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General introduction

Context and motivations

As our daily environment increasingly incorporates artificial intelligence (AI), it has become important
to understand how models make decisions, particularly in a context where user confidence in the AI
technology has become a societal issue. The explainability field became a hot topic and has grown
along with the rapid rise of « black-box » machine learning techniques such as deep learning and the
start of DARPA’s eXplainable Artificial Intelligence (XAI) program[GA19] in 2016. Especially with the
recent regulations of the European General Data Protection Regulation (GDPR) that came into effect in
2018, which requires providing explanations to users both for legal and ethical reasons. For instance, the
Article 22 imposing a right to "information about the logic involved" forces the explanations to represent
the inner logic of a system and need to be faithful to it. This is particularly important in high stakes
decision making settings such as medical decision support system, military and security applications. To
comply with all those regulations and needs, several approaches were proposed to explain the decision
function of a classifier or explain predictions individually. The aim of such XAI methods is to provide in
addition to a prediction, interpretable and useful information that justifies and explains a prediction.

Despite the rapid growth in attention on eXplainable AI, most of the current explainability methods
for black-box models are ad-hoc. Namely, the feature relevance techniques that are among the most
popular approaches and that have received much attention in the machine learning literature face criti-
cal issues that prevent their deployment. Indeed, much of these techniques have focused on estimating
importance score, for how much a given input feature contributes to a model’s output by the means of
non-deterministic components. For instance, LIME[RSG16] (Local Interpretable Model-agnostic Ex-
planations) uses random perturbation during the sampling process which results in shifts in data and
instability in the generated explanations. Yet, in a context where XAI methods are expected to gener-
ate robust and stable explanations (i.e same explanations given the same instance and model with the
same configuration), there is no guarantee that the explanations generated using ad-hoc methods are not
accurate nor sufficient and they may even suffer from instability (i.e different explanations can be gen-
erated for the same prediction) due to random perturbations often used in this type of methods. These
are critical issues that can prevent deployment of such methods in sensitive domains and limit their use.
On the other hand, there exist formal methods to generate rigorous explanations for different machine
learning models. However, the main bottleneck of such methods is their efficiency in computing expla-
nations when it comes to large input feature sets. In addition, most of the current formal methods use
information about the model and deal with its inner working to interpret the results, reducing the type of
predictor to use to a set of interpretable models, that relatively enjoy a less good predictive performance
compared to some black-box models.

The challenge that this thesis attempts to address is to understand what is happening beneath the
surface and explain how black-boxes make decisions, and thus by integrating concepts and formalism of
symbolic AI. We try to leverage formal methods and logical reasoning to develop a novel local model-
agnostic interpretability approach for explaining the prediction of black-box classifiers, for both multi-
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General introduction

class and multi-label settings. Our contributions include the proposal of an explainability method that
combines both the "agnostic" nature of numerical methods and offers more "rigorous" explanations that
characterize symbolic explanations. We use propositional logic as a formalization framework to as-
sociate some logical representation (encoding) to our machine learning model. Thus, we reduce the
given problem of explaining individual predictions to a variant of the propositional Boolean satisfiabil-
ity problem (SAT). We use SAT solvers as the problem solving engine without implementing dedicated
programs. This makes our approach efficient since SAT solvers are extremely well studied. Note that
SAT framework is just one possibility and that other constraint solvers (e.g Satisfiability Modulo theories
(SMT), Mixed-integer linear programming (MILP), etc) can be used for a similar process. Therefore,
our approach is centered around Minimal Unsatisfiable Subsets (MUS) and Minimal Correction Subsets
(MCS) and provides a comprehensive solution for feature importance on both explanations and variables
level.

We present an approach based on modeling the problem in the form of variants of the propositional
satisfiability problem (SAT) in order to take advantage of the strengths of already existing and proven
SAT technologies, and of the powerful practical tools for the generation of MCSes ans MUSes. Then, we
propose to overcome the complexity of encoding a machine learning classifier into an equivalent logical
representation by the means of a surrogate model. This latter will be used to symbolically approximate
the original model in the vicinity of the sample of interest, allowing it to be locally faithful [RSG16]. We
propose two complementary types of symbolic explanations which are sufficient reasons and counterfac-
tuals. Given an input data item and its prediction, a sufficient reason would answer the question : "What
are the feature values in the input which are sufficient in order to trigger the prediction whatever the
values of the other variables?" while a counterfactual explanation would answer the question : "Which
values are sufficient to change in the input to have a different prediction?". This type of questions is
fundamental for the end-user’s understanding and for the explanations to be usable. The adequate type
of explanation is directly linked with the end user. For instance, what may be important for the doctors
in a XAI method is to know if they can act (need an actionable explanation) and not only understand how
the algorithm works. From another perspective, domain experts may require to observe the effects and
the results which will provide an intuition about the data that can directly help them to understand the
decision process and how the model works.

As for the multi-label setting, we propose semantics and reasoning approaches to infer from first
level explanations provided by the base classifier explanations the multi-label explanations. We adapt
our agnostic and declarative approach to provide different types of symbolic explanations for multi-label
classifiers. The explanations proposed are distinguished according to the associated semantics (sufficient
reasons or counterfactuals), the elements composing an explanation (features, labels or a combination
of the two) and the level of granularity of the explanations (the whole prediction or parts of the predic-
tion). We will also be particularly interested in so-called feature-attribution explanations. We propose
three schemes to achieve feature attribution for multi-label tasks using existing attribution methods as
oracles, namely i) an aggregation-based scheme, ii) a problem transformation-based scheme and iii) a
symbolic explanation-based one. A property we call label-explanation correlation, specific to multi-label
classification is used in addition to the extension of the basic properties of sensitivity and stability to the
multi-label setting.

Organization of the manuscript

This manuscript is composed of three parts. The first one is devoted to the state-of-the-art and the second
and third parts bring together the contributions of this thesis.

2



The Background and notations section is a reminder of the basic notions of classification, proposi-
tional logic and Boolean satisfiability problem that constitute the technical preliminaries necessary to the
understanding of the rest of the manuscript. In the first part, Chapter 1 is devoted to explainability in AI.
We present the eXplainable Artificial Intelligence field, the need to explanation and the different purposes
and audiences of an XAI method. We present a review of the different explainability methods proposed
by the community. We rely on a taxonomy that depends on what the methods explain (intrinsic/post-hoc)
and how they are applied (local/global) in order to distinguish the methods of explainability. We present
within the Chapter 2 of the first part two main methodologies of the XAI methods : Ad-hoc methods
and formal based ones.

The contributions are presented within the second and third part of this thesis. Chapter 3 is dedi-
cated to the symbolic explanations for single-label classification. We define the different types of sym-
bolic explanations we propose to enumerate and we present a general framework of our declarative and
model-agnostic approach. This latter allows to provide sufficient reason and counterfactual explanations
based on SAT technologies.

Chapter 4 describes our contributions to provide different types of symbolic explanations for multi-
label classifiers, where a prediction is a subset of labels. More precisely, in addition to global sufficient
reason and counterfactual explanations, our approach makes it possible to generate explanations at dif-
ferent levels of granularity in addition to structural relationships between labels (provides both feature
and label-based explanations).

Chapter 5 and 6 are dedicated to the feature-attribution explanations. We describe in Chapter 5
how we associate scores reflecting the relevance of the explanations and the features w.r.t some proper-
ties, in order to explain individual predictions of single-label classifiers. We present a set of fine-grained
properties allowing to analyze, rank and select explanations and a set of scores allowing to assess the
relevance of explanations and features w.r.t the suggested properties. In Chapter 6, we propose three
schemes to achieve feature attribution for multi-label tasks using existing attribution methods as ora-
cles. The first scheme is based on aggregating feature attribution scores obtained for each label while
the second one is based on problem transformation. The third scheme combines problem transforma-
tion with symbolic explanations. In order to evaluate the quality of feature attributions, we extend the
basic properties of sensitivity and stability to the multi-label setting and propose a third property, called
label-explanation correlation, specific to multi-label classification. Moreover, we propose to exploit the
correlations between labels in order to infer feature attributions from already computed explanations.

Publications

→ R. Boumazouza, F. Cheikh-Alili, B. Mazure, K. Tabia, A Symbolic Approach for counterfactual
explanations in the 14th International Conference on Scalable Uncertainty Management (SUM20),
September 2020.

→ R. Boumazouza, F. Cheikh-Alili, B. Mazure, K. Tabia, A Model-Agnostic SAT-based approach for
Symbolic Explanation Enumeration in the 23rd International Conference on Artificial Intelligence
(ICAI’21), July 2021.

→ R. Boumazouza, F. Cheikh-Alili, B. Mazure, K. Tabia, ASTERYX: a model-Agnostic SaT-basEd
appRoach for sYmbolic and score-based eXplanations in the 30th ACM International Conference
on Information and Knowledge Management (CIKM), November 2021. (Core rank A)
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Background and notations

Machine Learning (ML) is a sub field of AI that is specifically focused on learning a model from data
without being explicitly programmed. Machine learning can be supervised (relies on labelled data) or
unsupervised (processes unlabelled data). The first one fits the data while the second one separates and
explores the data. Supervised learning deals with two main tasks that are regression and classification.
In this thesis, we deal with classification where we propose an approach to explain individual predictions
of classifiers.

1 Classification problems

In this thesis, we want to explain supervised Machine Learning (ML) models trained for classification
problems. We define in the following what is a classifier and present the different types of classifica-
tion. We provide some details about single-label classification problems in section 1.1 and multi-label
classification problems in section 1.2.

In supervised learning, a structured dataset for classification is defined as set of instances of the form
(x, y) where x = (x1, ..., xn), n ∈ N , is an input vector called features (or variables, attributes) and y
is an outcome variable often called the label (or class variable or target). We denote by X the feature
space and Y the outcome space. We use the notation {, } to denote the domain of a discrete variable
and | . | to denote its size. Classification is a supervised machine learning task whose aim is to predict
the class (output) variable based on the values of the input variables. In [dCF09], it is defined as the
process of approximating the mapping function that associates input samples to corresponding target
classes (labels).

Definition 1. (Decision function) A decision function of a classifier is a function f : X → Y mapping
each instantiation x of X to y=f(x).

A decision function describes the classifier’s behavior to perform classification.
We distinguish three main types of classification problems :

• Binary classification: This task involves predicting one of two classes (|Y |= 2). A binary classifier
is defined as f : X → {0, 1}.

• Multi-class classification: This task deals with predicting one class among a set of classes with
|Y |> 2. A multi-class classifier is defined as f : X → Y where |Y |> 2.

• Multi-label classification: This task involves predicting a subset of labels for each instance. Con-
trary to binary and multi-class classification, classes are not mutually exclusive in multi-label tasks.
A multi-label classifier is defined as follows : f : X → Y = (Y1, . . . , Yk) where Y is a vector of
binary variables (Yi=1 denotes the fact that the label li is predicted positively).
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1. Classification problems

1.1 Single-label classification

Single-label classification is concerned with learning from a set of examples that are associated with a
single class y from a set of disjoint labels (classes are mutually exclusive). It covers binary and multi-
class classification (|Y |> 2). Among the main applications where binary classification is used, there is
disease diagnosis [GLB+10, PGA08], spam and malware detection [SKG09]. Multi-class classification
is also used in different applications such as character recognition [AJM12, CVKRBA12], biometric
identification [TYRW14], computer security [RSE16], etc.

Several multi-class classification techniques exist such as multi-layer perceptron (MLP)[Hay94], de-
cision trees (DT)[WKQ+08], k-nearest neighbors (k-NN)[Alt92], support vector machines (SVMs)[CV95],
naïve bayes classifier (BNC)[HY01]. The choice of the learning algorithm to use should take into account
the specific application requirements and many other factors such as the type and number of features,
interpretability, accuracy, etc.

Evaluation measures There are several ways to measure a classifier accuracy and generalization qual-
ity. The most known for multi-class classification are accuracy, precision, and recall. The accuracy is
a metric used to assess the performance of a model and it is used to measure how well the classifier
predicts.

Confusion matrix A confusion matrix is a summary of the prediction results in a classification
problem. Table 1 illustrates an example of a confusion matrix for the case of binary classification.

• True Positive (TP) : For correctly predicted positive values.

• True Negative (TN) : For correctly predicted negative values.

• False positive (FP) : For values incorrectly predicted as positive.

• False Negative (FN) : For values incorrectly predicted as negative.

Actual class
Positive (P) Negative (N)

Predicted class Positive (P) TP FP
Negative (N) FN TN

Table 1: Confusion matrix

Accuracy It is defined as the number of predictions a model correctly makes divided by the total
number of predictions made.

Accuracy(acc) =
TP + TN

TP + TN + FP + FN
(1)

Precision As the name suggests, precision determines how precise and correct the model is with
respect to positive predictions (how many of them are actually positive).

Precision =
TP

TP + FN
(2)
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Recall Is defined as the proportion of positive predictions made among the total number of positive
samples. It measures the model’s ability to detect positive samples.

Recall =
TP

TP + FP
(3)

1.2 Multi-label classification

In contrast to single-label classification in which instances can only belong to a single class, in multi-label
classification instances are associated with a vector of (binary) variables Y = (Y1, . . . , Yk). Multi-label
classification is very common in many real-world applications [TKV09]. It is a well-known predictive
task in many domains such as text categorization (where each document can belong at the same time to
several predefined topics. For example, a conference paper may at the same time be labeled as Artificial
intelligence and Philosophy), object recognition in images, sentiment analysis, audio, text categorization,
video categorization [BLSB04], bioinformatics, information retrieval, multimedia content annotation,
web mining, protein function classification [EW01], music categorization [LO03] and so on.

A dataset in multi-label classification is a collection of couples (x,y) where x is an instance of X
and y a vector of binary variables in Y encoding the true labels associated with x.

Definition 2 (Multi-label classifier). A multi-label classifier is a function mapping each input data in-
stance x to a multi-label prediction y. Each input x is a vector of n values assigned to X . Each
corresponding output is a vector y of k binary values assigned to Y . Given the prediction y=f(x), the
instance x is classified by f in the label Yj if Yj=1 in the prediction y.

Example 1. Table 2 represents an example of a multi-label dataset. Assume a multi-label text classifi-
cation problem of studying toxic comments online. For the sake of simplicity, assume that each comment
is described by a set of keywords. Using a binary bag-of-words representation, each comment will have
a set of binary features where feature Xi = 1 (resp. Xi = 0) denotes that keyword Xi is present (resp.
absent) in the comment. In this example, the feature space X is composed of five binary variables asso-
ciated to five keywords. The set of labels Y is composed of seven classes : toxic, severe_toxic, obscene,
threat, insult, identity_hate and none. A toxic comment might at the same time be about any of or none of
them. The variable Yj = 1 (resp. Yj = 0) denotes the fact that the current comment is positively labelled
i.e. Yj = 1(resp. not labelled, Yj = 0) in label Yj .

X = (X1, X2, X3, X4, X5) Y = (Y1, Y2, Y3, Y4, Y5, Y6, Y7)

0 1 0 1 1 1 1 0 1 0 0 0
1 0 1 1 0 0 1 0 0 0 1 1
1 0 0 1 1 0 0 0 1 1 0 1
0 0 0 1 1 1 0 0 0 1 0 1

... ...
1 0 0 0 1 1 0 0 1 1 0 1

Table 2: Example of a multi-label dataset.

Remark 1. The label space Y = (Y1, .., Yk) (interchangeably denoted as L = {l1, .., lk}) is consisting
of k binary variables encoding the presence/absence of the k labels.

As for categories of multi-label classifiers, there exist mainly three :
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1. Problem transformation approaches where the multi-label classification problem is transformed
into a set of multi-class classification or mono-label regression problems. Examples of methods in
this category are Binary Relevance (BR) [LDB+12], Classifier Chains (CC) [RPHF09] and Label
Powerset (LP) [TV07, RPH08, TK07].

2. Method adaptation approaches based on extending multi-class techniques to predict instead
of one single class a set of relevant labels. Examples of this category are ML-kNN [ZZ05] and
ML-C4.5 [CK01].

3. Ensemble approaches that combine ideas from the two first categories. RAndom k labEL sets
(RAkEL) [TV07], Hierarchy Of multi-label classifiERs (HOMER) [TKV08], Ensemble of Classi-
fier Chains (ECC) [RPHF09] and Ensemble of Binary Relevance (EBR) [RPHF11].

One of the characteristics of multi-label data that must be taken into consideration compared to the
multi-class datasets is the density of labels. This characteristic defined as the average number of labels
per dataset entry divided by the number of labels is very low in most multi-label datasets [BdSRM14]
and can impact the multi-label learning. Another difference worth mentioning compared with the multi-
class case is related to evaluation metrics used to assess the accuracy of multi-label techniques. Indeed,
standard multi-class classification metrics (e.g. precision, recall) are no more enough and appropriate
measures are specifically designed for this purpose (e.g. Hamming-Loss).

2 Propositional logic and Boolean satisfiability

Propositional logic (PL) is a framework for representing knowledge in a logical form. It is the simplest
kind of logic and is also called Boolean logic. The term "proposition" refers to a statement which can
be either true or false. The propositions are linked together with logical connectives such as and, or and
not.

2.1 Syntax of propositional logic

The syntax of propositional logic defines the allowable propositions to be used to represent the knowl-
edge. In what follows, we define the basic elements of the language (propositions and connectives) and
the structuring rules.

A propositional language L is composed of :

• a set of propositional variables (atoms) noted V;

• logical connectives (also called logical operators) ¬,∨,∧,⇒,⇔ respectively corresponding to the
Negation, Disjunction, Conjunction, Implication and Logical equivalence;

• Boolean constants ⊤ for True (equivalent to 1) and ⊥ for False (equivalent to 0);

• parenthesis;

Definition 3. (Propositional variable) a propositional variable (also called atom) is a Boolean variable
that takes the value true or false.

An atomic proposition consists of a single proposition symbol (it contains no logical connectives)
and it is the fundamental block from which more complex statements can be built.

Definition 4. (Literal) A literal is either a propositional variable ℓ or its logical negation ¬ℓ (also called
complement or negation of ℓ).
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Example 2. Let a be a Boolean variable, a and ¬a are respectively positive and negative literals.

Definition 5. (Formula) A formula is said to be a Well-Formed Formula (WFF) if it belongs to one of
this set of formulae :

• ⊤ and ⊥ are formulae;

• an atom a is a formula;

• if α is a formula then ¬α is a formula;

• α ∨ β is a formula if α and β are formulae;

• α ∧ β is a formula if α and β are formulae;

• α ⇒ β is a formula if α and β are formulae;

• α ⇔ β is a formula if α and β are formulae;

Example 3. Let V = {a, b, c, d} be a set of propositional variables. An example of a well-formed
formula can be ((a ∨ b ∨ ¬d) ∧ (a ∨ c)).

We define in the next section how semantics are associated to formulae.

2.2 Semantics of propositional logic

Definition 6. An interpretation µ of a propositional formula α is an application that assigns values from
{0, 1} to every propositional variable. It is therefore a function :

µ : Vα → {0, 1}

An interpretation µ satisfies a formula α iff µ satisfies all sub-formulae of α. We can determine the
truth value of any formula using the usual semantics of logical operators.

Remark 2. An interpretation can be complete (assigns a value to every propositional variable appearing
in a formula α) or partial (assigns values to a subset of propositional variables appearing in a formula
α).

Remark 3. An interpretation µ can be written in the form {v1 → b1, . . . , vn → bn} where vi ∈ V is a
propositional variable and, bi ∈ {0, 1} the Boolean value associated to it. It can also be represented in
a more compact way using only the literals.

Example 4. Let V = {a, b} be a set of propositional variables. An example of an interpretation is
µ = (a → 1, b → 0). It can also be written as µ = (a,¬b).
Definition 7. (Model) An interpretation µ making a formula α true is called a model of α (µ(α) = 1).

Similarly, an interpretation µ making a formula α false is called a counter-model of α (µ(α) = 0).

Example 5. Let P = ¬(a ∧ b) ⇒ ¬b be a formula. The interpretation µ = {a,¬b} is a model of P
while µ′ = {¬a, b} is a counter-model.

Definition 8. (Equivalent formulae) Two propositional formulas α and β are equivalent and we note
α ≡ β, when they take the same truth value for all the interpretations.

Definition 9. (Satisfiable formula) A formula α is satisfiable (consistent) if there is an interpretation that
makes it true. In other terms, α has at least one model.

Similarly, a formula α is unsatisfiable (inconsistent) if there is no model for it. A "Tautology" refers
to a propositional formula that is always true. A "Contradiction" is a proposition formula that is always
false.
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2.3 Normal forms

We present within this section two normal forms used in propositional logic : Disjunctive Normal Form
(DNF) and Conjunctive Normal Form (CNF).

Using the introduced definitions, we can define the following.

Definition 10. (Disjunctive Normal Form (DNF)) A propositional formula is in disjunctive normal form
(DNF) if it is a disjunction of conjunctive clauses. A conjunctive clause is a conjunction of literals.

Definition 11. (Conjunctive Normal Form (CNF)) A propositional formula is in conjunctive normal form
(CNF) if it is a conjunction of disjunctive clauses. A disjunctive clause is a disjunction of literals.

Example 6. Here is an example of a CNF formula referred to as Σ. Ti refers to clauses at position i in
Σ.

T1 T2 T3 T4
Σ = (l1) ∧ (¬l2) ∧ (l1 ∨ l3) ∧ (¬l1 ∨ l2)

Remark 4. A clause composed of one literal is called a unit clause. A clause composed of n literals is
called n-ary clause.

It is possible to convert statements into a conjunctive normal form (CNF) that are written in another
form, such as disjunctive normal form (DNF).

In our work, we used the Conjunctive Normal Form as the target representation. Namely, we take
a binary machine learning model f , together with a data instance, and produce a propositional CNF
formula Σ which has the same number of models as f and with respect to the number of the input
variables. Such encoding is required in order to use the Boolean satisfiability solvers as the problem
solving engine.

3 Boolean satisfiability problem

We present within this section different definitions and concepts of the Boolean satisfiability problem.

3.1 Boolean satisfiability problem

The Boolean satisfiability problem (also called SAT for short) is a decision problem consisting in deter-
mining whether the variables in a given Boolean formula can be assigned so that the formula evaluates
to TRUE. SAT was the first problem to be shown to be NP-complete by Cook’s theorem [Coo71] which
is the basis of NP-completeness theory and the P = NP problem. Despite this worst-case complexity,
recent SAT-solving algorithms are capable of solving problem instances involving tens of thousands of
variables and formulas consisting of millions of symbols [OSC07] which is sufficient for many practical
SAT problems.

Definition 12. (SAT : The Boolean satisfiability problem) the Boolean satisfiability problem is the deci-
sion problem, which, given a CNF formula, determines whether there is an assignment of propositional
variables that makes the formula true.

Example 7. The formula (x1 ∧ x2) ∨ ¬x1 where x1 and x2 are Boolean variables is satisfiable since if
x1 takes the value False, the formula evaluates to True.
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Using a SAT-solver, one can decide if a CNF formula is satisfiable and can enumerate its models. In
case a formula is unstatisfiable, one may need to identify subsets of clauses that cause the inconsistency
or identify parts of the clauses to relax in order to restore the consistency.

Definition 13. (MUS) A Minimal Unsatisfiable Subset (MUS in short) is a minimal subset Γ of clauses
of a CNF Σ such that ∀ α ∈ Γ, Γ\{α} is satisfiable.

Intuitively, it is enough to have the subset Γ so that the formula Σ becomes inconsistent. A MUS is
a sufficient reason for inconsistency. An unsatisfiable CNF Σ can have many MUSes.

Example 8. Let Σ be a CNF formula composed of six clauses (αi) where Σ = {α1 = (a ∨ b), α2 =
(¬a ∨ b), α3 = (a ∨ ¬b), α4 = (¬a ∨ ¬b), α5 = (¬b), α6 = (b)}. The set of MUSes for Σ is the
following:

MUSes(Σ) = {{α1, α2, α3, α4}, {α1, α2, α5}, {α3, α4, α6}, {α5, α6}}

Definition 14. (MSS) A maximal satisfiable subset (in short, MSS) Φ of a CNF Σ is a subset of clauses
Φ ⊆ Σ that is satisfiable and such that ∀ α ∈ Σ \ Φ, Φ ∪ {α} is unsatisfiable.

Definition 15. (MCS (Co-MSS)) A minimal correction subset (in short MCS, also called Co-MSS) Ψ of
a CNF Σ is a set of formulas Ψ ⊆ Σ whose complement in Σ, i.e., Σ \ Ψ, is an MSS of Σ.

Example 9. Given the CNF formula from Example 8, the set of MCSes is the following:

MCSes(Σ) = {{α1, α6}, {α2, α6}, {α3, α5}, {α4, α5}}

Intuitively, an MCS is subset of Σ that restores its satisfiability once removed and it is minimal (i.e.
removing any smaller subset cannot restore the consistency). The enumeration of MUSes/MCSes is
a well-known problem dealt with in many areas such as knowledge-base reparation. Recent years have
witnessed the proposal of a large number of tools and novel algorithms for the extraction and enumeration
MUSes/MCSes [GMP07, LS08, MPMS15, BK15, LPMMS16, BK16, MIPMS16, PMJMS18, NBMS18,
BČB18].

A well-known minimal hitting set (MHS) relationship between MUSes and MCSes exists and is
expressed as follows :

Proposition 1. MCSes are MHSes of MUSes and vice-versa.

This duality was originally presented in [Rei87] in the context of model-based diagnosis and was
later investigated in [BL03] for propositional formulas in clausal form. Many of the proposed MUS
enumeration algorithms are based on this duality between MUSes and MCSes. Given the set of MCSes,
each MUS is an irreducible subset of the clauses that covers1 all of these MCSes and vice versa.

The computational complexity of finding a MUS or an MCS are already established in the literature
as they are well-studied problems. The extraction of a MUS is a problem of complexity FPNP and
checking whether there exists a MUS of size ≤ k is of complexity ΣP

2 -complete [Gup06, Lib05]. Com-
puting the smallest MUS (SMUS) is in FPΣP

2 . Checking whether a subset of a CNF formula is an MCS
is DP-complete2 [CT95] and the computation of an MCS is a problem of complexity FPNP [Chr94].

1A clause is said to cover an MCS (resp MUS) if it is included in the MCS (resp MUS).
2A problem P belongs to the class DP if it can be written as P = P1 ∪ P2 with P1 ∈ NP and P2 ∈ coNP.
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3.2 Partial Maximum Satisfiability problem

The maximum satisfiability problem (Max-SAT) is the problem of determining the maximum number of
clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment
of truth values to the variables of the formula. Formally, we have the following definitions :

Definition 16. (Max-SAT) Given a Boolean CNF formula Σ, Max-SAT is the problem of finding a truth
assignment that satisfies the maximum number of clauses in Σ.

Example 10. Let a set of propositional variables V = {x1, x2, x3, x4} and let a CNF formula Σ =
{(¬x1 ∨ ¬x2), (¬x1 ∨ x3), (¬x1 ∨ ¬x3), (¬x2, x4), (¬x2 ∨ ¬x4), (x1), (x2)}. An example of Max-SAT
assignment that maximize satisfied clauses is (x1 = 0, x2 = 0, x3 = 0, x4 = 1), where only 2 clauses
are violated.

The Partial Maximum Boolean Satisfiability (Partial Max-SAT or PMSAT) is an optimization variant
of SAT problem defined as follows.

Definition 17. (Partial Max-SAT) Given a Boolean CNF formula Σ in which some clauses are hard and
some are soft, Partial Max-SAT is the problem of finding a truth assignment that satisfies all the hard
constraints and the maximum number of soft ones.

In order to solve Partial Max-SAT, we will consider the general setting where a formula is composed
of two disjoint sets of clauses Σ = ΣH ∪ ΣS [BHvM09], where ΣH denotes the hard clauses (which
must be satisfied) and ΣS denotes the soft ones (which may be relaxed).

Definition 18. (Hard and Soft clauses) Let Σ1 and Σ2 be two sets of clauses where Σ2 is satisfiable.
Partial Max-SAT( Σ1,Σ2) computes one maximal subset of Σ1 that is satisfiable with Σ2. Σ1 and Σ2 are
called the sets of soft and hard constraints (clauses), respectively.

Example 11. Using the same set of propositional variables V from Example 10, an example of a CNF
formula (Σ) in Partial Max-SAT problem is : Σ = ΣH∪ΣS where ΣH = {(x1∨¬x2∨x4), (¬x1∨¬x2∨
x3)} and ΣS = {(¬x2 ∨ ¬x4), (¬x3 ∨ x2), (x1 ∨ x3)}. An example of Partial Max-SAT solution that
satisfies all hard clauses and a maximum number of soft clauses is : (x1 = 1, x2 = 0, x3 = 0, x4 = 0).
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Chapter 1

Explainable AI

Symbolic artificial intelligence, also known as "Good Old Fashioned Artificial Intelligence" (GOFAI)
[Hau85] started as philosophers’ attempts to describe human thinking as a symbolic system and was
often the dominant paradigm in the AI community until the late 1980s. The author in [Wal12] claims that
the "classical" or "symbolic" approach comes from the idea that mind and cognition can be understood
in broadly mechanical specifically computational terms, giving it an explanatory power. For a long time,
symbolic AI, which involves humans in the learning process, took precedence over machine learning
AI considered as opaque and incomprehensible to humans. Indeed, symbolic AI systems built of nested
if-then statements that allow conclusions to be drawn are considered human-readable. Unlike machine
learning from data without being assisted by human beings (abstract and higher-order concepts).

From the 2010s’, machine learning suddenly started exploding because of the availability of huge
amounts of digital data and of powerful hardware resources (e.g. GPUs) which caused shifts from a
knowledge-driven approach to a data-driven approach (IBM’s Deep Blue beats the world champion at
chess in 1997, ImageNet [KSH12], Deep learning [LBH15], Deepface [TYRW14] involving more than
120 million parameters, etc). The emergence of modern AI systems have raised dramatically and so has
their ability to process, analyze and learn from the quantities of data that continue to grow exponentially.
The fact remains that most of the performing approaches suffer from lack of robustness and reliability
and may be vulnerable to attacks [SZS+13, NYC15, MDFF16], in addition to their inability to explain
their decisions and actions to human users. It is in this context that the quest for more transparent and
interpretable AI has intensified in recent years. Indeed, in symbolic AI, the models used are often simple
and are considered as interpretable in comparison to the recent ML models such as Deep neural networks
(DNNs) that are lacking transparency.

There is no consensus from the literature on the definition of interpretability or explainability. The
author in [Mil19] defines interpretability as "the degree to which a human can understand the cause of
a decision". Thus, a model is said to be interpretable if a human is able to understand alone the model
decision-making process or predictions by looking at its parameters [Lip18, ADRDS+20].

In practice, interpretable AI approaches aim to build machine learning models with low complexity
(inherently human-interpretable) while keeping a high level of performances [Mol22]. On the other
hand, explainable AI approaches aim at providing accurate and user comprehensible explanations of the
underlying complex models to users [WYAL19, Lip18, ADRDS+20].
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1.1. Explainable Artificial Intelligence

Figure 1.1: The need for explainable AI (Illustration from DARPA XAI Program [GA19])

1.1 Explainable Artificial Intelligence

The term eXplainable Artificial Intelligence (XAI) has been introduced by DARPA [GA19] and has been
since used to refer this field that aims at helping users understand the workings of an AI system [Mil19],
[GA19], [DVK17], detect data bias and discovering flows in the models. Explainability for AI systems
has grown along with the success and adoption of deep learning systems that are applied in many fields
where trustworthiness is critically needed such as in legal systems [Lip18, MB18, Rud19], autonomous
driving [TPJR18, BTD+16], cybersecurity [Vre19, SNPS18, NZ17], phishing detection [SMA+18],
transportation [ARAB+17], law enforcement [DF18], recruiting [Das18], health care and criminal jus-
tice [RU18], energy reliability [RPR+10], financial risk assessment [CLR+18], detecting heart attacks
[WRK+17], diagnosing Alzheimer’s disease [PHL+17], assessing recidivism risk [BB13, TvdH13],
medical sciences and diagnostics [ADWF15, CNC+16, LKB+17], surveillance systems [DFL+18], bio-
metric and handwritten characterers recognition [BLS+18, SPG+19, TVRFOG18] and so on.

