
d
`

x, gpxq
˘

is bounded. There is a path γ in HomeopRnq from the identity to g. This path
is continuous for the topology of the uniform convergence and we have the equality

max
xPRn

d
`

x, γtpxq
˘

“ t max
xPRn

d
`

x, gpxq
˘

.

Proof. Consider the map γtpxq “ t g
`

x
t

˘

. The equality stated in the lemma is clear from
this formula and shows that

lim
tÑ0

d
`

x, γtpxq
˘

“ 0

for all x.
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One can think of this proof as a "step back" argument : when looking to g from further
and further away, the transformation looks more and more like the identity.

In particular, we can apply this lemma to any homeomorphism of Rn that fixes the
exterior of a compact set. In our situation, we want a path γ in Homeo

`

ϕnpBXq
˘

from
ϕn ˝ hn ˝ ϕ

´1
n to ϕn ˝ hn`1 ˝ ϕ

´1
n .

Lemma 10. For n P N large enough, there is a path γ from in Homeo
`

ϕnpBXq
˘

from
the identity to gn “ ϕn ˝ hn`1 ˝ h

´1
n ˝ ϕ´1

n . This path is continuous for the topology of the
uniform convergence and we have the inequality

max
xPϕnpBXq

d
`

x, γtpxq
˘

ď K max
xPϕnpBXq

d
`

x, gnpxq
˘

.

for some constant K independent of n.

Proof. Let pAiqi for 0 ď i ď N be closed disks covering Σ and pBiqi be closed disks
such that Ai Ă B̊i and let δ “ min

i
dpAi, BXzBiq. Choose diffeomorphisms ψi from

S1 ˆ r´1, 1r to BizAi and choose L ą 0 such that the ψi|r´ 1
2 ,

1
2 s

are L-bilipschitz. Noting
εn “ max

xPϕnpBXq
d
`

x, gnpxq
˘

, choose n0 big enough so that εn ă δ
100 , εn ă

δ
100L2 , εn ă 1

2L and

d
`

ϕnpBXq,Σ
˘

ă δ
100 for any n ě n0. From now on, we will consider that n is greater than n0.

We begin by showing that the map gn is the composition of a finite number of homeo-
morphisms bi that fix the exterior of some ball. Let B̃i “ ϕn˝f

´1pBiq and Ãi “ ϕn˝f
´1pAiq.

From Lemma 5, these subsets of ϕnpBXq are disks and we have d
`

Ãi, ϕnpBXqzB̃i

˘

ą 98 εn.
We will write gn as the composition bn ˝ ... ˝ b1 where each bi is defined as follow :

— bi fixes
`

ϕnpBXqzB̃i

˘
Ť

ψi
`

S1 ˆ r´1,´Lεns
˘

— bi fixes the disks Ãj for j ă i

— bi equals gn ˝ b´1
1 ˝ ... ˝ b´1

i´1 on Ãi
Ť

ψi
`

S1 ˆ rLεn, 1r
˘

These conditions are compatible and the only part where a map bi still needs to be defined
is on ψi

`

S1 ˆ r´Lεn, Lεns
˘

. Let x P ψi
`

S1 ˆ tLεnu
˘

, the distance dpx, ψi
`

S1 ˆ t´Lεnu
˘

q

is at least εn and at most L2εn. Choose m points xj in S1 for j P Zm at distance at least
2L3εn and at most 4L3εn from their two neighbors. The cells C̃j between txjuˆr´Lεn, Lεns
and txj`1u ˆ r´Lεn, Lεns in S1 ˆ r´Lεn, Lεns produce cells Cj “ ψipC̃jq of a diameter at
most 5L4εn in ϕnpBXq. We can then find paths from gn ˝ b

´1
1 ˝ ... ˝ b´1

i´1pψipxj, Lεnqq to
ψipxj,´Lεnq of length at most 2L2εn. These paths produce new cells C 1j of diameter at
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Figure 1.25 – Illustration of Lemma 10

most 6L4εn. When Cj “ C 1j, define bi on the cells Cj by the identity, and define bi on the
other cells by any homeomorphism from Cj to C 1j.

For each of these homeomorphisms bi, Lemma 9 tells us that there is a path bti from
the identity to bi. The composition γt “ btn ˝ ... ˝ b

t
2 ˝ b

t
1 ˝ f is then a path from f to g

verifying the desired inequality for K “ 10L4N .

1.4.2 Second case : Σ is a circle

In this subsection, we suppose that the subset Σ of M is a circle S1. The approach
will be very similar to what we did for the first case. We will show that BX is the total
space of a circle bundle over S1 (that is, a torus or a Klein bottle) and that the map π
from BX ˆ r0, 1s to U can be reparametrized to a map whose restriction to BX ˆ t1u is
the standard projection of this bundle onto its basis.

In this case, there are no cell-like map from BX to some surface, but the general
method still works. Most of the lemmas used for the first case will be adapted by hand,
and previously used arguments will only be sketched.

Lemma 11. For any point x P Σ, the fiber f´1pxq is connected and non-separating.

Proof. The proof of Lemma 6 can be reused as it is. The important points being that
the connected neighborhoods pCkqk still exist and that the sets CkzΣ are still connected,
as removing a 1-dimensional topological submanifold from a 3-dimensional connected
manifold cannot disconnect it.

Lemma 7 still shows that the fibers are also non-separating in BX.
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Lemma 12. Let I be an open interval of Σ. The set f´1pIq is homeomorphic to an open
cylinder S1ˆs0, 1r.

Proof. We know that f´1pIq is a connected surface thanks to Lemma 7 and Lemma 11.
This surface has two ends. Indeed, I is an increasing union of compact sets In separating I
into two connected components Cn and C 1n with Cn`1 Ă Cn and C 1n`1 Ă C 1n. So, by Lemma
7 and Lemma 11, f´1pIq is also the increasing union of the compact sets f´1pInq separating
f´1pIq into two connected components f´1pCnq and f´1pC 1nq with f´1pCn`1q Ă f´1pCnq

and f´1pC 1n`1q Ă f´1pC 1nq.
Suppose that f´1pIq is not an open cylinder, it is then homeomorphic to a non-simply

connected compact surface with two points removed. We can then find two smooth curves
γ1 and γ2 in f´1pIq with a non-zero modulo 2 intersection number. The argument used in
Lemma 5 then work in the same way.

Lemma 13. The surface BX is homeomorphic to the total space of a circle bundle over Σ.

Proof. Write Σ as the union of two open intervals I1 and I2. These two intervals intersect
in two other intervals I3 and I4. Let S3 and S4 be two non-null-homotopic circles in
the cylinders f´1pI3q and f´1pI4q. The circles S3 and S4 are also non-null-homotopic in
f´1pI1q, so the compact set between S3 and S4 in f´1pI1q is then homeomorphic to a
closed cylinder S1 ˆ r0, 1s. The same is true for f´1pI2q, so BX is the union of two closed
cylinder glued along their boundaries. So BX is homeomorphic to the total space of a
circle bundle over Σ.

We can now conclude the proof of Proposition 1.

Proof of Proposition 1 if Σ is a circle. Let h be a map from BX to Σ so that the triple
pBX,Σ, hq is a circle bundle. For n P Z, let fn be a smooth 1

n
-approximation of f .

By Sard’s theorem, there is a homeomorphism j between RäZ and Σ such that each

q P QäZ Ă j´1pΣq is a regular value for every fn. Each preimage f´1
n

´

j
` i

2n
˘

¯

for
0 ď i ă 2n then contains a non-null-homotopic smooth circle Si,n. We then define a
homeomorphism hn from BX to itself that sends each circle h´1

´

j
` i

2n
˘

¯

on Si,n. And we
also define the following map.

ϕn : BX ÑM

x ÞÑ πpx, 1´ 1
n
q
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On a circle h´1
´

j
` i

2n
˘

¯

, the limit of the sequence pϕn ˝ hnqnPN is j
` i

2n
˘

. So this sequence
converges to the map h.

For any positive real number t, we can interpolate the maps ϕn and hn to obtain maps
ϕt and ht as in section 1.4.1. We can then define the following map.

Ψ : BX ˆ r0, 1s ÑM

px, tq ÞÑ

#

ϕt ˝ htpxq if t ă 1
hpxq if t “ 1

By identifying the points having the same image by Ψ, we obtain the total space of a disk
bundle over Σ that maps homeomorphically to a neighborhood of Σ and whose core is
mapped on Σ. By proposition 5, Σ is tamely embedded.

Now that we have introduced every notion of tameness useful for our problem and that
we have proved our tameness criterion, we can start discussing the Smith conjecture.
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Chapter 2

THE SMITH CONJECTURE

2.1 Introduction

Let X be a topological space. A self-homeomorphism of X is a homeomorphism
σ : X Ñ X from X onto itself. We say that two self-homeomorphisms σ and σ1 of X are
conjugate if there is there is a self-homeomorphism f of X such that

σ1 “ f´1
˝ σ ˝ f.

A self-homeomorphism σ of X is of finite order (or periodic) if there is n P Ną0 such
that fn (the composition of f with itself n times) is the identity. If f is of finite order, the
smaller number n with this property is called the order of f .

The understanding and the classification of such finite order self-homeomorphisms is
an important topic in topology. If X is the euclidean space Rn and if we only consider
linear transformations, this classification is well known. For example, every finite order
linear automorphism of R3 is conjugate either to the identity, to a reflection, to a rotation
of a rational number of turn around some axis, or to the antipodal map rx ÞÑ ´xs. We can
then define a large variety of finite order self-homeomorphism of R3 by conjugating these
automorphisms by any self-homeomorphism of R3. As the linear automorphisms seem to
be the only examples that arise naturally, the following question then follows

Question 2. Is there a finite order self-homeomorphism of R3 which is not conjugate to a
linear automorphism ?

Although it appears to be difficult to find such a map, it turns out that the answer to
this question is positive. This answer may however change if one consider other spaces
than R3 and consider only maps with some regularity.

Our study will mostly focus on compact 3-manifolds, and the fundamental example
to keep in mind will be the 3-sphere S3. The non-compactness of the euclidean space Rn
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Part I, Chapter 2 – The Smith conjecture

should not eclipse the previous discussion. Indeed, the euclidean spaces and spheres behave
in the same way in many aspects.

First, as Sn´1 is the subset
 

x P Rn | }x}2 “ 1
(

, transformations of Rn that fix Sn´1

yield transformations of Sn´1. The only linear transformations of Rn mapping Sn´1 onto
itself are the isometries of Rn and are well known. The group of every such transformation,
the orthogonal group On, then acts on Sn´1.

Secondly, the n-sphere Sn is homeomorphic to the one-point compactification of Rn,
that is Rn with an additional point for which a family of neighborhoods are the complement
of compact subsets of Rn. In other words, Rn is homeomorphic to Sn with a point removed.
Any self-homeomorphism of Rn is proper and can then be extended to self-homeomorphism
of Sn by fixing its additional point. On the contrary, a self-homeomorphism of Sn with a
fixed point can yield a self-homeomorphism of Rn by removing one its fixed point. Question
2 can then be reworded as follows

Question 3. Is there a finite order self-homeomorphism of S3 which is not conjugate to
an element of O4 ?

The only real difference between Question 2 and Question 3 is the fact that O4 contains
a free involution (the restriction of the antipodal map rx ÞÑ ´xs in R4) which does not
exist in R3.

2.1.1 Smith theory

One of the earliest results in the study of finite-order homeomorphisms of S3 is the
determination of the topology of the fixed set by P. A. Smith. He showed ([Smi39, 7.3
Theorem 4]) that the fixed set of a finite-order homeomorphism of S3 is homeomorphic to
a lower dimensional sphere (that is, S3 itself, a 2-sphere, a circle, a pair of points or no
fixed points at all). This result can be generalized to any 3-manifold as follows.

Theorem 9. Let σ : M ÑM be a finite order homeomorphism of a topological 3-manifold
M . The fixed set Mσ is a disjoint union of open pieces pΣiqi where Σi is a topological
manifold.

A proof of this result can be found, for example, in [Par20, Theorem 4.5]). As in John
Pardon’s paper, Smith theory is usually stated for prime orders, but Theorem 9 is still
valid for any finite order. Indeed, suppose that we have Theorem 9 for prime orders, and
let σ be a homeomorphism of a topological 3-manifold of order n, and let p1 ¨ ... ¨ pk be
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a decomposition of n into prime factors. The map σ
n
p1 is of order p1, so the result of

Theorem 9 applies to the fixed set Mσ
n
p1 . The map σ

n
p1¨p2 is of order p2 on Mσ

n
p1 and we

have the inclusion Mσ
n

p1¨p2
ĂMσ

n
p1 , and as Theorem 9 is also true for dimensions 2 and 1,

the result still applies. We can continue this argument until it applies to σ.

2.1.2 The Bing Involution

Smith theory describes the intrinsic topology of the fixed set Mσ, but it does not
describe how the latter is embedded in M . For example, Smith theory does not answer
the following questions:

— If Mσ » S1, can it be a non-trivial knot in M ?

— Can Mσ be wildly embedded ?

If one only requires continuity on the map σ, the answer is affirmative for those two
questions. We will describe an example of an involution of S3 whose fixed set is a wildly
embedded 2-sphere.

Consider the Alexander horned sphere presented in Section 1.1.3. We recall that it
is a 2-sphere wildly embedded in S3. Note W the wild component of its complement,
accordingly to Figure 2.1. The horned sphere is then its boundary BW and its union with
its exterior component is the closure W , called the Alexander solid horned sphere.

Figure 2.1 – the Alexander horned sphere

Bing proved in 1952 [Bin52] that the double of the Alexander solid horned sphere is
homeomorphic to S3. This double is defined as the disjoint union of two Alexander solid
horned spheres W glued along their boundary BW by identifying each point of BW in the
first copy with the corresponding point in the second copy: W

Ů

BW

W .

Exchanging those two copies of W yields an involution i of S3 called the Bing involu-
tion. The fixed set of this involution is the 2-sphere BW , which is wildly embedded as its
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Part I, Chapter 2 – The Smith conjecture

complement is the disjoint union of two copies of W , which are not simply connected.

The Bing involution: WVV

i

HH
Ů

BW

W» S3

2.2 The Lipschitz Smith Conjecture

2.2.1 Early results

In 1939, P. A. Smith proved [Smi39, 7.3 Theorem 4] that the fixed set Mσ of a finite-
order and orientation-preserving homeomorphism σ of the 3-sphere S3 was empty or a
circle S1. He then asked [Eil49, Problem 36] if this circle could be knotted. This question
is known as the Smith conjecture.

Conjecture 1 (Smith). The fixed set of a finite order map from S3 into itself cannot be
a nontrivial knot.

Question 3 is a generalization of this question, and its answer may be different if we
only consider maps of a given regularity. Since the work on geometrization by Thurston
and Perelman, we know that the Smith conjecture is true for smooth maps [BLP05]. On
the other hand, if we only ask σ to be continuous, we saw in Section 2.1.2 that the Bing
involution was a counterexample. Montgomery and Zippin [MZ54] also modified Bing’s
example to obtain an orientation-preserving involution with a wild circle as a fixed set.

One can then wonder what happens for maps with more regularity but which are not
differentiable. For example, Jani Onninen and Pekka Pankka showed in 2019 [OP19] that
there also exists wild involutions in the Sobolev class W 1,p.

Our study will focus on the Lipschitz continuity. The answer to Question 3 for Lipschitz
map seems to be considered positive, but the ideas to prove this fact only existed in
unpublished work until the present thesis. In [Ham08], D. H. Hamilton announced that
quasi-conformal reflections are tame, but the proof seems to remain unpublished. In
2013, Michael Freedman asked in [Fre13, Conjecture 3.21] if the Bing involution could be
conjugate to a Lipschitz homeomorphism. Jani Onninen and Pekka Pankka reiterate this
question in 2019 [OP19].

