
SAFETY OF AUTOMOTIVE
SYSTEMS

Using Machine Learning

F

Victor Besnier

November 28th, 2022

A dissertation submitted for the degree of
Doctor of Philosophy from CY Cergy Paris University

École doctorale nº407 EM2PSI
Économie, Management, Mathématiques, Physique & Sciences Informatiques

David Picard Senior Research Scientist, École des Ponts ParisTech Directeur
Aymeric Histace Full Professor, ENSEA Co-Directeur
Alexandre Briot Research Engineer, Valeo Co-Encadrant
Andrei Bursuc Research Scientist, Valeo.ai Co-Encadrant

Isabelle Bloch Full Professor, Sorbonne Université Présidente
Nicolas Thome Full Professor, Sorbonne Université Rapporteur
Vincent Fremont Full Professor, École Centrale de Nantes Rapporteur
Fatma Güney Asst Professor, Koç University Examinatrice
Slobodan Ilic Senior Research Scientist, Siemen and TUM Examinateur

ii

Acknowledgments
Avant toute chose, j’aimerai remercier tous ceux qui ont contribué de près ou de loin à l’aboutissement de
mon doctorat.

En premier lieu, je souhaite exprimer toute ma gratitude envers David Picard, qui a su me conseiller et
m’orienter tout au long de ces trois années. J’ai apprécié chacune des discussions que j’ai eues avec lui.
Il m’a donné confiance et liberté dans l’exploration de mes idées de recherche, tout en me partageant ses
brillantes intuitions. Je n’aurai pas pu imaginer un meilleur directeur de thèse.

Ensuite, mes pensées vont naturellement vers Alexandre Briot qui m’a épaulé à travers chaque épreuve.
J’ai particulièrement aimé le soutien et la sollicitude qu’il m’a apporté durant ces années très particulières.
Grâce à lui, j’ai pu concilier recherche théorique et appliquée pendant cette thèse. C’est avec son aide que
j’ai pu apprécier pleinement mon expérience au sein de Valeo.

De plus, je tiens également à remercier Andrei Bursuc pour son implication sans faille dans le projet, sa
disponibilité permanente et ses nombreux encouragements. Le partage de ses connaissances m’a beaucoup
apporté dans l’aboutissement de mes différents projets. Il a su valoriser l’ensemble des travaux que nous
avons entrepris ensemble.

Je souhaite aussi remercier les membres de mon jury : Isabelle Bloch, Nicolas Thome, Vincent Fremont,
Fatma Güney et Slobodan Ilic pour leurs commentaires pertinents sur mon manuscrit, mais également
pour les discussions qui ont suivi la soutenance de ma thèse. Cela laisse place à de belles réflexions, qui
pourront aider dans la suite des recherches sur le sujet.

Pendant trois ans, j’ai eu le privilège de travailler auprès de nombreuses personnes chez Valeo. J’ai
particulièrement apprécié les discussions avec Patrick Perez, Souhaiel Khalfaoui, Islam Adel, Mateus
Riva et Yesmina Jaafra. Ainsi qu’avec Abdelillah Ymlahi et Stephane Lhostis qui m’ont permis de me
former sur des sujets connexes à ma thèse. Je serai éternellement reconnaissant envers Lihao Wang et
Rachid Benmokhtar d’avoir accepté de me livrer leurs secrets sur le fonctionnement de la Learning Car.
Subséquemment, j’aimerai également remercier Aymeric Histace de l’ENSEA pour sa bienveillance. Il a
permis l’aboutissement et la concrétisation du projet de la Learning Car.

Je souhaite aussi remercier tous les doctorants du laboratoire des Ponts et particulièrement Elliot
Vincent, Lucas Ventura, Charle Raude, Hannah Bull, Nicolas Dufour, Yue Zhu, Michaël Ramamonjisoa,
Tom Monnier, Thibault Issenhuth, Marie Morgane Paumard, Monika Wysoczanska, Philippe Chibère,
Simon Roburin, Romain Loiseau, Rahima Djahel, Pierre-Alain Langlois, Nicolas Gonthier, Nguyen Nguyen,
Nermin Samet, Xi Shen, Mathis Petrovich, Liza Belos, Hugo Germain, Corentin Sautier, Clément Riu,
Antoine Guédon, Yanis Siglidis, Abdou Bedouhene, ainsi que tous les autres membres du laboratoire
Imagine de l’école des Ponts ParisTech.

Pour finir, j’aimerai remercier mes parents Alexandra et Denis, ainsi que ma soeur Madeleine et mes
frères Lucien et Émile pour leurs encouragements. Mais également Clémence Lanco pour son soutien
et son aide pour la relecture de ce manuscrit. Enfin, j’aimerai remercier mes amis d’avoir été aussi
disponibles et compréhensifs pendant toutes ces années.

i i i

Résumé
Les réseaux de neurones profonds sont impliqués dans le processus de prise de décision des voitures
autonomes où des vies sont en jeu quand bien même ces réseaux ne sont pas toujours fiables. Les
voitures autonomes utilisent des modèles de Deep Learning pour construire une représentation de leurs
environnements, c’est-à-dire où sont les piétons, vers où se dirige la moto, ou encore, quelle est la couleur
du feu de signalisation. Les réseaux de neurones profonds sont le résultat d’un schéma d’apprentissage
sophistiqué, d’une architecture de modèle complexe et de la construction d’un jeu de données à la
fois abondantes et variées. Ainsi, les prédictions des réseaux de neurones s’avèrent parfois difficiles à
interpréter et peu fiables.
Dans cette thèse, nous proposons d’améliorer la sûreté des réseaux de neurones en utilisant des

réseaux d’observateurs, pour détecter les comportements anormaux d’un réseau de neurones cible. Nous
introduisons une architecture mettant en œuvre réseau neuronal supplémentaire, appelé ObsNet, un
modèle dédié à la détection rapide et précise des anomalies dans la segmentation des scènes de route. Ce
réseau auxiliaire observe les activations internes d’un réseau cible afin de déclencher une alerte lorsqu’il
rencontre une prédiction non fiable. Nous entraînons le réseau observateur sur les erreurs d’un réseau
cible gelé, laissant ses performances prédictives inchangées pour la tâche primaire de la segmentation
d’images.
Pour notre première contribution, nous utilisons les prédictions d’un oracle pour superviser l’en-

traînement du réseau auxiliaire. L’ObsNet apprend à prédire une incertitude basée sur la divergence de
prédiction entre le réseau cible et l’oracle. Notre méthode met en évidence une forte détection des erreurs
pour les images corrompues par des artefacts comme l’éblouissement du soleil ou la pluie.
Pour notre deuxième contribution, nous utilisons des attaques adverses locales pour aider à stabiliser

l’apprentissage lorsque peu de données significatives peuvent être fournies à l’observateur. Nous montrons
que l’ObsNet résultant réussit à détecter les objets en dehors de la distribution pour la segmentation
sémantique. Nous obtenons des résultats compétitifs pour la détection d’objets hors distribution, tout en
limitant le temps d’exécution total.
Dans notre troisième contribution, nous ciblons la détection d’anomalies pour la segmentation d’instances.

Nous récupérons des masques d’instance pour agréger et filtrer les prédictions d’erreur par pixel afin
d’améliorer la localisation et la segmentation de l’objet d’intérêt. Notre méthode permet de segmenter de
façon homogène les instances et de supprimer le bruit en arrière-plan comparé aux autres méthodes.
Enfin, nous intégrons un ObsNet à une LearningCar pour construire, à travers ce démonstrateur, une

application de nos résultats de notre recherche. Nous montrons comment intégrer un réseau observateur
et un réseau de segmentation dans un système embarqué en temps réel avec des ressources limitées.

Mots clés Réseau de Neurones Profonds, Réseaux Observateurs, Segmentation d’Images, Détection
d’Objets Hors Distribution, Sécurité, Conduite Autonome.

iv

Abstract
Deep neural networks (DNNs) are involved in the decision making process of automated cars where lives
are at stake even if their predictions are not always reliable. Automated cars use Deep Learning models
to gather a representation of their environment, i.e., where are the pedestrians, where the motorcycle
is heading to, or which color is the traffic sign. DNNs are the outcome of a complex training scheme,
architecture design, and data feeding. Thus, the predictions of DNNs are, in many occasions, difficult to
explain and untrustworthy.
In this thesis, we propose to improve safety of DNNs by using Observer Networks, to monitor behavior

and identify abnormal events of a target neural network. We introduce an additional neural network,
called ObsNet, a dedicated framework for fast and accurate anomaly detection in urban scene segmentation.
This auxiliary network observes the internal activations of a target network to raise an alert when it
encounters an unsafe prediction. We train the observer network on the failure of a frozen target network,
leaving its predictive performance unchanged for the downstream task of image segmentation.
For our first contribution, we use an oracle prediction to guide the training of the auxiliary network.

The ObsNet learns to predict a divergence based uncertainty. We highlight strong errors detection for
images corrupted with artifacts like sun glare or rain.
For our second contribution, we leverage Local Adversarial Attack (LAA) to help stabilize the training

when a few meaningful data can be provided to the observer. We show that the resulting ObsNet succeeds
in detecting Out-of-Distribution (OoD) objects for semantic segmentation. We obtain State-of-the-Art
results for OoD detection on challenging dataset, while limiting the run-time overhead.
For our third contribution, we target anomaly detection for instance segmentation. We go beyond

pixel-wise error maps which do not enable an automatic decision of the system. We propose to identify
precisely unknown objects in the scene. We retrieve instance masks to aggregate and filter pixels-wise error
predictions to improve the localization of the object of interest. Our method better segments individual
instances and removes background noise compared to other methods.
Lastly, we embedded an ObsNet on a LearningCar to build a real-time demo of our research outcomes.

We show how to integrate an observer network and a segmentation network into a safety-critical system
with limited resources.

Keywords Deep Neural Network, Observer Network, Image Segmentation, Out-of-Distribution Detection,
Safety, Automated Driving.

Publications
This thesis draws heavily on earlier work and writing in the following papers:

Journals

] Victor Besnier, Andrei Bursuc, Alexandre Briot, David Picard (2021). Triggering Failures: Panoptic
Out-Of-Distribution detection by learning with Observer Network. Under review;

Refereed conferences

] [BBPB22] Victor Besnier, Andrei Bursuc, David Picard, Alexandre Briot (2022). Instance-Aware
Observer Network for Out-of-Distribution Object Segmentation. In Neural Information Processing
Systems Machine Learning Safety Workshop;

] [BBPB21] Victor Besnier, Andrei Bursuc, David Picard, Alexandre Briot (2021). Triggering Failures:
Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV);

] [BPB21] Victor Besnier, David Picard Alexandre Briot (2021). Learning Uncertainty for Safety-Oriented
Semantic Segmentation in Autonomous Driving. In Proceedings of the IEEE International Conference
on Image Processing (ICIP);

Talks

] Victor Besnier (2021). Failure detection for safety-oriented semantic segmentation in autonomous
driving with Observer Networks. Société des Ingénieurs de l’Automobile (SIA);

www.under-review.fr
www.under-review.fr
https://arxiv.org/abs/2207.08782
https://arxiv.org/abs/2207.08782
https://openaccess.thecvf.com/content/ICCV2021/html/Besnier_Triggering_Failures_Out-of-Distribution_Detection_by_Learning_From_Local_Adversarial_Attacks_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Besnier_Triggering_Failures_Out-of-Distribution_Detection_by_Learning_From_Local_Adversarial_Attacks_ICCV_2021_paper.html
https://ieeexplore.ieee.org/document/9506719
https://ieeexplore.ieee.org/document/9506719
https://www.sia.fr/evenements/252-ia-appliquee-vehicules-autonomes
https://www.sia.fr/evenements/252-ia-appliquee-vehicules-autonomes

vi

Artwork 1: Safe automated cars in the
future. DreamStudio, image generated
from Stable Diffusion [RBL+21] model.

Contents

I Introduction 2

1 OoD for Image Segmentation 3
1.1 Motivation . 3

1.1.1 Build Safe Models for Safe Application . 3
1.1.2 Uncertainty in DNNs . 3
1.1.3 Image segmentation . 5

1.2 Safety for Automated Driving . 9
1.2.1 ISO 26262: Systematic and random failure . 10
1.2.2 ISO 21448: SOTIF, Unexpected behavior . 10
1.2.3 ISO/TR 4804: SAFAD, automated car safety . 10
1.2.4 Safety in machine learning . 11

1.3 Related Works . 12
1.3.1 Architecture Based . 12
1.3.2 Data Based . 13
1.3.3 Task specific . 14

1.4 Datasets and Metrics . 15
1.4.1 Datasets . 15
1.4.2 Metrics . 16

1.5 Conclusion . 17

II Learning with Observer Networks 18

2 Observer Network 19
2.1 Motivation . 19

2.1.1 Trade-off between accuracy and trustworthy . 19
2.1.2 Observer networks . 20

2.2 Experiments . 21
2.2.1 Datasets, Metrics, and Compared Methods . 21
2.2.2 Results & ablation . 22

2.3 Conclusion . 22

3 Divergence Based Uncertainty 24
3.1 Introduction . 24

3.1.1 Safety in neural networks . 24
3.1.2 Uncertainty learning with observer network . 25

3.2 Method . 26
3.2.1 Certain set vs. uncertain set . 27
3.2.2 Divergence based Learning . 27
3.2.3 Oracle Prediction 𝑦𝑎 . 28

3.3 Experiments . 29
3.3.1 Dataset, Metrics and Compared Methods . 29

viii

3.3.2 Results: Epistemic uncertainty . 30
3.3.3 Results: Aleatoric uncertainty . 30

3.4 Conclusion . 32

4 Local Adversarial Attacks 35
4.1 Introduction . 35

4.1.1 OoD Detection & Lack of Available Errors . 35
4.1.2 Adversarial Attacks . 36
4.1.3 Strengths . 36

4.2 Method . 37
4.2.1 ObsNet for Error Detection . 37
4.2.2 Local Adversarial Attacks . 38

4.3 Experiments . 40
4.3.1 Datasets, Metrics and Compared Methods . 40
4.3.2 Results: OoD Detection . 41
4.3.3 Results: Robustness to Adversarial Attacks . 44

4.4 Results: Public LeaderBoard . 45
4.5 Conclusion & Limitation . 45

5 Instance-Aware Observer 48
5.1 Introduction . 48

5.1.1 From pixel-wise to instance-wise . 49
5.2 Method . 49

5.2.1 Observer Networks . 49
5.2.2 Instance Anomaly Detection . 50
5.2.3 Error Aggregation and Filtering . 50

5.3 Experiments . 51
5.3.1 Datasets, Metrics & Compared Methods . 51
5.3.2 Benefit of the instance module . 52
5.3.3 Instance-Wise Results . 52
5.3.4 Object size . 54

5.4 Conclusion . 54

III Learning Car 56

6 Learning Car Project 57
6.1 Safety Critical Application . 57

6.1.1 Automated Car . 57
6.1.2 Proof-of-concept for autonomous Driving . 58

6.2 ObsNet Training . 59
6.2.1 Dataset . 59
6.2.2 Networks . 59
6.2.3 Qualitative Results . 60

6.3 Experimental Setup . 60
6.3.1 Demo Car . 60
6.3.2 Nvidia Jetson Xavier . 61
6.3.3 Orchestra conductor: RTMaps . 61

6.4 Real-World Testing . 63
6.4.1 Road Evaluation . 63

ix

6.4.2 Loop Improvement . 64
6.5 Limitation and future improvement . 65

IV Epilogue 67

7 Conclusion 68
7.1 Summary . 68
7.2 Future Works . 69

REFERENCES 72

V GENERAL APPENDIX 84

A Additional Results and detai ls 85
A.1 Learning Divergence Based Uncertainty . 85

A.1.1 Additional qualitative results . 85
A.1.2 Aleatoric additional results . 85
A.1.3 Uncertainty Label c . 85

A.2 Learning from Local Adversarial Attacks . 89
A.2.1 Implementation details & hyper-parameters . 89
A.2.2 ablation study on adversarial attacks . 91
A.2.3 Error detector . 91
A.2.4 Additional Experiments: DeepLab v3+ . 93
A.2.5 Segment Me If You Can . 93

A.3 CamVid OOD dataset . 95
A.4 Learning Car . 95

List of Figures

1.1 Models over-confident . 4
1.2 State-Of-The-Art on ImageNet . 4
1.3 Data Ambiguity . 4
1.4 Image Segmentation . 6
1.5 Fully Convolutional Networks . 7
1.6 DeconvNet Architecture . 7
1.7 U-Net Architecture . 7
1.8 Pyramid Pooling module . 7
1.9 Deeplav v1 . 8
1.10 Panoptic Segmentation . 9
1.11 ISO 26262 V-Cycle . 10
1.12 SOTIF . 10
1.13 SAFAD . 11
1.14 Segment Me If You Can dataset . 16

2.1 ObsNet for classification . 20

3.1 Uncertainty map on noisy images . 24
3.2 ObsNet framework for divergence based uncertainty prediction 26
3.3 Divergence based Precision and Recall curve . 27
3.4 Precision-Recall curve . 32
3.5 uncertainty map . 33

4.1 Evaluation of precision vs. test-time computational . 36
4.2 Overview of ObsNet+ LAA . 38
4.3 Adversarial attack examples . 40
4.4 Errors map visualization on three datasets . 44
4.5 Errors map on Segment Me If You Can . 46

5.1 Instance ObsNet qualitative results overview on SegmentMeIfYouCan 48
5.2 Overview of our instance aware pipeline . 50
5.3 Instance ObsNet flows of the image processing . 51
5.4 Histogram on CamVid OoD . 54
5.5 Qualitative results on the StreetHazards, BDD Anomaly and CamVid OoD 55
5.6 Visualization of the objects detected on Bdd Anomaly . 55

6.1 Learning Car cockpit . 57
6.2 Car Sensors . 57
6.3 End-to-End autonomous Driving . 58
6.4 ALVINN . 59
6.5 CEA Dataset . 59
6.6 Off-line validation . 60
6.7 Learning Car overview . 61
6.8 Nvidia Jetson Xavier . 61
6.9 RTMaps . 62

xi

6.10 RTMaps Final Diagram . 62
6.11 Off-line simulation . 63
6.12 Créteil . 63
6.13 Learning Car Online Test classic . 64
6.14 Learning Car Online Test on sun glare . 65
6.15 Learning Car Online Test on OoD . 66

A.1 Complete uncertainty map . 86
A.2 Coverage of the safe predictions . 87
A.3 Label c . 89
A.4 Detailed architecture . 90
A.5 Ablation on Epsilon . 92
A.6 Error detection evaluation on CamVid . 93
A.7 SMIYC additional results . 94
A.8 CamVid OoD overview . 95
A.9 Additional results on the Learning Car . 96
A.10 Comparison between different version of the Learning Car 97

List of Tables

1.1 Summary of various OoD detection approaches . 17

2.1 residual connect ablation on Cifar10 . 22
2.2 Run-time and memory footprint . 22
2.3 OoD detection evaluation on Cifar10 . 23
2.4 OoD detection evaluation on Cifar100 . 23

3.1 Evaluation of epistemic uncertainty . 31
3.2 Out-of-Distribution Evaluation . 31
3.3 Sun glare evaluation . 32
3.4 Saquare Patch evaluation . 33

4.1 Evaluation of the Local Adversarial Attack . 41
4.2 Impact of robust training on accuracy . 42
4.3 LAA ablation study on attacked region . 42
4.4 ObsNet architecture ablation study . 42
4.5 ObsNet+LAA evaluation on CamVidOoD . 43
4.6 ObsNet+LAA evaluation on StreetHazard . 43
4.7 ObsNet+LAA evaluation on Bdd Anomaly . 43
4.8 ObsNet Robustness on CamVid . 45
4.9 ObsNet performance on SegmentMeIfYouCan . 46

5.1 Pixel-wise evaluation on CamVid OoD . 52
5.2 Instance-wise evaluation on CamVid OoD . 53
5.3 Instance-wise evaluation on BDD Anomaly . 53
5.4 Instance-wise evaluation on StreetHazards . 53

A.1 Sun Glare Evaluation . 87
A.2 Rain Evaluation . 88
A.3 Square Patch Evaluation . 88
A.4 Training Details . 90
A.5 Ablation on adversarial attacks. We can see that the random shape is the best method to

train the Observer. 91
A.6 Error detection evaluation on CamVid . 92
A.7 Evaluation on Bdd Anomaly with a Deeplabv3+ . 93

Part I

INTRODUCTION

1
OoD for Image Segmentation

Chapter 2]
Synopsis Unlike humans, Deep Neural Networks (DNNs) fail at
predicting what they have never seen. Looking at the softmax layer
values of a DNN does not provide relevant information about the
certainty of the predicted class. Furthermore, even though neural
networks perform as expected on a given dataset, their performance
might decrease when we test our model in the wild. In the following
sections, we will present the background of the thesis. First, we will
explain why the reliability of DNNs should be considered when they
are integrated into safety-critical applications like automated driving
(AD). Then, we will introduce the source of hazardous situations
through uncertainty and Out-of-Distribution. And finally, we will
present the downstream task of my research: image segmentation.

1.1 motivation

1.1.1 Build Safe Models for Safe Application

In 2016, an accident involving a Tesla in Autopilot mode2 and an 2Advanced driving assistance for line-
tracking, self-park, or autonomous nav-
igation in constrained environment.

overturned truck resulted in the death of the driver. The automotive
system mistook the truck for a bright sky. On March 18, 2018, the
first pedestrian died involving an autonomous car. Elaine Herzberg
was hit by an Uber test vehicle in Arizona. According to James
Arrowood, a lawyer specialized in automated cars, the sensor was
unable to detect the pedestrian because she was walking next to her
bike3. The car misinterpreted the woman as another vehicle moving 3 full article available at https://eu.az-

central.com/story/money/busi-
ness/tech/2018/03/22/what-went-
wrong-uber-volvo-fatal-crash-tempe-
technology-failure/446407002/

away from the Uber test vehicle.
According to the Washington Post, 273 cars crashed because of

Tesla’s Autopilot. In most cases, there is a repeating pattern. First,
an unusual situation occurs: unknown animal, pedestrian on the
highway, overturned car. Then, an erroneous prediction of the per-
ception system: for example, confusing an animal with a pedestrian
or a bicycle with a motorcycle. Finally, an erroneous behavior of the
system occurs: the car does not brake or does not avoid the obstacle.

1.1.2 Uncertainty in DNNs

One reason why DNNs are not reliable is because modern networks do
not properly model confidence in their prediction. Even worse, deep
architectures tend to produce overconfident predictions Figure 1.1.

4

In other words, the predictive score, i.e., maximum of the softmax
layer, does not correspond to a calibrated score. Among several
reasons, we can cite three main ones. First, the cross-entropy loss
penalizes fuzzy predictions; the model tends to predict either one or
zero for binary problems or a Dirac for multi-class tasks. Secondly,
the high network capacity increases its ability to overfit on the data.
Indeed, recent advance in DNNs such as residual connections, batch
normalization, increased depth, and other artefacts to better scale
DNN up, will ultimately increase the overfitting of the data. Moreover,
the softmax output is a smooth approximation of the argmax function
and converges to a very sharp prediction. Finally, longer training
and well crafted training heuristics (i.e., data augmentation, learning
rate recipes) push further the confidence on their prediction.

Figure 1.1: Models over-confident: Re-
cent architecture of Deep Neural Net-
work are more confident than old
network, even when it is wrong,
credit [GPSW17]

Looking at Figure 1.3, we can see an example of image classification
that cannot be solved even with the best models. For example, DNNs
cannot predict on which side a coin will fall, because it is a random
process with 1/2 chance for tail and 1/2 change for head. As shown in
Figure 1.2, Deep Learning performance has not improved significantly
over the last three years on ImageNet [DDS+09]. There are still almost
10% of misclassified images. We can ask ourselves if we will be able
to achieve 100% accuracy on this dataset, but the answer is probably
no. For many computer vision tasks, overconfidence is problematic
when we cannot guarantee the right result.

Figure 1.2: State-Of-The-Art on Ima-
geNet After more than 10 years of im-
provement, the SOTA accuracy stabilize
around 90% over the last three years.

One of the reasons neural networks cannot work perfectly on
many tasks is hidden in the data. Some data contain more ambiguity
than others and confident prediction cannot be given with these data.
Data ambiguity and overconfidence implies an unreliable prediction,
which can cause a crash.
To better understand where data ambiguity comes from, we need

to introduce uncertainty. We can point to at least three sources of
uncertainty: Aleatoric, Epistemic [DKD09] and Out-of-Distribution.

