
N° d’ordre NNT : 2022LYSEC017

THESE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de l’Ecole Centrale de Lyon

École Doctorale n°160
Électronique Électrotechnique et Automatique (EEA)

Spécialité de doctorat :
Discipline : Électronique

Soutenue publiquement le 10/05/2022, par :

Dupuis Etienne

Weight-Sharing Methods
for Retraining-Free
CNN Compression

Devant le jury composé de :

Menard Daniel Pr., INSA Rennes, IETR, UEB Rapporteur
Sekanina Lukas Prof., Brno University of Technology (CZ) Rapporteur
Bolchini Cristiana Prof., Politecnico di Milano (IT) Examinatrice
Sentieys Olivier Pr., IRISA, INRIA. Univ. Rennes Président du jury
Naviner De Barros Lirida Pr, Telecom Paris Examinatrice
Bosio Alberto Pr., ECL, INL Directeur de thèse
O’Connor Ian Pr., ECL, INL Co-superviseur de thèse
Novo David Chargé de Recherche CNRS, LIRMM Co-superviseur de thèse

Acknowldgements

I would like to extend my first thanks to my three thesis supervisors, Alberto
Bosio for his unlimited support on all tasks, from research strategy to pub-
lication and dissemination, David Novo, for always looking at problems from
a helicopter’s view, in addition to his very precise sense of research and writ-
ing methods, and Ian O’Connor for sharing his knowledge on research strategy
and actors, and for supporting the scientific work and writing. The three of
them form a very complementary team in terms of the distribution of skills and
personalities, which certainly had a very positive impact on this work.

I would also like to thank my collaborators. David Briand, Olivier Sentieys,
and Silviu Filip, for working together over the years in the AdequateDL con-
sortium project, including a book chapter reviewing the literature. Marcello
Traiola for having very interesting discussions on the subject of approximate
computing. Thibault Allenet for sharing ideas on approximate computing for
deep learning.

I would like to thank the resources and people that I have found in my close
working environment. The lab and school data centers and their powerful GPU
server for allowing me to develop and use all the required frameworks, and the
CNRS data center for running massively parallel simulations. The infrastructure
team of the lab and the school, Laurent Carrel and Laurent Pouilloux, for having
indicated and given me access to different services as well as for the numerous
troubleshooting. The members of my thesis follow-up committee for having
followed closely my research work and my training during these years. The
administrative teams of the lab, particularly Sylvie Goncalves, and Patricia
Dufault for their constant help with the insane amount of registrations process.

I would like to thank everyone who provided me technical support in any
way, including, but not limited to my esteemed colleagues and now friends,
Mayeul Cantan, who gave me open access to his Wikipedia-level knowledge and
impressive skills, Clément Zrounba, for troubleshooting and discussing work,
and Arnaud Poittevin, for his scientific insights. I would also like to thank my
dear brother Jean Dupuis for introducing me to various very efficient industrial
tools for machine learning.

Over the years, I found emotional support in the person of my beloved wife,
Alice Limouzin, and I would like to thank her for sharing her creativity, in
addition to her legendary optimism with me. I would also like to deeply thank
my family and my mom, for always taking the time to listen to my boring
scientific discussions and for giving me invaluable motivation in the pursuit of
my various studies since my childhood. I would like to thank my dear friends
Dr. Adil Brik and Yazan Barazzi for their motivation and their philosophical
vision on the Ph.D. And more generally, I would like to thank all my friends
who have supported me in every possible way and allowed me to take time off
work when necessary.

Last but not least, I want to thank the ANR AdequateDL project (ANR-18-
CE23-0012) for having covered all the financial aspects and allowed this thesis
to come into being.

Abstract

The outstanding performance achieved by Convolutional Neural Network
(CNN) comes at the cost of extremely high computational requirements, mak-
ing them out of reach for most low-power embedded devices [1]. Most of the
energy cost during CNN inference comes from memory access as analyzed in [1].
This work focuses on reducing the memory footprint of CNNs to improve en-
ergy efficiency. The Approximate Computing (AxC) paradigm leverages the
inherent error-resilience of CNNs to improve energy efficiency by relaxing the
need for fully accurate operations. CNNs have a high degree of redundancy in
terms of their structure and parameters [2], and this redundancy is not always
necessary for an accurate prediction. This observation has paved the way for
several highly recognized approximation techniques [1] such as pruning, quanti-
zation, low-rank factorization, and Weight Sharing (WS) [2]. WS aims to group
weights into buckets or clusters sharing the same value. It allows a significant
reduction of the CNN memory footprint by storing shared values in a dedicated
data structure, where original weight values in the weight matrix are replaced
by their corresponding indexes, represented with fewer bits. To make an exam-
ple, by reducing the number of different shared values (k) to 256, the indexes
can be encoded with only log2(k) = 8 bits, allowing a 4× Compression Rate
(CR) compared to the original 32-bit counterpart. Shared weight values can be
determined by using a clustering algorithm like the K-means.

WS, as well as the others approximation techniques, came at the cost of a
certain accuracy loss. Although the standard application of WS [2]–[5], requires
the retraining of the network to recover accuracy loss, it has been proven [6]
that it is also possible to optimize the number of shared values to each layer’s
resilience while avoiding the costly retraining step.

ghhiExhaustively exploring every combination results in O(|krange|N) com-
plexity, with |krange| being the set of the possible number of shared values and
N the number of layers. As an example, a toy CNN with N = 5 layers and a
krange = [1, 256], results in a number of scoring steps equal to 2565 = 1.1 ×1012.
Thus, the exploration of the complete solution space would require more than
three decades when considering an optimistic 1 ms evaluation step. To make
things worse, the complexity rises exponentially with N , which is higher than a
factor of ten higher in recent CNNs.

In this thesis, we propose a heuristic approach to achieve a scalable
retraining-free WS compression. The main contributions can be summarized
as (1) The extensive study of the complexity of the weight-sharing optimiza-
tion; (2) A novel automatic two-step heuristic optimization to retraining-free
weight-sharing.

The proposed method for CNN compression can efficiently explore the large
design space to produce a set of solutions that offer very interesting trade-
offs between AL and CR. These solutions achieve more than a 5× compression
over the baseline memory footprint in multiple state-of-the-art computer vision

CNNs on the challenging Imagenet dataset under MLPerf [7] quality target
constraints. Importantly, these compression results are achieved while avoiding
the prohibitively costly retraining step, which is commonly used in prior works.

The thesis dissemination consists of 4 publications in international con-
ferences with proceedings, 1 journal Elsevier, 1 chapter of a book edited by
Springer, and 4 poster dissemination in summits or workshops. The early works
using greedy exploration on LeNet/MNIST were published in [8], a generaliza-
tion to the Imagenet class CNNs with the use of proxy metrics to accelerate
exploration were published in [9], an extension adding a multi-objective ex-
ploration was published in [6], the new divide & conquer approach results on
MNIST were published in [10] and the generalization to Imagenet is published
in [11]. Finally, a survey on AxC for deep learning was published in [12].

Résumé

Les performances exceptionnelles atteintes par les réseaux de neuronnes
convolutionels (Convolutional Neural Network (CNN)s) se font au prix de res-
sources de calcul extrêmement élevées, les rendant hors de portée de la plu-
part des dispositifs embarqués à faible puissance [1]. La majeure partie du coût
énergétique de l’inférence CNN provient de l’accès à la mémoire, comme ana-
lysé dans [1]. Ce travail se concentre sur la réduction de l’empreinte mémoire
des CNNs pour améliorer l’efficacité´ énergétique. Le paradigme de calcul ap-
proximé (Approximate Computing (AxC)) tire parti de la résistance aux erreurs
inhérente aux CNNs pour améliorer l’efficacité énergétique en assouplissant le
besoin d’opérations totalement précises. Les CNNs ont un haut degré de redon-
dance en termes de structure et de paramètres [2], et cette redondance n’est
pas toujours nécessaire pour une prédiction acceptable. Cette observation a ou-
vert la voie à plusieurs techniques d’approximation très reconnues [1] telles que
l’élagage (≪ pruning ≫), la quantification, la factorisation à faible rang et la
Weight Sharing (WS) [2]. WS vise à regrouper les poids dans des classes parta-
geant la même valeur dans une table de correspondance. Il permet une réduction
significative de l’empreinte mémoire des CNNs en stockant les valeurs partagées
dans une structure de données dédiée, où les coefficients originaux dans la ma-
trice de poids sont remplacées par leurs index correspondants, représentés avec
moins de bits. Pour prendre un exemple, en réduisant le nombre de valeurs
partagées différentes (k) à 256, les index peuvent être codés avec seulement
log2(k) = 8 bits, permettant un ratio de compression CR de 4× par rapport
aux valeurs originales sur 32 bits. Les valeurs partagées des coefficients peuvent
être déterminées à l’aide d’un algorithme de regroupement comme les K-means.

Le WS, ainsi que les autres techniques d’approximation, se font au prix
d’une certaine perte de précision. Bien que l’application standard de WS [2]-[5],
nécessite le ré-entrainement du réseau pour récupérer la perte de précision, il a
été prouvé [6] qu’il est également possible d’optimiser le nombre de valeurs par-
tagées en fonction de la résilience de chaque couche tout en évitant la coûteuse
étape du ré-entrainement.

L’exploration exhaustive de toutes les combinaisons entrâıne une complexité
de O(|krange|N), avec |krange| la plage de valeurs partagées possibles et N le

nombre de couches. À titre d’exemple, un CNN jouet avec N = 5 couches et
un krange = [1, 256] résulte en un nombre d’étapes d’évaluation égal à 2565 =
1.1 × 1012. Ainsi, l’exploration de l’espace complet des solutions nécessiterait
plus de trois décennies en considérant un pas d’évaluation optimiste de 1 ms.
Pour aggraver les choses, la complexité augmente exponentiellement avec N , qui
est plus au moins un ordre de grandeur supérieur dans les CNN récents.

Dans cette thèse, nous proposons une approche heuristique pour réaliser une
compression WS sans ré-entrâınement. Les principales contributions peuvent

être résumées comme suit : (1) L’étude approfondie de la complexité de l’opti-
misation du partage de coefficients ; (2) Une nouvelle optimisation heuristique
automatique en deux étapes pour le partage du poids sans ré-entrainement.

La méthode proposée pour la compression de CNNs peut explorer effica-
cement le vaste espace de conception pour produire un ensemble de solutions
qui offrent des compromis très intéressants entre la perte de précision et le CR.
Ces solutions permettent d’obtenir une compression de plus de 5× par rapport
à l’empreinte mémoire initiale dans plusieurs CNN de vision par ordinateur de
pointe sur le jeu de données Imagenet sous des contraintes de qualité MLPerf [7].
Il est important de noter que ces résultats de compression sont obtenus tout en
évitant l’étape de réapprentissage prohibitive et coûteuse, qui est couramment
utilisée dans les travaux antérieurs.

La diffusion des résultats de la thèse consiste en 4 publications dans des
conférences internationales avec actes, 1 journal ACM, 1 chapitre d’un livre, et 4
posters diffusés dans des sommets ou des ateliers. Les premiers travaux utilisant
l’exploration sur LeNet/MNIST ont été publiés dans [8], une généralisation à
la classe Imagenet CNNs avec l’utilisation d’une métrique proxy pour accélérer
l’exploration a été publiée dans [9], une extension ajoutant une exploration
multi-objectif a été publiée dans [6], les résultats de la nouvelle approche ≪ di-
viser pour régner ≫ sur MNIST ont été publiés dans [10] et la généralisation à
Imagenet est publiée dans [11]. Enfin, une enquête sur AxC pour l’apprentissage
profond a été publiée dans [12].

French Summary

Les performances exceptionnelles obtenues par les réseaux de neurones convo-
lutifs, ou Convolutional Neural Network (CNN) se font au prix d’exigences de
calcul extrêmement élevées, ce qui les rend hors de portée de la plupart des dis-
positifs embarqués à faible puissance [1]. La majeure partie du coût énergétique
pendant l’inférence des CNNs provient de l’accès à la mémoire, comme analysé
dans [1]. Ce travail se concentre sur la réduction de l’empreinte mémoire des
CNNs pour améliorer l’efficacité énergétique.

Le paradigme du calcul approximatif tire parti de la résistance aux er-
reurs inhérente aux CNNs, pour tirer parti d’une amélioration de l’effica-
cité énergétique apporté par le soulagement du besoin d’opérations totalement
précises qui offre un certain niveaud de flexibilté sur le calcul. Les CNNs ont
un haut niveau de redondance à la fois au niveau de leur structure et de leur
paramètres, cette redondance n’est pas toujours nécessaire pour une prédiction
précise [2]. Cette observation a ouvert la voie à plusieurs techniques d’approxi-
mation très reconnues [1] telles que l’élagage ou pruning, la quantification ou
quantization, la factorisation à faible rang et le partage de poids ou Weight
Sharing (WS).

Le WS a pour but de regrouper les paramètres, ou poids, dans des ≪ seaux ≫,
ou clusters, partageant la même valeur. Il offre une réduction significative de
l’empreinte mémoire du CNN ciblé en permettant de stocker les valeurs par-
tagées dans une structure dédié, ainsi, les valeurs dans la matrice de poids sont
remplacées par l’index de la structure dédiée correspondante, représentés avec
moins de bits. Si l’on peut réduire le nombre de valeurs partagées différentes
(k) à 256, les index peuvent être codés avec seulement log2(k) = 8 bits, ce qui
permet un taux de compression, ou Compression Rate (CR) de 4× par rapport
à l’original utilisant des valeurs de paramètres flottantes encodées sur 32 bits.
Les valeurs de poids partagées peuvent être déterminées à l’aide d’un algorithme
de regroupement tel que le K-means.

Bien que l’application standard de WS [2]-[5], nécessite le recyclage du réseau
pour récupérer la perte de précision, il a été prouvé [6] qu’il est également
possible d’optimiser le nombre de valeurs partagées pour la résilience de chaque
couche tout en évitant l’étape coûteuse du recyclage.

L’exploration exhaustive de chaque combinaison entrâıne une complexité de
O(|krange|N), avec |krange| étant l’ensemble des nombres possibles de valeurs

partagées et N le nombre de couches. À titre d’exemple, un CNN jouet avec
N = 5 couches et un krange = [1, 256], résulte en un nombre d’étapes de notation
égal à 2565 = 1.1 × 1012. Ainsi, l’exploration de l’espace complet des solutions
nécessiterait plus de trois décennies en considérant un pas d’évaluation optimiste
de 1 ms. Pour aggraver les choses, la complexité augmente exponentiellement
avec N , qui augmente de plus d’un facteur dix dans les CNN récents.

Objectifs d’optimisation

L’optimisation du nombre de valeurs partagées pour un CNN entrâıné donné
peut être représentée comme un problème d’optimisation mathématique. La
définition traditionnelle du problème d’optimisation consiste à trouver les
meilleures solutions, décrites par des valeurs de variables, qui maximisent les
objectifs tout en respectant les contraintes. Dans le cas spécifique du réglage de
WS, nous avons ce qui suit :

• Les variables peuvent être représentées par un vecteur contenant le nombre
de valeurs partagées de chaque couche ;

• Les objectifs sont les métriques sélectionnées pour représenter l’efficacité
d’execution et la précision ;

• La contrainte est la cible de précision décrite par MLPerf [7], bien qu’il
soit possible d’en ajouter d’autres lors de l’étude d’une implémentation
spécifique.

Pour définir l’espace de recherche de l’optimisation, il est nécessaire de fixer
une plage du nombre possible de valeurs partagées, ou des valeurs possibles
des variables d’optimisations. Cette plage peut être choisie arbitrairement, ou
déterminée à l’aide de différentes techniques.

La représentation de la performance de précision est quelque chose de très
courant lors du prototypage d’un CNN, elle est généralement réalisée en utilisant
la précision top-1 ou top-5, c’est-à-dire le pourcentage de fois où l’étiquette
attendue était présente parmi les étiquettes prédites du top-1 ou du top-5 en
termes de probabilité. Une autre métrique de précision est la distance entre la
sortie prédite et la sortie attendue, calculée à l’aide d’une fonction de perte. La
précision et la perte sont généralement calculées en utilisant un ensemble de
données de validation qui n’a jamais été utilisé pour entrâıner le CNN, ce qui
permet de mesurer sa capacité de généralisation. La grande majorité des articles
sur l’approximation indiquent que la perte de précision, ou Accuracy Loss (AL)
du top 1 ou du top 5, calculée comme la différence absolue entre la précision
du CNN de base et la précision du CNN approximé. Un AL négatif signifie que
le CNN approché atteint une précision plus élevé que le CNN de base, ce n’est
pas habituel mais cela peut arriver avec une approximation agissant comme
une régularisation pendant l’apprentissage. La métrique qui sera utilisée pour
représenter la précision dans ce travail de thèse est le top-1 AL, car il donne
un aperçu plus direct du comportement du CNN approximé par rapport à la
référence.

Les deux métriques peuvent être obtenues à partir d’un CNN approximé,
décrit par un vecteur représentant le nombre de valeurs partagées. Le CR peut
être calculé à l’aide d’une formule analytique décrite par l’équation :

CR =
W × bvaleurs

W × bindex + ki × bvaleurs
, (1)

Avec bvaleurs le nombre de bits utilisés pour représenter une valeur partagée et
bindex le nombre de bits utilisés pour représenter l’index d’une valeur partagée.
W le nombre de poids de la couche et ki le nombre de valeurs partagées de la
couche.

D’autre part, l’obtention de l’AL nécessite une évaluation de la précision de
l’inférence pour le CNN approximé donné, ce qui signifie également qu’il est
nécessaire d’appliquer le partage de poids avant l’évaluation. La première étape
de l’évaluation de la précision est très exigeante en termes de calcul, et vous ver-
rez que c’est un problème commun dans les recherches menées au cours de cette
thèse. En ce qui concerne les contraintes d’optimisation, le concours MLPerf [7],
destiné à permettre la comparaison de plateformes hétérogènes d’apprentissage
et d’inférence de CNN à l’aide de mesures de haut niveau comme le débit et
la latence, a fixé un objectif de précision acceptable pour l’approximation des
CNNs. Pour atteindre cet objectif de qualité, la précision du top 1 de l’approxi-
mation des CNN doit être d’au moins 99% de la précision de base. Un deuxième
niveau d’objectif de qualité est fixé à 98% de la précision de base pour les CNNs
ciblant l’inférence embarquée, comme MobileNetV2 [13], car ces CNN sont déjà
optimisés dès leur conception et sont plus sensibles à l’approximation que les
autres. Cet objectif de qualité a été largement utilisé depuis.

Il est également possible d’utiliser différentes contraintes concernant
l’implémentation, comme les limites de mémoire ou de calcul pour faire res-
pecter des métriques de haut niveau comme la latence ou le débit. Il est même
possible d’utiliser des contraintes énergétiques pendant l’optimisation. Toutes
ces contraintes liées à l’implémentation sortent du cadre de cette thèse.

Travaux réalisés

Deux approches ont été explorées pour l’optimisation du nombre de valeurs
partagées. La première consiste en une optimisation gloutonne, dite glouton, qui
peut être traduite en une optimisation locale de chaque couche du CNN dans
un ordre particulier, avec un souci de conservation des effets d’approximation
des couches déjà traitées. La seconde prend une approche plus heuristique avec
une division du problème en un problème d’optimisation locale gloutonne et un
problème d’optimisation globale à l’échelle du CNN entier. Ces deux approches
sont décrites plus en détail dans les deux sous-parties suivantes.

Approche gloutonne ≪ Greedy ≫

L’utilisation d’un algorithme d’optimisation glouton permet de réduire l’espace
de recherche en s’appuyant sur l’optimisation locale. L’implémentation est très
simple, pour chaque couche du réseau, de la première à la dernière, le meilleur
nombre de valeurs partagées ki, est trouvé localement en évaluant tous les can-
didats approximatifs possibles de l’intervalle krange. L’évaluation de chacun des
candidats approximatifs consiste en deux étapes : (1) application du WS avec
les ki souhaités à l’aide de l’algorithme de regroupement k-means [14], et (2)
évaluation du CNN résultant. L’AL est calculée sur l’ensemble des données de

Type Top-1 AL CR
(%)

N2D2 exporté (ref) 0.00 1
WS 0.02 4.06

Table 1 : Compression de LeNet-5 [15] sur le jeu de données MNIST [16],
comparaison avec la référence N2D2 [17].

test, avec les couches précédentes et la couche actuelle approximées. À l’issue de
cette étape d’évaluation, le candidat présentant le meilleur AL est sélectionné.
La complexité temporelle de l’algorithme proposé est :

O(card(krange)×N). (2)

Avec N le nombre de couches du CNN.
Pour valider la capacité de l’algorithme glouton proposé à résoudre des

problèmes d’optimisation réalistes, il faut d’abord prouver qu’il peut fonction-
ner sur de petits CNNs. Dans cette optique, Lenet-5 [15], un CNN à 5 couches
capable de reconnâıtre les chiffres en noir et blanc à basse résolution tirés du
jeu de données MNIST [16] est utilisé comme CNN de référence. Le nombre ex-
ploré de valeurs partagées est l’intervalle linéaire krange = [2; 25], 25 correspond
au nombre de poids d’un noyau convolutif 2D, et permet une AL inférieure à
104 pour toutes les couches. L’entrâınement a été réalisé à l’aide du framework
open-source N2D2 [17]. La description du modèle LeNet-5 que nous avons utilisé
est disponible dans le framework lui-même. Il est important de mentionner une
fois de plus que l’approche proposée est indépendante de l’outil adopté.

Les résultats sont présentés dans la Table 1. Ces résultats prouvent que
l’algorithme proposé peut être appliqué à LeNet-5 [15], et atteindre un CR
significatif de plus de 4× sous une AL négligeable.

Après la preuve de concept sur un petit CNN, il est possible d’évaluer l’ap-
proche proposée sur des CNNs plus complexes. C’est pourquoi l’évaluation de la
méthode proposée est également effectuée sur des CNNs plus grands, entrainés
sur le jeu de données ImageNet [18] avec 1000 classes. Trois CNNs de classi-
fication d’images ont été sélectionnés, ResNet18V2 [19], SqueezeNet [20], et
MobileNetV2 [13]. L’outil précédent, qui s’appuie sur N2D2 [17] pour la mesure
de l’AL des CNNs, a été adapté pour pouvoir traiter les modèles ONNX [21]
provenant du zoo de modèles ONNX, et MXNET [22] est utilisé pour l’execu-
tion des CNN sur un GPU, le même GPU est utilisé pour calculer l’algorithme
k-means, en utilisant la bibliothèque DeepKMCuda [23]. Pour chaque couche
du CNN, le nombre de valeurs partagées est incrémenté jusqu’à ce que l’AL soit
négligeable (inférieure à 104) pour la première couche du CNN, puis une plage
est sélectionnée dans [kminAL−20; kminAL+20]. Pour MobileNetV2, cette plage
est étendue à [kminAL−60; kminAL+60] car le CNN est plus sensible à l’approxi-
mation. Cela explique pourquoi les différents CNNs ont des krange différents.

Réseau de référence Krange Top-1 AL (%) CR

ResNet18v2 [40,80] 0,22% 5,28
SqueezeNetv1.1 [40,80] 0.53% 5.17
MobileNetv2 [2,120] 1.43% 4.85

Table 2 : Compression des CNNs formés sur le jeu de données ImageNet [18].

Le tableau 2 présente les résultats obtenus. Chacun des réseaux de référence
a été compressé avec succès jusqu’à 5×, par rapport à la référence sur 32 bits. En
ce qui concerne l’acceptabilité de l’AL, il apparâıt que les résultats obtenus pour
ResNet18V2 [24] et SqueezeNetv1.1 [20] sont conformes à l’objectif de qualité
MLPerf [7], alors que les résultats pour MobileNetV2 [13] ne le sont pas. De
plus, il est important de noter que le CR dépend principalement de la krange, et
est plutôt constant pour les différents CNNs. Même pour SqueezeNetv1.1 [20],
qui est déjà conçu pour avoir une empreinte mémoire très faible, nous obtenons
un CR de 5×. En d’autres termes, même si la méthode de référence CNN a
été conçue pour être efficace en termes d’empreinte mémoire, la méthode WS
proposée peut encore la réduire.

La méthode a été poussée plus loin avec l’utilisation d’une métrique proxy
permettant de réduire considérablement le nombre d’évaluations du CNN ap-
proximé sur le jeu de données de test. Ceci a pour but de grandement réduire le
temps d’évaluation de la précision et de permettre une optimisation à plusieurs
objectifs. Cette partie ne sera pas développée ici. Pour plus d’informations,
veuillez vous référer au chapitre 4.

Approche Heuristique

Comme il a été expliqué précédemment, il est possible d’aborder couche par
couche l’optimisation du nombre de valeurs partagées d’un CNN entrâıné en
utilisant une approche simple de type gloutonne. Cette approche montre cepen-
dant des limites lorsqu’il s’agit d’échapper aux minima locaux et de résoudre le
problème avec des métriques à l’échelle du modèle entier, comme le CR. C’est
pourquoi l’évaluation des AL et des CR de l’ensemble des CNNs approchés est
nécessaire pour éviter les minima locaux et avoir une meilleure représentation du
problème d’optimisation. Il est alors possible d’adopter une approche heuristique
pour résoudre le problème d’optimisation. Considérant qu’aucune des explora-
tions gloutonnes n’a pu trouver un candidat approximatif conforme à l’objectif
de qualité de MLPerf [7] sur le CNN déjà bien optimisé MobileNetV2 [13], ce
réseau sera le modèle de référence pour toute cette étude.

Quelques notations ont besoin d’être introduites avant de poursuivre. Pour
un CNN donné avec N couches, ki est le nombre de valeurs partagées de la
couche i. ki est borné à un ensemble de valeurs krange. Par conséquent, un CNN
approximé peut être caractérisé par son ktuple = {ki} ∈ [1, N] représentant

Layer-Wise
Optimization

Approx. Layer
Combination

Approx
CNN

Trained
CNN

Validation
data

krange

Φi

Figure 1 : Vue conceptuelle de l’approche en deux étapes proposée pour l’op-
timisation du WS.

le nombre de valeurs partagées pour chaque couche. À partir du ktuple, il est
possible de mesurer à la fois (1) l’AL, en évaluant le CNN approché sur un jeu
de données de test large et représentatif, et (2) le CR, en utilisant Equation 1

L’exploration exhaustive de toutes les permutations possibles de ktuple en-
trâıne la complexité temporelle suivante :

O(card(krange)N). (3)

Pour rendre le problème d’optimisation traitable, une stratégie de ≪ diviser
pour régner ≫ peut être adoptée, en divisant le problème de complexité exponen-
tielle d’optimisation du nombre de valeurs partagées pour chaque couche en deux
sous-problèmes : (1) réduire l’espace de recherche en trouvant ϕi, l’ensemble des
meilleurs ki pour chaque couche du CNN et (2) appliquer une approche heuris-
tique pour trouver un ensemble de ktuple efficaces au sens de Pareto en tant que
combinaison de ki ∈ ϕi,∀i ∈ N en considérant l’AL et le CR résultants. Une
vue conceptuelle de cette approche est donnée dans la Figure 1. Cette approche
s’apparente à une stratégie de ≪ diviser pour mieux régner ≫.

Le premier sous-problème vise l’optimisation locale de chaque couche. Le
but est de réduire l’espace de recherche en trouvant ϕi, l’ensemble des meilleures
valeurs ki, pour chaque couche du CNN. ϕi est caractérisé par (1) l’AL obtenu
lorsque la couche i est approximée avec ki valeurs partagées alors que les autres
couches ne sont pas approximées, et (2) le nombre de bits requis pour stocker
chaque index, défini comme bindex = ⌈log2(ki)⌉. Le bindex est utilisé comme
objectif d’optimisation locale, car il est indirectement proportionnel au CR de
la couche, voir Equation 1. L’algorithme explore un par un les kis dans le krange
défini par l’utilisateur, et pour chacun, il évalue à la fois l’AL et le bindex pour
ensuite composer ϕi en sélectionnant le candidat avec la meilleure AL par bindex.
Cette étape est très similaire à l’algorithme glouton, à la différence que lors de
l’étude d’une couche, les autres sont maintenues inchangées. La complexité de
cette recherche est linéaire au nombre de couches N et à la cardinalité du krange,
étant :

O(N ∗ card(krange)). (4)

L’utilisation du bindex comme proxy pour le CR a pour effet de limiter la cardi-
nalité du ϕi.