Miller [Mil19] suggests the idea that explainability of AI systems can be refined if a close collabo-
ration comes into place between the social science and the XAI researchers. He argues that interactions
between human and AI systems can be improved by replicating and understanding from social science
how people define, generate, select, present and evaluate explanations and that these mechanisms could
be extended to the XAI field. The author in [Mil19] also reviews some of the relevant findings from
social science research on human explanation, and has provided some insights into how this work can
be used in explainable AI. Other papers also reviewed social science aspects of XAI systems such as
[DVKB+17] that studies the role of algorithmic transparency and explanation in lawful AI (Trustwor-
thy AI) and [LOL+18] that analyzes the fairness and accountability of algorithmic decision-making
processes. Several XAI approaches have been proposed to achieve the general goals of accomplishing
explainability of AI systems used for high-stakes prediction problems. There are different users or tar-
get audience of machine learning methods (e.g. users impacted by model decisions, developers, data
scientists, regulatory entities, managers, etc) that require different explanations depending on their goals
[ADRDS+20, VdWSNI+14]. Thereby, the form of the explanations are application and user-dependent.
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1.1.1 The need to explanation

Despite the widespread use of XAI methods recently, no proper formal definition of what is an explana-
tion is provided in the literature. We try to present it in the following through the different roles it can
have from an AI perspective. Based on the research in [Mil19] and [AB18], an explanation can be used
to justify the result of a system to a user in order to gain his trust, identify errors in a system to enable
control, get an oversight in case of adverse or unwanted effects such as biased decision-making or social
discrimination, understand a system well in order to improve it and learn knowledge by allowing humans
to discover new facts that are not directly explicit from an AI system.

Explainability is not a new topic and has been dealt with in the 1970’s where expert systems were
already able to provide pieces of explanation [SB75]. It emerged again and became a hot topic since
the adoption of deep learning models, a new generation of AI system called "black-box" models. These
models would return a prediction to a given input but could not provide an explanation for its decision.
"The current generation of AI systems offer tremendous benefits, but their effectiveness will be limited
by the machine’s inability to explain its decisions to users" [GA19]. This trade-off between the accuracy
of these ML models and their ability to be understood by humans is illustrated in Figure 1.2. It is
particularly the case of AI systems which are developed to be used in areas where the decision of an AI
system can have serious consequences and critical situations. The domain experts and users are reluctant
to adopt decisions they cannot understand, which limits the use of machine learning methods in such
sensitive contexts. Recent work have highlighted the vulnerability of deep learning models in different
tasks such as speech recognition [CW18], text classification [ERLD17], malware detection [GPM+17]
and particularly image classification [GSS15, PMJ+16, CW17]. Thus, this kind of system decisions must
be explained in order to prevent errors and gain trust of the user [AB18]. In addition to recent regulations
that has grown a need to explain for both legal and ethical reasons such as the "right to explanation"
introduced by the European General Data Protection Regulation (GDPR) [Vos16] in 2018. Therefor,
we need explanations to decide whether an AI system is robust enough or trustworthy to be used in
safety-critical environments.

Figure 1.2: Trade-off between the accuracy of models and their interpretability. (Illustration from
DARPA XAI Program [GA19])
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1.1.2 Purpose of interpretability

The need for interpretable AI models is motivated by different purposes that can be technical, social or
ethical [BVKV+18, DSZ16, Kas21, KK19a, LOL+18]. For instance, methods for creating white-box
models aim to increase societal acceptance of machine learning models by establishing trust in decision
results. On the other hand, methods for explaining complex black-box models aim to provide users with
the reasons for models’ decision and actionable insights to the results of algorithms. Other methods
were created to promote fairness or to mitigate unwanted algorithmic bias and discrimination and lastly,
methods for analysing the sensitivity of a model predictions to identify errors or biases in training data
that result in adverse and unexpected behaviors (reliability).

XAI methods of the first category design systems based on learning algorithms that are easily un-
derstandable for a human being. This type of models are also referred to as intrinsic, transparent, or
white-box models. Most of the methods of this category include self-explaining models such as linear
models, decision trees and rule-based learners. They are discussed in Section 1.2.1 and a summary of
existing white-box approaches can be found in Table 1.1.

Methods that attempt to explain black-boxes are the most common in the literature. These methods
are also called post-hoc methods because they are designed to provide a posteriori explanations for
predictive models (e.g random forests, deep neural networks, etc). Several desiderata can be considered
to categorize these methods : the type of model to explain (specific/agnostic), the level of interpretability
(local/global) or the representation of the explanation. Each of these sub-categories are presented in
Section 1.2.2 and a summary of the discussed interpretability methods can be found in Table 1.2 and 1.3.

Another category for interpretability methods are the ones created to promote fairness by check-
ing that the learned model generates decisions that are free from discrimination of specific inputs (e.g.,
admission to a university, and the goal is to prevent discrimination against individuals based on their
membership to some group). These kinds of methods are necessary especially when working with sen-
sitive data that can potentially affect human lives. The existing fairness methods usually evaluate the
fairness of a ML system by checking the models’ predictions and errors across certain demographic seg-
ments (e.g. groups of a specific ethnicity or gender). The authors in [KAAS12] presented prejudice,
underestimation, and negative legacy as three major causes of unfairness in ML models and analyzed
them. In [HPS16], the authors proposed a framework for quantifying and reducing discrimination in ML
models. In [ZVRG17], a new metric for evaluating decision boundary fairness with respect to one or
more sensitive features was introduced. Other approaches were proposed to train models to make fair
predictions by removing bias from both training data and model predictions. The authors in [ZVR+17]
propose to use collective preference of different demographic groups as a base to define notions of fair-
ness. The authors in [ABD+18] considered certain definitions of fairness previously outlined as special
cases and proposed to incorporate them into a systematic framework.

The last category is the sensitivity-based interpretability methods proposed to analyze the trustwor-
thiness and reliability of the model’s predictions. Those methods rely on the property of stability of the
decision function and the sensitivity of its output. The idea is to check if a small perturbation of an input
may lead to a significant perturbation of the outcome. A large set of adversarial examples approaches
based on sensitivity analysis have been proposed within the literature [GSS15, MDFF16, MDFFF17,
DLP+18, CW17, NK17, LCLS17, BRB18, DLT+18, ZAG18, LLS+17]. They aim at finding impercep-
tible changes in the input to fool models into producing incorrect predictions. Sensitivity analysis can
be broadly partitioned into black-box and white-box methods and can also be both a global and local
interpretation technique.
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1.1.3 Audiences interested in explainable AI

The purpose of the explanation and its form are linked to the audience for which it is intended. The type
of explanations will vary according to different groups of people and their role in the system [BXS+20,
Hin19]. Thus, to provide meaningful explanations we need to determine who is receiving the explanation
(see Figure 1.3). For domain experts such as medical doctors or insurance agents, the purpose of an
explanation is to gain knowledge about its reasoning in order to gain trust in the model itself. For users
such as regulatory entities, the explanation should certify model compliance with the legislation in place
and stated regulatory requirements [Hin19]. The purpose of the explanation for the users affected by
model decisions is to understand their situation and verify the outcome’s fairness. As for data scientists
and developers, explanations are meant to improve the model efficiency, evaluate the training data and
facilitate the debugging process.

Figure 1.3: Audience interested in explainable AI (Illustration from [Hin19])

In this thesis, we consider all the cases where an explanation is provided to a user without making
any assumptions about his background (can be a domain expert, a decision maker or any user who is not
familiar with AI technology).

1.2 Related works

There is more than a single way to classify XAI methods in the literature, which makes it not easy
to list them giving the different perspectives. Especially for supervised ML classification techniques
that has been extensively studied in the field of explainable AI, where most of the works in the cur-
rent literature propose methods to explain the predictions of this type of models such as feature at-
tributions approaches[RSG16, LL17], decision rules [RSG18, JCS+20], logic-based [SCD18b, DH22,
INMS19a] and counterfactual examples that has been attracting attention in recent years [WMR17,
VDH20, KTKA20, AALC21, DPB+19, DCL+18, GWE+19, HHDA18, KTKA20, KBBV20, LK21,
MST20, MTS19, Rus19, vdWRvD+18]. We will mention different interpretability methods according
to the taxonomy presented in [Mol22] where the interpretability methods were summarized as : intrinsic
or post-hoc methods, designed as model-specific or model-agnostic methods and provide local or global

18



1.2. Related works

Table 1.1: Summary of intrinsic interpretability methods.

Acronym Ref Target Model Data Type Year
InterpretML [CLG+15] Generalized Additive Model (GAM) tab3 2015
iBCM [KGJS15] Bayesian Models tab 2015
— [LRMM15] Decision Lists4 tab 2015
Slim [UR16] Linear Integer Model tab 2016
AIX360 [DGW18] Boolean Decision Rules tab 2018
— [IPNMS18] Decision sets5 tab 2018
— [WDGG19] Generalized Linear Models (GLM) tab 2019
— [HRS19] Decision Trees tab 2019

explanations. Accordingly, we review and categorize in this section the state-of-the-art approaches for
XAI.

1.2.1 Interpretable models (intrinsic methods)

Interpretable models are readily interpretable by design which makes their predictions and behaviors
directly (human) understandable. Intrinsic interpretability consists in using interpretable models that
have a low complexity given their simple structure and then derive straightforward explanations from
it (self-explaining). The common learning algorithms that are considered interpretable by humans are
linear and logistic regression, rule-based models and short decision trees [Fre14, HDM+11, RSG16].
Although these models offer better interpretability, they have limited performance on high-dimensional
data and are considered directly interpretable only if the number of features and classes is limited and
the size of the model is reasonable.

Linear models

Linear models are among the simplest classification models in supervised learning and demonstrate
a good generalization abilities. A linear model associates an output class to an input instance x by
computing a weighted sum of the features, where each weight represents the relevance of a feature. Such
models make the assumption of linear dependence between the input variables and the output class which
makes them highly interpretable. The influence of a feature on a prediction is actually the value of each
parameter wi, associated to the variable Xi [RSG16]. The feature Xi contributes to increase the model’s
output by wi if the weight is positive, and in contrast, decreases it if the weight is negative.

Example 12. An example of the features importance explanation is given in Figure 1.4 where we can vi-
sualize both the sign and the magnitude of the contribution of the attributes toward the model’s behavior
(global explanation) and the prediction of the input sample (local explanation).

However, real-world applications does not necessarily assume a linear relationship. In order to cope
with this restrictions, other extensions of linear models exist. For instance, the Generalized Linear Mod-
els (GLMs) which allow to model all types of outcomes and Generalized Additive Models (GAMs) to
model nonlinear relationships. GAM is able to interpret linear and logistic regression, single trees and
tree ensembles (bagged trees, boosted trees, boosted bagged trees and random forests).

3tab is a short of tabular data.
4Decision lists models are a series of IF-THEN statements (for example, if high blood pressure, then stroke).
5Decision sets can be viewed as unordered sets of rules, under some sort of rule non-overlap constraint.
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Figure 1.4: Example of a feature importance for a global and local explanation for a malware detection
system based on a linear model and boolean features (Illustration from [Mel21]).

Decision trees

A Decision tree (DT) is a hierarchical structures used for both classification and regression problems
[BFOS84, LR76, Qui87b]. It is a powerful technique used to fit data and it is widely adopted when the
relation between the features and the outcome is non-linear or when the features are not independent from
each other. A decision tree is designed with an explainable structure where a tree is grown on training
set. The internal nodes corresponding to the features are split nodes where each one represents a test (for
numerical features, does the feature have a value lower or greater than a threshold). In a classification
setting, the leaf nodes of a tree represent the output classes. Given an input instance, the solution path in
the decision tree presents the path from the root to the leaf. This path called a decision rule is associated
to every decision made by the tree and can be understood even by non-expert users as long as the number
of features remains reasonable. Thus, the interpretability of DTs relies on the decision rule set.

Example 13. An example of a decision tree trained on IRIS-flower dataset.

Figure 1.5: Example of a decision tree classifier with 3-classes (Illustration from [Fis36]).

Decision trees have long been considered as embodying interpretable classifiers in ML [Bre01b,
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Fre14, Mol22] and have been adopted to globally explain neural networks [CS95, KSB99] and tree
ensembles [HH18, TSHW20]. Nevertheless, recent works argued that interpretability of DTs can be
compromised due to the large size of its explanations [BMPS20, ABB+21, HIIM21].

Rule-based learners

Together with decision trees, rule-based learners (RBML) are considered closer to human reasoning
[BJL09, PGG+19]. Rule-based learners are systems that create their own models by learning rules that
characterize the data to fit. Given the data and their corresponding output classes, a rule-based model
learns a set of rules in different forms (IF-THEN structure, a combination of rules, etc).

Several rule-based methods have been proposed in the last few years where the learned rules are used
to explain the model’s prediction [NAC02, LBL16, MVED17]. Authors in [WRDV+17] proposed an
algorithm ((Bayesian Rule Sets) to build Bayesian classifiers by learning short rule sets. These models
are interpretable by humans since they produce a set of rules that concisely describe a specific class.
The proposed method in [LBL16] learns rules by optimizing a loss function that directly depends on the
length of the explanations (rules) generated.

Example 14. This example presents a rule set learned using the method proposed in [LBL16].

IF Respiratory-Illness=Yes and Smoker=Yes and Age ⩾ 50 then Lung cancer
IF Risk-LungCancer=Yes and Blood-Pressure ⩾ 0.3 then Lung Cancer
IF Risk-Depression=Yes and Past-Depression=Yes then Depression
IF BMI ⩾ 0.3 and Insurance=None and Blood-Pressure ⩾ 0.2 then Depression
IF Smoker=Yes and BMI ⩾ 0.2 and Age ⩾ 60 then Diabetes
IF Risk-Diabetes=Yes and BMI ⩾ 0.4 and Prob-Infections ⩾ 0.2 then Diabetes
IF Doctor-Visits ⩾ and Childhood-Obesity=Yes then Diabetes

Figure 1.6: Example of interpretable decision set.

The rule generation approaches have the advantage of being transparent and explainable if the gen-
erated rules set coverage (number of rules) and specificity (number of predicates in a rule) are kept
constrained since the number of conditions can significantly grow given the number of features or the
output classes [HDM+11].

1.2.2 Post-hoc interpretability

Post-hoc interpretability (also referred to as post-modeling explainability) is another approach mainly
used for the models with higher complexity [RPF+21, Lip18]. These methods analyze the models that
are not transparent by design. A black-box predictor is an opaque system where the mapping from input
to output is invisible to the user or they are known but uninterpretable by humans. Depending on the
level of interpretation, post-hoc methods may explain a model locally or globally.

Model-specific methods

Model-specific methods can only be used to interpret a specific family of models and provide model-
based types of explanation. They are usually used to weight the importance of the features for the
model’s decision [Bre01a, OMS17, YCN+15, JMD+05] and they rely on the internal states of the learn-
ing mechanism to derive an explanation. Most of them approximate the behavior of the black-box by

6tab/img/txt are a short for tabular/image/text.
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Table 1.2: Summary of post-hoc XAI methods.

Name Ref Model-Specific vsModel-Agnostic Data Type Year
G-REX [JKN04] Agnostic tab/img/txt6 2004
ICE [KKS07] Agnostic tab 2007
PDP [Fri01] Agnostic tab 2007
SAlib [SRA+08] Agnostic tab 2008
DeLP3E [SSF14] Specific (Bayesian) tab 2014
DeepExplain [ZF14] Specific (CNN) img 2014
iNNvestigate [SDBR14] Specific (CNN) img 2014
LIME [RSG16] Agnostic tab/img/txt 2016
CAM [ZKL+16] Specific (CNN) img 2016
MMD-critic [KKK16] Specific (Bayesian) tab 2016
rationale [LBJ16] Specific (DNN) txt 2016
SHAP [LL17] Agnostic tab/img/txt 2017
fair-classification [ZVR+17] Agnostic tab 2017
fairness [DHP+12] Agnostic tab 2018
L2X [CLP+18] Agnostic tab 2018
CAV [KWG+18] Specific (DNN) tab/img 2018
ANCHOR [RSG18] Agnostic tab 2018
Grad-CAM++ [CSHB18] Specific (CNN) img 2018
LEMNA [GMX+18] Agnostic tab/img/txt 2018
— [MWM18] Specific (Gradient based) tab 2018
— [SCD18b] Specific (Bayesian) tab 2018
BEEF [GPSS19] Agnostic tab/img/txt 2019
— [INMS19a] Agnostic tab 2019
DeNNeS [MG20] Specific (DNN) tab 2020
Tree explainer [LEC+20a] Specific (Tree-based) tab 2020
— [DH22] Specific (DT/BNN) tab 2020
Glocalx [SGM+21] Agnostic tab 2021
— [DLM+22] Specific (Tree-based) tab 2022
DeepGlobal [SLZS22] Specific (NNs) tab/img 2022
— [FdSRGL22] Specific (NNs) tab/img 2022

means of interpretable models (decision rules, decision trees and linear models) as presented in section
1.2.1.

Various methods were proposed to explain the different types of deep learning models. An example
of model-specific method for explaining deep learning models is DeepLIFT [SGK17] in which the con-
tributions of all neurons in the network are back-propagated to the input features. Several approaches
used to explain different architectures of neural networks propose saliency maps (also referred to as
heatmaps) as an explanation. Authors in [ZF14] present a visualization technique to produce saliency
maps. The approach relies on assessing the property of sensitivity by iteratively forwarding the same
image through the network occluding a different region at a time.

The TreeView method proposed in [TKSR16] extract a visual interpretation via a surrogate decision
tree to explain DNNs. The approach takes as input a DNN and a number K given by the user to define
the number of hierarchical partitions (clusters) of the feature space. Subsequently, the approach will
create a meta-feature associated with each of the K clusters and train a random forest to predict the K
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labels. Thus, the decision trees of the random forest are used to build a TreeView representation of the
complex model. Other methods were proposed to interpret deep neural networks via decision trees in
[WHP+18, ZYMW19].

Methods in [SVZ13a, BCC+16, ZCAW17, NDY+16] aim to explain the inner working of Convo-
lutional Neural Network (CNN) based on activation maximization. The idea is to highlight the areas
(pixels) used by the image classification black-box to make a decision. For example, the authors in
[ZF14] propose a method based on sensitivity analysis of the network input/output relationship to under-
stand the CNN using visualisation. By backtracking the network computations, the method identifies the
regions in input images that are responsible of the activation of certain neurons.

The Layer-wise Relevance Propagation (LRP) [BBM+15] is another post-hoc method specific to
multi-layered neural networks and Bag of Words (BoW) models built on non-linear kernels. The idea
exploited by LRP is to back-propagate the effects of a decision on a given instance to the input level
(layer-wise relevance propagation). For instance, building such saliency maps is based on a layer-wise
conservation principle. Those heatmaps are comprehensible (to a human) and are used to visually iden-
tify which input had how much influence on the predicted output (i.e. which input contributed most to
the obtained result). As shown in Figure 1.7, given an input sample x, the LRP method decomposes the
classification output into sums of feature and pixel relevance scores. It is a way for obtaining the features
importance then visualize it through saliency masks. The pixel-attribution representing the pixel-wise
explanation is built using final relevances that correspond to the contributions of single pixels to the
prediction.

Figure 1.7: Visualization of the pixel-wise decomposition process of the LRP method. (Illustration from
[BBM+15])

Another type of post-hoc methods specific to deep neural networks that are used to generate saliency
maps are the gradient-based and attribution-based methods. The methods of the first category analyze the
impact that small changes to the inputs have on the model’s outcome (e.g. [SVZ13a]). The methods of
the second one compute the contribution of input features to the model’s output such that the sum of all
contributions should be approximately equal to the output (e.g. [MLB+17, STY17]). One interpretation
is given as a saliency map. Note that saliency maps need the input to be interpretable. The interpretation
of a pixel attribution explanation generated with a gradient-based method is as follows : increasing the
color values of the pixel would increase the probability of the predicted class (for positive gradient) or
decrease it (for negative gradient). Besides, the effect of a change of a pixel is proportional to the absolute
value of the gradient (the larger the value the more the effect) [Mol22].

Another known method for visual explanations for CNN decisions is the Gradient-weighted Class
Activation Map (Grad-CAM) [SCD+17]. It is actually a generalization of the Class Activation Mapping
(CAM) firstly proposed in [ZKL+16] and can be used for a wider range of CNN architectures (e.g. fully-
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connected layers, structured output such as captioning in multi-task outputs and also for reinforcement
learning). Grad-CAM propagates the gradient into the last convolutional layer. Thus, the relevance score
assigned to each neuron for the decision of interest is the combination of the before last layer’s feature
maps and the output-specific weights. Figure 1.8 shows an example of visualization such as Guided
Back-propagation [SDBR14] and Grad-CAM highlighting the pixels’ relevance for the "cat" and "dog"
classes. An extension of Grad-CAM called Grad-CAM++ was proposed in [CSHB18] to make better
visual explanations of CNN models.

Figure 1.8: Example of visualization techniques highlighting the pixels’ relevance for the "cat" and
"dog" classes. Sub-figures (a,d) correspond to original image with a cat and a dog. (b,e) correspond
to guided Backpropagation [SDBR14] highlighting all contributing features. (c, f) correspond to Grad-
CAM output localizing class-discriminative regions. (Illustration from [SCD+17]).

Another trend for post-hoc model specific methods are the symbolic and logic-based XAI approaches
that can be used for different purposes [Dar20]. For instance, sufficient reasons were introduced in
[SCD18b] under the name of PI-explanations. Authors in [INMS19b, INMS19a] deal with some forms
of symbolic explanations referred to as abductive explanations (AXp) and contrastive explanations (CXp)
using SMT oracles. In [IMS21, IM21], the authors explain the predictions of decision list classifiers and
decision tree classifiers using a SAT-based approach. Explaining random forests and decision trees is
dealt with for instance in [AKM20b] and [INAM20, IIM20] respectively.

Model-agnostic methods

Model-agnostic methods are not tied to a particular type of function to explain. It means that post-hoc
model-agnostic approaches can be used to provide an explanation for the decisions of any ML model
disregarding its inner processing or internal representations (only need a query-level access). The expla-
nations provided are "model free" and generally based on approximations of the behavior of the learning
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mechanisms. Different perspectives to classify post-hoc model-agnostic methods can be considered. In
our classification we take into account the explanation technique (explanation by simplification, expla-
nation using formal representation) and the type of explanations presented to the user (feature-based,
counterfactual, example-based). We will mention different XAI methods by looking at these perspec-
tives.

Explanation by simplification Explanation by simplification refers to those techniques that rely on
building an interpretable model to approximate the original decision function which can be used for
explanations purposes. It can be a global surrogate model in order to approximate the behaviour of the
original model to explain or a local surrogate model built in the neighborhood of the sample to explain,
producing a local approximation of the original target system. The desiderata of a surrogate model is
mainly accuracy (how accurate is the model performance on data) and fidelity (how much is good an
interpretable model to mimic the behavior of the black-box). For instance, authors in [LRL+18] propose
to generate surrogate-based explanations for individual predictions based on a sampling centered on
particular place of the decision boundary and show the importance of defining the right locality in order
to locally approximate accurately the black-box predictions.

The purpose of these approaches by simplification is to reduce the complexity of the model by means
of a simplified approximation to gain in interpretability (for example reducing the number of architec-
tural elements or number of parameters of a DNN). Model simplification is usually done by adopting
a transparent model (cf section 1.2.1) which is easier to be implemented and explained than black-box
systems.

Several methods using a simplified approximation of black-box models have been proposed withing
the literature. For instance, the authors in [CS95] proposed a training algorithm TREPAN to approxi-
mate the concepts learned by black-box model using decision trees. Authors in [BCNM06, HVD+15]
proposed knowledge distillation to get a smaller model that is less computationally expensive while ap-
proximating the performance of the original model, it has been used in [FH17] to get a decision tree that
could explain the predictions of a black-box models. This other known and widely used model-agnostic
methods proposed to explain black-box classifiers are LIME [RSG16], SHAP [LL17] and ANCHORS
[RSG18]. LIME [RSG16] stands for Local Interpretable Model-agnostic Explanations (LIME), an ap-
proach to explain the predictions of any classifier by learning an interpretable model locally around the
prediction. LIME uses a linear classifier to approximate local properties of the black-box models and
produces coefficients of this surrogate model that is subsequently used as interpretations.
Concretely, given an input instance x and its prediction by a black-box model, a surrogate model is
trained on a set of randomly generated perturbations of the sample x weighted by their distance to x (see
Figure 1.9). An interpretable model g is then trained using a Lasso regression on these synthetic samples
in order to optimize the objective function formally defined in [RSG16] as :

ξ(x) = argmin
g∈G

(L(f, g, πx) + Ω(g)) (1.1)

The objective function ξ(x) illustrates interpretability vs fidelity trade-off and represents the explana-
tion. It is the sum of : (1) the term representing the local fidelity of g corresponding to the inverse of
L(f, g, πx), and (2) the term representing the complexity of g corresponding to Ω(g). Note that the
number of features for which the explanation should be attributed is given by the user as input and it
corresponds to the number of coefficients of the Lasso regression trained on the synthetic samples.

A rule-based improvement of LIME was proposed in ANCHORS [RSG18] for high-precision model-
agnostic explanations. Similarly to LIME, ANCHORS generates local explanations for individual pre-
dictions of black-box ML models by sampling instances in the vicinity of the sample being explained.
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Figure 1.9: Example presenting the intuition behind LIME. The blue/pink background represents the
model’s decision function f . The bold red cross in the sample to explain x. The samples around x gets
predictions from f and are weighted by their proximity to x (represented here by size). The dashed line
is the function g learned (locally faithful to f ). (Illustration from [RSG16]).

Unlike LIME, ANCHORS explanations are expressed as IF-THEN rules and are faithful by design be-
cause the coverage is adapted to the original model’s behavior. A similar approach was proposed in
[LKCL19] to capture the behavior of a black-box model using two-level decision sets and allowing users
to input the features of interest.

SHAP [LL17] stands for Shapley additive explanations. It is a unifying approach that provides
global and local attribution features by computing the Shapley values [Sha53] based on concepts from
the coalitional game theory. The Shapley value of a variable is the average of its marginal contributions
across all permutations w.r.t to three desirable properties: local accuracy, missingness, and consistency.
Hence, SHAP explanations aim at identifying which features contribute the most to the difference in
model prediction at a specific input versus a background distribution. Given a instance x, the explanation
model g used to compute the importance values for each feature proposed by SHAP is defined as :

g(x) =
n∑

j=0

ϕj , ϕi ∈ R (1.2)

where ϕj is the contribution of feature Xj to g(x) for all j ∈ [1, n]; and ϕ0 is the output of the model
when none of the features in x is present.

Unlike LIME that builds sparse linear models around an individual prediction in its local vicinity,
SHAP computes all permutations in order to give the exact Shapley values. However, the computational
cost of this evaluation is intractable. This variant of SHAP called KernelSHAP is impractical and other
model-specific versions have been proposed to overcome this limitation like TreeExplainer [LEC+20b]
which computes the exact Shapley values in polynomial time for tree-based models, LinearSHAP (for
linear models) and DeepSHAP (for deep neural networks) to compute approximations of the Shapley
values [LL17].

Several other post-hoc methods exist (see for instance [ŠK14, DSZ16, LC01, BBM+15]). They
are often model-agnostic as they only need to compute the output of a model regardless of its internal
working and are listed in Table 1.2.
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Explanation via formal representations refers to those post-hoc explainability techniques that relies
on formal methods and are mainly based on compilation knowledge or abductive reasoning (see section
2.2). Authors in [INMS19a] present a method based on encoding the machine learning model into
constraints and provide cardinality and/or minimal explanations by applying abductive reasoning on
the model to answer XAI queries. Then Boolean representation of the ML model will be generated
and further simplified into symbolic explanations. These later are generally prime implicants, sufficient
reasons referred to as abductive explanations (AXp) representing an answer to a "why?" question, or also
contrastive explanations (CXp) representing an answer to "why not?" question. More details about this
type of approaches are presented in the Section 2.2.

Feature-based explanations aim to explain a trained model outcome by computing a relevance score
for its input features. These methods are popular in Explainable AI as they give intuitive readings on
relations between features and predictions. They generally rely on model simplification explanations (cf
section 1.2.2).
For instance, SHAP is a feature attribution method that computes local and global explanations. It
estimates the contribution of each feature to a decision value and returns a list of feature attributions
to a specific prediction (local explanation) or to the model (global explanation). LIME provides an
explanation as a list of feature contributions to the prediction of the instance x and highlights the features
changes that have the most influence on the prediction. The image illustrated in Figure 1.10 was assigned
"tree frog" by Google’s Inception neural network. The explanation generated using LIME highlights the
most important features, where the classifier primarily focuses on the frog’s face as an explanation for
the predicted class.

Figure 1.10: Explanation for a prediction with LIME. The top three predicted classes are "tree frog",
"pool table" and "balloon". (Illustration from [MTR16]).

The advantage of feature-based attribution methods is that they are generally more scalable than
their alternatives. It can associate attributions to different types of data (tabular data, text and image).
However, in spite of their popularity, feature attribution methods are often accused of being inconsistent,
meaning they can lower a feature’s assigned importance when the true impact of that feature actually
increases [LEL18, Ign20] and can be fooled by adversarial attacks [SHJ+20].

Feature visualization explanations in this category, approaches are proposed for visualizing the re-
lationship between the outcome class and the input variables. The aim is to increase the model’s inter-
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pretability by the mean of visualizations (parallel coordinate plots, scatter plots or projection methods).
Visualization techniques are generally used in data mining and statistics and lately, as visualization

tools for model inspection. There are few works about the visualization techniques to explain the black-
box output [KKS07] compared to the model-specific techniques. It is mainly due to the high dimension
of feature space of black-box model’s that makes it hard to analyze.
Authors in [GDL03] presented a survey about visualization methods based on the sensitivity analysis
(SA) computation. Although most of these methods were mainly developed for neural networks (NNs),
some of them can be used directly for any black-box model analysis. The authors in [CE13] presented
a visualization method based on sensitivity analysis [RRK90] where they query the black-box model
with sensitivity samples and analyze it to create different visualization plots for the results such as input
importance bars, color matrix, variable effect characteristic curve, surface and contour (see example of
Figure 1.11).

Authors in [KKS07] also propose a visualization techniques using the sensitivity analysis to deal
with the visualization of the black-box model’s output. They propose to study the relationships between
variables for regression models and classification boundaries for classifiers in order to answer to "How
is the output of the artificial model related to the measured input?". They also provide visualization to
estimate the credibility of any black-box model.

A popular method for feature visualization is the Partial Dependence Plot (PDP) [Fri01]. Partial
dependence plots represent the expected output of a model when the value of a specific variable (or group
of variables) is fixed. In [Mol22], the authors describe it as the marginal effect of one or two features have
on the predicted outcome of a machine learning model. These plots help in visualizing and understanding
the relationship between the outcome of a black-box and the input in a reduced feature space. Authors in
[KKS07] provide an extension of PDP named Individual Conditional Expectation (ICE). The idea is to
generate for each sample, a plot to show the evolution of the prediction with respect to a grid of values
of one given feature (while the others remain constant). ICE plot shows the average partial relationship
between the outcome and some features. Figure 1.12 shows an example from [GKBP15] representing
the ICE of a prediction with respect to a feature X1 (dots correspond to the actual value of X1 for each
instance). We can see that there is a parabolic relationship between the model studied f and X1. The
PDP is also represented as a yellow line, which is the average of the ICE over all instances.

Counterfactual explanations: Another popular type of explanations are counterfactual explanations
(CF). A counterfactual explanation tells the user how an input should be modified to make the system’s
decision change based on the provided explanation. This type of explanation have been widely explored

(a) Bar plot with the 1D input importances for the bank
data (left) and color matrix with 2D input pair sensitivity
for the wwq dataset. (b) Surface and contour plots.

Figure 1.11: Example of visualization plots explanations from [CE13].
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Figure 1.12: Example of the ICE and the PDP of a prediction with respect to feature X1 (Illustration
from [GKBP15]).

recently and are proved to help the user understand the decision of a models [GKC+18, LPNC+17,
Byr19, AALC21, HHDA18, KTKA20, KBBV20, WMR17, DCL+18, DPB+19, GWE+19, LK21, Rus19,
MTS19, MST20]. Consider the case of a bank’s decisions regarding whether or not to accept a loan ap-
plication as illustrated in Figure 1.13. The model decision is based on binary features like "does the
requester has a stable job" and "does he have a criminal record" ? An intuitive question that a user who
has obtained a refusal for his loan application would be: "what are the elements of his application that
led to such a decision?" and "what he can possibly do to change his loan decision ?" The counterfactual
explanation identifies the features to change in his application to get an acceptation from the model.

Most of the methods proposed within the XAI field for the generation of the nearest counterfactual
explanation are optimization-based (rely on separate optimizations for each input) and there is a risk of
generating unjustified counterfactual examples as shown in [LLM+19]. The methods in [Rus19, MST20]
generate counterfactual explanations for the mixed datasets commonly used in the real world using an
optimization based on the original features. In [JKV+19], the authors provide an optimization frame-
work to traverse the data manifold via its latent representation and in [LKLH19] they used generative
adversarial network. Authors in [SHG19] proposed CERTIFAI : "Counterfactual Explanations for Ro-
bustness, Transparency, Interpretability, and Fairness of Artificial Intelligence models". The approach
uses a customized genetic algorithm to generate perturbations of an input that lead to a different outcome.
The counterfactuals can be used to check the robustness and examine fairness of a ML model at indi-
vidual and global level. Authors in [WMR17] propose to find a counterfactual explanation for a sample
x by solving a relaxed version of the original optimization problem using gradient-based approaches.
A solution to this optimization problem represents an instance x′ that presents the perturbations in the
original input features that can lead to a change in the prediction of the ML model. In [MTS19], the au-
thors proposed a causal view of the feasibility of CF examples using structural causal models. They also
proposed to generate counterfactual explanations using a proximity loss based on causal relationships
between features instead of the standard proximity measure usually used.
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Figure 1.13: Example of a counterfactual explanation scenario (Illustration from [SGZS21]).