Conjecture 2 (Freedman). Every bilipschitz action of a finite group on a closed 3-manifold
is conjugate to a smooth action.
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In this thesis, we give a partial answer to Freedman’s question, proving that for ε ą 0
small enough, wild finite-order maps can not be p1` εq-bilipschitz. More precisely, we will
show the following theorem.

Theorem 1. For ε “ 1
4000 , any action of a finite cyclic group by p1 ` εq-bilipschitz

homeomorphisms on a closed 3-manifold is conjugate to a smooth action.

This theorem started with an idea of Pekka Pankka and Juan Souto. They obtained
the following result in unpublished work, we will sketch their argument.

Theorem 10 (Pekka Pankka and Juan Souto). Let σ be an involution of M “ R3 with a
fixed set Mσ homeomorphic to R2. If the complement of the fixed set is not a tame manifold,
then there exists an ε such that σ is not conjugate to a p1` εq-bilipschitz involution.

Sketch of the proof. We want to show that, if σ is conjugate to a p1 ` 1
n
q-bilipschitz

involution σn of R3 for n arbitrarily large, then the map

ϕn : x ÞÑ x`
1
4pσnpxq ´ xq

would take every point of R3 closer to Mσn for some n. It would follow from the Tucker
Theorem 6 that the complement of Mσn is a tame manifold. Indeed, if such a map
exists, it is possible to find a compact submanifold with boundary N arbitrarily large in
the complement of Mσn such that lim

k
ϕknpNq “ MzMσn . The fundamental group of the

complement of a compact subset in MzMσn would then be isomorphic to the fundamental
group of the complement of a compact subset in N , which is finitely generated.

Suppose by contradiction that for every n P N we could find a p1 ` 1
n
q-bilipschitz

involution ϕn of R3 fixing 0 and conjugate to σ such that

d pϕnpxnq,M
σnq ě 0.99 d

`

xn,M
σn
˘

for some xn. With rotations and homotheties, we can suppose that xn “ p1, 0, 0q “: x8 for
every n. By the Arzelà-Ascoli theorem, the sequence σn converges to some map σ8 (with
a corresponding map ϕ8). This map verifies

d pϕ8px8q,M
σ8q ě 0.99 d

`

x8,M
σ8
˘

.

But it is also an isometry as it is 1-bilipschitz, which is a contradiction. Indeed, for an
isometry of R3, we have d pϕ8px8q,Mσ8q “ 0.5 d

`

x8,M
σ8
˘

. So, there exist a number n
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Part I, Chapter 2 – The Smith conjecture

so that, for every p1` 1
n
q-bilipschitz involution ϕ of R3 fixing 0 and conjugate to σ, we

have
d pϕ8px8q,M

σ8q ă 0.99 d
`

x8,M
σ8
˘

.

for every x in R3.
So there exists a n such that the map ϕn takes every point of R3 closer to Mσn .

Theorem 1 is a more general version of Theorem 10: it gives an explicit value for ε and
it applies to a larger set of spaces and homeomorphisms.

Michael Freedman and Michael Starbird recently published another result. They proved
that the Bing involution could not be conjugate to a Lipschitz map.

Theorem 11 (Freedman, Starbird [FS22]). Let σ be a map conjugate to the Bing involution
and let δpεq be its modulus of continuity at scale ε. Then we have the following inequality

δpεq´1
ě 1.167

?
1{ε

for a sequence of ε’s converging to zero. In particular, σ cannot be Lipschitz.

Here, the modulus of continuity δpεq is defined as the highest value so that |x´y| ď δpεq

implies |σpxq ´ σpyq| ď ε.
This theorem is stronger than Theorem 1 because it has no bound on the Lipschitz

constant, but it only applies to the Bing involution.

2.2.2 Some results on Lipschitz vector fields

Let vvv be a vector field on a compact manifold M . If vvv is Lipschitz continuous, the
Picard-Lindelöf theorem tells us that one can solve the autonomous ordinary differential
equation

γ1ptq “ vvv
`

γptq
˘

, γp0q “ x0 (2.1)

which is a C1 curve following the vector field vvv and starting at a point x0. One can then
define the flow ϕ : M ˆ RÑM of vvv by letting ϕpx0, tq be the solution of (2.1) at time t
with the initial condition x0.

The results about such a flow are often stated for C1 vector fields. In fact, the Lipschitz
continuity is sufficient to obtain the continuity of ϕ. For example, we state the following
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2.2. The Lipschitz Smith Conjecture

lemma from [CB08, Lemma 2], which gives the Lipschitz continuous dependence on initial
conditions.

Lemma 14 (Continuous dependence on initial conditions [CB08]). Let f be a Lipschitz
vector field with constant K defined on an open subset of a Banach space. Let σx and σy be
solutions to f for initial conditions x and y with interval I Q 0 contained in their common
domains. Then

}σx ptq ´ σy ptq} ď }x´ y} e
K|t|

for all t P I.

An other important result is the flow-box Theorem. If vvv is a C1 vector field and if x is
a point of Rd such that vvvpxq ‰ 0, then there is a neighborhood U of x and a neighborhood
of 0 such that there exist a diffeomorphism from U to V sending vvv to the standard vector
field p1, 0, 0, ..., 0q. In particular, The flow of vvv locally acts by diffeomorphisms.

If vvv is only Lipschitz continuous, we can only hope to obtain a conjugacy to a standard
vector field via a bilipschitz homeomorphism. However, a bilipschitz homeomorphism
cannot transfer vector fields, they can however transfer the action of the flow. We say
that two vector fields vvv1 and vvv2 defined on two open sets U1 and U2 are topologically
conjugate near x1 P U1 and x2 P U2 if there exist two neighborhoods W1 and W2 of x1

and x2 and a homeomorphism h from W1 to W2 with hpx1q “ x2 and such that

h
`

ϕ1px, tq
˘

“ ϕ2
`

hpxq, t
˘

for every x P W1 and |t| sufficiently small, where ϕ1 and ϕ2 are the local flows of vvv1 and
vvv2. The following theorem is then proved in [CB08, Theorem 4].

Theorem 12 (Lipschitz Flow box Theorem[CB08]). Let X be a Banach space with open
subset U . Let f : U Ñ X be a Lipschitz vector field. Let z P X be nonzero and let
g : X Ñ X be the constant vector field g pxq “ z. Then for any point x1 P U with
f px1q ‰ 0, f and g are locally topologically conjugate near x1 and x2 :“ 0.

The homeomorphism which gives the conjugacy is bilipschitz.

2.2.3 The Smith Conjecture for C1 maps

Theorem 1 also applies to C1 homeomorphisms, without any bound on its derivatives.
Indeed, we will show that every C1 homeomorphism is conjugate to a p1` εq-bilipschitz
homeomorphism for every ε ą 0.
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Part I, Chapter 2 – The Smith conjecture

Let ρ be the riemannian metric on M and suppose that, for any g P G, the map
x ÞÑ gx is C1. Any such map lifts to a continuous map from TM to TM . We can define
the pullback g˚ρ of ρ by any such g:

g˚ρpu, vq “ ρpgu, gvq

This metric g˚ρ is only continuous.
We can define the sum of these pullbacks:

ρ̃ “
ÿ

gPG

g˚ρ

This metric verifies the property ρ̃phu, hvq “ ρ̃pu, vq for every h P G.

ρ̃phu, hvq “
ÿ

gPG

g˚ρphu, hvq

“
ÿ

gPG

ρpghu, ghvq

“
ÿ

g1PG

ρpg1u, g1vq by setting g1 “ gh

“ ρ̃pu, vq

So G acts by isometries on M for the metric ρ̃. This metric is only continuous but we can
approximate it by a smooth metric ρε such that

1
1` ερ̃pu, vq ď ρεpu, vq ď p1` εqρ̃pu, vq.

So we have
ˆ

1
1` ε

˙2

ρεpu, vq ď ρεpgu, gvq ď p1` εq2ρεpu, vq.

This means that G acts by p1` εq2-lipschitz homeomorphisms on M for the metric ρε. So,
by Theorem 1, the action of G is smoothable.

2.2.4 Reducing Theorem 1 to two propositions

Theorem 1 will be proved by studying the tameness of the fixed set of the action. If
the fixed sets of the elements of such an action are tamely embedded, it is known that this
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2.2. The Lipschitz Smith Conjecture

action is smoothable (see Theorem 13). Theorem 1 can be reduced to two propositions.
The first proposition, proved in Section 1.4, is a tameness criterion allowing us to

obtain, in some specific cases, the tameness of an embedding from the topology of its
complement.

Proposition 1. Let Σ be a closed topological submanifold of a closed 3-manifold M .
Suppose that its complement MzΣ is homeomorphic to the interior of a compact manifold
X with boundary. If the inclusion i : MzΣ ÑM extends to a continuous map from X to
M

X

""
MzΣ

OO

i //M

then Σ is tamely embedded in M .

We recall that a topological submanifold is a subset which is a topological manifold
for the induced topology. For example, the Alexander horned sphere is a topological
submanifold of R3. Note that the extension of the map i just needs to be continuous,
without any injectivity hypothesis. This proposition will be proved by showing that the
resulting map from BX to Σ is approximable by coverings.

In the last part, we show how this criterion can be applied to finite order p1 ` εq-
bilipschitz homeomorphisms by proving Proposition 2.

Proposition 2. For ε “ 1
4000 and for every p1 ` εq-bilipschitz action of a finite group

G on a compact Riemannian manifold M , the fixed set MG satisfies the conditions of
Proposition 1.

This proposition is proved by defining a Lipschitz vector field on M and by showing
that the flow of this vector field converges to the fixed set. This allows us to define a
product structure on a neighborhood of the fixed set which extends continuously to the
latter. The Lipschitz continuity of the action is crucial to define this vector field, and the
bound on ε is used to show the convergence of its flow.

Note that Proposition 2 works in any dimension with any finite group. The conditions
of Theorem 1 are imposed by Theorem 13 and Proposition 1.

Remark 3. As Proposition 2 only uses local arguments, the compactness hypothesis in its
statement could be removed with some work. However, we cannot get rid of compactness
needed in Theorem 1 as it is needed for Theorem 13 stated in the next part.
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The fixed set of a smooth action on a 3-manifold is a smooth submanifold. In particular,
this fixed set is tamely embedded. It turns out that the tameness of the fixed set for every
power of a finite order self-homeomorphism of a 3-manifold is a sufficient condition for
this map to be smoothable.

Theorem 13. [KL88, Corollary 2.3] A topological action of a finite cyclic group G on a
closed 3-manifold M is smoothable if and only if, for every subgroup H of G, the fixed set
MH is tame.

Note that the tameness of the global fixed set MG is not sufficient. For example, con-
sider the disjoint union of three 3-spheres S3 ŮS3 ŮS3. Let r be a circular permutation
exchanging these three copies, and let s be a wild involution on each 3-sphere such that r
and s commute. The group generated by r and s is cyclic of order six but its action has
an empty (and thus tame) global fixed set, and this action is not smoothable.

Figure 2.2 – A wild action on a compact manifold with an empty global fixed set.

Theorem 1 can be reduced to Proposition 1 and Proposition 2 stated earlier.
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Proof of Theorem 1. Let G be a finite cyclic group acting by p1` εq-bilipschitz homeomor-
phisms on a closed 3-manifold. Each subgroup H of G is cyclic and acts by p1`εq-bilipschitz
homeomorphisms. By Proposition 2 and Proposition 1, the fixed sets of these subgroups
are tame. Theorem 13 then applies, implying that the action of G is smoothable.

Section 1.4 is dedicated to the proof of Proposition 1, and Section 2.3 to Proposition 2.

2.3 Proof of Proposition 2

In this section, we show that we can use the tameness criterion developed in the
previous section on finite order (1+ε)-bilipschitz mappings. More precisely, we show the
following.

Proposition 2. For ε “ 1
4000 and for every p1 ` εq-bilipschitz action of a finite group

G on a compact Riemannian manifold M , the fixed set MG satisfies the conditions of
Proposition 1.

Remark that this proposition works for any dimension and any finite group.
To obtain Proposition 2, we will define a continuous flow ϕ near the fixed set MG such

that
lim
tÑ8

ϕtpxq PM
G

for any point x close enough to MG, and such that this convergence is uniform in x. We
will show that this flow allows us to define a compactification of the complement of MG

which extends continuously (but not homeomorphically) to MG.
This flow ϕ will be constructed as the flow of a Lipschitz vector field vvv. By Lemma

14, Lipschitz continuity on the parameters of an ODE is enough to obtain a continuous
dependency on the initial conditions and to produce a continuous flow.

2.3.1 A vector field near the fixed set

Let ε “ 1
4000 and let G and M be as in Proposition 2. If we were given a point x near

the fixed set MG, then a natural place where we could look for a fixed point would be near
the center of mass Bpxq of the orbit of x. We will build a vector field vvv pointing towards
this center of mass. In what follows, we will freely use some classic notions and facts of
Riemannian geometry, such as the convexity radius and the center of mass. We refer to
[Ber03] to learn more about these topics.
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Let r be the convexity radius of M . The center of mass of a finite set S of points in a
ball of radius r is the unique minimum of the function

z ÞÑ
ÿ

sPS

dpz, sq2

Equivalently, it is the unique zero of the vector field

z ÞÑ
ÿ

sPS

exp´1
z psq.

Note that, for any point x at a distance r

1` ε from a fixed point, the orbit Gx of x is
included in a ball of radius r around the latter. This means that Gx has a well-defined
center of mass for any such x.

Let us proceed with some definitions.

— If dpx,MGq ă
r

1` ε , let Bpxq be the center of mass of the orbit of x.

As explained in Section 2.3.3, B has a Lipschitz dependency on x. This means that
exp´1

x

`

Bpxq
˘

is Lipschitz in x.
— Let vvv be a Lipschitz vector field onM with vvvpxq “ exp´1

x

`

Bpxq
˘

wherever dpx,MGq ă
r

1` ε .
— Let ϕ be the flow of vvv.
By Lemma 14, the flow ϕ is well-defined and acts by homeomorphisms.
To prove Proposition 2, we will make use of the following lemma.

Lemma 15. There are positive constants τ ą 0 and k ă 1 and an open neighborhood V
of MG such that we have the inequality

}vvv
`

ϕτ pxq
˘

} ď k}vvvpxq}

for all x in V .

We will also need the following result, asserting that, as long as x is close to MG, then
the point Bpxq is almost fixed by G.

Lemma 16. There is a constant R ą 0 depending only on M and an open neighborhood
V of MG such that, for g0 P G, we have

d
`

Bpxq, g0Bpxq
˘

ď R d
`

x,Bpxq
˘

.
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for all x in V .

Now, we show how Lemma 15 and Lemma 16 can be used to prove Proposition 2.

Proof of Proposition 2. As }vvvpxq} converges to 0 as x approaches MG, there is a neigh-
borhood U of MG such that every flow line of vvv starting in it will stay in V and then
converge. Such limits are fixed points: the vector field vvv vanishes at the limits of the flow
lines and ,from the expression of vvv, these limits are thus points fixed by the map B. Using
Lemma 16, we see that a point fixed by B is also fixed by the action of G.

To show that the complement MzMG of the fixed set is homeomorphic to the interior
of a compact manifold with boundary, we will define a codimension 1 topological subman-
ifold Z intersecting every flow line only once. This will show that the end of MzMG is
homeomorphic to Z ˆ r0, 1r, proving that MzMG is homeomorphic to the interior of a
compact manifold with boundary.