Figure 1.3: Ambiguity in the data:
Classes overlap: For classification, this
image is not predictable because the
model must predict either the cat or the
dog, but not both. Random Process:
Heads or tails? No model can predict
this, it is a random process. Data Label-
ing: The input data may be ambivalent.
No clear label can be assigned.

Epistemic is the uncertainty in the model parameters. It captures
what we do not know about the process that generates the data. This
uncertainty can be explained if there is enough data. In other words,
the more data you get, the more you reduce the epistemic uncertainty
of the model. In fact, this uncertainty is even more important to

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

5

consider of when the dataset is small. For safety-critical applications,
epistemic uncertainty is about understanding examples that rarely
appear in the training set.

Aleatoric is the uncertainty in the data. This uncertainty cannot be
reduced, even with a lot of data, but can be learned as an output of
a model. Moreover, this uncertainty does not increase for situations
far from the learning distribution, unlike Epistemic uncertainty.
Aleatoric uncertainty can be divided into two categories.

∘ Heteroscedastic: An input-dependent uncertainty where one input
may contain more than another. Occlusion, sun glare or no visual
patterns are considered heteroscedastic uncertainties.

∘ Homoscedastic: A constant noise in the input data, regardless
of the content of the input. The quality of a camera or the
quantization of an image are good examples of homoscedastic
uncertainty.

This uncertainty is useful when we have a large amount of data,
i.e., when the model uncertainty is small. So far, this uncertainty is
also lighter to compute than the other uncertainties as no Bayesian
inferences are necessary.

Out-of-Distribution (OoD) captures the mismatch between the
training distribution and the test distribution. More specifically, an
OoD example is a data belonging to a class unknown to the perception
system, i.e., a class that is not defined or present in the training
data. In the open world setting, many objects are not included in the
offline training set, and thus fall into the OoD category. For example,
training a model to distinguish dogs from cats and testing the model
on an image of a fish. The model will fail to predict the correct class
because it has never seen a fish during a train time.

1.1.3 Image segmentation

In the prelude, we briefly presented the functioning of a deep neural
network for classification, and the basis for training it. In the context
of our work, we focus on the task of dense image (pixel) classifica-
tion: image segmentation. The objective of this task is to classify
every single pixel within the image in order to obtain a segmented
image. Historically, classical computer vision approaches - such as
thresholding or image clustering - could work for basic tasks, but
failed to segment complex scenes. With the advent of DNNs, the task
has considerably improved. We show below a brief review of past
and present methods to perform image segmentation with neural
networks.
First, image segmentation can be applied under three different

granularities, as shown in Figure 1.4:

6

∘ Semantic segmentation: it consists in associating each pixel of the
image with a semantic class. In a driving scene context, all cars
belong to the same class, as does each pedestrian or any other
class.

∘ Instance segmentation: it segments only the entities in the image,
but unlike semantic segmentation, instance segmentation dissociate
each different instance when classifying the pixels in the scene. Two
different pedestrians will be assigned to two different prediction
masks.

∘ Panoptic segmentation: it is a combination of the two previous
tasks, where we decompose the image into countable things (cars,
pedestrians, etc.) and uncountable stuff (skies, buildings, etc.).
Unlike semantic segmentation, each predicted thing is defined by
its identification to distinguish different instance of the same class.

Figure 1.4: Image Segmentation (a)
the input image, (b) the semantic seg-
mentation where every pixels are classi-
fied, (c) the instance segmentation where
each instance is localized and segmented,
and finally, (d) the panoptic segmenta-
tion which fuse the two previous tasks.
credit [CWL+20]

There are plenty of datasets for image segmentation. The most
popular datasets are PASCAL VOC [EGW+10], MS COCO [LMB+14]
or ADE20K [ZZP+17] for common object segmentation. For on-
the-road real image segmentation, CityScapes [COR+16] with 5000
images annotated with fine grained annotation and 20000 images
with coarse annotations; WoodScapes [YHH+19] with 10000 fisheye
images from 4 point-of-view around the car; and two much smaller
datasets: CamVid [BFC08] 600 and KITTI [GLU12] 400 images. We
can also notice synthetic datasets extract from game engine. SYN-
THIA [RSM+16] and GTA V [RVRK16] datasets, compose of, respec-
tively, 9400 images and 24966 images. Medical image segmentation is
also a growing area of computer vision thanks to DRIVE [SAN+04]
or Ksavir-SEG [JSR+20]. In the following paragraphs, we introduce
the most well known architectures to solve these task.

FCN [LSD15] Long et al. were the first to introduce fully convo-
lutional networks (FCNs) for image segmentation, see Figure 1.5.
The initial intention was to adapt classification networks such as
AlexNet [KSH12], VGG [SZ14] or GoogleNet [SLJ+15] to dense predic-
tion tasks. Their main contribution is to use a de-convolution layer
(transpose convolution) for upsampling. In addition, they exploit the
skip connection to combine deep and shallow semantic information.
Despite the simplicity of the approach, the architecture has signifi-

7

cantly improved the state of the art in 2015. However, this simple
approach has limitations in two important areas:

∘ Inconsistent label prediction on large objects. For objects larger
than the receptive field, the prediction of the segmentation network
is splitted, and may be inconsistent.

∘ Loss of spatial information due to reductive convolution of the first
layer. The model struggles to predict an accurate segmentation
map for small objects.

Figure 1.5: Fully Convolutional Net-
works (FCN): One of the first neural
network architecture for efficient seman-
tic segmentation.

DeconvNet [NHH15] Noh et al. take the concept of de-convolution
a step further by constructing a complete decoder network consisting
of de-convolution, un-pooling, and ReLU activation to obtain a more
refined prediction. Similar to SegNet [BKC17], DeconvNet records
the location of the maximum activation of the de-convolution layer
to recover the pooling operation in the encoder part of the network.
The encoder-decoder (Figure 1.6) architecture results in a smoother
and denser prediction than FCN.

Figure 1.6: DeconvNet: Encoder-
Decoder architecture with de-
convolution layers for dense and
smooth prediction.

U-Net [RFB15] The U-net paper introduces a hierarchical decoder
to retrieve different levels of features. The frameworks achieve
outstanding results in 2015 for most semantic segmentation challenges.
Like FCN, Ronneberg et al. also use skip connection to fuse spatial
and semantic information. But unlike FCN, they use concatenation
instead of addition to merge the feature, see Figure 1.7. In addition,
they use boundary weighted loss to improve boundary segmentation.

Figure 1.7: U-Net: The decoder re-uses
the feature computed to symmetric layer
of the encoder to reconstruct the differ-
ent levels of shape details.

PsPNet [ZSQ+17] Zhao et al. introduce the Pyramid Scene Parsing
(PSP) network to retrieve the global prior context. They exploit the
pyramid clustering module to deal with objects of different sizes. The
main idea is to cluster the input feature map at N different scales
and perform a 1x1 convolution. Finally, the resulting features are
concatenated and merged by convolution (Figure 1.8). PSPNet uses
a ResNet [HZRS16] architecture for the main part of the network.

Figure 1.8: Pyramid Pooling module:
illustration of the pooling at different
scale.

DeepLab v1, v2, v3, v3+ [LCPK+15, CPK+16, CPSA17, CZP+18]
Starting in 2015, Chen et al. note that most encoders in segmenta-
tion were from the classification network. But these architectures,
iteratively downsample the image resolution to get a single value per
image. Unlike classification, the problem of segmentation requires
to keep as much spatial information as possible. Thus, DeepLab
v1 [LCPK+15] introduced a fully connected Conditional Random
Field at the top of the last layer (Figure 1.9) for finer results. Deeplab
v2 [CPK+16] incorporates dilated convolution, also known as convo-
lution a-trous, as does DilatedNet [YK16]. The idea is to modify the
kernel of the convolution with stride. The remaining convolution
increases the receptive field without decreasing the input resolution.
Deeplab v2 exploits successive a-trous convolutions as a cascading

8

context module. DeepLab v3 [CPSA17] reused PSPNet’s Spatial Pyra-
mid Pooling in addition to Deeplab v2. Finally, the latest version,
i.e., Deeplab v3+ [CZP+18] improves the decoder part with more
layers, and residual connections from early and intermediate layers
of the encoder. Deeplab is currently one of the most competitive
architectures, while conceptually simple.

Figure 1.9: Deeplab v1: conditional
random fields help to restore fine details
after the last upsampling.

Transformer-based [SGLS21, XWY+21] Since [VSP+17], the Trans-
former architecture has broken through the field of natural language
processing (NLP). In [DBK+21], authors show that this architecture
could be transferred to the computer vision tasks as well. The atten-
tion mechanism allow the receptive field to be much more flexible and
enable to gather information about objects adaptively from different
corners of the image, beyond the rigid rectangular receptive field
from convolutions. Modern image segmentation problems require
robustness on object size. Quickly, segmentation research benefited
from this framework. Transformer-based segmentation networks
use [DBK+21, LLC+21, BDPW22] as the main part of the encoder.
[SGLS21] extend ViT for segmentation. They use the output em-
bedding of each patch in the image with a ViT, and feed then in
a Vit decoder that processes the patch/token features computed by
the encoder. The decoder is enriched with multiple class tokens
corresponding to the classes to be segmented. [XWY+21] use a trans-
former architecture as encoder and a lightweight multilayer perception
(MLP) for the decoder. Using an MLP, SegFormer [XWY+21] allows
combining local and global attention for a better scene representation.

Instance segmentation Here we briefly discuss the main architecture
dedicated to instance segmentation. The initial work is based on
object detection, first we predict a bounding box around each object
of interest, then we predict the class of the object, and finally we
segment the instance inside the box. Similar to object detection, there
are two types of methods, one step like Yolo [RDGF16, RF17, RF18]1, 1 [RDGF16] Joseph Redmon et al., You

only look once: Unified, real-time object
detection. In CVPR 2016.

SSD [LAE+16] and others [CMS+20, ZSL+21], and two steps such
as Faster R-CNN [Gir15, RHGS17]2. The first one aims to predict 2 [Gir15] Ross Girshick. Fast r-cnn. In

ICCV2015directly from the image, while the second one predicts first the region
proposal and then the class object. For instance segmentation, most
methods are an adaptation of the corresponding architecture with an
auxiliary branch to compute the segmentation mask of the predicted
object [HGDG17, FSW+19, WKS+20, WZK+20]3. 3 [HGDG17] Kaiming He et al., Mask R-

CNN. In ICCV 2017.

Panoptic segmentation A new and more challenging task has emerged
from semantic and instance segmentation: panoptic segmentation
[KHG+19]4. The paradigm is more comprehensive for scene un- 4 [KHG+19] lexander Kirillov et al.,

Panoptic segmentation. In CVPR 2019.derstanding because it localizes the instance object as well as the
associated category of objects. In the literature, we denote three
different methods, illustrated in Figure 1.10:

∘ Box-based: fusion of the bounding box around each instance and

9

the segmentation map [QCY20].

∘ Center-based: regression of the center coordinate of each instance
and an offset map to aggregate the segmentation map per in-
stance [WZG+20].

∘ Box/Center Free: directly predict a mask for each instance and
stuff category, where each stuff category are considered without
id [WZA+21].

Figure 1.10: Comparison of framework:
on the left, box/center free; at the mid-
dle, center-based; and on the right, box
based. credit [WZA+21]

Early attempts to solve this task were to adapt or combine se-
mantic segmentation and instance [KGHD19, CCZ+20] architectures.
Naturally, most recent architectures integrate a transformer to boost
the performances [CSK21, CMS+21].

1.2 safety for automated driving

Synopsis In the late 1980s, General Motors developed the first elec-
tronic control unit (ECU) for fuel ignition. Since, ECU device’s have
multiplied in modern cars making the vehicles more and more au-
tonomous. These devices can control the speed, and the steering
wheel. The purpose of safety is to eliminate or mitigate the risks
associated with automated systems. Traditional safety can deal with
systematic failures or unexpected behavior of the car. But with the
advent of machine learning, specifically deep learning, in controlling
the car, traditional safety concepts, practices and standards must
adapt to this specific type of algorithms. In this section, we will
introduce four different safety standards to give context to them.
From traditional safety such as ISO 26262 to more recent standards
specifically addressing artificial intelligence and autonomous driving.

10

1.2.1 ISO 26262: Systematic and random failure

Road vehicles - Functional safety [ISO19] is one of the pillars of
traditional safety in the automotive industry. The main objective is to
reduce the risk due to hazards caused by malfunctioning electronic
or electrical systems. For example, an airbag that inflates without a
collision or an unwanted release of energy from the device that can
lead to an explosion. The safety objectives of the ISO 26262 standard
are therefore to put locks in place to prevent those risks. In this
standard, the risks come from two main events. Systematic failures
such as software bugs and random failures such as hardware aging.
The ISO 26262 standard proposes to use a V-cycle (Figure 1.11),
from the requirement to the validation of the system. It proposes a
quantitative objective to be reached in order to reduce the risks and
increase the safety of the vehicle.

Figure 1.11: ISO 26262 V-Cycle: mainly
focus on avoiding systematic failures.

1.2.2 ISO 21448: SOTIF, Unexpected behavior

The Safety Of The Intended Functionality (SOTIF) [21419] comple-
ments the ISO 26262 standard. It focuses on external events (outside
the system) that are not properly handled by the system, e.g. weather
conditions, road infrastructure, driving domains, user driving tasks,
road users, car communication, car position, etc. SOTIF divides
hazards into four distinct area:

∘ Area 1 Known-safe: the system knows that the driving scenario
is safe for the vehicle and the environment.

∘ Area 2 Known-unsafe: the system knows that the vehicle is in a
dangerous situation.

∘ Area 3 Unknown-safe: the system is not aware that the situation
is safe for the car.

∘ Area 4 Unknwon-unsafe: the system is completely blind. The
car does not know that the driving scenario is unsafe.

The objective of the SOTIF activities is to evaluate the potentially
hazardous behaviors present in situations 3 and 4 and to demonstrate
that the resulting residual risk is reasonable. It is expected that the
residual risk will be reduced (i.e., domains 2 and 3) and confidence
in safety will be increased by the growth set of scenarios in domain 1.
To do this, the [21419] proposes to collect as relevant data as possible
to cover a sufficient number of situations.

Figure 1.12: SOTIF objective: the main
goal of the SOTIF is to reduce the Area
4: Unknown-unsafe scenario.

1.2.3 ISO/TR 4804: SAFAD, automated car safety

The Safety First for Automated Driving (SAFAD) [SAF19] report
is the first attempt to address safety, autonomous driving and AI
(Figure 1.13). Specifically, they raised four challenges, which need to

11

be understood during implementation. First, deep neural networks
cannot detect unknowns. Second, DNNs are overconfident about
the input and output of the distribution. Third, DNNs do not
necessarily base their decisions on semantically meaningful features.
And last, DNN predictions are brittle and can flip under minor changes
to the input distribution. In addition, the security requirements
(reliability, robustness, temporal stability, criticality of certain types
of errors, etc.) are not integrate on mainstream losses such as the
cross-entropy. To remedy this, they made several propositions to
monitor/analyze/verify the input data, (i.e., Check for distributional
changes in the operational domain, Search for a new object (OoD),
Check for changes in the world, etc.) and on model behavior (i.e.,
Use an observer to track unexpected behavior). This last proposal
significantly influences our conception of the observer network in
Chapter 2.
The two previous standards do not directly address to artificial

intelligence (AI) and more specifically machine and deep learning.
They do not explicitly consider the application of machine learning:

∘ They do not address data collection.

∘ No evaluation measures for machine learning applications.

∘ They do not address uncertainty.

Figure 1.13: SAFAD: first attempt to
standardise safety and artificial intelli-
gence.

1.2.4 Safety in machine learning

In the machine learning and computer vision community, how to
achieve trustworthy and robust neural networks is a major research
question [RSG16]. When deploying a model for safety-critical ap-
plication such as autonomous cars, we do not only consider the
final accuracy of the model. We should also consider what are the
minimal requirements for each car to satisfy. Moreover, as the goal is
to spread these technologies for a large population, we must deal with
the scalability to millions of cars [SSSS17, MGK+17]. How to ensure
that the autonomous system does not fail when the environment
changes from the training distribution? Amodei et al. [AOS+16]
propose a list of five practical research problems to ensure to mitigate
accident risk:

∘ Maintaining the surrounding environment as it is.

∘ Avoiding hacking the problem, by trivial sub optimal solution.

∘ Adaptation to scalability problem.

∘ Carefully explore the surrounding world.

∘ Safe behavior in unknown situations.

Our work focuses mainly on the last point, that is to say, how
to construct models able to detect unknown situations for a safer
behavior.

12

1.3 related works

Synopsis Deep Neural Networks (DNNs) are not always reliable.
DNNs do not know that they do not known and are not as robust
as humans are, for instance, these models seem to be biased over
texture, regardless of the shape of the object [GRM+19]1. The prob- 1 [GRM+19] Robert Geirhos et al.,

Imagenet-trained CNNs are biased towards
texture; increasing shape bias improves ac-
curacy and robustness. In ICLR 2019.

lem of data samples outside the original training distribution has
been long studied for various applications before the deep learning
era, under slightly different names and angles: outlier [BKNS00],
novelty [SWS+00], anomaly [LTZ08] and, more recently, OoD de-
tection [HG17, HMD18]2. In the context of widespread DNN adop- 2 [HG17] Robert Geirhos et al., Imagenet-

trained CNNs are biased towards texture;
increasing shape bias improves accuracy and
robustness. In ICLR 2019.

tion this field has seen a fresh wave of approaches based on in-
put reconstruction [SSW+17, BWAN18, LNFS19, XZL+20], predic-
tive uncertainty [GG16, KG17, MG18a], ensembles [LPB17, FBA+20],
adversarial attacks [LSL18, LLLS18], using a void or background
class [RHGS15, LAE+16] or dataset [BKOŠ19, HMD18, MG18a], etc.
In the following subsections, we dig into the main category of meth-
ods for Out-of-Distribution detection. We split related work into
three categories: Architecture Based, Data Based and task specific.

1.3.1 Architecture Based

Here, we present methods that rely on specific training schemes or
dedicated model architectures, independent of the data statistics.

Baseline i.e., softmax In spite of the overconfidence pathological ef-
fect, using the maximum class probability from the softmax prediction
can be used towards OoD detection [HG17, ORF20]. Temperature
scaling [GPSW17, P+99]3 is a strong post-hoc calibration strategy of 3 [GPSW17] Dan Hendrycks et al., A base-

line for detecting misclassified and out-of-
distribution examples in neural networks.
In ICLR 2017.

the softmax predictions using a dedicated validation set. If predic-
tions are calibrated, OoD samples can be detected by thresholding
scores. Pre-training with adversarial attacked images [HLM19] has
also been shown to lead to better calibrated predictions and good
OoD detection for image classification. We consider this framework as
a simple baseline, because for advanced problems, accuracy and cali-
bration on i.i.d does not transfer well on OoD detection, as explained
in [OFR+19]. One can also mitigate overconfidence by modifying
the cross-entropy loss [LGG+17]. In [AC20], Faruk et al. use an
auxiliary task and use the consistency of prediction as OoD detector.
In addition, we can moderate overconfidence with a modified softmax
prediction [Neu18, MSK18] or modified cross entropy [RLF+19].

Bayesian Neural Networks (BNNs) Bayesian approaches [Gra11,
Nea12, BCKW15]4 can capture predictive uncertainty from distribu- 4 [BCKW15] Charles Blundell et al.,

Weight uncertainty in neural networks. In
ICML 2015.

tions learned over network weights, but do not scale well [DJW+20]
and approximate solutions are preferred in practice. Variationnal
Inference of BNNs can be improved [LW16, LW17], done deter-
ministicly [WNM+19] in order to better scale to modern architec-

13

tures and datasets [HLA15, ZSDG17, WT11]. Mixture Density Net-
works [CLLO18] can also learn to measure uncertainty without heavy
sampling method as well as [HMK+20] for recurrent neural networks
(GRUs) or free epistemic estimation [PFC+19].

Deep (Pseudo-)Ensemble Deep Ensemble (DE) [LPB17]1 is a highly 1 [LPB17] Balaji Lakshminarayanan et
al., Simple and scalable predictive uncer-
tainty estimation using deep ensembles. In
NeurIPS 2017.

effective, yet costly approach, that trains an ensemble of DNNs with
different initialization seeds. Deep Ensembles work well in practice
because they explore entirely different modes [FHL19]. Distillation
for Deep Ensemble can reduce the run time required [MMG20] at in-
ference. Pseudo-ensemble approaches [Gal16, MIG+19, MAG+20,
KSW15] are a pragmatic alternative to DE that bypass training
of multiple networks and generate predictions from different ran-
dom subsets of neurons [Gal16, SHK+14] or from networks sampled
from approximate weight distributions [MIG+19, FBA+20, MAG+20].
Swapout [SHF16] introduces stochastic training that can be used in
practice for OoD detection as well as [TAS18] that leverage batch
normalization for uncertainty measurement. However they all require
multiple forward passes and/or storage of additional networks in
memory.

Prior Networks In [MG18a]2, the authors decide to directly emulate 2 [MG18a] Andrey Malinin et al., Predic-
tive uncertainty estimation via prior net-
works. In NeurIPS 2018.

an ensemble by parameterizing the output predictions of a model with
a Dirichlet distribution in order to model uncertainty. They separate
model uncertainty, data uncertainty and distributional uncertainty
(OoD). A Deep Prior Networks (DPNs) is trained to predict a strong
or flat a priori distribution on the expected sample by minimizing a
KL objective. Later, [MG19] found that the reversed KL has a better
property and helps to stabilize the training. Some researchers use
normalizing flow networks [CZG20] or GANs [SKCS20] to simulate
OoD data. But for more complete problems, Prior networks still need
an explicit dataset to be train on, in order to predict a flat distribution.

1.3.2 Data Based

In this subsection, we describe methods that detect OoD from the
statistics of the input data, or through internal activations of a pre-
trained network.

Reconstruction In semantic segmentation, anomalies can be detected
by training a (usually variational) autoencoder [CM15, BWAN18,
VPSM20, BBL+19]3 or generative model [SSW+17, LNFS19, XZL+20] 3 [BBL+19] Andrea Borghesi et al.,

Anomaly detection using autoencoders in
high performance computing systems. In
AAAI 2019.

on in-distribution data. OoD samples are expected to lead to erro-
neous and less reliable reconstructions as they contain unseen patterns
during training. On high resolution and complex urban images, auto-
encoders under-perform while more sophisticated generative models
require large amounts of data to reach robust reconstruction or rich
pipelines with re-synthesis and comparison modules. Flows based

14

approach uses normalizing flows [HCS+19, KD18] to compute the true
distribution of the data 𝑝(𝑥) and use it to detect OoD. Nevertheless,
these methods do not seem to be very effective in practice [NMT+19].

Adversarial attacks In ODIN, Liang et al. [LSL18]1 leverage tem- 1 [LSL18] Shiyu Liang et al., Enhancing
the reliability of out-of-distribution image
detection in neural networks. In ICLR
2018.

perature scaling and small adversarial perturbations on the input
at test-time to predict in- and Out-of-Distribution samples. Lee et.
al [LLLS18] extend this idea with a confidence score based on class-
conditional Mahalanobis distance over hidden activation maps. Both
approaches work best when train OoD data is available for tuning,
yet this does not ensure generalization to other OoD datasets [SSL19].
Moreover, so far this method has not been shown effectively for
structured output tasks where the test cost is more likely to explode,
as adversarial perturbations are necessary for each pixel.

Features statistics Another approach is to seek into the activa-
tion of a pre-trained neural network [BMN21] statistics which differ
when facing an Out-of-Distribution sample. In industrial defect,
CutPaste [LSYP21] uses data augmentation of small patch at to detect
anomalies during test. And PatchCore [RPZ+22]2 use a memory bank 2 [RPZ+22] Karsten Roth et al., Towards

total recall in industrial anomaly detection.
In CVPR 2022.

of patch, extracted from pre-trained network features to compute a
distance between training samples and testing samples.

Learning errors Inspired by early approaches from model cali-
bration literature [P+99, ZE01, ZE02, NCH15, NC16], a number of
methods propose endowing the task network with an error predic-
tion branch allowing self-assessment of predictive performance. This
branch can be trained jointly with the main network [DT18, YK19],
however better learning stability and results are achieved with two-
stage sequential training [CTBH+19, HDVG18, BPB21, SvNB+19a]3. 3 [CTBH+19] Charles Corbière et al., Ad-

dressing failure prediction by learning model
confidence. In NeurIPS 2019.