Other methods were used to generate counterfactual explanations without relying on an optimiza-
tion problem. For instance, authors in [INMS19a] proposed a method based on abductive reasoning to
generate two types of symbolic explanations. Among them, the contrastive explanations (CXp) as an
answer to "why not?" question, which corresponds to CF explanation. [KBBV20] proposed MACE for
"model-agnostic approach to generate nearest counterfactual explanations". MACE relies on encoding
the predictive model, the distance function, the plausibility and diversity constraints into a logical for-
mulae. Thus, the problem of finding the nearest CF becomes a sequence of satisfiability (SAT) problems
where the goal is to verify if there exists a counterfactual explanation at a distance smaller than a given
threshold, and can be solved using standard SMT (satisfiability modulo theories) solvers. Authors in
[BL22] proposed a fuzzy framework to deal with imprecise knowledge or data and imprecise formu-
lations of explanations. Such an approach is based on the integration of fuzzy semantics to a logical
framework exploiting knowledge represented as structural causal graphs from [Mil21].

Note that adversarial examples are like counterfactual examples; however, they do not focus on
explaining the model by providing an actionable explanation in the form of data instances that would have
received a different outcome, but on misleading it (e.g. an adversarial example in computer vision would
correspond to an imperceptible change in the image to fool models into producing incorrect predictions).

Example-based explanations: Explanations by example are mainly aiming at extracting representa-
tive examples from the dataset to explain the model being analyzed. They are actually not considered as
model-agnostic methods in the taxonomy of [Mol22] since they do not generate explanations but actually
select them by extracting data samples that relate to the prediction being explained. The example-based
explanations are similar to how humans behave when attempting to explain a given process by thinking
in examples or analogies [Mol22].

An example of such explainability method is the one of k-Nearest Neighbors (kNN). In order to
explain an input instance, the idea is to return the closest instances, like the work presented in [KK19b].
The k-Nearest Neighbor is a machine learning technique based on assigning the most represented class
to a sample based on the outcome of its k closest neighbors. By definition, the interpretability of this
approach is local since it gives an interpretation for a particular instance by presenting the instances
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from the neighborhood that were used to decide of the output class. An example suitable for that kind
of interpretability is presented in [KK19b] where they applied their approach on the MNIST dataset in
order to explain the prediction of an image predicted as a "0" while it represents a "6" digit. The visual
explanation shows that the input image was predicted as a "0" based on its similarity with instances from
its neighborhood representing a "0".

Example 15. The example in Figure 1.14 shows how kNN can be used to interpret a prediction by
looking at the outcome of the closest nearest neighbors of the query sample.

Figure 1.14: Example from [KK19b] representing the prediction of an input sample and its neighbors.

Thus, we can understand that the model was actually mislead by the outcome of the nearest neighbors
of the input image.

Another example-based method is proposed to extract prototypes and criticism. Namely, the repre-
sentative samples used to explain the global behaviour of a model are called prototypes and criticism
are the data samples that do not fit the model well. Methods which extract those samples (such as
[Zad96, LRBM08] for fuzzy prototypes, [KRS14, KK19b, AP94, LLCR18] for case-based reasoning)
can be used to analyze the behaviour of a trained model by analyzing its predictions on prototypes and
the criticisms samples, and, quickly extract a few instances that should be harder to predict (criticism) or
easier to predict (prototypes). In [KKK16], the authors propose a Bayesian model criticism framework,
called MMD-critic which efficiently learns prototypes and criticism, designed to help human explain-
ability.

1.2.3 Local interpretability versus global interpretability

Explainable AI methods can be further distinguished into local and global methods. Local explainability
methods give an interpretation for a specific decision (individual prediction) of a particular data instance.
It generates the explanations with respect to a specific instance. In contrast, the global (model) ex-
plainability methods are used to understand the model’s behavior through its working mechanisms and
follow the entire reasoning that produces all the different possible outcomes. It generally takes a group
of instances to generate one or more explanations.

Most of the post-hoc existing methods are local approximation methods. They explain a specific
decision of a sample x by segmenting the data space and focusing on the samples around x to generate
explanations such as the feature attribution methods (e.g. LIME [RSG16], Local Explanation Method-
using Nonlinear Approximation (LEMNA) [GMX+18], SHAP [LL17]) and saliency maps ([SCD+17,
ZKL+16, SDBR14, CSHB18, MLB+17, STY17, BBM+15]). Authors in [BAL+21] propose to help
non-expert users understand the ML predictions by providing contextualisation elements. They propose
an experimental study to assess the impact of adding contextual information on the understanding of
local explanations. Explaining the global behaviour of a model is more difficult compared to interpreting
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Figure 1.15: Taxonomy of machine learning interpretability techniques

the outcome of a specific instance, especially if the predictor is a complex model. Global XAI methods
assess the role of features and their contribution to the model output. A summary of the included methods
is shown in Table 1.3.

To contextualize and situate our work that we will be presenting in the second part of this thesis,
we use Figure 1.15 of AI interpretability techniques from [LPK20] to highlight the elements describing
our work. Our contributions to explain individual predictions of single and multi-label classification
models consist of a post-hoc local model-agnostic approach. Indeed, our main approach for providing
symbolic explanations is model-agnostic, which means it can explain the outcome of any ML model. It
is declarative, which means it does not require the implementation of specific algorithms since its based
on well-known concepts (more details in the upcoming sections) in SAT solving and it is local, meaning
that it is used to explain individual predictions of black-box ML models.
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Table 1.3: Summary of local vs global XAI methods.

Name Ref Local vs Global Model-Specific vs
Model-Agnostic

Category Year

G-REX [JKN04] Global Agnostic Post-hoc 2004
ICE [KKS07] Global Agnostic Post-hoc 2007
PDP [Fri01] Global Agnostic Post-hoc 2007
SAlib [SRA+08] Global Agnostic Post-hoc 2008
DeLP3E [SSF14] Local Specific Post-hoc 2014
DeepExplain [ZF14] Local Specific Post-hoc 2014
iNNvestigate [SDBR14] Local Specific Post-hoc 2014
InterpretML [CLG+15] Global / Intrinsic 2015
iBCM [KGJS15] Global / Intrinsic 2015
— [LRMM15] Global / Intrinsic 2015
SLIM [UR16] Global / Intrinsic 2016
LIME [RSG16] Global/Local Agnostic Post-hoc 2016
CAM [ZKL+16] Local Specific Post-hoc 2016
MMD-critic [KKK16] Global Specific Post-hoc 2016
rationale [LBJ16] Local Specific Post-hoc 2016
SHAP [LL17] Global Agnostic Post-hoc 2017
fair-classification [ZVR+17] Global Agnostic Post-hoc 2017
fairness [DHP+12] Local Agnostic Post-hoc 2018
L2X [CLP+18] Local Agnostic Post-hoc 2018
CAV [KWG+18] Local Specific Post-hoc 2018
ANCHOR [RSG18] Local Agnostic Post-hoc 2018
Grad-CAM++ [CSHB18] Local Specific Post-hoc 2018
LEMNA [GMX+18] Local Agnostic Post-hoc 2018
— [MWM18] Local Specific Post-hoc 2018
— [SCD18b] Local Specific Post-hoc 2018
AIX360 [DGW18] Global / Intrinsic 2018
SENN [AMJ18] Global / Intrinsic 2018
— [WDGG19] Global / Intrinsic 2019
BEEF [GPSS19] Local Agnostic Post-hoc 2019
— [INMS19a] Local Agnostic Post-hoc 2019
DeNNeS [MG20] Global Specific Post-hoc 2020
Tree explainer [LEC+20a] Global/Local Specific Post-hoc 2020
— [DH22] Local Specific Post-hoc 2020
Glocalx [SGM+21] Global Agnostic Post-hoc 2021
— [DLM+22] Local Specific Post-hoc 2022
DeepGlobal [SLZS22] Global Specific Post-hoc 2022
— [FdSRGL22] Global Specific Post-hoc 2022
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XAI methodologies

The scientific communities may have different requirements and priorities when it comes to the char-
acteristics of the XAI approach to be developed (e.g. tractability, scalability, formal aspects, level of
explanation, need for access to data and model, parcimony, etc). This difference in design goals and de-
sired properties is reflected by adopting diverse methodologies in the development of XAI approaches.

The proposed methodologies in the literature can roughly be classified in two types: formal methods
and ad-hoc or numerical methods presented in the following sections.

2.1 Ad-hoc methods

The ad-hoc methods are defined as methods designed to answer a specific question or to accomplish a
goal. Although they may work well in practice, they may be considered untrustworthy and capable of
producing errors. Their major issue is that they offer no guarantee of correctness w.r.t the ML model
explained since they are model-agnostic, thus, the explanations may be incorrect, inaccurate or unstable
and are not necessary minimal [Ign20].

Most of the current XAI approaches are based on ad-hoc methodologies and compute approximations
of real explanations. For instance, SHAP [LL17] is based on the cooperative game theory Shapley value
[Sha53] and determines the features that contribute the most to the difference in model prediction at a
specific input versus a background distribution. LIME [RSG16] generates an explanation by approximat-
ing the underlying black-box by an interpretable model. ANCHOR [RSG18] based on LIME provide
rule-based explanations on local behaviors of the models, Partial Dependence Plot (PDP) [ZH21] and
Accumulated Local Effect Plot (ALEP) [AZ20] describe how features affect the decision of ML models
and the nature of the relationship between them (e.g linear or monotonic).

Recent works have highlighted undesirable behavior of ad-hoc methods [INM19, Ign20, SHJ+20,
FdHvE22, ADLPR22]. Among these, the work in [Ign20] where the authors showed that explanations
provided by SHAP and LIME are mostly incorrect from a global perspective. The same idea is expressed
in [INM19, SHJ+20], where it is shown that some ad-hoc based approaches return the same explanation
for two different data point that were predicted differently (incompatible classes). This shows that ad-hoc
based explanations can be misleading and incorrect.

2.2 Formal methods

Formal methods are defined as mathematically or formally verifiable. They have been widely investigated
for explainability [SCD18b, SSDC20, DH22, SCD19, INMS19a, INMS19b, Ign20, IMS21, ABB+22a,
AKM20a, ABB+21, APR21, WGH19, MSGC+20, IIN+21, HIIM21, IMS21, GR22]. They are mainly
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based on knowledge compilation or abductive reasoning [Ign20] and provide explanations that guarantee
to have the same behavior with the model (accurate), and so, trustable. The approaches based on knowl-
edge compilation compile predictive models into Boolean circuits and propose to interpret the model by
enumerating the prime implicants of the circuit [DH22, SCD18b]. The abductive based approaches repre-
sent a model into a set of constraints and provide minimal explanations by applying abductive reasoning
on the model’s encoding to answer XAI queries [INMS19a, Rei87, INMS19b, ABB+22a, ABB+22b,
IIN+22, HM22, IIM22, GR22]. Formal methods are often too expensive to compute (worst-case expo-
nential complexity in time and space for compilation, number of explanations is worst-case exponential),
and are strongly dependent on the type of classifier to treat since we need to develop dedicated algorithms
for each ML model (model-specific) when using the compilation approach.

We present in the following sections the main line works used by these methods, namely knowledge
compilation and abductive reasoning.

2.2.1 Knowledge compilation

Knowledge compilation is a technique used to overcome the difficulty (intractability) of some AI prob-
lems by pre-processing the available information. It is expressed as a translation problem which is done
in two phases. A first phase called off-line which allows to compile a part of the information and a second
phase called on-line where the compiled form with the rest of the information is used to efficiently answer
queries. Authors in [DM02] presented a map for deciding the target compilation language that is most
suitable for a particular application. Note that different target compilation languages exist such as the :
Conjunctive Normal Form (CNF), Disjunctive Normal Form (DNF), Negation Normal Form language
(NNF) formally defined in [Dar99, Dar01], Ordered Binary Decision Diagrams (OBDD) first presented
in [Bry86], Decomposable Negation Normal Form (DNNF), Deterministic Decomposable Negation Nor-
mal Form (d-DNNF), Sentential Decision Diagrams (SDD) [Dar11] and so on. Knowledge compilation
has been applied in different areas : diagnosis [TT04, HD05, SH+08], configuration [AFM02, HSJ+04],
planning [GT99, EMW97, JV00, CRT98] and lately, knowledge compilation had been used to address
fundamental problems for explainable and robust AI.

Formal XAI methods compile ML models into Boolean circuits that can make the same predictions
with the models and provide valid and complete explanations. The advantages of such approaches is
the possibility of efficiently checking, verifying the symbolic representations of classifiers (e.g. [CD07,
SCD18a, CSSD17, OD15, Dar11]). Authors in [SCD18b] proposed an algorithm to compile latent-tree
Bayesian network classifiers into decision functions in the form of Ordered Decision Diagram (ODD).
This equivalent and tractable 7 symbolic representation is used to explain Bayesian network classifiers by
providing two types of explanations. The first type called the minimum-cardinality explanations (MC-
Explanations) corresponds to the minimal subsets of inputs that is sufficient for the current decision,
while the second type called prime-implicant explanations (PI-Explanations) corresponds to the smallest
subset of features that makes the rest of the features irrelevant to the current prediction. For instance, the
authors in [NKR+18] proposed a CNF encoding for Binarized Neural Networks (BNNs) for verification
purposes. In [SSDC20], the authors propose a compilation algorithm of BNNs into tractable represen-
tations such as OBDDs and SDDs. In [CD03, SCD19], the authors proposed algorithms for compiling
Naive and Latent-Tree Bayesian network classifiers into decision graphs (symbolic representations). Au-
thors in [SCD18b] and [AKM20a] use knowledge compilation techniques to design tractable cases for
a set of XAI queries (e.g. enumerating minimum-cardinality explanations, deriving one prime impli-
cant explanation, enumerating counterfactual explanations). These queries were also used in [ABB+21]
to evaluate the intelligibility of several families of Boolean classifiers (decision trees, DNF formulae,

7can be answered using a polynomial-time algorithm
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decision lists, random forests, boosted trees, Boolean multilayer perceptrons, and binarized neural nets).
The major issue for knowledge compilation based methods is the tractability of the compilation

phase for large feature spaces and complex models. In addition to finding a suitable representation for
the compiled model, there is need to provide dedicated compilation algorithms for each new ML models
since its a model-specific technique.

2.2.2 Abductive reasoning

Abduction is defined as a form of logical reasoning that allows to explain a phenomenon or an observation
from certain facts. It is considered as a type of inference that is frequently employed both in everyday
and in scientific reasoning, where we make a probable conclusion from what we know (e.g. a detective’s
identification of a criminal by piecing together evidence at a crime scene). Abductive reasoning is well-
known concept [Sha89, Mar91] for computing explanations. Many works used abductive reasoning to
answer queries such as verification of properties of systems [KBD+17, LNPT18, NKR+18, SDC19] and
diagnosis purposes [Rei87, Rym94] were proposed. However, in the last few years it has been used
specifically for XAI tasks.

Authors in [CSGD20a] tackle the problem of explaining the decisions of machine learning mod-
els with discrete/continuous input and output variables. They analyze three symbolic encodings using
Boolean expressions to reason about the behavior of the system. Based on the PI-explanation8 introduced
in [SCD18b] and notions on multi-valued variables, they formally define the notion of PI-explanations
in a multi-valued setting. In [INMS19a], authors propose an approach based on abductive reasoning
to generate explanations using some constraint reasoning system (e.g. Satisfiability Modulo Theories
(SMT), Constraint Programming (CP), or Mixed Integer Linear Programming (MILP)) to encode the
ML model to be explained and answer some entailment queries. For instance, they consider neural net-
work models and use a MILP encoding in order to compute prime implicants, which are used to find
the minimal subset or cardinality minimal explanations. The paper deals with some forms of symbolic
explanations referred to as abductive explanations (AXp) as an answer to a "why?" question and con-
trastive explanations (CXp) as an answer to "why not?" question. The authors in [INMS19b] analyze the
duality relationship between explanations (defined as a prime implicants) and counterexamples (defined
as negated prime implicate) and investigated how to compute adversarial examples from counterexam-
ples. They use First Order Logic (FOL) for the representation of ML model and overview algorithms
for the enumeration of explanations and adversarial examples. The authors in [Ign20] overview recent
logic-based XAI approaches to explain ML model predictions. The paper proposes an empirical study to
assess the correctness of the explanations of ad-hoc methods like LIME, SHAP and ANCHOR in order
to validate them and argue that rigorous explanations based on abductive reasoning are trustworthy and
can be independently validated. Authors in [IMS21] discuss the computational complexity of computing
explanations for Decision Lists (DLs) and show the contrast compared to Decision Trees (DTs). They
propose AXp and CXp explanations for Decision Lists using the SAT solvers. Authors in [ABB+22a]
focus on abductive explanations of random forests. They propose (1) "direct reasons" which are an ex-
tension of the abductive explanations of decision trees, and (2) "majority reasons" which are implicants
of a majority of trees in the forest and which can be computed in polynomial time. They tackle the
problem of generating and minimizing (in terms of size) these two types of explanations and propose
algorithms to compute and compare them empirically.

The major issue for formal explanation methods is finding a logical language suitable for describing
the ML model as faithful as possible. Another limitation is their tractability in practice, although some
improvement are made possible, like in recent work [IIM22] that proposes algorithms for computing

8defined as minimal set of instance characteristics that are sufficient to trigger the decision [SCD18b]
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path explanations for DTs which run in worst-case polynomial time. The experimental results reported
in [SCD18b, INMS19a] show that the approaches based on logical representations are limited and may
be difficult to obtain for large datasets. Another drawback of symbolic methods is linked to the nature of
data as real-world data is often numerical and not binary.

2.3 Conclusion

The evaluation of XAI methods is on early stages (e.g. [JBB+21, BWM20]). The XAI community
does not have a standardized terminology yet and there is no effective evaluation methodologies to as-
sess which methods will do well for a given use-case [DVK17]. The evaluation of an explanation often
depends of the target audience (different roles, background, objectives), and thus, have a different ex-
plainability requirements [TBH+18, MZR21, ARLG20].

Evaluating explanation methods is considered as an open problem [DVK17, JG20]. Although there
is no standards established for their evaluation, some desired requirements for XAI methods were sum-
marized in [HYHI21] such as faithfulness [AGM+18, LKCL19, JG20], plausibility (explanations must
be sufficiently convincing to users) [LBJ16, LCH+19, SZM19], robustness [AJ18], and readability
[AET18, YRS17, ALSA+17]. For instance, the authors in [BP19] proposed a human-grounded eval-
uation, done by assessing 17 criteria splitted into three categories for evaluating explanations : natural
language (aims at assessing the correctness of the language used in explanations), human-computer in-
teraction (enables to evaluate what the explanation conveys when it is transmitted from the system to the
user) and also the content and form (dedicated to assessing the content and the form of the explanation).
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Symbolic explanations
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This second part of the thesis is devoted to the contributions made to explain predictive models and
reason about explanations.

Firstly, we will present in Chapter 3 the general framework of our declarative and model-agnostic
approach as well as the different modules that compose it. We formally define what is a sufficient reason
and what is a counterfactual and how this kind of complementary symbolic explanations are generated
for single-label classification problems with the help of Boolean satisfiability concepts. The results of an
experimental study is conducted on several datasets from the literature in order to evaluate the feasibility
of the approach in practice. The different characteristics of the enumerated symbolic explanations are
also presented.

Chapter 4 concerns the explanation of multi-label tasks. We define several symbolic explanation
types and show how we can enumerate them by adapting our approach to the multi-label case. We also
introduce a concept specific to multi-label problems called the label-based explanations, allowing to take
advantage of the structural relationships between labels. An experimental study is also provided in order
to evaluate in practice the different concepts discussed in the chapter.

In Chapter 5 of this manuscript, we go beyond symbolic explanations and address score-based expla-
nations for classification in a single-label setting. We define some desired properties of an explanation
score to assess the relevance of both explanations and features individually, in order to evaluate them in
ways that are closer to how users perceive them.

The last Chapter 6 is dedicated to feature attribution for multi-label classification. We first point out
some deficiencies in attribution methods based on aggregation by defining three desirable properties. As
a second contribution, we present a framework based on problem transformation allowing to provide
global feature attributions capturing the above properties while using existing attribution methods as
an oracle. The third contribution consists in a new attribution method based on symbolic explanations
such as sufficient and counterfactual reasons, from which attribution scores are generated. Finally, we
propose to go further concerning the property of label-explanation correlation by exploiting it to infer
features attribution on a label using the explanations already computed on another label with which it is
correlated.
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Symbolic explanations for single-label
classification

After having presented the current state of the field of XAI in the previous chapters, we introduce now a
novel framework for explainable classification. In this chapter, we will provide insights of the approach
to handle single-label classification problems. Chapter 4 addresses the case of multi-label classification.

Explanations generated using symbolic reasoning approaches are called symbolic explanations and
have been investigated in a number of applications such as generation of rigorous explanations, detection
of decision bias and evaluation of counterfactual queries. Symbolic explanations are important as they
provide the user with more detailed information beyond a simple numeric score (e.g., model inputs that
contributed to the outcome). The existing symbolic explainability methods are mainly model-specific
(can only be applied to specific models for which they are intended) and cannot be applied agnostically
to any model, which is their main limitation. In the other hand, feature-attribution methods such as
LIME [RSG16] and SHAP [LL17] provide the features’ importance values for a particular prediction.
These values provide an overall information on the contribution of features individually but do not really
allow answering certain questions such as: "What are the feature values which are sufficient in order to
trigger the prediction whatever are the values of the other variables? " or "Which values are sufficient
to change in the instance x to have a different prediction?". This type of questions is fundamental for
the understanding, and, above all, for the explanations to be usable. For example, if a user’s application
is refused, the user will naturally ask the question: "What must be changed in my application to be
accepted?". We cannot answer this question in a straightforward manner with the features attribution
explanations. Thus, the major objective of our contribution is to provide both symbolic explanations and
score-based ones for a better understanding and usability of explanations.

We leverage formal methods to develop a novel model-agnostic method for explaining the prediction
of single-label and multi-label classification models. We propose a model-agnostic SAT-based approach
for symbolic and score-based explanations named ASTERYX. In particular, we focus in this chapter on the
symbolic explanations and we present the general framework of ASTERYX. We are going to motivate the
choices we made for designing a declarative and model-agnostic approach to globally or locally explain
the prediction of single-label classifiers. We are interested in two complementary types of symbolic ex-
planations: the sufficient reasons (SRx) which lead to a given prediction (also known as PI-explanation
[SCD18b, SCD19, Dar20] or abductive explanation (AXp) [INMS19a]) and the counterfactuals (CFx)
allowing to know minimal changes to apply on the data instance x to obtain a different outcome (corre-
sponding to contrastive explanation (CXp) [INAMS20]).

In the following, we present and provide details about Step 1 and Step 2 from Figure 3.2 of the
approach we propose. In Chapter 3, we provide insights of the approach to handle single-label classifi-
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cation problems. Chapter 4 addresses the case of multi-label classification. The description of Step 3 is
given in Chapter 5 for feature-attribution explanations for the single and multi-label settings.

As depicted in Figure 3.1a, and to recall what have been presented in Chapter 2, the methodologies
used in XAI are either formal methods or ad-hoc methods. The formal methods generate symbolic
explanations such as prime implicants, if-then-rules, sufficient reasons, etc. On the other hand we have
ad-hoc methods, developed to explain complex models by providing numerical explanations such as
importance scores and saliency maps. Figure 3.1b allows to situate our work w.r.t the methodology used.
Our approach relies on a formal method based on the symbolic representation of a model, and use a
substitution approach to make it model agnostic. In Section 3.1, we present the general framework of
the proposed approach. Section 3.2 is devoted to describe how to associate a symbolic representation to
the model used. In Section 3.3, we specify how to generate the type of explanations we would like our
model to return and how to reason directly from it. Finally, we complete this chapter by giving some
experimental results that show the feasibility of the approach in Section 3.4.

(a) Existing methodologies (b) Positioning of our work

Figure 3.1: Methodologies proposed within the explainability techniques

3.1 General framework

The main idea is based on associating a symbolic representation that is equivalent or almost equivalent
to the decision function of the model to explain. After that, we use this symbolic encoding to generate
explanations based on formal methods. We are also interested in post-processing the explanations and
select the relevant ones w.r.t to some intuitive desiderata in order to select and rank the explanations
according to the user expectations. We investigate a set of fine-grained properties allowing to analyze
and select explanations. We also proposed some scores allowing to assess the relevance of explanations
and features w.r.t the suggested properties. An illustration of the main components of our approach is
given in Figure 3.2. Note that a binarization step may be performed since our approach applies on binary
classification problems.

Given a decision function f representing a binary classifier f : X → Y from the input domain X to
the output domain Y , we would like to explain the output f(x) for some input x ∈ X by providing ex-
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3.1. General framework

Figure 3.2: A global overview of the proposed approach

planations to justify why the output class was triggered and what modifications of the input can possibly
be made to change it. Concretely, our approach proceeds in three major steps as follows:

• Step 1 (Encoding the classifier into CNF): This comes down to associating an equivalent sym-
bolic representation Σf to f as well as Σx encoding the input instance x whose prediction by f
is to be explained. Σf will serve to generate symbolic explanations in the next step. The encod-
ing is done either using model encoding algorithms if available and if the encoding is tractable as
described in Section 3.2.1, or using a surrogate approach as described in Section 3.2.2.

• Step 2 (SAT-based modeling of the explanation enumeration problem): Once we have the
CNF representation Σf and Σx, we model the explanation generation task as a partial maximum
satisfiability problem, also known as Partial Max-SAT [BHvM09]. The main idea is to view clas-
sifiers as a set of constraints describing a Boolean function that is inconsistent on instances that
do not satisfy the constraints. This step, presented in Section 3.3, aims to provide two types of
symbolic explanations: SRx and CFx. They respectively correspond to Minimal Unsatisfiable
Subsets (MUS) and Minimal Correction Subsets (MCS) in the SAT terminology.

• Step 3 (Explanation and feature relevance scoring): This step aims to assess the relevance of
explanations by associating scores evaluating those explanations with regard to a set of properties
presented in Section 5.2 of Chapter 5. Moreover, this step allows to assess the relevance of features
using scoring functions and to evaluate their individual contributions to the outcome. We propose
a set of fine-grained properties allowing to analyze and select explanations and a set of scores
allowing to assess the relevance of explanations and features w.r.t the suggested properties.

Remark 5. It is important to notice that the SAT choice is one possibility among other possible oracles
such as the ones of Satisfiability Modulo Theories (SMT), Constraint satisfaction problem (CSP), Mixed
Integer Linear Programming (MILP)) and so on.

In the following we present and provide details about Step 1 and Step 2 of our approach.
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Chapter 3. Symbolic explanations for single-label classification

3.2 Encoding of the model

In this section, we present the addressed ways of encoding a model into a symbolic representation. This
encoding phase corresponds to Step 1 in Figure 3.2 where the goal is to encode the decision function
associated with the ML model under study into our target representation, which is the Conjunctive Nor-
mal Form (CNF) (cf Section 2.3 in Background and notations section) in our SAT-base modeling. Two
cases are considered in our approach : Either an encoding of classifier f into an equivalent symbolic
representation exists (non agnostic case) and is tractable, in which case we can use it, or we consider the
classifier f as a black-box and we use a surrogate model to approximate it in the vicinity of the instance
to explain x (agnostic case). Such propositional encoding allows to exploit existing algorithms for rea-
soning about propositional formulae and propose a declarative approach lying on well-known concepts
and efficient existing algorithms for the enumeration of Minimal Unsatisfiable Subsets (MUSes) and
Minimal Correction Subsets (MCSes).

3.2.1 Direct encoding into CNF

A direct encoding of the classifier f into CNF is possible for some machine learning models such as
Binarized Neural Networks (BNNs) [NKR+18], Naive and Latent-Tree Bayesian networks [SCD19].
We give more insights in the following using two examples on how we would use such approaches to
encode a specific ML model, for instance, Naive Bayes and Random forests classifiers into a symbolic
representation.

CNF encoding of Naive Bays classifiers Authors in [SCD18b] proposed a symbolic approach to ex-
plain Naive Bayes classifiers and thus, by proposing two types of explanations called "MC-explanations"
for minimal cardinality explanations and "PI-explanations" for prime implicant explanations. The MC-
explanations minimize the number of positive features in an instance, while maintaining its prediction.
The PI-explanations identify a smallest set of features in an instance that renders the remaining features
irrelevant to a prediction. Such approach is based on compiling Naive Bayes Classifiers (NBCs) into a
specific symbolic and tractable representation known as Ordered Decision Diagram (ODD).
The objective here is to equip such methods with other types of symbolic explanations, namely, coun-
terfactuals. Given a NBC f whose predictions are to be explained, and once compiled into a decision
function in the form of ODD, we show in the following how we encode it into a CNF to use our approach.

Definition 19. (Ordered Decision Diagram ODD) An Ordered Decision Diagram is a rooted, directed
acyclic graph, defined over an ordered set of discrete variables, and encoding a decision function. Each
node is labeled with a variable Xi , i = 1, . . . , n and has an outgoing edge corresponding to each value
xi of the variable Xi, except for the sink nodes, which represent the terminal nodes.

An Ordered Binary Decision Diagram (OBDD) is an ODD where all the variables are binary. As
shown in Example 16, in case of an OBDD representing the decision function of a binary classifier, a
node labeled with variable Xi has two outgoing edges labeled 1 and 0 respectively, and two sinks (class
variable), 1-sink and 0-sink. If there is an edge from a node labeled Xi to a node labeled Xj , then i<j
(more on tractable representations such as ODDs can be found in [SCD19]). The proposed algorithm
for NBC (and some of its variants) has many nice features in terms of tractability, explanation enumer-
ation and formal analysis of classifiers. Authors in [SCD18b] showed how it facilitates the efficient
explanation of classifiers and used it to compile such classifier into an ODD then enumerate two types of
explanations : the first class is minimum-cardinality explanations and the second class is prime-implicant
explanations.
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3.2. Encoding of the model

Example 16. Figure 3.3a shows a NBC for deciding whether a student will be admitted to a university
(class variable: Admit (A)). The features of an applicant are: work-experience (WE), first-time-applicant
(FA), entrance-exam (E) and gpa (GPA). In Figure 3.3b, we provide the OBDD representing the classifier
decision function f with the variable ordering (WE, FA, E, GPA). Here, the sinks correspond to the values
of the class variable (A).

A

WE FA E GPA

A p(A)
1 .7

WE A p(WE|A)
1 1 .3
1 0 .8

FA A p(FA|A)
1 1 .2
1 0 .7

E A p(E|A)
1 1 .15
1 0 .4

GPA A p(GPA|A)
1 1 .11
1 0 .97

(a) Naive Bayes network classifier f (b) Ordered Binary Decision Diagram of f

Figure 3.3: A naive Bayes network classifier and its corresponding OBDD.

To explain such Bayesian classifiers following our framework (cf Figure 3.2), we need in the first
step to encode the decision diagram into our target representation, which is the Conjunctive Normal
Form (CNF) (see Section 2.3).

There are several methods to encode a decision diagram as a CNF formula. For instance in [CNQ03],
the authors proposed a method called "Single-Cut-Node" to store a BDD (Binary Decision Diagram) as
a CNF. The BDD nodes are modeled as multiplexers. The data inputs of the multiplexer are the children
nodes, the selection input is the node variable and the output is the function value which is assigned to an
additional CNF variable. A second method called "The No-Cut method" creates clauses starting from f
corresponding to the “off-set” and a last method called "The Auxiliary-Variable-Cut" which combines the
two previous methods. For the sake of simplicity and clarity, we choose the simplest method which does
not involve adding new variables during the encoding process since we want to restrict our explanations
to the input variables of the classifier. We implement a simple way to encode the symbolic representation
of a classifier as a CNF formula based on the "The No-Cut" method [CNQ03]. In our case, since we are
dealing with binary Boolean functions (binary features and class variable), our tractable representation
of the decision function f is an OBDD. Recall that we use along with this manuscript positive/true/1
and negative/false/0 interchangeably. Let us first define an "off-set" of a Boolean function and a CNF
formula.

Definition 20. (Off-set of a Boolean function) The Off-set of a Boolean function f , denoted as f0, is
f0={v ∈

⋃n
i=1{0, 1}i|f(v) = 0} If f0={0, 1}n, then f is unsatisfiable. Otherwise, f is satisfiable.

Intuitively, f0 is the set of counter-models of f . This concept of "off-set" contains the counter-models
we need to enumerate in order to construct our CNF’s clauses. The OBDD is used to enumerate all the
paths from the root to the 0-sink node (the off-set), where each element of f0 corresponds to a path
within it.