We begin by defining a map l that measures the length of the flow line from a point x
to the fixed set :

lpxq “

ż 8

0
}vvv
`

ϕtpxq
˘

}dt

We claim that this quantity is finite and depends continuously on x. Indeed, from
Lemma 15, when x is sufficiently close to the fixed set, we have the two following inequalities
:

}vvv
`

ϕt`τ pxq
˘

} ď k }vvv
`

ϕtpxq
˘

}

}vvv
`

ϕtpxq
˘

} ď 1

From which we obtain :

}vvv
`

ϕtpxq
˘

} ď }vvvpxq} k
t
τ
´1
ď k

t
τ
´1 (‹)

We see that the he map t ÞÑ }vvv
`

ϕtpxq
˘

} is bounded by an integrable map independent
of x. Thanks to the dominated convergence theorem, this uniform integrable bound shows
that lpxq is finite and that the map l inherits the continuity of its integrand.

Choose b ą 0 so that every point at a distance at most b of MG is in U and define the
subset Z of M as follows.

Z “ l´1
pbq

When t increases, the length l
`

ϕtpxq
˘

decreases, the set Z thus intersects each flow line
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at most once. On the other hand, every flow line must intersect Z at some point, because
it cannot converge to a fixed point both in positive and negative times.

This set is a closed topological submanifold. Indeed, as the map l is continuous and as
MG is compact, the set Z is also compact. Moreover, from the Lipschitz flow-box Theorem
(Theorem 12), we see that every point of Z has a neighborhood homeomorphic to Rn´1.

The map ϕ : Z ˆ r0, 1rÑ M : px, tq ÞÑ ϕ t
1´t
pxq is a homeomorphism onto its image

which describes the topology of the end of MzMG and which can be compactified by
adding a boundary Z ˆ t1u. This is done by taking the limit of the flow.

Z ˆ t1u ÝÑ MG

px, 1q ÞÝÑ lim
tÑ8

ϕtpxq

The uniform bound (‹) also shows that the limit lim
tÑ8

ϕt is uniform, making this map
continuous.

This proves that the inclusion of MzMG in M extends to a continuous map from X to
M .

Our goal is now to show Lemma 15 and Lemma 16.

2.3.2 Proof of Lemma 15 and Lemma 16 in a flat setting

To make the computations easier, we will begin by working in a flat geometry. Namely,
for a fixed point p P MG, we will consider that p has a sufficiently large neighborhood
isometric to an open subset of Rn. As we will only work locally, we will be able to reduce
to this case. We will discuss this question in section 2.3.3.

We will show the following.

Lemma 17. If M is flat around a point p, there are positive constants τ ą 0 and k1 ă 1
and an open neighborhood Vp of p such that we have the inequality

}vvv
`

ϕτ pxq
˘

} ď k1}vvvpxq}

for all x in Vp.

We suppose that, for x sufficiently close to p, there is a flat ball Vp centered at p and of
radius 2dpx, pq. For some coordinate system on this ball, the map B and the vector field vvv
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have simple expressions:

Bpxq “
1
|G|

ÿ

gPG

gx

vvvpxq “ Bpxq ´ x

The maps B has a p1 ` εq-Lipschitz dependency on x and the vector field vvv has a
p2 ` εq-Lipschitz dependency on x. Some classical computations about centers of mass
lead to the following equation, for x and y in Rn.

1
| G |

ÿ

gPG

dpy, gxq2 “ d
`

y,Bpxq
˘2
`

1
| G |

ÿ

gPG

d
`

Bpxq, gx
˘2 (˚)

We begin by showing the flat version of Lemma 16.

Lemma 18. If M is flat around a point p, there is an open neighborhood Vp of p such
that, for g0 P G, we have

d
`

Bpxq, g0Bpxq
˘

ď R d
`

x,Bpxq
˘

.

for all x in V , where R “ 1
40 .

Proof. From the Lipschitz continuity of the action of g0, we have

1
| G |

ÿ

gPG

d
`

g0Bpxq, gx
˘2
ď p1` εq2 1

| G |

ÿ

gPG

d
`

Bpxq, gx
˘2

Evaluating (˚) at y “ g0Bpxq, we obtain

d
`

g0Bpxq, Bpxq
˘2
“

1
| G |

ÿ

gPG

d
`

g0Bpxq, gx
˘2
´

1
| G |

ÿ

gPG

d
`

Bpxq, gx
˘2

Together with the previous inequality, this leads to

d
`

g0Bpxq, Bpxq
˘

ď
?

2ε` ε2 max
gPG

d
`

Bpxq, gx
˘

We would like to obtain a inequality depending only on ε and on the distance d
`

x,Bpxq
˘

.
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To do this, note that we have the inequality :

max
gPG

d
`

Bpxq, gx
˘

ď p1` εq max
gPG

d
`

gBpxq, x
˘

ď p1` εq max
gPG

´

d
`

gBpxq, Bpxq
˘

` d
`

Bpxq, x
˘

¯

ď p1` εq
´?

2ε` ε2 max
gPG

d
`

Bpxq, gx
˘

` d
`

x,Bpxq
˘

¯

So
max
gPG

d
`

Bpxq, gx
˘

ď
1` ε

1´ p1` εq
?

2ε` ε2 d
`

x,Bpxq
˘

And finally

d
`

g0Bpxq, Bpxq
˘

ď
p1` εq

?
2ε` ε2

1´ p1` εq
?

2ε` ε2 d
`

x,Bpxq
˘

Taking ε “ 1
4000, the quantity p1` εq

?
2ε` ε2

1´ p1` εq
?

2ε` ε2 is smaller than 1
40.

We can now prove Lemma 17.

Proof of Lemma 17. Let x be a point of Vp, τ “
1
5, k

1 “
9999
10000 and δ “ d

`

x,Bpxq
˘

.

Step 1 : We prove that d
`

ϕtpxq, x
˘

ď
δ

3 for every t ď τ .

If d
`

ϕtpxq, x
˘

ą
δ

3 for some t ď τ , let

t0 “ min
!

t ď τ | d
`

ϕtpxq, x
˘

ě
δ

3

)

.

For t ď t0, we have d
`

ϕtpxq, x
˘

ď
δ

3, so d
´

B
`

ϕtpxq
˘

, Bpxq
¯

ď
δ

3p1 ` εq as B is p1 ` εq-
Lipschitz. As vvv

`

ϕtpxq
˘

“ B
`

ϕtpxq
˘

´ ϕtpxq, ϕtpxq is contained in the convex hull of

txu
Ť

B
`

Bpxq,
δ

3p1 ` εq
˘

for every t ď t0 (see Figure 2.3, where vvv points inward on the
boundary of the circular sector).

The distance between ϕtpxq and B
`

ϕtpxq
˘

is then smaller than the diameter of this

convex hull, which is δ` δ3p1`εq “
δp4` εq

3 . So }vvv
`

ϕtpxq
˘

} ď
δp4` εq

3 , then d
`

x, ϕt0pxq
˘

ď

t0
δp4` εq

3 ď
1
5
δp4` εq

3 ă
δ

3. This is in contradiction with the definition of t0, so d
`

ϕtpxq, x
˘

cannot exceed δ

3 for t ď τ .
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Figure 2.3 – Setting of Step 1

Step 2 : We prove that d
`

ϕτ pxq, Bpxq
˘

ă
19
20 δ.

As d
`

ϕtpxq, x
˘

ď
δ

3 for every t ď τ , we obtain d
´

B
`

ϕtpxq
˘

, Bpxq
¯

ď
δ

3p1` εq and then

}vvv
`

ϕtpxq
˘

} ě δ ´
δ

3 ´
δ

3p1` εq “
δ

3p1´ εq.
The distance between ϕτ pxq and Bpxq will be the greatest if vvv

`

ϕtpxq
˘

makes an angle
α “ arcsinp1` ε3 q with the vector Bpxq ´ x for every t ď τ (see Figure 2.3). At time τ , if
vvv
`

ϕtpxq
˘

made an angle α with Bpxq´x for every t ď τ , ϕτ pxq would be at distance at least

τ
δ

3p1´εq from x, and at distance at most
c

`

τ
δ

3p1´ εq
˘2
` δ2 ´ 2τ δ

2

3 p1´ εq cospαq ď 19
20δ

from Bpxq.
Step 3 : We prove that d

´

ϕτ pxq, B
`

ϕτ pxq
˘

¯

ď
9999
10000 δ.

Let Q “
d
`

ϕτ pxq, Bpxq
˘

δ
. By Step 2, we know that Q ă 19

20. The points in the orbit of
ϕτ pxq verify the following inequality, for every g P G.

d
`

gϕτ pxq, gBpxq
˘

ď p1` εq d
`

ϕτ pxq, Bpxq
˘

Which, by Lemma 18 and Step 2, leads to :

d
`

gϕτ pxq, Bpxq
˘

ď
`

1` ε` R

Q

˘

d
`

ϕτ pxq, Bpxq
˘

(1)

These points also verify :

d
´

gϕτ pxq, gB
`

ϕτ pxq
˘

¯

ě
1

1` ε d
´

ϕτ pxq, B
`

ϕτ pxq
˘

¯

.
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Which, also by Lemma 18, leads to :

d
´

gϕτ pxq, B
`

ϕτ pxq
˘

¯

ě
` 1

1` ε ´R
˘

d
´

ϕτ pxq, B
`

ϕτ pxq
˘

¯

. (2)

Figure 2.4 – Limit case of Step 3

As B
`

ϕτ pxq
˘

is the center of mass of the orbit Gϕτ pxq, it must be contained in the
convex hull of this orbit. As the possible positions of the points of this orbit are restricted
inequalities p1q and p2q, B

`

ϕτ pxq
˘

must be in the convex hull of the region defined by these
two inequalities. As shown in in Figure 2.4 which present the limit case, this condition is
satisfied when the triangle shown on the figure is obtuse on B

`

ϕτ pxq
˘

. This condition is
given by the inequality :

`

1` ε` R

Q

˘2
d
`

ϕτ pxq, Bpxq
˘2
ě

` 1
1` ε ´R

˘2
d
´

ϕτ pxq, B
`

ϕτ pxq
˘

¯2

` d
´

B
`

ϕτ pxq
˘

, Bpxq
¯2
.

Note that this equation is still satisfied when the spheres defined by the two inequalities
do not intersect.

Taking ε “ 1
4000, R “

1
40 and Q ă

19
20, the positions of B

`

ϕτ pxq
˘

satisfying this
inequality are in the interior of an ellipse contained in the ball of center ϕτ pxq and of
radius 9999

10000 δ. So we necessary have d
´

ϕτ pxq, B
`

ϕτ pxq
˘

¯

ď
9999
10000 δ.

So }vvv
`

ϕτ pxq
˘

} ď
9999
10000 δ “ k1}vvvpxq} for k1 “ 9999

10000.
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2.3.3 Reduction to the flat case

In section 2.3.2, we worked locally on a flat neighborhood of a fixed point. In general,
the manifold M cannot be flatten in a neighborhood of MG, but as every manifold is
locally almost flat, Lemma 17 will allow us to produce the inequalities needed for Lemma
15 and Lemma 18 will allow us to prove Lemma 16.

Proof of Lemma 15. Let p be a fixed point of G. On a small neighborhood of p, the
manifold M is almost flat. The goal of this proof is to compare the flow ϕ obtained with
the metric ofM and the flow ϕE obtained by the flat metric of TpM . Every object obtained
in the flat metric of TpM will be noted with the exponent E.

Let U and U 1 be the balls of center p and of radii δ and p1` εqδ for a δ small enough
so that U 1 is contained in V .

First, notice that Bpxq has a Lipschitz dependency on x and on the Riemannian metric
ρ. This fact can be proved using a Lipschitz version of the implicit function theorem on
the map

Φ : U ˆ U 1 ˆM ÝÑ Rn

px, y, ρq ÞÝÑ ρ
´

ÿ

gPG

exp´1
y pgxq, Ei

¯

where M is the space of all metrics on U 1 for the uniform operator norm (according to
the starting metric of M) and pEiqi is a basis of sections of TM . The map Φ is then
K1-bilipschitz in x and y for some constant K1. As the norm of

ř

gPG

exp´1
y pgxq is smaller

than K2δ for some constant K2, the map Φ is K3δ-Lipschitz in ρ for some constant K3.
The map B is then K2

1 -Lipschitz in x and K1K3δ-Lipschitz in ρ.
The Riemannian metric ρ on U 1 is always at a distance K4δ from a Euclidean metric

(namely, the metric of TpM induced by the exponential map), for some constant K4. The

ratio d
Epx, yq

dpx, yq
is then between 1´K4δ and 1`K4δ for any x and y in U 1.

With the above, the map BE is at a distance at most K1K3K4δ
2 from B. The distance

between vvv and vvvE is then itself bounded by K5δ
2 for some constant K5. And the point

ϕτ pxq is at a distance at most K6δ
2 from ϕEτ pxq for some K6.

Lemma 17 gives us

dE
´

ϕEτ pxq, B
E
`

ϕEτ pxq
˘

¯

ď k1dE
`

x,BE
pxq

˘

75



Part I, Chapter 2 – The Smith conjecture

from which we obtain from what precedes

d
´

ϕτ pxq, B
`

ϕτ pxq
˘

¯

ď k1δ `Kδ2
“ pk1 `Kδqδ

for some constant K depending only on M . Consequently, for any manifold M , it is always
possible to work as locally as we want (i.e. to choose δ small enough) so that we have

d
´

ϕτ pxq, B
`

ϕτ pxq
˘

¯

ď
k1 ` 1

2 δ

which can be rewritten as follows.

}vvv
`

ϕτ pxq
˘

} ď
k1 ` 1

2 }vvvpxq}

This proves Lemma 15.

We can also prove Lemma 16 using the preceding computations.

Proof of Lemma 16. From lemma 18, we obtain

dE
`

BE
pxq, g0B

E
pxq

˘

ď
1
40 dE

`

x,BE
pxq

˘

for every x in V . With the preceding method, we obtain

d
`

Bpxq, g0Bpxq
˘

ď R d
`

x,Bpxq
˘

for some constant R ą 0 depending only on M .
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Manifold learning
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This chapter is a reproduction of the article "Effective estimation of the dimension of
a manifold from random samples" written with Juan Souto.
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Chapter 3

EFFECTIVE ESTIMATION OF THE

DIMENSION OF A MANIFOLD FROM

RANDOM SAMPLES

3.1 Introduction

The manifold hypothesis asserts that naturally occurring data sets X Ă Rs behave as
if they had been sampled from a low-dimensional submanifold M . There is then a large
literature on manifold learning, that is on understanding how properties of the underlying
manifold M can be "learned" from the data set X—see for example [BNS06; FMN16;
NSW08b; NM10; LV07; Bre+18b]—, but it is maybe fair to say that estimating the
dimension dimpMq of the manifold, that is figuring out the intrinsic dimension of the data
set, seems to be of particular interest. This is maybe so because the dimension is one of the
most basic quantities associated to a manifold, but maybe also because of the importance
of understanding the applicability to the data set X of different dimension reduction
schemes. In any case, there are very numerous estimators for the intrinsic dimension of
a data set. We refer to the surveys [Cam03; CS16; Bre+18b] for a brief discussion of
many of those estimators and to the references therein for details—see also Chapter 3 in
the monograph [LV07]. Anyways, all these dimension estimators are based on the idea
that manifolds look locally like their tangent spaces, that is like euclidean space. For
example, non-linear PCA aims at finding the dimension of tangent spaces. ANOVA aims
at computing the average angle between vectors in a tangent space, exploiting the fact
that for euclidean space itself one can read the dimension from the expected value. The
estimator (3.1) below, as well as closely related algorithms due to Takens [Tak83; Tak85],
Theiler [The90] or Grassberger-Procaccia [GP04], exploits the fact that the correlation
dimension of the manifold is just its dimension. There are other such estimators where
the correlation dimension is replaced by the Box counting dimension or the Kolmogorov
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capacity. This list of estimators is far from being all inclusive.
All those estimators work very well—in the sense that they yield with high probability

the desired result—as long as we apply them with common sense and under suitable
conditions, that is if

1) we work at a scale at which the manifold M resembles euclidean space, and

2) the data set X is large enough and the points therein have been obtained by uniform
sampling.