1.3.3 Task specific

Most of the previous was applied for classification, but does not
always transfer well for image segmentation or 2d object detection.
We present here, methods that are dedicated for 2d object detection
and image segmentation.

2D detection For 2D OoD detection, VOS [DWCL22]4 synthesises 4 [DWGL22] Xuefeng Du et al., Towards
unknown-aware learning with virtual outlier
synthesis. In ICLR 2022.

virtual outliers to regularize the boundary prediction of the detector.
Some approaches try to adapt well-known frameworks to increase
the reliability of them [CCKL19]. CertainNet [GHM+22] separate
uncertainties for each output signal: objectness, class, location and
size. Du et al. [DWGL22] use video in the wild to train an uncertainty
branch and detect OoD.

Segmentation Specific to segmentation, [DBBSC21] use image re-
construction from the segmentation prediction and an additional

15

dissimilary network to detect OoD. Mukhoti et al. develop a bayesian
DeepLab [MG18b] with dropout. In [SvNB+19b], the authors use a
gambling networks to improve and robustifyed a segmentation networks.
Chan et al. [CRG21a] leverage OoD dataset to train the segmentation
network to maximize the entropy on these samples while minimize
it on in-distribution examples. DenseHybrid [GBv22] fuses the data
posterior and the data likelihood from discriminative network to
segment OoD by learning from negative data.

1.4 datasets and metrics

1.4.1 Datasets

In the literature, early methods focused on classification where the
target model was trained on a dataset and tested on a completely
different OoD dataset. However, this framework could introduce
hazards that come not only from the novelty of the class but also
from the data registration process [AC20]. In this thesis, we focus on
OoD detection for image segmentation. The task is more challenging
and less studied. In image segmentation, an OoD object may cover
only a small part of the image while the rest of the image remains in
the distribution. In recent years, datasets have been constructed to
leave out-of-field objects only on the test set. In semantic segmentation
we can denote multiple datasets.

CamVid OoD: We design a custom version of CamVid [BFC08]1, 1 [BFC08] Gabriel J. Brostow et al;, Se-
mantic object classes in video: A high-
definition ground truth database. In PRL
2008.

where we blit random animals from [MATTEP08] in a random part
of the image. This dataset contains 367 train and 233 test images.
There are 19 different species of animals, and one animal in each
test image. This setup is similar of Fishyscapes [BSN+19] but allow
users to quickly test their methods without been stuck to specific
deep learning framework2. 2 TensorFlow models are mandatory to

test on the server of the Fishyscapes
dataset.

StreetHazards: This is a synthetic dataset [HBM+19]3 from the
3 [HBM+19] Dan Hendrycks et al.,
A benchmark for anomaly segmentation.
ArXiv 2019.

Carla simulator. It is composed of 5125 train and 1500 test images,
collected in six virtual towns. There are 250 different kinds of
anomalies (like UFO, dinosaur, helicopter, etc.) with at least one
anomaly per image.

BDD Anomaly: Composed of real images, this dataset is sourced
from the BDD100K semantic segmentation dataset [YCW+20]4. Here, 4 [YCW+20] Fisher Yu et al., BDD100K:

A diverse driving dataset for heterogeneous
multitask learning. In CVPR, 2020.

motor-cycles and trains are selected as anomalous objects and all
images containing these objects are removed from the training set.
The remaining dataset contains 6688 images for training and 361 for
testing.

SegmentMeIfYouCan: Appeared recently with a public score-
boards, available to compare all OoD methods. The dataset [CLU+21]5 5 [CLU+21] Robin Chan et al., Segment-

meifyoucan: A benchmark for anomaly
segmentation. In NeurIPS Datasets and
Benchmarks 2021.

is decomposed on two different tracks: RoadAnomaly21 and Road-
Obstacle21. The first one contains 100 anomalies on the road such
as a plane on the highways or an elephant in front of the car, see
Figure 1.14 and represents real situations. RoadObstacle21 contains

16

371 high resolution images with small objects on the road (e.g. stuffed
toys, sleighs or tree stumps). No training sets are provided for these
datasets, with the assumption to use solely CityScapes as the train
set.

Lost&Found: It [PRG+16] contains 2071 images extracted from
112 videos in the wild. Each frame contains unexpected small objects
lost from cargot, where most of the objects are toys or boxes.

Fishyscapes: this is a public benchmark [BSN+19] that exploits
synthetic objects blit in the CityScapes [COR+16] test dataset. The
images are on the server and are updated every three months with
new objects.

MVTec AD: [BFSS19], a dataset of industrial anomaly inspection.
It contains more than 5000 images and fifteen classes of objects and
textures, such as toothbrushes, capsules or cables.

Figure 1.14: Segment Me If You Can:
sample of the test set of the dataset for
anomaly segmentation.

1.4.2 Metrics

Along the chapters, we compare our different methods on numerous
metrics for OoD and error detection described in the following:

∘ Fpr95Tpr [LSL18]: It measures the false positive rate when the
true positive rate is set to 95%. The aim is to obtain the lowest
possible false positive rate while guaranteeing a given number of
detected errors.

∘ Area Under the Receiver Operating Characteristic curve (Au-
Roc) [HG17]: This threshold free metric corresponds to the proba-
bility that a certain example has a higher value than an uncertain
one.

∘ Area under the Precision-Recall Curve (AuPR) [HG17]: Also
a threshold-independent metric. The AuPR is less sensitive to
unbalanced datasets than AuRoc.

∘ Recall at 95% Precision (R@P) [BPB21]: We measure the recall
when the precision is equal to 95% (e.g. R@P=0.95). Better
uncertainty measures ought to achieve higher recall.

∘ Trigger [BPB21]: We propose a ”safety trigger rate metrics”
which is the percentage of images in the dataset with a coverage of
a certain prediction over a threshold. For instance ”Trigger 75%”
is the percentage of images in the test set where the coverage of
safe prediction is above 75%.

We also use the two following metrics for calibration:

∘ Expected Calibration Error (ECE) [NCH15]: This metric mea-
sures the expected difference between accuracy and predicted
uncertainty.

∘ Adaptive Calibration Error (ACE) [NDZ+19]: Compared to
standard calibration metrics where bins are fixed, ACE adapts the

17

range of each the bin to focus more on the region where most of
the predictions are made.

1.5 conclusion

To sum up the above methods, we show in Table 1.1 a recap of the
previous frameworks. We highlight pros and cons of each batch
of methods and where the ideal methods should be fast, memory
efficient, easy to train and accurate for OoD detection.

Type Example OoD Fast Memory Training
accuracy Inference efficient specification

Softmax MCP [HG17] - 3 3 No
Bayesian Learning MCDropout [GG16] 3 - 3 Reduces IoU acc.
Reconstruction GAN [XZL+20] 3 3 3 Unstable training
Ensemble DeepEnsemble [LPB17] 3 - - Costly Training
Auxiliary Network ConfidNet [CTBH+19] - 3 3 Imbalanced train set
Test Time AA ODIN [LSL18] -* - 3 Extra OoD set
Prior Networks Dirichlet [MG18a] 3 3 3 Extra OoD set

Table 1.1: Summary of various OoD de-
tection approaches amenable to seman-
tic segmentation. For real-time safety,
key requirements for an OoD detector
are accuracy, speed, easy training and
memory efficiency. *Not accurate for
semantic segmentation

In the following chapters, we introduce the concept of observer
network for efficient OoD detection in image segmentation. The
observer network has several advantages in terms of accuracy and
inference speed. First, in Chapter 2 we introduce the concept of
ObsNet, then in Chapter 3 and Chapter 4 we present two different
ways to train an observer. Then, in Chapter 5, we adapt the method
for the segmentation of instances and panoptic objects. Finally, in
Chapter 6, we show how to integrate an observer on a demonstration
car and test it in real conditions.

Part II

LEARNING WITH OBSERVER NETWORKS

2
Observer Network

[Chapter 1 Chapter 3]
Synopsis In this Chapter, we introduce the concept of observer
networks (ObsNet). This class of method is useful for error, Out-
of-Distribution (OoD) detection and uncertainty measurement. The
main idea is to use an additional network in parallel with the target
network. The auxiliary network, ObsNet, observes internal activations
of the frozen, pre-trained target network. ObsNet is trained on the
failures of the target network. In the following sections we present
the motivation, the architecture and the challenge to train an ObsNet.
We show the characteristics of this framework for classification on
Cifar10 and Cifar100.

2.1 motivation

In the context of safety-critical applications such as autonomous
driving, we do not only seek for the accuracy of the primary task.
We also need to have a reliable prediction that can guarantee a safe
behavior of the automated system. Moreover, the solution must be
incorporated in a real-time embedding setting. To establish the ideal
framework, we have to focus on the four following milestones:

∘ Accuracy: Primary task (e.g. classification, segmentation, detec-
tion) should stay as good as possible, for the appropriate function-
ing of the car.

∘ Reliability: Prediction of the primary task must provide a confi-
dence measurement, to avoid unsafe situations.

∘ Memory footprint: Embedded applications have high memory
constraints, thus the methods should limit the memory usage.

∘ Run time efficiency: Real-time solution must be fast, and preserve
a high frame rate for real-time application.

2.1.1 Trade-off between accuracy and trustworthy

In the literature, methods that deal with uncertainty, OoD or er-
ror detection are either accurate or slow. Ensemble [LPB17]2 or 2 [LPB17] Balaji Lakshminarayanan et

al., Simple and scalable predictive uncer-
tainty estimation using deep ensembles. In
NeurIPS 2017.

pseudo-ensemble [GG16]3 are known to be accurate, they perform

3 [GG16] Yarin Gal et al., Dropout as
a bayesian approximation: Representing
model uncertainty in deep learning. In
ICML 2016.

multiple forwards passes and use the entropy of the prediction
as the uncertainty measurement. But these methods are memory
and computational cumbersome, as most embedded hardware ar-

20

chitecture cannot handle multiple predictions. Test-time adversarial
attacks [LSL18] also show some limitations. The backward pass to
compute the adversarial example is very slow. Finally, deterministic
approaches [HG17]1 are inaccurate and known to be overconfident 1 [HG17] Dan Hendricks et al., A base-

line for detecting misclassified and out-of-
distribution examples in neural networks.
In ICLR 2017

for in and out-of-distribution samples.

2.1.2 Observer networks

Here, we introduce ObsNet. A new class of methods for efficient
and fast errors/OoD/uncertainty detection. The main idea is to use a
dedicated architecture that operates in parallel to the target network.
The framework (detailed in Figure 2.1) is composed of an additional
network mimicking the target network architecture. During ObsNet
training, the target network is frozen. Thus we do not impact the
primary task and then preserve its performance. During inference,
we only perform two forward passes: one for the primary task and
one for the reliability task. Then memory consumption and number
of operations is only multiplied by two, which is small compared to
ensemble and pseudoensemble. Given the input image and residual
connection from intermediate activations of the target network, we
give ObsNet the ability to observe the behavior of the target network.

Figure 2.1: Architecture of a vanilla
ObsNet upon a ResNet18 for classifica-
tion on Cifar10. The Observer network
takes as input the image and residual
connection coming from intermediate ac-
tivation of the Target Network. The ob-
server is then dedicated to the error/un-
certainty/OoD detection while the target
network is unchanged.

To train our ObsNet, we use the failure mode of the target network.
More formally, given a dataset 𝐷 = {𝑥, 𝑦}, we train ObsNet with a
binary cross entropy:

ℒ𝑂𝑏𝑠(𝑥, 𝑦) = (1𝑇 (𝑥)≠𝑦 − 1) log(1 − 𝑂𝑏𝑠(𝑥, 𝑇𝑟(𝑥)))

− 1𝑇 (𝑥)≠𝑦 log𝑂𝑏𝑠(𝑥, 𝑇𝑟(𝑥)), (2.1)

with 𝑇 the target network, 𝑇𝑟 the residual connection from in-
termediate feature maps of 𝑇, 𝑂𝑏𝑠 the Observer network and with
1𝑇 (𝑥)≠𝑦 the indicator function of 𝑇 (𝑥) ≠ 𝑦. We train the auxiliary
network to output 1 if the network predicts the wrong class and
0 otherwise. In other words, we give ObsNet the ability to output

21

the probability that the target network predicts the wrong class:
𝑂𝑏𝑠(𝑥, 𝑇𝑟(𝑥)) ≈ 𝑃𝑟[𝑇 (𝑥) ≠ 𝑦].

2.2 experiments

In this section, we analyze the behavior and the performance of a
vanilla observer network. To better understand its characteristics, we
show results and ablation for classification on Cifar10 and Cifar100.
For all experiments we use a ResNet18 as the Target Network. In
this chapter, we focus our work on OoD detection.

2.2.1 Datasets, Metrics, and Compared Methods

Many papers [LSL18, LPB17]1 evaluate Out-of-distribution on clas- 1 [LSL18] Shiyu Liang et al., Enhancing
the reliability of out-of-distribution image
detection in neural networks. In ICLR
2018.

sification using two distinct datasets. Usually, the setting is not well
defined, as two datasets can have hazards that do not come only
from the known object but also from a different distribution or from
a different recording setting. Here, we propose to leverage a different
approach, similar to [AC20]2, we exclude some classes from the train 2 [AC20] Faruk Ahmed et al., Detecting

semantic anomalies. In AAAI 2020.set, but leave the test set unchanged. We use Cifar10 as our reference
dataset. We train a ResNet18 on only 7 classes: airplane, automobile,
bird, cat, deer, and dog. We then test our model on the 10 classes
that include the additional: horse, ship and truck classes. These
additional classes correspond to our OoD classes. This setting give
us the guarantee that the process to record the data is the same for
in and out of distribution. We also show results on Cifar100 where
we keep the 70 first classes as in-distribution and leave the last 30
classes as the OoD.
To compare the performance of the observer network, we select

four different metrics: Fpr95Tpr [LSL18], Area Under the Receiver
Operating Characteristic curve (AuRoc) [HG17], Area under the
Precision-Recall Curve (AuPR) [HG17] and Adaptive Calibration
Error (ACE) [NDZ+19].
We compare the performance of the observer network against four

baselines from the related works:

∘ Deterministic: MCP [HG17]: Maximum Class Prediction. One
minus the maximum of the prediction.

∘ Pseudo Ensemble: MCDropout [GG16]: The entropy of the mean
softmax prediction with dropout. We use 10 forward passes for
all the experiences.

∘ Adversarial Attack: ODIN [LSL18]: ODIN performs test-time
adversarial attacks on the primary network. We seek the hyper-
parameters Temp and 𝜖 to have the best performance on the vali-
dation set. The criterion is one minus the maximum prediction.

∘ Ensemble: Deep ensemble [LPB17]: a small ensemble of five
networks. We use the entropy of the averaged forward passes.

22

2.2.2 Results & ablation

One strong assumption of our solution is to use residual connections
from the target network. We show on 2.1 an ablation study on where
to place these connections. The first interesting observation is that
deeper layer seems to be more informative for ObsNet to disentangle
in from out of distribution. Moreover, the best performance comes
when the observer is able to watch the entire target network.

Input Layer AuROC ↑ AuPR ↑ Fpr95Tpr ↓ ACE ↓
3, -, -, -, - 71.69 77.93 85.92 0.2761
-, 3, -, -, - 71.25 77.84 86.01 0.2678
-, -, 3, -, - 75.96 80.51 81.57 0.2481
-, -, -, 3, - 77.99 81.92 76.76 0.2331
-, -, -, -, 3 78.19 81.03 75.61 0.2084
-, -, -, -, - 50.00 55.70 95.24 0.5216
-, 3, 3, 3, - 78.45 82.56 77.78 0.2322
3, 3, 3, 3, 3 80.46 84.21 74.63 0.2334

Table 2.1: Ablation on activation on
Cifar10. The Target Network and the
ObsNet are trained on Cifar7, leaving
the horse, sheep and truck as the OoD
classes. ObsNet performs best when it
observes all the activations and the input
image. Table also shows that deeper lay-
ers are more relevant for OoD detection
than shallow ones.

Table 2.2 shows the running time and the memory consumption
of our methods compared to others. Ensemble and Pseudo-ensemble
are computationally demanding. Even if test-time adversarial attacks
(i.e., ODIN) only use few parameters, the method is slow due to
the back-propagation. Finally, MCP is the fastest but inaccurate see
Table 2.3. Our framework conserves good OoD detection, has a light
memory footprint and is fast as they only need to compute two
forwards passes.

MCP MCDropout D.E. ODIN ObsNet
Run Time (ms) 0.01 0.107 0.045 0.038 0.019
Memory (MB) 1.046 1.046 5.230 1.046 2.089

Table 2.2: Ablation on memory foot-
print and run time inference. The
ideal framework should be accurate, fast
and with low additional storage. Our
ObsNet is a good trade-off for these con-
ditions.

In Table 2.3 and Table 2.4 we show results on Cifar10 and Cifar100.
We can see that our ObsNet has strong OoD detection. The observer
is better than baseline such as MCP or MCDropout, and close to SOTA
methods like Ensemble or ODIN: 0.61% AuROC difference between
ObsNet and Deep Ensemble (Table 2.3). We can also notice that our
framework preserves the accuracy of the target network, which is
not the case for MCDropout because dropout can hurt accuracy for
convolutional networks.

2.3 conclusion

We present ObsNet, a simple framework for error, Out-Of-Distribution
detection or uncertainty measurement. We show that the observer can
be both accurate and fast for classification on Cifar10 and Cifar100.
Moreover, it does not change the architecture and the performance of
the target network. We highlight that observers need all the interme-
diate activations of the target network to reach the best performance.

23

Methods Accuracy ↑ AuROC ↑ AuPR ↑ Fpr95Tpr ↓ ACE ↓
MCP 55.89 75.76 79.90 77.47 0.2189
MCDropout 53.29 78.32 79.56 75.95 0.2166
D.E. 57.48 81.07 85.22 69.26 0.2193
ODIN 55.89 79.98 83.92 74.12 0.2528
ObsNet 55.89 80.46 84.21 74.63 0.2334

Table 2.3: OoD detection evaluation on
Cifar10. The Target Network and the
ObsNet are trained on Cifar7, leaving the
horses, sheep and trucks as the OoD.

Methods Accuracy ↑ AuROC ↑ AuPR ↑ Fpr95Tpr ↓ ACE ↓
MCP 50.17 80.14 82.23 76.40 0.1368
MCDropout 49.95 79.64 82.10 76.47 0.1425
D.E. 54.25 84.3 85.30 71.29 0.1395
ODIN 50.17 81.08 83.26 74.05 0.1361
ObsNet 50.17 82.03 83.70 74.00 0.1436

Table 2.4: OoD detection evaluation on
Cifar100. The Target Network and the
ObsNet are trained on Cifar70, leaving
the last thirty classes as OoD.

However, training an observer network is not straightforward. The
main point to consider is that ObsNet is trained on the errors made
by the target network in the training set. But due to a natural
overfitting, usually, the target network performs nearly perfectly on
the training set. So, we are facing an unbalanced training set by
feeding ObsNet only positive samples. In the above experiments,
we perform early stopping of the target ResNet18 and leave 20.00%
errors in the training set. These tricks allow the observer to gather
negative examples, but could decrease the primary task performance.
In the three next chapter Chapter 3, Chapter 4 and Chapter 5, we
show different way to help stabilize and improve the training of
ObsNet even when very few remaining errors are available.

3
Divergence Based Uncertainty

[Chapter 2 Chapter 4]
Synopsis Chapter 2 introduces ObsNet, a simple framework dedi-
cated to observing internal activations of a target network. Here, we
aim at predicting uncertainty in semantic segmentation. We pro-
pose an efficient way to train ObsNet by learning divergence based
uncertainty. We introduce a new uncertainty measure based on dis-
agreeing predictions as measured by a dissimilarity function. Unlike
distillation methods which train a student network to jointly perform
the task and estimate uncertainty, we propose to estimate only this
uncertainty by training the observer in parallel to the task-specific
network. Using self-supervision, we allow ObsNet to predict both
epistemic and aleatoric uncertainties. We show experimentally that
our proposed approach is much less computationally intensive at
inference time than competing methods (e.g., MCDropout), while
delivering better results on safety-oriented evaluation metrics on the
CamVid dataset (Figure 3.1). This chapter is based on our paper
”Learning Uncertainty for Safety-Oriented Semantic Segmentation
in Autonomous Driving” in Proceedings of the IEEE International
Conference on Image Processing (ICIP).

Figure 3.1: Uncertainty maps for a
noisy image. From left to right: The in-
put image with artificial sun glare. MC-
Dropout with 50 samples detects epis-
temic uncertainty but not aleatoric un-
certainty caused by the sun glare. Dis-
tillation is fast in inference but the un-
certainty map is inaccurate and badly
captures aleatoric uncertainty. Our pro-
posed ObsNet detects epistemic uncer-
tainty and aleatoric uncertainty and is
as fast as distillation.

3.1 introduction

3.1.1 Safety in neural networks

With the recent development of deep learning, neural networks have
proven to match and even outperform human level performance
at solving complex visual tasks necessary for autonomous driving
such as object detection and image recognition [XGD+17, CPSA17,
HGDG17]. However, when it comes to safety critical applications, the
use of neural networks raises huge challenges still to be unlocked.

https://ieeexplore.ieee.org/document/9506719
https://ieeexplore.ieee.org/document/9506719

25

Building models able to outperform humans in dealing with unsafe
situations or in detecting operating conditions in which the system
is not designed to function remains an open field of research. For
example, although Softmax outputs class conditional probabilities,
it produces misleading high confidence outputs even in unclear
situations [MSK18].
This is all the more dramatic in autonomous driving [MKG18]

applications where the confidence of the prediction is safety criti-
cal. Demonstration of safety for AI components is a key challenge
addressed by SOTIF [21419] which focuses on external events (ex-
ternal to the system) that are not correctly handled by the system
(e.g. weather conditions, user driving tasks, road users, ...). In such
systems, detecting uncertain predictions is a key trigger to produce
a safe behavior by interrupting the current process and starting a
fallback process (e.g., human intervention) instead of risking a wrong
behavior.

3.1.2 Uncertainty learning with observer network

Recently, many approaches have sought to compute the uncertainty
associated with deep neural networks (epistemic uncertainty). We
select Deep Ensemble [LPB17] and MCDropout [GG16]1 as they are 1 [GG16] Yarin Gal et al., Dropout as

a bayesian approximation: Representing
model uncertainty in deep learning. In
ICML 2016.

representative for the respective categories (ensembles and pseudo-
ensembles), conceptually simple and often used in literature as upper
bounds or baselines. Both methods measure the variations between
several predictions of the same image. Although these methods
provide interesting results for epistemic uncertainty estimation, they
increase the inference time during the test phase in a prohibitive
way. To alleviate this problem, distillation is a very popular method
[GBP18]2. In this context, a student network tries to regress the 2 [GBP18] Corina Gurau et al., Dropout

distillation for efficiently estimating model
confidence. ArXiv 2018.

average of the MCDropout realizations to capture the variance. In
addition, the student is also trained to predict the original task output,
which leads to a multi-task problem. While distillation solves the
computational cost problem, one can ask whether trying to jointly
solve the main task and the uncertainty estimation with the same
head of a single network can lead to under performing results. In
fact, we experimentally show in this chapter that distillation is very
underwhelming in a safety critical context.
Moreover, distillation based methods fail to uncover aleatoric

uncertainty caused by the absence of information in the image [Gal16,
KD09] and even ensembles can sometimes fail in detecting aleatoric
uncertainty. For example, both are not able to detect the uncertainty
caused by the glare shown on Figure 3.1. This is likely due to the
fact that the sun glare noise covers a large portion of the image and
several forward passes with different dropout realizations are unlikely
to change the output of the network. In this chapter, we propose to
predict the uncertainty of a target deep neural network arising from
both epistemic and aleatoric causes, without the cost of ensemble
methods. We introduce a safety oriented context, where we evaluate

26

the effectiveness of an uncertainty measure to detect a safety critical
prediction. Our main contribution is a safety oriented uncertainty
estimation framework that consists of a deep neural network called
ObsNet running in parallel to the target network. ObsNet is trained
using self-supervised classes to output predictions that are similar to
the target network when the target network is certain, and completely
different outputs when the prediction is uncertain. The uncertainty is
then measured as the dissimilarity between the target network output
and ObsNet output. We empirically show it produces a good proxy
for measuring the uncertainty in a safety oriented context. ObsNet
has the following properties that allow it to be an improvement over
previous methods:

∘ ObsNet computes an uncertainty measure that takes both epistemic
and aleatoric causes into account;

∘ ObsNet is trained in a simple self-supervised fashion, meaning
that no expensive annotations are required;

∘ ObsNet does not require retraining the target network and can
work with any off-the-shelf network;

∘ ObsNet is fast. The processing of ObsNet happens in parallel to
the target network, meaning it has a reduced overhead compared
to other uncertainty estimation methods.