Definition 21. (CNF encoding of an OBDD) Let f be the decision function encoded by an ordered
binary decision diagram OBDDf . Let f0 be the off-set of OBDDf . We define the obtained CNF formula
from OBDDf as :

45



Chapter 3. Symbolic explanations for single-label classification

Σf = ∧¬ei (3.1)

where ei∈f0 and i ∈ [1,M] with M = |f0|.

Example 17 (Example 16 continued). Given the variable ordering (WE, FA, E, GPA) associated with
the OBDD of the example 16, the variable X1, X2, X3 and X4 correspond respectively to the variable
WE, FA, E and GPA. To simplify, let us consider the following notation : ¬X2 means that the variable
numbered X2 in a sample x is instantiated negatively (has the value 0). A decision path (X1=1, X2=0,
X3=1, X4=0) corresponds to a clause T = (¬X1∨X2∨¬X3∨X4) and is written (X1,¬X2, X3,¬X4).
Note that the elements of f0 are a complete assignation but can be written in a reduced form for the sake
of simplicity. The corresponding "off-set" of the OBDD of Example 16 representing the counter models
of the OBDDf is presented in Figure 3.4.

(a) Ordered Binary Decision Diagram of f

f0 = { (X1, X2,¬X3,¬X4),

(X1,¬X2, X3,¬X4),

(X1,¬X2,¬X3),

(¬X1, X2,¬X3),

(¬X1,¬X2) }

Figure 3.4: Off-set of a Boolean function represented by an Ordered Binary Decision Diagram.

Proposition 2. Let f be a binary decision function and OBDDf its representation. Let also Σf be the
CNF representation of the decision function f obtained following Definition 21. Then, an interpretation
µ is model (resp. counter-model) of Σf iff it is mapped to 1 (resp. to 0) by f .

Proof. The proof is straightforward. Indeed, it is easy to see that the Boolean function f encoded by
an OBDD can be equivalently represented as the disjunction of its models (called disjunctive normal
form, DNF for short). Let α be the associated formula of f . Similarly, ¬α is equivalently represented
as the disjunction of the counter-models of f . Then ¬(¬α) comes down to α which corresponds to f in
conjunctive normal form CNF.

Let α be the associated formula of f . The intuition is that ¬ α ≡ ∨ ei where ei ∈ f0. Then f
comes down to negating paths in f0 (∨ ei) allowing to obtain directly f in the form of a CNF. Following
Definition 21, we have:

- Every variable of the feature space X= {X1,...,Xn} of the classifier will correspond to a Boolean
variable in the CNF Σf .
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3.2. Encoding of the model

- The class variable Y of the classifier is captured by the truth value of the CNF (Σf ).

- Modeling a prediction made by the classifier for a given data instance x comes down to the truth
value of: CNF (Σf ∧ Σx) where Σx stands for the data instance x encoded as a CNF by a set of
unit9 clauses.

The encoding of Definition 21 guarantees the logical equivalence between the OBDDf and the ob-
tained CNF Σf and Proposition 2 formally states that Σf is logically equivalent to the function f , i.e,
they have the same truth value for each data instance x. Thus, we can assert the following result.

Lemma 1. Given a binary classifier, a data instance x and the predicted class f(x)=y, the formula (Σf

∪ Σx) is SAT iff f(x)=1 .

Example 18. Let f be the decision function of the classifier represented by an OBDD in Figure 3.4a.
The running example shows the CNF formula Σf corresponding to the "off-set" of f within the OBDDf ,
and Σx corresponding to the data instance x=(X1=1,X2=0,X3=1,X4=0).

Σf (¬X1 ∨ ¬X2 ∨X3 ∨X4) ∧
(¬X1 ∨X2 ∨ ¬X3 ∨X4) ∧
(¬X1 ∨X2 ∨X3) ∧
(X1 ∨ ¬X2 ∨X3) ∧
(X1 ∨X2) ∧

Σx (X1) ∧
(¬X2) ∧
(X3) ∧
(¬X4)

Proposition 3. (CNF size) Let Σf be the CNF obtained from OBDDf following Definition 21. The CNF
size (number of clauses) is linear in the size of the OBDDf (number of nodes).

Proof. Let N be the size of OBDDf (number of nodes). From Definition 21, we have: Σf=∧ ¬ ei where
ei ∈ f0 and i ∈ [1,M ] where M = |f0|. Note that for each ei ∈ f0 there exists a path within the OBDD
from the root to the 0-sink node. The number of clauses involved in Σf is equal to the number of those
paths. In the worst case, the number of paths is at most equal to 2*N .

Model enumeration is a polytime operation on OBDDs since they are a subset of DNNFs [DM02].
Besides, the authors in [SCD18b] show experimentally that compiling Bayes network classifiers into
ODDs can be handled efficiently and the number of PI explanations remains reasonable for small size
feature spaces. Thus, such approaches may face scalability issues when applying them to real-world
applications. The authors in [SCD18b] also showed that given a NBC, compiling an ODD representing
its decision function is NP-hard.

9A unit clause involves only one Boolean variable represented by a literal
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CNF encoding of Random Forest classifiers Random Forest classifiers (RF) [Ho95] are tree-based
models built using a stochastic approach. The decision trees composing it are grown on randomly se-
lected subspaces of the feature space, in order to further improve predictive performance. The output
value of a RF classifier is given from a combination of the trees’ predictions, often using the majority
vote. RF classifiers are attractive due to their high execution speed and good predictive performance with
relatively little hyper-parameter tuning.

The encoding of a random forest into a CNF amounts to encode the decision trees individually and
then encode the combination rule (majority voting rule). We only consider binary variables which can
either be True or False (1 or 0 respectively).

Encode in CNF every decision tree: The decision trees are seen as directed acyclic graphs whose
internal nodes represent propositional variables and whose edges represent assignments to source nodes.
A decision tree (DT ) in our case represents a Boolean decision function. Recall that the internal nodes
of a DT represent a binary test on one of the features. Each leaf of a decision tree is annotated with the
predicted class (namely, 0 or 1 for binary classification). A decision rule is the solution path going from
the root to the leaf leading to the final decision assigned to an input x. We can represent a decision tree as
a CNF formula as the conjunction of k clauses T , where a clause is a disjunction of literals of variables
in the tree defined on the input features.

Let x = (x1, . . . , xn) be the sample of interest. The CNF encoding of a decision tree is :

ΣDT =
∧

j∈[1,k]

Tj

Tj =
∨

lij
i∈[1,n]

(3.2)

where lji is the value of the literal associated to the variable’s value xi ∈ x in clause j. Example 19 shows
how the Boolean function encoded by a decision tree can be captured into a CNF as the conjunction of
the negation of paths leading from the root node to leaves labelled 0.

Encode in CNF the combination rule: Let yi be a Boolean variable capturing the truth value of
the CNF ΣDTi associated to a decision tree. Hence, the majority rule used in random forests to combine
the predictions of m decision trees can be seen as a cardinality constraint10 [Sin05] that can be stated as
follows:

y ⇔
∑

i∈[1,m]

yi ≥ t, (3.3)

where t is a threshold (usually t=m
2 ). Cardinality constraints have many CNF encodings (e.g. [Sin05,

BB03, ANORC13]). To form the CNF corresponding to the entire random forest, it suffices to conjuct
the m CNFs associated to the equivalences between yi and the CNF of the decisions trees, and the CNF
of the combination rule.

Definition 22. (Equivalence of a classifier and its CNF encoding) A binary classifier f is said to be
equivalently encoded as a CNF Σf if the following condition is fulfilled: f(x)=1 iff x is a model of Σf .

Thus, representing the model as a CNF formula allows the capturing of all the models (resp counter-
models) likely to make the formula satisfiable (resp unsatisfiable), and thus, matched with the predictions
of the classifier f as reported in Definition 23.

10In the case of binary classification, this constraint means that at least t decision trees predicted the positive label.
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Tseitin transformation Unfortunately, putting a formula in conjunctive normal form can make
this formula exponentially larger than the original one. Hence, we use the Tseitin transformation [Tse83]
which converts any propositional formula into a CNF formula of size linear in the size of the starting
formula.

3.2.2 Surrogate model encoding into CNF

Motivation

Despite the guarantees of fidelity and completeness offered by direct encoding algorithms which are
based on formal methods, a very restricted class of classifiers can be represented directly into a symbolic
representation, which makes it hard to use them in practice to explain the different ML classifiers. In
addition, their computational complexity makes it hard to use in real-world applications involving a large
number of features and parameters.

To overcome those limitations, we propose to integrate a surrogate approach in the encoding phase.
The goal is to explain any classifier regardless of the used technique and implementation (model-agnostic).
In our setting, no assumptions about the model are made other than that it maps from some known input
feature space to a known output domain. The overall goal is to build a surrogate model to faithfully
approximate the output around a sample of interest (locally faithful to the classifier). In the same manner
as for other approaches such as LIME [RSG16] and Anchor [RSG18], the intuition behind using this
simplification approach is that the decision boundary for the black-box can be arbitrarily complex over
the whole data space but in the neighborhood of a data point there is a high probability that the decision
boundary is clear and simple, and thus, can be captured by a surrogate model.

Local fidelity for a surrogate model

Generally, local surrogate models that are used to explain individual predictions of black-boxs are inter-
pretable models (see Explanation by simplification in Section 1.2.2). For our case, the interpretability of
the model is not a criterion. We require from the surrogate model fS to be i) as faithful as possible to the
initial model f (ensures same predictions) and ii) to allow obtaining a tractable symbolic encoding. Thus,
the surrogate model must meet a fidelity-tractability trade-off. Given a classifier f and a sample data
x whose prediction f(x) is to be explained, we want to maximize the local fidelity of a surrogate model
fS , used to approximate f in the neighborhood of x noted V (x, r) (also written Vx for clarity’s sake). In
the same time, the encoding of fS must remain tractable in terms of the size of the logical representation
and the time to generate it. Since our target encoding is a CNF formula, its size is expressed in terms of
the number of clauses composing it and the total number of variables used.

We use the surrogate model fS to approximate the classifier f in the neighborhood of the instance to
be explained. The neighborhood of x within the radius r noted V (x, r) is constructed by sampling data
instances within a radius r from x. It is formally defined as V (x, r): {v∈X | dist11(x, v)⩽r}. Note that
the value of the radius r is an input information given by the user. We consider mainly the case where a
dataset is available in the following but both options can be used.

The intuition behind the explanations generated in the locality of an instance x is to detect what are
the reasons used by the model to differentiate two classes that are assigned to similar samples. In case the
dataset is not available, we can draw new perturbed samples around x. A similar approach for sampling
is presented in [RSG16] where they propose to sample instances around x by drawing elements of x
uniformly at random.

Concretely, fS is built according to the following steps :

11dist(x,v) denotes a distance measure between x and v.
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1. Select/sample a balanced set of neighbor instances of the given instance x;

2. Once the initial training samples determined, use the original model f as a predictor to determine
their predictions;

3. Approximate the ML model chosen by a surrogate model on the pairs of the selected training
samples and their corresponding predicted classes;

Given a input sample x whose prediction by a model f is to be explained, the original model f and
the surrogate model fS are supposed to have almost the same input-output behaviour in the vicinity of
x. A surrogate model fS is a logical consequence of f if any model (positive prediction) of f is a model
(positive prediction) of fS and vice-versa. In other words, for any pair (x, y) of the sampled training
dataset, we have f(x) = fS(x).

Definition 23. For a binary setting, a classifier fS is locally equivalent to the initial classifier f in the
neighborhood Vx if f(X) = fS(X).

Two models are said to be locally equivalent if they both predict the same output value for the same
samples. Thus, the explanation generated using the surrogate model fS will be consistent (faithful) to
the model f since fS is locally faithful to the model f .

The evaluation of the faithfulness of the surrogate model fS to f is based on the difference between
the predictions of f and fS . A low consistency between these predictions means that the outputs of fS
are not consistent with those from the original model f for x ∈ Vx.

We mainly focus in the remaining of this manuscript on the agnostic option used when no direct
CNF encoding exists for f or if the encoding is intractable. We make the realistic assumption that the
surrogate model is faithful to f in the neighborhood of the sample x to explain.

Random Forest as surrogate model

A machine learning model that can guarantee a good trade-off between faithfulness and tractability
(tractable CNF encoding) is the one of random forests (RF).

Given a sample x and its prediction f(x) we follow the steps described previously in order to build
a surrogate model fS that can be converted into logical formulae (interchangeably noted Σf or ΣfS ).
We determine the neighborhood of x by sampling instances within a radius r of x. We train a random
forest on the new dataset composed of pairs (x′, y′) where x′ ∈ V (x, r) and y′ = f(x′). Once we have
trained a RF fS to agnostically approximate a classifier f in the locality of x, we need to encode it into a
CNF formula following the same steps explained in 3.2.1. Namely, data instances x predicted positively
(f(x)=1) by the classifier are models of the CNF encoding the classifier. Similarly, data instances x
predicted negatively (f(x)=0) are counter-models of the CNF encoding the classifier. Such equivalence
is tighthly related to the fidelity of the surrogate model. Indeed, a high accuracy that tends towards
100% ensures that the original model and the surrogate one have the same input-output behavior. An
illustration of this encoding phase is shown in Example 19

Example 19. As a running example to illustrate the different steps, we trained a Neural Network model
f on the United Stated Congressional Voting Records Dataset12. In this example, the label Republican
corresponds to a positive prediction, noted 1 while the label Democrat corresponds to a negative predic-
tion, noted 0. An input instance x is defined over the following set of binary features :

12Available at https://archive.ics.uci.edu/ml/datasets/congressional+voting+records.
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X1 handicapped-infants
X2 water-project-cost-sharing
X3 adoption-of-the-budget-resolution
X4 physician-fee-freeze
X5 el-salvador-aid
X6 religious-groups-in-schools
X7 anti-satellite-test-ban
X8 aid-to-nicaraguan-contras

X9 mx-missile
X10 immigration
X11 synfuels-corporation-cutback
X12 education-spending
X13 superfund-right-to-sue
X14 crime
X15 duty-free-exports
X16 export-administration-act-south-africa

Assume an input instance x=(1,1,1,0,0,0,1,1,1,0,0,0,0,1,0,1) whose prediction is to be explained. As
a surrogate model, we trained a random forest classifier RFf composed of 3 decision trees (decision tree
1 to 3 from left to right in Figure 3.5) on the vicinity of the input sample x.

Figure 3.5: A random forest classifier trained on the neighborhood of x

In this example, RFf achieved an accuracy of 91.66%. This RFf classifier will later be encoded
into CNF to serve for the enumeration of symbolic explanations. Each decision tree (DTi

i=1..3
) represents a

Boolean function whose truth value is captured by Boolean variable yi. The Boolean function of RFf is
captured by the variable y. Note that the encoding of RFf is provided in this example in propositional
logic in order to avoid heavy notations. The following formulae illustrate the encoding steps applied to
RFf :

DT1 y1 ⇔ (X5) ∧
(¬X5 ∨ ¬X15 ∨X4)

DT2 y2 ⇔ (X4) ∧
(¬X4 ∨ ¬X11 ∨X16)

DT3 y3 ⇔ (X9 ∨X14) ∧
(X9 ∨ ¬X14 ∨X5) ∧
(¬X9 ∨X12) ∧
(¬X9 ∨ ¬X12 ∨ ¬X11)

Majority vote y ⇔ (y1∧y2) ∨ (y1∧y3) ∨ (y2∧y3) ∨ (y1∧y2∧y3)
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3.3 Enumeration of symbolic explanations

In this section we give more insights on how we model the explanation-generation problem and present
the setting used to enumerate the desired types of explanations. We provide the formal definitions of
the symbolic explanations which are described as a set of selected features but with guarantees of suffi-
ciency and minimality. This enumeration phase corresponds to Step 2 in Figure 3.2. To generate sym-
bolic explanations, we rely on analyzing inconsistent formulae and focus on finding and enumerating
explanations of inconsistency and corrections.

3.3.1 Satisfiability solving for explanation generation

In order to enumerate the symbolic explanations, we propose to model the problem using different con-
cepts from the propositional satisfiability problem (SAT). This choice is justified by our desire to propose
a declarative approach, i.e. does not require the implementation of specific algorithms nor dedicated pro-
grams with the aim of using SAT solvers as the problem solving engine. Given a test instance, a SAT
solver can be viewed as an oracle which answers either positively (for satisfiable instances) or negatively
(for unsatisfiable instances). Recall that we are interested in two complementary types of symbolic expla-
nations: sufficient reasons (SRx) which lead to a given prediction and counterfactuals (CFx) allowing
to know the minimal changes to apply on the data instance x to obtain a different outcome.
Our approach is based on the reduction of the problem of explaining a prediction to a variant of the SAT
problem called Partial-Max SAT [BHvM09] and relies on two very common concepts in SAT which are
Minimal Unsatisfiable Subsets (MUSes) and Minimal Correction Subsets (MCSes) to enumerate these
explanations. Such a declarative approach allows to exploit the strengths of modern SAT solvers and
already existing and proven solutions and algorithms for the extraction of MUSes and MCSes such as
[GMP07, LS08, MPMS15, BK15, LPMMS16, BK16, MIPMS16, PMJMS18, NBMS18, BČB18]. In
addition, it makes it possible to restrict the explanations only to that which concern the input data x and
do not include clauses that concern the encoding of the classifier.

Given an unsatisfiable formula, a maximum satisfiability problem (Max-SAT) returns the maximum
number of OR clauses that can be satisfied. Namely, for a CNF with m clauses and n variables, a Max-
SAT solution would be an assignment of the n variables to satisfy the maximum number of clauses. A
Partial Max-SAT problem is composed of two disjoint sets of clauses where ΣH denotes the hard clauses
(those that could not be relaxed) and ΣS denotes the soft ones (those that could be relaxed). The aim is
finding an assignment to the variables such that no hard clause ΣH is falsified and the minimum number
of soft clauses ΣS are falsified. In our modeling, the set of hard clauses ΣH corresponds to Σf , the CNF
formula encoding the classifier f while the set of soft clauses ΣS corresponds to Σx, the CNF encoding
of the data instance x whose prediction f(x) is to be explained. Let Σx be the set of soft clauses, defined
as follows :

• Each clause α ∈ Σx is composed of exactly one literal (∀α ∈ Σx, |α| = 1).

• Each literal corresponds to a Boolean variable {Xi ∈ X} from the input feature space of f .
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Example 20. Let us consider the input instance x=(1,1,1,0,0,0,1,1,1,0,0,0,0,1,0,1) from Example 19.
The CNF Σx associated to it is :

Σx (X1) ∧ (X2) ∧ (X3) ∧ ¬(X4) ∧ ¬(X5) ∧ ¬(X6) ∧ (X7) ∧ (X8) ∧ (X9)∧
¬(X10) ∧ ¬(X11) ∧ ¬(X12) ∧ ¬(X13) ∧ (X14) ∧ ¬(X15) ∧ (X16)

Recall that since the classifier f is "equivalently" encoded by Σf , then a negative prediction f(x)=0
corresponds to an unsatisfiable CNF Σf∪Σx. Now, given an unsatisfiable CNF Σf∪Σx, it is possible to
identify the subsets of Σx responsible for the unsatisfiability (corresponding to reasons of the prediction
f(x)=0), or the ones allowing to restore the consistency of Σf∪Σx (corresponding to counterfactuals
allowing to flip the prediction and get f(x)=1). For positively predicted instances, we can simply work
on the negation of the decision function of the classifier.

3.3.2 Enumerating sufficient reason explanations (SRx)

We are interested here in identifying minimal reasons of why the prediction is f(x)=0. This is done by
identifying subsets of clauses causing the inconsistency of the CNF Σf∪Σx (recall that the prediction
f(x) is captured by the truth value of Σf∪Σx). A sufficient reason explanation of a given instance x
(SRx) is the minimal subset of feature values that explains why the decision was made for this specific
instance. This means that it is enough to fix this group of features so that the model will make the
same prediction whatever the values of the remaining features in x are. We formally define the SRx

explanations as follow:

Definition 24. (SRx explanations) Let x be a data instance and f(x) its prediction by the classifier f .
A sufficient reason explanation x̃ of x is such that:

1. x̃ ⊆ x (x̃ is a part of x)

2. ∀x́ ∈ X , x̃ ⊂ x́ : f(x́)=f(x) (x̃ suffices to trigger the prediction)

3. There is no partial instance x̂ ⊂ x̃ satisfying 1 and 2 (minimality)

Intuitively, a sufficient reason x̃ is defined as the part of the data instance x such that x̃ is minimal and
triggers the prediction f(x).

Example 21. For example, let us consider a binary classification task for predicting if credit applica-
tions should be granted or denied. A model f is trained on attributes such as age, education, work-
ing hours, income, debt and accounts. Given an input instance x =(age=20, education=high
school, working hours=30, income=800, debt=200, accounts=5) and the predic-
tion f(x)= "loan denied". Assume a sufficient reason to trigger the reject decision is as follows
SRx={Income=800, Debt=200, accounts=5}. This means that the reject decision sticks for
any instance x́ having the features income, debt and accounts respectively set to 800, 200
and 5, and thus whatever the values of the other features are.

Given Definition 13 of minimal unsatisfiable subsets, it is clear that a MUS for Σf∪Σx comes down
to a subset of soft clauses, namely a part of x that is causing the inconsistency (the prediction f(x)=0).

Proposition 4. Let f be a classifier, let Σf be its CNF representation. Let x be a data instance predicted
negatively (f(x)=0) and let Σf∪Σx be the corresponding Partial Max-SAT encoding. Let SR(x, f) be
the set of sufficient reasons of x w.r.t f . Let MUS(Σf,x) be the set of MUSes of Σf∪Σx. Then:

∀x̃ ⊆ x, x̃ ∈ SR(x, f) ⇐⇒ x̃ ∈ MUS(Σf,x) (3.4)
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Proposition 4 states that each MUS of the CNF Σf∪Σx is a SRx for the prediction f(x)=0 and vice
versa.

Proof. The proof is straightforward. It suffices to remember that the decision function of f is equiva-
lently encoded by Σf and that the definition of a MUS on Σf∪Σx corresponds exactly to the definition
of an SRx for f(x). Recall that MUSes can only include soft clauses in our modeling. For the first
implication (each MUS x̃ is a sufficient reason explanation), it is easy to verify that if x̃ is a MUS then it
satisfies the 3 properties of Definition 24 (sufficient reason explanation). Namely, (1) x̃ is part of the data
instance x (since the MUS are limited to soft clauses in our modeling), (2) Since f(x)=0 iff (Σf∪Σx) is
unsatisfiable and x̃ ∈ MUS then ∀x́ ∈ X , x̃ ⊂ x́ : f(x́)=f(x), (3) x̃ is minimal.
For the implication in the opposite direction, it holds since for each sufficient reason x̃, there exists a
MUS containing only the elements of x̃ as unit clauses. From Definition 24 we have x̃ ⊆ x, f(x) = 0
and ∀x́ ∈ X , x̃ ⊂ x́ : f(x́)=f(x). We know that f(x)=0 iff (Σf ∪ Σx) is unsatisfiable. Hence, since
f(x[x̃])= f(x) then (Σf ∪ Σx[x̃]) is unsatisfiable. Consequently, x̃ is a MUS (x̃ is minimal and causes the
inconsistency).

Example 22 (Example 19 continued). Given the CNF Σf∪Σx associated to RFf from Example 19 and
the input x=(1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1), we enumerate the SRx for f(x)=0 (x is predicted
as Democrat). There are three SRx:

• SR1
x="X4=0 AND X5=0" (meaning that if the features physician-fee-freeze (X4) and el-salvador-

aid (X5) are set to 0, then the prediction is Democrat) ;

• SR2
x="X12=0 AND X5=0" (meaning that if the features education-spending (X12) and el-salvador-

aid (X5) are set to 0, then the prediction is Democrat) ;

• SR3
x="X4=0 AND X12=0 AND X9=1" (meaning that if the features physician-fee-freeze (X4)

and education-spending (X12) are set to 0, then the prediction is Democrat) ;

It is easy to check for instance that if X4=0 and X5=0 then decision trees DT1 and DT2 of Figure
3.5 predict 0 leading the random forest to predict 0 thanks to the majority vote.

3.3.3 Enumerating counterfactual explanations (CFx)

A counterfactual explanation of a given instance x (CFx) is the minimal subset of features to modify to
alter the outcome of the black-box model. It is an actionable explanation provided to the user in the form
of data instances that would have received a different outcome. A CFx distinguishes between variables
that need to be modified (activated for binary classifiers) and the ones that need to remain unchanged
(deactivated for binary classifiers).

Let us formally define the concept of counterfactual explanation.

Definition 25. (CFx Explanations) Let x be a complete data instance and let f(x) be its prediction by
the decision function of f . A counterfactual explanation x̃ of x is such that:

1. x̃ ⊆ x (x̃ is a part of x)

2. f(x[x̃])= 1-f(x) (prediction inversion)

3. There is no partial instance x̂ ⊂ x̃ satisfying 1 and 2 (minimality).

In Definition 25, the term x[x̃] denotes the data instance x where variables included in x̃ are inverted.
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Example 23 (Example 21 continued). Keeping up with the task of classifying loan applications as
accepted/rejected and giving the same input x and the same prediction from the previous example, a
counterfactual explanation to change the reject decision "loan denied" into "loan granted"
is CFx= (Income=1000,accounts=3). This means that the loan will be approved if the user
increases his income by 200C and closes two accounts.

Most approaches proposed within the literature (e.g. [DCL+18, MCV+18, MST20, WMR17]) to
find counterfactual explanations are based on solving optimization problems. Thus, the generated expla-
nations may be considered heuristic and not fully trustable. Recently, there has been work on a applying
formal reasoning to generate counterfactuals. Authors in [INAMS20] address the "Why Not?" question
and proposed an approach based on abductive reasoning to find contrastive explanations (CXp), i.e. find
a change of feature values that guarantees a change of prediction.
Following our modeling, an MCS for Σf∪Σx comes down to a subset of soft clauses denoted x̃, namely
a part of x that is enough to remove (or reverse in our case) in order to restore the consistency (flip the
prediction f(x)=0 to f(x[x̃])=1). Recall that the term x[x̃] denotes the data instance x where variables
included in the counterfactual x̃ are inverted.

Proposition 5. Let f be the decision function of a ML classifier, Σf be its CNF representation, x be a
data instance predicted negatively and Σf ∪Σx the corresponding Partial Max-SAT encoding of f(x)=0.
Let CF (x, f) be the set of counterfactuals of x w.r.t f(x) = 0. Let MCS(Σf,x) the set of MCSes of
Σf ∪ Σx. Then,

∀x̃ ⊆ x, x̃ ∈ CF (x, f) ⇐⇒ x̃ ∈ MCS(Σf,x) (3.5)

Proposition 5 states that each MCS of the CNF Σf∪Σx represents a CF x̃⊆x for the prediction f(x)=0
and vice versa.

Proof. Recall that MCSes can only include soft clauses in our modeling. For the first implication (each
MCS x́ is a counterfactual explanation), it is easy to check that if x́ is an MCS then it satisfies the
3 properties of Definition 25 (counterfactual explanation). Namely, (1) x́ is part of the data instance x
(since the MCS are limited to soft clauses in our modeling), (2) Since f(x)=0 iff (Σf∪Σx) is unsatisfiable
and x́ ∈ MCS then f(x[x́])= 1-f(x), (3) x́ is minimal.
For the implication in the opposite direction, it is enough to see that for each counterfactual x́, there
exists an MCS containing only the elements of x́ as unit clauses. From Definition 25 we have x́ ⊆ x,
f(x)=0 and f(x[x́])=1. We know that f(x)=0 iff (Σf∪Σx) is unsatisfiable. Hence, since f(x[x́])=1 then
(Σf∪Σx[x́]) is satisfiable. Consequently, x́ is an MCS (x́ is minimal and restores the consistency).

Example 24 (Example 19 continued). Given the CNF Σf∪Σx associated to RFf from Example 19 and
the input x=(1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1), we enumerate the counterfactual explanations to
identify the minimal changes to alter the outcome vote Democrat to Republican. The reading of such
explanations is as follows : in order to force the prediction to be Republican (1), it is enough to alter x
by activating/deactivating the variables included in CFx. There are four CFx such that :

• CF 1
x="X4=0 AND X12=0" : activate (set to 1) physician-fee-freeze (X4) and education-spending

(X12) while keeping the remaining values unchanged);

• CF 2
x="X5=0 AND X12=0" : activate el-salvador-aid (X5) and education-spending (X12) while

keeping the remaining values unchanged);

• CF 3
x="X5=0 AND X9=1" : activate (set to 1) el-salvador-aid (X5) and deactivate (set to 0)

mx-missile (X9) while keeping the remaining values unchanged);
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• CF 4
x="X4=0 AND X5=0" : activate physician-fee-freeze (X4) and el-salvador-aid (X5) while

keeping the remaining values unchanged);

Figure 3.6: The random forest paths set by x

It is easy to see that the four CFx allow to flip the negative prediction associated with x. Indeed, in
Figure 3.6, the pink lines show the branches of the trees that are fixed by the current input instance x.
Clearly, according to CF 1

x="X4=0 AND X12=0", if we set X4=1 and X12=1 then this will force DT2

and DT3 to predict 1 making the prediction of the random forest flips to 1.

3.3.4 On enumerating sufficient reasons and counterfactuals

The results presented in Section 3.3.2 and 3.3.3 establishing that counterfactual and sufficient reason
notions correspond to MCS and MUS respectively within Partial MaxSAT-based setting allow us to
exploit the state-of-the-art algorithms for the extraction and enumeration of MUSes and MCSes. The
decision problem of checking if a propositional formula is satisfiable (SAT) is known to be NP-complete
[Coo71]. An unsatisfiable CNF formula can have an exponential number of MCSes and MUSes of the
instance. The time needed to this complete computation is exponential as well. However, this number in
practice is often relatively small, allowing for complete enumeration of the MCSes of a given instance.
From a computational point of view, the enumeration of MCSes presents a real challenge. Yet, the task
of finding MCSes is often easier than the one of finding MUSes directly because in practice, it is easier
to find satisfiable subsets of constraints than unsatisfiable subsets [LS08].

However, advances in constraint solver technologies have allowed the development of more efficient
algorithms [BL03, DRGM10, MSHJ+13, GLM14, BDTK14, MPMS15, MIPMS16] which can handle
problems with several million clauses and variables, allowing them to be efficiently used in many appli-
cations and made the resolution of some previously impossible instances feasible. Approaches such as
[LS09, MSHJ+13, BDTK14, PMJMS17, PMJMS18] calculate all MCSes. The main principle of these
methods is to iteratively block the MCS found in order to avoid recalculating it. To do so, these methods
match to each MCS found, a new clause formed by the disjunction of the literals of the clauses forming
it. The aim is to ensure that at least one of the MCS clauses will be activated in the solutions of the
following enumerations.

A second category of methods proposed to enumerate MCSes is the one based on the duality hitting
set. For instance, the CAMUS system [LS08] uses this relation to compute all MUSes in two steps. The
first step is to compute all the MCSes of the unsatisfiable formula Σ. The second one is to find MUSes
by computing the minimal hitting sets of the MCSes.
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Duality of sufficient reasons and counterfactuals

Given a collection Ω of sets from some finite domain D, a hitting set (denoted HS) of Ω is a set of
elements from D that "hits" every set in Ω by having at least one element in common with it. A formal
definition is given in Definition 26.

Definition 26. Given Ω ⊆ 2D, a hitting set H of Ω is H ⊆ D such that ∀S ∈ Ω, H ∩ S ̸= ∅.

A hitting set H is said to be minimal, denoted MHS, if no subset of H is a hitting set of Ω. In other
words, no element can be removed from H without losing the property of being a hitting set. A hitting
set H is minimum if it has the smallest size over all hitting sets.

Given a CNF formula Σ, the set of its MUSes(Σ) and the set of its MCSes(Σ) are "hitting set duals"
of one another 13. The minimal hitting set duality between MUSes and MCSes is a well known rela-
tionship [Rei87, BL03] used in many works (e.g. [LS08],[BS05]). Concretely, every MUS hits every
MCS. Dually, every correction subset hits every unsatisfiable subset. The duality of explanations and
their enumeration has been also investigated in [INAMS20] where they exploit it to establish a duality
relationship between abductive and contrastive explanations. The same relation stands between SRx and
CFx explanations which allows us to exploit any algorithm for computing MUSes/MCSes to enumerate
both kinds of explanations. The enumeration of sufficient reasons explanations of Σf ∪ Σx can be done
using the hitting set duality over the counterfactuals explanations.

Example 25. Given a set of MCSes enumerated for the CNF Σ of Example 24 and composed of four
reparation sets : MCSes(Σ)= {{X4, X12},{X5, X12} ,{X4, X5}, {X5, X9}}, we select the variable X9

to be contained in a growing MUS. It appears only in the last MCS of the set. To ensure that X9 is
not redundant, we remove X5 from the remaining MCSes. This leaves {{X4}, {X12}} as the remaining
sub-problem. The set of MUSes(Σ) computed as the hitting set of MCSes(Σ) as described above and
illustrated in Figures 3.7a and 3.7b is presented as follows :

(a) Set of MCSes from Example 24. (b) Set of MUSes from Example 22.