However, amazingle little is known when it comes to quantifying 1) or 2). Indeed, there
are classical estimates due to Grassberger [Gra86], Procaccia [Pro88], and Eckmann-
Ruelle [ER92] giving absolute lower bounds, in terms of the dimension, for the number
of measurements needed for the results to be reliable: Grassberger argues that there are
absolute lower bounds at all, Procaccia argues that if the intrinsic dimension is dim then
one might need a data set of at least 10dim measurements, while Eckmann-Ruelle suggest a
lower bound of the form C ¨10 1

2 dim for some large but undetermined C. One can summarize
these results as asserting that, when the dimension grows, the minimal cardinality of a
data set allowing to compute the dimension grows exponentially—this is indeed already
the case (see [Wei14]) when one just wants to distinguish between spheres of consecutive
dimensions.

The absolute lower bounds for the data size that we just mention do not help however
with the following less philosophical question: I suspect, or hypothesize, that my data set
is sampled out of a manifold with this or that properties. To what extent can I trust the
intrinsic dimension estimation given by this or that estimator? The only result we know
along those lines is due to Niyogi-Smale-Weinberger [NSW08b], at least as long as one
wants to allow for variable curvature manifolds. In [NSW08b] the authors give namely
an algorithm to compute the homology of a closed submanifold M Ă Rs out of a set X
sampled from M , and they estimated how large does the data size have to be so that their
algorithm has success in at least 90% of the cases—observe that knowing the homology
we also know the dimension of the manifold. A problem is that the needed data size is
astronomical. For example, the estimate in [NSW08b] for the number of points needed to
be sampled to compute with 90% probability of success the homology of the 4-dimensional
Clifford torus T4 “ S1 ˆ S1 ˆ S1 ˆ S1 is 24.967.788 points, that is about 25 million points.

One might contend that the Niyosi-Smale-Weinberger algorithm computes something
much more sophisticated than the dimension, that they are basically learning the whole
manifold, and that being able to do that is an overkill if what one wants to do is to
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estimate its dimension. We agree with that point of view. We will consider the estimator

dimCorrpε1,ε2qpXq “ Round
ˆ

log |PXpε1q| ´ log |PXpε2q|
logpε1q ´ logpε2q

˙

(3.1)

where
PXpεq “

 

tx, yu Ă X with 0 ă |x´ y| ď ε
(

, (3.2)

and our goal will be to estimate how large does X ĂM need to be for the estimator (3.1)
to have a 90% success rate. It is definitively much smaller. For example, applying (3.1) to
randomly sampled data sets in T4 we have a 90% rate of success, as long as we sample
18.262 points, that is more than 1300 times less than than before.

Evidently, the value of dimCorrpε1,ε2qpXq does not only depend on X but also on the
chosen scales. In some sense the goal of this paper is to decide how to choose ε1 and ε2 in
such a way that one does not need to sample too many points to be 90% sure that (3.1)
returns the correct value. This is the kind of results that we will prove:

Theorem 14. For d “ 1, ¨ ¨ ¨ , 10 let ε1 and ε2 be scales as in the table below. Also, given
a closed d-dimensional manifold M Ă Rs with reach τpMq ě 1 let n be also as in the
following table:

d ε1 ε2 n
1 1.5 0.19 9` 21 ¨ volpMq 1

2

2 0.78 0.2 94` 58 ¨ volpMq 1
2

3 0.63 0.23 635` 146 ¨ volpMq 1
2

4 0.54 0.23 2786` 392 ¨ volpMq 1
2

5 0.46 0.22 7013` 1119 ¨ volpMq 1
2

6 0.4 0.21 13221` 3366 ¨ volpMq 1
2

7 0.36 0.21 25138` 10644 ¨ volpMq 1
2

8 0.33 0.2 50033` 34890 ¨ volpMq 1
2

9 0.31 0.19 63876` 119533 ¨ volpMq 1
2

10 0.29 0.18 139412` 425554 ¨ volpMq 1
2

Then, if we sample independently and according to the riemannian volume form a
subset X ĂM consisting of at least n points, then we have

dimCorrpε1,ε2qpXq “ d

83



Part II, Chapter 3 – Effective estimation of the dimension of a manifold from random samples

with at least 90% probability.

Here the reach τpMq (see Definition 1), or in the terminology of [NSW08b] the condition
number, is taken as a measure for the local regularity of the submanifold M . It is evident
that in order to have specific bounds for the needed data size, we do need to have some a
priori control on the local geometry: otherwise we could have a 1-dimensional submanifold
so interwoven that it looks as a d-dimensional manifold for some d ě 2. Taking the reach
as a measure to quantify to which extent does a submanifold M Ă Rs resemble euclidean
space seems to be actually pretty common in the field of manifold learning [Aam+19;
NSW08b; FMN16; BLW19].

After discussing briefly the correlation dimension and the estimator (3.1) in Section
3.2 we discuss some aspects of the geometry of the reach in Section 3.3. We will mostly
care about the volume of the thick diagonal

DMpεq “ tpx, yq PM ˆM with |x´ y| ď εu

For example, in Theorem 16 we use the Bishop-Gromov theorem and the properties of
CAT(1)-spaces to give upper and lower bounds for the ratio volpDMpε1qq

volpDMpε2qq for sufficiently
small ε1 ą ε2 positive:

Theorem 15. Suppose that M Ă Rs is a d-dimensional (d ě 1) closed submanifold with
reach τpMq ě 1. Then we have

ε1
2

arcsinp ε22 q

ˆ

sinpε1q
sinp2 arcsin ε2

2 q

˙d´1

ď
volpDMpε1qq
volpDMpε2qq

ď

ş

?
2¨2¨arcsinp ε12 q

0 sinhd´1
ptqdt

ş

?
2¨ε2

0 sinhd´1
ptqdt

for any two 1 ą ε1 ą ε2 ą 0.

In Section 3.4 we come then to core of the present pamphlet. The reason why we care
about the volume of the thick diagonal is that for X ĂM we have

log |PXpε1q| ´ log |PXpε2q|
logpε1q ´ logpε2q

„
logpvolpDMpε1qqq ´ logpvolpDMpε2qqq

logpε1q ´ logpε2q

with large probability, at least if X has been obtained by independently sampling a large
number of points according to the Riemannian measure onM . Basically the goal of Section
3.4, or maybe even the goal of this paper, is to find ε1, ε2 ą 0 so that a relatively small set
X is such that with high probability the left side lies in the interval pd ´ 1

2 , d `
1
2q. We
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prove Theorem 14 above in Section 3.4. The scales in the table in the theorem are obtained
numerically—the process is also described in Section 3.4, and a computer implementation
can be found in [Gri22].

Heuristical bounds

It is more or less evident that the bounds given by Theorem 14 are far from being
sharp. In Section 3.5 we add a heuristical discussion of what could be, in practice, more
realistic bounds. The starting point is that the number of sampled points should not be
what determines how reliable is the obtained result, but rather the number |PXpε1q| of
pairs at our larger scale ε1 ą ε2 ą 0. Arguing as if

1. at our scales all balls in M were euclidean, and
2. the distances between the two points in pairs as in (3.2) were independent,

we get that, with N as in Table 3.1, it would suffice to have a data set X Ă M with at
least N pairs as in (3.2) for (3.1) to give the correct answer in about 90% (resp. 70%) of
the cases.

d ε1 ε2 N for 90% N for 70%
1 1.5 0.19 30 10
2 0.78 0.2 122 40
3 0.63 0.23 249 111
4 0.54 0.23 516 238
5 0.46 0.22 878 360
6 0.4 0.21 1329 554
7 0.36 0.21 1719 698
8 0.33 0.2 2481 1070
9 0.31 0.19 3900 1604
10 0.29 0.18 5849 2414

Table 3.1 – Heuristic bound N for how large should the cardinality of PXpε1q at least be
to have 90% (resp. 70%) rate of success when using (3.1).

Note that the assumptions (1) and (2) are not that outlandish, at least if ε1 is small
and if the number of pairs is small when compared to the cardinality of X. In any case,
for what it is worth, numerical simulations (see Table 3.5) seem to support the values
given in Table 3.1. In particular, our numerical simulations also indicate that if |PXpε1q|
is less or equal than the value in the right column in Table 3.1, then we should count with
about a 30% failure rate when we use (3.1).
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Remark 4. As a bigger value of |PXpε1q| results in better performance, it is a natural
idea to try to maximize it. This can be done in two ways. First, we can try to obtain more
data to increase the number n, but as this is not always possible in concrete situations, the
second solution is the increase the scale ε1. The downside of this second method is that
considering bigger balls increases the effect of the curvature. One must carefully balance
those two effects.

Thinking on the reliability of (3.1) in terms of the number of pairs has the huge
advantage that one does not need to have any a priori knowledge of the volume of the
manifold. It is however not clear how different are the heuristic bound from Table 3.1 and
the formal bound given in Theorem 14. To be able to compare both bounds we note that,
always under the assumption that all ε1 balls in our d-manifold M are euclidean, then if
we sample a set X ĂM with n points then we expect to have

|PXpε1q| “
npn´ 1q

2 ¨
volpBRdpε1qq

volpMq

pairs of points. Using this relation we get for example that, using the heuristic bound,
it would suffice to sample 1958 points from the torus T4 for (3.1) to be 90% of the time
correct. See Table 3.4 for more on the comparison between the heuristic bound and the
bound in Theorem 14 for the number of points that suffice to have 90% success rate when
using (3.1). This is, once again, supported by numerical experiments—see Table 3.6.

Note now that thinking of the applicability of (3.1) in terms of the cardinality of
PXpε1q leads to an implementation of (3.1) which could be applied to data sets X sampled
from a manifold M whose reach we ignore. The basic idea is the following:

If we want to check if M has dimension d then we take ε1 minimal so that
|PXpε1q| is as large as Table 3.1 asks for in dimension d, then we choose ε2 so
that the ratio ε1

ε2
is as in Table 3.1), and then compute dimCorrpε1,ε2qpXq.

The preceeding discussion implies that for sufficiently rich synthetic data sets this algorithm
has a reliability of about 90%. For the sake of completeness we decided to test it also on
data sets each consisting in 200 grayscale pictures of the 3D-model Suzanne (see Figure
3.1) obtained by randomly choosing 1, 2 and 3 Euler angles—the pictures are 64 by 64
pixels large and can thus be represented as points in R4096. See Table 3.7 for the obtained
results.
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3.2. The estimator

Figure 3.1 – 3 sample pictures from the data sets.

Comparison with other estimators

In Section 3.6 we compare briefly the performance of (3.1) with that of a few other
dimension estimators: reading the correlation dimension via a log-log plot, ANOVA, and
local PCA. The basic observation is that, at least if the volume of M is greater or equal
to that of the d-dimensional Clifford torus and if we take sets of cardinality close to
the heuristic bound proposed either in Table 3.1 or in Table 3.4, then (3.1) seems to
perform better than ANOVA and local PCA, at least with the specific implementations
we proposed. It is however harder to compare any of these estimators with the incarnation
of (3.1) using a log-log plot: it is namely unclear how to meaningfully quantify what does
it mean for the non-constant slope of a curve to look constant. It thus only seems to make
sense to test the log-log technique numerically, but it is also unclear how to formally do
this: while one might well print diagrams for 100 randomly chosen random subsets of a
given manifold, it is not clear how can one formally decide what any given diagram is
suggesting to us. Still, the limited experiments we conducted lead to the conclusion that
the log-log plot method is pretty reliable for relatively small data sets.

Acknowledgements

The second author would like to thank Kaie Kubjas for getting him interested in this
topic.

3.2 The estimator

In this section we recall what is the correlation dimension and how it can be approxi-
mated to obtain dimension estimators, but first we introduce some notation that we will
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use through out the paper. First, distances in Euclidean space will be denoted either by
dRnpx, yq or by |x´ y|. If x and y are points in a Riemannian manifold M then dMpx, yq is
their distance with respect to the Riemannian metric. The ball in M of radius R centered
at some point x PM is denoted by BMpx,Rq, although sometimes, when there is no risk
of confusion, we drop the subscript writing thus simply Bpx,Rq. Again, if there is no risk
of confusion with the dimension, balls in the ambient euclidean space Rs will be denoted
by blackboard bold, that is Bpx,Rq “ BRspx,Rq. Finally, the intersection of balls in the
ambient space Rs with the manifold M will be denoted by

BMpx,Rq “M X Bpx,Rq

With this notation in place, we turn our attention to the correlation dimension and the
estimator (3.1).

As we mentioned earlier, there are plenty of dimension estimators (see [Cam03; CS16]
and [LV07, Chapter 3]). In the language of [CS16], (3.1) is a fractal-based estimator.
Fractal-based because what one is aiming at, is computing a dimension which makes sense
for fractal objects—in this case the correlation dimension. Recall that the correlation
integral at scale ε of a Borel measure µ on Rs is the integral

Cpµ, εq “

ż

µpBpx, εqq dµpxq

The upper correlation dimension and lower correlation dimension are then defined as

D`pµq “ lim sup
εÑ0

logpCpµ, εqq
logpεq and D´pµq “ lim inf

εÑ0

logpCpµ, εqq
logpεq .

When both of them agree, then one refers to

Dpµq “ D`pµq “ D´pµq

as the correlation dimension of µ. There are numerous situations of interest in dynamics
[Sim98] in which the correlation dimension of a measure exists. It is also trivial that it
exists if µ is a smooth measure whose support is a submanifold of euclidean space. Since
this is the case in which we will find ourselves, we state this fact as a lemma:

Lemma 19. If µ is a smooth finite measure of full support of a d-dimensional submanifold
M Ă Rs, then the correlation dimension exists and we have Dpµq “ d.

88



3.3. Some Geometry

In [GP04] Grassberger and Procaccia note that if ε ą 0 is small enough and if we have
a set X “ px1, . . . , xnq consisting of n points (n very large) sampled independently with
respect to the measure µ then Dpµq is approximated by

dimGP pX, εq “
log

´

|DXpεq|
npn´1q

¯

logpεq (3.3)

where
DXpεq “ tpxi, xjq P X ˆX with i ‰ j and |xi ´ xj| ď εu (3.4)

is the set of (ordered) pairs of points in X within ε of each other. Grassberger and Procaccia
propose (3.3) as an estimator for the intrinsic dimension of the data set X—variants are
discussed by Takens [Tak83; Tak85] and Theiler [The90]. We will however focus here on
the version from [LV07], or more precisely the quantity

dimCorrpε1,ε2qpXq “ Round
ˆ

log |DXpε1q| ´ log |DXpε2q|
log ε1 ´ log ε2

˙

(3.5)

Note that this expression is nothing other than (3.1) above.
A problem when using (3.5) as an estimator, or for that matter when we use (3.3), is

that we have to pick up the appropriate scales. In practical implementations, this is often
by-passed by taking many possible scales ε1 ă ε2 ă ¨ ¨ ¨ ă εk, computing |DXpεiq| for each
one of those scales, plotting the result in a log-log-plot and choosing what looks to us as
the slope at some region where the slope looks constant. In practice, at least when tested
on synthetic data, the log-log plot method is surprisingly effective, but it is very unclear
how one can get out of that a formal statistical test, or how can one evaluate how much
confidence can one have on the obtained number. Theorem 14 from the introduction gives
such bounds, at least if the manifold we are working with is sufficiently regular, in the
sense of having reach τpMq ě 1. We discuss a few aspects of the geometry of the reach in
the next section.