∘ ObsNet improves over other uncertainty estimation methods at
detecting safety critical predictions.

3.2 method

In this section, we describe how the observer network is built to
predict an uncertainty map as illustrated in Figure 3.2.

Figure 3.2: Architecture of our frame-
work The uncertainty is computed
as the Kullback-Leibler divergence be-
tween the segmentation network predic-
tion and ObsNet output. Our framework
allows the target network to be dedi-
cated to the segmentation part and the
ObsNet dedicated to uncertainty mea-
surement.

27

3.2.1 Certain set vs. uncertain set

For safety purposes, it is often better to not make any decision
rather than making a decision that cannot be guaranteed. Given a
trigger that detects decisions that cannot be guaranteed, a safe system
could then stop its current process and start a fallback process (e.g.
human intervention). Such a trigger divides the predictions ̂𝑦 of a
given neural network into 2 classes: the class of certain predictions
associated with the class 𝑐 = +1, for which an average error rate
can be guaranteed; and the uncertain class, associated with the label
𝑐 = −1, for which no average guarantee can be obtained. More
formally, we have the following property:

E ̂𝑦|𝑐=+1[𝑙(̂𝑦, 𝑦)] ⩽ 𝜖, (3.1)

with ̂𝑦|𝑐 = +1 the distribution of certain predictions, y the ground
truth and 𝑙(., .) the loss function of the target application.
We propose to use uncertainty estimation to obtain such safety

trigger. Given a function 𝑢(̂𝑦) that estimates the uncertainty of a
prediction ̂𝑦, we define a safety threshold 𝛿 such that predictions
under the threshold are in the certain set:

𝑢(̂𝑦) ≤ 𝛿 ⇒ 𝑐 = +1 (3.2)

In practice, given an error rate threshold 𝜖 and its corresponding
uncertainty threshold 𝛿, we evaluate uncertainty functions by the
recall, that is, the proportion of samples that are deemed certain see
Figure 3.3.

Figure 3.3: Precision and Recall. Curve
depend on the uncertainty threshold 𝛿
for epistemic uncertainty. The hyper-
parameter 𝛿 allows to select which ex-
amples are in the certain prediction set
(i.e., 𝑐 = +1).

3.2.2 Divergence based Learning

To obtain 𝑢(.), we propose to model the uncertainty as the dissim-
ilarity between several predictions. Let ̂𝑦 be the prediction of the
neural network we are analyzing, and let 𝑦𝑎 be an additional predic-
tion without any assumption on how it is obtained (e.g. additional
forward of a stochastic model, ensemble, oracle, etc.). We propose
that measuring the dissimilarity between ̂𝑦 and 𝑦𝑎 gives us a sense
of the uncertainty regarding prediction ̂𝑦. In the case of a regression

28

problem, the dissimilarity can be measured as the distance between
the two predictions. In this paper, we focus on softmax classifica-
tion which is used in semantic segmentation and is well studied in
uncertainty estimation. It that case, ̂𝑦 and 𝑦𝑎 being the probability
distribution over the different possible classes (softmax outputs), we
propose to use the KL divergence to define the uncertainty function
𝑢(.):

𝑢(̂𝑦) = 𝐷𝐾𝐿(̂𝑦||𝑦𝑎). (3.3)

In other words, if ̂𝑦 and 𝑦𝑎 produce similar outputs, the uncertainty
of ̂𝑦 is low, whereas if ̂𝑦 and 𝑦𝑎 produce dissimilar (or disagreeing)
outputs, the uncertainty of ̂𝑦 is high.
Unfortunately, it is clear that the additional prediction 𝑦𝑎 may

not be available at inference time. Our main contribution solves this
problem by introducing a second predictor, the observer with output
𝑦𝑜 which we use in place of 𝑦𝑎. Training 𝑦𝑜 to precisely regress the
predictions 𝑦𝑎 can be a difficult learning problem. Moreover, in case
of uncertain predictions, it is not required that 𝑦𝑜 perfectly matches
𝑦𝑎. Instead, 𝑦𝑜 only has to be sufficiently different from ̂𝑦 to produce
a large KL divergence, just as 𝑦𝑎 would have done. Therefore, we
propose to train 𝑦𝑜 using a self-supervised classification problem
distinguishing between certain and uncertain predictions.
In practice, given a training set of pairs (̂𝑦, 𝑦𝑎), we use the safety

threshold 𝛿 to split the pairs into certain 𝑐 = +1 and uncertain 𝑐 = −1
classes, and we train our predictor ObsNet to minimize 𝐷𝐾𝐿(̂𝑦||𝑦𝑜)
for 𝑐 = +1 and maximize 𝐷𝐾𝐿(̂𝑦||𝑦𝑜) for 𝑐 = −1 by optimizing the
following problem:

min
𝜃

𝐷𝐾𝐿(̂𝑦||𝑦𝑜)𝑐, (3.4)

with 𝜃 the parameters of the observer. We argue that this objective is
much easier to optimize than regressing 𝑦𝑎 since the output 𝑦𝑜 has
many more degrees of freedom in the uncertain case. Instead of being
forced to predict the exact same class as 𝑦𝑎, 𝑦𝑜 can predict any class
different from the one predicted by ̂𝑦.

3.2.3 Oracle Prediction 𝑦𝑎

Usually, uncertainty is classified into two different classes: Epistemic
and Aleatoric which we both propose to estimate using different
additional predictions 𝑦𝑎:

Epistemic uncertainty is associated with the model uncertainty. It
captures the lack of knowledge about the process that generated the
data. To estimate epistemic uncertainty, we propose to use MCDropout
as the additional prediction 𝑦𝑎. We compute the additional prediction
𝑦𝑎 as the average of T forward passes with dropout. Note that our
training setup is entirely self-supervised as the labels 𝑐 are obtained
using 𝐷𝐾𝐿 over forward passes of the target network only.
We show on Figure 3.3 what setting a specific threshold 𝛿 implies

in terms of precision and recall for certain (𝑐 = 1) predictions. As we
can see, the observer is perfectly able to recover the specific operat-

29

ing points of the uncertainty obtained by the original MCDropout
additional prediction.

Aleatoric uncertainty is associated with the natural randomness
of the input signal [KG17]1. More precisely, in this work, we focus on 1 [KG17] Alex Kendall et al., What uncer-

tainties do we need in bayesian deep learning
for computer vision? In NeurIPS 2017

heteroscedastic uncertainty, which is the lack of visual features in the
input data (e.g. sun glare, occlusion, ...). We propose to artificially
create such cases by adding random glare noise to the input image.
The prediction ̂𝑦 is obtained by a single forward pass on the noisy
image, while the additional prediction 𝑦𝑎 is obtained by a single
forward pass on the clean image.
The uncertainty function 𝑢(̂𝑦) = 𝐷𝐾𝐿(̂𝑦||𝑦𝑎) then establishes

whether the noise we added led to aleatoric uncertainty or not.
Thanks to 𝛿, we label the pair with either 𝑐 = +1 or 𝑐 = −1. As for
epistemic uncertainty, we train our auxiliary network on the labeled
pairs (̂𝑦, 𝑦𝑎) using Equation 3.4.

3.3 experiments

We present our results in this section. We show the benefit of using
divergence based uncertainty to train an ObsNet is a good choice for
autonomous driving perception applications. We conduct evaluations
on on CamVid, against others competitive methods.

3.3.1 Dataset, Metrics and Compared Methods

In this section, we evaluate our method on CamVid [BFC08]2, a 2 [BFC08] Gabriel J. Brostow et al;, Se-
mantic object classes in video: A high-
definition ground truth database. In PRL
2008.

dataset for driving scene image segmentation containing 11 classes
including cyclist, road, sky, pedestrian etc. It contains 367 training
images and 233 test images. Each image is resized to 360x480 pixels.
Using CamVid, we evaluate both epistemic and aleatoric uncertainty:

Epistemic: We consider the natural epistemic uncertainty in the
model as well as the one arising from Out-of-Distribution (OoD)
samples. To simulate OoD samples, we blit animals unseen during
training such as lions, horses, bears, etc.

Aleatoric: For data uncertainty, we added random artifact in the
image: Glare in the image (i.e., important increase of brightness
in an ellipse), Rain (i.e., grey line on the image) and patches (i.e.,
rectangles of uniform color and random sizes). Each artifact varies
in terms of size and coordinates on the image.
To compare the results, we adopt safety oriented metrics: Trigger,

Recall at 95% Precision, Area under the Precision-Recall Curve
(AuPR) [HG17] and Expective Calibration Error (ECE) [GPSW17].
We report our results on the following table, with all metrics above.

We compare several methods:

∘ MCP [HBM+19]: One minus the maximum of the softmax proba-
bility.

∘ Void Class (VC)[BSN+19]: Void/unknown class prediction for
segmentation.

30

∘ MCDropout [Gal16]: We consider this as a baseline. We use
𝑇 = 50 and 𝑇 = 2 forward passes.

∘ MCDA[AB18]: Data augmentation such as geometric and color
transformations added during inference time to capture aleatoric
uncertainty.

∘ Distillation [GBP18]: We propose two variants of the distillation:
supervised (i.e., using Teacher outputs and cross-entropy with
ground truth for training) and unsupervised (i.e., the student only
regress the teacher output).

∘ Observer: Our proposed method, with KL divergence based un-
certainty training. We use two oracles: MCDropout (self-sup)
and Ground Truth (GT). The Ground Truth variant uses ground
truth labels as additional prediction 𝑦𝑎 and is used to measure the
influence of having a self supervised setup.

For all our segmentation experiments we use a Bayesian SegNet
[BKC17]1, [KBC15] with dropout as the main network. Therefore, 1 [BKC17] Vijay Badrinarayanan et al.

SegNet: A deep convolutional encoder-
decoder architecture for image segmentation.
In PAMI 2017.

our ObsNet follows the same architecture as this SegNet. To train
distillation for aleatoric uncertainty estimation, we change the training
set up to be fair with our method. When the student gets a noisy
image, it is trained to output the same prediction as the teacher given
a de-noised image.

3.3.2 Results: Epistemic uncertainty

We first report results for epistemic uncertainty on Table 3.1 and
Table 3.2. As we can see in Table 3.1, ObsNet GT performs best or
similar to MCDropout in all the safety metrics. Our self-supervised
ObsNet method is better than MCDropout at comparable computa-
tional cost. Distillation alone offers low performances, which is due
to the complexity of regressing the exact MCDropout outputs and
difficulty to capture both uncertainty and class prediction.
To validate that our method is able to capture epistemic uncertainty

we test on OoD samples. We show in Table 3.2 results on the same
dataset but with animals randomly blit in the image. Again our
method perform the best with ObsNet GT and self-supervised is close
to MCDropout. Distillation again performs badly.
We show qualitative uncertainty maps of Figure 3.5. MCDropout

and ObsNet output very similar maps for epistemic uncertainty.

3.3.3 Results: Aleatoric uncertainty

We evaluate aleatoric uncertainty on Table 3.3 and Table 3.4. As
we can see, MCDropout suffers dramatic failures and is unable to
obtain high recall for both the sun glare and square patch. This is
to be expected since MCDropout is not designed to capture aleatoric
uncertainty. MCDA performs the best on glare among set-up without

31

R@P=0.95 ↑ AuPR ↑ Trigger 75% ↑ ECE ↓ Run Time
no-retrain MCDropout T = 50 88.2 97.9 81.5 0.025 0.789

MCDropout T = 2 85.9 97.5 76.4 0.025 0.036
MCP 81.0 96.5 67.4 0.048 0.018
void class 64.1 95.2 39.9 0.123 0.018

Distillation w/ T supervised 65.9 95.3 31.8 0.060 0.370
w/ S supervised 70.3 95.6 30.5 0.101 0.021
w/ T unsupervised 68.6 96.0 34.3 0.045 0.370
w/ S unsupervised 66.6 95.3 23.2 0.092 0.021

ObsNet from MCDropout 87.3 97.7 76.8 0.046 0.038
from GT 89.3 97.9 81.5 0.051 0.038

Table 3.1: Evaluation of epistemic un-
certainty. ObsNet GT perform well, and
the self-supervised version has the best
trade-off between accuracy and infer-
ence time.

R@P=0.95 ↑ AuPR ↑ Trigger 75% ↑ Ece ↓
no-retrain MCDropout T = 50 85.1 97.3 67.3 0.020

MCDropout T = 2 80.9 96.0 59.9 0.030
MCP 65.9 95.2 39.1 0.071
void class 56.1 94.2 20.2 0.140

Distillation w/ T supervised 47.5 92.9 11.9 0.087
w/ S supervised 63.5 94.8 23.1 0.098
w/ T unsupervised 55.3 94.2 11.8 0.070
w/ S unsupervised 61.6 94.7 19.0 0.086

ObsNet from MCDropout 82.8 97.2 61.2 0.035
from GT 85.3 97.3 67.9 0.070

Table 3.2: Out-of-Distribution Evalua-
tion. ObsNet GT still performs the best.
While our self-supervised method stays
competitive.

32

additional network. As with epistemic uncertainty, distillation does
not succeed in producing good results. In contrast, our ObsNet
obtains significantly better results in all the considered cases1. 1 Full Table with all different aleatoric

artifacts can be in the appendix.We show Precision-Recall curves on Figure 3.4. As we can see,
MCDropout produces overconfident predictions on noisy areas which
leads to very low precision at low recalls. This is qualitatively
visible on Figure 3.5 where noisy areas (e.g. glare on the third
line) have very low uncertainty values. Overall, ObsNet significantly
outperforms MCDropout and data-augmentation based methods for
aleatoric uncertainty while being much more computationally efficient.

Figure 3.4: Precision-Recall Curves.
We can see that Precision of Distilla-
tion and MCDropout drop significantly
even for small recall when aleatoric un-
certainty arises. ObsNet is much more
robust to this uncertainty.

To evaluate the generalization capabilities of ObsNet, we train on
different artifacts than the tested ones (see Table 3.3 and Table 3.4).
As we can see, although training on a different noise decreases the
performance compared to the full training, ObsNet still outperforms
MCDropout, distillation and MCDA by a large margin. This shows
the capacity of ObsNet to generalize the unseen noises.

Test Sun Glare Method Train R@P=0.95 ↑ AuPR ↑ Trigger 75% ↑
no-retrain MCDropout T=50 0.1 83.9 18.9

MCDropout T=2 0.0 83.7 15.5
MCP 1.0 90.5 17.2
Void Class 0.3 82.7 8.2
MCDA T=50 44.7 91.7 14.3

Distillation w/ T supervised patch 0.3 85.7 4.1
w/ T supervised rain 0.5 77.1 3.8
w/ T supervised glare 0.0 83.3 2.2
w/ T supervised all 0.0 81.9 1.7

ObsNet self-supervised patch 46.7 92.3 15.1
self-supervised rain 33.9 90.8 18.3
self-supervised glare 68.4 95.3 23.2
self-supervised all 76.1 96.1 33.5

Table 3.3: Aleatoric uncertainty tested
on Sun Glare. Our ObsNet outperforms
every other methods, while MCDropout
suffers from dramatic failures.3.4 conclusion

In this chapter, we have presented a simple, yet effective method
to estimate uncertainty using an observer network. We introduce a

33

Test Patch Method Train R@P=0.95 ↑ AuPR ↑ Trigger 75% ↑
no-retrain MCDropout T=50 - 63.9 94.9 19.6

MCDropout T=2 - 23.4 93.5 18.5
MCP - 0.3 90.3 15.9
Void Class - 0.2 86.4 8.7
MCDA T=50 - 32.0 90.4 12.4

Distillation w/ T supervised glare 0.0 85.2 3.1
w/ T supervised rain 0.0 54.0 0.0
w/ T supervised patch 1.4 79.6 4.4
w/ T supervised all 0.0 79.5 1.9

ObsNet self-supervised glare 46.5 92.6 15.2
self-supervised rain 2.7 70.2 0.9
self-supervised patch 72.5 95.6 23.6
self-supervised all 77.5 96.1 30.5

Table 3.4: Aleatoric uncertainty tested
on Square Patch. Our ObsNet outper-
forms every other methods and is com-
putationally more efficient compared to
MCDropout or MCDA.

Figure 3.5: Uncertainty map. From
column left to right: Input image, MC-
Dropout uncertainty, distillation uncer-
tainty, and ObsNet uncertainty. First
line is with an OoD animal and the sec-
ond one is with glare. ObsNet is not
only close to MCDropout for epistemic
detection, but is also capable of detecting
aleatoric uncertainty.

34

safety oriented framework where the uncertainty is used to trigger a
safety signal when a given error rate cannot be met. In that context,
ObsNet is specifically trained such that its uncertainty predictions
are usable as a safety indicator. Contrarily to ensemble methods,
ObsNet requires a single forward pass making it computationally
efficient. In contrast to distillation based methods, ObsNet relies on
self-supervised classes and is much more effective.
Our observer uses an oracle to pre-process the dataset into certain

and uncertainty set. However, ObsNet relies on the performance of
this oracle and thus, the efficiency of the auxiliary network is upper
bounded by how good the oracle is. In other words, the performance
of the observer cannot be better than that of the oracle. We tackle this
problem in the Chapter 4. We reuse the framework of the observer
network, but we get rid of the oracle and leverage local adversarial
attacks to train the observer instead.

4
Local Adversarial Attacks

[Chapter 3 Chapter 5]
Synopsis In this chapter, we use the Observer Network as a dedicated
Out-of-Distribution (OoD) detector for semantic segmentation. Our
previous approach used an oracle prediction to guide the training of
the ObsNet. The observer was trained to predict uncertainty thanks
to a divergence based approach, but the final accuracy was bounded
by the oracle performance. Here, we no longer rely on an external
prediction to train the observer. We propose to mitigate the common
shortcomings by following two principles: generating training data
for the OoD detector by leveraging blind spots in the segmentation
network and focusing the generated data on localized regions in
the image to simulate OoD objects. Our main contribution is an
ObsNet associated with a dedicated training scheme based on Local
Adversarial Attacks (LAA) for OoD detection. We validate the sound-
ness of our approach across numerous ablation studies. We also
show it obtains top performances both in speed and accuracy when
compared to ten recent methods of the literature on three different
datasets. This chapter is based on our paper ”Triggering Failures:
Out-Of-Distribution detection by learning from local adversarial at-
tacks in Semantic Segmentation”, in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV).

4.1 introduction

In this work, we address OoD detection for semantic segmentation,
an essential and common task for visual perception in autonomous
vehicles. We propose to use an Observer Network trained with
adversarial attacks as a proxy to detect pixels from objects not in the
training distribution.

4.1.1 OoD Detection & Lack of Available Errors

Here, we consider ”Out-of-Distribution” pixels from a region that has
no training labels associated with. This encompasses unseen objects,
but also noise or image alterations. The most effective methods for
OoD detection tasks stem from two major categories of approaches:
ensembles and auxiliary error prediction modules. DeepEnsem-
ble (DE) [LPB17]2 is a prominent and simple ensemble method 2 [LPB17] Balaji Lakshminarayanan et

al., Simple and scalable predictive uncer-
tainty estimation using deep ensembles. In
NeurIPS 2017.

that exposes potentially unreliable predictions by measuring the dis-
agreement between individual DNNs. In spite of the outstanding

https://openaccess.thecvf.com/content/ICCV2021/html/Besnier_Triggering_Failures_Out-of-Distribution_Detection_by_Learning_From_Local_Adversarial_Attacks_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Besnier_Triggering_Failures_Out-of-Distribution_Detection_by_Learning_From_Local_Adversarial_Attacks_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Besnier_Triggering_Failures_Out-of-Distribution_Detection_by_Learning_From_Local_Adversarial_Attacks_ICCV_2021_paper.html

36

performance, DE is computationally demanding for both training
and testing and prohibitive for real-time on-vehicle usage. For the
latter category, given a trained main task network, a simple model is
trained in a second stage to detect its errors or estimate its confidence
[CTBH+19, HDVG18, BPB21]. Such approaches are computationally
lighter, yet, in the context of DNNs, an unexpected drawback is related
to the lack of sufficient negative samples, i.e., failures, to properly
train the error detector [CTBH+19]1. This is due to an accumulation 1 [CTBH+19] Charles Corbière et al., Ad-

dressing failure prediction by learning model
confidence. In NeurIPS 2019.

of causes: reduced size of the training set for this module (essentially
a mini validation set to withhold a sufficient amount for training the
main predictor), few mistakes made by the main DNNs, hence few
negatives.
We propose to revisit the two-stage approach with modern deep

learning tools in a semantic segmentation context. Given the applica-
tion context, i.e., limited hardware and high performance require-
ments, we aim for reliable OoD detection (see Figure 4.1) without
compromising on predictive accuracy and computational time. To
that end we introduce two design principles aimed at mitigating the
most common pitfalls of training an observer network:

∘ Training an OoD detector requires additional data that can be
generated by leveraging blind spots in the segmentation network.

∘ Generated data should focus on localized regions in the image to
mimic unknown objects that are OoD.

Figure 4.1: Evaluation of precision
vs. test-time computational cost on
CamVid OoD. Existing methods for
OoD detection in semantic segmentation
are either accurate but slow or fast but
inaccurate. In contrast, our method Ob-
sNet+LAA is both accurate and fast.

4.1.2 Adversarial Attacks

Meanwhile, it is well known that deep neural networks are vulnerable
against adversarial attacks. Adversarial examples are structured
perturbations added in the input image that fools the network’s
prediction. Fast Gradient Sign Method (FGSM) [GSS15]2 is a simple 2 [GSS15] Ian J. Goodfellow et al., Ex-

plaining and harnessing adversarial exam-
ples. In ICLR 2015.

and popular attack that computes an adversarial example as:

̃𝑥 = 𝑥 + 𝜖𝑠𝑖𝑔𝑛(▽𝑥ℒ(𝜃, 𝑥, 𝑦)). (4.1)

with 𝑥 the image, 𝑦 the ground truth, 𝜖 the step, and 𝐿(.) the cross
entropy. In other words, FGSM will add a noise in 𝑥 to maximize
the error.
With FGSM, we manage to generate as many negative samples as

we perform attacks. While it is hard to formalize OoD for natural
image distribution, we show that adversarial attack plays the role of
a proxy between in and out-of-distribution.

4.1.3 Strengths

By combining the observer network paradigm with the training
scheme of LAA, our method highlights several benefits:

3 It can be used with any pre-trained segmentation network without

37

altering their performances and without fine-tuning them (we train
only the auxiliary module).

3 It is fast since only one extra forward pass is required.

3 It is very effective since we show it performs best compared to
10 very diverse methods from the literature on three different
datasets.

4.2 method

Training an OoD detector without OoD data is difficult, but can be
done nonetheless by generating training data with carefully designed
adversarial attacks. This aspect requires careful design to work
effectively, which we detail in the following. We validate them
experimentally in §4.3.