Figure 3.7: Set of MUSes and MCSes of the CNF Σ from Example 19.

An example of minimal hitting set (yet not minimum) in the set of MUSes(Σ) is {X4, X9, X12}. In
the same set MUSes(Σ), {X4, X5} and {X5, X12} are the only minimum hitting sets.

13A subset α of Σ is MUS iff α is a minimal hitting set of MCSes(Σ), a subset p of Σ is an MCS iff p is a minimal hitting
set of MUSes(Σ)
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MCSes(Σ) = {{X4, X12},{X5, X12} ,{X4, X5}, {X5, X9}}

MUSes(Σ) = {{X4, X5},{X5, X12} ,{X4, X9, X12}}

In our case, we can use any state-of-the-art algorithm to enumerate MCSes for Partial Max-SAT
formulae. We use the EnumELSRMRCache tool that implements the boosting algorithm for MCSes
enumeration proposed in [GIL18], which introduces a technique that improves the performance of the
best approaches for enumerating the MCSes of an inconsistent CNF formula. This method implements
the model rotation paradigm [BMS11, NRS14, BK15, NBMS18] allowing it to recursively compute sets
of MCSes in a heuristic and efficient way. The EnumELSRMRCache tool is implemented in C++ and
uses Minisat14 as backend SAT solver. We also use the LBX-like MCS enumerator module from the
PySAT toolkit [IMMS18]15 framework implements a prototype of the LBX algorithm for the computa-
tion of a minimal correction subset (MCS) and/or MCS enumeration for partial MaxSAT formulae. The
LBX abbreviation stands for literal-based MCS extraction algorithm, which was proposed in [MPMS15].
The module can use any SAT solver available in PySAT toolkit [IMMS18]. As for the enumeration of
sufficient reasons, it is associated to the one of MUSes. In our case, the enumeration of MUSes is
achieved by computing all the minimal hitting sets of all the MCSes enumerated.

Complexity of SRx and CFx enumeration

The complexity associated with the enumeration of a sufficient reason or a counterfactual explanations
amounts to the complexity associated respectively to the enumeration of a MUS or an MCS (Propositions
4 and 5). These results already exist in the literature. The extraction of a MUS has a complexity of FPNP

and checking whether there exists a MUS of size ≤ k is of complexity ΣP
2 -complete [Gup06, Lib05].

The task of finding the smallest MUS has been studied in several papers such as [IPLMS15, MLA+05]
and its complexity is FPΣP

2 .

Lemma 2. Let Σf ∪Σx the CNF encoding of the classifier f and the data x. Finding a sufficient reason
explanation is a problem of complexity FPNP and finding the smallest SR explanation is in FPΣP

2 .

Proof. According to proposition 4 that states that a MUS is a sufficient reason explanation, finding a
sufficient reason is equivalent to finding a MUS, hence, it has the same complexity. The same reasoning
applies for finding the smallest SR explanation.

Checking whether a subset of a CNF formula is an MCS is DP-complete16 [CT95] and the computa-
tion of an MCS is a problem of complexity FPNP .

Lemma 3. Let Σf ∪Σx the CNF encoding of the classifier f and the data x. Let f(x) = 0, then finding
a counterfactual explanation is a problem of complexity FPNP .

Proof. Due to Proposition 5 which states that counterfactual explanations corresponds to MCSes, finding
a counterfactual explanation is equivalent to finding an MCS, hence, it has the same complexity.

To sum up, we model the enumeration of symbolic explanations as a Partial Max-SAT problem
which allows us to exploit any existing algorithms for the enumeration of MUSes and MCSes such as
[LS08, BMS12, NRS13, MSHJ+13, BK15, WH13]. Since we are using MUSes and MCSes as a basis

14MiniSat is a open-source SAT solver http://minisat.se/
15PySAT toolkit is designed for simple, fast, and effective Python-based prototyping using SAT oracles. It is composed of

four modules which are wrappers for the code originally implemented in the C/C++ and Python languages.
16A problem P belongs to the class DP if it can be written as P = P1 ∪ P2 with P1 ∈ NP and P2 ∈ coNP.
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for providing interpretable explanations and thanks to the hitting set duality between them, it is possible
to first enumerate MCSes and then use the minimal hitting set duality for computing the MUSes of a
formula such as in [BS05, LS08]. Such enumeration involves calling SAT solvers for each explanation.
This constraint might cause scalability problems since a call to a SAT-solver amounts to the resolution
of an NP-complete decision problem. Recent works [SSDC20, AKM20a, MSGC+20, IIM20, ABB+21,
Ign20, CSGD20b, IM21] study same families of classifiers whose explanations can be enumerated either
in a polynomial time or at least, efficiently in practice.

3.3.5 Beyond SRx and CFx explanations

The symbolic explanations (SRx and CFx) directly enumerated are complementary to the feature attri-
bution explanations in the sense that they answer questions beyond the contribution of input features into
a decision. In addition, once enumerated, such explanations can be exploited to answer requests such
as what are the irrelevant features for a given decision ? and what are the features to have complete
explanations? For instance, such requests are useful for system builders (data scientists, developers, etc)
to check whether an algorithm is correctly relying on the right variables. In addition, this kind of infor-
mation is necessary to have confidence and gain trust in the model before it is deployed. It is also useful
to regulatory bodies (e.g public organization or government agencies) to know if a change in a legally
sensitive feature (e.g. race, gender, country of origin) produces a change in the model’s outcome.

Based on SRx and CFx explanations, one can answer other XAI queries such as what are the rele-
vant/irrelevant features for a given f(x) prediction.

Irrelevant features Irrelevant features are meant to answer the question what are the irrelevant fea-
tures for a given decision ? An irrelevant feature is a feature that do not appear in any explanation of a
prediction f(x).

Definition 27. (Irrelevant features) Let f(x) be the prediction of a sample x by a model f , X the
input feature space of f and E(x, f) the set of explanations associated to f(x) (either SRx or CFx

explanations). The set of irrelevant features XIRL is formally defined as : {Xi ∈ X | Xi /∈ ei,∀ei ∈
E(x, f)}.

Example 26 (Example 19 continued). Let us continue with the United Stated Congressional Voting
records dataset. The input space X is composed of 16 features X={X1, . . . , X16}. Given the set of SRx

and CFx explanations in Examples 22 and 24, and the sample x from Example 19, the set of irrelevant
features is : XIRL = {X1, X2, X3, X6, X7, X8, X10, X11}.

Relevant features A relevant feature is defined as a feature involved in at least one explanation ei ∈
E(x, f).

Definition 28. (Relevant features) Let f(x) be the prediction of a sample x by a model f , X the input
feature space of f and E(x, f) the set of explanations associated to f(x) (either SRx or CFx expla-
nations). The set of relevant features XRLV is formally defined as : {Xi ∈ X | ∃ei ∈ E(x, f) s.t
Xi ∈ ei}.

Example 27 (Example 26 continued). Let us continue with the United Stated Congressional Voting
records dataset, given the set of irrelevant features from the previous Example 26, the set of relevant
features would be : XRLV = {X4, X5, X9, X12}.

Remark 6. It is clear that the set of relevant features XRLV is the complement of XIRL in X .
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Necessary features A necessary feature is a feature appearing in every explanation.

Definition 29. (Necessary features) Let f(x) be the prediction of a sample x by a model f , X the
input feature space of f and E(x, f) the set of explanations associated to f(x) (either SRx or CFx

explanations). The set of necessary features XNCS is formally defined as : {Xi ∈ X | Xi ∈ ei,∀ei ∈
E(x, f)}.

A necessary feature denotes a highly relevant feature since it is involved in every explanation.

3.4 Experimental study

This section presents an experimental evaluation to verify the tractability of the proposed approach in
this chapter. The evaluation will follow the processing flow proposed in this chapter (surrogate modeling,
encoding into CNF and explanation enumeration). The experimental protocol followed is described in
the following: We considered a selection of datasets known from the literature and publicly available
and can be found on Kaggle (https://www.kaggle.com/) or UCI (http://archive.ics.
uci.edu/ml/). The studied datasets deal with binary classification and are listed in Table 3.1. No
pre-processing was performed on the data except the binarization of variables. We transform the data
using a binary threshold17. The binarization threshold (T ) used was defined empirically as follows: given
a starting set of values (such as the mean, the median, etc.) associated to each variable, we choose the
threshold T which optimizes the accuracy of the model trained on binarized data using T . For instance,
the widely used standard "MNIST" dataset 18 composed of handwritten digit images of size 28 × 28
pixels was binarized using a threshold set to T = 127.

Dataset #instances #features data type
MNIST 70000 784 Images
MONK’s Problems 181 16 Numerical
Spect Heart 160 22 Numerical
Congressional US Voting 435 16 Numerical
Breast Cancer 287 48 Numerical

Table 3.1: Properties of the datasets used.

All experiments were performed on machines equipped with an Intel Core i7-7700 (3.60GHz ×8)
processors, with 32 Gb of RAM and under the Linux Cen-tOS operating system. The time-out has been
set to 600 seconds for each execution of an enumeration algorithm.

To enumerate the explanations, our approach principally needs the black-box (f ), the instance to
explain (x) and the radius r to define the neighborhood of x. We trained our own black-box models
(f ) for the different dataset and used Multi-layer Perceptron (MLP), Decision Tree (DT) and Logistic
Regression (LR) classifiers from the Python library Scikit-Learn in its version v0.22.1. The hyper-
parameters of different classifiers were set to their default values. We also used "one-vs-all" Binary
Neural Network (BNN)19 classifiers on the MNIST dataset to recognize digits (0 to 9) using the pytorch
implementation20 of the Binary-Backpropagation algorithm BinaryNets [HCS+16]. As for the surrogate
models, we used random forest (RF) from the Scikit-Learn in its version v0.22.1. A wide range of hyper-
parameters for RFs were explored in attempts to reach relatively the best fidelity of the surrogate models

17All values above the threshold are marked as 1 and all values equal to or below the threshold are marked as 0.
18MNISTdatasetavailableathttp://yann.lecun.com/exdb/mnist/
19defined as a neural networks with binary weights and activations at run-time
20available at: https://github.com/itayhubara/BinaryNet.pytorch
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associated to the different classifiers. The search for the main hyper-parameter to (best cross validation
score) was done through a grid search procedure using the GridSearchCV21 from Scikit-Learn. The
values for the number of decision trees and maximum depth of the RF tested were ranging in [3,40] and
[4,100] respectively.

3.4.1 Results

We report the following results by setting the following parameters nb_trees=10 and max_depth=24
for the surrogate classifier. Each surrogate model was trained on the vicinity of an input sample x using
different values of radius (r). For the MNIST dataset, the experiments were conducted on an average of
1500 to 2500 instances picked randomly. As for the rest of the datasets, all instances were used to test
the approach.

Impact of hyper-parameters on the fidelity of surrogate model

We present in this section the results of experiments conducted on the MNIST dataset to show the impact
of the different hyper-parameters used on the fidelity of the surrogate model.

The max_depth represents the maximum allowed depth of each tree in the forest. Note that the
deeper the tree, the more splits it has (i.e it captures more information about the data). Figure 3.8 shows
the results of experiments conducted to find a suitable max_depth to improve the accuracy. The blue
curve represents the accuracy when the classification model is built on the training dataset and the red
one corresponds to the accuracy of the model on the test data. As shown on the different plots of Figure
3.8, the accuracy of RF is best for values of max_depth between 10 and 20.

The ntree parameter (also referenced to as nb_trees) represents the number of decision trees in
RF. The classification accuracy of a RF can be improved when using a large number of trees but it also
results in a more important training time. Figure 3.11 shows the results of experiments conducted to find
a suitable ntree to balance accuracy and computation time. The green curve represents the accuracy
of the classification model on the training dataset and the orange one corresponds to the accuracy of
the model on the test data. As shown on Figure 3.11, the accuracy of classification is not significantly
improved when ntree is greater than 10 but still reached at least 92%. Thus, the ntree was set as 10
during the evaluation.

Figure 3.9 shows the number of CFx explanations with respect to the neighborhood size |Vx|. The
blue and red bars correspond respectively to the case when a maximum size of |Vx| is used and when not.
As shown in Figure 3.9, the instances having a large number of neighbors have a bigger total number of
explanations, in comparison to when an upper bound for the vicinity size is used. Since in this experiment
we propose local explanations, a maximum number of neighbors was set during the experimentation to
preserve the "local" aspect of the explanations as well as to optimize their enumeration (all explanations).

Figure 3.10 shows the performance of RF classification model trained on a set of neighbors obtained
using different radius values. We can observe that the model has good performance for the different
sizes of Vx and seems to not be significantly improved for neighborhoods composed of more than 200
instances in general. As shown in Figure 3.9, a large neighborhood generates a large set of explanations.
Thus, to balance the accuracy of RF and the size of the output set of explanations, we set the maximum
size of the locality of an instance to 200.

21GridSearchCV exhaustively generates candidates from a grid of parameter values specified with the param_grid parameter.
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Chapter 3. Symbolic explanations for single-label classification

(a) RF trained on MNIST_1 (b) RF trained on MNIST_8

(c) RF trained on MNIST_9 (d) RF trained on MNIST_0

Figure 3.8: The classification accuracy of RF models with respect to the max_depth parameter.

Evaluating the CNF encoding feasibility

We report our results regarding the encoding phase to generate the CNF formulae in terms of its size
represented in number of variables and clauses (Vars/CLs) and also the encoding time (in seconds). We
use the Tseitin Transformation [Tse83] to encode the propositional formulae associated to our surrogate
model into an equisatisfiable CNF formulae, the input format required to use the SAT solvers. For the
MNIST dataset, the predictions are made using 22 the "one-vs-all" BNN classifiers trained to recognize
the digits. The results reported here concern the "0","2","6" and "8" digits but they are similar for the
other digits. For the other datasets, a MLP classifier is used. Note that a maximum number of neighbor
instances set to 200 is used to limit our region of interest around an instance x.

Table 3.2 shows that the generated random forest classifiers provide interesting results in terms of
fidelity (high accuracy of the surrogate models) and tractability (size of the CNF encoding). This ensures
that the explanations generated locally are relevant for the original model having the same behavior. In
Table 3.2, the size of CNF is expressed as number of variables/number clauses. We can see that the
number of variables and clauses of CNF formulae remains reasonable and easily handled by the current
SAT-solvers which confirms the feasibility of the approach.

22the results for the other digits are similar but can not be reported here because of space limitation
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3.4. Experimental study

(a) Radius set to 150. (b) Radius set to 250.

Figure 3.9: Example to compare the average total number of CFx explanations with respect to the
neighborhood size when it is limited to a maximum number ( |Vx| ≤ T ) or not limited.

Radius
(r)

|Vx| Dataset
name

Acc (%) MIN |Σ|
(Vars/CLs)

AVG |Σ|
(Vars/CLs)

MAX |Σ|
(Vars/CLs)

MIN
runtime (s)

AVG
runtime (s)

MAX
runtime (s)

100

60 MNIST_0 97.4 141/837 449/930 841/1079 0.8916 0.9739 1.1667
69 MNIST_2 95.25 98/825 689/1025 1359/1624 0.904 1.1 1.53
70 MNIST_6 96.7 124/833 783/1060 1443/1874 0.913 1.14 1.62
169 MNIST_8 95.21 1219/1230 1615/2318 2043/3499 1.26 1.78 3.68

150

160 MNIST_0 97.7 147/843 1475/1934 2083/3657 0.8991 1.1643 1.6446
167 MNIST_2 91.19 1205/1211 1579/2263 2069/3672 1.32 1.87 3.71
165 MNIST_6 93.88 1211/1216 1739/2702 2173/3950 1.17 1.6 3.01
200 MNIST_8 95.1 1529/2070 1795/2798 2133/3725 1.38 1.87 2.92

250

201 MNIST_0 98.87 1744/4944 1979/5540 2176/6066 0.83 1.05 1.51
>200 MNIST_2 93 1941/5452 2172/6050 2429/6760 0.88 1.06 1.92
>200 MNIST_6 96 1978/5534 2270/6293 2558/7028 0.82 0.92 1.31
>200 MNIST_8 95.12 1837/5178 2059/5727 2330/6408 0.74 0.86 1.32

1 33

SPECT

100 1296/3866 1565/4576 2163/6154 2.71 3.06 3.86
2 52 99.04 1317/3918 1776/5160 3139/8846 1.01 2.08 4.09
3 63 97.3 1297/3862 1933/5581 3519/9850 0.89 1.29 2
4 75 93.47 1322/3928 1891/5493 33003/9264 0.752 1.11 1.872
7 112 90.98 1676/4886 2315/6683 2638/7588 85.7 1.11 1.29
22 160 99 2495/7174 2758/7921 3088/8844 1.07 1.214 1.5

5 36
MONKS

91.21 1314/3908 1576/4595 2353/6668 1.09 2.124 4.62
16 181 98 2351/6714 2883/8146 3451/9694 1.66 1.56 2.03

5 26 BREAST 78.68 1291/3836 1757/5080 2995/8454 1.21 1.76 2.38
10 147 CANCER 79.82 1327/3942 4605/12891 5868/16416 1.18 2.18 3.84
48 >200 82 5094/14184 6069/16907 7053/19586 2.02 2.5 3.42

2 22 CONGRES. 100 128/280 1368/4042 1494/4372 0.9 1.73 3.7
5 70 VOTING 94.67 1291/3836 1853/5347 2997/8462 1.15 1.74 2.64
16 >200 90.82 1313/3893 2024/5783 2873/8122 0.91 1.85 2.45

Table 3.2: Evaluating the scalability of the CNF encoding in terms of size (number of variables and
clauses) and encoding time in seconds for different datasets using different radius values.
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Chapter 3. Symbolic explanations for single-label classification

(a) MNIST0 (r=100) (b) MNIST0 (r=150)

(c) MNIST2 (r=100) (d) MNIST6 (r=100)

Figure 3.10: The classification accuracy of RF models with the respect to the neighborhood size.

Evaluating the enumeration of symbolic explanations

The objective here is to assess the practical feasibility of the enumeration (scalability) of SRx and CFx

explanations. For the enumeration of CFx, we use the EnumELSRMRCache tool23 implementing the
boosting algorithm for MCSes enumeration proposed in [GIL18] with a timeout set to 600s. As for the
SRx explanations, their computation is easily done by exploiting the minimal hitting set duality relation-
ship between MUSes and MCSes. The different values used for the radius r during the experiments has a
direct impact on determining the locality of x, and therefore selecting the data used to train the surrogate
model.

We observe within Table 3.3 that the average runtime remains reasonable (note that the times shown
in Table 3.3 relate to the time taken to list all the explanations. The solver starts to find the first explana-
tions very promptly) and that the approach is efficient in practice for medium sized classifiers (as shown
in the experiments for BNNs with around 800 variables). We also observe that the number of CFx may
be challenging, hence, this emphasizes the need for scoring metrics to filter them out and identify the
ones with the strongest influence on the prediction.

Table 3.4 presents the evaluation of the sufficient reasons generation (SRx). Those explanations are
enumerated using the duality between sufficient reasons and counterfactuals. Knowing that the runtime

23available at http://www.cril.univ-artois.fr/enumcs/
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3.4. Experimental study

(a) RF trained on MNIST_0 (b) RF trained on MNIST_3

(c) RF trained on MNIST_4 (d) RF trained on MNIST_5

(e) RF trained on MNIST_6 (f) RF trained on MNIST_8

Figure 3.11: The classification accuracy of RF models with respect to the ntree parameter.

reported in Table 3.4 is the time needed for the enumeration of all possible SRx explanations, the results
remain of the same order of magnitude as that of the counterfactuals presented in Table 3.3.

The pie charts in Figure 3.12 are used to illustrate the portion of relevant features on average (Figure
3.12a) and at most (Figure 3.12b) composing the explanations enumerated for the different classifiers
trained on the MNIST dataset. As shown on the charts, the number of relevant features remains low
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Radius
(r)

Dataset
name

MIN #CF AVG #CF MAX #CF MIN
runtime (s)

AVG
runtime (s)

MAX
runtime (s)

One CF
runtime (s)

100

MNIST_0 1 80 1047 8*10−4 4.09*10−2 54*10−1

≤ 10−4

MNIST_2 1 2198 222180 3*10−4 32.42*10−2 43.24
MNIST_6 1 13753 225456 2.4*10−3 12.39 275.52
MNIST_8 1 5343 85407 1.1*10−3 2.74 35.08

150

MNIST_0 1 4733 261504 10−4 0.88 67.05
MNIST_2 4 23503 346288 3*10−3 13.36 315.34
MNIST_6 1 29527 401117 6.6* 10−3 19.1 328.73
MNIST_8 2 5703 739433 7*10−4 1.86 57.38

250

MNIST_0 10 35790 285219 0.005 21.49 234.18
MNIST_2 13 63916 546005 0.11 42.11 600
MNIST_6 15 79520 640868 0.11 50.86 531.16
MNIST_8 6 69678 1210349 33*10−4 32.3 315.34

3

SPECT

1 2 11 0 64*10−4 137*10−4

0
4 2 19 107 2*10−4 1.58*10−2 5.75*10−2

7 2 71 446 2.7*10−3 5.24*10−2 2.88*10−1

22 15 204 700 0.01 0.12 0.42

5
MONKS

1 3 20 2*10−4 5.3*10−3 1.4*10−2

0
16 3 15 41 0.01 0.03 0.06

5 BREAST 1 18 202 0 1.57*10−2 1.54*10−1

010 CANCER 1 368 3118 2*10−4 6.97*10−1 6.05
48 11 947 5541 0.02 1.5 17.7

2 CONGRES. 1 1 3 3*10−4 6.6*10−3 9.2*10−3

05 VOTING 1 3 11 5*10−4 7.9*10−3 3.28*10−2

16 1 5 44 1.9*10−3 1.21*10−2 4*10−2

Table 3.3: Evaluating the enumeration of all the counterfactual explanations.

compared to the size of the input feature space (composed of 784 variables). This is directly related to
the property of minimality of our explanations, which translates into concise symbolic explanations.

(a) Average number of variables involved (b) Maximum number of variables involved

Figure 3.12: The percentage of relevant features w.r.t the initial feature space composed of 784 variables
for the MNIST dataset.
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Radius
(r)

Dataset
name

MIN #SR AVG #SR MAX #SR MIN
runtime (s)

AVG
runtime (s)

MAX
runtime (s)

100

MNIST_0 1 230 1808 1.1* 10−3 2.94* 10−2 3.38* 10−1

MNIST_2 1 9911 116700 1.2* 10−3 47.6 595
MNIST_6 3 1900 19129 1.1* 10−3 7.018* 10−1 7.06
MNIST_8 1 13032 126764 9* 10−4 31 488

150

MNIST_0 12 31665 172530 2.2 * 10−3 77.87 519
MNIST_2 1 11851 119937 7* 10−4 36.58 594
MNIST_6 5 17218 144640 1* 10−3 63.09 558
MNIST_8 2 20189 227446 8* 10−4 29.1 578

250

MNIST_0 3 32135 246428 1.4* 10−3 100 595
MNIST_2 16 27519 155956 3.1* 10−3 104.67 592
MNIST_6 65 38323 179112 7.2* 10−3 121 577
MNIST_8 4 33659 315753 1.4* 10−3 35.98 536

3

SPECT

1 3 13 9*10−4 1.8*10−3 4.9*10−3

4 1 21 113 1.1*10−3 5*10−3 2.32*10−2

7 1 87 390 1.2*10−3 2.47*10−2 12.36*10−2

22 1 223 1290 9*10−4 4.94*10−2 41.97*10−2

5
MONKS

1 3 13 8*10−4 1.3*10−3 3.4*10−3

16 1 28 102 8*10−4 3.9*10−3 1.67*10−2

5 BREAST 1 23 308 1*10−3 4.4*10−3 6.69*10−2

10 CANCER 1 1502 10817 9*10−4 6.66*10−2 7.63
48 4 4737 69838 1.3*10−3 2.16 55.25

2 CONGRES. 1 2 3 1.1*10−3 1.5*10−3 2.4*10−3

5 VOTING 1 2 5 8*10−4 1.4*10−3 2.4*10−3

16 1 8 46 9*10−4 2.5*10−3 1.1*10−2

Table 3.4: Evaluating the enumeration of all the sufficient reasons explanations.

Figure 3.13 represents box plots indicating the range in which the size of explanations (number of
variables) is located. We observe that in general, the symbolic explanations are of concise sizes which
help a human to understand the reasons of a model’s decision easily.

Illustrating SRx and CFx explanations for MNIST dataset

We show examples of both types of symbolic explanations Figure 3.14. Recall that we trained two "one-
vs-all"24 BNNs for each digit ranging from 0 to 9 and we will be using them as black-boxes on some test
samples. Although the performance of the classifiers is not the key objective to this study, we use well-
trained models that can predict the output well. The classification models f8 and f0 have respectively
achieved an accuracy of 97% and 99% on test data. Figure 3.14 shows some relevant data samples and
the symbolic explanations generated to explain their predictions. The first column shows the input test
images representing different digits, their prediction and the targeted outcome that can be reached using
a counterfactual explanation. Results are depicted on three columns. The column "Relevant features"
represents all the pixels included in the set of explanations enumerated for the test input. The "sufficient

24A "one-vs-all" BNN fi returns a positive prediction for an input image representing the "i" digit, and negative one other-
wise.
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Chapter 3. Symbolic explanations for single-label classification

Figure 3.13: The range of explanations size enumerated for the different datasets.

reason" column corresponds to a picture depicting the set of pixels composing an example of a single
sufficient reason explanation that justifies the model’s decision. Finally, the last column represents an
example of a single counterfactual explanation highlighting the set of pixels to activate/deactivate in or-
der to provide users with actionable explanations in the form of data sample that would have received a
different outcome. The first row associated to a test input shows images with the pixels composing the
different explanations. The second row represents the overlay of test input and the different explanations.
Let us consider the first test input (x), Figure 3.14 shows an example of a single SRx explanation high-
lighting the sufficient pixels for the models f8 to trigger a negative prediction for the image x. It also
provides an example of a CFx explanation showing the pixels to invert in the test input to make the
model f8 predict x positively. Another example is presented for a test input illustrating a 1-digit and it is
recognized as non 0-digit by f0. The last row is an example of a test input positively predicted by f0 as
a 0-digit.

3.5 Conclusion

In this chapter, we have proposed a post-hoc interpretability method in order to explain the decisions
of black-box classification models. We proposed a novel model agnostic generic approach to explain
individual outcomes by providing two complementary types of symbolic explanations (sufficient reasons
and counterfactuals). The generation of local symbolic explanations is done within the framework of
satisfiability solving. It takes advantage of the strengths of already existing and proven solutions, and
of the powerful practical tools for the generation of MCSes/MUSes. We also introduced a substitution
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3.5. Conclusion

Prediction : f8 = 0
Target : f8 = 1

Test input Relevant features Sufficient reason (SR) Counterfactual (CF )

Prediction : f0 = 0
Target : f0 = 1

Prediction : f0 = 1
Target : f0 = 0

Figure 3.14: Example inputs from MNIST dataset and their respective symbolic explanations.

approach as a solution to overcome the complexity of encoding a ML classifier into an equivalent logical
representation. It consists in approximating the original model locally using a surrogate model which
will subsequently be used to explain individual predictions of black-box ML models. This approach
initially proposed for single-label classification constitutes the cornstone on which the rest of our work
is based and has been extended for multi-label classification in the next chapter.
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Chapter 4

Symbolic explanations for multi-label
classification

Multi-label classification is a well-known predictive task encountered in a wide range of applications
such as text categorization, object recognition in images, classification of genes and bio-informatics. For
example, in a text categorization problem, each document can be simultaneously assigned to multiple
labels or classes (for example, a conference paper may at the same time be tagged as Machine learning,
XAI and bio-informatics). In single-label classification, classes are mutually exclusive. At the opposite,
in multi-label classification, classes do not exclude each other allowing the same input instance to be
simultaneously classified into multiple classes.

This chapter is dedicated to the presentation of an agnostic and declarative approach to provide
different types of symbolic explanations for multi-label classifiers. It extends the declarative and model-
agnostic approach we presented to explain the predictions of single-label classifiers. More precisely,
in addition to sufficient reason and counterfactual explanations presented in Chapter 3, the proposed
approach in this chapter makes it possible to generate explanations at different granularity levels which
go from structural relationships between labels to the selection of features allowing to force the prediction
to any desired target prediction.

We first present in Section 4.1 a brief refresher of the main methods that have been proposed by
the community. In Section 4.2, we deal with the definitions of explanations (sufficient reasons and
counterfactual explanations) in a multi-label setting on two different levels of granularity (the whole
prediction or parts of the prediction). We will present in Section 4.3 a new type of explanations specific
to multi-label problems where we rely on the relationships among the considered classes to infer and
present explanations. We present a SAT-based setting to enumerate those explanations in Section 4.4.
Finally, we tackle in Section 4.5 the issue of evaluating our approach on different types of data.

4.1 Brief review of related works

Unlike single-label classification problems, very few studies have focused on explaining multi-label
classifiers. There is mainly a couple of simple feature attribution methods based on aggregating feature
importance scores of the different predicted labels computed individually. Explanation approaches in
multi-label classification can mainly be categorized into feature importance explanations and decision
rules explanations. In [PGMP19], the authors propose "MARLENA", a model-agnostic method to ex-
plain the decisions of a multi-label black-box. It generates a synthetic neighborhood around the sample
to be explained and learns a multi-label decision tree on it. The explanations are simply the decision
rules derived from those decision trees. In [CGG+20], the authors propose an approach to explain neural
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4.2. Feature-based explanations

network-based systems by learning first-order logic rules from the outputs of the multi-label model. This
approach completely ignores the features when providing explanations. The explaining functions give
a description in terms of first-order logic where each rule expresses the validity of a certain explanation
w.r.t. the output of the model on a given input. In [SB21], the authors focus on multi-label model ex-
plainability and propose a method to merge multiple feature importance explanations corresponding to
each class into a single list of feature contributions. The aggregation of the feature weights is simply the
average feature weights over the k labels. The same idea is used in [Che21] except that they compute
Shapley values over the dataset using kernel-SHAP and then compute a global feature importance per
label.

Such methods are limited when it comes to the explanation types they provide. For instance, one
can not identify which part of the features is responsible for a given part of the multi-label prediction.
Moreover, from a user point of view, it can be hard to interpret what a given feature importance means
in the case of a multi-label decision given that a feature may have strong influence for predicting a
given label while it is irrelevant for predicting other labels. In the majority of related works, there are
even no clear and formal definitions of what a multi-label explanations are. To our knowledge, there
is no symbolic explanation for the classification multi-label problems. We propose different types of
explanations that take into account several possible situations where the interest of the user is directed
towards an explanation of the entire prediction or of a specific part of it. Our contribution proposes
not only explanations which justify the output obtained, but also actionable explanations in the form of
counterfactuals.

4.2 Feature-based explanations

A feature-based explanation involves only features, i.e. aims to explain the predictions of a classifier
based only on the features of the input data. It can be associated with different semantics and different
granularity levels. We focus on two complementary types of feature-based explanations that are the
sufficient reasons and counterfactuals.

Entire-outcome Fine-grained
Sufficient reasons (Which features
cause the current prediction)

Why f(x)=y ? What causes a subset of labels y′⊆y
to be predicted by f ?

Counterfactuals (Which features
to modify to have an alternative pre-
diction)

Which x′ st. f(x′)=y’ ? Which x′ forces f to make a desired
partial prediction ?

Table 4.1: The symbolic-based multi-label explanations

As for single-label classification, sufficient reason explanations correspond to the minimal part of the
input data that is sufficient to trigger the current prediction while counterfactual explanations refer to
the minimal changes in the input data to get an alternative target outcome. Depending on the problem
under study, it may be relevant to have different types of explanations. Assume that we have a multi-label
classifier (MLC) with a large output set (e.g. hundreds). We may care little about all the labels as it may
be irrelevant to provide an explanation for the entire outcome of the model, especially for datasets with
very low density, as it represents an inherent challenge for multi-label classification [WXH+14, BH17,
BCPdI19, Nig16]. This is especially true since in most cases, the user is interested in the few classes
predicted positively. For example, in document categorization tasks, a user may want to understand why
a document is (or not) classified in such classes. Explaining "Why the document was not classified in all
the remaining classes?" may be irrelevant. Based on this observation, the approach we propose called
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Chapter 4. Symbolic explanations for multi-label classification

SYMCA for SYmbolic explanations for Multi-label ClAssification provides explanations for both the
entire prediction (all classes) and explanations for parts of the prediction that are of interest to the user.
We sum up in Table 4.1 the different cases we consider for feature-based explanations.

Let us introduce a running example that will be used within this chapter to illustrate the different
concepts covered.