3.3 Some Geometry

In this section we recall a few facts about the geometry of reach-1 submanifolds M
of euclidean space. Combining these facts with standard arguments from Riemannian
geometry we give upper and lower bounds for the volume of the ε fat diagonal in M ˆM .
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3.3.1 Reach-1 manifolds

We start recalling the definition of the reach of a closed subset of euclidean space:

Definition 1. The reach τpSq of a closed subset S Ă Rs is the supremum of those T ě 0
with the property that for every x P Rs with dRspx, Sq ď T there is a unique point in S

closest to x.

Since the reach was introduced by Federer in [Fed59], it has proved to be a useful
notion. Indeed, it follows from the very definition that positive reach sets, that is sets
S with τpSq ą 0, have some neighborhood N pSq on which the closest point projection
π : N pSq Ñ S is well-defined—the existence of such a projection is enough to show that
sets of positive reach share many regularity properties with convex sets.

Here we will be working from the very beginning with very regular objects, namely
closed smooth submanifolds M Ă Rs of euclidean space. In this setting the reach, or rather
a lower bound for the reach, helps to quantify how distorted is the inner geometry of M
with respect to that of the ambient euclidean space. We summarize what we will need in
the following proposition:

Proposition 7. Let M Ă Rs be a closed submanifold with reach τpMq ě 1. Then we have:
1. dMpx, yq ď 2 arcsin

´

|x´y|
2

¯

for any two x, y PM with |x´ y| ă 2.
2. The set BMpx, rq “M XBpx, rq is geodesically convex for any x P Rs and any r ă 1.
3. We have =

`

γ1p0q, γ1ptq
˘

ď dMpγp0q, γp`qq for every geodesic γ : r0, `s ÑM parametrized
by arc length.

4. The manifold M has sectional curvature pinched by ´2 ď κM ď 1.

See, in that order Lemma 3, Corollary 1 and Lemma 5 in [BLW19] for the first three
claims of Proposition 7. See then Proposition A.1 (iii) in [Aam+19] for the final claim. In
any case, we refer to [Aam+19] and [BLW19], and to the references therein for general
facts about submanifolds M Ă Rs of positive reach.

3.3.2 Injectivity radius

Armed with Proposition 7 we can now derive a lower bound for the injectivity radius
of those submanifolds M Ă Rs with reach τpMq ě 1. Recall that the injectivity radius of
a geodesically complete Riemannian manifold M at a point x PM is defined as

injpM,xq “ suptt ą 0 | expx : TxM ÑM is injective on BTxMp0, tqu
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where BTxMp0, tq “ tv P TxM with |v| ď ru and where expx is the Riemannian exponential
map. The injectivity radius of M itself is then defined to be

injpMq “ inf
xPM

injpM,xq.

Recall also that the systole systpMq of a closed manifold M is the length of the shortest
non-trivial closed geodesic. The importance of the systole now is that, together with an
upper bound κM ď κ for the sectional curvature, the systole yields very a usable bound
[Berger] for the injectivity radius:

injpMq ě min
"

π
?
κ
,
1
2 systpMq

*

.

Altogether, see [Berger] for basic facts and definitions from Riemannian geometry.
Suppose now that M Ă Rs is a closed submanifold of euclidean space with τpMq ě 1,

and note that the assumption thatM is closed implies that it is metrically complete and thus
geodesically complete by the Hopf-Rinow theorem. On the other hand if γ : S1 ÑM Ă Rs

is any smooth curve and if t is such that xγ1p0q, γptqy is maximal, then xγ1p0q, γ1ptqy “ 0.
We thus get from (3) in Proposition 7 that every closed geodesic reaches at least distance
π
2 , and hence that

systpMq ě π.

Now, this fact together with the upper bound for the sectional curvature from (4) in
Proposition 7 and with the lower bound for the injectivity radius yields the following:

Corollary 1. If M Ă Rs is a closed submanifold of euclidean space with reach τpMq ě 1,
then we have injpMq ě π

2 .

It should be noted that if dimpMq “ 1 and τpMq ě 1 then systpMq ě 2π and hence
injpMq ě π. The standard circle shows that this is optimal. We do not know by how much
can one improve the bound given in Corollary 1 in other dimensions.

3.3.3 Volumes of balls

Although we will be mostly interested in the volume of sets BMpx, rq “M X Bpx, rq
we start by considering the volume of actual metric balls in the manifold. First note that
having bounds on the curvature, we also get bounds on the volumes of balls, at least as long

91



Part II, Chapter 3 – Effective estimation of the dimension of a manifold from random samples

as the radius remains below the injectivity radius. More precisely, if M is a Riemannian
manifold of dimension d ě 2 and with curvature pinched in r´2, 1s then we have

volpBSd
prqq ď volpBM

px, rqq ď volpB
1?
2
Hd
prqq (3.6)

for all r ă injMpxq (see [Berger] and [Berger]). Here, the sphere Sd and the scaled
hyperbolic space 1?

2H
d are respectively the simply connected complete d-dimensional

manifolds of constant curvature 1 and ´2. Having bounds for the volumes of balls we
also have bounds for the ratios between volumes of balls of different radius. We can get
however somewhat better results:

Proposition 8. Suppose that M is a d-dimensional (d ě 2) Riemannian manifold with
sectional curvature pinched in r´2, 1s. We then have

R

r
¨

ˆ

sinpRq
sinprq

˙d´1

ď
volpBMpR, xqq

volpBMpr, xqq
ď

ş

?
2¨R

0 sinhd´1
ptq dt

ş

?
2¨r

0 sinhd´1
ptq dt

for any two 0 ă r ă R ă mintπ, injpMqu and any x PM .

Proof. We begin with the upper bound. We get from the curvature bound κ ě ´2 and
the Bishop-Gromov comparison theorem [Berger] that

volpBMpx,Rqq

volpBMpx, rqq
ď

volpB
1?
2
Hd
pRqq

volpB
1?
2
Hd
prqq

“

ş

?
2¨R

0 sinhd´1
ptq dt

ş

?
2¨r

0 sinhd´1
ptq dt

for all x PM , as we wanted.

Let us now deal with the lower bound. Well, the fact that M has curvature pinched
from above by 1 implies that M is is locally a CAT(1)-space—see [BH13; CEE75] for facts
about CAT(κ)-spaces and comparison geometry. Recall now that we are working at a scale
smaller than π and the injectivity radius. In particular, the CAT(1) property implies that
geodesic triangles we encounter are thinner in our manifold than in Sd. This implies in
particular that, for 0 ă r ă R ă mintπ, injpMqu, the radial projection

proj : SMpx,Rq Ñ SMpx, rq, projpyq “ expxpr ¨R´1
¨ exp´1

x pyqq

contracts distances more (expands distances less) than the corresponding map in the
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sphere, meaning that proj is sinprq
sinpRq -Lipschitz. We deduce thus that

AreapSMpx, rqq ď
ˆ

sinprq
sinpRq

˙d´1

¨ AreapSMpx,Rqq

where SMpx, rq “ BBMpx, rq is the distance-r-sphere in M and Areap¨q stands for the
pd ´ 1q-dimensional volume. Anyways, if we set T “ r

R
then we get from the co-area

formula that

volpBM
px, rqq “

ż r

0
AreapSMpx, tqq dt

s“ 1
T
t

“

ż R

0
AreapSMpx, T ¨ sqq ¨ T ds

ď
r

R
¨

ż R

0

ˆ

sinpTsq
sinpsq

˙d´1

AreapSMpx, sqq ds

The function
p0, πq Ñ R, sÑ

sinpTsq
sinpsq

is monotonically increasing (because T “ r
R
P p0, 1q). This means that

volpBM
px, rqq ď

r

R
¨

ˆ

sinprq
sinpRq

˙d´1

¨

ż R

0
AreapSMpx, sqq ds

“
r

R
¨

ˆ

sinprq
sinpRq

˙d´1

¨ volpBM
px,Rqq

And we are done.

We come now to the result we really care about:

Corollary 2. Suppose that M Ă Rs is a closed d-dimensional (d ě 1) submanifold with
reach τpMq ě 1. We then have

volpBSd
prqq ď volpBMpx, rqq ď vol

´

B
1?
2
Hd

´

2 arcsin
´r

2

¯¯¯

and
R
2

arcsinp r2q

ˆ

sinpRq
sinp2 arcsin r

2q

˙d´1

ď
volpBMpx,Rqq
volpBMpx, rqq ď

ş

?
2¨2¨arcsinpR2 q

0 sinhd´1
ptqdt

ş

?
2¨r

0 sinhd´1
ptqdt

for any two 0 ă r ă R ă 1 and any x PM .
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Proof. Let’s assume for the time being that d ě 2. From part (1) in Proposition 7 we get
for any t ă 2 that

BM
px, tq Ă BMpx, tq Ă BM

ˆ

x, 2 arcsin
ˆ

t

2

˙˙

(3.7)

The first claim then follows directly from (3.6).

On the other hand, if we combine (3.7) with the upper bound in Proposition 8 we get
that

volpBMpx,Rqq
volpBMpx, rqq ď

vol
`

BM
`

x, 2 arcsin
`

R
2

˘˘˘

volpBMpr, xqq

ď

ş

?
2¨2 arcsinpR2 q

0 sinhd´1
ptq dt

ş

?
2¨r

0 sinhd´1
ptq dt

,

and we are done with the upper bound of the second claim. The lower bound is obtained
analogously and we leave the details to the reader.

So far we have been focusing on the case of dimension d ě 2. In dimension d “ 1 we
actually get from (3.7) that

R ´ r ď volpBMpx,Rqq ´ volpBMpx,Rqq ď 2 arcsin
ˆ

R ´ r

2

˙

This implies directly that

R

r
ď

volpBMpx,Rqq
volpBMpx, rqq ď 1`

2 arcsin
`

R´r
2

˘

r

for all 0 ă r ă R ă 1. The so-obtained bound for d “ 1 is slightly better than the one we
had claimed. We also note that this bound still works for 0 ă r ă R ă 2.

3.3.4 Volume of thick diagonal

Our goal here is to estimate how the volume volpDMpεqq of the ε-thick diagonal

DMpεq “ tpx, yq PM ˆM with |x´ y| ď εu
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of a reach-1 submanifold M Ă Rs varies when we replace ε by something else. Here the
volume is computed as a subset of the Riemannian manifold M ˆM , but can be expressed
as an integral over M as follows:

volpDMpεqq “
ż

M

volpBMpx, εqq dx (3.8)

In other words, volpDMpεqq is nothing other than the correlation integral at scale ε of
the Riemannian measure of M when considered as a measure on the ambient euclidean
space Rs. We stress that the thick diagonal is defined in terms of the ambient distance in
euclidean space, not in terms of the intrinsic distance of M . Anyways, now we prove the
following:

Theorem 16. Suppose that M Ă Rs is a d-dimensional (d ě 1) closed submanifold with
reach τpMq ě 1. Then we have

ε1
2

arcsinp ε22 q

ˆ

sinpε1q
sinp2 arcsin ε2

2 q

˙d´1

ď
volpDMpε1qq
volpDMpε2qq

ď

ş

?
2¨2¨arcsinp ε12 q

0 sinhd´1
ptqdt

ş

?
2¨ε2

0 sinhd´1
ptqdt

for any two 0 ă r ă R ă 1.

Proof. From the expression (3.8) we get that

min
xPM

volpBMpε1, xqq
volpBMpε2, xqq

ď
volpDMpε1qq
volpDMpε2qq

ď max
xPM

volpBMpε1, xqq
volpBMpε2, xqq

Now the claim follows from Corollary 2.

3.3.5 The gap

As we mentioned in the introduction, if we sample more and more points from a
manifoldM and we apply the algorithm, then what we are doing is computing the quantity

logpvolpDMpε1qqq ´ logpvolpDMpε2qqq
logpε1q ´ logpε2q

.

Now, armed with Theorem 16 we could analyze what happens when one of the scales ε1
and ε2 tends to 0, or when the gap between them tends to 0, or when the dimension grows.
All of this would be nice and well, but what we actually care about is to find scales that
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on the one hand keep our estimator reliable while working with as few points as possible.
Implementing numerically a procedure described in Section 3.4.4 below, we find convenient
scales for the dimensions we are mostly interested in. Note that the condition R ă 1 can
be replaced by R ă 2 for dimension 1, as explained in the proof of Corollary 2.

Corollary 3. Let M Ă Rs be a submanifold of dimension d “ 1, 2, . . . , 10 and with reach
τpMq ě 1, and let ε1, ε2 and gapd be as in the table below. Then, for every x in M , we
have

d´
1
2 ` gapd ď

log
´

volpBM pε1,xqq
volpBM pε2,xqq

¯

log
´

ε1
ε2

¯ ď d`
1
2 ´ gapd .

d ε1 ε2 gapd
1 1.5 0.19 0.463241
2 0.78 0.2 0.387573
3 0.63 0.23 0.307476
4 0.54 0.23 0.249891
5 0.46 0.22 0.223958
6 0.4 0.21 0.208521
7 0.36 0.21 0.178814
8 0.33 0.2 0.166892
9 0.31 0.19 0.155560
10 0.29 0.18 0.152528

3.4 Sampling the thick diagonal

In this section we will be still assuming that M Ă Rs is a closed d-dimensional
submanifold (d ě 1) with reach τpMq ě 1. Basically our goal is to bound the number of
points that we have to sample from M to get a decent result when we use (3.1).

3.4.1 Some probability

Suppose that we have a symmetric, say bounded, function

f : M ˆM Ñ R
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We are interested in the sequence of random variables

Xf
n : MN

Ñ R, px1, x2, . . . q ÞÑ
ÿ

i,jďn, i‰j

fpxj, xjq (3.9)

when n tends to 8. Here we have endowed M with the probability measure

Prob “ 1
volpMq vol

proportional to the Riemannian measure. Accordingly, Mk and MN are all endowed with
the corresponding product measure, again denoted by Prob.

Being the sum of random variables, the expectation and variance of Xf
n are easy to

get. Here they are:

EpXf
nq “ npn´ 1q ¨ Epfq

VarpXf
nq “ 2 ¨ npn´ 1q ¨ Varpfq ` 4 ¨ npn´ 1qpn´ 2q ¨ covpfq

where covpfq is the co-variance of px1, . . . , xnq ÞÑ fpx1, x2q and px1, . . . , xnq ÞÑ fpx1, x3q,
or in a formula

covpfq “
ż

MˆMˆM

fpx, yq ¨ fpx, zq dProbpx, z, yq ´ Epfq2.

Besides the expectation and the variance, what we will need to estimate is the quantity
Var
E2 for the random variables Xf

n . Well, this is what we get if we just use our expressions
for the expectation and the variance:

VarpXf
nq

EpXf
nq2

“
2

npn´ 1q ¨
Varpfq
Epfq2

`
4pn´ 2q
npn´ 1q ¨

covpfq
Epfq2

(3.10)

The reason why we will care about this last quantity is the following surely standard
consequence of the Bienaymé-Chebyshev inequality:

Lemma 20. For any integrable random variable X in a probability space X we have

Prob
ˆ
ˇ

ˇ

ˇ

ˇ

log
ˆ

X

EpXq

˙
ˇ

ˇ

ˇ

ˇ

ą δ

˙

ď
1

p1´ e´δq2 ¨
VarpXq
EpXq2
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Proof. Well, let us compute

Prob
ˆ
ˇ

ˇ

ˇ

ˇ

log
ˆ

X

EpXq

˙
ˇ

ˇ

ˇ

ˇ

ą δ

˙

“ Prob
ˆ

X

EpXq
R re´δ, eδs

˙

ď Prob
ˆ
ˇ

ˇ

ˇ

ˇ

X

EpXq
´ 1

ˇ

ˇ

ˇ

ˇ

ą 1´ e´δ
˙

ď Prob
`

|X ´ EpXq| ą p1´ e´δq ¨ EpXq
˘

Setting

k “
p1´ e´δq ¨ EpXq

a

VarpXq

in the standard Bienaymé-Chebysheff inequality

Prob
´

|X ´ EpXq| ě k ¨
a

VarpXq
¯

ď k´2

we get
Prob

ˆ
ˇ

ˇ

ˇ

ˇ

log
ˆ

X

EpXq

˙
ˇ

ˇ

ˇ

ˇ

ą δ

˙

ď
VarpXq

p1´ e´δq2 ¨ EpXq2

as we had claimed.