Le deuxième sous-problème consiste à trouver les combinaisons Pareto ef-
ficaces de CNNs approximés qui peuvent être décrites par leur ktuple = {ki ∈
ϕi}∀i ∈ [1 : N]. Le nombre de combinaisons possibles peut être écrit comme :

O(
N+1∏
i=1

|ϕi|). (5)

Ainsi, la taille de l’espace de recherche est exponentielle au nombre de
couches N , il n’est donc pas possible de l’explorer en utilisant une recherche
exhaustive pour les grands CNNs. MobileNetV2 [13] avec 53 couches, donne
ainsi une complexité temporelle d’environ O(n53). Pour résoudre ce problème,
on propose l’utilisation d’un algorithme méta-heuristique, pour trouver un en-
semble de ktuple Pareto efficaces par rapport à l’AL et CR. Parmi la grande
collection d’algorithmes méta-heuristiques, il est nécessaire de sélectionner un
algorithme multi-objectif (AL, et CR) basé sur la population pour obtenir un
ensemble de CNNs approximés efficaces au sens de Pareto. Il est proposé d’uti-
liser l’algorithme génétique NSGA-II [25] qui utilise un critère d’efficacité au
sens de Pareto pour sélectionner les meilleurs candidats d’une population et
appliquer à la fois des mutations aléatoires et des croisements aléatoires.

En plus de l’utilisation d’un algorithme génétique pour l’exploration de l’es-
pace de conception, il est aussi possible d’utiliser un modèle de régression linéaire
pour éviter l’évaluation de la précision de chaque modèle sur le jeu de données
de test. Une étude poussée sur des modèles récents tels que MobileNetV2 [13],
EfficientNet [26], ResNet [19] et GoogleNet [27] a été réalisée. Pour plus de
détails sur les méthodes et résultats obtenus, veuillez vous référer au chapitre 5
du manuscrit.

Comparaison avec l’état de l’art

Le même flot de compression est appliqué à plusieurs CNNs entrâınés sur le
jeu de données ImageNet[18]. Ils peuvent être classés en deux catégories : (1)
les CNN légers (MobileNetV2 [13] et les différents EfficientNets [26]) qui sont
optimisés pour fonctionner sur des systèmes aux ressources limitées, tandis que
(2) les CNN lourds (GoogleNet [27], ResNet50V2 [24] et InceptionV3 [28]) se
concentrent exclusivement sur la précision maximale. Conformément aux recom-
mandations de MLPerf [7], chaque catégorie a des objectifs de qualité différents
(c’est-à-dire 99% et 98% de précision FP32 pour les catégories lourde et légère,
respectivement). La méthode WS proposée est toujours capable de compresser
de manière significative la référence de base, en obtenant systématiquement un
CR supérieur de plus de 5× tout en maintenant l’objectif de qualité de l’AL. Il
est important de noter que la compression est réalisée sans nécessiter l’interven-
tion d’un expert pour le réglage manuel des kis et sans impliquer aucune étape
de ré-entrâınement, de réglage fin ou de calibration.

Ce chapitre se contente de présenter les différentes comparaisons réalisées et
les résultats obtenus. Pour plus de détails, se référer au chapitre 6.

La première comparaison avec l’état de l’art est faite avec l’utilisa-
tion d’un algorithme NSGA-II pour la résolution du problème d’optimisa-
tion dans son intégralité, sans avoir recours à la technique ≪ diviser pour
mieux régner ≫ présentée précédemment. L’approche ≪ diviser pour mieux
régner ≫ parvient à surpasser les résultats de l’approche NSGA-II, parti-
culièrement en fournissant plus de résultats dans la zone d’intérêt de l’espace
de conception.

Pour comparer la méthode proposée avec d’autres approches de WS, nous
avons sélectionné deux méthodes récentes qui impliquent le ré-entrainement
complet du CNN. Sur le CNN GoogleNet[27] avec la méthode de compression
de l’état de l’art WS Deep-K-means [3], nous sommes en mesure de surpasser
leurs résultats, car ils ne présentent pas de CR supérieur à 3× sous les contraintes
de l’objectif de qualité MLPERF[7]. La comparaison avec DP-NET [29] montre
néanmoins que cette technique plus récente et plus poussée est capable de sur-
passer la méthode développée dans cette thèse, au prix d’un ré-entrainement
complet qui demande l’accès aux données d’entrainement et qui a un certain
coût.

Nous comparons aussi les résultats obtenus avec plusieurs méthodes d’ap-
proximation qui ne sont pas basées sur le WS, mais qui sont appliqués après
l’entrainement du CNN. La comparaison avec la méthode d’élagage PTP [30]
et la méthode de quantification utilisée dans TFLITE [31] montre que notre
méthode est capable de trouver des solutions dominantes en termes d’AL et
CR. Tandis que la méthode PWLQ [32] est capable de fournir des solutions
plus précises avec un découpage de la distribution des valeurs et une approche
hétérogène qui traite chaque canal indépendamment, donnant une granularité
plus fine sur le réglage et de meilleurs résultats.

Conclusion

Cette thèse propose une nouvelle méthode d’optimisation du partage des poids
pour la compression CNN, qui peut explorer efficacement le vaste espace de
conception pour produire un ensemble de solutions qui offrent des compromis
très intéressants entre AL et CR. Ces solutions permettent d’obtenir une com-
pression de plus de 5× par rapport à l’empreinte mémoire initiale dans plusieurs
CNN de vision par ordinateur de pointe sur le difficile jeu de données Image-
Net sous des contraintes d’objectifs de qualité MLPerf [7]. Il est important de
noter que ces résultats de compression sont obtenus tout en évitant l’étape de
ré-entrainement prohibitive et coûteuse, qui est couramment utilisée dans les
travaux antérieurs.

En ce qui concerne la production scientifique de ce doctorat, les premiers
travaux utilisant l’exploration gloutonne sur LeNet/MNIST ont été publiés
dans [8], une généralisation à la classe ImageNet CNNs avec l’utilisation d’une
métrique proxy pour accélérer l’exploration a été publiée dans [9], une extension
ajoutant une exploration multi-objectif a été publiée dans [6], les résultats de la

nouvelle approche ≪ diviser pour régner ≫ sur MNIST ont été publiés dans [10],
et la généralisation à ImageNet (présentée dans ce résumé) est publiée dans [11].

Contents

1 Introduction 1
1.1 From AI algorithms to CNN . 2
1.2 Approximate Computing for Efficient CNN Inference 3
1.3 Challenges in Approximating CNNs 5
1.4 Thesis Statement . 6
1.5 Contributions . 6
1.6 Manuscript Outline . 7

2 Background 9
2.1 Neural Networks . 9
2.2 Convolutional Neural Network (CNN) Structure 12
2.3 Accelerating Deep Learning Workloads 15
2.4 Conclusions . 17

3 CNN Compression and Approximation Objectives 18
3.1 Taxonomy of Approximations Techniques 18

3.1.1 CNN Pruning . 20
3.1.2 Quantization . 22

3.2 Weight-Sharing in Detail . 25
3.2.1 Grouping Algorithm . 25
3.2.2 Shared units and acceleration 26
3.2.3 Sharing Granularity . 27
3.2.4 Clustering Application Process 27
3.2.5 Selecting the Optimal Number of Clusters for Weight

Sharing . 28
3.3 Conclusions . 28

4 Exploring the Use of a Greedy Optimization Process 29
4.1 Studying approximated CNN sensitivity to approximation 29
4.2 Approximation Objectives . 29

4.2.1 Layer sensitivity to approximation 31
4.2.2 Impact of the Weight-Sharing Granularity 33

4.3 Greedy Optimization Algorithm 35
4.3.1 Introducing greedy optimization 35

4.3.2 Proof of concept on LeNet-5 35
4.3.3 Application to larger CNNs trained on the ImageNet dataset 37

4.4 Investigating the Use of a Proxy Metric 38
4.4.1 Correlation between clustering inertia and accuracy loss . 38
4.4.2 Measuring the benefit of the proxy metrics utilization . . 40

4.5 Explore the Trade-Off Between Accuracy and Compression . . . 41
4.5.1 Multi-objective approach 41
4.5.2 Measuring the benefits of the multi-objective approach . . 43

4.6 Conclusions . 46

5 Exploring a Heuristic Approach to the Optimization problem 49
5.1 DSE complexity . 49
5.2 Layer-wise Optimization . 50
5.3 Approximated Layer Combination 53

5.3.1 Stating the combination problem 53
5.3.2 Statistical evaluation of the approximations 56

5.4 Applying the Proposed Method on Several SoTA CNNs 64
5.5 Regression of the approximated CNN without layer-optimization 65
5.6 Conclusions . 66

6 Comparison state of the art compression techniques 69
6.1 Comparison of the proposed flow with meta-heuristic optimization 69
6.2 Comparison with other WS techniques 74
6.3 Comparison with others non-WS-based CNN Compression Tech-

niques . 75
6.4 Conclusions . 77

7 Conclusions and Perspectives 79
7.1 Summary of the Technical Contributions 79
7.2 Scientific Dissemination . 81
7.3 Perspectives . 83

Appendix N
A.1 Algorithms . N

A.1.1 K-means clustering . N
A.1.2 NSGA-II meta-heuristic optimization N

A.2 Thesis Compute Resources . O
A.3 Fast CNN scoring . O

A.3.1 Dataflow optimization . O
A.3.2 Approximated scoring . Q

List of Figures

1 Vue conceptuelle de l’approche en deux étapes proposée pour
l’optimisation du WS. .

1.1 ImageNet[18] classification accuracy and number of weights of
recent CNNs. 4

2.1 Biological neuron structure, picture from Wikipedia. 10
2.2 Simple neural network. 11
2.3 Deep neural network. 12
2.4 Deep neural network training process. 13
2.5 Convolutional layer simplified with a single kernel. 14
2.6 The LeNet-5 [15] Architecture. 14

3.1 Taxonomy of most used approximation techniques for CNN com-
pression and acceleration. 19

3.2 Conceptual view of some of the different pruning structures. . . . 21
3.3 Conceptual view of the different regular quantization formats. . . 24
3.4 Basic example of weight sharing for compressing a matrix. 25
3.5 Distribution of the weights composing the first layer of a trained

ResNet50V2 [19] on the ImageNet[18] dataset, original (top),
with only 8 (middle) and 16 (bottom) shared values. 26

4.1 Achieved AL measured on the ImageNet [18] dataset, obtained
when varying the number of shared values, k0, for the first layer
of MobileNet V2 [19]. 32

4.2 Analyzing two different layer sensitivity to approximation with
the first and last layer of a MobileNetV2 [13] trained on the Ima-
geNet [18] dataset, obtained when varying the number of shared
values, ki. 33

4.3 Different granularities for weight sharing. Weights can be shared
at the level of the layer, the channel, or the kernel. 34

4.4 Top-1 AL and memory compression over varying numbers of clus-
ters at different sharing granularity [8]. 35

4.5 Profiling simulation time between the k-means clustering appli-
cation and the scoring of approximate candidates using the vali-
dation dataset for Algorithm 1. 39

4.6 Correlation between the inertia and the top-1 accuracy obtained
when varying the number of shared values for the first, and last
layers of MobileNetV2 [13]. 40

4.7 Profiling simulation time between the k-means clustering appli-
cation and the scoring of approximate candidates using the vali-
dation dataset for Algorithm 2. 43

4.8 Multi-objective explorations (Algorithm 3) for MobileNetV2 [13]
on the ImageNet [18] dataset with 3 different inertiaF ilterRatio.
Comparison with results obtained with the Algorithm 2. 45

4.9 Profiling simulation time between the k-means clustering appli-
cation and the scoring of approximate candidates using the vali-
dation dataset for Algorithm 3. 46

4.10 Profiling relative simulation time between the Algorithm 1, Al-
gorithm 2, and Algorithm 3 on MobileNetV2 [13] on the Ima-
geNet [18] dataset. 47

4.11 Resulting Pareto efficient ktuple after the execution of Algorithm 3
on MobileNetV2 [13] on the ImageNet [18] dataset. Each color
represent a different approximate CNN candidate obtained . . . 48

5.1 Conceptual view of the proposed weight-sharing optimization
two-steps approach. 50

5.2 Conceptual view of our weight-sharing optimization heuristic,
with layer-wise optimization detailed. 51

5.3 Studying the third layer of LeNet [15] sensitivity to compression
by varying the number of shared values and measuring the re-
sulting AL. 52

5.4 Results of the Layer-Wise exploration on the first layer of the Mo-
bileNetV2 [13], AL is obtained on a small subset of the validation
set (10%). 53

5.5 Exhaustive search of the 48 600 possible combinations of ki ∈ ϕi

for LeNet [15] on the MNIST [16] dataset. 54
5.6 An exhaustive search of the 48 600 possible combinations of

ki ∈ ϕi, and an NSGA-II [25] exploration for LeNet [15] on the
MNIST [16] dataset. 56

5.7 An NSGA-II [25] exploration for LeNet [15] on the MNIST [16]
dataset, with history displayed. AL is obtained by scoring on
10% of the dataset, explaining the noise compared to Figure 5.6 . 57

5.8 Results of the meta-heuristic exploration of the combinations for
MobileNetV2 [13], AL is obtained on a small subset of the vali-
dation set (10%). 58

5.9 Correlation between the sum, and the weighted average of the
inertia with AL for MobileNetV2 [13]. 58

5.10 Comparing the Pareto efficient approximated CNN obtained with
different DoE techniques for MobileNetV2 [13]. 60

5.11 Comparing the results of the meta-heuristic exploration of the
combinations for MobileNetV2 [13] with and without the regres-
sion model to predict the AL. 62

5.12 Comparing the results of the meta-heuristic exploration of the
combinations for MobileNetV2 [13] using regression with the re-
sults obtained from the search space sampling, samples are scored
on 10% of the ImageNet [18] validation dataset. 63

5.13 Conceptual view of our weight-sharing optimization heuristic,
with approximated layer combination detailed. 64

5.14 Comparison of different approximated CNNs characterized by
their top-1 accuracy and memory requirements on the Ima-
geNet [18] dataset. 66

5.15 Resulting Pareto efficient ktuple after the execution of the pro-
posed divide & conquer approach on MobileNetV2 [13] on the
ImageNet [18] dataset. 68

6.1 Results of the meta-heuristic exploration of the combinations for
MobileNetV2 [13], AL is obtained on a small subset of the vali-
dation set (10%). 73

6.2 Comparison of obtained approximated CNNs with the proposed
method and PTP [30], PWLQ [32], and TFLite. CNNs are char-
acterized by the absolute AL measured on the ImageNet [18] and
CR compared to the baseline full precision version. 77

A.1 Reduction of the scoring time caused by using dataflow op-
timization with population scoring (or batch scoring) for Mo-
bileNetV2 [13] on the ImageNet [18] dataset. P

A.2 Variation of the incertitude (root squared error) on the top-1 ac-
curacy obtained by scoring multiple approximated CNN on the
ImageNet [18] dataset using a portion of the samples in the vali-
dation set. Q

List of Tables

1 Compression de LeNet-5 [15] sur le jeu de données MNIST [16],
comparaison avec la référence N2D2 [17].

2 Compression des CNNs formés sur le jeu de données ImageNet [18].

2.1 Recent evolution of CNNs for image classification on the Ima-
geNet [18] dataset. 16

4.1 Compressing LeNet-5 [15] on the MNIST [16] dataset, comparison
is made with N2D2 [17] post-training quantization on both 16-
bits and 8-bits. 37

4.2 Compressing CNNs trained on the ImageNet [18] dataset using
the Algorithm 1. 38

4.3 Compressing CNNs on the ImageNet [18] dataset using Algorithm 2. 42

5.1 Selected ϕi during the layer-wise optimization for each layer of
the LeNet [15] CNN on the MNIST [16] dataset. 52

5.2 Measuring the R2 error obtained by training a multivariate re-
gression model to predict the accuracy of the network from the
inertia of the composing layers. Using multiple DoE techniques
using MobileNetV2 [13] on the ImageNet [18] dataset. Taking the
reduced search space, ϕi, obtained from layer-wise exploration as
the input search space to be sampled. 59

5.3 Measuring the R2 error obtained by training a multivariate linear
regression model to predict the accuracy of the network from
various metrics. Using MobileNetV2 [13] on the ImageNet [18]
dataset. 61

5.4 Compression results on different CNNs on the ImageNet [18]
dataset under MLPerf [7] quality target constraints. 65

5.5 Measuring the R2 error obtained by training a multivariate re-
gression model to predict the accuracy of the network from the
inertia of the composing layers. Using multiple DoE techniques
using MobileNetV2 [13] on the ImageNet [18] dataset. Taking the
reduced search space obtained from layer-wise exploration (See
\ref{}) as the input search space to be sampled. 67

6.1 Comparing the optimization computational cost for applying the
4 explored approaches on MobileNetV2 [13] trained on the Ima-
geNet [18] dataset. A scoring on 10% of the validation set is used
for all approaches. 71

6.2 Comparing our result with other weight sharing techniques on
GoogleNet [27] on the ImageNet [18] dataset using Algorithm 2. 75

7.1 Quantitative summary of the scientific dissemination. 83

Acronyms

ADMM Alternating Direction Method of Multipliers. 22, 24

AI Artificial Intelligence. 2, 9

AL Accuracy Loss. 5, 6, 21–23, 27, 30–35, 37–47, 49–62, 64–67, 72, 74–77, 79,
80

ASIC Application Specific Integrated Circuits. 17

AxC Approximate Computing. 1, 4

CNN Convolutional Neural Network. 1–9, 12–45, 47–57, 59–61, 64–66, 69, 70,
72, 74–76, 78–84, O, Q

CPU Central Processing Unit. 16

CR Compression Rate. 6, 24, 26–28, 30–34, 36–38, 40–44, 46, 47, 49–51, 53,
54, 59, 61, 64–67, 72, 74–77, 79, 80, 83, 84

DL Deep Learning. 9, 16, 17

DNN Deep Neural Network. 11–13

DoE Design of Experiments. 57, 59–61, 64, 65, 67, 70, 83

DSE Design Space Exploration. 6, 28, 31, 49, 70

DSP Digital Signal Processing. 30

FLOPs FLOating-Point operations. 5, 15, 16, 30

FPGA Field-Programmable Gate Array. 17, 30

GPU Graphical Processing Unit. 15, 16, O

LUT Look-Up Table. 27

MAC Multiply-ACcumulate operation. 30

ML Machine Learning. 1–3, 9

PTQ Post-Training Quantization. 22, 23

QAT Quantization-Aware Training. 22, 23

QoR Quality of Result. 2–4, 6, 7, 17, 30

RS Row-Stationary. 83

WCSS Within-Cluster Sum of Squares. 26

WS Weight Sharing. 4–8, 18, 24, 25, 27–29, 31–33, 35–38, 41, 44–46, 67, 69,
74–77, 79, 81–84

Chapter 1

Introduction

Nowadays, Machine Learning (ML) algorithms allow for addressing a large vari-
ety of problems without being specifically programmed to do so. By leveraging a
bio-inspired learning process, a well-designed and trained ML algorithm can usu-
ally achieve a better quality of prediction compared to conventional approaches.
This complex training relying on trial-and-error allows an ML algorithm to ap-
proximate an oracle analytical equation which is not always available. For exam-
ple in computer vision, it is practically impossible to find the analytical equation
allowing to distinguish a face from another in a specific image. On the other
hand, it is possible to train an ML model to do so, allowing to replace humans
in a lot of repetitive tasks such as mail sorting [33], quality monitoring [34]–[36],
or fraud detection [37], [38], and even as public speakers [39].

In the last decades, a lot of effort has been invested in improving ML al-
gorithms to allow for bringing intelligence to systems. Taking as an example
the computer vision task, ML algorithms outperform conventional approaches
since 2012, with AlexNet [40] winning the very challenging ImageNet [18] Large
Scale Visual Recognition Challenge (ILSVRC) [41] featuring a high-resolution
image classification problem. And since 2014 ML algorithms are known to also
outperform humans [41] in such tasks. Such quality of prediction is achieved
by Convolutional Neural Network (CNN), which is a subset of ML algorithms
relying on the matrix convolution operation to allow detection in images. CNN
achieved outstanding accuracy in computer vision tasks, more details on CNN
architecture can be found in Section 2.2. This accuracy comes at the cost of
large computation and memory requirements that will be detailed in the next
section.

In this chapter, we will present the need for Approximate Computing (AxC)
for improving the efficiency of CNN inference in Section 1.2. The related
challenges are then described in Section 1.3, with the presentation of the focus
of this thesis. Finally, all the scientific contributions of this work are listed in
Section 1.5 and an overview of this manuscript outline is given in Section 1.6.

1

1.1 From AI algorithms to CNN

During the last century, different biological processes have been mimicked by
Artificial Intelligence (AI) algorithms, from the genetic algorithms, inspired by
the complex process of genetic selection that drives the evolution of all the
species, to the simple ant colony, inspired by the way the ants find the shortest
path to the food. Among these numerous different AI algorithms families, some
received particular interests from both the academic and the industrial world in
the last decades. By self-improving through experiment, the same way humans
and most species do, the AI algorithms lying in the large Machine Learning
(ML) family are among them. ML algorithms have the advantage of being
able to achieve tasks without being specifically programmed to do so, by using
complex learning schemes to reprogram themselves to perform better next time
they are exposed to the same problem. ML algorithms are using an internal
set of rules called a model to mathematically approximate the behavior of the
desired oracle function. The training of ML models relies on the trial-and-error
process, by leveraging a reward mechanism to compute the required modification
of the model for Quality of Result (QoR) improvement. This training process
can be performed either with or without supervision. Supervised learning is the
process of training a model with labeled data, the same way a teacher trains a
student on problems with known answers, and eventually, the student will be
able to solve a new problem, this concept is called generalization. Unsupervised
learning, on the opposite, allows the model to work on its own on unlabelled data
using a reward function to evaluate the model, more difficult to operate but with
the advantage of not relying on labeled data that are costly, error-prone, and
often feature human bias. Still, supervised learning, behavioral predictability,
and ease of training iteration make it very competitive against unsupervised
learning.

An example of an ML application is spam filtering, deciding whether or
not an email is spam based on its provenance, recipients, object, and other
metadata. Learning set containing emails samples that have been labeled as
spam or not constitute the training data set. Each of the samples is fed into
the ML model, which in turn computes the predicted label, and depending
on the predicted label correctness, the reward function then tries to tune the
parameters composing the model to improve the probability that the model gives
the expected labels next time. Such a model can then be used on unseen data,
such as the one composing the test set, allowing to measure the capability of the
model to generalize his knowledge to new data. Further to email classification,
there is a plethora of use cases of varying difficulty where ML models are used,
ranging from security with fraud detection, business data analysis with churn
rate measurement to industry with quality monitoring, even transportation with
computer vision allowing for self-driving technologies. The model inputs can
be both raw data or high-level features (for instance statistical aggregates of
multiple input data samples) or other complex features that are task-dependent,
such as the presence of a horizontal line in an image. The ML model is charged
to interpret this data and construct useful responses.

2

ML models achieved outstanding performance in the computer vision field,
with one of the first milestones being the first use of an ML model to recognize
handwritten characters for mail application in 1998, with LeNet-5 [15]. This
model confirmed that matrix convolution allows recognizing digits anywhere in
an image, allowing for translation invariance in the input data. This model
belongs to the neural networks category, featuring a neuron-like structure with
layers of neurons units connected.

1.2 Approximate Computing for Efficient CNN
Inference

As it has been shown by a recent study [42], the training of state-of-the-art nat-
ural language processing deep neural networks leads to the same level of CO2

emission as five average American cars during their complete lifetime, including
manufacturing. Natural language processing models are usually orders of mag-
nitude larger than CNN used for computer vision, but this gives an example of
how much ML workload can have an impact on the environment. Considering
standard supervised learning application, the training of a CNN is usually a
one-time action, once it is performed, the model can be frozen and duplicated
into production environments where it is executed to infer prediction. In this
thesis, the focus is made on accelerating the inference of CNN, because this step
is performed a lot of times, and potentially in an embedded environment with
computation and energy constraints that can prohibit the use of CNN. As an
example of a limitation of the use of CNN in embedded devices, Yang & al. [43]
stated that “Smartphones nowadays cannot even run object classification with
AlexNet [40] in real-time for more than an hour.”. As it can be observed in
Figure 1.1 reporting the top-1 classification accuracy, defined as the number of
correct predictions measured on a labeled validation dataset, and the number
of weights composing the model, the high accuracy comes at the cost of higher
computation and memory requirements, for both heavy CNN optimized for ac-
curacy and lights CNN optimized for efficiency (more details on the light and
heavy class can be found in Section 4.2).

Since 2012, CNNs are improving at a very fast rate, with a focus on the
quality of prediction or Quality of Result (QoR), characterized by the accuracy
of the CNN measured on a test dataset. But these outstanding achievements
come at the cost of a computational complexity overhead, as an ML algorithm
remains a generic tool approximating an oracle analytical function. This com-
putational complexity can make certain ML algorithms very costly or even out
of reach for power-constrained embedded devices. This is particularly true for
CNNs such as AlexNet [40], it has been proven in [43] that it is not possible to
execute such CNN for object classification on a recent smartphone in real-time
for more than an hour. This is limiting the usage of the CNNs in edge embedded
devices, that are often in direct contact with the environment and would benefit
from this kind of tool. For example, any autonomous vehicle whether it is a

3

0 50 100 150 200 250 300
Weights count (million)

70.0%

72.5%

75.0%

77.5%

80.0%

82.5%

85.0%

87.5%

To
p-

1
Ac

cu
ra

cy
 [%

]

VOLO-D5(2021)

Inception(2014)

InceptionV3(2018)

EfficientNet(2019)

MobileNetV2(2018
Heavy CNNs
Light CNNs

Figure 1.1: ImageNet[18] classification accuracy and number of weights of recent
CNNs.

UAV, a car, or a boat, would take a lot of benefits from being able to under-
stand its surroundings. Allowing for application such as low-cost autonomous
bridges inspection with UAV or anything alike. Furthermore, the paradigm of
sending sensed data to a cloud executing the CNN inference for computation
has shown its limits when it comes to privacy and latency, adding even more
interest in being able to execute the inference of CNN in edge devices. There
is a recognized need to improve other metrics rather than only the accuracy of
the CNNs, and since 2016 with the publication of MobileNet [44], a resource-
efficient CNN intended to be executed in mobile devices, there is a trend for
reducing the computational cost and memory footprint of CNNs inference.

Among the paradigms explored for improving the efficiency of CNNs, ap-
proximate computing alongside dedicated accelerators design is among the more
promising. The approximate computing principle relaxes the need for fully-
precise computation to allow for trade-offs between QoR and efficiency. This
thesis explores the usage of the Approximate Computing (AxC) paradigm for
CNN. With a particular focus on a specific technique, called Weight Sharing
(WS), aiming at compressing the size of the CNN for enabling memory footprint
reduction. The next section details the thesis focus and the related challenges.

4

1.3 Challenges in Approximating CNNs

Approximating CNN poses several challenges, this section is intended to define
the scope of the research conducted in this thesis.

Measuring the computation requirements of a CNN is done with metrics
like the memory footprint required to store the CNN weights values and the
number of FLOating-Point operations (FLOPs) operations required to compute
the inference of a single image. However, most of the energy cost during CNN
inference comes from memory access as analyzed in [1]. It is thus important
to reduce the memory footprint to improve energy efficiency. That is why the
focus of this thesis is on compressing CNN weights.

When it comes down to compression, storing a sparse matrix has the disad-
vantage of requiring to store an extra index for the existing values, having the
disadvantage of requiring large overhead compared to data size. On the oppo-
site, quantization allows for buffering of the weights with a very small overhead
and a very simple decoding step. Regarding the different quantization tech-
niques, the Weight-Sharing WS family focus on quantizing the values of the
weights on a finite number of shared values. Compared to other quantization
techniques that usually quantize on levels that are computed from representa-
tion, WS has the advantage of quantizing on values that are computed from
the baseline weights values, allowing for more freedom in looking for optimal
quantization levels. Due to this flexibility WS is a good candidate for reaching
high compression for a given trained CNN.

Although most if not all techniques of WS that can be found in the litera-
ture [2]–[5], [29], [45], [46] require the retraining of the network to recover the
Accuracy Loss (AL) during the approximation process. Such post-processing
has three main disadvantages:

• Computation intensity, as stated earlier, the retraining is a complex task,
involving a lot of computation, raising the design costs, and limiting the
exploration possibilities;

• Requires access to a large dataset, the growing concerns on privacy and
security will certainly restrain the access to training datasets in important
application domains;

• Require training method tuning, as the standard training method does not
take into account any approximation, there is a need to tune the training
method and the approximation operation must be differentiable for back-
propagation. It also requires adapting the training framework, which can
be costly and require expert programming skills.

On the other hand, there is a track record of post-training quantization [32],
[47] that does not require any retraining, proving that a correct approximation
can be made without retraining. The work conducted during this thesis focus
on optimizing the compression of CNN without involving retraining.