4.2.1 ObsNet for Error Detection

Modifying the segmentation network to account for OoD is expected
to impact its accuracy as we show in the experiments. Furthermore,
it prevents from using off-the-shelf pretrained segmentation networks
that have excellent segmentation accuracy. As such, we follow a
two-stage approach where an additional predictor tackles the OoD
detection while the segmentation network remains untouched.
In the literature, two-stage approaches are usually related to cali-

bration [P+99, ZE01, ZE02, NCH15, NC16] where the outputs of the
segmentation network are mapped to normalized scores. However
this is not well adapted for segmentation since it does not use the
spatial information contained in nearby predictions. We show in the
experiments that using only the output of the segmentation network
is not enough to obtain accurate OoD detection.
We thus reuse the observer network framework introduced in

chapter 2. This auxiliary network has a similar architecture to that
of the segmentation network and use the input, the output and
intermediate feature maps of the segmentation network as shown on
Figure 4.2. We show experimentally that these design choices lead
to increased OoD detection accuracy.
More formally, the observer network (denoted 𝑂𝑏𝑠) is trained to

predict the probability that the segmentation network (denoted 𝑆𝑒𝑔)
output is not aligned with the correct class 𝑦:

𝑂𝑏𝑠(𝑥, 𝑆𝑒𝑔𝑟(𝑥)) ≈ 𝑃𝑟[𝑆𝑒𝑔(𝑥) ≠ 𝑦], (4.2)

where 𝑥 is the input image and 𝑆𝑒𝑔𝑟 the skip connections from
intermediate feature maps of 𝑆𝑒𝑔.
To that end, we train the ObsNet to minimize a binary cross-entropy

38

Figure 4.2: Detailed Overview of our
method. Training (blue arrow) The
Segmentation Network is frozen. The in-
put image is perturbed by a local ad-
versarial attack. Then the Observer Net-
work is trained to predict Segmentation
Network’s errors, given the images and
some additional skip connections. Test-
ing (red arrow) No augmentation is per-
formed. The Observer Network highlights
the out-of-distribution sample, here a
motor-cycle. To compute the uncer-
tainty map, the Observer Network re-
quires only one additional forward pass
compared to the standard segmentation
prediction.

loss function:

ℒ𝑂𝑏𝑠(𝑥, 𝑦) = (1𝑆𝑒𝑔(𝑥)≠𝑦 − 1) log(1 − 𝑂𝑏𝑠(𝑥, 𝑆𝑒𝑔𝑟(𝑥)))

− 1𝑆𝑒𝑔(𝑥)≠𝑦 log𝑂𝑏𝑠(𝑥, 𝑆𝑒𝑔𝑟(𝑥)) (4.3)

with 1𝑆𝑒𝑔(𝑥)≠𝑦 the indicator function of 𝑆𝑒𝑔(𝑥) ≠ 𝑦.
We emphasize an advantage of our approach w.r.t. previous

methods that are related to the low computational complexity, as we
only have to make a single forward pass through the segmentation
network and the observer network. Experimentally, ObsNet is 21
times faster than MCDropout with 50 forward passes on a GeForce
RTX 2080 Ti, while outperforming it (see §4.3). Moreover, our
method can be readily used on state of the art pre-trained networks
without requiring retraining or even fine-tuning them.
Without a dedicated training set of labeled OoD samples, one

could argue that ObsNet is an error detector (similarly to [CTBH+19])
rather than an OoD detector and that it is furthermore very difficult
to train since pre-trained segmentation networks are likely to make
few errors. We propose to solve both of these issues by following
two design principles:

∘ The lack of training data should be tackled by generating training
samples that trigger failures of the segmentation network, which
we can obtain using adversarial attacks.

∘ Adversarial attacks should be localized in space since OoD detection
in a segmentation context corresponds to unknown objects.

4.2.2 Local Adversarial Attacks

We propose to generate the additional data required to train our
ObsNet architecture by performing Local Adversarial Attacks (LAA)
on the input image. In practice, we select a region in the image by
using a random shape and we perform a FSGM [GSS15] attack such
that it is incorrectly classified by the segmentation network:

�̃� = 𝑥 + 𝐿𝐴𝐴(𝑆𝑒𝑔, 𝑥) (4.4)
𝐿𝐴𝐴(𝑆𝑒𝑔, 𝑥) = 𝜖 sign(∇𝑥ℒ(𝑆𝑒𝑔(𝑥), 𝑦))Ω(𝑥) (4.5)

39

with step 𝜖, ℒ(⋅) the categorical cross entropy and Ω(𝑥) the binary
mask of the random shape. We show LAA examples in Figure 4.3
and schematize the training process in Figure 4.2.
The reasoning behind LAA is two-fold. First, by controlling the

shape of the attack, we can make sure that the generated example
does not accidentally belong to the distribution of the training set.
Second, leveraging adversarial attacks allows us to focus the training
just beyond the boundaries of the predicted classes which tend to be
far from the training data due to the high capacity and overconfidence
of DNNs, like OoD objects would be.
We show in the experiments that LAA produces a good training

set for learning to detect OoD examples. In practice, we found that
generating random shapes is essential to obtain good performances
in contrast to non-local adversarial attacks. These random shapes
coupled with LAA may mimic unknown objects or objects parts,
exposing abnormal behavior patterns in the segmentation network
when facing them. We validate our approach in an ablation study in
§4.3.2.

Discussion. We point out that by triggering failures using LAA,
we address the problem of the low error rates of the segmentation
network. We can in fact generate as many OoD-like examples as
needed to balance the positive (i.e., correct predictions) and negative
(i.e., erroneous predictions) terms in Equation 4.3 for training the
observer network. Thus, even if the segmentation network attains
nearly perfect performances on the training set, we are still able to
train the ObsNet to detect where the predictions of the segmentation
network are unreliable.
One could ask why not using LAA for training a more robust and

reliable segmentation network in the first place, as done in previous
works [GSS15, MMKI18, HLM19], instead of adding and training the
observer network. Training with adversarial examples improves the
robustness of the segmentation network at the cost of its accuracy
(See §4.3.2), but it will not make it infallible as there will still be
numerous blind-spots in the multi-million dimensional parameter
space of the network. It also prevents using pre-trained state-of-
the-art segmentation networks. Here, we are rather interested in
capturing the main failure modes of the segmentation network to
enable ObsNet to learn and to recognize them later on OoD objects.
Finally, one could ask why not perform adversarial attacks at test

time as it is done in ODIN [LSL18]1. Performing test time attacks 1 [LSL18] Shiyu Liang et al., Enhancing
the reliability of out-of-distribution image
detection in neural networks. In ICLR
2018.

has two major drawbacks. First it is computationally intensive at test
time since it requires numerous backward passes, i.e., one attack per
pixel. Second, it is not well adapted to segmentation as perturbations
of a single pixel can have effect on a large area (e.g., one pixel attacks)
thus hindering the detection accuracy of perfectly valid predictions.
We show in §4.3 that our training scheme is better performing both
in accuracy and speed when compared to test time attacks.

40

Figure 4.3: Adversarial attack exam-
ples. Top: Perturbations magnified 25×;
middle: Input image with attacks; bottom:
SegNet prediction. Adversarial Attacks
are not visible in the image, but the ac-
curacy of the SegNet drops significantly.
Our ObsNet is trained on these patterns.

4.3 experiments

In this section, we present extensive experiments to validate that our
proposed observer network combined with local adversarial attacks
outperforms a large set of very different methods on three different
benchmarks.

4.3.1 Datasets, Metrics and Compared Methods

To highlight our results, we select three datasets for Semantic Segmen-
tation of urban streets scenes with anomalies in the test set. Anoma-
lies correspond to out-of-distribution objects, not seen during train
time. We select CamVid OoD, StreetHazards [HBM+19] and BDD
Anomaly [HBM+19]. To evaluate each method on these datasets, we
select three metrics for detecting misclassified and out-of-distribution
examples and one metric for calibration: Fpr95Tpr [LSL18], Area
Under the Receiver Operating Characteristic curve (AuRoc) [HG17],
Area under the Precision-Recall Curve (AuPR) [HG17] and Adap-
tive Calibration Error (ACE) [NDZ+19].
We report results on Table 4.5, Table 4.6 and Table 4.7, with all

the metrics detailed above. We compare several methods:

∘ MCP [HG17]: Maximum Class Prediction. One minus the maxi-
mum of the prediction.

∘ AE [HG17]: An autoencoder baseline. The reconstruction error is
the uncertainty measurement.

∘ Void [BSN+19]: Void/background class prediction of the segmen-
tation network.

∘ MCDA [AB18]: Data augmentation such as geometric and color
transformations is added during inference time. We use the

41

entropy of 25 forward passes.

∘ MCDropout [GG16]: The entropy of the mean softmax prediction
with dropout. We use 50 forward passes for all the experiences.

∘ Gaussian Perturbation Ensemble [FBA+20, MAG+20]: We take
a pre-trained network and perturb its weights with a random
Normal distribution. This results in an ensemble of networks
centered around the pre-trained model.

∘ ConfidNet [CTBH+19]: ConfidNet is an observer network that is
trained to predict the true class score. We use the code avail-
able online and modify the data loader to test ConfidNet on our
experimental setup.

∘ Temperature Scaling [GPSW17]: We chose the hyper-parameters
Temp to have the best calibration on the validation set. Then, like
MCP, we use one minus the maximum of the scaled prediction.

∘ ODIN [LSL18]: ODIN performs test-time adversarial attacks on
the primary network. We seek the hyper-parameters Temp and 𝜖
to have the best performance on the validation set. The criterion
is one minus the maximum prediction.

∘ Deep ensemble [LPB17]: a small ensemble of 3 networks. We
take the average of the predictions from all networks, and compute
the entropy of it.

For all our segmentation experiments we use a Bayesian SegNet
[BKC17]1, [KBC15] as the main network. Therefore, our ObsNet 1 [BKC17] Vijay Badrinarayanan et al.

SegNet: A deep convolutional encoder-
decoder architecture for image segmentation.
In PAMI 2017.

follows the same architecture as this SegNet.

4.3.2 Results: OoD Detection

First, to validate that the Local Adversarial Attacks contribute to im-
proving the observer network, we show on Table 4.1 the performance
gap for each metric on each dataset. This validates the use of LAA
to train the observer network.

Dataset Adv Fpr95Tpr ↓ AuPR ↑ AuRoc ↑
CamVid OoD - 54.2 97.1 89.1

3 44.6 97.6 90.9
StreetHazards - 50.1 98.3 89.7

3 44.7 98.9 92.7
BDD Anomaly - 62.4 95.9 81.7

3 60.3 96.2 82.8

Table 4.1: Evaluation of the Local Ad-
versarial Attack. Local Adversarial At-
tacks improves ObsNet accuracy on each
dataset.

The LAA can be seen as a data augmentation performed during
ObsNet training. We emphasize that this type of data augmentation
is not beneficial for the main network training, which is known as
robust training [MMS+18]2 during ObsNet training, thus, the class 2 [MMS+18] Aleksander Madry et al.,

Towards deep learning models resistant to
adversarial attacks. In ICLR 2018.

prediction and the accuracy remain unchanged.

42

Dataset Robust Mean IoU ↑ Global Acc ↑
Camvid ODD 7 49.6 81.8

3 41.6 73.9
StreetHazards 7 44.3 87.9

3 37.8 85.1
Bdd Anomaly 7 42.9 87.0

3 41.5 85.9

Table 4.2: Impact of robust training
on accuracy. Robust training implies a
drop of accuracy for the segmentation
network.

In Table 4.3, we show ablations on LAA by varying the type of
noise (varying between attacking all pixels, random pixels, pixels
from a specific class, pixels inside a square shape and pixels inside a
random shape, see Figure 4.3). We conclude that local attacks on
random shaped regions produce the best proxies for OoD detection.

Type Fpr95Tpr ↓ AuPR ↑ AuRoc ↑
All pixels 51.9 97.1 89.6
Sparse pixels 54.2 97.2 89.6
Class pixels 46.8 97.2 89.9
Square patch 45.5 97.4 90.5
Random shape 44.6 97.4 90.6

Table 4.3: LAA ablation study by vary-
ing the attacked region. Attacking the
segmentation network in a randomly
located region performs the best.

In Table 4.4, we conduct several ablation studies on the architec-
ture of ObsNet. The main takeaway is that mimicking the architecture
of the primary network and adding skip connections from several
intermediate feature maps is essential to obtain the best performances.
Surprisingly, the observer network is able to have low Fpr95Tpr even
without the input image. Moreover, re-use the weight from the seg-
mentation network help to increase Fpr95Tpr by up to 1.5%. For the
smaller architecture, instead of keeping the same architecture as the
segmentation network, we design a smaller variant: a convolutional
network with three convolutional layers and a fully connected layer.
This architecture mimicks the one used by ConfidNet [CTBH+19].

Method Fpr95Tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Smaller architecture 60.3 95.8 85.3 0.476
ObsNet w/o skip 81.3 92.0 74.4 0.551
ObsNet w/o input img 57.0 96.9 88.2 0.455
ObsNet w/o pretrain 55.7 96.9 88.7 0.419
ObsNet 54.2 97.1 89.1 0.396

Table 4.4: ObsNet architecture abla-
tion study. This table shows the huge
benefit to have residual connections at
different stages of the segmentation net-
work. This residual connection is used
by ObsNet to observe the internal behav-
ior of the main network.

In Table 4.5, Table 4.6 and Table 4.7 we show results on datasets
that all contain OoD objects. We can see that ObsNet significantly
outperforms all other methods on detection metrics on all three
datasets. We highlight that our methods is also much faster than
other high-ranked methods. Our methods is more than 20 times
faster than MCDropout, the second best method on these tables.
Furthermore, ACE also shows that we succeed in having a good
calibration value.

43

Method Fpr95Tpr↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [HG17] 65.4 94.9 83.2 0.510
Void [BSN+19] 66.6 93.9 80.2 0.532
AE [HG17] 93.0 87.1 59.3 0.745
MCDA [AB18] 66.5 94.6 82.1 0.477
Temp. Scale [GPSW17] 63.8 94.9 83.7 0.356
ODIN [LSL18] 60.0 95.4 85.3 0.500
ConfidNet [CTBH+19] 60.9 96.2 85.1 0.450
Gauss P [MAG+20] 59.2 96.0 86.4 0.520
Deep Ensemble [LPB17] 56.2 96.6 87.7 0.459
MCDropout [GG16] 49.3 97.3 90.1 0.463
ObsNet + LAA 44.6 97.6 90.9 0.446

Table 4.5: Evaluation on CamVidOoD.
Best method in bold, second best under-
lined.

Method Fpr95Tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [HG17] 65.5 94.7 80.8 0.463
Void [BSN+19] 69.3 93.6 73.5 0.492
AE [HG17] 84.6 92.7 67.3 0.712
MCDA [AB18] 69.9 97.1 82.7 0.409
Temp. Scale [GPSW17] 65.3 94.9 81.6 0.323
ODIN [LSL18] 61.3 95.0 82.3 0.414
ConfidNet [CTBH+19] 60.1 98.1 90.3 0.399
Gauss P [MAG+20] 48.7 98.5 90.7 0.449
Deep Ensemble [LPB17] 51.7 98.3 88.9 0.437
MCDropout [GG16] 45.7 98.8 92.2 0.429
ObsNet + LAA 44.7 98.9 92.7 0.383

Table 4.6: Evaluation on StreetHaz-
ard. Best method in bold, second best
underlined.

Method Fpr95Tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [HG17] 63.5 95.4 80.1 0.633
Void [BSN+19] 68.1 92.4 75.3 0.499
AE [HG17] 92.1 88.0 53.1 0.832
MCDA [AB18] 61.9 95.8 82.0 0.411
Temp. Scale [GPSW17] 61.8 95.8 81.9 0.287
ODIN [LSL18] 60.6 95.7 81.7 0.353
ConfidNet [CTBH+19] 61.6 95.9 81.9 0.367
Gauss P [MAG+20] 61.3 96.0 82.5 0.384
Deep Ensemble [LPB17] 60.3 96.1 82.3 0.375
MCDropout [GG16] 61.1 96.0 82.6 0.394
ObsNet + LAA 60.3 96.2 82.8 0.345

Table 4.7: Evaluation on Bdd
Anomaly. Best method in bold, second
best underlined.

44

To show where the uncertainty is localized, we outline the un-
certainty map on the test set (see Figure 4.4). We can see that our
method is not only able to correctly detect OoD objects, but also to
highlight areas where the predictions are wrong (edges, small and
far objects, etc).

Figure 4.4: Error map visualization.
1st column: We highlight the ground
truth locations of the OoD objects to
help visualize them (red bounding box).
2nd column: Segmentation map of the
SegNet. 3rd to 5th columns: Uncer-
tainty Map highlighted in yellow. Our
method produces stronger responses on
OoD regions compared to other meth-
ods, while being as strong on regular
error regions, e.g., boundaries.

4.3.3 Results: Robustness to Adversarial Attacks

In safety-critical applications like autonomous driving, we know that
the perception system has to be robust to adversarial attacks. Never-
theless, training a robust network is costly and robustness comes with
a certain trade-off to make between accuracy and run time. Moreover,
the task to only detect the adversarial attack could be sufficient as we
can rely on other sensors (LiDAR, Radar, etc.). Although this work
does not focus on Adversarial Robustness, empirically we note that
ObsNet can detect an attack. To some extent this is expected as we
explicitly train the observer to detect adversarial attacks, thanks to
the LAA. In Table 4.8, we evaluate the adversarial attack detection
of several methods. We apply a FGSM attack in a local square patch
on each testing image. Once again, we can see that our observer is
the best method to capture the perturbed area.

45

Method Fpr95Tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [HG17] 67.5 94.7 82.5 0.529
ConfidNet [CTBH+19] 58.4 96.4 86.8 0.462
Gauss P [MAG+20] 61.8 95.8 85.7 0.473
Deep Ensemble [LPB17] 63.9 96.5 86.4 0.468
MCDropout [GG16] 52.8 97.2 88.5 0.483
ObsNet + LAA 42.1 97.7 91.4 0.423

Table 4.8: ObsNet Robustness on
CamVid. Error detection evalua-
tion with random square attacks (best
method in bold). This table shows the
natural robustness of our Observer Net-
work.

4.4 results: public leaderboard

To show the strength of our method, we submit our results on
the SegmentMeIfYouCan [CLU+21]1 dataset. The dataset is solely 1 [CLU+21] Robin Chan et al., Segment-

meifyoucan: A benchmark for anomaly
segmentation. In NeurIPS Datasets and
Benchmarks 2021.

composed of a test set of 100 images, containing OoD objects such
as animal, carriage or caravan. We use the Deeplab v3+ with a
Wide-ResNet 38 encoder [ZK16] pre-trained on CityScapes [COR+16]
provided by the authors. We train an ObsNet for 20 epochs also on
CityScapes dataset as explained in the method section.
To obtain State-of-the-Art performance, we post-process the output

from the observer. We apply a filter on the error map, to decrease the
value on non object prediction. For every pixel different to person,
rider, car, truck, bus, train, motorcycle, bicycle, we divide the value
by a factor of 10. In analogy with panoptic segmentation, pixels
corresponding to things, comes with higher priority than stuff classes,
as shown on Figure 4.5. In Table 4.9, we show that our methods
perform the best compared to methods that do not use OoD data
in train by a large margin (+18.52% for AUPR). Moreover, we can
see that our methods perform very well on an instance-wise metric.
Without using any OoD sample in train, our methods get SOTA
results on PPV and Meant metrics, by increasing the best results by
+13.05% and +14.% respectively. (see Appendix A for details of the
metrics).

4.5 conclusion & limitation

In this chapter, we proposed to use an observer network to address
OoD detection in semantic segmentation, by learning from triggered
failures. We use Local Adversarial Attacks to induce failures in
the segmentation network and train the observer network on these
samples. We show on three different segmentation datasets that our
strategy combining an observer network with local adversarial attacks
is fast, accurate and is able to detect unknown objects.
Nevertheless, error maps generated by the observer are not practical

for downstream tasks. Indeed, pixel wise prediction shows limitation
to localize precisely if there is an unknown object in the image.
Prediction with high error on average could correspond to a crowd
of in-distribution small objects. We show in the next chapter how to
leverage an additional instance prediction to filter and aggregate the

46

Figure 4.5: Errors map. We show our
performance on the Segment Me If You
Can dataset where we get SOTA perfor-
mance among methods that do not use
OoD data for training.

Pixels-Wise Metrics Instance-Wise Metrics
Model name Train w/ OoD AUPR ↑ Fpr95Tpr ↓ sIoU gt ↑ PPV ↑ mean F1 ↑
ObsNet + LAA 7 75.44 26.69 44.22 52.56 45.08
NFlowJS [GBKS21] 7 56.92 34.71 36.94 18.01 14.89
JSRNet [VvA+21] 7 33.64 43.85 20.20 29.27 13.66
Image Resynthesis [LNFS19] 7 52.28 25.93 39.68 10.95 12.51
Embedding Density [BSN+19] 7 37.52 70.76 33.86 20.54 7.90
Maximum Softmax [HG17] 7 27.97 72.05 15.48 15.29 5.37
ODIN [LSL18] 7 33.06 71.68 19.53 17.88 5.15
MCDropout [GG16] 7 28.87 69.47 20.49 17.26 4.26
Ensemble [LPB17] 7 17.66 91.06 16.44 20.77 3.39
Mahalanobis [LLLS18] 7 20.04 86.99 14.82 10.22 2.68
DenseHybrid [GBv22] 3 77.96 9.81 54.17 24.13 31.08
Maximized Entropy [CRG21b] 3 85.47 15.00 49.21 39.51 28.72
Void Classifier [BSN+19] 3 36.61 63.49 21.14 22.13 6.49
SynBoost [DBBSC21] 3 56.44 61.86 34.68 17.81 9.99

Table 4.9: ObsNet performance on
SegmentMeIfYouCan: best methods on
bold among the one trained without
OoD

47

ObsNet output for better OoD object detection.

5
Instance-Aware Observer

[Chapter 4 Chapter 6]
Synopsis In Chapter 4, we presented a powerful way to train the
observer network with local adversarial attacks. We have shown
promising results on Out-Of-Distribution (OoD) detection for semantic
segmentation. However, these methods struggle to precisely locate
the point of interest in the image, i.e., the anomaly. This limitation
is due to the difficulty of fine-grained prediction at the pixel level.
To address this issue, we build upon the vanilla ObsNet approach
by providing object instance knowledge to the observer. We extend
ObsNet by harnessing an instance-wise mask prediction. We use
an additional, class agnostic, object detector to filter and aggregate
observer predictions. Finally, we predict an unique anomaly score
for each instance in the image. We show that our proposed method
accurately disentangles in-distribution objects from OoD objects on
three datasets, as presented in Figure 5.1.

Figure 5.1: Qualitative results overview
on SegmentMeIfYouCan [CLU+21].
Our framework uses the input image
(a) to predict panoptic segmentation (b)
and pixels-wise error map (c). We then
fuse (b) and (c) to produce the instance-
wise error prediction (d). We show
on the right that we succeed to predict
high anomaly score for OoD objects (i.e.,
caravan, goose, and monster) and low
anomaly score for in-distribution (i.e.,
cars and pedestrians). We also filter
high error background pixels.

5.1 introduction

In this work, we aim at detecting OoD objects for 2D object segmen-
tation. In this context, we consider as OoD the objects belonging to a
class that is unknown by the perception system, i.e., a class that is
not defined nor present in the training data.
Recent works inspired by practices from system validation and

monitoring, advance two-stage strategies to detect anomalies in seman-
tic segmentation [BPB21, BBPB21]2 An Observer Network is trained 2 [BBPB21] Victor Besnier et al., Trigger-

ing Failures: Out-Of-Distribution detection
by learning from local adversarial attacks in
Semantic Segmentation. In ICCV 2021.

49

to analyze and predict the confidence of a main perception network.
Observer-based approaches have been shown to find a good balance
between accuracy and computational efficiency [BPB21, BBPB21]. In
this work we build on top of observer-based approaches to leverage
their properties.

5.1.1 From pixel-wise to instance-wise

We argue that the pixel-wise error map (as shown in [BPB21,
BBPB21, KG17, CTBH+19]) by itself is sub-optimal for anomaly
detection in segmentation because these maps lack clarity. Due to
the difficulty of fine-grained prediction, most boundaries between
two classes or boundary of small or distant objects are considered
uncertain. Therefore, the focus of interest in the image, i.e., the
OoD object, is drowned into this noise. The resulting error map
does not provide precisely delimited spatial information: we know
there is an error on the image but we struggle to accurately locate
the corresponding OoD object. In other words, while we can get
uncertainty estimates and predictions at pixel-level, extending them
to objects is not obvious and we cannot automatically find objects far
from the training distribution. As an example, an image depicting a
crowd of pedestrians with a lot of boundaries has, on average, higher
anomaly score than an image with only one OoD object in the middle
of a road.
In this chapter, we propose to reduce the granularity of the task in

order to improve the relevance of the error map. To this end, we use
a class agnostic, instance segmentation network. With this additional
prediction, we first filter background errors, and then aggregate
uncertainty in an instance-aware manner Figure 5.2. Ultimately, we
only want to highlight object instances with high errors. With this
pragmatic and practical solution we can sort objects by anomaly score
and then discard all objects close to the training distribution and
keep those that are far from the training distribution.