3.4.2 The function we care about

We are going to be interested in all of this in the case that f “ fε is the characteristic
function of DMpεq, that is

fεpx, yq “

#

1 if |x´ y| ď ε

0 otherwise
(3.11)

This function satisfies that
Epfεq “

volpDMpεqq
volpMq2

and hence we get that
EpXfε

n q “ npn´ 1q ¨ volpDMpεqq
volpMq2

for all n ě 2. Besides knowing the expectation, to be able to use Lemma 20 when we need
to know, or at least estimate, is the quantity Var

E2 . To apply (3.10) we need first to be able
to estimate the variance and covariance of fε. Well, since fε only takes the values 0 and 1,
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the variance is easily calculated:

Varpfεq “ Epfεq ´ Epfεq
2
“

volpDMpεqq
volpMq2 ´

ˆ

volpDMpεqq
volpMq2

˙2

When it comes to the covariance we have

covpfεq “
ż
ˆ

volpBMpx, εqq
volpMq

˙2

dProbpxq ´ volpDMpεqq2
volpMq4

“

ż
ˆ

volpBMpx, εqq
volpMq

˙2

dProbpxq ´
ˆ
ż

M

volpBMpx, εqq
volpMq dProbpxq

˙2

“ Var
ˆ

x ÞÑ
volpBMpx, εqq

volpMq

˙

This means that when the volume of BMpx, εq “MXBpx, εq is constant then the covariance
vanishes. This is for example the case for M “ Sd Ă Rd`1 or for the Clifford torus
M “ Td Ă R2d. However, in general we do not get anything better than the bound coming
from Popoviciu’s inequality, that is

covpfεq ď
`

V M
maxpεq ´ V

M
minpεq

˘2

4 ¨ volpMq2

where we have set

V M
maxpεq “ max

xPM
volpBMpx, εqq and V M

minpεq “ min
xPM

volpBMpx, εqq

Now, using (3.10), the bound for covpfεq, as well as the bound volpDMpεqq ě volpMq ¨
Vminpεq we get that

VarpXfε
n q

EpXfε
n q2

ď
2

pn´ 1q2 ¨
volpMq
V M

minpεq
`

1
n´ 1 ¨

ˆ

V M
maxpεq

V M
minpεq

´ 1
˙2

To get bounds that only depend on the dimension and on ε ă 2 recall that from Corollary
2 we get that

V M
minpεq ě volpBSd

pεqq
def
“ Vpεq

V M
maxpεq

V M
minpεq

ď
vol

´

B
1?
2
Hd `2 arcsin

`

ε
2

˘˘

¯

volpBSdpεqq
def
“ Rpεq

(3.12)
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Using these bounds we get

VarpXfε
n q

EpXfε
n q2

ď
2

pn´ 1q2 ¨
volpMq

Vpεq
`

1
n´ 1 ¨ pRpεq ´ 1q2

We record what we have so far:

Lemma 21. Let M Ă Rs be a closed submanifold with dimension dimpMq “ d and reach
τpMq ě 1, and for some ε ă 2 and n P N consider fε and Xfε

n as in (3.11) and (3.9).
Then we have

EpXfε
n q “npn´ 1q ¨ volpDMpεqq

volpMq2
VarpXfε

n q

EpXfε
n q2

ď
2

pn´ 1q2 ¨
volpMq

Vpεq
`

1
n´ 1 ¨ pRpεq ´ 1q2

where Vpεq and Rpεq are as in (3.12).

Before moving any further let us give explicit formulas for Vpεq and Rpεq:

Vpεq “ volpSd´1
q ¨

ż ε

0
sind´1

ptqdt

Rpεq “
2´ d

2
ş2
?

2 arcsin ε
2

0 sinhptqd´1dt
şε

0 sind´1ptqdt

(3.13)

Note also that the two summands in the bound for VarpXfε
n q

EpXfε
n q

2 in Lemma 21 are rather
different. Assume for example that d is fixed. Then the weight of the second factor decreases
when ε decreases. On the other hand the value of the first one explodes. Recall also that
the second factor can be ignored if cov vanishes, that is if all balls BMpx, εq have the same
volume.

3.4.3 Some technical results

Recall that to estimate the dimension of M via (3.1), or equivalently via (3.5), what
we do is to take, for two scales ε1 ą ε2 random values of Xε1

n “ X
fε1
n and Xε2

n “ X
fε2
n ,

compute
log X

ε1
n

npn´1q ´ log X
ε2
n

npn´1q

log ε1 ´ log ε2
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and hope the that obtained value has something to do with dimpMq. Well, what we get
from Lemma 20 is an estimate of the probability that this value is far from the expectation.
Indeed, we have

Prob
ˆ
ˇ

ˇ

ˇ

ˇ

logXε1
n ´ logXε2

n

log ε1 ´ log ε2
´

log volpDMpε1qq ´ log volpDMpε2qq
log ε1 ´ log ε2

ˇ

ˇ

ˇ

ˇ

ą ρ

˙

“ Prob
ˆˇ

ˇ

ˇ

ˇ

logXε1
n ´ logXε2

n

log ε1 ´ log ε2
´

logEpXε1
n q ´ logEpXε2

n q

log ε1 ´ log ε2

ˇ

ˇ

ˇ

ˇ

ą ρ

˙

“ Prob
ˆ
ˇ

ˇ

ˇ

ˇ

log
ˆ

Xε1
n

EpXε1
n q

˙

´ log
ˆ

Xε2
n

EpXε2
n q

˙
ˇ

ˇ

ˇ

ˇ

ą log
ˆˆ

ε1
ε2

˙ρ˙˙

ď
ÿ

i“1,2
Prob

˜

ˇ

ˇ

ˇ

ˇ

log
ˆ

Xεi
n

EpXεi
n q

˙
ˇ

ˇ

ˇ

ˇ

ą log
˜

ˆ

ε1
ε2

˙

ρ
2
¸¸

ď
1

ˆ

1´
´

ε2
ε1

¯

ρ
2
˙2

ÿ

i“1,2

VarpXεi
n q

EpXεi
n q

2 .

Plugging in the statement of Lemma 21 we get:

Theorem 17. Let M Ă Rs be a closed submanifold with reach τpMq ě 1, pick two scales
0 ă ε2 ă ε1. Also, for n ě 2 set

ρ “
ÿ

i“1,2

ˆ

2
pn´ 1q2 ¨

volpMq
Vpεiq

`
1

n´ 1 ¨ pRpεiq ´ 1q2
˙

Then we have

Prob

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

logXε1
n ´ logXε2

n

log ε1 ´ log ε2
´

log
´

volpDMpε1qq
volpDMpε2qq

¯

log ε1 ´ log ε2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą ∆

˛

‚ď
ρ

ˆ

1´
´

ε2
ε1

¯
∆
2
˙2

for any ∆ ą 0.

Let us get a slightly more user friendly version:

Corollary 4. With the same assumptions and notation as in Theorem 17 suppose that
for some positive αi’s with α1 ` α2 “ 1 and for some ρ ą 0 we have

n ě 1` 1
αi ¨ ρ

¨ pRpεiq ´ 1q2 `

d

2
αi ¨ ρ

¨
volpMq
Vpεiq
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for i “ 1, 2. Then we also have

P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

logXε1
n ´ logXε2

n

log ε1 ´ log ε2
´

log
´

volpDMpε1qq
volpDMpε2qq

¯

log ε1 ´ log ε2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą ∆

˛

‚ď ρ ¨

˜

1´
ˆ

ε2
ε1

˙
∆
2
¸´2

Proof. In terms of Theorem 17 what we have to do is to guarantee for i “ 1, 2 that

αiρ ě
2

pn´ 1q2 ¨
volpMq
Vpεiq

`
1

n´ 1 ¨ pRpεiq ´ 1q2

It thus suffices to ensure that n´ 1 is larger than the solution X of the equation

a
def
“ αiρ “

1
X2 ¨

2 ¨ volpMq
Vpεiq

`
1
X
¨ pRpεiq ´ 1q2 def

“
1
X2 c`

1
X
b

This is now a quadratic equation with positive solution

X “
b

a
`

c

c

a

The claim follows.

Again, if M is such that all balls BMpx, εq have constant volume, then one can replace
the first displayed equation in Corollary 4 by

n ě 1`

d

2
αi ¨ ρ

¨
volpMq
Vpεiq

.

3.4.4 Searching decent scales

Given the dimension d and the volume VolpMq, what are the optimal scales to run
(3.1) so that we have ě 90% success probability? Let’s see how we could find, if not the
optimal scales, at least decent ones. First, for 1 ą ε1 ą ε2 ą 0 consider the quantity

∆ “ ∆ε1,ε2 “ maxt∆1,∆2u
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where

∆1 ď
1
2 ´

log
ˆ

ş

?
2¨2¨arcsinp ε12 q

0 sinhd´1ptq dt
ş

?
2¨ε2

0 sinhd´1ptq dt

˙

log ε1
ε2

` d

∆2 ď
1
2 `

log
ˆ

ε1
2¨arcsinp ε22 q

¨

´

sinpε1q
sinp2¨arcsin ε2

2 q

¯d´1
˙

log ε1
ε2

´ d

From Lemma 21 and Theorem 16 we get for all n that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

log EpX
ε1
n q

EpX
ε2
n q

log ε1 ´ log ε2
´ d

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

log volpDMpε1qq
volpDMpε2qq

log ε1 ´ log ε2
´ d

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
2 ´∆

Note that Theorem 16 has the condition R ă 1, but for dimension 1, it be replaced by the
condition R ă 2, as explained in the proof of Corollary 2.

It follows that, as long as ∆ ą 0, if we take a very large number of points n then we
get that it is very likely that the (3.1) returns the value d. Now, how many points we do
actually need if we want to guarantee a 90% rate of success? Well, with notation as in
Theorem 17 we start by setting

ρ “ ρε1,ε2 “
1
10 ¨

˜

1´
ˆ

ε2
ε1

˙
∆
2
¸2

(3.14)

Now, once we have ρ we get from Corollary 4 that if we take α P p0, 1q, set α1 “ α and
α2 “ 1´ α, and if we take at least

npε1, ε2, α, volpMqq “ max
i“1,2

˜

1` 1
αi ¨ ρ

¨ pRpεiq ´ 1q2 `

d

2
αi ¨ ρ

¨
volpMq
Vpεiq

¸

ď 1`max
i“1,2

ˆ

1
αi ¨ ρ

¨ pRpεiq ´ 1q2
˙

`

`

˜

max
i“1,2

d

2
αi ¨ ρ ¨ Vpεiq2

¸

¨ volpMq 1
2

points, then

Prob
˜
ˇ

ˇ

ˇ

ˇ

ˇ

log X
ε1
n

X
ε2
n

log ε1 ´ log ε2
´ d

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1
2

¸

ą 90%. (3.15)
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d ε1 ε2 α1
1 1.5 0.19 0.15
2 0.78 0.2 0.11
3 0.63 0.23 0.09
4 0.54 0.23 0.06
5 0.46 0.22 0.04
6 0.4 0.21 0.03
7 0.36 0.21 0.03
8 0.33 0.2 0.02
9 0.31 0.19 0.02
10 0.29 0.18 0.01

Table 3.2 – Decent scales for vol “ volpTdq in dimension d “ 1, 2, . . . , 10. It is evident that
the values in Table 3.2 can change if instead of using volpTdq as an input one chooses
any other value. However, for whatever it is worth, if instead one chooses 10 ¨ volpTdq or
even 100 ¨ volpTdq then there are not much changes: in small dimensions (that is, up to
dimension 3) the scales increase a bit, but for dimensions at least 4 nothing changes.

If we are interested in manifolds with VolpMq ď V then (3.15) holds as long as we take at
least

min
1 ą ε1 ą ε2 ą 0
with ∆ε1,ε2 ą 0

min
αPp0,1q

npε1, ε2, αq (3.16)

points and we use (3.1) with constants 1 ą ε1 ą ε2 ą 0. Now, to find decent scales we
can now minimize (3.16). A program which numerically approximates that is available at
[Gri22].

In fact, running also the program in each d “ 1, 2, . . . , 10 for the volume of the
corresponding d-dimensional torus we get that pε1, ε2, αq as in Table 3.2 give smallish
values for (3.16). If we plug these constants in the formula for npε1, ε2, α, volpMqq that we
gave above we recover the statement of Theorem 14 stated in the introduction:

Theorem 14. For d “ 1, ¨ ¨ ¨ , 10 let ε1 and ε2 be scales as in the table below. Also, given
a closed d-dimensional manifold M Ă Rs with reach τpMq ě 1 let n be also as in the
following table:
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3.5. Heuristics

d ε1 ε2 n
1 1.5 0.19 9` 21 ¨ volpMq 1

2

2 0.78 0.2 94` 58 ¨ volpMq 1
2

3 0.63 0.23 635` 146 ¨ volpMq 1
2

4 0.54 0.23 2786` 392 ¨ volpMq 1
2

5 0.46 0.22 7013` 1119 ¨ volpMq 1
2

6 0.4 0.21 13221` 3366 ¨ volpMq 1
2

7 0.36 0.21 25138` 10644 ¨ volpMq 1
2

8 0.33 0.2 50033` 34890 ¨ volpMq 1
2

9 0.31 0.19 63876` 119533 ¨ volpMq 1
2

10 0.29 0.18 139412` 425554 ¨ volpMq 1
2

Then, if we sample independently and according to the riemannian volume form a
subset X ĂM consisting of at least n points, then we have

dimCorrpε1,ε2qpXq “ d

with at least 90% probability.

In the next section we discuss some (much smaller) heuristic bounds, discuss some
numerical experiments, and compare with the performance of other estimators.

3.5 Heuristics

Theorem 17 gives us a bound for the number of points needed in a data set to be able
to get from (3.1) at least 90% of the time its dimension. In concrete examples, we expect
that this confidence level can be achieved with significantly less points. We will discuss this
difference between theory and practice, suggesting a simpler heuristic model supported by
computational examples.

Heuristic bound

We begin by discussing a heuristic model representing an ideal situation without
curvature. More concretely we will be running (3.1) at some scales ε1 and ε2 at which we
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can ignore curvature effects. In effect, we will act as if all balls in M of radius at most ε1
were euclidean and totally geodesic.

The first observation is that the statistic (3.1) is computed from information extracted
from the distances |x´ y| for those (unordered) pairs

tx, yu P PXpεq “
 

tx, yu Ă X with x ‰ y with |x´ y| ď ε
(

rather than from the points themselves. This means that the performance of the algorithm
should depend on |PXpε1q| and on the dimension d, instead of directly on the total number
n of points.