Example 28 (Running example). Classifying Yelp reviews into 5 categories. The "Yelp reviews classifi-
cation"25 is a categorization problem of reviews about businesses and services into relevant categories
to help the users understand the rating of a given restaurant. The objective here is to know whether a
review positively comments on certain aspects such as the Food, Service, Ambience, Deals and
Worthiness. The dataset contains more than 10000 reviews from food and restaurant areas. There are
three nominal features: Good (4-5 stars), Moderate (3 stars) and Bad (1-2 stars). The output classes
(labels) are : (Food (F)), (Service (S)), (Ambience (A)), (Deals (D)), (Worthiness
(W)). We consider the MLC f depicted in Figure 4.1 and consisting in a Binary Relevance classifier26

using decision trees as base classifiers. Given the following review27 : "We went out with friends to
have mexican food, the quesadillas was delicious and came with a lot of cheese. We find the place a
little boring but the dining room seemed nice" and a 4 stars rating as inputs, the review was classified
positively commenting about label F , and negatively about the rest (S,A,D and W). It corresponds to
y=(1, 0, 0, 0, 0) where y = f(x). The extracted features used in this example correspond to the high-
lighted paths in Figure 4.1.

Figure 4.1: Binary Relevance classifier trained on the Yelp dataset using decision trees as base classifiers

25The dataset is available at https://www.ics.uci.edu/~vpsaini/.
26The binary relevance method (BR for short) is about training one binary classifier independently for each label in order to

perform multi-label classification. It is the most commonly used strategy for multi-label classification.
27Of course, this is the raw text of the review. Raw data is first pre-processed and two types of features are extracted : i)

textual features consisting of unigrams, bigrams and trigrams and ii) binary features representing rating 1-2 stars, 3 stars, and
4-5 stars respectively. Classification is achieved on extracted features.
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4.2. Feature-based explanations

4.2.1 Entire-outcome explanations

An entire-outcome explanation explains all the predicted labels simultaneously. We recall that in the
multi-label setting, the output is a vector y of k binary values assigned to each class of the output space
Y . Our feature-based explanations are based on the definition of sufficient reasons and counterfactuals
proposed initially for the binary case (see Chapter 3).

Entire-outcome sufficient reasons explanations An entire-outcome sufficient reason explanation (SR
for short) identifies the minimal part of a data sample x (namely, the subset of features) sufficient to trig-
ger the current multi-label outcome. Formally, a SR is defined as follows:

Definition 30 (SR explanations). Let x be a data instance and y=f(x) be its prediction by the multi-
label classifier f . An entire-outcome sufficient reason explanation x̃ is such that:

1. x̃ ⊆ x (x̃ is a part of x),

2. ∀x́ ∈ X , x̃ ⊂ x́ : f(x́)=f(x) (x̃ suffices to trigger y=f(x)),

3. There is no partial instance x̂ ⊂ x̃ satisfying 1 and 2 (minimality).

While the two first conditions in Definition 30 search for parts of x allowing to fire the same pre-
diction, the minimality condition allows to find parsimonious explanations (in terms of the number of
features involved in the explanation). As we will see in our experiments, the explanations are not unique
in the general case. Note that this is the same definition as the one of the SR for the single-label classifica-
tion case except that y represents a vector of labels instead of one label. In fact, multi-label classification
is a generalization of the single-label classification.

Example 29 (Example 28 continued). (SR explanations) The explanations can concern the words
present but also the words absent in a given comment entry x. The presence of a word is represented by
a binary variable set to 1 if the word appears in x and 0 otherwise. Let us introduce an example of a
SR explanation. We want to explain the prediction y=(1, 0, 0, 0, 0) for the review in hand. Given Table
4.2 showing examples of one instance of SR explanation per label, an example of sufficient reason for
the entire-outcome is (’IsRatingBad:0’, ’waitress:0’, ’looking:0’, ’daily_specials:0’, ’this_place_is:0’,
’delicious:1’, ’the_staff_is:0’, ’service_great:0’, ’great_place:0’, ’really_cool:0’, ’staff:0’, ’excellent:0’,
’happy_hour_menu:0’, ’prices_good:0’, ’for_happy_hour:0’, ’the_bar_area:0’, ’the_atmosphere_is:0’,
’pleasantly_surprised:0’, ’reasonably_priced:0’). It is easy to check that this SR involves parts forcing
the five decisions trees to predict y=(1, 0, 0, 0, 0) as detailed in Table 4.2.

Labels y Sufficient reason explanation
Food (Y1) 1 [’IsRatingBad : 0’, ’waitress : 0’, ’looking : 0’, ’this_place_is :

0’, ’delicious:1’]
Service (Y2) 0 [’the_staff_is:0’, ’staff:0’, ’excellent:0’, ’service_great:0’]
Ambience (Y3) 0 [’great_place:0’, ’really_cool:0’, ’the_atmosphere_is:0’]
Deals (Y4) 0 [’daily_specials : 0’, ’happy_hour_menu : 0’, ’for_happy_hour :

0’]
Worthiness (Y5) 0 [’daily_specials : 0’, ’happy_hour_menu : 0’, ’the_bar_area : 0’,

’pleasantly_surprised : 0’, ’reasonably_priced : 0’]

Table 4.2: A SR explanation for the multi-label prediction y=(1, 0, 0, 0, 0).
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Chapter 4. Symbolic explanations for multi-label classification

Entire-outcome counterfactual explanations Given a target outcome ý, a counterfactual entire-outcome
explanation (CF for short) is the minimal changes to be done in x in order to obtain ý instead of y. In
other words, if for some reason, one wants to force the classifier to predict ý, then a counterfactual expla-
nation is those minimal changes x́ needed to make on x such that f(x[x́])=ý. The notation x[x́] denotes
the instance x where the variables involved in x́ are inverted.

Definition 31 (CF Explanations). Let x be a complete data instance and y=f(x) be its prediction by
the MLC f . Given a target outcome ý ̸= y, an entire-outcome counterfactual explanation x̃ of x is such
that:

1. x̃ ⊆ x (x̃ is part of x),

2. f(x[x̃])=ý (x̃ fires the target prediction),

3. There is no partial instance x̂ ⊂ x̃ satisfying 1 and 2 (minimality).

Example 30 (Example 28 continued). (CF explanations) Let’s assume that the initial prediction y
of the review in hand was (1, 0, 0, 0, 0). We want to know the modifications needed on x such that
the review is classified as positively commenting on Service (S), Ambience (A), Deals (D)
and Worthiness (W) and negatively commenting the Food (F). Namely, the target prediction ý
is (0, 1, 1, 1, 1). Table 4.3 shows examples of one instance of CF explanation per label, an example
of entire-outcome counterfactual is : [’delicious:1’, ’IsRatingModerate:0’ ’staff:0’, ’great_place:0’,
’little:1’, ’daily_specials:0’, ’the_bar_area:0’]. Table 4.3 shows how the above entire-outcome CF
involves parts forcing each decision tree to trigger the target outcome ý. For example, to force the model
to predict l2 positively for x, it is enough to add the word ’staff’ to x, in other words, change ’staff:0’
into ’staff:1’ in the decision tree associated with label S (l2).

Labels y ý Counterfactual explanations
Food (Y1) 1 0 [’delicious : 1’, ’IsRatingModerate : 0’]
Service (Y2) 0 1 [’staff : 0’]
Ambience (Y3) 0 1 [’great_place : 0’]
Deals (Y4) 0 1 [’daily_specials : 0’]
Worthiness (Y5) 0 1 [’little : 1’, ’the_bar_area : 0’]

Table 4.3: An entire-outcome CF explanation for the target prediction ỹ= (0, 1, 1, 1, 1).

4.2.2 Fine-grained explanations

In practice, it may be more useful to get explanations about a label or a subset of labels of interest rather
than an explanation for the entire prediction (a vector of k labels). We say that the label lj is positively
predicted if lj = 1, and negatively predicted if lj = 0.

Remark 7. In fact, an entire-outcome explanation is a particular case of fine-grained explanation when
the target set of interest corresponds to the whole multi-label output vector.
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Fine-grained sufficient reasons explanations Similar to the definition of sufficient reasons for the
entire-outcome prediction, a fine-grained sufficient reason (SRỹ for short) is limited to explaining the
part of ỹ ⊂ y that is of interest for the user.

Definition 32 (SRỹ explanations). Let x be a data instance, y=f(x) be its multi-label (entire) prediction
by the classifier f and ỹ a subset of y representing the labels of interest (ỹ can involve labels that are
predicted positively or negatively). A fine-grained sufficient reason explanation x̃ of x is such that:

1. x̃ ⊆ x (x̃ is a part of x),

2. ∀x́ ∈ X , x̃ ⊂ x́ : ỹ ⊆ f(x́) (x̃ suffices to trigger labels in ỹ),

3. There is no partial instance x̂ ⊂ x̃ satisfying 1 and 2 (minimality).

Example 31 (Example 29 continued). (SRỹ explanations) Assume we are only interested in the SRỹ

explanations regarding the labels "Food", "Service" and "Ambience" (explain why we have (l1 =
1, l2 = 0, l3 = 0)). An example of a fine-grained SRỹ explanation for the labels F,S and A is :
[’IsRatingBad:0’, ’waitress:0’, ’looking:0’, ’staff:0’, ’this_place_is:0’, ’delicious:1’, ’the_staff_is:0’,
’excellent:0’, ’service_great:0’, ’great_place:0’, ’really_cool:0’, ’the_atmosphere_is:0’].

Fine-grained counterfactual explanations

Definition 33 (CFỹ Explanations). Let x be a data instance, y=f(x) be its multi-label prediction by
the classifier f . Let ỹ be a subset of y representing the labels of interest (namely, the labels to flip). A
fine-grained counterfactual explanation x̃ of x is such that:

1. x̃ ⊆ x (x̃ is a part of x),

2. f(x[x̃]) = y[ỹ] (inversion of labels into ỹ),

3. There is no partial instance x̂ ⊂ x̃ satisfying 1 and 2 (minimality)

The term x[x̃] denotes the data instance x where variables included in x̃ are inverted, and y[ỹ] denotes
the prediction y where labels included in ỹ are inverted (set to the target outcome).

A fine-grained counterfactual explanation means that instead of a prediction y, we want x̃ which need
to be modified in x such that f(x[x̃]) = y[ỹ] (partial targeted outcome).

Example 32 (Example 30 continued). (CFỹ explanations) Let us assume that we want to invert the
prediction of the labels "Service" and "Ambience", corresponding to the partial target prediction
ỹ = (l2 : 1, l3 : 1). An example of a fine-grained CFỹ explanation that allows us to reach ỹ is : [’staff:0’,
’great_place:0’]. We can easily see that changing the value of the variables in CFỹ will modify the
prediction of x for the concerned labels (S,A). The new decision rule paths within the decision trees
DTService and DTAmbience are presented respectively in Figures 4.2a and 4.2b.

As highlighted in Figure 4.2a, it is sufficient to change the value of the variable staff to 1 to reach
the leaf presenting a positive prediction within the decision tree encoding the classifier associated to
label Service. The same way, changing the value of variable great_place to 1 leads to the node
representing the variable high. It is predicted 0 since it is not present in the sample x as shown in the
decision path highlighted in Figure 4.2b.
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(a) Decision path set by CFỹ within DTservice (b) Decision path set by CFỹ within DTambience

Figure 4.2: Illustration of a fine-grained counterfactual

Special cases of fine-grained counterfactual explanations Given an input data instance x, a MLC f
and its prediction y=f(x), one may be interested in practice in the following explanations :

- Counterfactual explanation for expansion : By expansion, it is meant adding to the current pre-
diction y more labels predicted positively. For example, if an application (represented by a set of
features) is rejected because it was deemed to meet few criteria (corresponding to the labels), a
natural question in this case is what needs to be changed in the application to meet more criteria
(more labels predicted positively). Expansion requires that at least one label li=0 in the current
prediction y will be inverted while preserving those labels already predicted positively.

- Counterfactual explanation for contraction : This is the opposite scenario to the expansion. It
is rather a matter of having fewer positive labels. Clearly, at least one label li=1 in the current
prediction y needs to be inverted. Thus, the number of negative labels in the new multi-label
prediction ý is greater than the ones in y. The idea is, in addition to the already negatively predicted
labels, look for the minimal counterfactual explanations such that the maximum labels positively
predicted are deactivated (turns to 0).

Of course, expansion and contraction are special cases of fine-grained counterfactual explanations.

4.3 Label-based explanations

Up to now, we explain the predictions of a classifier only using the features of the input data. Relying
solely on features to form symbolic explanations can be problematic in terms of the clarity and relevance
of explanations to the user. For instance, authors in [CGG+20] have experimentally shown that local
explanations based on the relationships between classes may reveal rules that are able to capture relation
between classes such as being Attractive and Young, or being Old and with Gray Hair. As shown in
figures of the Example 33, explaining a complex concept (or label) based solely on features can be
difficult for the user to understand. In some cases, this aspect can be greatly improved by exploiting
relationships or structures between the labels. For instance, if a label li is subsumed (in the sense of
concept subsumption) by a label lj according to the MLC f , then clearly sufficient reasons of li are also
sufficient reasons for lj . Other examples of relations that can be easily extracted and exploited are label
equivalence and disjointedness. The main advantage is that we will have parsimonious explanations
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which will be easier for a user to understand, and by reducing the number of the explanations generated,
it will simplify their enumeration and presentation.

Example 33. Let us consider the handwritten digit recognition task performed on the well-known MNIST
dataset [LBBH98]. MNIST is composed of 10 classes corresponding to digits from 0 to 9, that we
extended by adding the labels "Odd","Even" and "Prime". Each input image is associated to
a vector of thirteen labels28. Assume we have the following : a MLC model, an input image x and its
multi-label prediction y=(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0). Namely, x is predicted positively for the labels
9-digit (l9) and "Odd" (l10).

x =



1 ∗ 1 0
1 ∗ 2 0

..
.

..
.

1 ∗ 28 0
2 ∗ 1 0
2 ∗ 2 0

..
.

..
.

28 ∗ 26 0
28 ∗ 27 0
28 ∗ 28 0


y =



l0 0
l1 0
l2 0

..
.

..
.

l5 0
l6 0
l7 0
l8 0
l9 1
l10 1
l11 0
l12 0



(a) Explanations for the label l9 highlighting the pixels sufficient for the model to recognize the image x as 9

(b) Explanations for the label l10 highlighting the pixels sufficient for the model to recognize the image x as Odd

Figure 4.3: Feature-based explanation for a sample from augmented MNIST dataset.

Figure 4.3 shows a sample image x from the MNIST dataset and its corresponding feature-based
explanations. The first column corresponds to the input sample x represented as a matrix of 28x28 pixels

28The labels having an index i ∈ [0, 9] indicate whether the input image x is recognized as an i-digit while the labels
having an index i ∈ [10, 12] indicate respectively whether the represented digit is being classified as an "odd", "even" or a
"prime".
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binarized (784 variables). The second column represents a heatmap corresponding to the frequency of
involvement of the variables appearing in SRx

29 in the explanation sets of instances from Vx. The last
column is the feature-attribution explanation provided by the well-known SHAP[LL17] approach 30. In
Figure 4.3, the sufficient reasons were provided by the post-hoc symbolic explainer we presented previ-
ously in Chapter 3. While sufficient reasons for label l9 clearly display the pixels that the model relies
on for classifying x to be "9", it is hard to understand what makes the classifier predict x as "Odd".
Clearly, the feature-based explanations for label "Odd" are not intuitive since the representation of an
object is very different from its visual representation. Indeed, classifying the MNIST digits into Odd,
Even, Prime classes appears to be somewhat confusing because the way a symbol (e.g. 0,2,7) is written
has got nothing to do with the properties of the number. Same observation holds for SHAP explanations.
Let us now build another explanation for x being predicted as "Odd" based on the fact that x is pre-
dicted as "9" and that the subsumption relation between "9" and "Odd" holds over the predictions of the
classifier f . The result is presented in Figure 4.4. Clearly, the explanation showing why the image x is
predicted as the digit "9" and that label "9" is necessarily associated with label "Odd" is more intuitive
and easier to understand.

SRxfor (l9 = 1) Label-based explanations for (l9 = 1, l10 = 1)

∀x, l9 → l10 i.e. since the prediction of the instance x is such
that l9=1 then necessarily l10=1.
Hence, the input image "x is predicted as an Odd number
since it is also classified as a ’9’ digit. Then, a sufficient label-
based explanation of the output (l10) = True is the sufficient
condition (l9) = True

Figure 4.4: Combining feature and label-based explanation for a sample from augmented MNIST.

Types of label-based explanations

In theory, many relationships between labels can be exploited. In practice, two major questions arise: 1)
How to extract the relations between the labels from the predictions of the classifiers ? and 2) How to
exploit the relations extracted during the generation and presentation of explanations ?

Relations between the labels For the first question, we can limit ourselves to certain types of relation-
ships that are easy to extract and easy to understand for the user. Intuitive and useful examples of label
relations are :

Class subsumption (class implication) : Let us consider a subsumption relationship between two
class labels Y1 and Y2 denoted Y1⊆Y2 (the notation Y1⊆Y2 means that samples belonging to Y1 necessar-
ily belong to Y2). If the relation Y1⊆Y2 holds, then each time the prediction of an instance x is such that

29Recall that sufficient reasons explanations justify why the trained model has positively predicted labels l9 and l10 for x.
30The heatmaps represent the value of the pixels contributing positively to the current prediction (having a positive SHAP

value). The value 0 is assigned to all the pixels which are unfavorable to the current predictions. (having a negative SHAP
value).
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Y1=1 then necessarily Y2=1. Hence, knowing Y1=1 is sufficient to assert that Y2=1. We chose to focus
on the positive predictions since the number of positively predicted labels is very often small compared
to the size of the output space of multi-label datasets.

Proposition 6. Given a multi-label classifier f and two class variables Y1 and Y2 where Y1⊆Y2, then,
the explanations of Y1 = 1 are explanations for Y2 = 1 and satisfy the conditions (1)-(2) of Definition
24 but do not guarantee to satisfy the condition (3) of the same definition.

Proof. Let x̃ ∈ SR(x, f1), f1(x) = 1 and Y1 ⊆ Y2. It is easy to see that x̃ ⊂ x since x ∈ SR(x, f1)
(1). Since f1(x) = 1 and Y1 ⊆ Y2 then f2(x) = 1 (A). x̃ ∈ SR(x, f1) implies that condition (2) from
Definition 24 is satisfied. More precisely, ∀x́ ∈ X , x̃ ⊂ x́ : f1(x́)=f1(x). Let x́ s.t x̃ ⊂ x́. Since
f1(x́) = 1 and Y1 ⊆ Y2 then f2(x́) = 1 (B). (A) and (B) imply that f2(x́) = f2(x). Consequently,
∀x́ ∈ X , x̃ ⊂ x́ : f2(x́)=f2(x) (2). (1) and (2) imply that x̃ satisfies conditions (1)-(2) of Definition 24
for f2.
As for condition 3 of Definition 24 (minimality), there is no guarantee to obtain a minimal explanation
for f2(x) = 1 given a sufficient reason for f1(x) = 1 (see counter-example 34).

An illustration of this proposition is given in Example 34. In order to explain positively predicted
instances, we can simply work on the negation of the symbolic representation (CNF) of f (namely ¬Σf ).
The enumeration of the explanations is done in the same way as for negative predictions.

Example 34. Let us consider the following set of data. From the data, we can see that there is a
subsumption relationship between the labels Y1 and Y2 (Y1 ⊂ Y2) and between Y3 and Y4 (Y4 ⊂ Y3).

X = {X1, X2, X3, X4} Y = {Y1, Y2, Y3, Y4}
1101 1111
0101 1111
0001 1111
1001 1110
1011 0100
0111 0010
0011 0011

Assume a decision tree classifier is trained on these data for each label (see Figure 4.5):
We want to explain positive predictions and thus, each classifier ¬f encoded into a CNF formula as

shown above.
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(a) Decision tree of Y1
(b) Decision tree of Y2

Figure 4.5: Decision tree classifiers trained on different labels.

DT1 Σ¬f1 ⇔ (X3 ∨ ¬X4)

DT2 Σ¬f2 ⇔ (X3) ∧
(¬X3 ∨ ¬X4 ∨ ¬X1)

Input sample Σx ⇔ (x1 ∧ ¬x2 ∧ ¬x3 ∧ x4)

Given the sufficient reason explanations associated to Y1 and Y2, we can see that the SR(x,¬f1) ⊈
SR(x,¬f2). We have {¬x3,¬x4} ⊂ x and ∀x́, {¬x3,¬x4} ⊂ x́ implies f2(x́) = 0. Nevertheless,
{¬x3,¬x4} is not minimal for ¬f2 because of ¬x3.

SR(Σ¬f1 ∪ Σx) = { {¬x3, x4} }

SR(Σ¬f2 ∪ Σx) = {{¬x3}, {x1, x4} }

Class equivalence : Two labels Y1 and Y2 are said equivalent and denoted Y1≡Y2 if each time
an instance x where Y1=1 is such that Y2=1 and if Y2=1 then Y1=1. This means that one can explain
Y1 reusing the explanations of Y2 and vice versa. Note that class equivalence relationships may be rare
over whole multi-label data-sets but they are likely to be found when explaining in the neighborhood of
a given sample x.

Proposition 7. Given a multi-label classifier f and two class labels Y1 = 1 and Y2 = 1 where Y1≡Y2,
then, the SR explanations of Y1 = 1 are also SR explanations for Y2 = 1 and vice-versa.

Proof. Given Y1≡Y2, proving that SR(x, f1) = SR(x, f2) amounts to prove the implication in two
directions. For the first implication SR(x, f1) ⊆ SR(x, f2), we have the following. Let x̃ ∈ SR(x, f1),
f1(x) = 1 and Y1 ≡ Y2. From Proposition 6, since f1(x) = 1 and Y1 ⊆ Y2, then conditions (1) and (2)
of Definition 24 are satisfied. Here it is a proof by contradiction for the condition (3) of Definition 24.
Let x∗ ⊂ x̃ s.t x∗ ⊂ x (1) and ∀x́, x∗ ⊂ x́: f2(x́) = f2(x) (2). Thanks to f1(x) = 1, (2) and Y1 ≡ Y2,
∀x́, x∗ ⊂ x́ : f1(x́) = f1(x) (2’). (1) and (2’) imply a contradiction with x̃ ∈ SR(x, f1). Thus, ∄x∗ ⊂ x
s.t ∀x́, x∗ ⊂ x́, f2(x́) = 1. Consequently, x̃ ∈ SR(x, f2).
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For the implication in the opposite direction (SR(x, f2) ⊆ SR(x, f1)), it is an easy exercise to check
that the same reasoning applies. Consequently, given the relation Y1≡Y2 then SR(x, f1) = SR(x, f2).

Class disjointedness : The disjointedness relationship between two labels Y1 and Y2 denoted Y1∩Y2=∅
denotes the fact that the two classes are mutually exclusive. Namely, for any instance x, if Y1=1 then
necessarily Y2=0 and conversely if Y1=0 then necessarily Y2=1. Then, explaining the label Y1 allows to
explain Y2 given the disjointedness relation. For instance, using again our digit classification example,
it is enough to explain why a digit is labeled Odd=1 to understand why it is labeled Even=0 given that
Odd ∩ Even=∅ holds for f .

Proposition 8. Given a multi-label classifier f and two class labels Y1 and Y2 where Y1∩Y2=∅, then,
the explanations of Y1 are also explanations for ¬Y2 and vice-versa.

Proof. It is clear that the relation Y1∩Y2=∅ can be written as follows : Y1 ⊆ ¬Y2 and Y2 ⊆ ¬Y1.
Therefore, Y1 ≡ ¬Y2 and vice-versa. Following Proposition 7, it is enough to show that SR(x, f1) ⊆
SR(x,¬f2) and SR(x, f2) ⊆ SR(x,¬f1). The demonstration is provided in Proof 4.3.

The relations between labels can be used independently of the instances to explain the general func-
tioning of the classifier. Note that the extraction of some relations may require the use of dedicated tools
or the implementation of specific programs. For instance, testing the equivalence between CNFs comes
down to testing if a CNF is a logical consequence of a premise CNF.

4.3.1 Impact of presence of relationships on explanations

To explain the prediction associated with a specific instance, one can combine feature-based explanations
with relations between classes as in the example of Figure 4.4. How to combine such explanations is a
very broad issue.
Logical relationships can be extracted in several ways, whether using the logical representation (e.g
CNF) or the set of predictions of these models. We seek to find the relationship (if any) between every
pair of labels. There are different ways to extract certain relationships between two classes. One can
consider the propositional logic language with the aim of using the efficient SAT solvers as the problem
solving engine. For instance, checking the equivalence between two Boolean formulae can be done as
presented in [Dar20] for CNFs and in [WZWY19] for Boolean functions. An important advantage in
using such formal modeling is their correctness properties (deductions, model checking, etc), in addition
to the speed and availability of SAT solvers. However, some of these properties can be too expensive to
compute, which limit their use in practice. Another way to do it is empirically, where the identification of
relations between two classes will be reduced to a comparison of their predictions on a set of data. Such
an ad-hoc approach has the advantage of being fast and efficient in terms of time and space. However,
this does not guarantee that all relations are found nor that those found are valid for the whole data space.
Another option is to model the problem of finding relationships that bind classes as an association rule
learning problem. The aim is to discover strong rules between an antecedent class Y1 and a consequent
class Y2 using for instance the confidence measure31. For instance, in Example 34 where a class sub-
sumption exists between Y4 and Y3 on a given neighborhood, the confidence measure of the association
rule Y4 ⇒ Y3 would be equal to 100%.

31The confidence value of an association rule denoted as Y1 ⇒ Y2 in data mining is the ratio of transactions containing both
Y1 and Y2 to the total number of Y1.
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Once these relations are extracted, they can be exploited to determine the sets of final explanations
as well as their presentation. In the case where a label Yi implies a label Yj , it is possible to directly use
the explanations of Yi to explain Yj (see Proposition 6). An example is shown in Figure 4.4. Implicitly,
this means that the variables that contributed to the prediction of the ith class are also favorable to
the jth class given the subsumption relationship between them. When it comes to the equivalence and
disjunction between a pair labels (Yi,Yj), several scenarios are possible and a choice arises : should
we generate explanations for Yi and use them to explain Yj as well, or should we do it in the opposite
direction? and what are the criteria to consider when making such a choice? For instance, we can
consider the rate of involvement of a label in the detected relations, quality of explanations, etc.

4.4 A model-agnostic SAT-based approach for enumerating symbolic ex-
planations

The concepts described so far as well as the different definitions presented describing explanations aim
at making the individual predictions of multi-label classifiers more understandable and interpretable for
a user. This section presents an extension of the SAT-based model agnostic approach we proposed for
the single-label case with the main difference being the output of Step 1 (set of CNFs associated with
k labels instead of a single CNF associated with the single output class). Indeed, in addition to locally
explaining individual classifier predictions, the goal of the approach proposed in Chapter 3 was to build
a base explainer to explain a model individually and then use it to explain multi-label classifiers.

Figure 4.6: Overview of the proposed approach for the multi-label setting

Before diving into more details, Figure 4.6 depicts a general overview of the approach adapted to the
multi-label setting. As mentioned in the introduction, our approach for providing symbolic explanations
is agnostic and declarative. It is based on modeling the multi-label classifier and our explanation enu-
meration problems as variants of the propositional satisfiability problem (SAT). It mainly goes through
two steps: A first step for encoding the MLC in an "equivalent" (or "faithful" in case of using a surrogate
model) canonical symbolic representation. The second step is about enumerating the explanations.
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4.4.1 Step 1: Multi-label classifier symbolic modeling

The aim of this step is to associate the multi-label classifier with a symbolic equivalent or faithful sym-
bolic representation that can be processed by a SAT-based oracle to enumerate our symbolic explanations.
As shown in Figure 4.6, there are two cases to be considered:

Direct encoding : As mentioned in Chapter 3, some machine learning models (e.g. random forests,
Binarized Neural Networks and some Bayesian network classifiers) have direct equivalent encoding into
symbolic representation such as OBDDs, SDDs (e.g. [NKR+18, SCD19, SSDC20]) and CNFs which is
the standard input format for SAT solvers. More details about such approaches were given in Chapter
3. Hence, in some cases, a multi-label classifier can be directly and equivalently encoded in CNF.
For instance, the Binary Relevance classifier using decision trees as base classifiers can be equivalently
encoded in CNF as illustrated in our running example. The idea is to associate a CNF Σfi to each base
classifier fi such that the binary prediction of fi for a data instance x is captured by the truth value or
the logical consistency of Σfi with Σx (recall that Σx stands for the CNF encoding of the data instance
x 32). Formally, as stated in Definition 23, fi is said to be equivalent to Σfi iff for any data instance x :

Σfi ∪ Σx ⊨

{
⊤ if fi(x) = 1
⊥ otherwise

(4.1)

where ⊤ means that the conjunction of Σfi and Σx is satisfiable, corresponding to a positive prediction
of the label li. ⊥ means that the conjunction of Σfi and Σx is unsatisfiable, corresponding to a negative
prediction of the label li.

Surrogate modeling : In case the multi-label classifier (MLC) cannot be directly encoded into a CNF
or in case such encoding would be intractable, our approach proceeds by associating with the multi-label
classifier a faithful surrogate model that can be encoded into a CNF. In addition to allowing the handling
of any multi-label classifier, the surrogate modeling offers another useful advantage that is providing
local explanations. Indeed, it is challenging to explain a model’s prediction over the whole dataset where
the decision boundary may not be easily captured. The surrogate model built locally will make it possible
to provide explanations in the neighborhood of x. Our approach associates a surrogate model fSi to each
label li. The surrogate model fSi is trained on the vicinity of the data sample x using the original training
instances or by generating new data samples by randomly perturbing features of the input instance x. The
MLC model f is then used as a predictor on these samples where the predictions f(x) become the targets.
Surrogate models should be tuned to be as faithful as possible to the behavior of the original model f in
the neighborhood of x. A good surrogate model is the one able to ensure a good trade-off between high
faithfulness to the initial model and tractability of its CNF encoding.

Example 35 (Example 28 continued). Let us continue our running example. The encoding of the five
decision trees of Figure 4.1 into five CNFs is straightforward as shown in the following (recall that
intuitively, encoding a decision tree in CNF comes down to encode the paths leading to leaves labeled
0).

32An input sample x is directly encoded in CNF in the form of a set of unit clauses.
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Food y1 ⇔ (IsRatingModerate ∨ coffee ∨ waitress ∨ ¬IsRatingBad) ∧
(IsRatingModerate ∨ coffee ∨ ¬waitress ∨ IsRatingGood) ∧
(IsRatingModerate ∨ ¬coffee ∨ ¬amazing¬looking) ∧
(¬IsRatingModerate ∨ flavors ∨ delicious) ∧
(¬IsRatingModerate ∨ flavors ∨ ¬delicious ∨ ¬this_place_is)

Service y2 ⇔ (service_great ∨ the_staff_is ∨ excellent ∨ staff)∧
(service_great ∨ the_staff_is ∨ ¬excellent ∨ ¬deal) ∧
(service_great ∨ ¬the_staff_is ∨ ¬size) ∧
(¬service_great ∨ ¬and_the_service ∨ ¬dont)

Ambience y3 ⇔ (really_cool ∨ the_atmosphere_is ∨ great_place)∧
(really_cool ∨ the_atmosphere_is ∨ ¬great_place ∨ ¬high) ∧
(really_cool ∨ ¬the_atmosphere_is ∨ ¬the_service_is ∨ point)

Deals y4 ⇔ (for_happy_hour ∨ happy_hour_menu ∨ daily_specials) ∧
(for_happy_hour ∨ ¬happy_hour_menu ∨ ¬can_see) ∧
(¬for_happy_hour ∨ prices_good ∨ ¬out) ∧
(¬for_happy_hour ∨ prices_good ∨ out ∨ ¬without)

Worth y5 ⇔ (nice ∨ daily_specials ∨ happy_hour_menu) ∧
(nice ∨ daily_specials ∨ ¬happy_hour_menu ∨ ¬there_was_a) ∧
(¬nice∨ the_bar_area∨ reasonably_priced∨ pleasantly_surprised) ∧
(¬nice ∨ the_bar_area ∨ ¬reasonably_priced ∨money) ∧
(¬nice ∨ ¬the_bar_area ∨ ¬little)

Once the encoding step is achieved, we can rely on SAT-based oracles to provide explanations as
presented in the following step.

4.4.2 Step 2: Symbolic explanation enumeration

Recall that in Step 2, we are given as input a set of CNFs ({Σ1,..,Σk} associated to k labels) encoding
the MLC f and a CNF encoding the data instance x denoted Σx. The aim of this step is to enumerate
explanations for the prediction y=f(x). Similarly to the single-label case, we rely on SAT-based oracles
in order to provide sufficient reasons and counterfactuals for a given label li (see Section 3.3 for how one
can use it for binary classifiers). In the following, let SR(x, fSi) (resp. CF (x, fSi)) denote the set of
sufficient reasons (resp. counterfactuals) to explain individual prediction of a base classifier fSi(x).

