Thèse soutenue

Cohomologie completée localement analytique des variétés de Shimura et applications de BGG surconvergentes

FR  |  
EN
Auteur / Autrice : Juan Esteban Rodriguez Camargo
Direction : Vincent Pilloni
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 29/06/2022
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure de Lyon (2010-...)
Laboratoire : Unité de Mathématiques Pures et Appliquées (Lyon ; 1991-....)
Jury : Président / Présidente : Michael Harris
Examinateurs / Examinatrices : Vincent Pilloni, Michael Harris, Fabrizio Andreatta, Pierre Colmez, Gabriel Dospinescu, Sophie Morel, Wiesława Nizioł, Benjamin Schraen
Rapporteurs / Rapporteuses : Fabrizio Andreatta, Peter Scholze

Résumé

FR  |  
EN

Dans ce manuscrit, nous étudions la structure de Hodge-Tate de la cohomologie proétale des variétés de Shimura. Cette thèse est divisée dans quatre parties. D’abord, nous construisons un modèle entière de la courbe modulaire perfectoïde. Avec ce schema formel, on montre quelques résultats d’annulation de la cohomologie cohérente en niveau infini, et nous donnons une description du dual de la cohomologie completée en termes de formes modulaires intégrales de poids 2 et de traces normalisées. Dans un second temps, on construit l’application surconvergente d’Eichler-Shimura pour le premier groupe de cohomologie cohérente, il s’agit d’un morphisme de la cohomologie surconvergente à support compact de Boxer-Pilloni vers les symboles modulaires localement analytiques d’Ash- Stevens, qui interpole l’application d’Eichler-Shimura classique. Nous réinterpre ́tons les construc- tions précédentes en termes du morphisme des périodes de Hodge-Tate et de la courbe perfectoïde.Ensuite, dans un travail un commun avec Joaquín Rodrigues Jacinto, nous introduisons le concept de représentation localement analytique solide pour un groupe de Lie p-adique compact G. Nous nous inspirons des travaux de Lazard, Schneider-Teitelbaum et Emerton pour réinterpréter la propriété localement analytique dans la catégorie des représentations solides de G, et nous voyons que les objets obtenus peuvent être décrit en termes de modules sur des algèbres de distributions analytiques. En guise d’une application, nous démontrons quelques théorèmes de comparaison entre la cohomologie solide des groupes et la cohomologie de l’algèbre de Lie des vecteurs localement analytiques derivés. Pour finir, nous généralisons à des variétés de Shimura quelconque les travaux de Lue Pan sur la cohomologie complétée localement analytique des courbes modulaires. Le premier point technique est l’existence d’un opérateur de Sen géométrique qui est lié à la correspondence de Simpson p- adique. On montre que cet opérateur calcule la cohomologie proétale des modules sur le faisceau structural complété dans un sens précis. En appliquant cette théorie dans le cas des variétés de Shimura, nous arrivons à réduire le calcule de la cohomologie proétale de certains faisceaux à celui de la cohomologie de Lie des D-modules sur la variété de drapeaux. En particulier, nous prouvons que l’extension des scalaires à Cp de la cohomologie completée localement analytique se calcule comme la cohomologie des sections localement analytiques du faisceau structural de la variété de Shimura de niveau infini en p sur le site analytique. Comme corollaire, on en déduit une version rationnelle des conjectures de Calegari-Emerton sur l’annulation de la cohomologie completée. Ensuite, nous étudions les composantes isotypiques de la cohomologie completée localement analytique pour l’action d’un Borel. En utilisant le dictionnaire entre cohomologie proétale et cohomologie de Lie des faisceaux sur la variété de drapeaux, on arrive à construire des applications de BGG surconvergentes. De plus, nous donnons une preuve locale de la décomposition de Hodge-Tate avec coefficients, en utilisant la résolution BGG-dual et le morphisme des périodes de Hodge-Tate.