We think of the distance |x´ y| for tx, yu P PXpε1q as a random variable, and from
now on, we will take the point of view that we have N “ |PXpε1q| random variables
pXiq1ďiďN given by taking the distance between pairs of points at distance at most ε1 and
sampled uniformly on M . We then consider the variables Yi equal to 1 if Xi is smaller
than ε2 and 0 otherwise. With this notation in place, the estimator (3.1) becomes

dimCorrpε1,ε2qpXq “ Round
˜

logp 1
N

řN
i“1 Yiq

logpε2q ´ logpε1q

¸

Note that since we are assuming that all the balls are euclidean, the mean value of Yi is
then Ed “ pε2{ε1q

d and as the variables Yi only take the values 0 and 1, their variance is
σ2
d “ Ed ´ E

2
d .

In reality, the variables Xi, and thus the variables Yi have no reason to be independent.
Still, most of them are when the volume is large when compared to the size of the data set.
So, from now on, we will put ourselves in the ideal situation that the N variables Yi are
independent. Independence implies that the distribution of the sample mean Z “ 1

N

ř

i Yi

is binomial of parameters N and Ed, which can be approximated by a normal distribution
of mean value Ed and of variance 1

N
σ2
d using the central limit theorem. It is then known

that the probability of Z to be in the interval rEd ´ 1.64 ¨ σd{
?
N,Ed ` 1.64 ¨ σd{

?
N s is

about 90%. If we set gapd “ min pEd´0.5 ´ Ed, Ed ´ Ed`0.5q, we want to find N so that
1.64 ¨ σd{

?
N “ gapd. This number gives a number of pairs sufficient to obtain the right

dimension with a confidence of 90%.

Suppose for example that the manifoldM has dimension 4. For ε1 “ 0.54 and ε2 “ 0.23,
the scales coming from Theorem 14, we can then compute the values of gap4 and of σ4
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and deduce the required value of N .

gap4 “ minpE3.5 ´ E4, E4 ´ E4.5q » 0.01143

σ4 “
a

E4 ´ E2
4 » 0.1784

N “ p1.64 ¨ σ4{ gap4q
2
» 655 pairs

This is an approximation using the central limit theorem (that is, replacing the binomial
distribution by the normal distribution), but more precise computation can be done
working directly with the binomial distribution. Doing this, we can take N down to 516
(see [Gri22]). This reasoning can be applied to obtain the required number of pairs for
each dimension—the results are summarized in Table 3.3.

d ε1 ε2 N for 90% N for 70%
1 1.5 0.19 30 10
2 0.78 0.2 122 40
3 0.63 0.23 249 111
4 0.54 0.23 516 238
5 0.46 0.22 878 360
6 0.4 0.21 1329 554
7 0.36 0.21 1719 698
8 0.33 0.2 2481 1070
9 0.31 0.19 3900 1604
10 0.29 0.18 5849 2414

Table 3.3 – Heuristic bounds for the size of PXpε1q needed to have 90% and 70% rate of
success when applying (3.1) to data sets sampled from a reach 1 manifold.

We compare next these bounds with those in Theorem 14 and then discuss a few
numerical experiments.

Comparison between theoretical and heuristic bounds

A problem when comparing the heurestic bounds in Table 3.3 and those in Theorem
14 is that the former ones are given in terms of the cardinality of PXpε1q while the latter
ones are given in terms of the cardinality of X.
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To connect these two quantities recall that we are acting as if all ε1-balls in M were
euclidean. Now, we get for example from Lemma 21 that the number |PXpε1q| of unordered
pairs of points at distance at most ε1 is approximately given by the formula

|PXpε1q| »
npn´ 1q

2
volpBRdpε1qq

volpMq . (3.17)

Acting as if (3.17) were to give a perfect relation between the number of points and
that of pairs, we get that to get the estimated 516 pairs in the case that M “ T4 is the
4-dimensional torus we need 1958 data points. In comparison, Theorem 14 gives an upper
bound of 18262 points.

Arguing like this we can convert the heuristic bounds in Table 3.3 to bounds for the
needed cardinality of a data set in terms of the dimension and the volume of the underlying
manifold—see Table 3.4.

d heuristic n n from Theorem 14
1 5 ¨ volpMq 1

2 9` 21 ¨ volpMq 1
2

2 12 ¨ volpMq 1
2 94` 58 ¨ volpMq 1

2

3 22 ¨ volpMq 1
2 635` 146 ¨ volpMq 1

2

4 50 ¨ volpMq 1
2 2786` 392 ¨ volpMq 1

2

5 128 ¨ volpMq 1
2 7013` 1119 ¨ volpMq 1

2

6 355 ¨ volpMq 1
2 13221` 3366 ¨ volpMq 1

2

7 964 ¨ volpMq 1
2 25138` 10644 ¨ volpMq 1

2

8 2949 ¨ volpMq 1
2 50033` 34890 ¨ volpMq 1

2

9 9458 ¨ volpMq 1
2 63876` 119533 ¨ volpMq 1

2

10 33021 ¨ volpMq 1
2 139412` 425554 ¨ volpMq 1

2

Table 3.4 – Comparison between the heuristic bound and the bound in Theorem 14 for
the number of points that suffice to have 90% success rate when applying (3.1) to data
sets sampled from a reach 1 manifold.

One should keep in mind that entries the middle column in Table 3.4 are only meaningful
for volpMq large. Still, there is a very clear difference between both bounds, the heuristic
bound and that from Theorem 14. This difference is at least in part due to the curvature of
the submanifold M , but things are not helped by either all the nested inequalities leading
to Theorem 14 or the fact that the Bienaymé-Chebyshev inequality is not very precise.
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Numerical evidence

Experimental examples seem to confirm the heuristical bounds presented on Table 3.3.
By numerically sampling points on different manifolds, we obtain results close to what
was expected. Here is the procedure we followed:

1. Choose a manifold M of known dimension d and consider the scales and number of
pairs N given by Table 3.3.

2. Uniformly and independently sample points inM until we obtain N pairs at distance
ε1. The sampling is done by repeating a program specific to the desired manifold
that samples a single point randomly and uniformly on it.

3. Estimate the dimension using estimator (3.1) with scales ε1 and ε2.

4. Repeat steps 2 and 3 one hundred times and count the number of success.

We ran this experiment a variety of manifolds of reach 1 and always obtained a rate
of success in a range of ˘6% of the target rate. This difference between the actual rate
and the target would be totally normal even in an ideal situation. Indeed, repeating an
experiment 100 time with a probability of success of 90% gives a result with a standard
deviation of 3 successes. Every experimental result then falls into the usual range of two
times the standard deviation.

The manifolds were chosen to observe different situations:

— Worms: 0-level set of a randomly produced function on R2. The precise algorithm
used for generating these manifolds and sampling from them is available in [Gri22],
as well as the algorithms for the other manifolds.

— Rotation torus: Rotate around the z-axis the circle in the xy-plane of radius 1 and
center p2, 0, 0q. This surface has reach 1 and there is a mix of positive and negative
curvature.

— Clifford torus: The product Td “ S1 ˆ ¨ ¨ ¨ ˆ S1 Ă R2d of d-circles of radius 1. The
Clifford torus is curved in Euclidean space but is flat as a Riemannian manifold.

— Flat torus: This is an ideal situation. We consider namely the abstract manifold
Rd{2π ¨ Zd with its inner distance—it is not embedded in some larger Euclidean
space.

— Swiss roll: The Swiss roll is one of the standard objects on which manifold learning
algorithms seem to be tested, but it also adds a manifold with boundary to our list.
For the sampling, we used the function make_swiss_roll from the library scikit-learn.
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— Schwarz P surface: This is the triply periodic surface in R3 with equation cospxq`
cospyq ` cospzq “ 0—it approximates one of Schwartz’s triply periodic minimal
surfaces and thus shows features of negative curvature, both intrinsic and extrinsic.
To be able to deal with a finite volume surface we consider it as a submanifold of
the 3-dimension flat torus.

— Spheres: This is the standard sphere Sd “ tx P Rd`1 with }x} “ 1u. Spheres have
reach 1 and are positively curved.

— Gaussian distribution: The standard Gaussian distribution in Rd. The reason
why we test this in particular is to include a non-uniform distribution in our list.

The way we sample points depends on the concrete manifold under consideration, but we
stress that we are sampling each point independently. More precisely, we are not aiming
at getting point at some uniform distance of each other.

Figure 3.2 – Examples of samplings from manifolds. 500 points on a "Worms" manifold
(Left) and 2 000 points on a piece of the Schwarz surface (Right).

These results tend to confirm the conclusions of the heuristic model. We can test this
model a bit more by testing the estimator with the number of points given by Table 3.4.
This is what we did in Table 3.6, and we still obtain results close to what was expected.

Reach free estimator

A problem with all the results we have been discussing so far is that in practice one
has little clue what the reach of the underlying manifold could be. However, as we already
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Manifold d 90% target 70% target
Worms 1 88% 66%
Rotation torus 2 92% 70%
Clifford torus 2 89% 69%
Flat torus 2 88% 66%
Swiss roll 2 93% 69%
Schwarz surface 2 88% 66 %
3-sphere 3 92% 76%
4-sphere 4 89% 75%
Product of two rotation tori 4 92% 70%
Clifford torus 4 93% 72%
Flat torus 4 90% 74%
Product of two Schwarz surfaces 4 92% 72%
Gaussian distribution in R4 4 90% 76%
5-sphere 5 93% 74%

Table 3.5 – Experimental rates of success for different manifolds by considering the amount
of pairs of points suggested by Table 3.3.

Manifold d rate of success
Clifford torus 2 91%
3-sphere 3 91%
Flat torus 4 91%
Product of two tori 4 94%

Table 3.6 – Experimental rates of success for different manifolds by sampling the number
of points given by the "heuristic" column in Table 3.4.

mentioned in the introduction, one can actually derive from Table 3.3 an estimator which
does not need any a priori bound on the reach.

Assumption: We have a data set X Ă Rs of which we think that it has been
sampled from some mysterious submanifold M Ă Rs. We trust however that
our data set is good enough and we want to test if M could plausibly have
dimension d.

Test: For the chosen d, let ε1, ε2 and N be as in Table 3.3 (say from the 90%
column). Now take R ą 0 to be minimal with |PXpRq| ě N and set r “ ε2

ε1
R.

Now check if dimCorrpR,rqpXq “ d.

The heuristic discussion above, as well as the numerical experiments, suggest that as long as
our data set is rich enough so that R ď 0.54 ¨ τpMq then we should get dimCorrpR,rqpXq “ d

with a 90% probability.
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Wondering what would happen if we run this algorithm on more "real" data sets, we
chose 3 different data sets of respective dimension 1, 2 and 3 (see [Gri22]). Each data sets
consist in 200 grayscale pictures of the 3D-model Suzanne with random rotations (see
Figure 3.1). We respectively randomized 1, 2 and 3 Euler angles to obtain the desired
dimensions. The pictures are 64 by 64 pixels large and can thus be represented as points
in R4096. The results are presented in Table 3.7. For each data set, we test dimension 1, 2,
3 and 4 and we show the estimated dimension (before rounding it to the closest integer).

Note that when using the parameters of dimension 1 for estimating the dimension
of a higher dimensional set, we usually get no points at distance ε{2, as p1.5{0.19q2 is
higher than 30. When this happens, the estimator (3.1) cannot be computed, we can only
conclude that the dimension is probably bigger than 1.

Hypothesis Data set 1 Data set 2 Data set 3
dimension = 1 1.13 ą 1 ą 1
dimension = 2 1.59 2.02 3.54
dimension = 3 1.64 2.03 3.33
dimension = 4 1.45 2.08 3.40

Table 3.7 – Testing the dimension of the 3 "real" data sets. To test dimension=1 (resp.
dimension=2, resp. dimension=3) we set ε1 so that |PXpε1q| “ 30 (resp. 122, resp. 249).
Cells with a pink background represent the tests in which the estimated dimension is
consistent with the tested dimension. The cells with the value "ą d" mean that there were
no pairs at distance ε2 for the corresponding number of pairs at distance ε1.

We can see in Table 3.7 that there were no Type I errors (meaning that we never
rejected the true hypothesis). On the other hand we found a Type II error, when the data
set of dimension 1 passed the test for dimension 2.

3.6 Comparison with other estimators

In this paper we study the estimator (3.1), but a variety of other algorithms exist. For
example, instead of doing statistics using only the distances between points, we could also
use the angles between points, or other more complex features. These different approaches
can be compared using the previous heuristic model. We refer to [Cam03; CS16] and
specially to [LV07, Chapter 3] for a review of different dimension estimators. We will
compare (3.1) with the estimators ANOVA, local PCA, and with the implementation of
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(3.1) where one tries to avoid picking scales, reading instead the dimension from a log-log
chart.

ANOVA

Diaz, Quiroz and Velasco propose in [DQV19b] a method based on the angles referred
as ANOVA in the literature. Their idea is to estimate the local dimension around a point x
by considering its k nearest neighbors and the

`

k
2

˘

angles at x formed by these points. From
the variance of these

`

k
2

˘

angles, we can identify the closest βd and deduce the dimension
d, where βd is defined as follows.

βd “
1

volpSd´1q2

ż

Sd´1ˆSd´1

´

=pθ, ηq ´
π

2

¯2
dθdη

The global dimension can then be recovered by taking the median, the mode or the mean
of the local dimensions.

To be able to compare ANOVA to the estimator (3.1) we will instead take the variance
of all angles. More precisely, consider every ordered triple of points in which all three
points are at distance at most ε1 from each other. Each such triple px, y, zq determines an
angle =py ´ x, z ´ xq. We compute the variance of the so-obtained angles we can locate
the closest βd. We take that d to be the ANOVA dimension of our data set.

Putting ourselves again in the ideal situation that we are working in a scale at which
curvature can be ignored and assuming (and that is a lot of assuming in this case) that
the angles we find are independent of each other, we can argue as earlier in the discussion
of the heuristic bound and we get that, in dimension 4, we would need at least 652 angles
to achieve a confidence level of 90% with the ANOVA estimator.

Suppose now that we sample 1958 points from the 4-dimensional Clifford torusM “ T4.
That number was chosen so that we expect to have 516 pairs within ε1 “ 0.54 of each
other, the heuristic bound for (3.1) in dimension 4. On the other hand we expect to have

number of unordered triples “
ˆ

1958
3

˙

¨

˜

volpBR4
pε1qq

volpMq

¸2

» 91.

Each unordered pair gives 3 angles, meaning can expect to find about 273 angles. This is
much less than what we estimated that would needed.

And this phenomenon gets worse when the volume of the underlying manifold grows:
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if the manifold has volume 64π4 and if we have a data set with 516 pairs of points within
ε1 “ 0.54 then we expect to only have 45 triples, that is about 135 angles. The reason
for this is that the number of points needed to have a given number of pairs grows with
volpMq 1

2 while it grows as volpMq 2
3 when we fix the number of triples instead. This means

that for large volumes the algorithm will only become worse as finding triples of points
will become more and more difficult.

We numerically compared the rates of success of estimator (3.1) and of ANOVA for the
Clifford torus with the same scales. The results are presented in Table 3.8. This experiment
shows that, for this example and for these scales, estimator (3.1) gives significantly
better results than ANOVA. However, we cannot conclude that estimator (3.1) has better
performance in general. In particular, for manifolds of smaller volume or for different
choices of scales, ANOVA could in principle give better results.

Manifold d number of points estimator (3.1) ANOVA
Clifford torus 2 76 93% 65%
Clifford torus 3 347 93% 67%

Table 3.8 – Comparison of the experimental rates of success between estimator (3.1) and
ANOVA on the Clifford torus.

Remark 5. Recall that we have considered a variation of ANOVA—our conclusions should
also apply to the original algorithm as well.