Enumerating feature-based explanations

We present in the following how the proposed approach proceeds depending on the type of symbolic
explanations to provide. Note that the entire-outcome explanations are actually a general case of fine-
grained explanations where the target prediction ỹ concerns all output classes (|ỹ| = k).

Entire-outcome sufficient reasons SR : Since we can provide sufficient reasons for each label li,
then it suffices to combine (join) an SRi from each classifier fi to form an explanation for the whole
outcome.
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Proposition 9. (Joint entire-outcome SR) Given a sufficient reason x̃i for each classifier i=1,..,k, the
explanation x̃ = ∧k

i=1x̃i satisfies conditions (1)-(2) of Definition 30 but does not guarantee to satisfy the
condition (3) of the same definition.

Proof. (sketch) An explanation x̃ = ∧k
i=1x̃i involves exactly one explanation from each individual base

classifier. It is easy to check that x̃ verify the property 1 and 2 of Definition 30. Namely, (1) x̃ is part
of the data instance (since each part x̃i ⊆ x), (2) let x́ ∈ X, x̃ ⊂ x́, it is easy to see that f(x́) = f(x).
Indeed, since x̃ ⊂ x́ then x̃i ⊂ x́ for i = 1, .., k. Following Definition 24, fi(x́) = fi(x) for i = 1, .., k.

As for the condition (3) of Definition 30 (minimality), combining base classifier SR explanations
does not guarantee to obtain a minimal explanation. (see counter-example 36).

Example 36. Assume a multi-label classification problem where data items are labeled in one or more
categories (labels). The feature space is X = {X1, X2, X3, X4, X5} composed of five binary vari-
ables and three label variables Y = {Y1, Y2, Y3}. The classifiers f1 and f3 predicted positively for
the instance x = (0, 1, 1, 0, 0). Classifier f1 has three SR explanations for predicting positively x,
namely SR(x, f1)={{¬x1, x2, x3}, {¬x1, x2,¬x4}, {x2, x3,¬x4}} and f2 has also three SR explana-
tions for f(x) that are SR(x, f2)={{¬x1, x3}, {x3,¬x5}, {¬x4}}. Classifier f3 has two SR expla-
nations SR(x, f3)={{¬x1, x2}, {x3,¬x4}}. The set of joint entire-outcome SR explanations built by
joining SR explanations of the three classifiers f1, f2 and f3 gives 18 joint explanations including the
following {{¬x1, x2, x3}, {¬x1, x2, x3,¬x5}, {¬x1, x2, x3,¬x4}, {¬x1, x2, x3,¬x4,¬x5}, ..}. In this
example, explanations {¬x1, x2, x3} and {¬x1, x2, x3,¬x5} are explanations obtained by combining
SR explanations of f1(x), f2(x) and f3(x). Clearly, explanation {¬x1, x2, x3,¬x5} is not minimal
since {¬x1, x2, x3} is a joint entire-outcome SR with a smaller size.

An example of an entire-outcome sufficient reason is shown in Table 4.2. The entire-outcome expla-
nations are required to be conform to certain properties adapted from those defined for the BR explana-
tions in [Tab19]. Hence, an entire-outcome explanation should verify :

- Unanimity : The explanation must explain all the parts of the multi-label prediction f(x) = y.

- Decomposability : The decomposition of the explanation of f(x) = y should explain every label
composing y.

Entire-outcome counterfactuals CF : Similar to sufficient reasons, one can form an explanation
as far as we have counterfactuals CFi for each label li. More precisely, let the MLC f predict y for x
(namely, f(x)=y). Let us assume that the user wants to force the prediction to ỹ of size k. Then, an
explanation is formed by joining a counterfactual CFi from each classifier fi.

Proposition 10. (Joint entire-outcome CF ) Given a counterfactual x̃i for each classifier i=1,..,k, the
explanation x̃ = ∧k

i=1x̃i satisfies conditions (1)-(2) of Definition 31 but does not guarantee to satisfy the
condition (3) of the same definition.

Proof. (sketch) It is easy to check that x̃ verify the property 1 and 2 of Definition 31. Namely, (1) x̃ is
part of the data instance (since each part x̃i ⊆ x), (2) let x́ ∈ X, x̃ ⊂ x́, it is easy to see that f(x[x̃])=ý.
Indeed, since x̃ ⊂ x́ then x̃i ⊂ x́ for i = 1, .., k. Following Definition 25, fi(x[x̃])=ýi for i = 1, .., k.

As for the condition (3) of Definition 31 (minimality), combining base classifier CF explanations
does not guarantee to obtain a minimal explanation. (see counter-example 37).
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Example 37. (Example 36 continued) Given the SR explanations of classifiers f1, f2 and f3, the set of
CF explanations associated to those classifiers respectively are the following : CF (x, f1) = {{x2},
{¬x1, x3}, {¬x1,¬x4}, {x3,¬x4}}, CF (x, f2) = {{x3,¬x4}, {¬x1,¬x5,¬x4}} and finally the set
CF (x, f3) = {{x2,¬x4}, {¬x1,¬x4}, {x2, x3}, {¬x1, x3}}. Joining the CF entire-outcome explana-
tions of classifiers f1, f2 and f3 gives the following explanations {{x2, x3,¬x4}, {x2,¬x1,¬x4,¬x5},
{¬x1,¬x4,¬x5}, {¬x1, x2, x3,¬x4,¬x5}, ..}. It is clear that the explanations {¬x1, x2, x3,¬x4,¬x5}
is not minimal since the joint entire-outcome CF explanation {¬x1,¬x4,¬x5} has a smaller size.

An example of an entire-outcome sufficient reason is shown in Table 4.3.

Fine-grained sufficient reasons SRỹ : For fine-grained explanations, we proceed in a similar way
while restricting to the part ỹ⊆y of interest to the user. Let ỹ = {ỹ1, .., ỹz} be a subset of y representing
the labels of interest where ỹj is the jth element of ỹ with j = 1, ..z. Namely, given sufficient reasons for
each label yj∈ỹ, then joining an SRj from each classifier fj with yj∈ỹ is enough to form an explanation
for the partial outcome ỹ as shown in the example 31.

Lemma 4. (Joint fine-grained SR) Given a sufficient reason x̃ỹj for each classifier j = 1, ..z, the
explanation x̃ = ∧z

j=1x̃ỹj satisfies conditions (1)-(2) of Definition 32 but does not guarantee to satisfy the
condition (3) of the same definition.

Proof. (sketch) An explanation x̃ = ∧z
j=1x̃ỹj involves exactly one explanation from each individual base

classifier in ỹ. It is easy to check that x̃ verify the property 1 and 2 of Definition 32. Namely, (1) x̃ is part
of the data instance (since each part x̃ỹj ⊆ x), (2) let x́ ∈ X, x̃ ⊂ x́, it is easy to see that f(x́) = f(x).
Indeed, since x̃ ⊂ x́ then x̃ỹj ⊂ x́ for j = 1, .., z. Following Definition 24, fj(x́) = fj(x) for j = 1, .., z.

As for the condition (3) of Definition 32 (minimality), combining base classifier SR explanations
does not guarantee to obtain a minimal explanation. (see counter-example 38).

Example 38. Let us reuse the SR explanations of Example 36. Given a target outcome ỹ = (l2, l3),
the set of joint fine-grained SR explanations formed by joining SR explanations of classifiers f2 and
f3 is {{¬x1, x3, x2}, {¬x1, x3,¬x4}, {x3,¬x5,¬x1, x2}, {x3,¬x5,¬x4}, {¬x4,¬x1, x2}, {¬x4, x3}}.
Similarly to Example 36, it is clear that the explanations {¬x1, x3,¬x4} and {x3,¬x5,¬x4} are not
minimal since the size of the explanation {¬x4, x3} is smaller.

Fine-grained counterfactuals CFỹ : Given counterfactuals for each label yj∈ỹ, then joining an CFj

from each classifier fj such that yj∈ỹ, j=1,..,z, allows to build an explanation in order to obtain the partial
outcome ỹ as shown in the Example 32.

Lemma 5. (Joint fine-grained CF ) Given a counterfactual x̃ỹj for each classifier j = 1, ..z, the ex-
planation x̃ = ∧z

j=1x̃ỹj satisfies conditions (1)-(2) of Definition 33 but does not guarantee to satisfy the
condition (3) of the same definition.

Proof. (sketch) An explanation x̃ = ∧z
j=1x̃ỹj involves exactly one explanation from each individual base

classifier in ỹ. It is easy to check that x̃ verify the property 1 and 2 of Definition 33. Namely, (1) x̃ is part
of the data instance (since each part x̃ỹj ⊆ x), (2) let x́ ∈ X, x̃ ⊂ x́, it is easy to see that f(x́) = f(x).
Indeed, since x̃ỹj ⊂ x́ then x̃ỹj ⊂ x́ for j = 1, .., z. Following Definition 25, fj(x[x̃])=ýj for j = 1, .., z.

As for the condition (3) of Definition 33 (minimality), combining base classifier CF explanations
does not guarantee to obtain a minimal explanation. (see counter-example 39).
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Example 39. Let us reuse the CF explanations of Example 37. Given a target outcome ỹ = (l1, l2),
the set of joint fine-grained CF explanations formed by joining CF explanations of classifiers f1 and f2
would be {{x2, x3,¬x4}, {x2,¬x1,¬x5,¬x4}, {¬x1, x3,¬x4}, {¬x1, x3,¬x5,¬x4}, {x3,¬x4}, {¬x1,
x3,¬x4,¬x5}, {¬x1, x3,¬x4}, {¬x1,¬x5,¬x4}}. It is clear that explanation {x2, x3,¬x4} is not min-
imal since the explanation {x3,¬x4} has a smaller size.

Remark 8. It is important to notice that our modeling through associating a set of binary classifiers (sur-
rogate models) encoded in CNF is not the only way to use a SAT-based oracle to provide explanations.
For instance, one can explain a MLC by learning a one-vs-rest binary function f ′ that only recognizes
the outcome f(x) as a positive prediction. It is formally defined as follows:

f ′(x) =

{
1 if f(x) = y
0 otherwise.

(4.2)

However, such modeling provides neither label-based explanations nor fine-grained ones.

Enumerating label-based explanations

Recall that label-based explanations denote structural relationships between labels. In order to extract
some relationships, one can also rely on a SAT-based modeling where each individual labels li is associ-
ated with a CNF Σfi . Hence, checking whether some relationships hold between subsets of labels comes
down to checking, for example, the corresponding logical relationships between their respective CNF
formulas. Alternatively, we can rely on the predictions of labels to search for some relationships.

For instance, assume we are given a multi-label model f and an input x, and the we want to check
whether l1 is equivalently logic to l2 (l1≡l2) in the vicinity of x (denoted Vx). We can either check if the
Σf1 is logically equivalent to Σf2 (in which case they must share the same models), or, we can simply
check that l1=1 iff l2=1 for any prediction y′=f(x′) such that x′ ∈ Vx is a complete instance.

As mentioned in the previous section, what structural relationships between labels or subsets of labels
to look for (beyond the three examples cited) and how to exploit them is not a trivial question.

4.5 Experimental analysis

This section presents the experimental study carried out to evaluate our approach. The datasets used in
our experiments are publicly available and can be found at Kaggle33 or at UCI 34. The Yelp dataset can
be found following this link 35. Numerical and categorical attributes are binarized. The textual datasets
used are pre-preprocessed and binarized.

Dataset #instances #classes #features data type
Augmented MNIST 70000 13 784 Images
Yelp Review Analysis 10806 5 671 Textual
IMDB Movie Genre Prediction 65500 24 30 Textual
Patient Characteristics Survey (NYS 2015) 105099 5 63 Textual/ Numeric

Table 4.4: Properties of the different data-sets used.

33www.kaggle.com
34archive.ics.uci.edu/ml/
35https://www.ics.uci.edu/~vpsaini/
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Chapter 4. Symbolic explanations for multi-label classification

In order to enumerate our symbolic explanations for binary classifiers, we rely on a SAT-based or-
acle where the enumeration of counterfactuals is done using the enumcs tool[GIL18] and the sufficient
reasons are enumerated thanks to the duality hitting set. The time limit for the enumeration of symbolic
explanations was set to 300 seconds. All experiments presented in this section have been run on a clus-
ter of computers equiped with quadcore bi-processors Intel Xeon E5-2643 3 (3.3 GHz) and 64 GB of
memory running under the CentOS Stream 8.3.

Hyper-parameters tuning

A wide range of hyper-parameters were explored in attempts to reach relatively the best performance of
the surrogate models associated to the different multi-label classifiers. We conducted experiments using
different radius values for each dataset in order to determine the vicinity of the explained sample that
ensures a good faithfulness. The hyper-parameters tuning in this section is done using the randomized
search method (RandomizedSearchCV) from Scikit-learn library in its version v0.22.1. Table 4.5 lists the
hyper-parameters used to train the surrogate models for each class. Note that some dataset properties may
negatively influence the performance of the surrogate model and must be taken into account. For instance,
the prediction task becomes harder with an imbalanced data distribution or data with low density. An
upper bound for the vicinity size of an explained instance was set to 400 samples.

Table 4.5: Tuned hyper-parameters used for the surrogate models of each of the labels of the different
datasets.

label ntree max_depth max
features

min
samples

split

min
samples

leaf

acc train
(%)

acc test
(%)

Y
el

p

l1 19 100 auto 8 4 97.3 92.7
l2 19 28 sqrt 16 1 97.8 87.4
l3 21 100 sqrt 40 4 95.7 89.1
l4 11 28 auto 2 1 100 97.6
l5 9 100 sqrt 40 2 96.6 94.5

M
N

IS
T
m
l

l1 13 28 sqrt 8 1 99.9 98.9
l2 19 50 sqrt 8 1 99.9 99.1
l3 13 100 auto 16 1 99 98.1
l4 9 28 auto 8 1 99.8 96.6
l5 13 36 sqrt 2 2 99.2 97.6
l6 11 36 auto 2 2 100 96.8
l7 11 28 auto 8 4 99.6 98.6
l8 21 14 sqrt 16 1 99 97.6
l9 9 100 auto 2 1 100 97
l10 13 28 sqrt 8 4 99 96
l11 11 14 auto 8 1 99.2 95.5
l12 19 100 auto 8 2 99.8 95.5
l13 19 36 sqrt 16 1 99.1 94.1

N
Y

S1
5

l1 12 14 auto 8 8 100 100
l2 3 28 auto 40 4 97.8 98.4
l3 12 7 sqrt 8 8 99.7 99.9
l4 12 14 auto 2 1 100 99.4
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l5 12 28 auto 2 2 99.2 97.6
IM

D
B

l1 15 7 sqrt 16 4 99.9 100
l2 12 28 auto 16 1 99.9 99.7
l3 12 14 auto 8 4 100 100
l4 15 28 sqrt 40 1 99.9 99.8
l5 9 28 sqrt 16 4 100 100
l6 15 28 sqrt 2 1 100 99.7
l7 9 7 auto 8 4 100 100
l8 15 14 sqrt 2 1 100 100
l9 15 7 sqrt 16 1 100 100
l10 6 7 auto 40 4 100 100
l11 15 14 sqrt 2 2 100 100
l12 9 14 sqrt 2 4 100 100
l13 9 7 sqrt 40 8 100 100
l14 15 28 sqrt 2 4 99.8 99.8
l15 15 28 auto 16 8 100 100
l16 12 28 sqrt 2 1 100 98
l17 12 7 auto 40 2 99.9 99.8
l18 15 28 sqrt 16 2 99.9 99.8
l19 12 14 auto 40 8 100 100
l20 12 28 sqrt 2 8 99.9 100
l21 15 28 sqrt 8 8 99.8 100
l22 12 28 auto 2 4 100 100
l23 3 28 sqrt 40 1 100 100
l24 9 7 auto 16 1 100 100

4.5.1 Results

In order to generate entire-outcome explanations, each base classifier of the binary relevance (BR) model
is approximated using a random forest and then encoded into a CNF formula. Table 4.6 lists the average
size and time of the encoding step computed over surrogate models. We can see that the average accuracy
of the surrogate random forest classifiers is high meaning that the surrogate models can achieve high
faithfulness levels wrt. the original model. Regarding the size of the generated CNFs expressed as the
number of variables (Vars) and number of clauses (CLs), one can see that it is tractable and it is easily
handled by the SAT-solver (in Step 2).

Dataset radius AVG
RF acc

(%)

MIN |Σ| AVG |Σ| MAX |Σ| MIN
runtime

(s)

AVG
runtime

(s)

MAX
runtime

(s)
YELP 60 92.67 96/232 4827/13004 13732/36864 0.48 3.29 13.73

Review 180 92.73 4625/12416 6812/18395 15963/428941 2.97 4.64 15.32
Augmented 150 93.97 509/1268 12095/32353 14308/38344 0.68 12.58 16.13

MNIST 250 96.27 423/1119 9556/25455 15105/40530 1.35 7.93 14.41
IMDB 30 99.53 863/2344 1282/3533 3149/8558 0.82 1.09 2.73
NYS15 63 96.73 2446/6615 7887/21370 11305/30594 1.91 6.73 10.12

Table 4.6: Evaluating the CNF encoding over different datasets.
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Table 4.7 shows the results of enumerating both sufficient reasons and counterfactuals explanations.
Using local surrogate models over multiple values of the radius, the symbolic explanations of each base
classifier are enumerated. An average is then computed and is given in Table 4.7 and Table 4.8. We
notice over the different datasets that the average time necessary to enumerate all the explanations for a
given instance grows linearly and varies from 2 to 20 seconds to find all the possible explanations of all
the base classifiers. For instance, if we compare the enumeration time of mono-label classifiers trained
on the MNIST dataset versus the multi-label classifier, we can see that the trend is the same. The same
finding holds for the number of explanations where one can see that on average this number increases
proportionally to the size of the input features set. We also notice that the number of SR explanations
is of the same order as the number of CF ones. Interestingly enough, one can notice that the time
required to find one sufficient reason (resp. counterfactual) explanation is very negligible, meaning that
the proposed approach is feasible in practice and allows to explain medium sized multi-label classifiers
efficiently.

Dataset radius MIN #CFs AVG #CFs MAX #CFs runtime
One CF (s)

MIN
runtime(s)

AVG
runtime(s)

MAX
runtime(s)

YELP 60 1891 2025 6858 ≤ 10−3 ≤ 10−3 2.29 13.46
Review 180 2601 3203 9693 ≤ 10−3 0.009 4.5 29.97

Augmented 150 96 4971 9347 ≤ 10−3 0.02 15.61 33.27
MNIST 250 1158 5027 11323 ≤ 10−3 1.77 15.9 45.36
IMDB 30 5 14 22 ≈ 0 0.13 2.78 7.47
NYS15 63 134 1052 2399 ≤ 10−4 0.15 2.83 9.37

Table 4.7: Enumeration of entire-outcome counterfactual explanations.

Dataset radius MIN #SRs AVG #SRs MAX #SRs enumtime
One SR (s)

MIN
enumtime(s)

AVG
enumtime(s)

MAX
enumtime(s)

YELP
Review

60 13116 23167 38620 0.028 10.94 19.37 31.95

Augmented
MNIST

150 11292 11956 12621 0.053 12.26 13.06 13.85

IMDB
Movie
Genre

30 3 41.83 161 0.004 0.003 0.02 0.07

Table 4.8: Enumeration of entire-outcome sufficient reasons explanations.

Fine-grained explanations

The following results concern only fine-grained CF explanations. However, the findings still hold for
the enumeration of the fine-grained SR explanations. We vary the size k36 of the target partial prediction
ytarget and we choose randomly the labels that compose it, i.e. the labels we are going to explain given
an instance x. The results are obtained on a BR model trained on each dataset. Both cases of negative
and postive predictions are considered and are presented in two parts: we use the acronym POS to refer
to the explanations of the positively predicted labels and the acronym NEG for those of the negatively
predicted. Similarly to the entire-outcome explanations, we are first interested in measuring the size of
the CNF encoding associated to the labels of interest (li ∈ ytarget), and also we are interested in the
enumeration times needed and the size of the sets of explanations generated.
Table 4.9 lists the average size of the CNF formula and runtime of the encoding step. We can see that the

36Recall that k takes values ∈ [1, |Y |] with |Y | being the number of classes recognized by the MLC.
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Dataset Pred
Type

AVG
RF’s

accuracy

MIN |Σ|
(Vars/CLs)

AVG |Σ|
(Vars/CLs)

MAX |Σ|
(Vars/CLs)

MIN
runtime

(s)

AVG
runtime

(s)

MAX
runtime

(s)
YELP NEG 93.5% 39/94 4663/12572 18616/49938 0.6 3.75 23.16

Review POS 89.95% 28/62 4071/10932 12043/32308 0.5 2.94 9.67
Augmented NEG 97.48% 103/250 6552/17352 15557/41797 0.69 5.32 15.36

MNIST POS 92.36% 117/292 10808/28840 18441/49788 0.97 10.43 21.18
IMDB NEG 99.67% 279/732 1426/3860 7556/20261 0.79 1.56 7.55
Movie
Genre

POS 98.37 128/296 3002/8264 10504/28378 0.68 2.61 8.69

Table 4.9: Evaluationg the CNF encoding size of the different datasets.

size of the CNFs on average is tractable and that it is almost the same result obtained when enumerating
the entire-outcome explanations.

Table 4.10 presents the results of enumerating fine-grained counterfactuals. First, we can say that
the size of the CNFs has practically not changed compared to the entire-outcome explanations (see Table
4.6). We clearly notice that on average the number of explanations generated has strongly decreased
compared to the results of Table 4.7. This finding makes sense since we have reduced the number of
labels to explain. Secondly, we notice that the average time necessary for enumerating one counterfactual
is negligible and meets the results of Table 4.7.

Operation
type

|ytarget| AVG
#CFs

MAX
#CFs

enumtime
One CF

(s)

AVG
|CF |

AVG
enum-
time(s)

AVG
enum-
time(s)

Y
E

L
P

Expansion 1 977 5009 ≤ 10−4 2 0.83 7.16
(NEG 2 1678 6716 ≤ 10−4 2 1.65 11.83

to POS) 3 2102 7876 ≤ 10−4 3 2.17 20.19
4 3395 8933 ≤ 10−4 3 4.32 17.4

Contraction 1 848 6550 ≤ 10−4 2 0.98 12.99
(POS 2 490 5066 ≤ 10−4 2 0.52 8.01

to NEG) 3 441 3723 ≤ 10−4 2 0.4 5.14

M
N

IS
T

M
L

Expansion 1 1932 10011 ≤ 10−3 3 3.18 27.08
(NEG 2 2158 9769 ≤ 10−3 5 3.95 39.56

to POS) 3 3895 8395 ≤ 10−3 5 8.9 28.52
Contraction 1 2799 14759 ≤ 10−3 2 5.26 54.19

(POS 2 3821 12895 ≤ 10−3 3 9.54 48.86
to NEG) 3 4642 12007 ≤ 10−3 4 12.10 43.79

IM
D

B

Expansion 1 6 30 ≈ 0 2 0.0023 0.04
(NEG 2 10 22 ≈ 0 2 0.0041 0.021

to POS) 3 10 43 ≈ 0 2 0.0038 0.024
Contraction 1 16 60 ≈ 0 1 0.009 0.02

(POS 2 16 62 ≈ 0 1 0.008 0.02
to NEG) 3 23 93 ≈ 0 1 0.01 0.03

Table 4.10: Enumerating fine-grained counterfactuals.
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4.6 Conclusion

In the literature, very few studies have focused on explaining multi-label classifiers, thus it is not obvious
to compare our approach to existing ones. Generating symbolic explanations for multi-label classifica-
tion is quite straightforward to accomplish within the symbolic framework presented in the Chapter 3.
However, it is worth noticing that the contributions of this work are not simple extensions from the multi-
class framework to the multi-label one since there are, for example, concepts specific to the multi-label
case such as label-based and fine-grained explanations. We introduced the concept of the label-based
explanations in order to take advantage of the structural relationships between labels in order to reduce
the number of generated explanations and improve their presentation to the user.
The declarative paradigm used in our work has been successfully used in explainable AI [Ber21] but
also for other problems such as declarative data mining where one can enumerate for example frequent
itemsets using a SAT oracle [JSS15]. Doing so, we take advantage of the strengths of modern SAT
solvers used as oracles. In the case of ML models that do not admit direct CNF representation, a crucial
component of the proposed approach is to approximate the model with another one that does admit such
a representation. We intend in future work to focus on the extraction of label-based explanations and
their combination with feature-based ones in order to reduce the number of explanations and improve
their presentation. We also go beyond symbolic explanations and address score-based explanations in a
multi-label setting in the next part of this manuscript.
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Feature-attribution explanations
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5

Feature attribution explanations for
single-label classification

Large amounts of efforts have been devoted to developing approaches to explain individual classifi-
cation decisions such as decision rules [RSG18], counterfactual examples [WMR17] and logic-based
approaches [SCD18b, DH22, INMS19a, Ign20, INMS19b, ABB+22a]. We will focus in this part on a
type of explanation well known in XAI called feature attribution (e.g. SHAP [LL17], LIME [RSG16]).
We start with providing a definition of feature attribution explanation in a general setting as well as the
main approaches that generate them in Section 5.1. In section 5.2.1 we will present the set of fine-grained
properties we propose to analyze, rank and select explanations and in section 5.2.2 the ones allowing to
assess the relevance of features. We also propose some scoring functions to check out the suggested prop-
erties. Full examples of explanations produced by the whole approach and an evaluation are provided in
section 5.3.

5.1 Feature attribution explanations

Feature attribution is a popular and widely used approach for explaining the predictions of machine
learning models and is by far the most well-studied explainability technique [BSH+10, GBY+18]. De-
pending on the application domains and the nature of the data, they are sometimes referred to as pixel
saliency, saliency maps, rationales, attentions, feature-level interpretations, feature importance or simply
feature attributions. Intuitively, a feature attribution method associates a numerical score with each input
feature reflecting the weight or influence of this feature in the prediction of a machine learning model.
It is worth to notice that there is no consensus on the definition or the semantics of these feature attribu-
tions nor on the way to systematically evaluate their relevance. In practice, this can be seen through the
various existing methods to derive feature importance scores reflecting the influence of each attribute for
prediction tasks such as regression or multi-class classification.

5.1.1 Review of related works

As mentionned in the state-of-the-art chapter, explainable AI has focused on two main families of post-
hoc approaches when it comes to explaining machine learning models. The first one focuses on for-
mal XAI to provide symbolic explanations ([SCD18b],[INMS19b],[Rei87],[Rym94],[INMS19b]) and
are also used for verification and diagnosis purposes ([Rei87], [Rym94], [INMS19b]), while the second
one provides insights into how much each feature contributed to the outcome decision and focuses on
attributing numerical importance scores to the input features. These techniques are used across many dif-
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ferent domains and are popular amongst machine learning scientists who want to sanity check a model
before deploying it [BXS+20]. The main objective of our contribution is to firstly to provide complemen-
tary types of symbolic explanations and secondly provide score-based ones for a better understanding
and usability of explanations. The first part of our work was presented previously in Chapter 3 of part
one of this manuscript. We will get into more details about the second part of our contribution within
this chapter and present how we provide feature attribution explanations based on some properties.

Feature attribution consists in associating scores to each input feature Xi of an instance x to reflect
to what extent Xi contributed to the prediction f(x). Formally, a feature attribution for multi-class tasks
is defined as follows :

Definition 34 (Feature attribution ). Assume we are given a multi-class classifier f and a feature attri-
bution method h. Assume also a data instance x = (x1,..,xn) ∈ X . An attribution of the prediction
y = f(x) at input instance x is the vector h(f, x) = (a1, ..., an) where each score ai∈R.

According to the considered method, a feature attribution ai for the feature Xi may denote sensitiv-
ity [SVZ13b], relevance [BBM+15], local influence [RSG16], Shapley values [LL17], filter activations
[NHWF21], etc. Examples for common feature attribution methods are provided in Section 1.2.2 and we
can cite SHAP [LL17], LIME [RSG16], saliency maps [SVZ13a, ZF14, STY17, SDBR15, PLPN19],
Grad-CAM [SCD+17], integrated gradients [STY17], LRP [BBM+15] and DeepLift [SGK17] (see
[LPK20, LPK21] for recent literature surveys).

In the rest of this chapter, we will present how we widened the scope of our investigation to compute
feature attribution based on symbolic explanations presented previously (cf Chapter 3). In the case of
a single-label classification, we limit ourselves in our study to proposing score-based explanations and
feature attribution by relying on such explanations and associating scores w.r.t to some properties. As for
the multi-label setting, we will expand this study in Chapter 6 to consider other explainability approaches
as oracles and see how to combine or aggregate their output to propose feature attribution for multi-label
decisions.

5.2 Feature attribution explanations for single-label classification

The symbolic explanations we proposed so far to explain individual classification decisions based on
the observations that MUSes and MCSes are cornerstones of analyzing thus measuring inconsistencies
[LS08] and can be obtained in large numbers. This causes a selection problem as the whole set of
explanations can be very large. Indeed, considering the SAT-based modeling we adopt in our approach,
an inconsistent Boolean formula can potentially have a large set of explanations (MUSes and MCSes).
More precisely, for a knowledge base containing p clauses, the number of MUSes and MCSes can be
in the worst case exponential in p [LS08]. Thus, defining how to measure the quality of an explanation
and to convey how much the model relies on certain features to make a decision at some specific input
becomes necessary in order to focus on those providing more insights.
Figure 5.1 depicts the overview of our XAI approach at Step 3. Indeed, in addition to the large number of
symbolic explanations, the different needs of users and nature of systems from an application to another
raise the question of which explanations to choose ? or which explanations and (or) what features are
most relevant ? We address all of the issues raised above by giving at the same time a local score-
based explanation with respect to some properties37, and also, feature attribution providing feature-level
importance scores for how much a given input feature contributes to a model’s output. These properties
can be interpreted as relevance characteristics of an explanation 38 and are presented in Section 5.2. We

37Those properties can provide information on certain aspects of the generated explanations.
38Of course, the relevance depends on the user’s interpretation and the context.
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Figure 5.1: Focus on the Step 3 of the proposed approach

also propose some examples of scoring functions to assess them numerically. This corresponds to Step
3 (Explanation and feature relevance scoring) in Figure 5.1.

Before we start the presentation of the properties proposed to assess the relevance of both explana-
tions and features, we introduce some notations and definitions essential for understanding the rest of the
work:

• Let E(x, f) be a non empty set denoting the set of explanations (either SR or CF) for an input
instance x predicted negatively by the classifier f .

• An explanation is denoted by ei where i ∈ [0, |E(x, f)|].

• The neighborhood of x within the radius r denoted V (x, r) (also written Vx for short) is formally
defined as V (x, r):{v ∈ X | dist(x, v)⩽r}39.

• Given an explanation ei, let size(ei) denote the number of variables composing it.

Definition 35 (Extent of an explanation). Let Extent(ei, x, r) be the set of data instances defined as
follows: {v ∈ V (x, r) | f(v)=f(x) = 0 and for ei ∈ E(v, f)}.

Intuitively, Extent(ei, x, r) denotes the set of data instances from the neighborhood of x that are
negatively predicted by f and sharing the explanation ei. We provide illustrative examples to describe
the different concepts we introduce in this section.

Example 40. Let’s continue with the United Stated Congressional Voting Records (firstly introduced in
example 19) where a trained model f classify instances as ’Republican’ or ’Democrat’ based on the 16
key votes identified. Given a radius set to 3 (r = 3), then the neighborhood of x is V (x, 3) = {x′, x′′}.
Let the set of sufficient reason explanations associated to each instance from V (x, 3) as follows :

The extent of the different explanations ∈ Exp(f, x) are illustrated in Figure 5.3. As shown, an
explanation belonging to several set of explanations E(xi, f) is present in every set highlighted with

39dist(x,v) denotes a distance measure that returns the distance between x and v.
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(a) MUSes of Σf,x. (b) MUSes of Σf,x′ . (c) MUSes of Σf,x′′ .

E(x, f) = { e1 ={X4, X5}, e2 ={X5, X12}, e3 ={X4, X9, X12} }

E(x′, f) = { e′1 ={X5, X12}, e′2 ={ X3, X4} }

E(x′′, f) = { e′′1 ={X5, X12}, e′′2 ={X4, X5}, e′′3 ={X9, X10}, e′′4 ={X5, X9} }

the same color. For instance, we can see that the explanation e1 is present in every E(xi, f) while
explanation e3 is specific to the sample x.

Figure 5.3: Extent of E(x, f) in the neighborhood V (x, 3) = {x′, x′′}.

Hence, the extent sets of explanations in E(x, f) are represented in the following :

Extent(e1, x, 3) = { x, x′′}

Extent(e2, x, 3) = { x, x′, x′′ }

Extent(e3, x, 3) = { x }

We define now a similar notion to the extent of an explanation but at a feature-level.

Definition 36 (Cover of a feature). Let Cover(Xk,x) be the set of explanations from E(x, f) where the
feature Xk is involved (namely Cover(Xk,x)={ei | Xk ∈ ei for ei ∈ E(x, f)}).