The approach for selecting the number of shared values for existing methods
is to manually tune the number of shared values [3], [5] to achieve the desired

5

Compression Rate (CR). The main problem with manual tuning is that it is
costly and requires expert knowledge. Other methods [2], [29], [45] use a fixed
number of shared values. However, the most widely adopted solution is to
homogeneously vary the number of shared values (use the same number for
each layer) to explore the trade-off between compression and precision [4], [48]–
[50]. However, this approach is sub-optimal, as the weight sharing factor is not
adapted to the differences in tolerance-to-approximation of each layer. There is a
lack for automatic optimal selection of the number of shared values for achieving
the best trade-off between the AL and the CR for a given baseline CNN. This is
mainly due to the increasing complexity of modern CNN topologies, resulting in
exponential search space size. The Design Space Exploration (DSE) required to
find optimal WS approximations is thus prohibitively costly. In this thesis, there
is a focus on using efficient DSE techniques to explore the trade-offs between
the QoR and efficiency for a given CNN execution.

During this thesis, it is considered that the approximation is achieved to
improve the efficiency of the inference for a given trained CNN on computer
vision applications. The target hardware is a dedicated accelerator that could
exploit the advantages of WS like the EIE [51], with a data path optimized for
retrieving the shared values efficiently. However, any other hardware could ben-
efit from an improvement in compression, and thus in memory throughput, at
the cost of a small shared value read overhead (i.e., one extra level of indirection
for weight look-up) that could potentially add some latency to the execution.

1.4 Thesis Statement

The goal of this thesis is to optimize the number of shared values during the
application of WS without any retraining step. This would allow for significant
compression of a baseline CNN with accuracy loss complying with MLPerf [7]
constraints. Multiple heuristics are explored and compared with a focus on
keeping the exploration time reasonable. The thesis statement is the following:

The trade-off between QoR and efficiency for compression of
trained CNNs can be explored by optimizing the number of shared
values of the WS and result in significant compression without any
retraining.

1.5 Contributions

The main contribution of this thesis is the proposal of different exploration
methods allowing to optimize the number of shared values to compress a base-
line trained CNN. The resulting approximated CNNs are complying with the
MLPerf [7] quality targets and are obtained without any retraining step. The
following list gives more details on contributions:

• A detailed investigation of different WS granularities impact on the trade-
off between efficiency and QoR is conducted with the analysis of three

6

potential candidates. Sharing the values of the weights for a whole layer,
for a convolutional filter (channel), or a 2D kernel. We have identified the
layer as the optimal sharing granularity offering the best trade-offs.

• Analysing the sensitivity to the approximation of different layers of a CNN
shows that there are very different resilience profiles. Meaning that there
is a need to tune the approximation accordingly. We introduce the use of
a very simple greedy heuristic to optimize the number of shared values for
each unit. With the investigation of different proxy metrics to accelerate
the greedy exploration. The acceleration allows for multi-objective opti-
mization with a trick to keep the number of experiments in a reasonable
amount. Altogether, a compression of more than 4× compared to the
baseline is achieved with QoR complying with the MLPerf [7] quality con-
straints for two recent CNN on the ImageNet [18] dataset. Proving that
it is possible to efficiently compress CNN without requiring any retrain-
ing when an appropriate level of approximation is found for each layer.
These results are the object of the following incremental publications in
peer-reviewed conferences [8], [9] and a peer-reviewed journal [6].

• Further improving the number of shared values of each layer requires to
move from the local optimization of the greedy algorithm to a more global
heuristic that targets metrics of the whole approximated CNN instead
of the local users in greedy. We thus propose a method to reduce the
search space complexity, enabling an efficient exploration using a meta-
heuristic approach. The use of regression to accelerate the meta-heuristic
algorithm, with multiple designs of experiments technique to allow for the
optimal regression model training is also investigated. Altogether, the
proposed divide & conquer technique allows for more than 5× compres-
sion on state-of-the-art CNNs with complying with the MLPerf [7] quality
target. An extensive investigation of the application to several CNN is
also conducted. These results are the object of the following incremental
publication in peer-reviewed conferences [10], [11], the proposed CNN com-
pression framework has also been made publicly available on Github [52].

• A comprehensive comparison of the achieved results with the state-of-the-
art WS techniques is also conducted. As well as a comparison with others
pruning and quantization methods.

1.6 Manuscript Outline

The current manuscript is structured as follows: Chapters 2, and 3 give back-
ground and details about approximation in CNN and state-of-the-art compres-
sion methods. Chapter 4-6 present the scientific thesis contributions, and Chap-
ter 7concludes this manuscript and gives new perspectives. In Chapter 2 re-
quired background information is provided for understanding the rest of the
manuscript, with details on CNN, metrics, workloads, and optimization tools.

7

Chapter3 presents the state-of-the-art of approximation techniques for CNN
compression, with a taxonomy of the different approaches, and more details on
the WS challenges. Chapter 4 presents the first work conducted with a study
of the WS application granularity, as well as the use of a greedy heuristic and
the use of proxy metrics to allow for multi-objective exploration in a reasonable
time. Chapter 5 presents a divide & conquer heuristic approach to the optimiza-
tion problem, allowing a combination combine of the power of meta-heuristic
optimization algorithm with expert knowledge on WS compression. Chapter 6
gives a comprehensive comparison of the proposed methods with state-of-the-art
compression techniques featuring different approaches. The conclusion of this
manuscript with perspective on possible further research paths is presented in
Chapter 7.

8

Chapter 2

Background

This chapter presents the background required for understanding the thesis
work, it is structured as follows. The first Section 2.1 provides some back-
ground knowledge on neural networks, completing the introduction given in
Chapter 1 and presents general ML training processes as well as the need for
convolutional layers for computer vision. The second Section 2.2 presents some
history of CNNs usage and introduces the different types of layers composing
a CNN. Section 2.3 gives details on the DL workload and introduces the need
for acceleration, as well as the different types of hardware accelerators and the
techniques for model approximation.

2.1 Neural Networks

From the large field of AI, one particular set of techniques is very popular
nowadays, neural networks, and particularly deep neural networks. This set
of techniques belongs to the ML family of AI, focusing on giving a computer
the ability to learn without being specifically programmed. As stated in [53]
“A computer can be programmed so that it will learn to play a better game
of checkers than can be played by the person who wrote the program.”. This
section is intended to give some background on neural networks structure and
training process to allow for a better understanding of the remaining thesis.

Neural networks try to mimic the way a network of biological neurons, like
the human brain, works. Each neuron is connected to the others, receiving
input stimulation from previous neurons through dendrites and giving output
stimulation to following neurons through axons, as depicted in Figure 2.1. Each
of the connections of a biological neuron has a different strength, or weight,
allowing the neuron to apply a function to the inputs to compute the outputs.
The chemical connections between axons and dendrites required a certain level
of stimulation to be triggered resulting in a non-linear response to stimuli. In
artificial neural networks, this function is approximated as follows: the output
stimulation is equal to the sum of each input of the neuron multiplied by a

9

Figure 2.1: Biological neuron structure, picture from Wikipedia.

specific weight with an additional bias allowing to represent affine functions.
The equivalent transfer function is the following

F (X,W, b) = f(

n∑
i=1

xiwi + b) (2.1)

, with X the vector composed of the input stimulation, W the vector of the
corresponding weights, b the vector of corresponding bias, and f a non-linear ac-
tivation function used to mimic the triggering behavior of the biological neuron,
some example of activation functions will be given in the following Section 2.2.

Neural networks are composed of one or more of the previously described
artificial neurons, which will be called neurons for convenience. The same way
a brain is composed of interconnected biological neurons, a neural network is
composed of connected neurons. A simple neural network is shown in Figure 2.2,
it is composed of an input layer, directly connected to the input features or data
with the number of neurons corresponding to the input data size, and an output
layer, connected to the prediction target, whether it is a regression (numerical),
classification (categorical) or other kinds of problem. Between these two layers
lies a hidden layer, with an arbitrary number of neurons. Each neuron of a
layer is connected to each neuron of the previous layer, with a varying weight
value, representing the strength of the connection, represented as the width of
the arrow in the Figure 2.2.

Such a simple neural network structure is called a classifier, it is usually
not directly connected to raw data sources, but to a previous stage called the
feature extraction. The feature extraction is charged with processing the raw
data to allow the highlight of high-level features, used by the classifier to make
predictions. An example of a basic feature extraction process would be to extract

10

Fe
at

ur
e

Ta
rg

et

Input layer Hidden layer Output layer

Figure 2.2: Simple neural network.

the mean of the raw values from an IMU on a given time window. This kind
of feature extraction is designed by the scientist creating the system, according
to his own experience of the most important features that can be extracted
and used to process the raw data efficiently. This feature extraction allows the
classifier to have access to refined information and perform well with a simple
structure, but it also implies that there is a large bias from the scientist, some
of the features might not be necessary for the model to perform well, and worst,
some required features might not be present.

To this extent, it is also possible to do little to no preprocessing and feed
the neural network with raw data, this task is more complex and will require a
more complex classifier, instead of scaling vertically the number of neurons of the
hidden layer, it is possible to scale the network horizontally, by adding multiple
hidden layers between the input and the output layers. This type of extended
neural network with more than one hidden layer is called a Deep Neural Network
(DNN). Figure 2.3 depicts the structure of a DNN with multiple hidden layers,
and the input directly connected to raw data instead of features, connection
width is constant to ease the reading.

Training a DNN is done by using an iterative weights and bias update pro-
cess, aiming at reducing the error between the actual behavior of the DNN
and the desired behavior. The difference between supervised and unsupervised
learning is the way the behavior of the model is evaluated, in supervised learn-
ing, labels from the dataset are used, whereas in unsupervised learning a reward
function based on a real or a simulated acquisition environment is used, for the
sake of simplicity, only supervised learning will be considered in this section.
Compared to the inference process using the model to predict target from in-
put data described until now, called the forward pass, the training involves an
iterative computation of the loss from the predicted targets and the label of
a given training sample. This loss can be computed using a different mathe-

11

R
aw

 d
at

a

Ta
rg

et

Input layer Hidden layers Output layer

Figure 2.3: Deep neural network.

matical functions, but the principle is always to measure the difference between
the current behavior and the desired one. This loss is then propagated through
the network in the backward direction, from the output to the input, using the
partial derivative of the graph operation. Then the final step of updating the
values of the weights is performed, for each weight, the partial loss is considered
as well as an update strategy called the optimizer.Figure 2.4 shows a conceptual
view of the process. This process of computing the forward pass, the loss with
the label, the backward propagation of the error, and the update of the values
of the weights is performed multiple times using samples from the dataset. In
order to accelerate the training, samples are often batched to allow for using
faster matrix multiplication and reduce the number of required iterations. It
is important to note that due to the computation of the loss, the backpropa-
gation of the error, and the weight update, training a model is a much more
computation-intensive task than using the model to predict a label for a speci-
fied input data, the latter is called inference. More details on DNN training can
be found in the excellent survey [1].

2.2 Convolutional Neural Network (CNN)
Structure

Considering the computer vision field, focusing on image recognition, the input
data is structured as channels of 2D matrices, in the case of RGB images, the
data has 3 layers. feeding a conventional DNN with this data means that there is
a need for 3× the number of neurons in the input layer than the size of one of the
2D matrices. Allowing each layer of each pixel to be mapped to an input neuron.
Training a DNN to recognize very simple data like handwritten digits perfectly
centered in small images such as the samples composing the MNIST [16] dataset

12

R
aw

 d
at

a

Ta
rg

et

Dataset

Batch of
samples

Data

Label

Forward pass

Loss
Function

Backward pass

Backward PropagationWeight update

Figure 2.4: Deep neural network training process.

is possible. But when it comes to more complex images such as real-life pictures
taken from a camera embedded in a vehicle, the chances are great that the
subject will not be centered in the picture, requiring to process the whole high-
definition image to find it. This is not possible with conventional DNN. Instead,
CNNs propose to rely on the matrix convolution operation to allow the detection
to be translation invariant. The data representation before and after the layer
is called a feature map or activation. A convolutional layer, composing a CNN,
performs the matrix convolution operation of the input feature map with kernels.
Kernels are the matrices of weights composing the neurons of the convolutional
layer, they have the same number of channels as the number of channels of
the input feature map, and the output feature map has the same number of
channels as the number of kernels in the layer. Figure 2.5 show a simplified
convolutional layer, with a single layer, applying the matrix convolution to an
input feature map composed of 3 channels depicting the Red, Green, and Blue
(RGB) of the input image.

A CNN is thus composed of multiple layers containing kernels with trained
weights. The weights values are real number, usually represented using stan-
dard 32-bit floating-point as the training process often require high precision
for allowing low-magnitude changes, but we will see that there are other more
efficient representations. It is also very common for CNN to feature other types
of layers, like:

• fully-connected layers, which are basic neural network layers with non-
convolutional neurons, are usually used to map the final convolutional
layers to the output classes;

• pooling layers, using a kernel sliding on input channels almost the same
way does the convolution, but computing an aggregation like mean or max
instead of a matrix product, used to reduce the size of the data but keep

13

Input feature map

Kernel

+

Output feature map

Figure 2.5: Convolutional layer simplified with a single kernel.

Figure 2.6: The LeNet-5 [15] Architecture.

the information;

• batch-normalization layers, normalizing input channels by using trained
coefficients;

• non-linear activation functions are used to allow the model to learn for
non-linear behavior.

Observing the architecture of LeNet-5 [15] in Figure 2.6, one can see that the
input is a 32x32 black and white (single channel) image, then comes a con-
volutional layer, followed by a subsampling (pooling) layer. This structure is
repeated 2 times and is followed by 3 fully-connected layers, the last one giving
the classification output with 10 classes. It is important to note that despite they
are not marked in the historical figure, each convolutional and fully-connected
layer includes a non-linear activation function, the hyperbolic tangent.

It is only in the early 2010s that CNN proved its outstanding performance
to the industrial world. With AlexNet [40] being the first CNN to outperform
manually-designed models on the task of classifying high-resolution images from

14

the ImageNet [18] dataset during the ILSVRC [41] contest in 2012. This take-off
is known to have been allowed by three major factors:

• The availability of large (million samples) labeled dataset for training
complex model;

• The advances in computation power of units such as Graphical Process-
ing Unit (GPU) able to accelerate matrix computation and allowed the
training to be executed in reasonable times (within weeks, not years);

• The improvement of the training technique, such as the use of overlapping
pooling which allows for keeping more details during the inference rectified
linear unit activation that is faster to calculate than the ones previously
used, and finally, dropout [54] that allows for avoiding over-fitting the
training dataset.

More recently, the training of CNN has been facilitated by the availability of
open-source software frameworks like Tensorflow [55] or Pytorch [56], which
allow for quick prototyping and design.

2.3 Accelerating Deep Learning Workloads

The original computational cost of training AlexNet [40] for the required 90
epochs (i.e., the number of times the full training dataset is presented to the
network during the training) is so high that it has required the use of two
NVIDIA Geforce GTX 580 GPUs during 6 days. Considering standard super-
vised learning application, the training of a CNN is usually a one-time action,
once it is performed, the model can be frozen and duplicated into production
environments where it is executed to infer prediction. In this thesis, the focus is
made on reducing the memory footprint of the inference of CNNs, because this
step is performed a lot of times, and potentially in an embedded environment
with computation and energy constraints that can prohibit the use of CNN. As
an example of a limitation of the use of CNN in embedded devices, Yang & al.
[43] stated that “Smartphones nowadays cannot even run object classification
with AlexNet [40] in real-time for more than an hour.”.

To gauge the complexity of current CNNs, there is a need for a set of met-
rics that allow for a fair comparison between models. In this study, the metrics
used are (1) the model accuracy over a validation dataset, (2) the total num-
ber of weights in the model, and (3) the number of FLOating-Point operations
(FLOPs) necessary to carry out one complete inference. The accuracy is mea-
sured in terms of the frequently used top-1 and top-5 percentages (the proportion
of correct predictions on the labeled validation dataset and the probability that
the correct result is among the top five predictions). The number of weights
allows estimating the total memory storage requirements for the model, whereas
the FLOP count hints at the required computing power needed to execute the
model at a certain frequency.

15

MLPerf
category

Model Name Year
Top-1 / Top-5
Accuracy [%]

Weights
Count

FLOPs

Heavy AlexNet [40] 2012 57.2 / 84.7 62M 1.5B
Heavy GoogleNet [27] 2014 69.8 / 93.3 6.4M 2.0B
Heavy ResNet50V2 [24] 2016 76.2 / 93.0 26M 4.1B

Light MobileNetV2 [13] 2018 72.0 / 90.6 3.5M 0.3B
Light EfficientNetB1 [26] 2019 79.1 / 94.4 7.8M 0.7B

Table 2.1: Recent evolution of CNNs for image classification on the Ima-
geNet [18] dataset.

The Table 2.1 shows a comparison using these metrics on some popular
DNNs for image classification on the ImageNet [18] dataset (adapted from the
PapersWithCode [57] web resource). For a long time, the only metric of interest
was the network accuracy, resulting in models that were costly to train and
operate like AlexNet [40], GoogleNet [27], and ResNet50V2 [24], requiring up
to 4 billion FLOPs for the inference of a single image.

The cost of training and inference became so large at one point that there is
now an open engineering contest called MLPerf [7] that benchmarks DL work-
load and fosters innovation in the field. Thus, there is an increasing interest for
faster, lighter, and overall more efficient models that are compatible with edge
device resource constraints and operate more efficiently in the cloud. The last
two columns in the Table 2.1 reflect this, with newer network models achieving
competitive accuracy with less memory and a smaller FLOPs count, like Mo-
bileNetV2 [13], and EfficientNet [26]. The MLPerf [7] contest has selected two
CNNs as representative of the “Heavyweight” workload featuring high accuracy
at the cost of computation intensive and the “Lightweight” workload, with a
faster model featuring lower accuracy. Depending on the intended use of CNN
models, they can be found in different environments with various computing
power and energy consumption characteristics. At one end of the spectrum lies
edge devices, characterized by low-power and limited computational capabilities,
while at the other end lies power-hungry cloud devices with a high-performance
computing profile.

As stated earlier, one of the factors that allowed the take-off of CNN usage in
a real-world complex application, was the advances in computing power, particu-
larly in GPUs to accelerate the training. This move from latency-optimized com-
puting platforms like Central Processing Unit (CPU) to throughput-optimized
computing platforms like GPU is due to the highly parallel nature of the com-
putation in DL workload. According to [58], convolutional layer operation
accounts for more than 90% of the inference runtime of AlexNet [40], that is
why CNN could largely benefit from computing parallelism for the matrix prod-
uct. This very simple observation has paved the way for the creation of more
exotic hardware, dedicated accelerators based either on reconfigurable hardware

16

such as Field-Programmable Gate Array (FPGA) or directly on dedicated sili-
con such as the Google TPU[59] belonging in the Application Specific Integrated
Circuits (ASIC) family.

Dedicated accelerators can be implemented either as plain or as a tensor
processing unit. The plain implementation relies on unrolling for maximizing the
combinatorial capabilities and needs each neuron of each layer to be physically
implemented, allowing for running each in parallel with very low latency, at
the cost of large resource usage as well as very limited flexibility in hardware
design reuse for a different model, examples are [60]–[64] for FPGA, there is
little to no advantage of using ASIC in this case because of the high design and
manufacturing cost does not work with the absence of flexibility. Compute unit
implementations are usually composed of memory and processing-element tiles,
allowing for parallel execution of the matrix computation as well as maximizing
the reuse of elements to optimize the dataflow, examples are [51], [65]–[67] for
FPGA and [59], [68] for ASIC. Some accelerator designs like EyerissV2 [67]
are even optimized for sparse CNN, which is obtained by pruning the least
important part of CNN to enable compression and acceleration.

Such techniques lie in the approximate computing paradigm, which has
emerged from the idea that by relaxing the need for full precision results, there
are opportunities for improvement. That means that it could be interesting to
trade some QoR for gains in terms of efficiency. In the case of sparsity, pruning
the least important weights allows for benefiting in compression and even for
acceleration in the specific case of removing structures like neurons, because it
allows for skipping computation, this technique is called pruning. Pruning is
not the only approximation technique for accelerating DL workloads, since CNN
has been identified as resilient to approximation, a plethora of approximation
techniques have emerged in the scientific literature. More details on different
approaches are provided in the literature review found in Chapter 3.

There have been numerous different approaches to approximating CNNs, an
overview of these techniques is given in Chapter 3.

2.4 Conclusions

This chapter has presented the most important parts of the required background
for understanding the work conducted for this thesis. From neural networks
composition and training process, followed by CNNs structure and composing
layers to the need for acceleration in deep learning workloads.

17

Chapter 3

CNN Compression and
Approximation Objectives

This chapter is dedicated to presenting a global view on the different approxi-
mation techniques for CNN compression with a focus on the state-of-the-art WS
techniques. An overview of the different approximation techniques used for pro-
viding gains in performance and energy during the CNN inference is presented
at the coarse grain in Section 3.1, with a detailed taxonomy. In Section 3.2, the
WS techniques literature is studied with an emphasis on the difference between
existing techniques and this thesis.

3.1 Taxonomy of Approximations Techniques

The taxonomy of the different approximation techniques to provide gains in per-
formance and energy during the inference can be represented by three different
families:

• The first family, structure refinement, aim at modifying the CNN com-
putational structure of the CNN;

• The second family, data refinement, modify weights and activations
values and representation, keeping most of the computational structure of
the CNN intact;

• The last family, operator refinement, modifies the computations oper-
ator behavior to use approximation.

Refining the structure of a CNN can be done using different techniques, like
architecture search, that can be performed either with automatic tools like neu-
ral architecture search [69]–[72], focusing on using optimization techniques to
refine architecture, or with manual compact architecture search [13], [20], [44],
[73] looking for computation or resource-efficient layer structure, and knowl-
edge distillation [74], [75] using a large layer to help the training of smaller

18

Approximation

Techniques for CNN

Operator
refinement

Structure
Refinement

Architecture
Search

Knowledge
Distil-
lation

Pruning

Data
Refinement

Quantization

Pruning

Figure 3.1: Taxonomy of most used approximation techniques for CNN com-
pression and acceleration.

ones. Another example of structure refinement is a growing portion of the prun-
ing techniques, aiming at removing the least important connection of a CNN.
Whereas sparse pruning focuses on removing discrete weights and belongs to
the data-refinement family that is presented later, structured pruning focus on
removing structures such as kernels [76], [77], targeting the optimization of the
computational structure, and thus, belonging to the structure refinement family.

The second family is focusing on the approximation of the data values and
type with data refinement techniques. Notable examples are pruning [78],
[79] aiming at removing the least important weights of the CNN, quantization
[80], [81] changing the representation of the weights, and/or activations to more
efficient ones. The large availability of pre-trained CNNs that can directly be
transferred to another application with minor changes motivates the need for
data refinement because it does not incurs large changes like the need to modify
the computational structure or the hardware. For these reasons this thesis
focus on data-refinement techniques and the remaining of this section gives
more details on the application of such data refinement techniques.

Another approach for approximation is targeting the computational opera-

19

tors using operator refinement techniques. Most of the energy and the delay
that is experienced during the inference of CNNs is usually coming from data
movement from/to main memory (DRAM) [1]. In traditional Von-Neuman-
based inference platforms, there is little room for improvement in using ap-
proximate operators to decrease the computation intensity. But still, with the
recent advances in FPGA-based accelerator, which could easily benefit from ap-
proximation operators [82], [83], the computation begins to be an interesting
opportunity for the future. Due to its highest energy cost and utilization in
CNNs inference, multiplication is the de-facto target for approximation, this is
why most methods focus on using approximate multipliers [82]–[87].

3.1.1 CNN Pruning

CNNs tend to be more complex as their top-1 accuracy improves and this com-
plexity usually carries with it the fact that the CNN is over-parameterized. On
the other hand, it has been argued for a long time [88] that structure is more
important than density in CNNs, with sparse CNNs having the ability to gen-
eralize up to as well as their dense counterparts. Removing CNN weights has
the direct effect of reducing the size of the CNN, but it can also be used for
speeding up the inference process by reducing the number of computations. De-
pending on the objective, different parts of the CNN can be more interesting
to prune than others. For instance, fully connected layers usually concentrate
most of the CNN weights in a CNN and should be targeted for high compres-
sion. Convolutional layers, however, contain fewer weights but account for most
of the computations. Since they generate the majority of data movement in the
CNN, they should be targeted when CNN performance and energy efficiency
are important. Pruning methods can be classified by (1) the granularity of the
pruning, (2) the application process, (3) the homogeneity of the application, and
finally, (4) the saliency determination approach. All these criteria are discussed
in the following paragraphs.

Depending on the pruning objective (compression or performance), one can
choose to focus on weight removal at various sparsity levels. The lowest pruning
level is at the weight level or sparse [2], [88]. Although this generally results in
the lowest accuracy loss, it does not systematically offer latency or energy im-
provements because sparse tensor computations are quite difficult to accelerate.
Its main purpose is therefore to compress the CNN in memory. To acceler-
ate computations, a regular sparsity pattern is usually required. This is called
structured pruning and aims at removing spatially close groups of weights so
that CNN inference can be simplified. it can target different regular structures,
like groups of weights [89], hardware-oriented structures [90], 2D convolution
kernels [91], simplifying the computational graph. The filters producing these
channels in the previous layer can also be removed [92], [93]. Figure 3.2 give
a conceptual view of some of the most popular pruning sparsity levels or struc-
tures. Similar to pruning weights, activations can also be pruned dynamically
during the inference. This process is called dynamic sparsity and is used in
many accelerators to avoid zero or near zero computations [94], [95].

20

Existing Value
Pruned Value

Sparse 1D Vector 2D Kernel 3D Channel

Figure 3.2: Conceptual view of some of the different pruning structures.

Most of the pruning techniques require fine-tuning of the approximated
CNN for recovering the AL. Another possibility for the training is to encourage
weights to group around zero using regularization. The closer weights are to
zero, the less accuracy loss will be induced by removing them [96], [97]. Different
regularization terms include LASSO [98], ℓ1 regularization [99], ℓ2 regulariza-
tion [100]. In [101], feature map channels are gradually zeroed during training
using a dynamic regularization factor, allowing safe removal of corresponding
filters without a significant drop in accuracy. Another recent approach to op-
timize pruning is through architecture search. Recently, the idea that a classic
network contains sub-networks that, trained from scratch, can perform as well
as the original network but with fewer parameters and computation, was intro-
duced in [102] and further explored in [103]. The issue is that none of these early
studies provided a method for finding an efficient smaller architecture without
doing full model training beforehand. In [104] it was thus proposed to use a bee
colony exploration algorithm to find an appropriate CNN pruning scheme. It is
also possible to reduce the fine-tuning cost by using an external network trained
to predict weights of a certain network structure, facilitating a fast exploration
of various possible architectures [105]. Finally, some outliers propose to apply
the pruning without any fine-tuning, like [30].

It has been shown that some parts of CNN are more resilient to approxi-
mation than others. As such, pruning each layer at the same rate is not very
efficient for accuracy. But at the same time, choosing the optimal sparsity level
for the whole CNN is not an easy task. For example, [106] proposes to heuris-
tically optimize the pruning ratio of each layer using reinforcement learning.

Removing part(s) of a CNN usually requires knowing which regions are least
important for ensuring the lowest approximated CNN AL. This process is called
saliency determination and there are different ways to achieve it. The simplest
is the use of heuristics like the magnitude of the weights [2], [88], [107]–[110],
or the ℓ1/ℓ2-norm for structures [111]–[113]. More complex methods involve
a Taylor expansion criterion [91], weights gradient [114] or LASSO selection

21

[93]. It is also possible to state the saliency as an optimization problem, some
examples [92] are using activations map correlation, or [43] looking at energy
efficiency, more recently, the ADMM approach has been extensively used [115],
[116] to determine the saliency. For more details on pruning, please refer to our
book chapter [12].

3.1.2 Quantization

A full precision CNN usually relies on 32-bit floating-point values for repre-
senting weights and activations. For standard back-propagation-based training,
using high precision weights makes sense since the gradient update rule generally
modifies these weights by a small factor of the corresponding gradient terms.
While full precision CNNs offer excellent result quality, they can generally be
compressed and accelerated using lower precision arithmetic with minimal or no
loss in terms of accuracy. Methods for addressing data quantization in CNNs
are varied, ranging from simple binary and ternary CNNs to larger fixed-point
and custom floating-point formats. This section gives an overview of the main
ones. Analysis of existing approaches relies on various aspects, such as (1) what
parts of the CNN are being quantized, (2) the approximation technique applica-
tion process, (3) homogeneity/heterogeneity of the representation formats used
inside the layers, (4) the type of representations being used.

The most obvious quantization targets are the weights of the convolutional
and fully-connected layers. Reducing the number of bits used to represent them
primarily brings a memory footprint reduction for on-device storage of the CNN.
Latency improvements are potentially achievable with binary, ternary, and bit-
shift (i.e. power of two values) quantized weights and/or activations [117]–[119].
More generally, if faster execution times are to be obtained, activations function
inputs and outputs also need to be quantized. An example is [120], which
proposes an efficient 8-bit integer quantization scheme for both weights and
activations. Although it is out of the scope of this thesis, one can additionally
quantize the weights and activations used during backpropagation [80], [121].