Local PCA

Principal Component Analysis aims to find the best linear space containing a given
data set. According to [Bre+18b], PCA is the gold standard of dimension estimation. It
works as follows. To our given data set X “ px1, . . . , xnq Ă RN we associate first the mean

x̄ “
1
n

n
ÿ

i“1
xn

and then the nˆN matrix A whose rows are the vectors ui ´ ū, and one computes then
the singular values s1 ě s2 ě ¨ ¨ ¨ ě smintn,Nu. If X is contained in a linear subspace of
dimension d then sk “ 0 for all k ě d ` 1. Accordingly, one can declare that X has
PCA-dimension k if the gap sk ´ sk`1 is maximal. Another possibility would be to fix
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a threshold ε and declare the PCA-dimension of X to be the largest k with sk ě ε. For
example, if what one wants to do is to test the hypothesis that X is contained in a
d-dimensional subspace then one can check for example if sd`1 is below some threshold
ε ă 1

d`2—the number 1
d`2 arises because it is the expected value for sd if X is uniformly

sampled out of the unit ball in Rd.

In any case, that was PCA. The idea of local PCA, or Nonlinear PCA, is to apply PCA
to certain subsets of the data set and then, for good measure, average the so obtained
numbers. As we see, one does not only need to agree on what one calls PCA, but also
on what subsets does one wants to subject to the PCA treatment. For example, as in
[Bre+18b] one can cluster the data set using single linkage clustering 1 and then apply
PCA to each custer. This is, in our humble and uneducated opinion, a very reasonable
choice if, for data sets X uniformly sampled out of a submanifold M Ă RN , what one
wants to do is to find linear spaces (approximately) containing each connected component
of M . On the other hand, if what one wants to do is to recover the dimension of M then
it seems reasonable to rather apply PCA to (some of) the sets X X Bpx, εq for x P X and
for some ε chosen so that M X Bpx, εq is well-approximated by its tangent space.

Note now that every set consisting of d` 1 points is contained in a d-dimensional affine
subspace of Rs. This means that if we want to distinguish dimension d from dimension
d` 1 we need at the very least to find d` 2 tuples of nearby points. Now, if we once again
sample 1958 points out of the Clifford torus M “ T4 so that we can expect the magic
number of 516 pairs of points at most at distance 0.54 from each other, then we can expect
to find

number of unordered
6-tuples at scale 0.54

“

ˆ

1958
6

˙

¨

˜

volpBR4
p0.54qq

volpMq

¸5

» 0.110373....

In other words, the expectation is to not have any 6-tuples, meaning that, if we are working
at the same scales as we were implementing (3.1), then we have no chance of distinguishing
our 4-manifold from a 5-manifold using local PCA. Note that even if we work at a scale of
2, scale at which we are acting as if the round sphere were totally flat, then we can expect

1. In single linkage clustering the clusters are, for some ε, the connected components of the graph with
vertex set X and where two vertices are joined by an edge if they are with ε of each other.
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to only have 2 6-tuples

number of unordered
6-tuples at scale 2

“

ˆ

1958
6

˙

¨

˜

volpBR4
p2qq

volpMq

¸5

» 2.043944....

As we see, even if we work at scales at which we are flat earthers, we do not have by far
enough sufficiently populated clusters for local PCA to be meaningful.

log-log plots

Another method to derive the estimator (3.1) when the reach is unknown, is to take a
lot of scales

ε1 ă ε2 ă ¨ ¨ ¨ ă εk,

and to consider the graph of the piecewise linear function with corners

`

logpεiq, logp|PXpεiq|q
˘

and try to read out some sort of meaningful slope of that function (see [LV07, Chapter 3]).
We implemented this procedure for 1 000 points uniformly sampled from the product of
two 2-dimensional rotation tori of reach 1. We obtained the graph presented on Figure 3.3.

Three different parts can be observed on this graph:

1. A flat part, when the scale is smaller than the minimal distance between the points
(represented with the value -1 on the y-axis).

2. A mostly linear part whose slope should approximate the dimension of M .

3. A flat part when the scale becomes greater than the diameter of M (which plateaus
at logp1000 ¨ 999{2q » 13.12).

It is notable that in this example the second part looks linear even after twice the reach,
even if the behavior of logp|PXpεiq|q beyond this scale is unpredictable. Around the middle
of this graph, the slope of the linear part seems to be close to 4, as predicted.

We also applied this method from the 3 "real" datasets of pictures of Suzanne with
random rotations. The results are presented in Figure 3.4. For dimension 1 and 2, it worked
surprisingly well and the log-log plots clearly show what is the right dimension. The plot
for the data set of dimension 3 is not as clear, but the result seems consistent.

Let us conclude with two further comments on the log-log procedure:
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Figure 3.3 – Log-log plot for a set of 1000 points sampled out of the product of two rotation
tori. The graph also features three lines of slope 3, 4 and 5, for comparison.

(1) The log-log procedure seems to allow us to estimate the dimension of M without
any assumption on its reach. It is however difficult to define a precise algorithm for it.
Consequently, we cannot really compare its performance with that of the other estimators.
(2) Additionally, this method gives us insight on the choice of scales that could be relevant.
Indeed, the scales determined in Section 3.4.4 have no reason to be optimal for the heuristic
model. And as this model does not take the curvature nor the reach into account, it is
impossible to use it to find optimal scales. When considering Figure 3.3, it seems natural
to choose two scales that are far apart to measure the slope as precisely as possible, but
close enough so that they do no get too close to the extremities. Here, two scales that
would seem relevant could be expp0.5q » 1.6 and expp´0.5q » 0.6. In any case, the choice
of scales 0.54 » expp´0.6q and 0.23 » expp´1.5q seem to be far from optimal. Using the
estimator (3.1) with scales 1.6 and 0.6 on computational examples, we obtain a rate of
success of 99% with only 1 000 points for the product of two tori. For the scales 0.54 and
0.23, the heuristic model gives us a number of points of 3916 for a rate of success of 90%.
This rate falls to 41% with only 1 000 points on computational examples. However, these
scales have been chosen after the study of the results to obtain the desired answer on a
given manifold. But this does not give us a method to choose optimal scales a priori. For
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example, the scales 1.6 and 0.6 one give a rate of success of 45% for 100 points on the
4-sphere, while the scale 1 and 0.6 give a rate of 92%.
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Figure 3.4 – Log-log plots the 3 "real" datasets of pictures of Suzanne with random rotations
of dimension 1, 2 and 3. The blue lines have slopes of d´ 1, d and d` 1.
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Part III

3D printing
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During my PhD, I experimented some methods of visualization of the objects I am
working on. In particular, I tried to find the best way to represent the Alexander horned
sphere and the Fox-Artin sphere so that they can be understood easier by the audience
during my talks.

The best method I found is to print 3D models of these objects so that anyone can look
at them from various angles and visualize them better. I created 3D model the Alexander
horned sphere and the Fox-Artin sphere with a 3D modeling software and printed them
with the 3D printer available in the University, with the help of Rémi Coulon.

This part features a short paper written for Bridges Aalto 2022, a conference linking
art an mathematics. This paper presents the two 3D models I developed during my thesis.
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3D Printed Models of Wild Spheres
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Abstract
We discuss two wild embeddings of the sphere in the Euclidean space: the Alexander horned sphere and the Fox-Artin
sphere. After explaining the mathematical properties carried by these two embeddings, we present 3D printed models
of these objects. The models have been designed to be decorative table-top sculptures while being simple enough to
serve as supports for mathematical discussions.

1 The Alexander horned sphere
In topology, the famous Jordan-Brouwer separation theorem states that if one draws a closed line on the plane
which does not intersect itself, this line separates the plane into two disjoint regions.

Theorem (Jordan-Brouwer separation theorem). Let C be a continuous simple closed curve in R2. Then
R2 \ C has exactly two connected components.

This theorem can seem a bit weak: we know that the line separates the plane into two regions but we
do not know what the topology of these two regions are. In fact, the Jordan-Schoenflies theorem tells us that
such a line can be continuously transformed to a standard circle.

Theorem (Jordan-Schoenflies theorem). Let C be a continuous simple closed curve in R2. There is an
homeomorphism of R2 into itself that sends C on the standard circle

{
x ∈ R2 | ‖x‖2 = 1

}
.

This theorem is stronger than the Jordan-Brouwer separation theorem because it completely describes
the situation. In particular it shows that the region bounded by the linemust be homeomorphic to an open disk.

Going one dimension higher, one can wonder if the situation is similar for embeddings of the sphere
S2 in the Euclidean space R3. A first positive result is the Alexander duality, which can be thought of as a
generalization of the Jordan-Brouwer separation theorem, it can be used to show that any continuous injective
map from the sphere Sn−1 into the sphere Rn cuts the latter into two pieces.

However, the Jordan-Schoenflies theorem does not generalize to higher dimensions. The Alexander
horned sphere (Represented in Figure 1) is a subspace of R3 homeomorphic to a sphere but whose exterior
(together with the point at infinity) is not homeomorphic to an open ball. Indeed, its exterior is not even
simply connected (the curve γ on Figure 1 cannot be shrunk to a point).

Figure 1: The Alexander horned sphere



This sphere was first described by J. W. Alexander in [1] and is an example of what we call a wild
embedding: it is a continuous embedding such that there is no homeomorphism of R3 into itself that sends it
to a smooth embedding. In fact, in this representation, the sphere is smooth everywhere, except on a Cantor
set around which the sphere makes an infinite number of knots.

To construct this object, start with a sphere and grow two horns out of it. Divide each of these horns
into two other horns and interlace one horn of the first division with one horn of second division. Repeat this
process with each new pair of horns over and over infinitely many times with smaller and smaller horns until
they accumulate on a Cantor set.

The resulting object is homeomorphic to a sphere, but if one defines a loop around one of the first horns,
the infinite number of interlacing makes it impossible to shrink this loop to a point.

To make this object easier to understand, I decided to recreate it in the real world. Thanks to a 3D
modeling software, I designed a model of the Alexander horned sphere. I chose a smooth embedding (except
on the singular Cantor set) for the visual aspect and I chose to represent four levels of the pattern, with a
scaling factor of 43% between each level, to obtain a model with as many levels as possible while being
printable with the precision and the size of the 3D printer. The result is the 20 centimeters object shown in
Figure 2. The main difficulty in the printing process was the fact that the printer needed to print a support
together with the sphere, because the PLA filament always needs to be deposited on a solid structure. I chose
to print this support with a soluble PVA filament to obtain a smooth result without any trace of this support.

Figure 2: 3D model and 3D printed sculpture of the Alexander horned sphere



2 The Fox-Artin sphere
The Alexander horned sphere is well-known, but a wide diversity of other wild spheres exist without having
the same reputation. A reason for this is the lack of visualization of these spheres. Among all of them, there
is one that I find particularly interesting: the Fox-Artin sphere (represented on Figure 3). I first encountered
this sphere when confronted to the following question during my research work.

Question. Let K be a compact subset of R3, and suppose that K verifies the two following properties.

• The interior K̊ of K is homeomorphic to an open 3-ball
• The boundary ∂K of K is homeomorphic to a 2-sphere

Is K homeomorphic to a closed ball ?

The Fox-Artin sphere offers a negative answer to this question: it is a subset of S3 homeomorphic to
a 2-sphere and it cuts S3 into two components homeomorphic to open 3-balls. However, the union of the
exterior component (according to Figure 3) with this 2-sphere does not yield a closed ball.

Returning to the situation in dimension 2, the Jordan-Schoenflies theorem told us two things:

(A) The interior of a simple closed curve is homeomorphic to an open disk.
(B) The union of a simple closed curve with its interior is homeomorphic to an closed disk.

In other words, it says that the homeomorphism from the open disk to the interior of C can be chosen so that
it extends homeomorphically to C.

The Alexander horned sphere contradicts the point A (and thus the point B) while the Fox-Artin sphere
only contradicts the point B. The answer to our question is thus negative: it is strangely possible to "glue" a
2-sphere on the boundary of an open 3-ball without obtaining a closed 3-ball.

However, as in the Alexander horned sphere, the interior component together with the sphere yield a
subset homeomorphic to a closed ball.

Figure 3: The Fox-Artin sphere

This sphere is defined as a thickening of a wild arc, with a thickness converging to zero as we approach
the endpoint. The arc used here is an infinite concatenation of loops where each loop is knotted with the
previous one. This arc has been defined by R. H. Fox and E. Artin in [2]. In fact, the term "Fox-Artin sphere"
can refer to slightly different objects, as several wild arcs have been defined in the aforementioned article.
Here, we only consider the simplest of these arcs, which is infinitely knotted only on one side, but we could
construct other wild spheres with other properties by working with other arcs.

Compared to theAlexander horned sphere, this sphere is usually easier to comprehend for people because
it has a single singular point. It is clearer that it is homeomorphic to a sphere, but its properties are more
difficult to understand and to prove.



I made a 15 centimeters sculpture of this Fox-Artin sphere with the same method used for the Alexander
horned sphere. The model is smooth everywhere except at its singular endpoint. To reduce the height of the
sculpture and to make a base for the sculpture to stand on, I decided to flatten the original sphere from which
the horn is grown. With the precision of the 3D printer, I could print seven levels of the pattern with a scaling
factor of 67% between each level. Figure 4 represents the 3D model and the final result.

The files used in this article can be freely accessed on http://lugri.net/maths/wildspheres.php.

Figure 4: 3D model and 3D printed sculpture of the Fox-Artin sphere
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Titre : La Conjecture de Smith en faible régularité

Mot clés : Topologie et géométrie en petites dimensions, 3-variétés, homéomorphismes sau-

vages, conjecture de Smith

Résumé : En 1939, Paul Althaus Smith dé-
montra que l’ensemble des points fixes d’une
application continue d’ordre fini de la 3-sphère
dans elle-même était homéomorphe à une
sphère de dimension inférieure. Ses résultats
ne renseignent cependant pas sur la nature
du plongement de cet ensemble de point fixes.
En 1952, R. H. Bing donna un exemple d’une
involution continue de la 3-sphère dont l’en-
semble des points fixes est homéomorphe à
une 2-sphère plongée de manière "sauvage".
Suite aux travaux de nombreux mathémati-
ciens tels que John Morgan, Hyman Bass,
William Thurston et Grigori Perelman, nous
savons aujourd’hui que, s’il s’agit d’une ap-

plication lisse, une telle application d’ordre
fini est nécessairement conjuguée à une iso-
métrie. Dans une série de conférences don-
nées en 2013 à Santa Barbara, Michael Freed-
man conjectura que cette dernière affirma-
tion devrait également être vérifiée pour des
applications de régularité intermédiaire telles
que des applications lipschitziennes. Nous
démontrons qu’une application lipschitzienne
d’ordre fini d’une 3-variété et de constante de
constante de Lipschitz proche de 1 est néces-
sairement conjuguée à une application lisse,
répondant partiellement à la question de Mi-
chael Freedman.

Title: The Smith conjecture in low regularity

Keywords: Low-dimensional geometry and topology, 3-manifolds, wild homeomorphisms, Smith

conjecture

Abstract: In 1939, Paul Althaus Smith proved
that the fixed set of a continuous self-map of fi-
nite order of the 3-sphere was homeomorphic
to a lower dimensional sphere. However, his
results do not give any information about the
nature of the embedding of this fixed set. In
1952, R. H. Bing gave an example of a continu-
ous involution of the 3-sphere whose fixed set
is homeomorphic to a "wild" embedding of the
2-sphere. Following the work of many mathe-
maticians such as John Morgan, Hyman Bass,
William Thurston, and Grigori Perelman, we

know that, if such a finite order map is smooth,
it is necessarily conjugate to an isometry. In a
series of lectures given in 2013 in Santa Bar-
bara, Michael Freedman conjectured that this
property should also be verified for maps of in-
termediate regularity such as Lipschitz maps.
We show that a Lipschitz map of finite order of
a 3-manifold and of Lipschitz constant close
to 1 is necessarily conjugate to a smooth map,
partially answering Michael Freedman’s ques-
tion.
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