Thèse soutenue

Caractérisation d'un modèle in vitro de cellules neuronales issues d'iPSc porteuses d'une mutation non-sens sur le gène GDAP1 responsable de la maladie de Charcot-Marie-Tooth et tests d'approches thérapeutiques innovantes

FR  |  
EN
Auteur / Autrice : Nesrine Benslimane
Direction : Anne-Sophie Lia BaldiniFrédéric Favreau
Type : Thèse de doctorat
Discipline(s) : Neurosciences
Date : Soutenance le 12/12/2022
Etablissement(s) : Limoges
Ecole(s) doctorale(s) : École doctorale Ω-LIM-Biologie-Chimie-Santé (Limoges ; 2022-)
Partenaire(s) de recherche : Laboratoire : NEURopathies et Innovations Thérapeutiques (Limoges)
Jury : Président / Présidente : Fabrice Lejeune
Examinateurs / Examinatrices : Anne-Sophie Lia Baldini, Frédéric Favreau, Béatrice Turcq
Rapporteurs / Rapporteuses : Giovanni Stevanin, Patrick Vourc'h

Résumé

FR  |  
EN

Les mutations non-sens générant un codon de terminaison prématuré (PTC) peuvent induire la production d'une protéine tronquée ou bien une dégradation prématurée de l'ARNm muté par le système NMD (Nonsense-Mediated mRNA Decay). Ces mutations non-sens sont la cause d’environ un tiers des maladies d’origine génétique et notamment de certaines neuropathies périphériques, dont la maladie de Charcot-Marie-Tooth (CMT). Des mutations non-sens sur le gène GDAP1 ont été associées à des formes sévères de CMT. Le rôle cellulaire de GDAP1 reste encore mal défini. Au sein du laboratoire NeurIT, UR20218, de l’Université de Limoges, nous avons mis en place un modèle cellulaire de cellules neuronales (Progéniteurs neuronaux (PN) et Motoneurones (MN)) issues des cellules souches pluripotentes induites (iPSc) de contrôles et d’un patient CMT porteur de la mutation homozygote c.581C>G (p.Ser194*) sur le gène GDAP1. Dans un premier temps, nous avons caractérisé ce modèle neuronal et mis en évidence un stress oxydant associé à un dysfonctionnement mitochondrial dans les MN issus d’iPSc du patient. Dans un deuxième temps, après avoir réalisé une revue de la littérature sur les molécules de translecture et les inhibiteurs du NMD, nous avons testé certaines de ces molécules sur nos modèles neuronaux, en collaboration avec l’Institut Pasteur de Lille. Nous avons pu démontrer que la molécule « Amlexanox » stabilisait l’ARNm GDAP1 muté et activait l’expression protéique de GDAP1 dans les PN et les MN. D’un point de vue fonctionnelle, nous avons observé que ce traitement permet de restaurer la morphologie des mitochondries des PN. Dans une dernière partie de cette thèse, nous présentons l’identification d’un codon non-sens et d’une délétion partielle du gène SH3TC2, l’un des principaux gènes mutés dans les formes autosomiques récessives démyélinisantes de CMT. L’établissement de modèles neuronaux sur ce gène sont une perspective de ce travail de thèse. Les molécules thérapeutiques identifiées lors de cette thèse pourront être testées sur ces prochains modèles. Ce travail de thèse montre l’importance des modèles cellulaires adaptés pour comprendre les voies physiopathologiques impliquées dans la CMT et montre des résultats prometteurs en termes d’approche thérapeutique.