There are two established ways quantization can be performed for efficient
inference and a third, emerging method. The first among the established ap-
proaches is Quantization-Aware Training (QAT). The idea is to use a CNN
weights update procedure for several training epochs to adjust the quantized
weights such that the accuracy is hopefully kept the same or is at worst min-
imally degraded. Much research has focused on such fine-tuning methods [80],
[81], [119], [120], [122], [123], mainly because they achieve good results. Whereas
the training is a powerful approach for approximated CNN AL recovery, it is
not always applicable in real-world scenarios since it is costly, time-consuming
and generally requires a full-size training dataset. This can be a problem when
the data is proprietary, privacy and regulatory issues are in effect, for example,
medical data that cannot be uploaded to the cloud for remote processing, or
when using pre-trained off-the-shelf CNN for which data is no longer available.
As such, there has been a push for fast Post-Training Quantization (PTQ) meth-
ods without any fine-tuning. It has been observed that for down to 8-bit word

22

lengths, PTQ results are close to full precision ones for several CNNs [32], [47],
[124], but it becomes significantly more difficult to maintain the accuracy when
targeting lower precision formats. Work focused on PTQ includes [124]–[128].
A possible issue with QAT and PTQ methods is that both generate CNN that
are sensitive to how quantization is carried out. As such, there has been re-
cent work [129], [130] on methods for robust quantization that provide intrinsic
tolerance of the CNN to a large family of quantization formats and policies by
directly specifying it in the training loss function. Such approaches are interest-
ing for battery-powered edge devices, where depending on the state of charge,
a CNN capable of operating effectively at various quantization levels would be
highly beneficial.

Initially, quantization approaches were homogeneous, with a single word
length being used for the entire approximated CNN. This is the case for early
works on binary [131] and ternary [132] weight CNNs, for instance. Such ap-
proaches can suffer from significant accuracy loss since different layers tend to
have different sensitivities to quantization levels/noise. Subsequent work has
focused more on a heterogeneous, layer-wise optimization of the quantization
format [125], [133]–[137]. There have been various metrics proposed to esti-
mate the overall effect of a quantization format inside a layer on the AL , like
a signal-to-quantization-noise-ratio [138], adversarial-noise [133], [138], loss gra-
dient [139], Hessian-based [136], [137], [140], weights entropy [141] or finally
Kullback-Leibler divergence [125], [135], which is a core component for fine-
tuning low precision integer weights in NVIDIA’s TensorRT inference accelera-
tion library.

On a different granularity level, [142] proposes looking at the distribution
of weight values over the entire CNN to aggressively quantize weights in dense
regions and more gently those in sparse ones. Compared to float32 baselines,
such an approach can achieve under 1% accuracy loss for large CNN with a 4-bit
format in the dense areas and a 16 bit one for the sparse regions with < 1% of
the values of the weights.

Regarding the quantization format, it is possible to denote two categories.
The first category, regular quantization, groups the representation where the
values are linked to a hardware state, whereas the second, weight-sharing relies
on a codebook or lookup table for storing the values shared between the weights
or activations.

Regular Quantization There are very different regular quantization formats,
such as binary [117], [119], [131], [143] where values are bounded to {0, 1}, or the
extension to ternary [118], [144] where values are bounded to {±1, 0}. Those
extremely low-bit quantization formats are susceptible to non-negligible AL,
thus, the use of more complex representation like fixed-point [80], [124], [125],
[134]–[138], [145] that features a limited dynamic range represented using an
integer and a regular value. To overcome the dynamic-range limitation, it is also
possible to use reduced floating-point [146]–[149], block-floating-point sharing
the exponent and storing the mantissa [150], [151], or even the brain-floating-

23

Binary
Ternary
Integer (4-bits, unsigned)
Integer (8-bits, signed)
Logarithmic (4-bits, signed)
Fixed-Point (4-bits, signed)
Fixed-Point (8-bits, signed)
Block-Floating-Point
Reduced-Floating-Point
Brain-Floating-Point
Mini-Float

Fraction
Sign
Mantissa
Exponent
Shared
Not shared

1 8 16

Figure 3.3: Conceptual view of the different regular quantization formats.

point format [152] dedicated to CNN training. Another regular approach is
the logarithmic representation of the values [153] allowing multiplication to be
replaced by inexpensive bit-shifts. Figure 3.3 gives a visual representation of
the different regular quantization formats described here.

Regarding the problem of selecting and mapping the quantized values, there
are numerous different ways to address it, ranging from simple heuristics like
those used to convert CNN weights into binary values depending on their
sign [131] or projecting real-valued weights to (one of) the closest discrete
points [145], to loss functions that regularize the CNN and force weights into
quantized states upon the convergence of the training algorithm [154]. More
advanced approaches include incremental quantization [155], knowledge distil-
lation [156], [157], Alternating Direction Method of Multipliers (ADMM) [158],
[159], regularization terms [154] that can also be used for robust quantiza-
tion [129], [130]. For more details on quantization, please refer to our book
chapter [12].

Weight-Sharing Weight Sharing (WS) compresses the CNN by assigning
shared values to weights and/or activations. This transforms plain weight data
storage into a reduced number of shared values in a dedicated memory, together
with the indices of these values in the weight matrix. A simple example is pre-
sented in Figure 3.4, compression is achieved by using 5 distinct shared-values to
represent the weights, the shared-values are selected by using a clustering algo-
rithm such as the K-means[14], allowing to address simultaneously the problem
of selecting and mapping the initial values to the quantized ones. In this par-
ticular example, as there are only 5 distinct shared-values, the indexes that will
be stored in the weight matrix require only 3-bits, resulting in a weight matrix
size of 5× 5× 3 = 75 bits instead of the initial 5× 5× 32 = 800 bits, giving an
overall Compression Rate (CR) of 800/(75+5∗32) = 3.4 compared to the initial
matrix. a larger matrix presents more opportunities to reach high CR. More
details on WS are given in Section 3.2. One of the advantages of WS compared

24

Original Weight Matrix Clustered Weight Matrix WS Weight Matrix WS Codebook

-0.5 0.3 -0.1 0.8 -0.5 -0.5 0.3 -0.1 0.8 -0.5 3 2 0 1 3 0 -0.18

-0.4 -0.1 0.2 -0.4 -0.3 -0.4 -0.1 0.2 -0.4 -0.3 3 0 2 3 0 1 0.82

0.8 0.9 -0.2 -0.1 0.7 0.8 0.9 -0.2 -0.1 0.7 1 1 0 0 1 2 0.22

-0.5 0.4 0.2 -0.3 0.5 -0.5 0.4 0.2 -0.3 0.5 3 4 2 0 4 3 -0.48

0.2 -0.4 -0.2 0.9 -0.7 0.2 -0.4 -0.2 0.9 -0.7 2 3 0 1 3 4 0.45

5x5x32 = 800 bits 5x5x3 = 75 bits 5x32 = 160 bits

Total = 75 + 160 = 235 bits CR = 800/235 = 3.4

A

Figure 3.4: Basic example of weight sharing for compressing a matrix.

to regular quantization techniques, is the flexibility in shared value selection,
by relaxing the presence of hardware mapping hardware constraints. This also
gives the direct inconvenience of hardly benefiting from acceleration without
adding dedicated logic, resulting in a computational overhead to retrieve the
shared values from the memory.

3.2 Weight-Sharing in Detail

This section is intended to explain the WS principles and the different challenges
and approaches observed in the literature. Following the application of the WS
as described in Figure 3.4, weights are grouped into buckets or clusters sharing
the same value. Observing the distribution of weights values before and after
WS results in something like Figure 3.5. Depending on the number of shared
values used, the distribution of the weights inside a layer will change. It is also
possible to note that there is no imposed symmetry or regularity in the values as
is often the case in regular quantization, offering more flexibility and potentially
allowing to reach a higher compression rate. Different WS approaches can be
classified by (1) the method used to group the weights, (2) the shared scope, (3)
the unit shared,, (4) the possible acceleration of CNN (5) the method application
process, and (6) the selection of the number of shared values.

3.2.1 Grouping Algorithm

The earliest work of the WS family, VectorQuantization [160], discovered that
using the K-means [14] clustering algorithm to group the weights into clusters
and use each cluster centroid values for the inference achieved surprisingly good
results in compressing CNN. The K-means [14] is an unsupervised-learning clus-
tering algorithm, that achieves iterative grouping of the samples using a distance
computed between the samples and centroids samples. there is one centroid per
cluster, and they are initialized either randomly or with more advanced meth-

25

Figure 3.5: Distribution of the weights composing the first layer of a trained
ResNet50V2 [19] on the ImageNet[18] dataset, original (top), with only 8 (mid-
dle) and 16 (bottom) shared values.

ods, and then iteratively refined by moving to the mean of the samples com-
posing a cluster at the end of each iteration. By doing this, the K-means [14]
algorithm minimizes the Within-Cluster Sum of Squares (WCSS) or inertia, al-
lowing to quickly find a suitable clustering. The K-means [14] algorithm was
subsequently used in several papers [2]–[4], [49], [50]. Some variation can be ob-
served in DeepCompression [2], where multiple cluster initialization techniques
are investigated. In Quantized-CNN [49], the minimization of the accumu-
lated error across multiple layers is also implemented to improve the centroids
selection. Other approaches were used to group the weights, an early work,
HashedNets [161] rely on random-grouping. More advanced techniques like
SoftWeightSharing [46] used mixture components. More recently, DP-NET [29]
rely on dynamic programming for grouping the weights. ClusteringMCA [5]
used an approach based on the dictionary-learning technique.

3.2.2 Shared units and acceleration

The unit shared has a very close relationship with the compression and accel-
eration potential. The earliest work, VectorQuantization [160] has investigated
multiple sharing units, with first the study of sharing single weights, and then
entire vectors. The metrics of interest used in VectorQuantization [160] was the
CR of the resulting approximated CNN, compressing a network has the advan-
tage of allowing to store the weights in the faster and less energy demanding,

26

but more resource-constrained SRAM. It is also possible to benefit from acceler-
ation with the application of computation reuse techniques, as it was proposed
in Quantized-CNN [49], the shared unit is a vector for convolutional layer, which
allows for higher reuse opportunities. Another example of paradigm-changing
computation reuse was proposed in LookNN [50], with the use of pre-computed
LUT for multiplication, allowing to execute the inference without any multipli-
cation operation, resulting in acceleration. Another approach of computation
reuse introduced in 2D-Clustering [4] with the sharing of entire kernels, allowing
for fast computation, transformation invariance of the sharing was also explored
in the same work. Another advanced technique is to use efficient codebook rep-
resentation to reduce the computational complexity as in ClusteringMCA [5].
As a rule of thumb, sharing larger structures allow for greater acceleration and
compression, at the cost of larger quantization error, which could result in AL
if not compensated.

3.2.3 Sharing Granularity

Regarding the granularity of the sharing, most of the techniques[2], [3], [5], [29],
[46], [49], [50], [160]–[162] proposed to use a single set of shared values for each
layer of the network, allowing for better resilience to layers sensitivity. Some
other techniques, like weighted-entropy [162], explored the possibility of having
a single set of shared values for the whole CNN. Another interesting approach
is to use an implementation-based scope, as it was explored in DeepKmeans[3],
with the use of a granularity corresponding to the row-stationary dataflow [65].
Section 4.1 gives a self-investigation of the granularity opportunities and limits
in terms of CR.

3.2.4 Clustering Application Process

Although the earliest WS technique, like VectorQuantization [160] proposed to
apply the approximation post-training and the opposite, can be seen in Hashed-
Nets [161], who randomly group the weights and train the centroids. Most
modern techniques propose to rely on less extreme processes, by applying the
approximation alongside the training to allow for AL recovery. A representative
example of the first approach with an iterative partial approximation of the
weights and retraining of the others to recover AL is observed in DeepCompres-
sion [2]. More recently, iterative grouping and retraining are performed in [4],
[5], [50]. Other non-clustering-based techniques like SoftWeightSharing [46] and
weighted-entropy [162] integrate the grouping directly during the training. The
same approach was used in both DeepKmeans [3] and DP-Net [29] with the use
of a regularization term to encourage weight grouping during the training.

27

3.2.5 Selecting the Optimal Number of Clusters for
Weight Sharing

Regarding the selection of the number of shared values, some existing meth-
ods [3], [5] manually tune the number of shared values to achieve the desired
CR. The main problem with manual tuning is that it is costly and requires
expert knowledge. Other methods [2], [29] use a fixed number of shared val-
ues. However, the most widely adopted solution is to homogeneously vary the
number of shared values (i.e., use the same number for each layer) to explore
the trade-off between compression and precision [4], [48]–[50]. However, this
approach is suboptimal, as the weight sharing factor is not adapted to the dif-
ferences in tolerance-to-approximation, or resilence of each layer.

The main objective of this thesis is to prove that it is also possible to optimize
the number of shared values to each layer’s resilience while avoiding the costly
retraining step. However, due to the increasing complexity of modern CNN
topologies, the DSE required to find optimal WS approximations is prohibitively
costly. Multiple heuristic approaches will be explored in subsequent chapters to
achieve a scalable retraining-free WS compression.

3.3 Conclusions

This chapter has presented the state-of-the-art of approximation techniques for
CNNs compression, with a global view on the taxonomy of the different tech-
niques, followed by a finer-grained study of the data-refinement techniques, and
finally, a close view on the different WS techniques in the literature.

28

Chapter 4

Exploring the Use of a
Greedy Optimization
Process

In this chapter, a presentation of the studied approximation design space with
details on variables, objectives, and constraints is given in Section 4.2. Then,
the sensitivity of CNNs to approximation is explored in Section 4.1, by mea-
suring a single layer sensitivity and evaluating different scopes for the sharing
of the weights. Then, in Section 4.3 a greedy algorithm is proposed and eval-
uated to optimize the number of shared values per layer of a CNN regarding
his local sensitivity to approximation. The use of proxy metrics to accelerate
the exploration is also presented and evaluated in Section 4.4. The acceleration
allows for multi-objective optimization, a last greedy algorithm is presented and
evaluated in Section 4.5. Finally, the limits of the use of a greedy algorithm
are studied in Section 4.6.

4.1 Studying approximated CNN sensitivity to
approximation

4.2 Approximation Objectives

Optimizing the number of shared values for a given trained CNN can be rep-
resented as a mathematical optimization problem. The traditional definition of
the optimization problem is finding the best solutions, described by variables,
that maximize the objectives while honoring the constraints. In the specific case
of WS tuning, we have the following:

• Variables can be represented as a vector containing the number of shared
values of each sharing unit;

29

• Objectives are the selected metrics for representing efficiency and QoR;

• Constraint is the MLPerf [7] quality target, although it is possible to add
others when studying a specific implementation.

To define the search space of the optimization, there is a need to set a range
of the possible number of shared values, or the possible values of the variables.
This range can be arbitrarily chosen, or determined with different techniques,
this is explored in detail in Section 4.1. There is also a need to define the
number of variables, meaning the number of sharing units, or granularity of the
sharing, Section 4.1 investigate the impact of the sharing granularity on the
trade-off between efficiency and QoR, with a focus on the sharing overhead and
the search space size.

Representing the QoR is something very usual when prototyping a CNN, it
is usually achieved using the top-1 or top-5 accuracy, meaning the percentage of
time the expected label was present among the top-1 or top-5 predicted label in
terms of probability. Another QoR metric is the distance between the predicted
and the expected output, computed using a loss function. Both the accuracy
and the loss are usually computed using a validation dataset that has never
been used to train the CNN, allowing to measure its generalization capacity.
The vast majority of approximation papers report the QoR as the top-1 or
top-5 Accuracy Loss (AL), computed as the absolute difference between the
baseline CNN accuracy and the approximated CNN accuracy. A negative AL
means that the approximated CNN reaches higher QoR than the baseline CNN,
this is not very usual but this can happen with some approximation acting like
a regularization during the training. The metric that will be used to represent
QoR in this thesis work is the top-1 AL, because it gives a more direct insight
on the behavior of the approximated CNN compared to the baseline.

There are multiple usual representations of the efficiency in the literature,
some describe the memory footprint reduction, as the number of weights or their
accumulated size, whereas some others describe the potential acceleration as the
number of FLOPs or the number of Multiply-ACcumulate operation (MAC),
the last category describes the resource utilization, as the number of cells or
DSP used in a FPGA design. There are also other platform-specific high-level
metrics representing the efficiency of the approximated CNNs like the latency,
the throughput, or the energy cost of the inference. The objective of this thesis
is the compression of the weights for a given trained CNN, the most suitable
metric is thus the Compression Rate (CR), defined as the ratio of the baseline
CNN weights accumulated size and the approximated CNN weights accumulated
size. A compression rate higher than 1 means that the approximated CNN
reaches higher efficiency than the baseline, which is exactly the purpose of the
approximation.

The two metrics can be obtained from an approximated CNN described by a
vector representing the number of shared values for each sharing unit. The CR
can be computed using an analytical formula described in Equation 4.1. On the
other side, obtaining the AL requires an evaluation of the inference accuracy

30

for the given approximated CNN, which also means that there is a need to
apply the weight sharing before the evaluation. The former step of the accuracy
evaluation is very computation-intensive, and you will see that this is a common
problem in the investigations conducted during this thesis.

Concerning the optimization constraints, the MLPerf [7] contest, intended
to allow for comparison of heterogeneous CNN training and inference platforms
using high-level metrics like throughput and latency has set an acceptable ac-
curacy target for approximating CNNs. Complying with this quality target
requires the top-1 accuracy of the approximated CNN to be at least 99% of the
baseline accuracy. A second quality target level is set at 98% of the baseline
accuracy for CNNs targeting embedded inference, like MobileNetV2 [13], be-
cause these CNNs are already optimized by design and are more sensitive to
approximation than others. This quality target has been widely used ever since.

It is also possible to use different constraints concerning the implementation,
like memory or computation boundaries for enforcing high-level metrics like
latency or throughput. It is even possible to use energy constraints during the
optimization. All these implementation-related constraints are out of the scope
of this thesis.

4.2.1 Layer sensitivity to approximation

As it has been stated in Chapter 3, there is a need to tune the number of shared
values of the WS to achieve acceptable AL and CR without requiring retraining.
The objective of this chapter is to investigate a simple yet effective way to search
for an optimal number of shared values in terms of AL, then improve it to allow
multi-objective optimization that takes into account AL and CR. In addition to
DSE algorithms, this chapter also presents a case study of the granularity of the
weight sharing codebook, as well as the use of a proxy metric to greatly reduce
the need for computationally expensive approximate CNNs scoring to the bare
minimum.

To show how can vary the accuracy of a CNN when varying the number of
shared values ki for each layer i (where 0 ≤ i ≤ N − 1), we present a first case
study about the AL variation when the WS approximation technique is applied
to the first layer i = 0 of a MobileNetV2 [13] trained on the ImageNet [18]
dataset. For each k0 value (i.e., the degree of approximation), the k-means [14]
clustering algorithm is used to select the values of the shared weights. During
the whole experiment, the other layers (from 1 to N − 1) of the CNN remained
untouched and we evaluate the AL using the validation set of the ImageNet [18]
dataset. For each k0 value in a linear range from 2 to 864 number of shared
values, the CNN with the resulting approximated first layer is scored. The range
has been determined empirically from the minimal number of shared values, 2
to the maximal, which is the number of weights of the layer.

The results are shown in Figure 4.1. The X-axis shows k0 values and the Y-
axis reports the achieved AL. The first observation is that the accuracy strictly
depends on k0. The second observation is that around k0 = 32 the top-1 accu-
racy is close to the reference one with AL = 0%. It is important to mention that

31

4 16 64 256 10242 8 32 128 512
Number of shared values (ki)

0.0%

20.0%

40.0%

60.0%

80.0%
Ac

cu
ra

cy
 lo

ss
 o

f t
he

 la
ye

r (
AL

)
illegal candidates
legal candidates

Figure 4.1: Achieved AL measured on the ImageNet [18] dataset, obtained when
varying the number of shared values, k0, for the first layer of MobileNet V2 [19].

the reference layer has 864 weights. Each weight is stored into a bvalues = 32
bits floating-point variable leading to a memory footprint of 27,648 bits. Keep-
ing k0 = 32 shared values, we need 5,184 bits for storing the 864 shared values
indexes of bindex = ⌈log2(k0)⌉ = 6 bits each plus 1,216 bits for storing the 32
shared values in the WS codebook. Resulting in a total of 6,400 bits for storing
the layer weights. The achieved CR of the layer can be described using the
following formula:

CR =
W × bvalues

W × bindex + ki × bvalues
, (4.1)

The achieved CR of the layer is 4.32× with negligible AL. The CR changes
depending on the bit-width of the CNN weights. In the above example, if 16-bit
data types are used, the CR will be 2.16×, whereas for 8-bit the CR will be
1.08×. In this chapter, it is considered that the weights of the baseline CNNs
are represented using a 32-bit floating-point variable to fairly compare with the
state-of-the-art CNNs compression techniques.

As it has been observed in the literature, each layer of a CNN has a different
resilience to approximation [3]. It can be observed in Figure 4.2 showing the
sensitivity of the first and last layer of the studied CNN, MobileNetV2 [13]
as an extension of the experiment conducted for Figure 4.1. This very simple
observation state the need to identify the optimal number of shared values for
each layer. One of the simplest approaches to optimize the number of shared
values leverages the greedy heuristic, by selecting for each layer the locally best-
found solution (i.e., ki). An example of a locally best-found selection with the
Figure 4.2 is selecting the number of shared values leading to the highest top-

32

2 8 32 128 5122 8 32 128 512
Number of shared values (ki)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%
Ac

cu
ra

cy
 lo

ss
 o

f t
he

 la
ye

r (
AL

)
First layer
Last layer

Figure 4.2: Analyzing two different layer sensitivity to approximation with the
first and last layer of a MobileNetV2 [13] trained on the ImageNet [18] dataset,
obtained when varying the number of shared values, ki.

1 accuracy, highlighted with a full colored circle, the next step will be to do
the same for the next layer, and continue until reaching the last layer of the
CNNs. Even though a greedy algorithm suffers from local minima, it is shown
in the rest of this chapter that it can produce acceptable results in a reasonable
amount of time compared to an exhaustive search approach. An extension of
the greedy algorithm involving multi-objective (AL, and CR) local best-found
solution selection is also presented. But first, there is a need to study the impact
of the weight sharing granularity, this is the purpose of the next section.

4.2.2 Impact of the Weight-Sharing Granularity

When the WS is applied, there is a need to define the granularity of the code-
book, meaning the weights that will share a set of distinct values. In the example
presented in Figure 4.1, a single codebook contains all the shared values for the
layer. But the sharing can be achieved at different granularities, by choosing
to share the weights at the level of the channels or the kernels (with a dif-
ferent codebook per channel or kernel respectively). Three different possible
granularities are listed here from coarser to finer grain:

• Layer : all the weights of a layer share the same codebook;

• Channel : all the weights corresponding to a specific output channel (3D
kernels) shares the same codebook;

33

Figure 4.3: Different granularities for weight sharing. Weights can be shared at
the level of the layer, the channel, or the kernel.

• Kernel : all the weights corresponding to both a specific input and outputs
channel (2D kernels) share the same codebook.

Figure 4.3 shows a graphical example of the above granularity level for a
given convolutional layer. The sharing granularity impact both the AL and the
CR, smaller granularity tend to reach better AL, at the cost of lower CR and
larger exploration time due to the higher number of possible solutions. Another
interesting thing about the granularity is that, given an optimal number of
shared values for a layer, it can virtually be found at a lower granularity (i.e.
channel or kernel) by using a homogeneous number of shared values for each
channel/kernel of the layer and the same codebook. The same applies between
channel and kernel sharing granularity.

Each of the above granularities allows achieving different CRs (Equation 4.1)
and AL w.r.t. the reference (non approximated) CNN. To investigate this AL,
a very simple experiment on LeNet-5 [15] trained on the MNIST [16] dataset
was carried out. for each defined granularity, the number of shared weight
vary, considering that the number of shared values is the same for each struc-
ture. Figure 4.4 plots the trade-off between AL and CR obtained. The results
clearly show that the “kernel” and “channel“ granularity does not lead to a good
trade-off between compression and accuracy. On the other hand, the “layer”
granularity allows up to 3× higher compression ratios for the same AL. For the
remainder of this chapter, the layer granularity is considered.

34

Compression Rate

A
cc

u
ra

cy
 L

o
ss

 [
%

]

channel
layer
kernel

Figure 4.4: Top-1 AL and memory compression over varying numbers of clusters
at different sharing granularity [8].

4.3 Greedy Optimization Algorithm

4.3.1 Introducing greedy optimization

Using a greedy optimization algorithm allows reducing the search space by rely-
ing on local optimization. The implementation is very simple, for each layer of
the network from the first to the last, the locally-best-found number of shared
values ki is found by evaluating every possible approximate candidate from the
krange. The evaluation of each of the approximate candidates consists of two
steps: (1) applying the WS with the desired ki using the k-means [14] clustering
algorithm, and (2) evaluating the resulting CNN AL on the test dataset, with
the previous layers and current layer approximated. From this evaluation step,
the candidate with the best AL is selected. The Algorithm 1 summarizes this
implementation. The time complexity of the proposed algorithm is:

O(card(krange)×N) (4.2)

With N the number of layers of the CNN.

4.3.2 Proof of concept on LeNet-5

Validating the capability of the proposed greedy algorithm to solve real-world
WS optimization problems, requires first, proving that it can work on small
CNNs. To this extent, Lenet-5 [15], a 5 layers CNN capable of recognizing the
black and white low-resolution digits from the MNIST [16] dataset is used as a
baseline CNN. LeNet-5 is composed of 3 convolutional layers (CONV) followed

35

Algorithm 1: A greedy algorithm for optimizing the number of shared
values of each layer of a CNN.

Input: baselineCNN , BaselineAccuracy krange, testDataset
Output: AxCNN , AL

1: AxCNN ← baselineCNN ;
2: for n ∈ range(len(baselineCNN.layers)) do
3: AxCandidateList = [];

// Apply WS with the desired ki
4: for ki ∈ krange do
5: AxCNN.layers[n].weights←

k −means(AxCNN.layers[n].weights, ki);
6: AxCandidateList.append(AxCNN);
7: end for

// Score approximate candidates and select the best (bestAL)
8: for AxCandidate ∈ AxCandidateList do
9: AL← evaluateAL(AxCandidate, testDataset);

10: if AL < bestAL then
11: bestAL← AL;
12: AxCNN.layers[n].weights← AxCandidate.layers[n].weights;
13: end if
14: end for
15: end for

by 2 fully-connected (FC) layers, with a total of 61,470 parameters (of which
50% are in the convolutional layers). The explored number of shared values
is the linear range krange = [2; 25], 25 corresponds to the number of weights
of a 2D convolutional kernel, and allows for an accuracy loss bellow 1e4 for
all the layers. The training was carried out using the open-source framework
N2D2 [17]. The LeNet-5 model description we used is available in the framework
itself. It is important to mention once again that the proposed approach is
independent of the adopted training framework. The exploration algorithm was
set to iterate using previous values as initialization until it found an already
identified solution, with a limit of 30 iterations. The exploration has been
conducted in two different modes: natural order, from the first layer to the last;
and reversed order. The execution of the optimization algorithm took 7.2 hours
on a laptop (see Appendix A.2 for more details on the hardware setup). Each
candidate is evaluated on the 10k images MNIST [16] test dataset.

The results are reported in the Table 4.1, the proposed WS approach is
compared with two implementations, the 16-bits, and the 8-bits LeNet-5, both
obtained using the post-training quantization from the N2D2 [17] framework.
Interestingly, the proposed approach can reach higher CR without any calibra-
tion step that is required in the post-training quantization. There is also no
significant difference between the first to the last and the last to the first order
of approximation. These results prove that the proposed algorithm can be ap-

36

Type Baseline Network Top-1 AL CR
(%)

N2D2 export 16-bit (ref) 0.00 1
N2D2 export 8-bit 0.05 2

WS 16-bit first to last 0.02 4.06
WS 16-bit last to first 0 4.04
WS 8-bit first to last 0.05 4.37
WS 8-bit last to first 0.05 4.83

Table 4.1: Compressing LeNet-5 [15] on the MNIST [16] dataset, comparison is
made with N2D2 [17] post-training quantization on both 16-bits and 8-bits.

plied to LeNet-5 [15], and achieve a significant compression of over 4× CR under
negligible AL. The first to the last order of exploration is used in subsequent
experiments.