5.2 method

5.2.1 Observer Networks

Our work builds upon ObsNet [BPB21, BBPB21] that we briefly
describe here. Observer networks are a two-stage method to detect
pixels-wise errors and OoD. [BBPB21] designed two principles to
train efficiently an auxiliary network. They improve the architecture
by decoupling the OoD detector from the segmentation branch and by
observing the whole network via residual connections. Secondly, they
generate blind spots in the segmentation network with local adversarial
attacks (𝐿𝐴𝐴) at a random location of the image, mimicking an OoD
object. ObsNet (𝑂𝑏𝑠) outputs a pixels-wise error map corresponding
to the probability that the semantic segmentation network (𝑆𝑒𝑔) fails

50

Figure 5.2: Overview of our instance
aware pipeline. The image is fed into
the instance, the semantic and the ob-
server network (from top to bottom).
In the middle, the ObsNet prediction
is filtered by the class-agnostic instance
prediction and the remaining error is
then aggregate object-wise. Finally, in
the right of the figure, we show in red,
the objects far from the training distri-
bution.

to predict the correct class 𝑦:

𝑂𝑏𝑠(𝑥, 𝑆𝑒𝑔𝑟(𝑥)) ≈ 𝑃𝑟[𝑆𝑒𝑔(𝑥) ≠ 𝑦], (5.1)

where 𝑥 is the input image and 𝑆𝑒𝑔𝑟 the skip connections from
intermediate feature maps of segmentation network 𝑆𝑒𝑔.

5.2.2 Instance Anomaly Detection

To this end, we upgrade the semantic segmentation framework with
instance hints. We use an additional class agnostic instance segmen-
tation prediction. This detector (𝐷𝑒𝑡) produces a binary mask by
mapping each object in the image.
Then, the idea is to separate the observer’s prediction map into two

categories. The background (classes of stuff) and the instance (classes
of things) in the same way as in panoptic segmentation. Background
errors correspond to global ambiguities in the scene at different scales:
error at the decision boundary between two classes, prediction error
between the road and the sidewalk or complexity of the leaves of a
tree. In contrast, an instance error corresponds to an object far from
the train distribution.

5.2.3 Error Aggregation and Filtering

In order to obtain a unique error score for each instance (similar to
the well-known objectness score in object detection), we aggregate the
per-pixel uncertainty within the predicted object mask to a unique
value. In practice, given an image 𝑥 ∈ R3×𝐻×𝑊, we predict for each
detected object 𝑜𝑖 an anomaly score 𝑎𝑖 ∈ R:

51

𝑎𝑖 = 1
𝑀

𝐻
∑
ℎ=0

𝑊
∑
𝑤=0

𝑢(ℎ,𝑤) ⊙ 𝑚(ℎ,𝑤)
𝑖 , (5.2)

where 𝑢 = 𝑂𝑏𝑠(𝑥, 𝑆𝑒𝑔𝑟(𝑥)) ∈ R𝐻×𝑊 is the pixel-wise error map of
ObsNet; 𝑚𝑖 ∈ R𝐻×𝑊 is the binary mask of an instance 𝑜𝑖 in the set
of the detector prediction 𝐷𝑒𝑡(𝑥) = {𝑚𝑖}; 𝑀 = ∑𝐻×𝑊

ℎ,𝑤=0 𝑚𝑖 the area
of the instance 𝑜𝑖; and ⊙ is the element-wise product. We also filter
predicted instance masks 𝑚𝑖 by size, in order to remove very small
detected objects (< 162 pixels) in the image.
This strategy shows several benefits. We can discover instances in

the dataset that do not match with the training distribution, useful
for active learning or object discovery. We can also localize where
the anomaly is in the image, which is a primary requirement for
safety-critical applications such as autonomous driving. In Figure 5.3,
we show that our framework is able to detect several instances in the
images, and the ObsNet succeeds in discriminating in-distribution
objects from out-of-distribution ones.

Figure 5.3: Flows of the image pro-
cessing. From the input image (left),
we compute the pixels-wise uncertainty
and the object detection masks. Then
we filter the uncertainty in the area of
the object only, and finally aggregate the
score in an instance aware manner. We
can see that the OOD object is well de-
tected while in-distribution objects with
low anomaly score and background er-
rors are erased (right).

5.3 experiments

We assess experimentally the effectiveness of our observer network
coupled with an class-agnostic instance detector and compare it
against several baselines.

5.3.1 Datasets, Metrics & Compared Methods

We conducts experiments on the CamVid OoD [BPB21], StreetHaz-
ards [HBM+19] and BDD Anomaly [YCW+20] datasets of urban
streets scenes with anomalies in the test set. Anomalies correspond
to OoD objects, not seen during training.
To evaluate each method on these datasets, we select four metrics to

detect misclassified and out-of-distribution examples: Fpr95Tpr [LSL18],
Area Under the Receiver Operating Characteristic curve (Au-
Roc) [HG17], Area under the Precision-Recall Curve (AuPR) [HG17]
and Mean Average Prediction (𝑚𝐴𝑃𝛿). We compute the latter metric
where we discard object smaller than 𝛿2 pixels. For example, 𝑚𝐴𝑃32
in Table 5.2, mean that we do not take into account any object smaller
than 322 (in distribution or OoD) in the dataset.
For each metric, we report the result where an object is considered

well detected if the predicted mask has 𝐼𝑜𝑈 > .5 with the ground
truth. We assign to each detected object the anomaly score computed

52

as Equation 5.2. We use a Bayesian SegNet [BKC17], [KBC15] as
the main network for CamVid and a DeepLabv3+ [CZP+18]1 for 1 [CZP+18] Liang-Chieh Chen et al.,

Encoder-decoder with atrous separable con-
volution for semantic image segmentation.
In ECCV 2018.

BDD Anomaly and StreetHazards. The ObsNet follows the same
architecture as the corresponding segmentation network.
For our instance segmentation module, we select two Mask R-CNN

variants [HGDG17]2: one trained on CityScapes [COR+16], reported 2 [HGDG17] Kaiming He et al., Mask R-
CNN. In ICCV 2017.as In-Distribution Detector, and one trained on MS-COCO [LMB+14],

reported as Pan-Distribution. We do not leverage the class predicted
but only the instance mask. Moreover, we use an additional oracle:
we take every connected region of the same class in the annotation as
one instance of an object, and we report this detector as GT-detector.
The latter detector is a perfect detector. Indeed, it will detect every
OoD object thanks to the GT. Then, the Observer will be evaluate on
every object in the scene. Obviously, this detector is not available in
practice, but is used, here, as a upper bound.
We compare our method against two other methods. MCP [HG17]:

Maximum Class Prediction; one minus the maximum of the predic-
tion. And MCDropout [GG16]: The entropy of the mean softmax
prediction with dropout; we use 50 forward passes for all the experi-
ences.

5.3.2 Benefit of the instance module

To validate the benefit of the instance detector, we first check that
filtering the pixel-wise error map with the instance detector helps
for pixel OoD detection, see Table 5.1. Using an instance detector
significantly improves the performance of ObsNet. The GT-Detector
show that our ObsNet is nearly perfect to detect OoD only, with a
Fpr95Tpr a 1%. Moreover, this experiment shows that keeping a raw
error map is sub-optimal because many pixels with high anomaly
score do not correspond to an OoD object but actually belong to the
background of the images, whereas they can easily be filtered out by
our instance scheme.

Method Fpr95Tpr↓ AuPR_error ↑ AuRoc ↑
Softmax [HG17] 70.0 11.45 76.7
ObsNet 40.5 22.72 87.9
ObsNet + in-detector 31.3 49.4 92.3
ObsNet + pan-detector 8.7 70.1 97.3
ObsNet + gt-detector 1.0 90.5 99.7

Table 5.1: Pixel-wise evaluation on
CamVid OoD. We consider OoD pix-
els only as the positive class.

5.3.3 Instance-Wise Results

Here, we compare our methods for object detection on Table 5.2,
Table 5.3 and Table 5.4. We can observe that for each dataset the
results are quite different. This is due to the scale of the anomalies
and the number of them in each dataset. In Table 5.2, all anomalies
are above 64² pixels, which can explain why the metrics drastically

53

improve as we discard smaller detected objects. In Table 5.4, most
of the objects are in fact anomalies, which is why mAP is high,
even for the object below 32² pixels. Finally, even if on average pan-
detector outperforms in-detector, this is not always the case in Table 5.3.
Indeed, pan-detector can detect more objects, and among them smaller
in-distribution objects, that can hurt performances. Overall, ObsNet
outperforms baseline methods, regardless of the detector.

Det Method Fpr9532 ↓ Roc32 ↑ mAP0 mAP32 ↑
Softmax [HG17] * 56.7 7.7 55.2

In MCDropout [GG16] * 58.3 8.4 58.5
ObsNet * 60.5 9.9 63.7
Softmax [HG17] 57.2 79.4 4.8 62.1

Pan MCDropout [GG16] 52.8 84.6 6.9 70.8
ObsNet 46.4 89.6 11.3 81.4
Softmax [HG17] 43.3 80.4 10.8 72.1

GT MCDropout [GG16] 32.1 85.5 13.5 79.2
ObsNet 27.2 94.3 22.3 92.0

Table 5.2: Instance-wise evaluation on
CamVid OoD. We consider OoD exam-
ples only as the positive class. *not
enough OoD objects have been detected
by the detector to compute the metrics

Det Method Fpr9532 ↓ Roc32 ↑ mAP0 ↑ mAP32 ↑
Softmax [HG17] * 52.5 9.5 13.3

In MCDropout [GG16] * 52.6 9.5 13.3
ObsNet * 55.8 9.9 16.8
Softmax [HG17] * 63.0 5.9 16.8

Pan MCDropout [GG16] * 62.2 6.0 17.0
ObsNet * 64.5 6.9 20.1
Softmax [HG17] 65.6 81.9 22.7 37.8

GT MCDropout [GG16] 61.9 82.5 23.0 39.1
ObsNet 53.3 86.8 27.1 50.7

Table 5.3: Instance-wise evaluation on
BDD Anomaly. We consider OoD ex-
amples only as the positive class.

Det Method Fpr9548 ↓ Roc48 ↑ mAP16 mAP48 ↑
Softmax [HG17] * 50.4 80.0 81.9

In MCDropout [GG16] * 50.3 80.0 81.2
ObsNet * 50.4 80.1 81.9
Softmax [HG17] * 53.7 57.6 77.7

Pan MCDropout [GG16] * 53.6 57.7 77.6
ObsNet * 54.1 56.9 77.8
Softmax [HG17] 80.0 85.2 88.9 99.0

GT MCDropout [GG16] 74.5 86.0 86.9 99.0
ObsNet 72.6 87.5 89.0 99.2

Table 5.4: Instance-wise evaluation on
StreetHazards. We consider OoD exam-
ples only as the positive class.

In Figure 5.4, we report the histogram of objects detected by
our detector, ranked by our framework. We can well disentangle
in-distribution objects as cars, bicycles, or pedestrians, from OoD
objects (animals).

54

Figure 5.4: Histogram on CamVid
OoD. Anomaly score from obsnet and
detection from mask RcNN trained on
the pan-distribution. We show here
some examples of well-detected objects
predicted as in distribution in blue
(left). While objects detected with high
anomaly scores (right) are considered
as OoD in orange.

We illustrate a few qualitative results in Figure 5.5. ObsNet
emphasizes OoD objects with higher anomaly scores compared to
in-distribution objects. Its predicted error maps are generally clearer
and more accurate.

5.3.4 Object size

One drawback of the method remains the size of the anomaly object.
Interestingly, small or far objects are often considered as an error,
whereas only part of them are real anomalies. This can be explained
because the contours of each object are often considered as errors at
the pixel level and thus most of these small objects are flagged as
anomalies. In Figure 5.6, we show the bounding boxes detected and
classified by our framework. We see that most of the small objects,
far from the camera, have high uncertainty. When we filter objects
below a threshold, these false positives tend to disappear.
This is of course a limitation for datasets that contain only small

anomalies like LostAndFound [PRG+16], where anomalies are small
obstacles on the road. In our setting, we cannot discard objects below
a threshold on the size because all real anomalies would be mostly
below that threshold and thus indistinguishable from small objects
with uncertain contours.

5.4 conclusion

In this chapter, we propose to use an additional, class-agnostic,
object detector to filter and aggregate an anomaly score from ObsNet
pixel-wise error map. Our strategy helps to better disentangle in-
distribution from out-of-distribution objects.
One limitation is the size of the instance detected, as small and

far object are usually detected as OoD by our framework. One idea
could be to normalize on the size of the object (i.e., divide by the
size of the bounding box). But we let this for future works. In the
next chapter, we show how to integrate and observer network and a
segmentation network in a DemoCar.

55

Figure 5.5: Qualitative results on
the StreetHazards (top row), BDD
Anomaly (mid) and CamVid OoD
(bot). We can see that our method is
able to detect numerous objects and dis-
entangle in-distribution objects (𝑎𝑖 < .5
in green) from out-of-distribution ob-
jects (𝑎𝑖 > .5 in red).

Figure 5.6: Visualization of the objects
detected on Bdd Anomaly. All motor-
cycles are OoD. We filter each detection
by the size, from left with no filtering
to right where we filter every object be-
low 48² pixels. In this example, we see
that at 32² we succeed detecting many
objects and classify only the motorcycle
as OoD.

Part III

LEARNING CAR

6
Learning Car Project

[Chapter 5 Chapter 7]
Synopsis Through this chapter, we present how we integrate an
ObsNet in a demo car. We implement a proof-of-concept for our
previous works on observer networks to show that our research helps
to build safer applications. We show step by step how to embed
neural networks in a vehicle. We use a Nvidia Jetson Xavier for
network inference, and RTMaps for orchestrating every component,
from the image capture to the results display. We evaluate our
solution in a real world setting, driving in Créteil, France, with a
Demo Car (cockpit point of view Figure 6.1 to show that our ObsNet
is able to detect hazards on the road. Without extensive effort on
network optimization, we show that our methods run at 8 FPS to
perform both image semantic segmentation and pixel-level error
detection. The solution allows to safely detect anomalies at slow
speed such as parking or dense urban scenarios.

Figure 6.1: Learning Car: View from
inside the vehicle with real-time segmen-
tation and anomaly prediction.

6.1 safety critical application

6.1.1 Automated Car

Many industrial actors aim to develop cars able to drive from a
location A to a destination B without human intervention. We
can split the principal leaders into two different sectors: historical
automakers such as Mercedes, Toyota, Volkswagen or Tesla, and
service providers like Waymo, Uber or Cruise.
One important thing to understand is the different levels of driving

automation. Jointly with the Organization for Standardization (ISO),
the Society of Automotive Engineers (SAE) developed a standard with
6 levels of automation. Level 0 does not provide any autonomous
features but only warning or momentary assistance. Level 1 proposes
help for steering wheel or speed control, while level 2 can monitor
both features (i.e., speed and trajectory assistance). For the first
three SAE levels, the driver must supervise the features of the car.
Level 3 proposes advanced autonomous driving assistance, where the
driver only needs to overtake the control when the system requests
it, like a traffic jam chauffeur. Level 4 does not need any driver but
can operate only in a constrained environment. Finally, level 5 of
driving automation provides a full autonomous driving system able
to drive in all conditions.

Figure 6.2: Car sensors: Valeo’s
Drive4U sensor, allowing the vehicle to
see the world.

To better understand how to build an autonomous car using a

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

58

perception system, we show in Figure 6.3 the different steps to
consider. The system is split under 7 steps:

1. Sensors: composed of different captors such as cameras, LiDAR,
radar, etc. They aim at capturing raw data of the environment.

2. Localization: gather coordinate of the car.

3. Perception: understand what objects are around the car.

4. Scene Modeling: depict the scene around the car, i.e., where are
the other cars, pedestrians, where can I ride.

5. Prediction: Anticipate next actions of other vehicles, i.e., where
are other cars going, does this pedestrian cross the road.

6. Planning: develop an action plan to move from a location to
another.

7. Control: finally, operate the physical actions to drive.

Figure 6.3: End-to-End Autonomous
Driving: From the sensor to the final
control of the car. We show here every
step to consider to have a good repre-
sentation of the environment.

Our research mainly covers the Perception and Scene Modeling
parts. One common way to complete this tasks is to use sensor data
(radar, LiDAR or images) and neural networks for scene understand-
ing (Image segmentation [MFW16], depth estimation [GMFB19] or
object detection [GLW+21]). On our side we solely rely on images.
We want to monitor a segmentation network with our ObsNet. The
semantic segmentation network perceives objects and models the
scene around the car. While our ObsNet helps to better trust the
decision process of the segmentation network. Errors in the modeling
of the scene can impact the prediction step and the planning step,
resulting in wrong control of the car. In the literature, semantic
segmentation as been widely used for autonomous driving

6.1.2 Proof-of-concept for autonomous Driving

Here we dig in more details on a few projects that use neural networks
for controlling the car. One of the first projects involving deep neural
networks and autonomous driving was Alvinn [Pom88]1. The goal 1 [Pom88] Dean A. Pomerleau. Alvinn:

An autonomous land vehicle in a neural
network. In NeurIPS 1988

was to control the angle of the steering while given the camera and
laser input. They used a shallow neural network composed of 3

59

hidden layers to navigate, (see Figure 6.4). The neural network
localizes the free space where the car can drive and directly predicts
the steering angle to keep the car in the middle of the road.

Figure 6.4: ALVINN: architecture of
the model that can predict the angle of
the steering wheel.

More recently, Nvidia developed the DAVE-2 project [BTD+16]1 in

1 [BTD+16] Mariusz Bojarski et al., End
to end learning for self-driving cars. ArXiv,
2016.

2016 (following, four years later with PiloNet project [BCD+20]) with
the same objective: End to End Learning for Self-Driving Cars. They
use a neural network much deeper than Alvinn one, functioning at
30FPS to learn the trajectory to follow. They propose a complete
pipeline on data collection, training and off-line simulation. Finally
they show impressive results on different weather, speed and traffic
conditions.
Inspired by previous work on deep learning, computer vision and

autonomous cars, we decided to evaluate ourselves our ObsNet on a
real situation. Contrary to previous works on end to end control of
the car, we adopt a setup described in Figure 6.3 where our networks
focus on the scene modeling and the perception. Thus our networks
do not control the car, but show a representation of the context
around it. This thesis is a collaboration between industry (Valeo)
and academia (ENPC and ENSEA), thus we had the opportunity to
make the proof of concept of our works on a demo car. Thanks to
ENSEA, we get a Nvidia Jetson Xavier to embed our networks. Valeo
provided us with a car equipped with cameras.
In the following section, we describe how we integrate an observer

network and a segmentation target network presented in previous
chapters on a demonstrator car.

6.2 obsnet training

6.2.1 Dataset

To begin with, we describe here the dataset used to train our models
off line. We use a Valeo internal dataset, sample shown on Figure 6.5.
The dataset contains fisheye driving scene images in the wild from four
different views around the car (rear, left, right, front), allowing you
to get a 360° view. The images have been collected in different cities
in Europe and America and contain numerous complex situations.

Figure 6.5: CEA Dataset: Fisheye im-
ages from our internal dataset.

The dataset is partially annotated for 3D object detection, depth
estimation and semantic segmentation. Here, we solely use the
segmented part. Eleven classes are available: road, side-walk, object,
ground marking, etc. The training set is composed of 388 videos and
the testing contains 112 sequences. Each sequence has 150 frames,
thus, we gather a total of 75000 images: 58200 images for training,
and 16800 for testing.

6.2.2 Networks

Our networks will be integrated in a limited resources embedded
computing platform, we explain what change we made to fit our mod-

60

els to the targeted hardware execution constraints. State-of-the-art
architectures (Transformer) usually need a large quantity of mem-
ory and compute power that is not available for embedded systems.
Compared to Chapter 4, we reduce the architecture complexity of the
ResNet encoder and decrease of the image resolution.
Regarding the segmentation part, we train a Deeplabv3+ with a

ResNet50 encoder1 for 50 epochs; we used SGD with momentum as 1 2 times lighter than in Chapter 4

the optimizer. We used a batch-size of 8 images, resized to (512x1024),
on four GPUs GeForce RTX 2080 Ti. Our ObsNet follows the same
architecture, trained for 20 epochs, SGD momentum with batch-size
of 4 images. The observer is trained as described in Chapter 4.
During inference, we use half precision (float 16) for faster inference
on both networks2. 2 default precision is float 32 in Pytorch

models

6.2.3 Qualitative Results

To evaluate the primary results, we gather additional data containing
un-seen objects or objects without associated class for the segmentation
network such as construction cones or wooden pallets. We show on
Figure 6.6 that our solution is able to raise uncertain predictions
(in yellow, bottom row). We also show an example where the
segmentation misclassifies the side-walk. This step helps to validate
that our models perform accurately on corner case examples.

Figure 6.6: Off-line validation: Our Ob-
sNet is able to detect (third row) build-
ing plot, wooden pallet and errors of the
segmentation networks (second row).6.3 experimental setup

6.3.1 Demo Car

To embedded neural networks for autonomous vehicles, the first
concern is the car. For the project, we used a Volkswagen Passat.
The car is equipped with multiple sensors in order to see the world

61

around it. Long-range fisheye cameras, LiDAR, front, side and rear
cameras and radar. These sensors allow the car to have a 360°
field of view. Here, we leverage on the fisheye cameras, for semantic
segmentation.
For application monitoring, the car is equipped with a computer

running on Windows stored in the trunk. Moreover, in the passenger
seat, a screen is available to display application results, as show in
Figure 6.7.

Figure 6.7: Car overview: On left the
front view of the car, on the middle the
back of the car with the Host PC and
the Nvidia Jetson, and on the right the
indoor monitor.6.3.2 Nvidia Jetson Xavier

The second step to consider is the hardware that will run the model
at inference. We gather a Nvidia Jetson Xavier (Figure 6.8), which
is an embedded platform for ML acceleration running on Linux
distribution. The card is a complete System on Module (SOM) that
includes a GPU and a CPU which boost neural networks execution
to increase inference throughput.
The device has two main advantages: first, it uses low power

consumption. The autonomous brick of the car should use as less
power as possible as the primary objective is to ride and each device
that takes power of the battery diminishes the capability to ride
further. The second is the physical size of the module, the Nvidia
Jetson can be easily integrated in many embedded systems, specifically
cars.

Figure 6.8: Nvidia Jetson Xavier:
Hardware for accelerating ML applica-
tions.

On the performance side, our Xavier is equipped with 512-core
Volta GPU with Tensor Cores and 8-core ARM CPU. And has a power
consumption under 30W. It is under these constraints that we build
our model architecture in order to get the best throughput (Frame
Per Seconds (FPS)) at inference time.

6.3.3 Orchestra conductor: RTMaps

Once we have integrated pre-trained neural networks in an embedded
system, such as a Nvidia Jetson. We seek to have a complete system
where we gather all images from the camera, feeding them to the
model and display the results. To orchestrate this workflow, we
use a specific framework: RTMaps Figure 6.9. The software is a
component based software. The main goal of RTMaps is to connect

62

different bricks. Where each block is responsible for one action.

Figure 6.9: RTMaps: component syn-
chronization.

We split the solution into a Slave and and Host. Where the Host is
a PC that manages all the system flows and the Slave executes what
the Host command. Host and Slave could connect through RTMaps.
In our setting, our slave is the Nvidia Jetson Xavier that will perform
only the models inferences, and the host is a regular PC that will
collect images, synchronize them, send them to the slave, and display
the results.
Sequentially, we have the following execution, illustrated in Fig-

ure 6.10:

1. (Host) Get raw image input for all four sensors, and synchronize
them.

2. (Host) Pre-process the images: resized, formatted to the right
format.

3. (Host) Send the image to the Nvidia Jetson.

4. (Slave) Python brick to execute the model inference.

5. (Slave) Send the results to host.

6. (Host) Display results

7. (Host) Record results

Figure 6.10: RTMaps Final Diagram:
Full process of an image, from image
gatherer to the recording and the dis-
play.

Before trying a solution on road, we simulate off-line a scenario
with pre-recorded images. This step helps to detect bugs, and evaluate
the performance of the model (fps, accuracy, etc). We show an
example of the setting in Figure 6.11.

63

Figure 6.11: Off-line simulation: Before
jumping into the car, we evaluate the
framework off-line with pre-recorded
video.

6.4 real-world testing

6.4.1 Road Evaluation

We tested our model close to the Valeo building, in Créteil, France,
near Paris see Figure 6.12. The city presents numerous challenging
situations: parking exit, traffic circle and traffic sign, or construction
site. Moreover, we drove in broad daylight, with many pedestrians
and other cars, buses and trucks driving around us. The session
lasts around 3min to complete.

Figure 6.12: Créteil: Area where we test
our ObsNet framework covering numer-
ous challenging situations.

In Figure 6.13, we show how our observer network and our
segmentation network perform. ObsNet succeed in detecting regular
errors, such as misclassification of a public trash, or stain on the road.
We can notice that our ObsNet output overreacts on lane marking.
Our solution runs at 8 FPS which is acceptable for low speed like
parking areas or dense urban scenes. Even if our solution could
show some limitations on high speed situations, we argue that other
methods like ensemble are much more time consuming. Indeed,

64

better hardware capacity will ultimately increase the throughput.