4.3.3 Application to larger CNNs trained on the Ima-
geNet dataset

After the proof of concept on a small CNN it is possible to evaluate the proposed
approach on more challenging CNNs. That is why the evaluation of the proposed
method is also performed on larger CNNs trained on the ImageNet [18] dataset,
with 224x224 images and 1,000 classes output. Three image classifier CNNs
have been selected, ResNet18V2 [19], SqueezeNet [20], and MobileNetV2 [13].
The previous framework relying on N2D2 for CNN scoring has been adapted
to be able to process ONNX [21] models from the ONNX Model ZOO, and
MXNET [22] is used for scoring the CNNs on a GPU, the same GPU is used
to compute the k-means algorithm, relying on DeepKMCuda [23]. All the ex-
periments have been executed on a GPU server (see Appendix A.2 for more
details on the hardware setup). The krange has been empirically determined
for each network in the same way as the example reported in Figure 4.1. For
each CNN layer, the number of shared values is incremented until the AL is
negligible (bellow 1e4) for the first layer of the CNN, then a range is selected
within [kminAL − 20; kminAL + 20]. For MobileNetV2, this range is extended to
[kminAL−60; kminAL+60] because the CNN is more sensible to approximation.
This explains why different CNNs have different krange.

The Table 4.2 presents the obtained results. Each of the reference networks
has been successfully compressed by up to 5×, compared to the 32-bits baseline,
with a very small AL. Regarding the acceptability of the AL, it appears that the
results obtained for both ResNet18V2 [24] and SqueezeNetv1.1 [20] comply with
the MLPerf [7] quality target, whereas the results for MobileNetV2 [13] does not.
Furthermore, it is important to note that the CR depends mostly on the krange,

37

Baseline Network Krange Top-1 AL (%) CR

ResNet18v2 [40,80] 0.22% 5.28
SqueezeNetv1.1 [40,80] 0.53% 5.17
MobileNetv2 [2,120] 1.43% 4.85

Table 4.2: Compressing CNNs trained on the ImageNet [18] dataset using the
Algorithm 1.

and is rather constant for the different CNNs. Even for SqueezeNetv1.1 [20],
which is already designed to have a very low memory footprint, we achieve a 5×
CR. In other words, even if the reference CNN has been designed to be efficient
in terms of the memory footprint, the proposed WS method can further reduce
it.

Regarding the execution time, execution of the algorithm 1 is dominated
by more than 80% by the scoring time as it can be observed in Figure 4.5
reporting the breakdown of the total execution time for the clustering and the
scoring of the approximate candidates in the experiments described previously.
The total execution time is the following: ResNet18V2 [24] took 16 hours with
840 approximated CNN evaluations, SqueezeNetv1.1 [20] took 13 hours with
1,040 approximated CNN evaluations, and finally, MobileNetV2 [13] took 86
hours with 6,372 approximated CNN evaluations. The increase in the number
of evaluations for MobileNetV2 is due to the increase in the number of explored
ki as well as the higher layer count. As the simulation time is largely dominated
by the scoring of the approximate CNNs candidates on the validation dataset,
it could largely benefit the use of an indirect way to estimate the accuracy of
CNN without running the inference of all the validation datasets samples. This
will be investigated in the next section.

4.4 Investigating the Use of a Proxy Metric

4.4.1 Correlation between clustering inertia and accuracy
loss

This section investigates the use of proxy metrics to alleviate the evaluation cost
and make the exploration possible for large CNNs. The key to identifying an
alternative approach to avoid the score for each approximate CNN candidate
relies on the analysis of the k-means [14] clustering algorithm. Indeed, it clusters
the samples by trying to split them into k groups of equal variance, minimizing
a criterion known as the inertia or within-cluster sum-of-squares [163] defined
by the following equation:

Inertia =

k∑
i=1

∑
x=Ci

||x− µi||2 (4.3)

38

Model

0%

25%

50%

75%

100%

ResNet18V2 SqueezeNet1.1 MobileNetv2

Scoring Time Clustering time

Figure 4.5: Profiling simulation time between the k-means clustering applica-
tion and the scoring of approximate candidates using the validation dataset for
Algorithm 1.

with k the number of clusters, Ci the set containing the samples belonging
to the i− th cluster, and µi the centroids (average value) of the i− th cluster.
inertia can be described as an approximation error when replacing the samples
by the corresponding clusters centroids, and the lower the inertia the better the
approximation. The inertia seems to be a good proxy candidate of the accuracy
of the approximated CNN, the lower the inertia the higher the accuracy.

It is important to evaluate the correlation between the inertia and the AL
of a CNN. To that extent, a very similar experiment to the one for Figure 4.1 is
conducted, but with every layer of the CNN. Figure 4.6 reports two examples
of how good is the inertia as AL estimation by showing the inertia and the AL
obtained after clustering layers with krange = [2, 120]. Both the examples are
related to MobileNetV2 [13]. In particular, we reported the correlation for the
first and the last layer of MobileNetV2. These layers have been chosen because
they have a different complexity expressed in terms of weights count: 864 for
the first layer, and 1,280,000 for the last layer. Both graphs plot the CNN AL
(obtained through CNN scoring) w.r.t the inertia. The correlation in the small
layer is not as strong as in the large layer, but both cases confirm that lower
inertia tends to give lower AL.

As the inertia proved to be a good estimation of the approximated CNN
accuracy, we modified the Algorithm 1 to use it. Instead of scoring the approx-
imated CNN after each k-means application, in the Algorithm 2, the inertia
is used to filter a subset of the most promising approximate candidates to be
scored. The number of selected candidates depends on the inertiaF ilterRatio
parameter. The complexity of Algorithm 2 is thus:

O(card(krange)×N × inertiaF ilterRatio). (4.4)

39

First Layer Last Layer

Figure 4.6: Correlation between the inertia and the top-1 accuracy obtained
when varying the number of shared values for the first, and last layers of Mo-
bileNetV2 [13].

With inertiaF ilterRatio < 1.

4.4.2 Measuring the benefit of the proxy metrics utiliza-
tion

To evaluate the improvement of the Algorithm 2 experiments have been carried
out under the conditions described in Section 4.3. With the inertiaF ilterRatio
(noted Filtering in the Table 4.3), the percentage of approximate CNN versions
that will be scored on the validation dataset, varying between 5%, 15%, and
33%. A special case is the inertiaF ilterRatio = 100%, where Algorithm 2 has
the same behavior as Algorithm 1, because the subset of promising approximate
candidates contains all the approximate candidates.

From the results in Table 4.3, we can see that the highest values of
inertiaF ilterRatio generally result in lower AL values. This improvement
comes at the cost of a higher optimization time due to a larger number of
candidates passing through the inertia filter to the costly scoring step. Using a
small filtering value (i.e., 5%, 15%) significantly reduces the overall exploration
time with a limited impact on the compression rate and accuracy loss. It is
particularly interesting to compare the case of MobileNetV2 [13]. With the
inertiaF ilterRatio = 33% the achieved AL is slightly better than the result
obtained with inertiaF ilterRatio = 100%.

However, the most relevant impact of the proposed heuristic is on the overall
exploration time, shown in Figure 4.7. In the case of inertiaF ilterRatio =
33%, the execution time is reduced by 50% without noticeable AL variation.
With inertiaF ilterRatio = 15%, the AL is under 0.5% with a execution time
reduced by 75%. With inertiaF ilterRatio = 5% the AL is around 1% but
the execution time is reduced by 90%. Looking at CR, we did not observe
a significant difference with the variation of the filtering value. Achieved CRs
are slightly less than those of inertiaF ilterRatio = 100% but still significant.

40

Algorithm 2: A greedy algorithm for optimizing the number of shared
values of each layer of a CNN, with inertia filtering of approximate
candidates.

Input: baselineCNN , BaselineAccuracy krange, testDataset,
inertiaF ilterRatio
Output: AxCNN , AL

1: AxCNN ← baselineCNN ;
2: for n ∈ range(len(baselineCNN.layers)) do
3: AxCandidateList = [];

// Apply WS with the desired ki
4: for ki ∈ krange do
5: AxCNN.layers[n].weights←

k −means(AxCNN.layers[n].weights, ki);
6: AxCandidateList.append(AxCNN);
7: end for

// Apply inertia filtering
8: AxCandidateListF iltered←

filterInertia(AxCandidateList, inertiaF ilterRatio);
// Score remaining approximate candidates and select the best (bestAL)

9: for AxCandidate ∈ AxCandidateListF iltered do
10: AL← evaluateAL(AxCandidate, testDataset);
11: if AL < bestAL then
12: bestAL← AL;
13: AxCNN.layers[n].weights← AxCandidate.layers[n].weights;
14: end if
15: end for
16: end for

These results prove the efficiency of using inertia as a quick and effective metric
for determining the impact of weight-sharing on CNN.

The objective of Algorithm 2 is to minimize the AL without considering other
constraints. However, It would be interesting to investigate different trade-offs
between the AL and the CR. The next section provides an extension of the
Algorithm 2 using two objective metrics (AL, and CR).

4.5 Explore the Trade-Off Between Accuracy
and Compression

4.5.1 Multi-objective approach

One can be interested to accept a higher AL for reaching a higher CR. Meaning
that more objectives need to be analyzed. In this section, an extension of the
Algorithm 2 with two objective metrics: (1) minimize the AL, and (2) maximize

41

Baseline Network Krange Filtering (%) Top-1 AL (%) CR

ResNet18v2 [40,80]

5 0.47% 4.93
15 0.23% 4.95
33 0.23% 4.94
100 0.22% 5.28

SqueezeNetv1.1 [40,80]

5 0.57% 4.77
15 0.55% 4.80
33 0.49% 4.73
100 0.53% 5.17

MobileNetv2 [2,120]

5 2.78% 4.54
15 1.58% 4.55
33 1.13% 4.55
100 1.43% 4.85

Table 4.3: Compressing CNNs on the ImageNet [18] dataset using Algorithm 2.

the CR; is proposed. To achieve this modification, there is a need to enlarge the
number of candidates selected during each layer exploration. Instead of selecting
only the candidate showing the lowest AL, the AL vs. CR trade-off needs to be
explored, using a Pareto optimal candidates selection. This implies enlarging
the complexity of the exploration for the next layers. Indeed, there is a need
to run the exploration for each of the selected candidates from previous layer
exploration, raising the complexity of the layer-wise exploration of the layer i
to O(card(ϕi−1)× card(krange)), where ϕi is the number of selected candidates
of the layer i. The resulting complexity of the multi-objective exploration for
the whole network is then:

O(
N∏
i=1

card(ϕi−1)× card(krange)) (4.5)

In the worst case (i.e., every approximate candidate is Pareto efficient from
the first layer to the last, meaning that card(ϕi) = card(krange),∀i ∈ N), the
complexity becomes:

O(
N∏
i=1

card(krange)
2 ⇐⇒ O(card(krange)2N). (4.6)

Taking as example a N = 5 layer CNN like LeNet-5 [15], and given a krange =
[2, 26] ⇒ card(krange) = 25, and considering that the clustering step takes a
very optimistic 1ms, it will take more than 3000 years to optimize the CNN.
To avoid this explosion of the number of candidates, we need to restrain their
count between each iteration, we can see in Equation 4.1 that in the memory
footprint of the approximated model given by the formula W ∗ bindex + ki ∗B,
the most important term is the first one W ∗ bindex, indeed, W tends to be up

42

0.00%

25.00%

50.00%

75.00%

100.00%

ResNet18V2 SqueezeNet1.1 MobileNetv2

Scoring Time Clustering Time

Figure 4.7: Profiling simulation time between the k-means clustering applica-
tion and the scoring of approximate candidates using the validation dataset for
Algorithm 2.

to several million for the largest CNNs. A way of limiting card(ϕi) is to use
bindex as a proxy metric for the CR, meaning that for a given layer, instead of
calculating the CR, the bindex value can be used as an estimation of the CR.
Resulting in the following boundary:

card(ϕi) ≤ ⌈log2(max(krange)⌉ − ⌈log2(min(krange)⌉. (4.7)

The complexity of the exploration is thus reduced to:

O(N ∗ ⌈log2(max(krange)⌉ − ⌈log2(min(krange)⌉ ∗ card(krange), (4.8)

which our experiments show affordable even for a large network, for example,
the exploration for a MobileNetV2 with an inertiaF ilterRatio = 5% is about
36 hours. The resulting multi-objective hierarchical exploration algorithm is
detailed in Algorithm 3. The main change is the population-based approach over
the single-solution-based approach that was used in Algorithm 2. At the end
of each layer exploration, a Pareto effcicient population w.r.t. AL and bindex
is used as an input for the next layer exploration. The initial population for
the first layer is the baseline CNN and the output population of approximated
CNNs is the Pareto efficient population of the last layer.

4.5.2 Measuring the benefits of the multi-objective ap-
proach

To evaluate the improvement of the Algorithm 3 experiments have been carried
out under the same conditions described in Section 4.3. To simplify the expla-
nation, results focus on the MobileNetV2 [13] CNN, showing a larger interest

43

Algorithm 3: A greedy algorithm for optimizing the number of shared
values of each layer of a CNN, with inertia filtering of approximate
candidates and multi-objective optimization.

Input: baselineCNN , BaselineAccuracy krange, testDataset,
inertiaF ilterRatio
Output: ϕ

1: AxCNN ← baselineCNN ;
2: ϕ← [AxCNN]
3: for i ∈ range(len(baselineCNN.layers)) do
4: AxCandidateList = [];

// Iterate in ϕi−1 with the desired ki
5: for candidate ∈ ϕ do

// Apply the WS with the desired kifor ki ∈ krange do

6:7: candidate.layers[i].weights←
k −means(candidate.layers[i].weights, ki);

8: AxCandidateList.append(candidate);
9: end for

10: end for
// Apply inertia filtering

11: AxCandidateListF iltered←
filterInertia(AxCandidateList, inertiaF ilterRatio);

// Score remaining approximate candidates
12: AxCandidateAL← [];
13: for AxCandidate ∈ AxCandidateListF iltered do
14: AxCandidateAL.append(evaluateAL(AxCandidate, testDataset));
15: end for

// Select the Pareto efficient candidates w.r.t. AL and bindex
16: ϕ← ParetoSelect(AxCandidateList, AxCandidateAL)
17: end for

than the two others, due to its computational simplicity and good top-1 accu-
racy. The inertiaF ilterRatio used is the same as those used in experiments of
the Section 4.4.

The Figure 4.8 shows the results of the multi-objective experiments con-
ducted on the MobileNetV2 [13] with the ImageNet [18] dataset. The chart re-
ports on the X-axis the Compression Rate (Equation 4.1) and the Y-axis shows
the AL. Three Pareto frontiers corresponding to different inertiaF ilterRatio
values are shown. As expected, a higher CR is achieved at the cost of higher AL
and vice-versa. From these results, it is now possible to select among different
solutions presenting a trade-off between AL and CR.

Figure 4.8 also compares the results of Algorithm 3 with the results of Algo-
rithm 2. We can see that except for inertiaF ilterRatio = 5% inertia filtering
value, the solutions obtained with Algorithm 3 dominate those of Algorithm 2.

The second point of the results shown in Figure 4.8 is that the

44

5% - 15% - 33%

Algorithm 3
Algorithm 2

Figure 4.8: Multi-objective explorations (Algorithm 3) for MobileNetV2 [13]
on the ImageNet [18] dataset with 3 different inertiaF ilterRatio. Comparison
with results obtained with the Algorithm 2.

inertiaF ilterRatio value impacts the results, again this was expected because
using a smaller filtering value can hide interesting approximate candidates. On
the other hand, we can note that the Pareto frontier obtained using
inertiaF ilterRatio = 15% of filtering is very close to the one related to
inertiaF ilterRatio = 33%. This means that inertia is an efficient way to es-
timate the AL when WS is applied. Figure 4.9 reports the relative execution
time required to obtain the three Pareto frontiers. As already pointed out in
Figure 4.4, the scoring time is still dominating the overall execution time. Fi-
nally, we can safely use inertiaF ilterRatio = 15% of filtering to achieve results
as precise as the inertiaF ilterRatio = 33% but with 2× less of execution
time. Once again, this confirms that the use of inertia as a sensitivity metric
allows a significant speedup and paves the way to more complex exploration for
WS-based approximation.

A comparison of the relative execution time of the three algorithms is pre-
sented in Figure 4.10. Looking at the relative values, we can note that executing
the Algorithm 3 with inertiaF ilterRatio = 5% is 2× less computation-intensive
than running Algorithm 1 on the same CNN, and is about the same computa-
tion intensity as running Algorithm 2. Whereas the execution of Algorithm 3
with inertiaF ilterRatio ≥ 15% is far more computation-intensive than others
algorithms and this is mainly due to the population size during the exploration

45

0.00%

25.00%

50.00%

75.00%

100.00%

top 33% top 15% top 5%

Scoring Time Clustering Time

Figure 4.9: Profiling simulation time between the k-means clustering applica-
tion and the scoring of approximate candidates using the validation dataset for
Algorithm 3.

tending to be higher.
These results prove that (1) Using a multi-objective exploration algorithm

is possible and show the trade-off between AL and CR; (2) It is possible to
execute the multi-objective in affordable time by constraining the number of
scored approximate candidates and the size of the population at each iteration.
The next section compares the results of the proposed solution with state-of-the-
art WS compression techniques and discusses the limits of the greedy approach.

4.6 Conclusions

The results presented in this chapter prove the benefits of optimizing the num-
ber of shared weights per layer as opposed to the homogeneous number of shared
values used in the literature. The very simple greedy optimization is sufficient
to solve this optimization problem in a reasonable time. It is also possible to
rely on the inertia as a proxy metric for the AL of an approximate candidate,
allowing to greatly reduce the number of required scoring, and thus the explo-
ration time. Using a second proxy for the CR, it is also possible to perform
multi-objective exploration, taking into account both the AL and the CR as
optimization metrics. The last allows to explore the trade-off between AL and
CR, this can prove very useful for application design.

It means that during the exploration of the layer i, there is no interest in
the previous layer AL vs CR sensitivity, meaning that a sensitive layer may be
over-approximated, and a resilient layer under-approximated, or both. This can
be clearly observed in Figure 4.11, presenting the resulting ktuple = {ki}∀i ∈
[1, N] of the Pareto efficient candidate obtained at the end of Algorithm 3.

46

0.00%

25.00%

50.00%

75.00%

100.00%

Algo.1 Algo.2 Algo.3

Scoring Time Clustering Time

Figure 4.10: Profiling relative simulation time between the Algorithm 1, Algo-
rithm 2, and Algorithm 3 on MobileNetV2 [13] on the ImageNet [18] dataset.

Candidates are sharing most of the ktuple values, and this is due to the use of
local bindex as a proxy for compression. From a decision-making perspective,
the proposed greedy approach show over-exploitation and a lack of exploration.
The candidate shown in blue in Figure 4.11 is the one featuring the higher CR
with also the worst AL.

The greedy approach proposes to solve the global-optimization problem by
focusing only on local optimization, whereas it has the advantage of being sim-
ple, it has no way to avoid falling into local minima. For example, some layers
are very sensitive to approximation and have a poor correlation between AL
and inertia, like the first layer of the MobileNetV2 [13] presented in Figure 4.6.
These very sensitive layers would benefit from a greatly reduced approximation,
whereas others would allow for more aggressive compression, the greedy algo-
rithm can, to a limited extent, detect these constraints. But the chosen bindex
metric used in the Pareto optimal selection of population during the multi-
objective exploration presented in Algorithm 3 fails to capture the behavior of
the CR of the approximated CNN during the exploration.

47

layer #

N
u
m

b
e
r

o
f

sh
a
re

d
 v

a
lu

e
s

(k
i)

Figure 4.11: Resulting Pareto efficient ktuple after the execution of Algorithm 3
on MobileNetV2 [13] on the ImageNet [18] dataset. Each color represent a
different approximate CNN candidate obtained

48

Chapter 5

Exploring a Heuristic
Approach to the
Optimization problem

As it has been explained in Chapter 4, it is possible to address the optimiza-
tion of the number of shared values for each layer of a trained CNN using a
simple greedy approach. But this approach has shown its limits when it comes
down to escaping local-minima and solving the problem with model-wide met-
rics. This is why evaluating the AL and CR of the whole approximated CNN
is required to avoid local-minima and have a better representation of the op-
timization problem. It is then possible to adopt a heuristic approach to solve
the optimization problem and this will be detailed in this chapter. Considering
that none of the greedy exploration performed in Chapter 4 was able to find
an approximate candidate complying with the MLPerf [7] quality target on the
challenging MobileNetV2 [13], this network will be the baseline model for this
whole study. After a brief statement of the DSE complexity in Section 5.1. The
reduction of the search space to an locally-best-found number of shared values
for each layer is presented in Section 5.2. The use of different techniques for
exploring the combination of this reduced search space is studied in Section 5.3
with an extension including the use of statistical regression to accelerate this
exploration. The proposed approach is applied to several state-of-the-art CNN
to enforce scientific proof in Section 5.4. A critical analysis of the proposed
compression technique is given in Section 5.5, and finally, conclusions are given
on this divide & conquer strategy in Section 5.6.

5.1 DSE complexity

Using the notation from Chapter 4, for a given CNN with N layers, let ki
be the number of shared values of the layer i. ki is bounded to a set of val-

49

Layer-Wise
Optimization

Approx. Layer
Combination

Approx
CNN

Trained
CNN

Validation
data

krange

Φi

Figure 5.1: Conceptual view of the proposed weight-sharing optimization two-
steps approach.

ues krange. Accordingly, an approximated CNN can be characterized by its
ktuple = {ki}∀i ∈ [1, N] representing the number of shared values for each layer.
From the ktuple it is possible to measure both (1) the AL, by scoring the ap-
proximated CNN on a large and representative test dataset, and (2) the CR,
using Equation 4.1

Exhaustively exploring every possible ktuple permutations results in the fol-
lowing time complexity:

O(card(krange)N). (5.1)

To make the optimization problem tractable, a divide and conquer strategy
can be adopted, splitting the exponential complexity problem of optimizing the
number of shared values for each layer in two sub-problems: (1) reducing the
search space by finding ϕi, the set of best-found ki for each layer of the network
and (2) applying a heuristic approach to finding a set of Pareto efficient ktuple
as a combination of ki ∈ ϕi∀i ∈ N considering the resulting AL and CR. A
conceptual view of the approach is given in Figure 5.1. The next section gives
details on this divide and conquers approach.

5.2 Layer-wise Optimization

The first sub-problem targets the local optimization of each layer. The goal
is to reduce the search space by finding ϕi, the set of best-found ki values,
for each layer of the CNN. ϕi is characterized by (1) the AL obtained when
layer i is approximated with ki shared values while the other layers are not
approximated, and (2) the number of bits required to store each index, defined
as bindex = ⌈log2(ki)⌉. As described in Section 4.5, the bindex is used as a local
optimization objective as it is indirectly proportional to the CR of the layer, see
Equation 4.1. The algorithm explores one by one the kis in the user-defined
krange and for each, it evaluates both the AL and the bindex to then compose
ϕi by selecting the candidate with the best AL per bindex. It is very similar to
Algorithm 3, described in the previous chapter, with the difference that when

50

Layer-Wise Optimization

Layer Sensitivity Analysis

Candidates Evaluation

Select Optimal ki set

Trained
CNN

Validation
data

krange

Φi
Approx. Layer
Combination

Approx
CNN

Figure 5.2: Conceptual view of our weight-sharing optimization heuristic, with
layer-wise optimization detailed.

studying a layer, the others are kept unchanged, whereas, in Algorithm 3, the
already clustered layers are kept clustered. The complexity of this search is
linear to the number of layers N and the cardinality of the krange, being:

O(N ∗ card(krange)). (5.2)

Using the bindex as a proxy for the CR has the effect of limiting the cardinality of
the ϕi, the output set of best-found ki. Indeed, it is thus bounded as described
in the Equation 4.7. There is also no need for inertia filtering as the linear
complexity of the exploration has proven to be tractable for most CNNs. The
complete process of the layer-wise optimization is described in Figure 5.2.

An example of such sub-problems for LeNet [15] on the MNIST [16] dataset
is shown in Figure 5.3. Showing the results of the layer-wise optimization of
the third layer of the CNN with a krange = [1, 1024] with a logarithm scale rep-
resented by 100 values. There is a need to separate legal and illegal candidates,
on whether or not they are complying with the MLPerf quality constraints. For
this particular example, there is a high resilience of the layer to approximation,
and thus, almost every candidate shows AL that complies with the MLPerf
quality targets, except for one, shown in red. From the legal candidates shown
in blue, it is possible to extract ϕi by selecting the ki leading to the best AL for
each different bindex value. The resulting best-found number of shared values
that will be used in further steps is thus ϕ0 = {4, 6, 16, 26, 46, 77, 154, 451, 580}.
By resolving the first sub-problem of layer optimization, one can obtain the
ϕi shown in Table 5.1. Note that layer 1 contains very few weights so the
krange was cropped accordingly to the total number of weights. This particular
example of layer-wise optimization allows for reducing the number of possible
combinations from 10 billion to only 48600, resulting in a reduction of about 6
orders of magnitude.

A more challenging target is the MobileNetV2 [13] trained on the Ima-
geNet [18] dataset. This CNN is considered in the light categories of the MLPerf,
meaning that the quality target is 98% of the baseline accuracy. This exper-
iments uses the same krange = [2, 1024] that was used previously. To reduce
the scoring time, a fast approximate scoring is performed, as described in Ap-
pendix A.3. Figure 5.4 shows the output of the layer-wise approximation

51

Layer ϕi card(ϕi)

1 {2, 4, 6, 9, 23, 36} 6
2 {4, 7, 14, 18, 38, 99, 240, 329, 618} 10
3 {4, 8, 16, 19, 34, 99, 175, 272, 658} 9
4 {2, 4, 7, 15, 26, 64, 99, 145, 309, 618} 9
5 {2, 3, 5, 11, 23, 43, 82, 136, 329, 658} 9

Table 5.1: Selected ϕi during the layer-wise optimization for each layer of the
LeNet [15] CNN on the MNIST [16] dataset.

1 2 3 4 5 6 7 8 9 10
Number of bits to index the codebook (bindex)

4 16 64 256 1024
Number of shared values (ki)

-0.2%

0.0%

0.2%

0.5%

0.8%

1.0%

1.2%

1.5%

1.7%

Ac
cu

ra
cy

 lo
ss

 o
f t

he
 la

ye
r (

AL
)

illegal candidates
legal candidates
selected candidates

Figure 5.3: Studying the third layer of LeNet [15] sensitivity to compression by
varying the number of shared values and measuring the resulting AL.

step for the first layer as an example. In the figure, illegal candidates (red cir-
cles) are the solutions leading to an AL greater than the quality target, while
the legal candidates (empty blue circles) are the solutions within the AL con-
straint. Among the legal candidates, the selected candidates (full blue circles)
are those leading to the best AL within each bindex. As shown in the figure,
ϕi = {16, 32, 39, 79, 206, 371, 569} contains a significantly smaller subset of the
initial krange. This is exactly the objective of this layer-wise optimization, re-
ducing the search space to only the most interesting candidates. Due to the
larger number of layers compared to LeNet [15], the search space reduction is
even greater.

52

16 64 256 10248 32 128 512
Number of shared values (ki)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%
Ac

cu
ra

cy
 lo

ss
 o

f t
he

 la
ye

r (
AL

)
illegal candidates
legal candidates
selected candidates

Figure 5.4: Results of the Layer-Wise exploration on the first layer of the Mo-
bileNetV2 [13], AL is obtained on a small subset of the validation set (10%).

5.3 Approximated Layer Combination

5.3.1 Stating the combination problem

The second sub-problem is to find the Pareto efficient combinations of approxi-
mated CNNs that can be described by their ktuple = {ki ∈ ϕi}∀i ∈ [1 : N]. The
still large number of possible combinations:

O(
N+1∏
i=1

|ϕi|) (5.3)

makes the exhaustive search far from tractable for a large network.
Still, for LeNet [15], the reduced number of layers (N = 5) allows for the

exhaustive search of all the layer combinations to validate the precision of the
prediction model. The LeNet [15] used as the baseline input CNN is a self-
trained model achieving 0.9% top-1 accuracy on the MNIST [16] dataset, the
selected MLPerf quality target is 99% of the baseline accuracy. The combination
of the different ki ∈ ϕi into ktuple represents 48600 possible candidate solutions.
To validate the proposed method the scoring of each of the solutions has been
performed, taking roughly 2 hours on our GPU server (see Appendix A.2).
From the results, it appears that almost 83% of the candidate solution leads to
AL complying with the selected MLPerf quality target, among these, 9 of them
are Pareto efficient, and thus, the most interesting for our optimization problem.
Figure 5.5 shows the resulting AL and CR obtained from scoring these 48600
possible combinations. Illegal candidates that do not comply with the MLPerf

53

4 6 8 10 12 14 16 18
Compression Rate

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%
Ac

cu
ra

cy
 L

os
s [

%
]

illegal candidate
legal candidate
Pareto efficient

Figure 5.5: Exhaustive search of the 48 600 possible combinations of ki ∈ ϕi for
LeNet [15] on the MNIST [16] dataset.

quality targets are shown in red, and legal candidates in blue, it is interesting
to see that among these legal candidates, a few of them are Pareto dominating
the others. Some candidates achieved slightly better accuracy compared to
the baseline (negative AL), the largest absolute improvement is 0.3% and is
probably an artifact of noise-induced on the trained weights.

As the search space size is exponential to the number of layers N , it is
not possible to explore it using an exhaustive search for large CNNs. Like
MobileNetV2 [13] with 53 layers, giving a time complexity of about O(n53). To
address this problem, it is proposed the use of a meta-heuristic algorithm, to
find a set of Pareto efficient ktuple w.r.t. AL and CR. From the large collection
of meta-heuristics algorithms, there is a need for selecting a multi-objective
(AL, and CR) population-based algorithm to obtain a set of Pareto efficient
approximated CNNs. It is proposed to use the genetic algorithm NSGA-II [25]
(see Appendix A.1.2) that uses a Pareto efficiency criterion to select the best
candidates from a population and apply both random mutations to benefit from
exploration improvements, and random breeding, to benefit from exploitation
improvements.

There is a need to represent the proposed problem in generic optimization
terms to solve it using NSGA-II. The objective metrics are both the AL, and
the CR of the approximated CNNs. The parameters characterizing a candidate
are the values of the ktuple and are bounded to the indexes of the respective
corresponding ϕi. To evaluate the CR, it is possible to use the analytical Equa-

54

tion 4.1, but evaluating the AL requires applying the clustering corresponding
to the ktuple and performing the scoring of the approximated CNN over the
validation dataset. A genetic algorithm such as the NSGA-II requires to define
a population size P and to iterate a certain number of times #it to converge
towards a Pareto efficient population. Each of the iterations has the complex-
ity of P ×N layer clustering and P approximated CNN scoring. the resulting
complexity of the NSGA-II algorithm is:

O(P ×#it), (5.4)

it has bounded and predictable time complexity whereas the exhaustive search
has a time complexity exponential to the number of layers N .

Comparing the proposed NSGA-II [25] exploration with the exhaustive
search shown in Figure 5.5 for LeNet [15] trained on the MNIST [16], by
using a population P = 100 and the number of iterations is it = 100 allows for
quickly evaluating the fitness of the exploration. Figure 5.6 shows the result-
ing difference between the two Pareto fronts obtained for the legal candidates.
Despite the NSGA-II [25] missing some of the best candidates, it can capture
a proper representation of the design space. Regarding the convergence of the
NSGA-II [25] algorithm, Figure 5.7 shows the history of the same experiment,
and it is clear that the algorithm has converged as Pareto front are confused
from the 10th iteration. The direct conclusion of the study of this history is that
increasing the number of iterations will not allow the heuristic for reaching the
real Pareto-efficient candidates found by exhaustive search.

Tuning the NSGA-II hyper-parameters requires some manual exploration,
the first need is to tune P , and #it. The experiments are conducted on Mo-
bileNetV2 [13] using the reduced search space obtained in the experiments
conducted in Section 5.2. The tested hyper-parameters set is P ∈ 100, and
#it = 10 × k ∀ k ∈ [1, 10], there is a need to run only two experiments with
varying P and using the max #it values, and reporting the results every 10#it.
Allowing us to see the Pareto front evolution for both experiments. From the
results shown in Figure 5.8, it is possible to note that the Pareto improvement
at #it = 100 over the random init at #it = 1 is very significant, resulting in
more than 8× compression while complying with the MLPerf [7] quality con-
straints in terms of accuracy. These results are very compelling since they are
proving that the compression of a challenging CNN such as MobileNetV2 [13]
can be achieved using this approach.

The results of the NSGA-II [25] exploration are acceptable, but the explo-
ration is very limited by the computational complexity of the clustering and
scoring steps, composing the evaluation of the AL for candidates approximated
CNNs. The number of approximated CNN evaluations that have been neces-
sary is P × #it = 10000 and has taken a total of 6.4 hours for scoring on the
GPU server (see Appendix A.2). Using both approximate scorings on 10% of
the dataset and batch scoring to reduce the computational complexity of the
scoring (see Appendix A.3 for more details). As an example, an exploration
with P = 100,#it = 100 requires the evaluation of 10k approximated CNNs,

55

6 8 10 12 14 16
Compression Rate

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%
Ac

cu
ra

cy
 L

os
s [

%
]

Exhaustive Search
NSGA-II

Figure 5.6: An exhaustive search of the 48 600 possible combinations of ki ∈ ϕi,
and an NSGA-II [25] exploration for LeNet [15] on the MNIST [16] dataset.

resulting in more than 10 hours of evaluation considering the use of a 10% sub-
set of the validation dataset for scoring and scoring the approximated CNNs in
batch (see Appendix A.3 for more details). A possible solution is to make use
of statistical evaluation solutions instead of computational evaluation, allow-
ing to further improve the results obtained by allowing a more comprehensive
exploration.

5.3.2 Statistical evaluation of the approximations

To alleviate the cost of the computationally intensive clustering and scoring step
for measuring the AL of an approximated CNN, it is possible to use a statistical
model. When studying a single layer, it is possible to use a proxy metric to
evaluate an approximated CNN, like the inertia that was used in Chapter 1.
Obtaining a statistical approximation of the AL for a given approximated CNN
requires aggregating the proxy metrics of each layer composing it. An experi-
ment is conducted on varying the aggregation method used on the approximated
layers proxy metrics for a set of approximated CNNs which is a random sub-
sampling of 1024 approximated CNNs among all the possible combinations of
ktuple composed of ki ∈ ϕi obtained from the layer-wise optimization. The base-
line CNN is MobileNetV2 [13] trained on the ImageNet [18] dataset. Two naive
aggregation metrics are explored, the sum of each approximated layer’s inertia
and the weighted arithmetic average of the inertia by the number of weights of

56

4 6 8 10 12 14 16 18
Compression Rate

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%
Ac

cu
ra

cy
 L

os
s [

%
]

iteration 1
iteration 10
iteration 50
iteration 100
MLPerf limit

Figure 5.7: An NSGA-II [25] exploration for LeNet [15] on the MNIST [16]
dataset, with history displayed. AL is obtained by scoring on 10% of the dataset,
explaining the noise compared to Figure 5.6

the layer. Results are shown in Figure 5.9, it is clear that there is no correlation
between the aggregated metrics and the top-1 AL.

Has been shown in Figure 4.6 the inertia and AL correlation is very different
in two different layers, a direct implication is that it is not possible to make
any assumption of the AL with naive metrics aggregation like the sum or the
weighted average. There is a need for a more complex aggregation function.
Taking into account the resilience of each layer to approximation is possible by
using a coefficient for each layer, this is exactly what is done with multivariate
linear regression. The resulting regression model follows the formula:

AL(ktuple) =

N+1∑
i=1

αi ∗ inertiai, (5.5)

with inertiai being the measured inertia during the local optimization for the
layer i ∈ N compressed using ki shared values, and αi is a trained coefficient.
The linear regression model gives a statistical approximation of the resulting
AL for CNN compressed with a specific ktuple. But there is a need to train the
alphas coefficients, to that extend, training data must be collected.

Training data collection requires to sample the search space, to that extent,
a large collection of Design of Experiments (DoE) techniques can be applied,
from the naive uniform random sub-sampling already used for the experiment

57

4 6 8 10 12 14 16 18
Compression Rate

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Ac
cu

ra
cy

 L
os

s [
%

]

iteration 1
iteration 10
iteration 50
iteration 100
MLPerf limit

Figure 5.8: Results of the meta-heuristic exploration of the combinations for
MobileNetV2 [13], AL is obtained on a small subset of the validation set (10%).

5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0% 45.0%
Top-1 Accuracy Loss [%]

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

No
rm

al
ze

d
ag

gr
eg

at
io

n

Sum
Weighted average

Figure 5.9: Correlation between the sum, and the weighted average of the inertia
with AL for MobileNetV2 [13].

58

Sampling method Regression R² RMSE MAE

Latin hypercube (simple) [165] 0.85 0.021 0.016
Latin hypercube (space-filling) [165] 0.81 0.021 0.016
Random k-means cluster [14] 0.92 0.017 0.012
Maximin reconstruction [166] 0.81 0.022 0.016
Halton sequence based [167] 0.84 0.021 0.017
Uniform random 0.81 0.021 0.016
Box-Behnken [164] 0.86 0.0045 0.0035

Table 5.2: Measuring the R2 error obtained by training a multivariate regres-
sion model to predict the accuracy of the network from the inertia of the com-
posing layers. Using multiple DoE techniques using MobileNetV2 [13] on the
ImageNet [18] dataset. Taking the reduced search space, ϕi, obtained from
layer-wise exploration as the input search space to be sampled.

described in Figure 5.9, to a more complex sampling method optimizing the
selected samples spanning across the search space. To compare the quality of
different DoE techniques, it is required to run experiments, taking the same
experimental setup as the one of Figure 5.9, using MobileNetV2 [13] and the
ImageNet [18] dataset. A collection of representative DoE techniques, are tested
to sample the search space, if the techniques allow selecting the number of
samples, it is set to 5513 which is the size of the Box-Behnken [164] for the
specific problem, allowing for a fair comparison with the same number of samples
for each technique. Table 5.2 presents the obtained results, the metric of
evaluation for the DoE techniques is the coefficient of determination, noted R2,
of the multivariate linear regression model trained on the sampled search space,
using 80% of the samples for the training of the regression model, and the 20%
remaining for measuring the R2, the Root Mean Squared Error (RMSE), and
the Mean Absolute Error (MAE). From the obtained results, it appears that
most sampling methods give R2 in the range [0.80, 0.86] whereas the random
k-means cluster-based selection can give better results on the test dataset, with
R2 = 0.95. Due to the very large size of the search space, most techniques
seem to have failed to capture the exploration range and are performing almost
the same as random sampling (Uniform random in the table). From these
experiments, it is possible to conclude that spreading the samples across the
search space is difficult, but the random k-means cluster-based technique seems
to perform better than others, this sampling technique will be used in subsequent
experiments.

Taking a look at the obtained approximated CNNs from sampling the search
space with the different DoE techniques, it appears that each produces a simi-
lar Pareto front in the objective space. The results are shown in Figure 5.10,
representing the achieved CR and the AL of the Pareto efficient sampled ap-
proximated CNNs. A first observation is that most of the techniques performed

59

4 5 6 7 8 9
Compression Rate

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

20.0%
Ac

cu
ra

cy
 L

os
s [

%
]

Latin Hypercube (space-filling)
Maximin reconstruction
Halton sequence
Random k-means cluster
Uniform random
Latin Hypercube (simple)
Box-Behnken
MLPerf limit

Figure 5.10: Comparing the Pareto efficient approximated CNN obtained with
different DoE techniques for MobileNetV2 [13].

better than the uniform random, except for the box-Behnken, despite achieving
an impressive R2 score, it lacks some performance in the objective space, mean-
ing that the resulting linear regression model will lack knowledge of the region
of interest featuring AL complying with the MLPerf quality target. From the
others techniques performing better than random uniform, it seems that ran-
dom k-means is the best technique regarding the Pareto front. Unless specified,
the random k-means sampling technique will be used in further experiments.

Further to the search space sampling technique, it is interesting to investigate
the metrics that are used as independent variables for the multivariate linear
regression model. For now, the conducted experiments relied on the use of
inertia as it has been proven to correlate with the accuracy in Figure 4.6.
Other metrics can also be investigated, like the ki of the layers, or the measured
AL of the approximate layer during the layer-wise exploration, ALlocal(ki). To
investigate the fitting of the metrics for regression, it is possible to compare
the obtained R2 of regression models trained using different metrics. To that
extent, the same experimental setup is used (using MobileNetV2 [13] and the
ImageNet [18] dataset). Table 5.3 summarizes the result of the comparison,
using metrics obtained from a 5000 uniform random sampling of the search
space reduced by the layer-wise exploration. It is clear that relying only on
the ki values is not enough to predict the behavior of an approximated CNN,
whereas both ALlocal(ki) and inertia(ki) give promising results. The inertia
will be used in the subsequent experiments because it is less costly to measure

60

Metric Regression R²

ki 0.19
inertia(ki) 0.81
ALlocal(ki) 0.79

Table 5.3: Measuring the R2 error obtained by training a multivariate linear
regression model to predict the accuracy of the network from various metrics.
Using MobileNetV2 [13] on the ImageNet [18] dataset.

as it does not require a costly scoring step on the validation dataset.
Once trained, the regression model can be used to perform the prediction of

the AL of an approximated CNN with a given ktuple from the corresponding in-
ertia values. It is possible to use such a model to accelerate the convergence of a
heuristic algorithm such as the NSGA-II [25] used earlier. To assert the feasibil-
ity and measure the resulting speedup and quality of the results, it is required to
run experiments. Using the same experimental setup (using MobileNetV2 [13]
and the ImageNet [18] dataset). Figure 5.11 compares the obtained population
at the end of the NSGA-II [25] with evaluating the AL both with the dataset
scoring and with the statistical regression model. The Pareto front is very sim-
ilar but the regression allows for the convergence of the algorithm toward the
region of interest located under the MLPerf [7] quality constraint. The execution
of the NSGA-II [25] optimization with regression takes only 1 minute instead of
the 6.4 hours with scoring, resulting in a 380× speedup, even considering the
3.2 hours of the search space sampling required to train the regression model,
the speedup is still 2×.

Further to the comparison of the heuristic exploration with and without the
regression, it is also possible to evaluate the Pareto front improvement compared
to the one obtained with the search space sampling used during the training of
the linear regression model. Figure 5.12 shows that there is a clear improvement
in the samples obtained with the NSGA-II [25] over the samples obtained with
random k-means sampling of the combination space.

Fig. 5.13 shows a conceptual view of the proposed heuristic for the approx-
imated layer combination. The input is a set of ϕi selected locally-best-found
approximated version of layers. The output is a set of Pareto efficient approxi-
mated CNNs representing the trade-offs between the AL and the CR. The figure
also shows how each sub-problem is solved in multiple sub-steps. A DoE tech-
nique is used to sample the search space, the candidates of the sampled search
space are evaluated and a regression model is trained to predict the AL of each
approximated CNN, then, the regression model is used to accelerate the meta-
heuristic search of the Pareto efficient approximated CNN regarding AL and
CR.

61

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Compression Rate

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

Ac
cu

ra
cy

 L
os

s [
%

]

With dataset evaluation
With statistical regression
MLPerf limit

Figure 5.11: Comparing the results of the meta-heuristic exploration of the
combinations for MobileNetV2 [13] with and without the regression model to
predict the AL.

62

109876543
Compression Rate

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Ac
cu

ra
cy

 L
os

s [
%

]

Random K-means Sampling
NSGA-II with regression
MLPerf limit

Figure 5.12: Comparing the results of the meta-heuristic exploration of the
combinations for MobileNetV2 [13] using regression with the results obtained
from the search space sampling, samples are scored on 10% of the ImageNet [18]
validation dataset.

63

Layer-Wise Optimization Approx. Layer Combination

Sampling

NSGA-II

Approx
CNN

Train Regression

Candidates Evaluation
Layer Sensitivity Analysis

Candidates Evaluation

Select Optimal ki

Trained
CNN

Validation
data

krange

Φi

Figure 5.13: Conceptual view of our weight-sharing optimization heuristic, with
approximated layer combination detailed.

5.4 Applying the Proposed Method on Several
SoTA CNNs

The same compression flow is applied to all CNNs with the following param-
eters: the dataset used for scoring during the exploration is a subset of the
ImageNet [18] validation dataset containing 10% of the 50,000 samples. The
krange used during the layer-wise optimization is a logarithmic range with 100
values between 2 and 1024. The number of samples used to train the linear re-
gression model is 5,513, the selected DoE technique is random k-means sampling.
The NSGA-II [25] algorithm is set to run with a population of 100 candidates
for 500 generations with default mutation and crossover values of 0.2 and 0.9
respectively. All the reported AL values are measured on the entire validation
dataset.

To evaluate the proposed heuristic approach, it is required to apply it to a
representative set of recent image classification CNNs. The selected representa-
tive CNNs can be separated into two categories: (1) light CNNs are optimized
to run on resource-constrained devices, whereas (2) heavy CNNs exclusively fo-
cus on top-1 accuracy. GoogleNet [27], ResNet50V2 [24], and InceptionV3 [28]
belong to the heavy category, while MobileNetV2 [13] and the various Efficient-
Nets [26] belong to the light category. This clustering has been performed fol-
lowing MLPerf [7] recommendations, each category has different quality targets
(i.e., 99% and 98% of FP32 precision for heavy and light CNNs, respectively).
For each targeted CNN, it is important to count the number of layers of interest
that are targeted by the proposed compression method (fully connected and
convolutional layers) composing the CNNs, because the count indicates the size
of the search space, which grows exponentially with the number of layers.

Table 5.4 reports the results for the conducted experiments. The MLPerf [7]
category of the CNN is reported first. The reported baseline memory in the
table is the size required to store the 32-bit weights of the baseline CNNs in
memory. The top-1 accuracy indicates the baseline top-1 classification accuracy.
Finally, the min. and max. CR values represent the minimum and maximum CR
values of the approximated CNNs found by the proposed compression method

64

Network
MLPerf
category

#Layer
Baseline

Mem. [MB]
Top-1

Accuracy [%]
CR

min, max

GoogleNet heavy 58 50 69.7 5.4
ResNet50V2 heavy 54 97 76.0 5.3, 5.6
InceptionV3 heavy 2.8 104 77.2 4.7, 5.3

MobileNetV2 light 53 13 71.9 4.4, 5.7
EfficientNetB0 light 82 20 76.4 4.5, 5.6
EfficientNetB1 light 116 30 78.4 4.3, 5.3
EfficientNetB2 light 116 35 79.8 3.5, 5.3

Table 5.4: Compression results on different CNNs on the ImageNet [18] dataset
under MLPerf [7] quality target constraints.

complying with the corresponding MLPerf [7] quality target.
On each of the tested CNNs, the proposed WS method is always capable

of significantly compressing the baseline reference, by consistently achieving
over 5× CR. Importantly, the compression is achieved without requiring the
intervention of an expert for manually tuning the kis and without involving any
retraining, fine-tuning, or calibration steps. Furthermore, there is little to no
difference in the achieved CR for the different MLPerf [7] categories.

A graphical view of the results is shown in Fig. 5.14, with the light CNNs
on the left and the heavy ones on the right. The figure depicts the association
between the minimum memory size required to store all the weights and the
top-1 accuracy of each CNN instance. Achieving the best trade-offs between the
AL and the CR often requires exploring multiple CNN topologies with multiple
levels of approximation. Accordingly, the proposed method finds Pareto optimal
trade-offs between accuracy and memory footprint to facilitate the selection of
the most suitable CNN instance for any given application.

5.5 Regression of the approximated CNN with-
out layer-optimization

One can argue that a DoE technique can be used to sample the exhaustive search
space instead of sampling the search space of the combination of ki ∈ ϕi after the
layer-wise optimization. To evaluate the quality of the regression model trained
with different samples obtained using different DoE techniques, the same exper-
iments as the one for Table 5.2 on MobileNetV2 [13] with the ImageNet [18]
dataset are executed without prior layer-wise optimization knowledge. Table 5.5
reports the coefficient of determination R2 for both experiments, with and with-
out prior knowledge of the layer-wise optimization. The regression without the
layer-wise optimization is outperformed by the one with layer-wise optimization.
As the coefficient of determination states the variance expression, one can con-
clude that variance is better expressed when the design space is reduced before
sampling.

65

2.5 5 10 20 40

70

72

74

76

78

80

To
p-

1
A
cc

ur
ac

y
[%

]

MobileNetV2

EfficientNetB0

EfficientNetB1

EfficientNetB2Light
CNNs

Baseline CNN This work

5 10 20 40 80 160

GoogleNet

ResNet50

InceptionV3

Heavy
CNNs

Memory size required to store CNN weigths [MB] (log scale)

Figure 5.14: Comparison of different approximated CNNs characterized by their
top-1 accuracy and memory requirements on the ImageNet [18] dataset.

5.6 Conclusions

The objective of this approach compared to the previously presented greedy
approach in Chapter 4 is to use global objective metrics such as the CR and
AL of the whole approximated CNN instead of local objective metrics that can
fail to capture the behavior of the approximation. Using a two-step optimization
process with first a search space reduction, and second, an efficient exploration
based on the use of design space sampling and regression allows for such global
optimization of the number of shared values as a vector and not as an iterative
process.

The proposed approach was able to compress ImageNet [18]-class CNNs
over 5×, for both lightweight and heavyweight application targets such as the
representative MobileNetV2 [13] and ResNet50 [19]. Keeping the AL complying
with MLPerf [7] quality target.

Regarding the obtained ktuple at the end of the exploration, shown in Fig-
ure 5.15, the approximated CNNs do not share most of the ki values as it was
the case when executing the Algorithm 3, and as it can be observed in Fig-
ure 4.11. A conclusion is that the proposed algorithm can efficiently explore
the search space at a higher level, with a balance between exploration and ex-
ploitation. This can be explained by the use of high-level objective metrics like

66

Sampling method Number of Samples Regression R² with ϕi

Latin hypercube (simple) [165] 0.85 0.335
Latin hypercube (space-filling) [165] 0.81 0.47
Random k-means cluster [14] 0.92 0.48
Maximin reconstruction [166] 0.81 0.52
Halton sequence based [167] 0.84 0.40
Uniform random 0.81 0.47
Box-Behnken [164] 0.86 0.83

Table 5.5: Measuring the R2 error obtained by training a multivariate regression
model to predict the accuracy of the network from the inertia of the composing
layers. Using multiple DoE techniques using MobileNetV2 [13] on the Ima-
geNet [18] dataset. Taking the reduced search space obtained from layer-wise
exploration (See \ref{}) as the input search space to be sampled.

the CR and AL directly during the exploration.
Despite the use of a meta-heuristic optimization, the proposed approach still

depends on a krange possible number of shared values, adding a human bias in
the equation. It is clear that some of the layers in Figure 5.15 saturate at the
maximum possible number of shared values, 1024, and would have potentially
benefited from an increase of the search range, inducing enlarging the search
space and the complexity of the exploration.

A first comparison of the proposed approach with some variations including
the use or not of a design space sampling and a regression model for the ex-
ploration was proposed in Section 5.3. There is a need for further comparison
with other meta-heuristic approaches, as well as other state-of-the-art WS and
non-WS based compression approaches. This comparison is the object of the
next Chapter 6.

67

0 10 20 30 40 50
layer #

0

200

400

600

800

1000

Nu
m

be
r o

f s
ha

re
d

va
lu

es
 (k

i)

Figure 5.15: Resulting Pareto efficient ktuple after the execution of the proposed
divide & conquer approach on MobileNetV2 [13] on the ImageNet [18] dataset.

68

Chapter 6

Comparison state of the art
compression techniques

A comparison with other compression techniques is required to quantitatively
measure how the proposed approaches can efficiently explore the design space.
The comparison will be made first in Section 6.1 on the same problem of tun-
ing the number of shared values for each layer of a network using different ap-
proaches, including the approaches proposed in Chapter 4 and Chapter 5 with
the state of the meta-heuristics approaches, such as the NSGA-II [25].Then the
proposed compression flow will be compared with others WS techniques involv-
ing retraining in Section 6.2. Finally, an overture will be made by comparing
the proposed approach with non-WS-based state-of-the-art post-training com-
pression techniques in Section 6.3.

6.1 Comparison of the proposed flow with meta-
heuristic optimization

The first proposed comparison of the proposed greedy and divide & conquer ap-
proaches, is with a pure meta-heuristic approach, the already introduced genetic
algorithm NSGA-II [25].For a fair comparison, each algorithm is executed on
the same hardware with the same Pytorch [56] backend, and the same baseline
CNN, MobileNetV2 [13]. The exploration range is krange = [2, 1024], approxi-
mate scoring on 10% of the ImageNet [18] validation dataset is used, as well as
batched scoring of the network.

The greedy exploration algorithm has been set to use a filter value inerti-
aFilterRatio = 15% when applicable, as it was proven in Chapter 4 that it
provides the best trade-off between exploration time and exploration quality.
The exploration range used is linear. Two different versions of the algorithm
are applied: (I) single objective with the use of a proxy to filter out the worst
candidate, as described in Algorithm 2; and (II) multi-objective with the use

69

of a proxy to filter out the worst candidate and the local number of bits for
reducing the complexity of the search algorithm, as described in Algorithm 3.

The same divide & conquer approach described in Chapter 5 is applied,
with first a search space reduction with a layer-wise optimization and then
a combination exploration with the use of a meta-heuristic algorithm. Two
different processes are reported, (III) involving the use of approximate CNN
scoring during the NSGA-II [25]; and (IV) involving the use of DoE to sample
the search space and train a regression model, used during the NSGA-II [25]
exploration. The parameters for the search space reduction are the same for
both (III) and (IV), a logarithmic krange is used with 100 points. Concerning
the combination, the same mutation and crossover parameters are used, but
the population size and the number of iterations are greatly reduced for (III)
to allow for keeping the scoring count in a reasonable range. The population
size and the number of iteration is respectively (P = 100,#it = 100), and
(P = 500,#it = 200) for (III) and (IV).

The compared heuristic, (V) is a pure NSGA-II [25] exploration, the genetic
algorithm can efficiently explore the DSE as it has been proven by the work in
Chapter 5, here it is used without any prior search space reduction technique
or even DoE for sampling the search space and training a regression model. The
population size and the number of iterations is (P = 100,#it = 100), and the
default mutation and crossover values are used.

70

id Approach Section
Scoring
Count

Scoring Time
[hh:mm]

Clustering Time
[hh:mm]

Algorithmic
Overhead

Total Time
[hh:mm]

I Greedy SO (proxy) 4.4 7 874 04:06 00:38 2.48% 04:51
II Greedy MO 4.5 56 322 29:14 02:60 1.94% 32:51

III Divide & Conquer 5.3.1 14 352 07:27 00:56 2.48% 08:35
IV Divide & Conquer (regr.) 5.3.2 10 268 05:20 00:32 7.15% 06:19

V NSGA-II [25] - 10 098 05:15 00:60 2.41% 06:23

Table 6.1: Comparing the optimization computational cost for applying the 4 explored approaches on MobileNetV2 [13] trained
on the ImageNet [18] dataset. A scoring on 10% of the validation set is used for all approaches.

71

Each approach has been implemented in the same framework and running
on the same GPU server (see Appendix A.2) to guarantee execution time con-
sistency. Table 6.1 reports the computation time for the different optimiza-
tion approaches with previously stated hyper-parameters. The scoring count
reports the number of approximated version of the CNN that is scored over
the validation dataset. The scoring time and clustering time report the total
time spent scoring or clustering an approximated version of the CNN. The al-
gorithmic overhead reports the portion of the time spent in other tasks than
scoring and clustering. Finally, the total time reports the whole duration of
the complete optimization. There is a clear difference in exploration time be-
tween single candidate exploration, represented by (I), and population-based
exploration, represented by (II-VI), single candidate exploration is faster, but
lacks representation of the trade-off between AL and CR. From the population-
based exploration, (IV) and (V) are the fastest approaches, with almost the
same number of scoring around 10000, resulting in a very similar execution
time. The main difference between (IV) and (V) regarding the execution time
is the number of clustering and the algorithmic overhead, because in (IV), the
acceleration of the NSGA-II [25] evaluation with the statistical representation
of the design space allows for larger exploration with increased population size
and iteration count, resulting in a larger algorithmic overhead. Whereas in (V),
the evaluation of the candidates during the exploration requires more clustering
steps than required during the search space reduction step of (IV), considering
that every layer needs to be clustered for each approximated CNN in (V).

To compare the different heuristics on the quality of the exploration, there
is a need to compare the obtained Pareto-fronts of approximate CNNs. Fig-
ure 6.1 shows the different Pareto-fronts obtained with each of the previously
described heuristics I-V. Regarding the greedy algorithms, the single objective
(I) was able to find the solution featuring the lowest AL among all heuristics,
but this solution does not give a high compression rate, because the single objec-
tive is not capable of capturing the trade-off between AL and CR. Whereas the
multi-objective approach (II) is not showing a competitive Pareto-front, mostly
since local evaluation is not able to capture the behavior of the entire approx-
imated CNN, and the drastic filtering required to keep the number of trials
tractable hides potentially interesting candidates during the exploration. Con-
sidering the divide & conquer algorithms, the one relying on real evaluation of
the approximate CNNs is showing results outside of the region of interest, with
approximate CNNs not able to comply with the MLPerf [7] quality targets. The
last comparison with the proposed divide & conquer with statistical regression
approach (IV) is the NSGA-II [25] exploration (V), similar to (IV) but without
the prior search-space reduction. The divide & conquer approach (IV) shows
better exploration capabilities than the pure heuristic NSGA-II[25] (V), with
about 20% higher CR under the same quality targets constraints. Furthermore,
(IV) is particularly efficient at finding solution with lowest AL, which are the
most interesting solutions.

The results shown in this section prove that the proposed approach is able
to compete with meta-heuristic algorithms when it comes down to design space

72

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Compression Rate

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

Ac
cu

ra
cy

 L
os

s [
%

]

(I) Greedy Single Objective (proxy)
(II) Greedy Multi-objectives
(III) Divide & Conquer
(IV) Divide & Conquer (regression)
(V) NSGA-II
MLPerf limit

Figure 6.1: Results of the meta-heuristic exploration of the combinations for
MobileNetV2 [13], AL is obtained on a small subset of the validation set (10%).