Figure 6.13: Online test: Example of
classical errors our ObsNet is able to
detect, from wrong text prediction on
the road to trash detected as an object
like a pedestrian.

We show in Figure 6.14 that our observer is also able to detect
mispredictions on the car due to sun glare. Indeed, the prediction
is confident where the car is well segmented, but as soon as the car
becomes segmented as background, the observed output has high
error score in the area.

6.4.2 Loop Improvement

Testing an application is an incremental process, there is still room
for improvement. For the project we did three rounds. Each time
improving either the quality of the prediction or the frame rate. Here
are a few updates on what we did.
We know that our ObsNet is likely to predict error on the boundary

of two classes. Thus we merged all ground marking classes to reduce
the number of class boundaries and we retrain both networks. For
the second round, we also used half precision, which doubles the
frame rate (from 4 FPS to 8 FPS).
For the third and last iteration, we tried a vanilla domain adapta-

tion technique to improve prediction accuracy. Indeed, we noticed
that our dataset does not overlap with the operating domain, i.e.,
Créteil area. Thus, thanks to the previous recording sessions, we
updated the batchnorm statistics [BJB+20]1 (running mean and vari- 1 [BJB+20] Victor Besnier et al., This

dataset does not exist: Training models
from generated images. In ICASSP 2020

ance of each normalization layers) to match the targeted distribution.

65

Figure 6.14: Online test: In this se-
quence, we show that our observer is
able to detect a wrong prediction due to
sun glare, in a live demo.

Visually, the results look much more smooth and accurate than the
previous record.
Finally, we designed new scenarios to test our ObsNet on real

anomalous samples. We placed different objects in front of the car,
like fences, construction cones or cardboard. As shown on Figure 6.15
we succeed in detecting these objects with high anomaly scores.

6.5 limitation and future improvement

In this chapter, we show that our previous research is exploitable for
industry. We make a proof of concept that we can detect anomalies
on the road thanks to our ObsNet pre-trained on a custom dataset.
By using a Demo Car, a Nvidia Jetson and RTmaps, our solution
works at 8 FPS which allows the car to ride at slow speed like in
dense urban scenes or for parking areas.
However, our solution shows limitations when the car speed in-

creases. The faster the car is, the more distance between every frame
is traveled. Thus our integrated solution is not fitted yet for a high
speed like highway. But we argue in Chapter 4 that our method
is still much more time efficient than others’ works. Indeed, we
could consider model compression techniques like pruning [FC19]1, 1 Jonathan Frankle et al., The lottery ticket

hypothesis: Finding sparse, trainable neural
networks. In ICML 2019

knowledge distillation [HVD15], quantization [FLF+18] or Neural
Architecture Search (NAS) [HLL+18] to increase both model efficiency
and inference time, but we let this engineer magic for future works.

66

Figure 6.15: Online test: We con-
structed a custom scenario to show that
our ObsNet is able to detect road obsta-
cles in front of the car.

Part IV

EPILOGUE

7
Conclusion

[Chapter 6 Appendix A]

7.1 summary

Along this manuscript, we tackled safety of automated driving by
using Observer Networks in order to improve Deep Neural Networks
(DNNs) trustworthiness. We introduced the concept of observer
network: a framework that seeks inside of a target network’s inter-
mediate activations. We showed how to train observer networks when
a few meaningful data are available to train the observer. In Chap-
ter 3, we leverages an oracle prediction to learn a divergence based
uncertainty measurement. We succeeded in learning both epistemic
and aleatoric uncertainty, and predict uncertainty map as accurate
as other competitive methods while being much faster. However,
this framework is bound by the oracle performance. In Chapter 4,
we dropped the oracle supervision and uncertainty measurement.
We leveraged Localized Adversarial Attacks (𝐿𝐴𝐴) of OoD detection.
𝐿𝐴𝐴 increases the number of errors available at train time to bet-
ter detect Out-of-Distribution samples. ObsNet + 𝐿𝐴𝐴 outperforms
every other methods, and gets State-Of-The-Art results in a public
challenging benchmark2. Nevertheless, observer networks produce 2 Segment Me If You Can dataset

leaderboard is updated regularly and
available at https://segmentmeifyou-
can.com/leaderboard

pixel-wise error maps, which do not enable automatic detection of
object instances in the scene. This concern is tackled in Chapter 5,
by improving the concept with instance segmentation. We used class
agnostic instance masks to filter and aggregate the errors map of
ObsNet. We showed with this method that we can better predict the
position and size of the object. The two first contributions have been
published in two major conferences (ICIP and ICCV) and the last
one is still under review.
To validate the soundness of our research works, we also showed

in Chapter 6 how to integrate an observer network as well as a
segmentation network on a Demo Car as a proof of concept. We
built a complete workflow inside of a Volkswagen car equipped
with four fisheye cameras, running with an Nvidia Jetson Xavier
and orchestrated by RTMaps. Our solution succeeded in detecting
abnormal situations on the road at low speed. We believe that
our contributions will help to make the decision process of neural
networks safer, faster than previous methods, and use few additional
storage compared to literature.

69

7.2 future works

Future directions can be split into two different paths. The first
option is to rely even more on the instance information to detect
Out-of-Distribution samples. The second one is to use boosting
of observers in order to build a stronger model anomaly detection.
Below, we explore in more detail our ideas.

Panoptic Errors detection In this first idea, we want to adapt
ObsNet for panoptic segmentation. In fact, we discover that current
approaches to detect OoD mostly consider every pixel as either in
distribution or Out-of-Distribution independently. We believe that
pixel level prediction is suboptimal for the goal of OoD sample
detection. These methods produce noisy error maps, inaccurate and
not adapted for many tasks. Even worse, these methods can be
uncertain in the boundary of an object while being overconfident
inside of it. We believe that panoptic anomaly detection can mitigate
this problem. Indeed, allowing the observer to have instance aware
privilege can help to better localize the object of interest. Moreover, we
believe that it could predict more clear and homogeneous predictions.
We propose to use a Max-DeepLab [WZA+21] as the target net-

work. This network segments the image into a fixed-size set of N
class-labeled masks {𝑚𝑖, 𝑝𝑖(𝑐)}𝑁

𝑖=0 where 𝑚𝑖 is the segmentation mask
and 𝑝𝑖(𝑐) is the probability to assign the class 𝑐 on the mask 𝑚. To
improve the reliability of this target network, we could use an ob-
server networks, to predict an additional vector 𝑢𝑖 ∈ R𝑁. Each value
of this vector is associated to its corresponding mask and correspond
to the probability that the target network predict the wrong class, i.e.,
𝑢𝑖 ≈ 𝑃𝑟[𝑝𝑖(𝑐) ≠ ̂𝑦𝑖] with ̂𝑦𝑖 the ground truth for mask 𝑚𝑖. Indeed,
the observer could take intermediate attention blocks of the target
network. To train the observer with adversarial attacks, we could
attack a specific mask 𝑚𝑖 to hallucinate a new shape or a different
class.

Boosting Neural networks The second path is more exploratory.
In classical machine learning, boosting is a general framework that
combines multiple weak classifiers to form a stronger one. Each
weak classifier should slightly correct the previous one. This class of
methods performs particularly well for tabular data [FS97, CG16]1 1 [CG16] Tianqi Chen et al., Xgboost: A

scalable tree boosting system. In KDD
2016.

But intuitively, these methods should not work properly for Deep
Learning. In fact, modern Deep Neural Networks are prone to
overfitting, and thus cannot be considered as weak classifiers because
they perform nearly perfectly on the train set. [WW16] is one of
the few attempts to use boosting and Deep Neural Networks. They
iteratively add shallow neural networks, and step by step correct the
errors made by the previous ones.
On our side, we can also view our observer network as a boosting

of two networks: the target network makes a prediction, and the
observer network tries to detect either it is right or wrong. But we

70

could scale the framework by having a stack of observer networks.
To counter the problem of overfitting, we could use Local Adversarial
Attacks. If we perform enough 𝐿𝐴𝐴, we can, in theory, have as many
errors in the training set as we want. Thus, this technique could be
used to train a set of observers that try to correct previous observers
under more and more 𝐿𝐴𝐴. Indeed, increasing the number of ObsNet
will automatically increase the number of parameters and the number
of operations needed. But if we consider a smaller architecture for
each observer and dedicate each ObsNet to one unique activation of
the target network as input, we can mitigate the overall computation.

71

Artwork 2: A safe place to drive in the
future. DreamStudio, image generated
from Stable Diffusion [RBL+21] model.

References
[21419] ISO/PAS 21448. Road vehicles — safety of the intended functionality. ISO/PAS, 2019.

[AB18] Murat Seçkin Ayhan and Philipp Berens. Test-time data augmentation for estimation of
heteroscedastic aleatoric uncertainty in deep neural networks. Medical Imaging with Deep
Learning, 2018.

[AC20] Faruk Ahmed and Aaron Courville. Detecting semantic anomalies. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2020.

[AOS+16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[BBL+19] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca Benini.
Anomaly detection using autoencoders in high performance computing systems. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[BBPB21] Victor Besnier, Andrei Bursuc, David Picard, and Alexandre Briot. Triggering failures: Out-
of-distribution detection by learning from local adversarial attacks in semantic segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
15701–15710, October 2021.

[BBPB22] Victor Besnier, Andrei Bursuc, David Picard, and Alexandre Briot. Instance-aware observer
network for out-of-distribution object segmentation. In ArXiv, 2022.

[BCD+20] Mariusz Bojarski, Chenyi Chen, Joyjit Daw, Alperen Degirmenci, Joya Deri, Bernhard Firner,
Beat Flepp, Sachin Gogri, Jesse Hong, Lawrence D. Jackel, Zhenhua Jia, B. J. Lee, Bo Liu,
Fei Liu, Urs Muller, Samuel Payne, Nischal Kota Nagendra Prasad, Artem Provodin, John
Roach, Timur Rvachov, Neha Tadimeti, Jesper E. van Engelen, Haiguang Wen, Eric Yang,
and Zongyi Yang. The NVIDIA pilotnet experiments. ArXiv, 2020.

[BCKW15] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks. ICML, 2015.

[BDPW22] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image
transformers. In International Conference on Learning Representations, 2022.

[BFC08] Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video:
A high-definition ground truth database. Pattern Recognition Letters, 2008.

[BFSS19] Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad–a com-
prehensive real-world dataset for unsupervised anomaly detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9592–9600, 2019.

[BJB+20] Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu Cord, and Patrick Pérez. This
dataset does not exist: Training models from generated images. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.

[BKC17] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. PAMI, 2017.

73

[BKNS00] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 93–104, 2000.

[BKOŠ19] Petra Bevandić, Ivan Krešo, Marin Oršić, and Siniša Šegvić. Simultaneous semantic
segmentation and outlier detection in presence of domain shift. In GCPR, 2019.

[BMN21] Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the
lens of example difficulty. Advances in Neural Information Processing Systems, 34:10876–10889,
2021.

[BPB21] Victor Besnier, David Picard, and Alexandre Briot. Learning uncertainty for safety-oriented
semantic segmentation in autonomous driving. In 2021 IEEE International Conference on
Image Processing (ICIP), pages 3353–3357, September 2021.

[BSN+19] Hermann Blum, Paul-Edouard Sarlin, Juan Nieto, Roland Siegwart, and Cesar Cadena. The
fishyscapes benchmark: Measuring blind spots in semantic segmentation. arXiv, 2019.

[BTD+16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang,
Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. ArXiv, 2016.

[BWAN18] Christoph Baur, Benedikt Wiestler, Shadi Albarqouni, and Nassir Navab. Deep autoencoding
models for unsupervised anomaly segmentation in brain MR images. In MICCAI Workshops,
2018.

[CCKL19] Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae Lee. Gaussian YOLOv3: An
accurate and fast object detector using localization uncertainty for autonomous driving. In
ICCV, 2019.

[CCZ+20] Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig
Adam, and Liang-Chieh Chen. Panoptic-deeplab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD ’16:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016.

[CLLO18] Sungjoon Choi, Kyungjae Lee, Sungbin Lim, and Songhwai Oh. Uncertainty-aware learning
from demonstration using mixture density networks with sampling-free variance modeling.
2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

[CLU+21] Robin Chan, Krzysztof Lis, Svenja Uhlemeyer, Hermann Blum, Sina Honari, Roland Y.
Siegwart, Mathieu Salzmann, P. Fua, and Matthias Rottmann. Segmentmeifyoucan: A
benchmark for anomaly segmentation. In NeurIPS Datasets and Benchmarks, 2021.

[CM15] Clement Creusot and Asim Munawar. Real-time small obstacle detection on highways using
compressive rbm road reconstruction. In 2015 IEEE Intelligent Vehicles Symposium (IV),
pages 162–167. IEEE, 2015.

[CMS+20] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with transformers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV
2020, 2020.

74

[CMS+21] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar.
Masked-attention mask transformer for universal image segmentation. arXiv, 2021.

[COR+16] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes dataset
for semantic urban scene understanding. In CVPR, 2016.

[CPK+16] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. arXiv, 2016.

[CPSA17] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv, 2017.

[CRG21a] Robin Chan, Matthias Rottmann, and Hanno Gottschalk. Entropy maximization and meta
classification for out-of-distribution detection in semantic segmentation. In Proceedings of
the ieee/cvf international conference on computer vision, pages 5128–5137, 2021.

[CRG21b] Robin Chan, Matthias Rottmann, and Hanno Gottschalk. Entropy maximization and meta
classification for out-of-distribution detection in semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 5128–5137, October
2021.

[CSK21] Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification is not
all you need for semantic segmentation. In NeurIPS, 2021.

[CTBH+19] Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez.
Addressing failure prediction by learning model confidence. In NeurIPS, 2019.

[CWL+20] Changhao Chen, Bing Wang, Chris Xiaoxuan Lu, Niki Trigoni, and Andrew Markham. A
survey on deep learning for localization and mapping: Towards the age of spatial machine
intelligence, 2020.

[CZG20] Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. Posterior network: Un-
certainty estimation without ood samples via density-based pseudo-counts. Advances in
Neural Information Processing Systems, 33:1356–1367, 2020.

[CZP+18] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In
ECCV, 2018.

[DBBSC21] Giancarlo Di Biase, Hermann Blum, Roland Siegwart, and Cesar Cadena. Pixel-wise anomaly
detection in complex driving scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 16918–16927, June 2021.

[DBK+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR, 2021.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

75

[DJW+20] Michael W. Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural
nets with rank-1 factors. In ICML, 2020.

[DKD09] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Structural
safety, 31(2):105–112, 2009.

[DT18] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution
detection in neural networks. arXiv, 2018.

[DWCL22] Xuefeng Du, Zhaoning Wang, Mu Cai, and Sharon Li. Towards unknown-aware learning
with virtual outlier synthesis. In ICLR, 2022.

[DWGL22] Xuefeng Du, Xin Wang, Gabriel Gozum, and Yixuan Li. Unknown-aware object detection:
Learning what you don’t know from videos in the wild. In CVPR, 2022.

[EGW+10] Mark Everingham, Luc Van Gool, C. K. I. Williams, J. Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge, 2010.

[FBA+20] Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine Dubuisson, and Isabelle Bloch.
TRADI: Tracking deep neural network weight distributions. In ECCV, 2020.

[FC19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International Conference on Learning Representations, 2019.

[FHL19] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape
perspective. arXiv preprint arXiv:1912.02757, 2019.

[FLF+18] Hongxiang Fan, Shuanglong Liu, Martin Ferianc, Ho-Cheung Ng, Zhiqiang Que, Shen Liu,
Xinyu Niu, and Wayne Luk. A real-time object detection accelerator with compressed
ssdlite on fpga. In 2018 International Conference on Field-Programmable Technology (FPT),
2018.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 1997.

[FSW+19] Hao-Shu Fang, Jianhua Sun, Runzhong Wang, Minghao Gou, Yong-Lu Li, and Cewu Lu.
Instaboost: Boosting instance segmentation via probability map guided copy-pasting. In
Proceedings of the IEEE International Conference on Computer Vision, pages 682–691, 2019.

[Gal16] Yarin Gal. Uncertainty in Deep Learning. PhD, 2016.

[GBKS21] Matej Grcic, Petra Bevandic, Zoran Kalafatic, and Sinisa Segvic. Dense anomaly detection
by robust learning on synthetic negative data. arXiv, 2021.

[GBP18] Corina Gurau, Alex Bewley, and Ingmar Posner. Dropout distillation for efficiently estimating
model confidence. arXiv, 2018.

[GBv22] Matej Grcić, Petra Bevandić, and Siniša Šegvić. Densehybrid: Hybrid anomaly detection for
dense open-set recognition. In Computer Vision - ECCV 2022 - 17th European Conference,
2022.

[GG16] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In ICML, 2016.

76

[GHM+22] Stefano Gasperini, Jan Haug, Mohammad-Ali Nikouei Mahani, Alvaro Marcos-Ramiro, Nas-
sir Navab, Benjamin Busam, and Federico Tombari. Certainnet: Sampling-free uncertainty
estimation for object detection. RAL, 2022.

[Gir15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, 2015.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[GLW+21] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. YOLOX: Exceeding yolo
series in 2021. arXiv preprint arXiv:2107.08430, 2021.

[GMFB19] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J. Brostow. Digging into
self-supervised monocular depth prediction. In The International Conference on Computer
Vision (ICCV), 2019.

[GPSW17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern
neural networks. ICML, 2017.

[Gra11] Alex Graves. Practical variational inference for neural networks. Advances in neural information
processing systems, 24, 2011.

[GRM+19] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann,
and Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness. In International Conference on Learning Representations,
2019.

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. ICLR, 2015.

[HBM+19] Dan Hendrycks, Steven Basart, Mantas Mazeika, Mohammadreza Mostajabi, Jacob Stein-
hardt, and Dawn Song. A benchmark for anomaly segmentation. ArXiv, 2019.

[HCS+19] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving
flow-based generative models with variational dequantization and architecture design. In
International Conference on Machine Learning, pages 2722–2730. PMLR, 2019.

[HDVG18] Simon Hecker, Dengxin Dai, and Luc Van Gool. Failure prediction for autonomous driving.
In IV, 2018.

[HG17] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In ICLR, 2017.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN. In ICCV,
2017.

[HLA15] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International conference on machine learning, pages
1861–1869. PMLR, 2015.

[HLL+18] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for
model compression and acceleration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

77

[HLM19] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model
robustness and uncertainty. In ICML, 2019.

[HMD18] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with
outlier exposure. In ICLR, 2018.

[HMK+20] Seong Jae Hwang, Ronak R Mehta, Hyunwoo J Kim, Sterling C Johnson, and Vikas Singh.
Sampling-free uncertainty estimation in gated recurrent units with applications to normative
modeling in neuroimaging. In Uncertainty in Artificial Intelligence, pages 809–819. PMLR,
2020.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[ISO19] ISO. Iso26262, road vehicles - functional safety. ISO, 2019.

[JSR+20] Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Pål Halvorsen, Thomas de Lange, Dag
Johansen, and Håvard D. Johansen. Kvasir-seg: A segmented polyp dataset. In Yong Man
Ro, Wen-Huang Cheng, Junmo Kim, Wei-Ta Chu, Peng Cui, Jung-Woo Choi, Min-Chun Hu,
and Wesley De Neve, editors, MultiMedia Modeling, 2020.

[KBC15] Alex Kendall, Vijay Badrinarayanan, , and Roberto Cipolla. Bayesian SegNet: Model
uncertainty in deep convolutional encoder-decoder architectures for scene understanding.
arXiv, 2015.

[KD09] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic ? does it matter ?
Structural Safety, 2009.

[KD18] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolu-
tions. Advances in neural information processing systems, 31, 2018.

[KG17] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In NeurIPS, 2017.

[KGHD19] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollar. Panoptic feature pyramid
networks. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[KHG+19] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollar. Panoptic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Neurips, 2012.

[KSW15] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. Advances in neural information processing systems, 28, 2015.

[LAE+16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[LCPK+15] Chen Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan Yuille.
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs.
In ICLR, May 2015.

78

[LGG+17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[LLC+21] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[LLLS18] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. In NeurIPS, 2018.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In
ECCV, 2014.

[LNFS19] Krzysztof Lis, Krishna Nakka, Pascal Fua, and Mathieu Salzmann. Detecting the unexpected
via image resynthesis. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[LPB17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In NeurIPS, 2017.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In CVPR, June 2015.

[LSL18] Shiyu Liang, R. Srikant, and Yixuan Li. Enhancing the reliability of out-of-distribution
image detection in neural networks. In ICLR, 2018.

[LSYP21] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised
learning for anomaly detection and localization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9664–9674, 2021.

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In KDD, 2008.

[LW16] Christos Louizos and Max Welling. Structured and efficient variational deep learning with
matrix Gaussian posteriors. 33rd International Conference on Machine Learning, ICML 2016,
2016.

[LW17] Christos Louizos and Max Welling. Multiplicative Normalizing Flows for Variational
Bayesian Neural Networks. 34rd International Conference on Machine Learning, ICML 2017,
2017.

[MAG+20] Alireza Mehrtash, Purang Abolmaesumi, Polina Golland, Tina Kapur, Demian Wassermann,
and William M Wells III. Pep: Parameter ensembling by perturbation. In NeurIPS, 2020.

[MATTEP08] Heydar Maboudi Afkham, Alireza Tavakoli Targhi, Jan-Olof Eklundh, and Andrzej Pronobis.
Joint visual vocabulary for animal classification. In ICPR, 2008.

[MFW16] Caio César Teodoro Mendes, Vincent Frémont, and Denis Fernando Wolf. Exploiting
fully convolutional neural networks for fast road detection. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), 2016.

[MG18a] Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. In
NeurIPS, 2018.

[MG18b] Jishnu Mukhoti and Yarin Gal. Evaluating bayesian deep learning methods for semantic
segmentation. arXiv preprint arXiv:1811.12709, 2018.

79

[MG19] Andrey Malinin and Mark Gales. Reverse kl-divergence training of prior networks:
Improved uncertainty and adversarial robustness. In Advances in Neural Information
Processing Systems, 2019.

[MGK+17] Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah, Roberto
Cipolla, and Adrian Weller. Concrete problems for autonomous vehicle safety: Advantages
of bayesian deep learning. In IJCAI, 2017.

[MIG+19] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. In NeurIPS, 2019.

[MKG18] Rhiannon Michelmore, Marta Z. Kwiatkowska, and Yarin Gal. Evaluating uncertainty
quantification in end-to-end autonomous driving control. ArXiv, abs/1811.06817, 2018.

[MMG20] Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. Ensemble distribution distillation.
In International Conference on Learning Representations, 2020.

[MMKI18] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised learning. IEEE
Trans. PAMI, 2018.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

[MSK18] Marcin Możejko, Mateusz Susik, and Rafał Karczewski. Inhibited softmax for uncertainty
estimation in neural networks. arXiv, 2018.

[NC16] Mahdi Pakdaman Naeini and Gregory F Cooper. Binary classifier calibration using an
ensemble of near isotonic regression models. In KDD, 2016.

[NCH15] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In AAAI, 2015.

[NDZ+19] Jeremy Nixon, Michael W. Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran.
Measuring calibration in deep learning. In CVPRW, 2019.

[Nea12] Radford M Neal. Bayesian learning for neural networks. arXiv, 2012.

[Neu18] Lukas Neumann. Relaxed Softmax : Efficient Confidence Auto-Calibration for Safe Pedes-
trian Detection. NIPS Machine Learning for Intelligent Transportation Systems Workshop,
2018.

[NHH15] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network
for semantic segmentation. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), December 2015.

[NMT+19] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshmi-
narayanan. Do deep generative models know what they don’t know? In International
Conference on Learning Representations, 2019.

[OFR+19] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin,
Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift. Advances in neural
information processing systems, 32, 2019.

80

[ORF20] Philipp Oberdiek, Matthias Rottmann, and Gernot A. Fink. Detection and retrieval of
out-of-distribution objects in semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[P+99] John Platt et al. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. ALMC, 1999.

[PFC+19] Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab, and Federico Tombari.
Sampling-free epistemic uncertainty estimation using approximated variance propagation.
In ICCV, 2019.

[Pom88] Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
D. Touretzky, editor, Advances in Neural Information Processing Systems, volume 1. Morgan-
Kaufmann, 1988.

[PRG+16] Peter Pinggera, Sebastian Ramos, Stefan Gehrig, Uwe Franke, Carsten Rother, and Rudolf
Mester. Lost and found: detecting small road hazards for self-driving vehicles. In iros,
2016.

[QCY20] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting objects with recursive
feature pyramid and switchable atrous convolution. arXiv preprint arXiv:2006.02334, 2020.

[RBL+21] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models, 2021.

[RDGF16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[RF17] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[RF18] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In MICCAI, 2015.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In NeurIPS, 2015.

[RHGS17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Jun 2017.

[RLF+19] Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon,
and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. Advances
in neural information processing systems, 32, 2019.

[RPZ+22] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and
Peter Gehler. Towards total recall in industrial anomaly detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14318–14328, 2022.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?”
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144, 2016.

81

[RSM+16] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M. Lopez.
The synthia dataset: A large collection of synthetic images for semantic segmentation of
urban scenes. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[RVRK16] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data:
Ground truth from computer games. In European conference on computer vision, pages
102–118. Springer, 2016.

[SAF19] SAFAD. Safety first for automated driving. SAFAD, 2019.

[SAN+04] J. Staal, M.D. Abramoff, M. Niemeijer, M.A. Viergever, and B. van Ginneken. Ridge-based
vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging,
2004.

[SGLS21] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer
for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7262–7272, 2021.

[SHF16] Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout: Learning an ensemble of deep
architectures. Advances in neural information processing systems, 29, 2016.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR,
2014.

[SKCS20] Murat Sensoy, Lance Kaplan, Federico Cerutti, and Maryam Saleki. Uncertainty-aware
deep classifiers using generative models. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In CVPR, 2015.

[SSL19] Alireza Shafaei, Mark Schmidt, and James J Little. A less biased evaluation of out-of-
distribution sample detectors. In BMVC, 2019.

[SSSS17] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model of safe
and scalable self-driving cars. arXiv preprint arXiv:1708.06374, 2017.

[SSW+17] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and
Georg Langs. Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery. In IPMI, 2017.

[SvNB+19a] Laurens Samson, Nanne van Noord, Olaf Booij, Michael Hofmann, Efstratios Gavves, and
Mohsen Ghafoorian. I bet you are wrong: Gambling adversarial networks for structured
semantic segmentation. In ICCV Workshops, 2019.

[SvNB+19b] Laurens Samson, Nanne van Noord, Olaf Booij, Michael Hofmann, Efstratios Gavves, and
Mohsen Ghafoorian. I bet you are wrong: Gambling adversarial networks for structured
semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision Workshops, pages 0–0, 2019.

[SWS+00] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and John C
Platt. Support vector method for novelty detection. In NeurIPS, 2000.

82

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2014.

[TAS18] Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation for
batch normalized deep networks. arXiv, 2018.

[VPSM20] Shashanka Venkataramanan, Kuan-Chuan Peng, Rajat Vikram Singh, and Abhijit Maha-
lanobis. Attention guided anomaly localization in images. In ECCV, 2020.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017.

[VvA+21] Tomas Vojir, Tomáš Šipka, Rahaf Aljundi, Nikolay Chumerin, Daniel Olmeda Reino, and
Jiri Matas. Road anomaly detection by partial image reconstruction with segmentation
coupling. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 15651–15660, October 2021.

[WKS+20] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and Lei Li. SOLO: Segmenting
objects by locations. In Proc. Eur. Conf. Computer Vision (ECCV), 2020.

[WNM+19] Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E. Turner, Jose Miguel Hernandez-
Lobato, and Alexander L. Gaunt. Deterministic variational inference for robust bayesian
neural networks. In International Conference on Learning Representations, 2019.

[WT11] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688. Citeseer, 2011.

[WW16] Elad Walach and Lior Wolf. Learning to count with cnn boosting. In European conference
on computer vision, pages 660–676. Springer, 2016.

[WZA+21] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen. MaX-
DeepLab: End-to-end panoptic segmentation with mask transformers. In CVPR, 2021.

[WZG+20] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh
Chen. Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision –
ECCV 2020, 2020.

[WZK+20] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2: Dynamic
and fast instance segmentation. Proc. Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[XGD+17] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500, 2017.

[XWY+21] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo.
Segformer: Simple and efficient design for semantic segmentation with transformers. arXiv
preprint arXiv:2105.15203, 2021.

[XZL+20] Yingda Xia, Yi Zhang, Fengze Liu, Wei Shen, and Alan Yuille. Synthesize then compare:
Detecting failures and anomalies for semantic segmentation. In ECCV, 2020.

83

[YCW+20] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. BDD100K: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, 2020.

[YHH+19] Senthil Yogamani, Ciarán Hughes, Jonathan Horgan, Ganesh Sistu, Padraig Varley, Derek
O’Dea, Michal Uricár, Stefan Milz, Martin Simon, Karl Amende, et al. Woodscape: A
multi-task, multi-camera fisheye dataset for autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 9308–9318, 2019.

[YK16] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In
ICLR, 2016.

[YK19] Donggeun Yoo and In So Kweon. Learning loss for active learning. In CVPR, 2019.

[ZE01] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from
decision trees and naive bayesian classifiers. In ICML, 2001.

[ZE02] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass
probability estimates. In KDD, 2002.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the
British Machine Vision Conference (BMVC), 2016.

[ZSDG17] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural
gradient as variational inference. arXiv preprint arXiv:1712.02390, 2017.

[ZSL+21] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable
detr: Deformable transformers for end-to-end object detection. In International Conference
on Learning Representations, 2021.

[ZSQ+17] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid
scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[ZZP+17] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

Part V

GENERAL APPENDIX

A
Additional Results and Training details

[Chapter 7
A.1 learning divergence based uncertainty

In this we complete Chapter 3 with additional results and visualization
to better understand and validate the soundness of our methods.

A.1.1 Additional qualitative results

In Figure A.1 we show results on every noise. We test: rain (i.e.,
gray line on the image) and patches (i.e., rectangles of uniform color
and random sizes). We can see that, just as glare, ObsNet is able to
detect both aleatoric and epistemic uncertainty. Distillation fails to
detect such uncertainty as it is trained to predict the same output as
the one of the teacher.
Such behavior can be seen on Figure A.2. Here, we fix a precision

threshold of 95%, we rank each pixel of the image by uncertainty,
then we try to make the best prediction without falling under the
threshold. We can see that ObsNet is able to make good predictions
in nearly all images, where MCDropout and distillation can not.

A.1.2 Aleatoric additional results

In Table A.1, Table A.2 and Table A.3, we show the complete results
for aleatoric uncertainty. We can see that even if ObsNet is trained on
another noise, it is able to achieve good results. Moreover, training
ObsNet with several noises significantly improves the performances
for all noises. We can then use much more noise to be more robust
to any kind of situation for autonomous driving (e.g., snow, stain, or
every low light).

A.1.3 Uncertainty Label c

We show in Figure A.3 the self-supervised label c from epistemic
uncertainty. The red pixels on the most right images are the pixels
where the uncertainty is above the safety parameters 𝛿. It shows
where we learn to maximize the KL divergence (red pixel) and where
we learn to minimize it (in blue). For aleatoric uncertainty estimation,
we see in red the pixels where the noise shifts the output distribution
above the safety parameter 𝛿. Thus, leading to aleatoric uncertainty

86

Figure A.1: Uncertainty map. From
column left to right: Input image, MC-
Dropout uncertainty, distillation uncer-
tainty, and ObsNet uncertainty. We add
two noises which are rain and patch.

87

Figure A.2: Coverage of the safe pre-
dictions. In black and red, where the
uncertainty leads the overall precision
to fall under 95%. From left to right:
original image, MCDropout, distillation,
and ObsNet.

Test Glare Method Train R@P=0.95 AuPR Trigger 75%
no-retrain MCDropout T=50 - 0.1 ± 0.1 83.9 ± 0.1 18.9 ± 1.5

MCDropout T=2 - 0.0 ± 0.0 83.7 ± 0.2 15.5 ± 1.6
Softmax - 1.0 ± 0.3 90.5 ± 0.8 17.2 ± 2.7
Void Class - 0.3 ± 0.1 82.7 ± 0.1 8.2 ± 0.9
MCDA T=50 - 44.7 ± 0.5 91.7 ± 0.2 14.3 ± 2.0

Distillation w/ T supervised patch 0.3 ± 0.1 85.7 ± 0.5 4.1 ± 0.1
w/ T unsupervised patch 1.9 ± 0.5 85.5 ± 0.7 4.3 ± 0.9
w/ T supervised rain 0.5 ± 0.0 77.1 ± 0.9 3.8 ± 0.8
w/ T unsupervised rain 0.5 ± 0.1 85.0 ± 0.5 4.2 ± 0.8
w/ T supervised glare 0.0 ± 0.3 83.3 ± 0.2 2.2 ± 0.8
w/ T unsupervised glare 1.6 ± 0.1 84.1 ± 0.3 3.0 ± 0.9
w/ T supervised all 0.0 ± 0.0 81.9 ± 0.3 1.7 ± 0.8
w/ T unsupervised all 1.1 ± 0.3 85.9 ± 0.2 3.1 ± 1.7

ObsNet (OURS) from MCDropout patch 46.7 ± 1.3 92.3 ± 0.3 15.1 ± 2.1
from MCDropout rain 33.9 ± 1.1 90.8 ± 0.3 18.3 ± 1.0
from MCDropout glare 68.4 ± 0.9 95.3 ± 0.1 23.2 ± 1.5
from MCDropout all 76.1 ± 0.5 96.1 ± 0.1 33.5 ± 1.8

Table A.1: Sun Glare Evaluation. Eval-
uation of aleatoric uncertainty, tested on
glare.

88

Test Rain Method Train R@P=0.95 AuPR Trigger 33%
no-retrain MCDropout T=50 - 10.3 ± 0.8 74.9 ± 0.5 5.6 ± 0.6

MCDropout T=2 - 7.3 ± 0.7 73.3 ± 0.5 1.5 ± 0.3
Softmax - 6.1 ± 2.0 72.6 ± 0.3 1.2 ± 0.3
Void Class - 7.2 ± 3.5 73.0 ± 0.1 1.3 ± 0.3
MCDA T=50 - 6.2 ± 0.4 69.6 ± 0.3 0.2 ± 0.2

Distillation w/ T supervised glare 0.0 ± 0.0 55.0 ± 0.6 0.0 ± 0.0
w/ T unsupervised glare 0.1 ± 0.1 54.1 ± 0.7 0.0 ± 0.0
w/ T supervised patch 0.0 ± 0.0 54.1 ± 0.4 0.0 ± 0.0
w/ T unsupervised patch 0.0 ± 0.0 53.4 ± 0.5 0.0 ± 0.0
w/ T supervised rain 0.0 ± 0.0 47.6 ± 0.8 0.0 ± 0.0
w/ T unsupervised rain 0.0 ± 0.0 51.1 ± 0.2 0.0 ± 0.0
w/ T supervised all 0.0 ± 0.0 53.7 ± 0.4 0.0 ± 0.0
w/ T unsupervised all 0.0 ± 0.0 61.1 ± 0.2 0.0 ± 0.0

ObsNet (OURS) from MCDropout glare 3.1 ± 0.5 69.3 ± 0.6 0.3 ± 0.4
from MCDropout patch 3.1 ± 0.6 70.4 ± 0.6 0.8 ± 0.4
from MCDropout rain 32.5 ± 0.8 86.9 ± 0.2 24.7 ± 1.2
from MCDropout all 33.2 ± 1.3 87.2 ± 0.2 25.1 ± 2.0

Table A.2: Rain Evaluation. Evaluation
of aleatoric uncertainty, tested on rain.

Test Patch Method Train R@P=0.95 AuPR Trigger 75%
no-retrain MCDropout T=50 - 63.9 ± 7.3 94.9 ± 0.7 19.6 ± 2.9

MCDropout T=2 - 23.4 ± 5.1 93.5 ± 0.5 18.5 ± 2.5
Softmax - 0.3 ± 0.1 90.3 ± 0.3 15.9 ± 1.2
Void Class - 0.2 ± 0.1 86.4 ± 0.3 8.7 ± 1.1
MCDA T=50 - 32.0 ± 1.3 90.4 ± 0.2 12.4 ± 1.1

Distillation w/ T supervised glare 0.0 ± 0.0 85.2 ± 0.3 3.1 ± 0.4
w/ T unsupervised glare 1.3 ± 0.2 84.8 ± 0.6 3.2 ± 0.9
w/ T supervised rain 0.0 ± 0.0 54.0 ± 0.1 0.0 ± 0.0
w/ T unsupervised rain 0.0 ± 0.0 54.1 ± 0.4 0.0 ± 0.0
w/ T supervised patch 1.4 ± 0.4 79.6 ± 0.7 4.4 ± 0.9
w/ T unsupervised patch 2.2 ± 0.3 82.7 ± 0.5 4.5 ± 1.5
w/ T supervised all 0.0 ± 0.0 79.5 ± 0.7 1.9 ± 0.9
w/ T unsupervised all 1.3 ± 0.3 84.7 ± 0.6 3.4 ± 1.3

ObsNet (OURS) from MCDropout glare 46.5 ± 0.9 92.6 ± 0.2 15.2 ± 2.1
from MCDropout rain 2.7 ± 0.5 70.2 ± 0.2 0.9 ± 0.6
from MCDropout patch 72.5 ± 0.4 95.6 ± 0.1 23.6 ± 2.7
from MCDropout all 77.5 ± 0.4 96.1 ± 0.1 30.5 ± 1.4

Table A.3: Square Patch Evalua-
tion. Evaluation of aleatoric uncertainty,
tested on patch.

89

(red pixels) or not (blue pixels). We can see that even if some pixels
overlap by the glare, the corresponding label is 𝑐 = +1. This means
that if the target network can predict the right class for this pixel, then
there is enough information in the data to make a safe prediction.

Figure A.3: Label 𝑐 visualisation First
row: Epistemic uncertainty, Last row:
Aleatoric uncertainty. The last column
shows self-supervised labels, 𝑐 = +1 in
blue and 𝑐 = −1 in red.

A.2 learning from local adversarial attacks

A.2.1 Implementation details & hyper-parameters

For our implementation, we use Pytorch1 and will release the code 1 A Paszke et al., PyTorch: An Imperative
Style, High-Performance Deep Learning
Library, NIPS 2019

after the review. We share each hyper-parameter in Table A.4. We
train ObsNet with SGD with momentum and weight decay for at
most 50 epochs using early-stopping. ObsNet is not trained from
scratch as we initialize the weights with those of the segmentation
network. We also use a scheduler to divide the learning rate by 2 at
epoch 25 and epoch 45. We use the same data augmentation (i.e.,
Horizontal Flip and Random Crop) for training of the segmentation
network and as well as for ObsNet. As there are few errors in the
training of ObsNet, we increase the weight of positive examples in
the loss contribution (Pos Weight in Table A.4).
In Figure A.4, we propose a detailed view of our observer network

training scheme. The architecture corresponds to a SegNet [BKC17].
As we can see, we put residual connections after each down-sample
or up-sample block. Here, we use a sigmoid output to directly predict
the pixel-wise error map.

90

Params CamVid StreetHazards Bdd Anomaly
Epoch 50 50 50
Optimizer SGD SGD SGD
LR 0.05 0.02 0.02
Batch Size 8 6 6
Loss BCE BCE BCE
Pos Weight 2 3 3
LAA shape rand shape rand shape rand shape
LAA type min𝑝(𝑐) max𝑝(𝑘≠𝑐) max𝑝(𝑘≠𝑐)
epsilon 0.02 0.001 0.001

Table A.4: Hyper-parameters to train
ObsNet on the different datasets.

Figure A.4: Detailed architecture.
Training (blue arrow) The Segmenta-
tion Network is frozen. The input im-
age is perturbed by a local adversarial
attack. Then the Observer Network is
trained to predict Segmentation Network’s
errors, given the images and some ad-
ditional skip connections. Testing (red
arrow) No augmentation is performed.
The Observer Network highlights the out-
of-distribution sample, here a motor-
cycle. To compute the uncertainty map,
the Observer Network requires only one
additional forward pass compared to the
standard segmentation prediction.

91

A.2.2 ablation study on adversarial attacks

We outline most of the experiments we make on 𝐿𝐴𝐴. First, there
are two different kinds of setups, we can either minimize the pre-
diction class (i.e., min𝑝(𝑐)) or maximize instead a different class (i.e.
max𝑝(𝑘≠𝑐)), with 𝑝 = 𝑆𝑒𝑔(𝑥) the class vector, 𝑐 = max𝑝 the maximum
class prediction and 𝑘 a random class. Then, we attack with five
different strategies: all pixels in the image, random sparse pixels, the
area of a random class, all pixels in a square patch and all pixels in a
random shape. We show in Table A.5 the complete results on CamVid
ODD. We can see that that random shape is the most effective. We
use the FSGM because it’s a well-known and easy-to-use adversarial
attack. Since our goal is to hallucinate OOD objects, we believe the
location and the shape of the attacked region are the important part.

Type Fpr95Tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
MCDropout 49.3 97.3 90.1 0.463
ObsNet base 54.2 97.1 89.1 0.396
all pixels 53.2 97.1 89.5 0.410
sparse pixels 61.1 97.1 89.2 0.387

min𝑝(𝑐) class pixels 45.6 97.3 90.3 0.428
square patch 47.4 97.3 90.1 0.461
rand shape 44.6 97.6 90.9 0.446
all pixels 51.9 97.1 89.6 0.405
sparse pixels 54.2 97.2 89.6 0.374

max𝑝(𝑘≠𝑐) class pixels 46.8 97.2 89.9 0.432
square patch 45.5 97.4 90.5 0.464
rand shape 44.6 97.4 90.6 0.446

Table A.5: Ablation on adversarial at-
tacks. We can see that the random
shape is the best method to train the
Observer.

As shown on Figure A.5, we can see that the best 𝜖 for the attack is
0.02 with a random shape blit at a random position in the image. We
can also see that even with a large 𝜖, ObsNet still achieves reasonable
performance.

A.2.3 Error detector

The observer is trained to assess whether the prediction differs from
the true class (which is always the case for OOD regions), so it also
tends to assign low confidence scores for in-domain regions with
likely high errors, as shown in Figure A.6. This behavior is not
caused by ObsNet, but depends on the accuracy of the main network
at test time and should lessen with more accurate networks. This
effect shows that our method can be used for error detection, and
outperforms all other methods, as illustrated in Table A.6.

92

Figure A.5: Ablation on Epsilon. Evo-
lution of the Fpr at 95 Tpr for different
values of epsilon on CamVid OOD.

Method Fpr95Tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax 61.9 96.5 84.4 0.480
Void 79.9 90.7 67.3 0.504
MCDA 65.8 96.3 83.1 0.440
Temp. Scale 61.9 96.6 84.6 0.302
ODIN 58.3 97.2 87.9 0.478
ConfidNet 52.2 97.5 88.6 0.412
Gauss Pert. 60.2 96.8 85.6 0.497
Deep Ensemble 55.3 97.5 88.1 0.343
MCDropout 52.5 97.9 88.5 0.443
ObsNet + LAA 47.7 98.1 90.3 0.370

Table A.6: Error detection evaluation
on CamVid (best method in bold, second
best underlined).

93

Figure A.6: Evaluation of the error de-
tection on the test set of CamVid. Ob-
sNet prediction is close to real errors
even without OOD objects.

A.2.4 Additional Experiments: DeepLab v3+

We show on Table A.7, the results on BDD Anomaly with a more
recent Deeplab v3+1 with ResNet-101 encoder. Our methods per- 1 LC Chen et al., Encoder-Decoder with

Atrous Separable Convolution for Semantic
Image Segmentation, ECCV 2018

forms the best, while methods like ConfidNet do not scale when the
segmentation accuracy increases as they have fewer errors to learn
from.

Method Fpr95Tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax 60.3 95.8 81.4 0.228
Void 68.8 90.2 74.0 0.485
MCDA 68.1 95.1 78.8 0.265
ConfidNet 64.5 95.4 80.9 0.254
Gauss Pert. 61.4 96.1 82.4 0.186
MCDropout 60.0 96.0 82.0 0.219
ObsNet + LAA 58.8 96.3 83.0 0.185

Table A.7: Evaluation on Bdd Anomaly
(best method in bold, second best un-
derlined), with a DeepLab v3+.

A.2.5 Segment Me If You Can

In Chapter 4 we introduce some results on the Segment Me If you
can Dataset. Here we discuss the new metrics for this specific dataset.
The authors introduce instance-wise metrics. They argue that from
a practitioner point of view, it is important to detect every anomaly.
Pixels-wise metrics do not reflect this need. In fact, pixel-wise met-
rics, such as AUPR and Fpr95Tpr barely penalize the model when it
miss classified a small object for image segmentation. These metrics
are more affected by bigger objects. Instance-wise metrics better
reflect the capacity of the model to detect components in the im-
age. Here are the three metrics the authors used: component-wise

94

intersection over union (sIoU), predictive positive value (PPV) and
component-wise F1-score (mean F1). Each metric computes how
much the predictions cover the ground-truth regions, independently
of whether prediction/ground truth belongs to a single or multiple
objects. The scoreboard is regularly updated in the following address:
https://segmentmeifyoucan.com/leaderboard.
In Figure A.7, we show additional results on the dataset. We

can see that our ObsNet + 𝐿𝐴𝐴 and minor adaptation succeed in
segmenting the anomalies nearly perfectly, despite never having seen
any bear, or plane during train time.

Figure A.7: SMIYC additional results:
Our ObsNet is able to detect OoD objects
such as the bear or the plane.

95

A.3 camvid ood dataset

For our experiments, we use urban street segmentation datasets with
anomalies withheld during training. Unfortunately, there are few
datasets with anomalies in the test set. For this reason we propose
the CamVid OOD that will be made public after the review. To design
CamVid OOD, we blit random animals in test images of CamVid. We
add one different such anomaly in each of the 233 test images. The
rest of the 367 training images remain unchanged. The anomalous
animals are bear, cow, lion, panda, deer, coyote, zebra, skunk, gorilla, giraffe,
elephant, goat, leopard, horse, cougar, tiger, sheep, penguin, and kangaroo.
Then, we add them to a 13th class which is animals/anomalies as the
corresponding ground truth of the test set.
This setup is similar to the Fishyscape dataset, without the con-

straint of sending a Tensorflow model online for evaluation. Thus,
our dataset is easier to work with. We present some examples of
the anomalies in Figure A.8 with the ground truth highlighted in
cyan. We have presented in [BBPB21], the results of our method
plus several other frameworks that can serve as a baseline for others.

Figure A.8: Examples of our dataset
with anomalies and the ground truth.

A.4 learning car

In Figure A.9, we show additional results on the Learning Car, from
the left camera. We see that most of the areas with low confidence
correspond are under the cars, which should be predicted as a
parking zone (color black). But as we can see these parking places
are wrongly classified as the road (in purple). Moreover, the spot
on the road is also wrongly predicted as a text marking but the
segmentation network.
To show our evolution on the quality of our framework, we

96

Figure A.9: Additional view from on-
line testing of the Demo Car.

highlight in Figure A.10 the improvement between each round. From
the first row (First round) to the last one, we can see that both
networks produce better results in the last row that in the first
row. In the beginning, the segmentation network prediction was
overflowing on the object and not very accurate. Moreover, the
ObsNet overreacted on the prediction of the segmentation network.
The last row shows that our ObsNet is much more precise, and the
segmentation is more accurate.

97

Figure A.10: Evolution of the improve-
ment of our Demo Car.

	I Introduction
	OoD for Image Segmentation
	Motivation
	Safety for Automated Driving
	Related Works
	Datasets and Metrics
	Conclusion

	II Learning with Observer Networks
	Observer Network
	Motivation
	Experiments
	Conclusion

	Divergence Based Uncertainty
	Introduction
	Method
	Experiments
	Conclusion

	Local Adversarial Attacks
	Introduction
	Method
	Experiments
	Results: Public LeaderBoard
	Conclusion & Limitation

	Instance-Aware Observer
	Introduction
	Method
	Experiments
	Conclusion

	III Learning Car
	Learning Car Project
	Safety Critical Application
	ObsNet Training
	Experimental Setup
	Real-World Testing
	Limitation and future improvement

	IV Epilogue
	Conclusion
	Summary
	Future Works

	REFERENCES
	V GENERAL APPENDIX
	Additional Results and details
	Learning Divergence Based Uncertainty
	Learning from Local Adversarial Attacks
	CamVid OOD dataset
	Learning Car