73

exploration efficiency. The proposed divide & conquer approach allows for ap-
pealing results and can be used to compress significantly any of the tested
ImageNet [18] class CNNs.

6.2 Comparison with other WS techniques

To assess the quality of the proposed method to existing works, three recent
WS methods using GoogleNet [27] on the ImageNet [18] dataset are used as
comparison points.

Deep k-means [168] use the k-means objective metric (i.e., inertia, see Sec-
tion 4.4) as a regularization term of the loss function used during training. Ap-
plying such WS-aware training encourage weight grouping during the training,
which reduces the error introduced in the subsequent WS step. Deep k-means
specify the number of shared values of each layer using a fixed cluster rate de-
fined as the number of shared values ki divided by the number of weights of
the layer N . They report both the AL and the CR for GoogleNet [27] using
their method with and without retraining, the reported results are used for
comparison

The second method, named DP-Net [29], uses dynamic programming to
achieve the clustering instead of the k-means clustering algorithm. This brings
a performance improvement as well as a guarantee of the convergence of the
clustering compared to the highly-variable k-means complexity. The method
Also relies on a WS-aware training with a regularization term encouraging the
weight grouping during the training, inspired by Deep k-means [3].

Both methods reported results on the GoogleNet [27] CNN with the Ima-
geNet [18] dataset. The proposed Algorithm 2 is applied on the same CNN
model and dataset. More in detail, we use the available GoogleNet from the
Torchvision model zoo, achieving 69.78% top-1 accuracy on the ImageNet [18]
dataset with standard input pre-processing including normalization, re-scaling,
and center-crop. The inertiaF ilterRatio = 15% has been chosen because it has
been proven in previous sections that it can show the best trade-off between
computation time and result. Finally, it is important to stress the fact that
a fair comparison is only possible with Deep k-means [3] since it is the only
approach that reports results without using retraining.

The Table 6.2 shows the results of the comparison. The first column depicts
the method, the second specifies if the retraining phase is applied or not. Finally,
the third and fourth columns report the AL and CR respectively. As already
pointed out, the proposed approach does not use retraining, Deep k-means [3]
give results with and without it, while DP-Net [29] always uses retraining. The
proposed method achieves a higher CR than Deep k-means [3] at a lower ac-
curacy loss, even when compared with the approach involving retraining. For
similar CR (about 4x) the proposed approach achieved 0.83% AL while Deep
k-means [3] achieved 1.95% of AL. The DP-Net [29] approach can find a more
efficient solution by better leveraging the retraining phase.

Results of Table 6.2 showed that our approach is comparable with state-of-

74

Method Retraining Top-1 AL (%) CR

Deep K-means(2018)

No 1.22 1.5
No 3.7 2
No 13.72 3
No 48.95 4
Yes 0.26 1.5
Yes 0.17 2
Yes 0.36 3
Yes 1.95 4

DP-Net (2020)
Yes -0.3 7
Yes 1.56 10

Greedy (proxy) No 0.83 4.6
Divide & Conquer No 0.35 5.4

Table 6.2: Comparing our result with other weight sharing techniques on
GoogleNet [27] on the ImageNet [18] dataset using Algorithm 2.

the-art, even if no retraining is applied. Unfortunately, no data are reported
regarding the execution time of Deep k-means [3] and DP-Net [29] for further
comparison. However, the execution time of the proposed Algorithm 2 took less
than 6h on our on-premise GPU server (see Appendix A.2 for more details).
On the same machine with the same CNN model and dataset, 5h corresponds
to the time required to run about 5 epochs of retraining. We can thus project
that the exploration time of the proposed approach is far less than the required
retraining step of Deep k-means [3] and DP-Net [29], respectively 90 and 30
epochs.

6.3 Comparison with others non-WS-based
CNN Compression Techniques

Further to compare the obtained results with similar meta-heuristics approaches
and other WS techniques, it is possible to compare to state-of-the-art non-WS
compression techniques such as pruning and quantization techniques. As it
can be observed in Table 6.2, a fair comparison is only possible on post-training
compression techniques, that is why only post-training pruning and quantization
will be considered in this section. To that extent, three state-of-the-art post-
training compression techniques have been selected for comparison: (1) Post-
Training Pruning, (2) TFLite, and (3), PieceWise Linear Quantization.

The first comparison of the proposed method is with Post-Training Pruning
(PTP) [30], a state-of-the-art technique that achieves compression via pruning.
PTP includes MobileNetV2 [13]. In detail, PTP proposes a data-free weight
pruning approach based on automatically-generated synthetic fractal images
for retraining. This pruning step is then followed by post-training quantization,

75

resulting in an 8-bit sparse matrix representation. Theoretically, this would
lead to 6.7× CR on MobileNetV2 [13]. However, in practice, it is also necessary
to store indexes next to the sparse weight values. Without those indexes, it
would be impossible to recover the position of the weights. Accordingly, in
this comparison, the ideal case of just adding one 8-bit index per weight is
considered.

The second comparison is with the post-training quantization implemented
in the Tensorflow Lite [31] framework. The quantization scheme is based on
affine mapping of the real value onto quantized values, using two constant pa-
rameters to manage the scale and the offset of the values. A different set of
quantized parameters is used for each layer, it is obtained using a small set of
samples allowing to perform a calibration of the quantized values. This quanti-
zation scheme has the advantage of requiring very minimal hardware adaptation
to benefit from compression and acceleration. The paper includes compression
results on MobileNetV2 [13].

The third comparison is with PieceWise Linear Quantization (PWLQ) [32],
a post-training quantization technique designed for tensor values showing bell-
shaped distribution with long tails as they are often seen in CNN weights. The
method is based on assigning the quantization level using non-overlapping region
breaks with the same number of levels, allowing to distribute of the quantization
level over the distribution of the values with significantly more levels in low
magnitude regions with most of the values than the tails regions. The number
of regions directly impacts the hardware requirements and the accuracy of the
quantized representation, thus the problem can be stated as an optimization
problem. This quantization scheme allows for post-training quantization from
8-bit to 4-bit with very minimal AL. The paper includes compression results on
MobileNetV2 [13].

Figure 6.2 shows the comparison of the proposed divide & conquer approach
with the previously introduced non-WS-based post-training compression tech-
niques PTP [30], TFLite [31], and PWLQ [32]. The top-1 AL and the memory
size required to store the weights are considered as the comparison metrics.

The figure shows that the PTP [30] solution is Pareto-dominated by the
proposed divide & conquer WS compression technique. Considering that the
PTP [30] compression estimates are based on very optimistic assumptions, we
conclude that our method provides better accuracy-compression trade-offs. Re-
garding the comparison with TFLite [31], it is also Pareto-dominated by the
proposed divide & conquer WS compression technique.

Concerning the comparison with PWLQ [32], the method allow for better
accuracy-compression trade-offs, by showing very minimal AL. This can be ex-
plained by the fact that the weights are quantized per channel in PWLQ [32],
allowing a finer-grained approximation than the per-layer granularity used in
our experiments, resulting in a reduced approximation error.

76

2 4 8 16
Memory size required to store CNN weigths [MB] (log scale)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%
To

p-
1

Ac
cu

ra
cy

 [%
]

Baseline CNN
MLPERF limit
Divide & Conquer
PTP (ideal case)
PWLQ
TFLite

Figure 6.2: Comparison of obtained approximated CNNs with the proposed
method and PTP [30], PWLQ [32], and TFLite. CNNs are characterized by the
absolute AL measured on the ImageNet [18] and CR compared to the baseline
full precision version.

6.4 Conclusions

A broad comparison with different compression approaches has been presented
in this chapter, from the closest approach involving different meta-heuristics ad-
dressing the same problem of optimizing the number of shared values for each
layer, to more distant techniques addressing the problem of optimally group-
ing the weights with retraining, and finally, other post-training compression
techniques that do not involve WS.

From the current comparison, it is clear that the proposed method could
benefit from improvements such as the use of fine-tuning of the shared values
after the compression or the application of the WS per-channel instead of the
coarser grain per-layer application currently in use. Proving that the direction
taken after the study described in Figure 4.4, of sharing the values of the weights
inside the layer, is possibly not the optimal direction, and that sharing at the
level of the channel can result in significantly better approximation, both in
terms of AL and CR. This can be explained by the fact that the study was

77

conducted only on a small CNN that is highly resilient to approximation and
the extension to a larger CNN like MobileNetV2 [13] is required to conclude on
the appropriate granularity.

78

Chapter 7

Conclusions and
Perspectives

As a reminder, the goal of this thesis is to optimize the number of shared values
during the application of WS without any retraining step. The goal is to achieve
a significant compression of a baseline CNN with accuracy loss complying with
the MLPerf [7] quality constraints accepting accuracy over 99% of the baseline
CNN accuracy for heavyweight CNNs and 98% of the baseline CNN accuracy for
lightweight CNNs. Multiple heuristics have been explored and compared with a
focus on keeping the exploration time reasonable. This chapter summarizes the
main technical contributions of this thesis in Section 7.1, gives an exhaustive
list of the scientific dissemination of the conducted research in Section 7.2, and
concludes this thesis with perspectives on improving the proposed approaches
in Section 7.3.

7.1 Summary of the Technical Contributions

The first contribution of this thesis is the clear identification of the trade-offs
between AL and CR involved in the selection of the most suitable granularity,
as described in Section 4.1.

This early investigation work paved the way for the development of a frame-
work for automatic tuning of the number of shared values for each layer of a given
baseline CNN. This first framework was relying on the C-export of trained CNN
generated by the software N2D2 [17] to measure the AL of a certain approxi-
mation, and the use of sklearn [169] for applying the K-means [14] clustering
to the weights. This framework was mainly used to compress LeNet-5 [15] on
the MNIST [16] dataset, reaching CR over 9× at a very small AL of 0.05%.
The obtained results were the object of a publication [8]. The greedy algorithm
presented in Section 4.3 was used.

Scaling the framework to be able to use GPU for accelerating the infer-
ence required for evaluating the AL motivated the move from C-export from

79

N2D2 [17] to a more generic CNN representation like ONNX [21] using the
GPU runtime from MXNET [22]. Allowing to apply the compression technique
to ImageNet [18]-class CNN like ResNet [19] or MobileNet [44]. The orders
of magnitude increase in the number of weights also forced us to move from
sklearn [169] for applying the K-means [14] to the GPU, relying on the frame-
work kmcuda [23]. Further to these hardware and software moves, the increased
depth of CNN enlarged the search space and raised the problem of the algorith-
mic time complexity. The use of proxy metrics to accelerate the approximation
of ImageNet [18]-class CNNs as it was described in Section 4.4 was the object
of a conference publication [9]. This exploration process was able to achieve CR
over 5× at AL complying with the MLPerf [7] quality target for ResNet18v2 [24]
and SqueezeNet1.1 [20].

This last framework also paved the way to multi-objective optimization, of-
fering the possibility to evaluate quickly a compression level. The second metric
of interest representing the compression level of the layer was introduced as
described in Section 4.5, requiring the move from single-point optimization al-
gorithm to population-based with a local Pareto efficient selection strategy. The
use of the greedy optimization algorithm allowed for quickly setting up the com-
pression framework and obtaining very interesting results showing the trade-offs
between AL and CR inside the output population. Altogether with previously
obtained results, these results were the object of a journal publication [6] giving
all details on the work conducted with the greedy algorithm.

The local search nature of the greedy algorithm lacks global knowledge of the
approximation impact on the entire approximated CNN, and this has an impact
on the obtained results, as it is not capable of compressing efficient CNN such as
MobileNetV2 [13] under the MLPerf [7] quality target. There is a need to move
from the greedy optimization algorithm with a local scope to a meta-heuristic
approach relying on global metrics of interests such as the AL and the CR of
the whole approximated CNN. This is the object of subsequent works.

The issue with global optimization is the search space size, we addressed this
problem by creating an original divide & conquer strategy to first reduce the
search space and second efficiently explore it using a meta-heuristic optimization
algorithm such as the NSGA-II [25], allowing compression up to 6×, or merely
2× more than the greedy algorithm, still complying with the MPLerf [7] quality
target. This work was described in Section 5.2, and 5.3, the early results of
the application of this strategy on LeNet-5 [15] were the object of a workshop
publication [10].

Scaling the baseline CNN to ImageNet [18]-class CNN required the acceler-
ation of the combination step that has a larger time complexity than the search
space reduction step. To this extent, we have targeted the reduction of the
number of required scoring by using a statistical regression model trained on a
sampled search space as it was described in Section 5.3. Allowing to compress
MobileNetV2 [13] and others recent CNN over 5×, and complying with the
MLPerf [7] quality target. The results and an extensive study of the application
to a large pool of CNNs were the objects of a conference publication [11].

With the framework reaching the limits of available trained CNN in the

80

ONNX [21] representation, there was a need to move to other frameworks to
gain access to a community-backed model zoo as well as advanced scoring fea-
tures. We evolved the framework to use either Pytorch [56] or Tensorflow [55]
as backends for model representation and scoring. This last version of the
framework is also using Fast Kmeans Pytorch [170] to apply the K-means [14]
algorithm, because it proved itself to be faster than kmcuda[23] for 1D cluster-
ing, with an additional reduced number of copies in memory if the backend of
the CNN is Pytorch [56]. This last framework allowed for large-scale experi-
ments on state-of-the-art CNNs like EfficientNet [26] or Inception-V3 [28]. This
last framework was open-sourced on GitHub under Apache-2.0 license and is
intended to be reused as a block in a compression or deployment pipeline [52].

Further to proposing the divide & conquer strategy, there was a need to
compare it with another meta-heuristic optimization algorithm, like the NSGA-
II [25]. The two points of comparison were the execution time and the explo-
ration capabilities of the different heuristics, showing that the proposed divide
& conquer methods are very competitive heuristics on both execution time and
exploration capabilities. These comparisons are described in Section 6.1.

Another comparison was proposed, with other state-of-the-art WS tech-
niques involving retraining. Both DeepKmeans [3] and DP-Net [29], based on
regularized training that encourages weight grouping during training, were se-
lected as representative of the recent WS techniques. The proposed approach
was able to outperform DeepKmeans [3] on both execution time and compression
but was not able to outperform the very effective DP-Net [29] on compression.
Still, our methods have the major advantage of not requiring any retraining
step or access to a large training dataset. This comparison is the object of
Section 6.2.

Another relevant comparison was made with other non-WS-based tech-
niques, this is the object of Section 6.3. Three post-training compression
techniques were considered one sparse pruning, PTP [30] and two quantiza-
tion [31], [32], the only technique that was showing Pareto-dominating results
over the ones obtained using the proposed method was PWLQ [32], which has
the advantage of having a finer granularity over our method, being the grouping
of weights per-channel instead of the per-layer grouping that we have adopted.

7.2 Scientific Dissemination

This section gives a chronological enumeration of the scientific dissemination
of the work conducted for this thesis. Unless specified, my contribution to
each of the following is the development of the main idea, implementation, and
execution of experiments, writing, and presenting the paper.

1. The very first dissemination of the work has been a poster presentation of
the early results for compressing LeNet-5 [15]. The venue was the annual
symposium of the French research group GDR SOC2 on systems-on-chip,
embedded systems, and connected devices in June 2019.

81

2. The complete set of results for compressing LeNet-5 [15] using a heuris-
tic approach, proving that it is possible to apply WS without retraining
has been published as an interactive paper for the international confer-
ence DATE 2020, the format was a poster session transformed into video
presentation due to the COVID crisis. The paper is available in the pro-
ceedings [8]

3. The extension of this early work to ImageNet [18] class CNNs relying on
the use of inertia as a proxy metric for accelerating the exploration was
published at the international conference DDECS 2020, the format was a
conventional presentation, transformed into a video presentation with a
live discussion session. The paper is available in the proceedings [9].

4. This last conference publication gave access to an special issue in the jour-
nal Microelectronics Reliability, in which an extension of the work featur-
ing multi-objective exploration was published. The paper is available in
the journal [6]

5. In the meantime, the new divide & conquer approach has been developed,
with a publication of the early results in the form of a poster at the System-
level Design Methods for Deep Learning on Heterogeneous Architectures
(SLOHA) workshop happening as part of the DATE 2021 conference, the
format was a video presentation due to the COVID crisis. The paper is
available in open-access on ArXiv [10].

6. The joint effort of the AdequateDL consortium, aiming at accelerating
deep learning inference on hardware accelerator, in which this thesis reg-
istered, has been the object of a special presentation for the DDECS 2021
conference. The format was a video presentation in which I was presenting
my work, as well as the works of the other partners. The paper is available
in the proceedings [171]. My contribution to this paper is co-writing the
paper and presenting it.

7. The early results obtained with the divide & conquer method on Ima-
geNet [18] class CNNs was the object of a live poster session at the 2021
edition of the annual symposium of the French research group GDR SOC2.

8. The application of the proposed divide & conquer approach to a larger
number of CNN was the object of a live poster presentation at the HIPEAC
2021 Computing Systems Week.

9. The complete work on the divide & conquer approach was the object of
a conference presentation at the ASP-DAC 2022 conference, giving more
details on the approach as well as first comparison with other non-WS
based compression techniques such as pruning. The paper is available in
the proceedings [11]

10. An extensive survey of the acceleration techniques for the acceleration
of the training or the inference of CNNs was conducted collaboratively

82

with members of the AdequateDL consortium and was the object of the
publication of a chapter in an approximate computing book. The chapter
is available in the book [12].

11. The summary of this thesis work has been the object of a poster presen-
tation at the DATE 2022 Ph.D. Forum.

12. The extension of the divide & conquer method with a focus on studying
different DoE techniques and comparison of the proposed approach with
standard approach highlighting the benefits of the design & conquer strat-
egy, as well as the use of regression to accelerate the training, has been
the object of an open-access journal publication in IEEE ACCESS 2022,
currently under the revision process.

To quantitatively summarize the dissemination of the work conducted during
this thesis, please find details in Table 7.1.

Book Chapter 1
Journal 1 (+1)
International Conferences with Proceedings 4
Other Conferences and Symposiums 5

Table 7.1: Quantitative summary of the scientific dissemination.

7.3 Perspectives

The work conducted in this thesis is among the first using heuristic approaches
to optimize the WS for CNN compression, tackling the problem of the retraining
cost with an adapted approximation. Paving the way for several more research
directions, this section is intended to give an overview of the possible research
directions.

1. The very first research direction can complete the work achieved using the
greedy algorithm, by investigating another approach than n-bit selection
for greedy multi-objective, such as the k-means algorithm for grouping
the candidates and keeping the closest candidate to the centroids of each
cluster, allowing to limit the number of the explored path the same way
the number of bits does, but with high-level metrics such as the CR.

2. Another path that will be very interesting to explore is changing the shar-
ing granularity to use hardware-oriented sharing granularity, the same way
Deep-k-means [3] used RS dataflow oriented granularity. A heuristic ap-
proach such as the ones used in this thesis could potentially allow for even
more memory footprint compression at the same quality targets compared
to the use of a homogeneous or manually tuned number of shared values.

83

3. Further to this retraining-free approach, a calibration or small fine-tuning
can be achieved, allowing to benefit of the fast exploration of the design
space and the enhancement of the best solutions found, with a highly
reduced number of candidates.

4. It would also be interesting to investigate the use of other metrics than CR
like the weight loading cost as described in Deep-k-means [3]. This has not
been explored during this thesis as this requires selecting a target platform
and to optimize the CNN for this platform, whereas the approach taken
in this thesis was to explore the potential of the design space exploration,
without focusing the contribution on a specific hardware target.

5. The proposed divide & conquer approach has been developed in a very
network agnostic fashion, allowing it to be applied to virtually any CNN
featuring weights. But it is also very close to approximation-agnostic,
potentially allowing the application to any hyper-parameter tuning for
other non-WS approximation techniques such as pruning or quantization,
as long as it targets CNNs.

84

Bibliography

[1] V. Sze, Y. Chen, T. Yang, and J. S. Emer, ‘Efficient processing of deep
neural networks: a tutorial and survey’, Proceedings of the IEEE, 2017.
doi: 10.1109/JPROC.2017.2761740.

[2] S. Han, H. Mao, and W. Dally, ‘Deep compression: compressing deep
neural network with pruning, trained quantization and huffman coding’,
arXiv: Computer Vision and Pattern Recognition, 2016.

[3] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin, ‘Deep
k-means: re-training and parameter sharing with harder cluster assign-
ments for compressing deep convolutions’, ArXiv, vol. abs/1806.09228,
2018.

[4] S. Son, S. Nah, and K. M. Lee, ‘Clustering convolutional kernels to com-
press deep neural networks’, in ECCV, 2018.

[5] E.-V. Pikoulis, C. Mavrokefalidis, and A. Lalos, ‘A new clustering-based
technique for the acceleration of deep convolutional networks’, Dec. 2020,
pp. 1432–1439. doi: 10.1109/ICMLA51294.2020.00222.

[6] E. Dupuis, D. Novo, I. O’Connor, and A. Bosio, ‘CNN weight sharing
based on a fast accuracy estimation metric’, Microelectronics Reliability,
vol. 122, 2021, issn: 0026-2714.

[7] P. Mattson, C. Cheng, C. Coleman, et al., MLPerf training benchmark,
2020. arXiv: 1910.01500 [cs.LG].

[8] E. Dupuis, D. Novo, I. O’Connor, and A. Bosio, ‘On the automatic explo-
ration of weight sharing for deep neural network compression’, in Proceed-
ings of the 23rd Conference on Design, Automation and Test in Europe,
ser. DATE ’20, Grenoble, France: EDA Consortium, 2020, pp. 1319–1322,
isbn: 9783981926347.

[9] E. Dupuis, D. Novo, I. O’Connor, and A. Bosio, ‘Sensitivity analysis and
compression opportunities in dnns using weight sharing’, 2020 23rd In-
ternational Symposium on Design and Diagnostics of Electronic Circuits
& Systems (DDECS), pp. 1–6, 2020.

[10] E. Dupuis, D. Novo, I. O’Connor, and A. Bosio, ‘Fast explo-
ration of weight sharing opportunities for cnn compression’, ArXiv,
vol. abs/2102.01345, 2021.

A

[11] ——, ‘A heuristic exploration of retraining-free weight-sharing for cnn
compression’, 2022 27th Asia and South Pacific Design Automation Con-
ference (ASP-DAC), vol. 134-139, 2022.

[12] E. Dupuis, S.-I. Filip, O. Sentieys, D. Novo, I. O’Connor, and A. Bosio,
‘Approximations in Deep Learning’, 2022. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-03494874.

[13] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘MobileNetV2: inverted residuals and linear bottlenecks’, Proceedings of
CVPR, 2018.

[14] J. A. Hartigan and M. A. Wong, ‘A k-means clustering algorithm’, JS-
TOR: Applied Statistics, vol. 28, no. 1, pp. 100–108, 1979.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘Gradient-based learn-
ing applied to document recognition’, Proceedings of the IEEE, vol. 86,
no. 11, 1998, issn: 0018-9219. doi: 10.1109/5.726791.

[16] Y. LeCun and C. Cortes, ‘MNIST handwritten digit database’, 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/.

[17] CEA-LIST, N2D2, https://github.com/CEA-LIST/N2D2, [Accessed:
Dec-2019]. (visited on 09/04/2019).

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘ImageNet:
A Large-Scale Hierarchical Image Database’, in Proceedings of CVPR09,
2009.

[19] K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep residual learning for image
recognition’, CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385.

[20] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K.
Keutzer, ‘Squeezenet: alexnet-level accuracy with 50x fewer parameters
and ¡1mb model size’, CoRR, vol. abs/1602.07360, 2016. arXiv: 1602.
07360. [Online]. Available: http://arxiv.org/abs/1602.07360.

[21] J. Bai, F. Lu, K. Zhang, et al., Onnx: open neural network exchange,
https://github.com/onnx/onnx, 2019.

[22] T. Chen, M. Li, Y. Li, et al., ‘Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed systems’, CoRR,
vol. abs/1512.01274, 2015. arXiv: 1512.01274. [Online]. Available: http:
//arxiv.org/abs/1512.01274.

[23] V. Markovtsev and M. Cuadros, Src-d/kmcuda: 6.0.0-1, version v6.0.0,
Feb. 2017. doi: 10.5281/zenodo.286944. [Online]. Available: https:
//doi.org/10.5281/zenodo.286944.

[24] K. He, X. Zhang, S. Ren, and J. Sun, ‘Identity mappings in deep residual
networks’, ArXiv, vol. abs/1603.05027, 2016.

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘A fast and elitist
multiobjective genetic algorithm: NSGA-II’, IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, 2002.

B

[26] M. Tan and Q. V. Le, ‘EfficientNet: rethinking model scaling for convo-
lutional neural networks’, ArXiv, vol. abs/1905.11946, 2019.

[27] C. Szegedy, W. Liu, Y. Jia, et al., ‘Going deeper with convolutions’,
CoRR, vol. abs/1409.4842, 2014. arXiv: 1409.4842.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘Rethinking
the Inception architecture for computer vision’, Proceedings of CVPR,
2016.

[29] D. Yang, W. Yu, A. Zhou, H. Mu, G. Yao, and X. Wang, ‘DP-Net:
dynamic programming guided deep neural network compression’, ArXiv,
vol. abs/2003.09615, 2020.

[30] I. Lazarevich, A. Kozlov, and N. Malinin, ‘Post-training deep neural
network pruning via layer-wise calibration’, ArXiv, vol. abs/2104.15023,
2021.

[31] B. Jacob, S. Kligys, B. Chen, et al., ‘Quantization and training of neural
networks for efficient integer-arithmetic-only inference’, 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2704–2713,
2018.

[32] J. Fang, A. Shafiee, H. Abdel-Aziz, D. Thorsley, G. Georgiadis, and J.
Hassoun, ‘Post-training piecewise linear quantization for deep neural net-
works’, in ECCV, 2020.

[33] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Ade-
tunmbi, and O. E. Ajibuwa, ‘Machine learning for email spam filtering:
review, approaches and open research problems’, Heliyon, vol. 5, 2019.

[34] H. Lu and X. Ma, ‘Hybrid decision tree-based machine learning mod-
els for short-term water quality prediction.’, Chemosphere, vol. 249,
p. 126 169, 2020.

[35] S. L. Shylaja, S. Fairooz, J. Venkatesh, D. Sunitha, R. P. Rao, and
M. R. Prabhu, ‘Iot based crop monitoring scheme using smart device
with machine learning methodology’, Journal of Physics: Conference Se-
ries, vol. 2027, 2021.

[36] K. R. Dahal, J. N. Dahal, H. Banjade, and S. Gaire, ‘Prediction of wine
quality using machine learning algorithms’, Open Journal of Statistics,
vol. 11, pp. 278–289, 2021.

[37] D. Varmedja, M. Karanovic, S. Sladojevic, M. Arsenovic, and A. Anderla,
‘Credit card fraud detection - machine learning methods’, 2019 18th In-
ternational Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–5,
2019.

[38] M. N. Ashtiani and B. Raahemi, ‘Intelligent fraud detection in finan-
cial statements using machine learning and data mining: a systematic
literature review’, IEEE Access, 2021.

C

[39] G. Venture, B. Muraccioli, M.-L. Bourguet, and J. Urakami, ‘Can robots
be good public speakers?’, Sixteenth International Conference on Tangi-
ble, Embedded, and Embodied Interaction, 2022.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘Imagenet classification
with deep convolutional neural networks’, Communications of the ACM,
vol. 60, pp. 84–90, 2012.

[41] O. Russakovsky, J. Deng, H. Su, et al., ‘ImageNet Large Scale Vi-
sual Recognition Challenge’, International Journal of Computer Vision
(IJCV), vol. 115, no. 3, pp. 211–252, 2015. doi: 10.1007/s11263-015-
0816-y.

[42] E. Strubell, A. Ganesh, and A. McCallum, ‘Energy and policy consider-
ations for deep learning in nlp’, ArXiv, vol. abs/1906.02243, 2019.

[43] T.-J. Yang, Y.-h. Chen, and V. Sze, ‘Designing energy-efficient con-
volutional neural networks using energy-aware pruning’, Proceedings of
CVPR, 2017.

[44] A. Howard, M. Zhu, B. Chen, et al., ‘MobileNets: efficient con-
volutional neural networks for mobile vision applications’, ArXiv,
vol. abs/1704.04861, 2017.

[45] Y. Hu, J. Li, X. Long, et al., ‘Cluster regularized quantization for deep
networks compression’, in Proceedings of ICIP, 2019.

[46] K. Ullrich, E. Meeds, and M. Welling, ‘Soft weight-sharing for neural
network compression’, ArXiv, vol. abs/1702.04008, 2017.

[47] P. Wang, Q. Chen, X. He, and J. Cheng, ‘Towards accurate post-training
network quantization via bit-split and stitching’, in ICML, 2020.

[48] Y. Gong, L. Liu, M. Yang, and L. Bourdev, ‘Compressing Deep Convo-
lutional Networks using Vector Quantization’, arXiv, 2014. (visited on
09/14/2019).

[49] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, ‘Quantized convolutional
neural networks for mobile devices’, CoRR, vol. abs/1512.06473, 2015.
arXiv: 1512.06473. [Online]. Available: http://arxiv.org/abs/1512.
06473.

[50] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, ‘LookNN: Neu-
ral network with no multiplication’, in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, IEEE, 2017, pp. 1775–
1780.

[51] S. Han, X. Liu, H. Mao, et al., ‘Eie: efficient inference engine on com-
pressed deep neural network’, 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pp. 243–254, 2016.

[52] E. Dupuis, I. O’Connor, D. Novo, and A. Bosio, ‘A Heuristic Explo-
ration to Retraining-free Weight-Sharing for CNN Compression’, ver-
sion 1.0.0, Nov. 2021. [Online]. Available: https://github.com/e-
dupuis/retraining-free-weight-sharing.

D

[53] A. L. Samuel, ‘Some studies in machine learning using the game of check-
ers’, IBM J. Res. Dev., vol. 3, pp. 210–229, 1959.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, ‘Dropout: a simple way to prevent neural networks from overfitting’,
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [On-
line]. Available: http://jmlr.org/papers/v15/srivastava14a.html.

[55] M. Abadi, P. Barham, J. Chen, et al., ‘Tensorflow: a system for large-
scale machine learning’, in Proceedings of OSDI, 2016.

[56] A. Paszke, S. Gross, F. Massa, et al., ‘Pytorch: an imperative style, high-
performance deep learning library’, in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015- pytorch- an- imperative- style- high- performance- deep-

learning-library.pdf.

[57] R. Stojnic, R. Taylor, V. Kerkez, and L. Viaud, Papers with code, state of
the art models on the imagenet dataset, 2020. [Online]. Available: https:
//paperswithcode.com/sota/image-classification-on-imagenet.

[58] J. Cong and B.-Y. Xiao, ‘Minimizing computation in convolutional neural
networks’, in ICANN, 2014.

[59] N. P. Jouppi, C. Young, N. Patil, et al., ‘In-datacenter performance anal-
ysis of a tensor processing unit’, 2017 ACM/IEEE 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pp. 1–12, 2017.

[60] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, ‘Logicnets: co-
designed neural networks and circuits for extreme-throughput applica-
tions’, 2020 30th International Conference on Field-Programmable Logic
and Applications (FPL), pp. 291–297, 2020.

[61] T. Murovi and A. Trost, ‘Massively parallel combinational binary neural
networks for edge processing’, 2019.

[62] J. M. Duarte, S. Han, P. C. Harris, et al., ‘Fast inference of deep neural
networks in fpgas for particle physics’, ArXiv, vol. abs/1804.06913, 2018.

[63] S. Tridgell, M. Kumm, M. Hardieck, et al., ‘Unrolling ternary neural
networks’, ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, pp. 1–23, 2019.

[64] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides, ‘Lut-
net: rethinking inference in fpga soft logic’, 2019 IEEE 27th Annual In-
ternational Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pp. 26–34, 2019.

[65] Y. Chen, J. Emer, and V. Sze, ‘Eyeriss: a spatial architecture for energy-
efficient dataflow for convolutional neural networks’, 2016.

E

[66] Y. Umuroglu, N. J. Fraser, G. Gambardella, et al., ‘Finn: a frame-
work for fast, scalable binarized neural network inference’, Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2017.

[67] Y.-h. Chen, J. S. Emer, and V. Sze, ‘Eyeriss v2: a flexible and high-
performance accelerator for emerging deep neural networks’, ArXiv,
vol. abs/1807.07928, 2018.

[68] S. Agarwal, E. Hervas-Martin, J. Byrne, A. K. Dunne, J. L. Espinosa-
Aranda, and D. Rijlaarsdam, ‘An evaluation of low-cost vision proces-
sors for efficient star identification’, Sensors (Basel, Switzerland), vol. 20,
2020.

[69] H. Fan, M. Ferianc, Z. Que, et al., ‘Algorithm and hardware co-design
for reconfigurable cnn accelerator’, ArXiv, vol. abs/2111.12787, 2021.

[70] Y. Li, C. Hao, X. Zhang, et al., ‘Edd: efficient differentiable dnn archi-
tecture and implementation co-search for embedded ai solutions’, 2020
57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2020.

[71] H. Fan, M. Ferianc, S. Liu, Z. Que, X. Niu, and W. Luk, ‘Optimiz-
ing fpga-based cnn accelerator using differentiable neural architecture
search’, 2020 IEEE 38th International Conference on Computer Design
(ICCD), pp. 465–468, 2020.

[72] L. Sekanina, ‘Neural architecture search and hardware accelerator co-
search: a survey’, IEEE Access, vol. 9, pp. 151 337–151 362, 2021.

[73] A. G. Howard, M. Sandler, G. Chu, et al., ‘Searching for mobilenetv3’,
2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 1314–1324, 2019.

[74] G. Hinton, O. Vinyals, and J. Dean, ‘Distilling the Knowledge in a Neural
Network’, arXiv, Mar. 2015. [Online]. Available: http://arxiv.org/
abs/1503.02531 (visited on 09/13/2019).

[75] J. Tang, R. Shivanna, Z. Zhao, et al., ‘Understanding and Improving
Knowledge Distillation’, arXiv preprint arXiv:2002.03532, 2020.

[76] S. Anwar, K. Hwang, and W. Sung, ‘Structured pruning of deep convo-
lutional neural networks’, ACM JETC, vol. 13, 2017.

[77] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, ‘Autocompress: an
automatic dnn structured pruning framework for ultra-high compression
rates’, in AAAI, 2020.

[78] Y. LeCun, J. S. Denker, and S. A. Solla, ‘Optimal brain damage’, in
NIPS, 1989.

[79] J. Frankle and M. Carbin, ‘The lottery ticket hypothesis: finding sparse,
trainable neural networks’, arXiv: Learning, 2019.

[80] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, ‘Dorefa-net: training
low bitwidth convolutional neural networks with low bitwidth gradients’,
arXiv preprint arXiv:1606.06160, 2016.

F

[81] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, ‘Incremental network
quantization: towards lossless cnns with low-precision weights’, ArXiv,
vol. abs/1702.03044, 2017.

[82] M. E. Elbtity, H.-W. Son, D.-Y. Lee, and H. Kim, ‘High speed, approx-
imate arithmetic based convolutional neural network accelerator’, 2020
International SoC Design Conference (ISOCC), pp. 71–72, 2020.

[83] M. Cho and Y. Kim, ‘Fpga-based convolutional neural network accel-
erator with resource-optimized approximate multiply-accumulate unit’,
Electronics, 2021.

[84] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K.
Roy, ‘Energy-efficient neural computing with approximate multipliers’,
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 14, pp. 1–23, 2018.

[85] V. Mrázek, Z. Vaśıcek, L. Sekanina, M. A. Hanif, and M. A. Shafique, ‘Al-
wann: automatic layer-wise approximation of deep neural network accel-
erators without retraining’, 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1–8, 2019.

[86] C. D. la Parra, A. Guntoro, and A. Kumar, ‘Full approximation of deep
neural networks through efficient optimization’, in ISCAS 2020, 2020.

[87] V. Mrazek, L. Sekanina, and Z. Vaśıcek, ‘Libraries of approximate cir-
cuits: automated design and application in cnn accelerators’, IEEE Jour-
nal on Emerging and Selected Topics in Circuits and Systems, vol. 10,
pp. 406–418, 2020.

[88] Y. L. Cun, J. S. Denker, and S. A. Solla, ‘Optimal brain damage’, in
Advances in Neural Information Processing Systems 2. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1990, pp. 598–605, isbn:
1558601007.

[89] Y. Ji, L. Liang, L. Deng, Y. Zhang, Y. Zhang, and Y. Xie, ‘Tetris: tile-
matching the tremendous irregular sparsity’, in NeurIPS, 2018.

[90] J. Yu, A. Lukefahr, D. Palframan, G. S. Dasika, R. Das, and S. Mahlke,
‘Scalpel: customizing dnn pruning to the underlying hardware par-
allelism’, 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pp. 548–560, 2017.

[91] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘Pruning con-
volutional neural networks for resource efficient transfer learning’, CoRR,
vol. abs/1611.06440, 2016. arXiv: 1611.06440. [Online]. Available: http:
//arxiv.org/abs/1611.06440.

[92] J.-H. Luo, J. Wu, and W. Lin, ‘Thinet: a filter level pruning method for
deep neural network compression’, 2017 IEEE International Conference
on Computer Vision (ICCV), pp. 5068–5076, 2017.

[93] Y. He, X. Zhang, and J. Sun, ‘Channel pruning for accelerating very deep
neural networks’, CoRR, vol. abs/1707.06168, 2017. arXiv: 1707.06168.
[Online]. Available: http://arxiv.org/abs/1707.06168.

G

[94] Y. Huan, Y. Qin, Y. You, L. Zheng, and Z. Zou, ‘A multiplication re-
duction technique with near-zero approximation for embedded learning
in iot devices’, in 2016 29th IEEE International System-on-Chip Confer-
ence (SOCC), IEEE, 2016, pp. 102–107.

[95] ——, ‘A low-power accelerator for deep neural networks with enlarged
near-zero sparsity’, arXiv preprint arXiv:1705.08009, 2017.

[96] V. Lebedev and V. Lempitsky, ‘Fast convnets using group-wise brain
damage’, 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 2554–2564, 2016.

[97] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, ‘Learning structured
sparsity in deep neural networks’, ArXiv, vol. abs/1608.03665, 2016.

[98] M. Yuan and Y. Lin, ‘Model selection and estimation in regression with
grouped variables’, JOURNAL OF THE ROYAL STATISTICAL SOCI-
ETY, SERIES B, vol. 68, pp. 49–67, 2006.

[99] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, ‘Learn-
ing efficient convolutional networks through network slimming’, CoRR,
vol. abs/1708.06519, 2017. arXiv: 1708.06519. [Online]. Available: http:
//arxiv.org/abs/1708.06519.

[100] X. Ding, G. Ding, J. Han, and S. Tang, ‘Auto-balanced filter pruning for
efficient convolutional neural networks’, in AAAI, 2018.

[101] J.-H. Luo and J. Wu, ‘Autopruner: an end-to-end trainable filter pruning
method for efficient deep model inference’, Pattern Recognit., vol. 107,
p. 107 461, 2020.

[102] J. Frankle and M. Carbin, ‘The lottery ticket hypothesis: training pruned
neural networks’, CoRR, vol. abs/1803.03635, 2018. arXiv: 1803.03635.
[Online]. Available: http://arxiv.org/abs/1803.03635.

[103] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, ‘Rethinking the value
of network pruning’, ArXiv, vol. abs/1810.05270, 2019.

[104] M. Lin, R. Ji, Y.-x. Zhang, B. Zhang, Y. Wu, and Y. Tian, ‘Channel prun-
ing via automatic structure search’, ArXiv, vol. abs/2001.08565, 2020.

[105] Z. Liu, H. Mu, X. Zhang, et al., ‘Metapruning: meta learning for auto-
matic neural network channel pruning’, 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 3295–3304, 2019.

[106] Y. He and S. Han, ‘ADC: automated deep compression and acceleration
with reinforcement learning’, CoRR, vol. abs/1802.03494, 2018. arXiv:
1802.03494. [Online]. Available: http://arxiv.org/abs/1802.03494.

[107] B. Hassibi and D. Stork, ‘Second order derivatives for network pruning:
optimal brain surgeon’, in NIPS, 1992.

[108] S. Srinivas and R. V. Babu, ‘Data-free parameter pruning for deep neural
networks’, in BMVC, 2015.

H

[109] Y. Guo, A. Yao, and Y. Chen, ‘Dynamic network surgery for efficient
dnns’, in NIPS, 2016.

[110] S. Narang, G. Diamos, S. Sengupta, and E. Elsen, ‘Exploring sparsity in
recurrent neural networks’, ArXiv, vol. abs/1704.05119, 2017.

[111] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Graf, ‘Pruning filters
for efficient convnets’, ArXiv, vol. abs/1608.08710, 2017.

[112] T.-W. Chin, R. Ding, C. Zhang, and D. Marculescu, ‘Towards efficient
model compression via learned global ranking’, 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2020. doi:
10.1109/cvpr42600.2020.00159. [Online]. Available: http://dx.doi.
org/10.1109/cvpr42600.2020.00159.

[113] ——, ‘Legr: filter pruning via learned global ranking’, CoRR,
vol. abs/1904.12368, 2019. arXiv: 1904.12368. [Online]. Available: http:
//arxiv.org/abs/1904.12368.

[114] X. Dai, H. Yin, and N. K. Jha, ‘Nest: A neural network synthesis tool
based on a grow-and-prune paradigm’, CoRR, vol. abs/1711.02017, 2017.
arXiv: 1711.02017. [Online]. Available: http://arxiv.org/abs/1711.
02017.

[115] T. Zhang, S. Ye, K. Zhang, et al., ‘A systematic DNN weight prun-
ing framework using alternating direction method of multipliers’, CoRR,
vol. abs/1804.03294, 2018. arXiv: 1804.03294. [Online]. Available: http:
//arxiv.org/abs/1804.03294.

[116] S. Ye, T. Zhang, K. Zhang, et al., ‘Progressive weight pruning of deep
neural networks using ADMM’, CoRR, vol. abs/1810.07378, 2018. arXiv:
1810.07378. [Online]. Available: http://arxiv.org/abs/1810.07378.

[117] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘Bi-
narized neural networks’, in Advances in Neural Information Processing
Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.
Garnett, Eds., Curran Associates, Inc., 2016, pp. 4107–4115.

[118] F. Li and B. Liu, ‘Ternary weight networks’, CoRR, vol. abs/1605.04711,
2016. arXiv: 1605.04711. [Online]. Available: http://arxiv.org/abs/
1605.04711.

[119] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘XNOR-Net: Ima-
geNet classification using binary convolutional neural networks’, pp. 525–
542, 2016.

[120] B. Jacob, S. Kligys, B. Chen, et al., ‘Quantization and training of neural
networks for efficient integer-arithmetic-only inference’, 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2704–2713,
2018.

[121] S. Wu, G. Li, F. Chen, and L. Shi, ‘Training and inference with integers
in deep neural networks’, arXiv preprint arXiv:1802.04680, 2018.

I

[122] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and
K. Gopalakrishnan, ‘Pact: parameterized clipping activation for quan-
tized neural networks’, arXiv preprint arXiv:1805.06085, 2018.

[123] D. Zhang, J. Yang, D. Ye, and G. Hua, ‘Lq-nets: learned quantization for
highly accurate and compact deep neural networks’, in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 365–382.

[124] R. Banner, Y. Nahshan, and D. Soudry, ‘Post training 4-bit quantization
of convolutional networks for rapid-deployment’, in Advances in Neural
Information Processing Systems, 2019, pp. 7950–7958.

[125] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and K. Keutzer,
‘ZeroQ: a novel zero shot quantization framework’, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13 169–13 178.

[126] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, ‘Low-bit quantiza-
tion of neural networks for efficient inference’, in 2019 IEEE/CVF Inter-
national Conference on Computer Vision Workshop (ICCVW), IEEE,
2019, pp. 3009–3018.

[127] M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling, ‘Data-free
quantization through weight equalization and bias correction’, in Proceed-
ings of the IEEE International Conference on Computer Vision, 2019,
pp. 1325–1334.

[128] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, ‘Improving neural
network quantization without retraining using outlier channel splitting’,
arXiv preprint arXiv:1901.09504, 2019.

[129] M. Alizadeh, A. Behboodi, M. van Baalen, C. Louizos, T. Blankevoort,
and M. Welling, ‘Gradient ℓ1 regularization for quantization robustness’,
arXiv preprint arXiv:2002.07520, 2020.

[130] M. Shkolnik, B. Chmiel, R. Banner, et al., ‘Robust quantization: one
model to rule them all’, arXiv preprint arXiv:2002.07686, 2020.

[131] M. Courbariaux, Y. Bengio, and J.-P. David, ‘BinaryConnect: training
deep neural networks with binary weights during propagations’, in Ad-
vances in Neural Information Processing Systems, 2015, pp. 3123–3131.

[132] F. Li, B. Zhang, and B. Liu, ‘Ternary weight networks’, arXiv preprint
arXiv:1605.04711, 2016.

[133] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
‘Adaptive quantization for deep neural network’, arXiv preprint
arXiv:1712.01048, 2017.

[134] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer, ‘Mixed
precision quantization of convnets via differentiable neural architecture
search’, arXiv preprint arXiv:1812.00090, 2018.

J

[135] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, ‘Haq: hardware-aware au-
tomated quantization with mixed precision’, in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2019, pp. 8612–
8620.

[136] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, ‘Hawq:
hessian aware quantization of neural networks with mixed-precision’, in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 293–302.

[137] Z. Dong, Z. Yao, Y. Cai, et al., ‘Hawq-v2: hessian aware trace-weighted
quantization of neural networks’, arXiv preprint arXiv:1911.03852, 2019.

[138] D. Lin, S. Talathi, and S. Annapureddy, ‘Fixed point quantization of
deep convolutional networks’, pp. 2849–2858, 2016.

[139] S. Khoram and J. Li, ‘Adaptive quantization of neural networks’, in
International Conference on Learning Representations, 2018.

[140] S. Shen, Z. Dong, J. Ye, et al., ‘Q-bert: hessian based ultra low precision
quantization of bert.’, in AAAI, 2020, pp. 8815–8821.

[141] X. Zhu, W. Zhou, and H. Li, ‘Adaptive layerwise quantization for deep
neural network compression’, in 2018 IEEE International Conference on
Multimedia and Expo (ICME), IEEE, 2018, pp. 1–6.

[142] E. Park, S. Yoo, and P. Vajda, ‘Value-aware quantization for training and
inference of neural networks’, in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 580–595.

[143] W. Tang, G. Hua, and L. Wang, ‘How to train a compact binary neural
network with high accuracy?’, in AAAI, 2017, pp. 2625–2631.

[144] A. Kundu, K. Banerjee, N. Mellempudi, et al., ‘Ternary residual net-
works’, arXiv preprint arXiv:1707.04679, 2017.

[145] B. Jacob, S. Kligys, B. Chen, et al., ‘Quantization and training of neural
networks for efficient integer-arithmetic-only inference’, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2704–2713.

[146] S. O. Settle, M. Bollavaram, P. D’Alberto, et al., ‘Quantizing convolu-
tional neural networks for low-power high-throughput inference engines’,
arXiv preprint arXiv:1805.07941, 2018.

[147] C. Wu, M. Wang, X. Chu, K. Wang, and L. He, ‘Low precision floating-
point arithmetic for high performance fpga-based cnn acceleration’, arXiv
preprint arXiv:2003.03852, 2020.

[148] C. Wu, M. Wang, X. Li, J. Lu, K. Wang, and L. He, ‘Phoenix: a low-
precision floating-point quantization oriented architecture for convolu-
tional neural networks’, arXiv preprint arXiv:2003.02628, 2020.

K

[149] T. Tambe, E.-Y. Yang, Z. Wan, et al., ‘Algorithm-hardware co-design of
adaptive floating-point encodings for resilient deep learning inference’,
in 2020 57th ACM/IEEE Design Automation Conference (DAC), IEEE,
2020, pp. 1–6.

[150] Z. Song, Z. Liu, and D. Wang, ‘Computation error analysis of block
floating point arithmetic oriented convolution neural network accelerator
design’, arXiv preprint arXiv:1709.07776, 2017.

[151] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, ‘High-performance
FPGA-based CNN accelerator with block-floating-point arithmetic’,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 8, pp. 1874–1885, 2019.

[152] D. Kalamkar, D. Mudigere, N. Mellempudi, et al., ‘A study of bfloat16
for deep learning training’, arXiv preprint arXiv:1905.12322, 2019.

[153] D. Miyashita, E. H. Lee, and B. Murmann, ‘Convolutional neu-
ral networks using logarithmic data representation’, arXiv preprint
arXiv:1603.01025, 2016.

[154] Y. Choi, M. El-Khamy, and J. Lee, ‘Learning sparse low-precision neural
networks with learnable regularization’, IEEE Access, 2020.

[155] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, ‘Incremental network
quantization: Towards lossless CNNs with low-precision weights’, arXiv
preprint arXiv:1702.03044, 2017.

[156] H. Bai, J. Wu, I. King, and M. Lyu, ‘Few shot network compression via
cross distillation’, arXiv preprint arXiv:1911.09450, 2019.

[157] A. Polino, R. Pascanu, and D. Alistarh, ‘Model compression via distilla-
tion and quantization’, arXiv preprint arXiv:1802.05668, 2018.

[158] S. Chen, W. Wang, and S. J. Pan, ‘Deep neural network quantization via
layer-wise optimization using limited training data’, in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3329–3336.

[159] C. Leng, H. Li, S. Zhu, and R. Jin, ‘Extremely low bit neural network:
squeeze the last bit out with admm’, arXiv preprint arXiv:1707.09870,
2017.

[160] Y. Gong, L. Liu, M. Yang, and L. D. Bourdev, ‘Compressing deep convo-
lutional networks using vector quantization’, ArXiv, vol. abs/1412.6115,
2014.

[161] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y.
Chen, ‘Compressing neural networks with the hashing trick’, CoRR,
vol. abs/1504.04788, 2015. arXiv: 1504.04788. [Online]. Available: http:
//arxiv.org/abs/1504.04788.

[162] E. Park, J. Ahn, and S. Yoo, ‘Weighted-entropy-based quantization for
deep neural networks’, 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7197–7205, 2017.

L

[163] S. P. Lloyd, ‘Least squares quantization in pcm’, IEEE Transactions on
Information Theory, vol. 28, pp. 129–137, 1982.

[164] G. E. P. Box and D. W. Behnken, ‘Some new three level designs for the
study of quantitative variables’, Technometrics, vol. 2, no. 4, pp. 455–
475, 1960, issn: 00401706. [Online]. Available: http://www.jstor.org/
stable/1266454.

[165] M. D. McKay, R. J. Beckman, and W. J. Conover, ‘A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code’, Technometrics, vol. 21, no. 2, pp. 239–
245, 1979, issn: 00401706. [Online]. Available: http://www.jstor.org/
stable/1268522.

[166] M. Johnson, L. Moore, and D. Ylvisaker, ‘Minimax and maximin dis-
tance designs’, Journal of Statistical Planning and Inference, vol. 26,
no. 2, pp. 131–148, 1990, issn: 0378-3758. doi: https://doi.org/
10.1016/0378-3758(90)90122-B. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/037837589090122B.

[167] J. H. Halton, ‘Algorithm 247: radical-inverse quasi-random point se-
quence’, Commun. ACM, vol. 7, no. 12, pp. 701–702, 1964, issn: 0001-
0782. doi: 10.1145/355588.365104. [Online]. Available: https://doi.
org/10.1145/355588.365104.

[168] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin, ‘Deep
k-Means: Re-Training and Parameter Sharing with Harder Cluster As-
signments for Compressing Deep Convolutions’, arXiv, Jun. 2018. [On-
line]. Available: http : / / arxiv . org / abs / 1806 . 09228 (visited on
09/14/2019).

[169] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., ‘Scikit-learn: machine
learning in Python’, Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[170] @DeMoriarty, Fast pytorch kmeans, https://github.com/DeMoriarty/
fast_pytorch_kmeans, 2020.

[171] O. Sentieys, S.-I. Filip, D. Briand, et al., ‘Adequatedl: approximating
deep learning accelerators’, 2021 24th International Symposium on De-
sign and Diagnostics of Electronic Circuits & Systems (DDECS), pp. 37–
40, 2021.

[172] D. Arthur and S. Vassilvitskii, ‘K-means++: the advantages of careful
seeding’, in SODA ’07, 2007.

M

Appendix

A.1 Algorithms

A.1.1 K-means clustering

From the very different clustering approaches, K-means [14] is among the most
popular. Its aim at identifies a certain number of groups or clusters in the sam-
ples by using a distance-based iterative approach to the problem of selection and
mapping. For each iteration the samples are grouped by their distance to the
centroid of each cluster, different distance metrics can be used such as the norm
or the cos. The second step is to compute the new centroid of each cluster by
averaging the samples composing the cluster. This iterative process is repeated
until convergence or for a certain number of iterations. There are different pos-
sibilities for the initialization of the centroid of the clusters, linear initialization
spanning across the distribution of the sample, random initialization, or even
kmeans++ [172], a selection method that allows for faster convergence.

A.1.2 NSGA-II meta-heuristic optimization

In multi-objective optimization, there is a need to explore the trade-offs between
the objectives in the design space. One of the numerous algorithms allowing such
exploration is the NSGA-II [25] algorithm. Using a genetic approach to problem-
solving, involving iterating over a population, by selecting the best candidates
and crossing their genes, and applying random mutation over the genome. The
genes are the variable of the optimization problem, and the selection of the best
candidates is performed using the Pareto front, thus the name of the NSGA-
II, Non-Dominated Sorting Genetic Algorithm. The Pareto front is selected
successively, from the first front composed by the non-dominated candidate,
then the second front that is composed of the non-dominated candidate when
not considering the first front, this process is repeated until the last candidate,
and a certain number of candidates are kept, whereas the others are discarded.
Mutation and crossover are applied to the remaining population, and the newly
obtained population is ready for another Pareto front selection.

N

A.2 Thesis Compute Resources

The work conducted during this thesis required the use of different computing
platforms for running the approximation of the approximated CNNs. The early
work was conducted on a commercial laptop featuring an INTEL i7 with 8 cores
at 1.9Ghz. mainly used for development and early testing on LeNet-5 [15]. At
some point, there was a need for more computing power and a GPU to be able
to efficiently score the approximated CNNs. A server with an Intel Xeon 4210
with 40 core at 2.2Ghz and a Tesla V100 GPU with 32GB of memory was used
. Other remote resources were also involved in the last step of the thesis when
there was a need to apply the compression on several different CNN topologies.
The PMCS2I cluster of Ecole Centrale de Lyon and the Jean-Zay cluster of the
french national research agency were used.

A.3 Fast CNN scoring

Scoring an approximated CNN over a validation dataset such as the 50k images
validation set of ImageNet [18] requires several steps. First, there is a need to
process the raw data from disk, apply pre-processing transforms to normalize
the size and color distribution, convert values into floating-point, and aggregate
batches of samples together so that they can be fed to the CNN. Then the
output of each layer is successively computed and fed to the next layer until
the final output, which is compared with labels from the validation dataset.
Comparing every output with the corresponding labels, or expected outputs,
allows for computing the top-1 accuracy as well as other metrics that will not
be detailed here. This process is computation-intensive and could benefit from
some optimization in our specific framework.

A.3.1 Dataflow optimization

When training a CNN a single candidate is improved during the whole training
process, that is why the validation step is executed on a single CNN at the end
of each training iteration. In our case, several CNNs needs to be tested at the
same moment because we are optimizing a population of approximated CNNs.
This different framework allows for some optimization in terms of dataflow,
when profiling a CNN scoring, it appears that the process is often input-bound,
because pre-processing time is long and even using multiple workers for loading
the data, the GPU appears to be starving. To avoid this GPU starving, it
is possible to score a population of approximated CNNs with a single data
processing, by computing each approximated CNN output for each batch of
samples processed sequentially. Allowing for performance gains as it can be
seen in Figure A.1, scoring a batch composed of up to 20 approximated CNN
sequentially, where the scoring throughput is 1.6× more important than scoring
a single CNN at a time.

O

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Batch Size []

14

16

18

20

22

Av
er

ag
e

Sc
or

in
g

Ti
m

e
[s

]

Figure A.1: Reduction of the scoring time caused by using dataflow optimiza-
tion with population scoring (or batch scoring) for MobileNetV2 [13] on the
ImageNet [18] dataset.

P

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Root Squared Error

6

8

10

12

14

16

18

20
Av

er
ag

e
Sc

or
in

g
Ti

m
e

[s
]

Figure A.2: Variation of the incertitude (root squared error) on the top-1 ac-
curacy obtained by scoring multiple approximated CNN on the ImageNet [18]
dataset using a portion of the samples in the validation set.

A.3.2 Approximated scoring

Further to dataflow optimization, it is also possible to use approximate scoring
to benefit of scoring acceleration at the cost of scoring accuracy. The simplest
way of achieving such approximate scoring is by reducing the number of samples
used to score an approximated CNN. Taking as example ImageNet [18], and its
50k samples validation set, it is possible to measure the acceleration provided
by varying the number of samples used for scoring the approximated CNN, and
evaluate the induced incertitude over the measured top-1 accuracy. Figure A.2
show the result of the scoring of various approximated CNN derived from Mo-
bileNetV2 [13] with a different number of samples, shown as the ratio of the
number of samples of the initial 50k samples validation set.

Q