A cover of a feature designates the set of explanations including the variable Xi. It can be computed
within set of explanations associated to x (i.e. E(x, f)) or the set of explanations of instances from the
locality of x (i.e. E(v, f)

v∈V (x,r)

).
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Example 41 (Example 40 continued’). The cover of the different variables composing the explanations
of x within E(x, f) is illustrated in Figure 5.4 and given in the following :

Figure 5.4: Cover of the variables in the explanation set E(x, f).

Cover(X4, x) = { e1, e3}

Cover(X5, x) = { e1, e2}

Cover(X9, x) = { e1}

Cover(X12, x) = { e2, e3}

The cover of the different variables composing the explanations of x within E(v, f)
v∈V (x,3)

are illustrated

in Figure 5.5 and given in the following :

Figure 5.5: Cover of variables in E(x, f) in the neighborhood V (x, 3).
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Cover(X4, v)
v∈Vx

= { e1, e3, e
′
2, e

′′
2}

Cover(X5, v)
v∈Vx

= { e1, e2, e
′
1, e

′′
1, e

′′
2, e

′′
4}

Cover(X9, v)
v∈Vx

= { e3, e
′′
3, e

′′
4}

Cover(X12, v)
v∈Vx

= { e2, e3, e
′
1, e

′′
1}

5.2.1 Properties of symbolic explanations and scoring functions

In this section, we propose three natural properties to evaluate explanations and capture some of the
aspects allowing their analysis, ranking and selection :

Parsimony (PAR) : The parsimony is a natural property allowing to select the simplest or shortest
explanations (namely, explanations involving less features). The intuition behind a simpler explanation
is that it is easier to focus on understanding or changing few variables instead of trying to change many
features. Hence, the parsimony score of an explanation ei should be inversely proportional to it’s size.
Formally, given a data instance x, its set of explanations E(x, f) : For two explanations e1 and e2 from
E(x, f): PAR(e1)> PAR(e2) iff size(e1)<size(e2). An example of a scoring function satisfying the
parsimony property is :

SPAR(ei) =
1

size(ei)
(5.1)

Generality (GEN ) : This property aims to reflect how much an explanation can be general to a mul-
titude of data instances, or in the opposite, reflect how much an explanation is specific to the instance
x. Intuitively, the generality of an explanation should be proportional to the number of data instances
it explains. Given a data instance x, its set of explanations E(x, f), its neighborhood V (x, r) and two
explanations e1 and e2 from E(x, f): GEN (e1) > GEN (e2) iff |Extent(e1, x, r)|> |Extent(e2, x, r)|. An
example of a scoring function capturing this property is :

SGEN (x, r, ei) =
|Extent(ei, x, r)|

|V (x, r)|
(5.2)

Intuitively, this scoring function assesses the proportion of data instances in the neighborhood of the
instance x that are negatively predicted and that share the explanation ei.

Explanation responsibility (RESP) : This property allows to answer the question how much an ex-
planation is responsible for the current prediction. Intuitively, if there is a unique explanation, then this
latter is fully responsible of the decision (only cause of the decision). Hence, the responsibility of an
explanation should be inversely proportional to the number of explanations in E(x, f). Given two differ-
ent data instances x1 and x2, their respective explanation sets E(x1, f) and E(x2, f) and an explanation
ei ∈ E(x1, f) and ej ∈ E(x2, f), we have:
RESP(x1, ei) < RESP(x2, ej) iff |E(x1, f)| > |E(x2, f)|. For a given data instance x, the responsi-
bility of ei ∈ E(x, f) could be evaluated using the following scoring function :

SRESP(x, ei) =
1

|E(x, f)|
(5.3)
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Remark 9. The scoring function of Eq. 5.3 assigns the same score to every explanation in E(x, f). It
means that it can be used to compare two different sets of explanations but it can not be used to evaluate
explanations within the same set.

To remedy the problem raised in the previous remark, we propose to define a more granular evalua-
tion of the responsibility of explanations in E(x, f) by calculating a responsibility score for each ei in
the neighborhood of x. An example of a scoring function capturing this property, would be :

SRESP(x, r, ei) = max (SRESP(v, ei))
v∈V (x,r)|ei∈E(v,f)

(5.4)

Example 42 (Example 40 continued). Given the set of sufficient reason explanations of x and the in-
stances from its neighborhood, we evaluate the relevance of explanations e ∈ E(x, f) w.r.t to the prop-
erties and by the means of the scoring functions presented above. These score-based explanations are
then ranked in order to choose the more convenient one w.r.t to the need of the user for whom these
explanations are intended.

explanation
criteria

SPAR(ei) SGEN (x, r, ei) SRESP(x, ei) SRESP(x, r, ei)

e1 1/2 2/3 1/3 1/3
e2 1/2 3/3 1/3 1/2
e3 1/3 1/3 1/3 1/3

Table 5.1: Evaluating explanations w.r.t to the PAR, GEN and RESP properties.

These properties make it possible to analyze and if necessary select or order the symbolic explana-
tions according to a particular property. Of course, we can define other properties or variants of these
properties (e.g. relative parsimony to reflect the parsimony of one explanation compared to the parsimony
of the rest of the explanations). The properties can have a particular meaning or a usefulness depending
on the applications and users. It would be interesting to study the links and the interdependence between
these properties. Let us now see properties allowing to assess the relevance of the features reflecting their
contribution to the prediction.

5.2.2 Properties of features-based explanations and scoring functions

It is possible to have inside the set of explanations the same cardinality and extent for different expla-
nations, and therefore, they cannot be distinguished by properties such as parsimony, generality and
responsibility. Hence, we consider properties at a feature-level by taking a look into the variables com-
posing the explanation and trying to assess their relevance. We propose the following properties for the
features:

Feature involvement (FI) : This property is intended to reflect the extent of involvement of a feature
within the set of explanations. The intuition is that a feature that participates in several explanations of
the same instance x should have a higher importance compared to a less involved feature. Given a data
instance x, its set of explanations E(x, f), and two features X1 and X2:
FI(X1,x)> FI(X2,x) iff |Cover(X1,x)| > |Cover(X2,x)|. An example of a scoring function capturing
this property is :

SFI(Xk, x) =
|Cover(Xk, x)|

|E(x, f)|
(5.5)

100



5.2. Feature attribution explanations for single-label classification

Feature generality (FG) : This property captures to what extent a feature is frequently involved in
explaining instances in the vicinity of the sample to explain x. Given a sample x, its vicinity V (x, r) and
their explanation set E(V (x, r), f) defined as

⋃
E(v, f)

v∈V (x,r)

and two features X1 and X2 :

FG(X1)> FG(X2) iff |
⋃
Cover(X1, v)|
v∈V (x,r)

> |
⋃
Cover(X2, v)|
v∈V (x,r)

. An example of a scoring function

capturing this property could be :

SFG(Xk) =

|
⋃
Cover(Xk, v)|
v∈V (x,r)

|x́ ∈ E(V (x, r), f)|
(5.6)

Feature responsibility (FR) : This property is intended to reflect the responsibility or contribution
of a feature Xi within the set of symbolic explanations of x. Intuitively, the responsibility of a feature
should be inversely proportional to the size of the explanations where it is involved (the shortest the
explanation, the highest the responsibility value of its variables). Given two features X1, X2 with non
empty covers: FR(X1)> FR(X2) iff aggr(size(ej))

ej∈Cover(X1,x)

< aggr(size(ej))
ej∈Cover(X2,x)

where aggr stands for an

aggregation function (e.g. min, max, AV G, etc.). An example of a scoring function satisfying this
property is :

SFR(Xk) =
1

AV G(size(ej))
ej∈Cover(Xk,x)

(5.7)

Example 43. Similarly to Example 42 on score-based explanations, we will take an example for the
computation of the different feature attributions w.r.t to the Feature involvement (FI), Feature generality
(FG) and Feature responsibility (FR).

feature
criteria

SFI(Xk, x) SFG(Xk) SFR(Xk)

X4 2/3 4/9 1/5
X5 2/3 2/3 1/4
X9 1/3 1/3 1/2
X12 2/3 4/9 1/5

Table 5.2: Evaluating explanations w.r.t to the PAR, GEN and RESP properties.

In addition to the different scores associated to properties presented above, we can aggregate them
(e.g., by averaging) to get an overall score depending on the user needs. To the best of our knowledge, our
agnostic and declarative approach was the first that generates different types of symbolic explanations
and fine-grained score-based ones. Note that this is not an exhaustive list of properties that one could
be interested in in order to select and rank explanations or rank features according to their influence
on the prediction. For instance, many desiderata can be required for an explanation in order to explain
predictions in understandable terms to a user and to its expectations such as plausibility (in the sense
that explanations need to be sufficiently convincing to users) [LBJ16, LCH+19, SZM19] and readability
[WR15, YRS17, ALSA+17]. However, it is unclear how to choose since standard tests and benchmarks
to evaluate such requirements are lacking and such evaluations still remain an open problem [DVK17,
JG20].

101



Chapter 5. Feature attribution explanations for single-label classification

5.3 Experimental results

This section presents some experiments of the score-based and feature attribution explanations generated
according to the approach depicted within this chapter. We considered a selection of datasets from
the literature and publicly available and can be found on Kaggle40 or UCI41. The studied datasets are
associated with binary classification tasks and are listed in Table 5.3. No pre-processing was performed
on the data except the binarization of variables.

Dataset #instances #features data type
MNIST 70000 784 Images
MONK’s Problems 181 16 Numerical
Spect Heart 160 22 Numerical
Congressional US Voting 435 16 Numerical
Heart disease 303 9 Numerical
Breast Cancer 287 48 Numerical

Table 5.3: Properties of the datasets used.

The experimental protocol used to train surrogate models is already presented in Chapter 3 and
remains applicable for this section. All experiments were performed on machines equipped with an Intel
Core i7-7700 (3.60GHz ×8) processors, with 32 Gb of RAM and under the Linux Cen-tOS operating
system. The time-out has been set to 300 seconds for each execution of an enumeration algorithm.

We present in the following some examples of our score-based explanations provided to explain
individual predictions of black-boxes trained on different datasets. In addition, we compare the relevance
of our numerical explanations to the ones of similar "feature-attribution" approaches where we consider
an important method in Explainable AI : the SHAP42 tool implementing the SHAP (SHapley Additive
exPlanations) approach [LL17].

Figures 5.6a and 5.6b are an example of the feature scores associated to sufficient reasons (SRx)
and counterfactuals explanations (CFx) enumerated to explain an instance negatively predicted from the
SPECT dataset. The score-based explanations attributed to the features composing the explanations are
plotted into bar charts. The blue bar represents the Feature responsibility (FR), the red bar represents
the Feature involvement (FI) and finally, the orange bar represents the Feature generality (FG). As
observed, the order of importance of features varies depending on the desiderata chosen. An example of
the SHAP explanation generated for the instance is also provided in Figure 5.7. Note that the represen-
tation of explanations can be done in different ways. For instance, it can be more convenient to represent
our explanations in the form of heatmaps when the inputs are images. Such a representation allows to
visualize and highlight the part of the input having the highest scores w.r.t to the different criteria. For in-
stance, Figure 5.8 shows heatmaps corresponding to the Feature involvement (FI) scores (column "b-c")
and Feature rxesponsibility (FR) (column "d-e") scores of the different input variables involved in SRx

and CFx. Compared to SHAP explanations (Figure 5.7), ours are most often visually simpler, clearer
and easier to understand and use.

To compare our results with existing methods and test if they correspond with those of SHAP, we
follow the following protocol : Given a dataset, here we used the Monk’s Problems, Spect Heart, Con-
gressional US Voting, Heart disease and Breast Cancer datasets, we enumerate explanations for all in-
stances to using a radius equal to the half of the input space size (r = |X|/2). We enumerate symbolic

40Kaggle dataset: (https://www.kaggle.com/).
41UCI dataset: (http://archive.ics.uci.edu/ml/).
42Available at https://github.com/slundberg/shap
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5.3. Experimental results

(a) Feature attribution for SR explanations.

(b) Feature attribution for CF explanations.

Figure 5.6: Examples of explanations on a test input negatively predicted from the SPECT dataset.

explanations using our approach named ASTERYX and compute the different score-based explanations
for the different features. We also generate the SHAP values for each instance. We look for the size
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Figure 5.7: SHAP values for test input explained in Figure 5.6.

Figure 5.8: Heatmaps in columns (b-c) representing the (FI) score, and (d-e) the (FR) computed over
the SRx and CFx of the samples data from MNIST (column a) in comparison to heatmaps of the SHAP
values (column f).

of shortest SRx explanations (m) and select the m important features having the highest SHAP val-
ues. A first observation was that finding common variables shared between the explanations of the two
approaches per run was systematic. We calculated the fraction : Number of time there are common vari-
ables / Number of total runs and we obtained 100% for all the datasets used. The second observation is
about the number of features shared given the m important SHAP values. The average and maximum
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Figure 5.9: Average (and maximum) proportion of common important variables between SHAP expla-
nations and those of our ASTERYX approach.

number of input features shared between ASTERYX’s explanations and most important SHAP’s features
is represented in Figure 5.9. The yellow bar corresponds to the average number of most important SHAP
values influencing the prediction (having a high score) and presented as an explanation. The green bar
corresponds to the average number of common variables between our symbolic explanations ASTERYX
and the SHAP explanations. Finally, the orange bar corresponds to the maximum number of variables
shared between ASTERYX and SHAP. As observed from the results, we can approximately identify a
ratio of 0.5 between the size of the set of common variables and the size of the m most important SHAP
values.
As for the MNIST dataset, we compared our most important features according to the FI score of our
approach and those of SHAP and the results on a sample of images coincide in 46% of cases, which is
visually confirmed in Figure 5.8. We proceed as follows to compute such kind of correlation coefficient
between the different scores proposed and the explanations calculated by SHAP: In a descending order,
we consider third of the pixels of the explanations (let P be the cardinality of this set) and we compare
them with P pixels having the highest SHAP values. The correlation coefficient corresponds to the result
of the fraction between the size of the intersection set and P .

5.4 Conclusion

In this chapter, we have presented another type of explanations. Such explanations are numerical feature-
based that aim to quantify the contribution of each feature in a prediction. In addition to the generation
of two types of symbolic explanations which are sufficient reasons and counterfactuals, we associate
scores reflecting the relevance of the explanations and the features w.r.t to some properties. To the best of
our knowledge, our approach is the first that generates different types of symbolic explanations and fine-
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grained score-based ones. Our experimental results show the effectiveness of the proposed approach in
providing both symbolic and score-based explanations. Finally, we were able to identify that a large part
of the features composing our explanations corresponded to the most influential SHAP values. In next
chapter, we will see how feature attribution explanations can be used to explain multi-label predictions
and what are the specificities related to such setting.
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6

Feature-attribution explanations for
multi-label classification

In this chapter, we will present the last part that we have explored during this thesis. We shift the attention
to multi-label classification where an instance is associated with a non-empty subset of labels and we are
interested in defining what a feature attribution explanation represents for such setting. We introduce
the problem studied in Section 6.1. We will see in Section 6.2 how we can generalize some feature
attribution techniques initially proposed in the literature for mono-label classifiers to the multi-label
ones. We describe two desirable criteria to evaluate aggregation of those explanations methods. We also
propose a criteria specific to multi-label classification and suggest to use it to infer feature attributions
based on relationships between labels. We introduce an alternative to aggregation in Section 6.3 and
propose a new attribution method based on symbolic explanations in Section 6.4.

6.1 Introduction

A lot of the post-hoc XAI methods have focused on feature-level importance scores for how much a given
input feature contributes to a model’s output. As stated before, depending on the considered method, a
feature attribution may denote sensitivity [SVZ13b], relevance [BBM+15], local influence [RSG16],
Shapley values [LL17], filter activations [NHWF21], etc. For multi-label classification where a predic-
tion is a subset of labels, there is only a very simple feature attribution methods based on aggregating
feature importance scores of the different predicted labels computed individually.

In this chapter, we are interested in feature attribution for multi-label classification tasks. The goal is
to associate to each input feature Xi a score ai reflecting the influence of Xi on the prediction y=f(x)
(or any subset y′ of y) as illustrated in Figure 6.1.

Example 44. In the picture below, the black-box is the multi-label classifier. Input instances are vectors
of n feature values. The vectors on the right-hand side show all the feature attributions computed using
explanation functions denoted h(x, yi) for each label. The problem studied is how to find the global
feature attributions for a multi-label prediction based on the ones generated for individual labels.
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Figure 6.1: Illustrative figure of the problem studied

We propose schemes for achieving feature attribution for multi-label classification which are all
model-agnostic and which are based on existing feature attribution methods used as oracles.

1. We first point out some deficiencies in attribution methods based on aggregation. To do this, we
define three desirable properties such as sensitivity (features actually leading to different predic-
tions should have positive scores), data stability (similar data items predicted equally should lead
to similar explanations) and label-explanation correlation (correlated labels should be associated
with correlated explanations). We show empirically that some oracles and aggregation operators
capture these properties to different extents.

2. The second main contribution of this chapter is a framework based on problem transformation
allowing to provide global feature attributions capturing the above properties while using existing
attribution methods as an oracle.

3. The third contribution consists in a new attribution method based on symbolic explanations such
as sufficient and counterfactual reasons, from which attribution scores are generated.

Examples of the existing feature attribution approaches proposed to explain the multi-label classi-
fication such as [SB21, Che21, PGMP19] were previously introduced in Section 4.1 of Chapter 4. In
the following, we propose and evaluate schemes for feature attribution specifically designed to explain
multi-label predictions in an agnostic way while taking advantage of existing feature attribution methods
used as oracles.

6.2 Aggregation-based feature attribution

The aim of this section is to compare some aggregation-based attribution methods using existing at-
tribution approaches such as SHAP and LIME considered as oracles employed to generate the set of
explanations. In an aggregation-based scheme, the global attribution aggregates feature attributions rela-
tive to labels individually into a global attribution for the considered multi-label prediction. This may be
useful to get an overall idea of the influence of each feature on the whole (or a subset) predicted labels.
Let h denote the attribution oracle used to achieve feature attribution of labels (individually), and let

Att(xi) = Aggyj∈y′(h(xi, yj)), (6.1)
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where Agg is an aggregation function43 and y′ is the part of the multi-label prediction to explain.
Given that the generated local feature attributions will provide insights into predicting each label yj

individually, then intuitively, one should choose aggregation operators allowing to capture complemen-
tary information (contrary to aggregation measures capturing confirmation or consensus as it is the case
in ensemble classifiers). In our study, we compare aggregation operators for redundant information on
the one side with operators suited for complementary information on the other side.

There are basically two questions when it comes to aggregation: i) what is the meaning or semantics
to give to aggregated scores (for example, is the aggregation of Shapley values for an attribute Xi a
Shapley value ?) and ii) how to assess relevance of aggregated scores? Let us first provide three natural
properties that we want to capture in a multi-label setting, then, assess in the experimental study to what
extent such properties are captured by some common aggregation operators.

6.2.1 Three basic properties for feature attribution in multi-label classification

Sensitivity

This property, also called separability, indicates that if there are two different predictions for two in-
stances of data that differ only in the value of a single feature Xi, then the feature Xi must have a
positive attribution. Also, if a feature is never used by a model to make a prediction, then the attribution
score for that feature should always be zero. To illustrate and motivate the interest of such property, we
provide the following example for the case where a change in a feature value alters the prediction and
how we expect the importance of the feature to evolve.

Example 45. In the figure below, the black-box is a multi-label classifier. Input instances have three
features and have similar values except for the variable X3. The model outputs for the instances x and
x′ two different predictions where the difference lies in the prediction of the label l2. The vectors on the
right-hand side correspond to the feature attributions of each instance. The importance of X3 is expected
to increase since it represents the only difference between two instances predicted differently.

Figure 6.2: Example illustrating the sensitivity property evaluated on the explanations of a multi-label
prediction.

In order to evaluate the sensitivity property, the two separability scenarios set out above should be
considered empirically. We provide details about how we do it in Section 6.5.1.

43In practice, one can use depending on needs average, median, max, min, etc.
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Data-explanation stability

Data stability, called simply stability in some papers [LPK21], intuitively states that similar data in-
stances predicted equally should have similar explanations. Therefore, small changes in the input data
(that do not change the predictions) should result in small changes in the explanations associated with
the predictions made on those data. In other words, explanation functions should be insensitive to pertur-
bations in the model inputs, especially if the model output does not change. This aims to capture a kind
of continuity, i.e. for data points close to each other in the feature space, we expect their explanations to
be close to each other if such data points share the same prediction.

Example 46. Similarly to Example 45, the input instances have three features and have similar values
except for the variable X1. The model outputs the same prediction for the two instances x and x′. The
vectors on the right-hand side correspond to the feature attributions of each instance. The importance of
X1 is expected to remain the same or undergo minimal changes (low impact) as shown below.

Figure 6.3: Example illustrating the data-explanation stability evaluated on the explanations of a multi-
label prediction.

Stability evaluation can be achieved similar to the way we assess sensitivity. In the current work, we
assess the stability property of a feature attribution function h as its ability to generate feature attributions
close to each other for an instance x and a perturbed instance x́ which have the same prediction (namely
f(x́)=f(x)). We give more insights on how we assess it empirically in Section 6.5.1.

Label-explanation correlation

This property refers to the consistency of the explanations provided for pairs of labels, especially in case
the labels are strongly correlated. Intuitively, if two labels (predicted by the model to be explained), are
strongly correlated then their explanations should also be strongly correlated. In an extreme case, if two
labels are equivalent (predicted with the same value regardless of the input data), then the explanations
must also be strongly correlated. Similarly, if two labels are predicted independently of each other then
their explanations should also be independent.

To illustrate this property, suppose a multi-label classification problem consisting in making hy-
potheses on possible diseases (representing the labels) from a certain number of observed symptoms
(representing the features). If two diseases are often always predicted simultaneously, then their expla-
nations (which can be assimilated to the associated symptoms) must be correlated, otherwise the two
diseases will not be predicted simultaneously.
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While sensitivity and stability properties also apply for multi-class classification, the third property
is specific to multi-label classification and it is the first time it is proposed to our knowledge. The
correlation between pairs of labels or between pairs of attribution vectors can directly be assessed by
commonly used statistical correlation measures such as mutual information, Pearson coefficient, etc.

6.2.2 Aggregation operators

In our case, aggregation consists of the operation of merging information from oracles in order to sum-
marize or obtain global information. More precisely, the input to our aggregation operation is a set of
k attribution vectors vj=(aj1, aj2, .., ajn) such that vj=h(x, yj) is the attribution vector obtained by the
oracle given the instance x for the label yj . The output is a vector of scores vagg=(a1, a2, .., an) where
agg is a user defined aggregation operator. Note that the vectors vj share the same scale and are provided
by the same oracle h.

Example 47. Assume we have a data instance of interest x=(0, 1, 0, 1, 0) to be explained by a feature
attribution function h and that its prediction by a model f is (1, 0, 0) ( i.e. f(0, 1, 0, 1, 0)=(1, 0, 0)).
vj=h(x, yj) is the attribution vector obtained by the oracle on the instance x for the label yj . The
generated feature attribution explanations for each class lj|j=1,2,3 of the prediction y = (1, 0, 0) are
represented in Table 6.1.

class Att1 Att2 Att3 Att4 Att5
v1 l1 = 1 0.093 0.55 0.27 0.043 0.044
v2 l2 = 0 -0.37 0.12 -0.48 0.15 0.58
v3 l3 = 0 -0.078 0.46 -0.75 0.196 0.172

Table 6.1: Feature attribution explanations of x per label.

The vectors of feature attribution explanation for the prediction of x obtained using the aggregation
operators average, maximum and minimum are presented as follows :

Att1 Att2 Att3 Att4 Att5
vmean -0.118 0.376 -0.32 0.129 0.265
vmax 0.093 0.55 0.27 0.196 0.58
vmin -0.37 0.12 -0.75 0.043 0.044

Table 6.2: Feature attribution explanation of f(x) = (1, 0, 0).

From an aggregation point of view, it is natural that aggregation has some natural properties like
commutativity, fairness and insensitivity to vacuous information. From a feature attribution point of
view, an aggregation should satisfy some intuitive properties such as unanimity (resp. majority) (e.g.
if a feature Xi is considered influential (resp. not influential) for each (most of) label, then it should
be considered influential (resp. non influential) by the feature attribution obtained after aggregation).
Note that our objective is not to study and analyse aggregation operators for feature attribution purposes.
Rather, we will focus on properties that are important from a feature attribution point of view and to what
extent aggregation preserves, improves or degrades these properties. It is worth noticing that aggregation-
based feature attribution needs k calls to a feature attribution oracle. The following provides a solution
based on reusing and inferring feature attributions relative to some labels based on the feature attributions
of other correlated labels.
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Feature attribution based on aggregation is intuitive and simple to implement but suffers from some
drawbacks, in particular, the number of calls to the oracle. Indeed, if the multi-label classification prob-
lem includes k labels, it will be necessary to make k calls to the oracle h, which can be very computa-
tionally expensive, especially if we use an oracle that is not computationally efficient like SHAP in its
standard version44. One way to improve this is to exploit the following fact: if the oracle used captures
the property of label-explanation correlation for two labels yi and yj then this correlation can potentially
make it possible to infer a feature attribution h(x, yi) from feature attribution h(x, yj). This is all the
more true as this correlation is very strong. The idea is to predict h(x, yj) from h(x, yi) by exploiting
correlations (especially linear ones) that may exist between predictions of yi and yj .

The following section provides an alternative scheme to aggregation-based feature attributions that
allows to only make one call to a feature attribution oracle.

6.3 Multi-label feature attribution through problem transformation

In this section, we provide a setting allowing to rely on existing feature attribution methods considered
as oracles to ensure feature attribution without aggregating attributions relative to labels individually.
Recall that in multi-label classification tasks, training examples are couples of vectors (x,y) where x ∈ X
is the data input, and y ∈ {0, 1}k is the corresponding output label vector. In order to explain the
prediction f(x)=y of a multi-label classifier f , we associate a binary classifier f ′ with f as follows:

f ′(x) =

{
1 if f(x)=y
0 otherwise

(6.2)

Then, in order to achieve feature attribution for a data instance x, we can simply rely on h(x, f ′). Namely,
we achieve feature attribution using the oracle h on a binary classifier f ′. For instance, if h performs
feature attribution for f(x) using a neighborhood around x then in the transformation-based scheme, we
will use h to attribute features for f ′ around x.

Example 48. (Example 47 continued) In this example, we transform a multi-label problem into a single-
label one according to Equation 6.2. Assume that the neighborhood of an instance x=(0, 1, 0, 1, 0) to
be explained by a feature attribution function h is given in Table 6.3 and assume that the prediction is
f(0, 1, 0, 1, 0)=(1, 0, 0).

X1 X2 X3 X4 X5 f(x) f ′(x)

0 1 0 1 0 1 0 0 1
1 1 0 0 0 0 1 0 0
1 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 0 1
0 1 0 1 1 1 0 0 1

Table 6.3: From multi-label predictions into mono-label ones.

Explaining f(x) = (1, 0, 0) amounts to explaining f ′(x) = 1 by the means of h(x, f ′) as shown in Table
6.4.

44Computationally efficient versions are KernelSHAP or TreeSHAP.
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Att1 Att2 Att3 Att4 Att5
vf ′ -0.13 0.76 0.45 -0.29 0.21

Table 6.4: Feature attribution explanation generated for the transformed problem f ′(x).

Hence, instead of explaining f(x) with h, our transformation-based scheme explains f ′(x) with h.
This transformation approach has several advantages:

• It can be used with any feature attribution oracle h such as SHAP and LIME.

• The semantics of scores is inherited from the one of the used oracle. For instance, using this
scheme, it is clear that the numerical score associated to a feature while making a prediction is a
Shapley value in case the used oracle is SHAP. This is not necessarily the case when aggregating
feature attributions.

• It requires only one single call to an oracle h for the feature attribution while aggregation-based
scheme requires k calls to an oracle.

So far, we have proposed a first scheme based on aggregation and a second one based on problem
transformation. In the next section, we propose to achieve feature attribution for multi-label classification
by first transforming the problem as in the second scheme and then use an oracle providing symbolic
explanations.

6.4 Multi-label feature attribution through symbolic explanations

In addition to popular attribution methods like SHAP and LIME, we propose to use an alternative oracle
that provides different types of symbolic explanations. More precisely, in this scheme, we first transform
the problem, then generate symbolic explanations (in the form of sufficient reasons and counterfactuals)
and finally derive feature attributions from the computed symbolic explanations. Given that problem
transformation is presented in the previous section, let us directly present the remaining steps.

6.4.1 Generating symbolic explanations

In order to provide symbolic explanations, we rely on our generic and agnostic approach ASTERYX
that allows to generate two main forms of symbolic explanations that are sufficient reasons and coun-
terfactuals along with score-based explanations (cf Chapter 3 and Chapter 5). To recall, the approach
is based on encoding a classifier into an equivalent symbolic representation and using a surrogate ap-
proach, ASTERYX relies on SAT-based solvers such as [GIL18] and [IMM18] to enumerate the two
types of symbolic explanations.

6.4.2 From symbolic explanations to feature attributions

Once the symbolic explanations are enumerated, they are used to calculate scores that will be associated
with the variables forming these explanations. These scores represent the feature attributions that are
derived from the initial set of symbolic explanations. We recall that the scores are calculated with respect
to certain properties (previously defined in Chapter 5) that we briefly recall in the following :

• Feature involvement (FI) : This property is intended to reflect the extent of involvement of a
feature within the set of explanations.
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• Feature generality (FG) : This property captures at what extent a feature is frequently involved
in explaining instances in the vicinity of the sample to explain.

• Feature responsibility (FR) : This property is intended to reflect the responsibility or contribu-
tion of a feature Xi within the set of symbolic explanations of x.

6.5 Experimental study

This section presents the empirical study carried out to evaluate the three schemes provided for achieving
feature attribution for multi-label tasks.

Dataset #instances #classes #features data type density
Augmented MNIST 70000 13 784 Images 0.184
Yelp Review Analysis 10806 5 671 Textual 0.328
IMDB Movie Genre Prediction 65500 24 30 Textual 0.07
Foodtruck 408 12 102 Categorical

/Numerical
0.191

Patient Characteristics Survey
(NYS15)

105099 5 63 Textual
/ Numerical

0.41

Table 6.5: Properties of the datasets used.

We considered a selection of multi-label datasets known from the literature and publicly available
and can be found on Kaggle45 or UCI46. The details of the datasets, such as the number of examples, the
type of attributes, the number of classes and their label density are given in Table 6.5. The initial version
of the MNIST dataset is composed of 10 classes corresponding to digits from 0 to 9. We extended that
version by adding the labels "Odd","Even" and "Prime" and called it "Augmented MNIST". Each
input image is associated to a vector of thirteen labels47. Experiments presented in this section have been
carried out on a cluster of computers equiped with quadcore bi-processors Intel Xeon E5-2643 3 (3.30
GHz) and 64 GB of memory running under the CentOS Stream 8.3 and on Intel Core i7-7700 (3.60GHz
×8) processors with 32Gb memory on Linux OS.

Two popular multi-class feature attribution methods have been used within the experiments as or-
acles: the widely-used SHAP [LL17] and LIME [RSG16]. As for symbolic explainer, we used our
approach ASTERYX (cf Chapter 3 and 5). We used the Binary relevance (BR) multi-label classifiers
with Logistic Regression or Decision Tree as base classifiers from the Scikit-multilearn library. Such
BR models are trained on the different datasets and their predictions are being explained. We observed
during the experiments that as the label-density decreases, the prediction task becomes harder. Given the
neighborhood of a sample test x, very few samples are predicted as the non-majority class, which causes
learning problems where the trained model recognizes systematically the majority class. To address this
problem, we operate an under sampling on the neighborhood Vx where we randomly pick samples from
majority class equal to the number of samples in the minority class so that both the classes will have
approximately the same number of samples. All the multi-class feature attribution oracles used in our

45Kaggle dataset : (https://www.kaggle.com/).
46UCI dataset : (http://archive.ics.uci.edu/ml/).
47The labels having an index i ∈ [0, 9] indicate whether the input image x is recognized as an i-digit while the labels

having an index i ∈ [10, 12] indicate respectively whether the represented digit is being classified as an "odd", "even" or a
"prime" numbers.
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experiments are local methods relying on the neighborhood of the instance to explain to generate expla-
nations.

In order to provide an empirical evaluation comparing the three schemes proposed in this paper, let
us first present the methodology and means used for each scheme, then give the empirical results of the
three schemes.

6.5.1 Evaluating aggregation-based feature attribution scheme

In the following, we assess the gain or loss in terms of sensitivity and stability due to the aggregation
operation.

Sensitivity In our work, the sensitivity property of a feature attribution function h is assessed quanti-
tatively as follows :
Let f be a classifier, h be a feature attribution function, x be a data point and assume a set of perturbed
instances ρ(x)={x́ : dist(x, x́)⩽r and f(x́) ̸= f(x)}, we assess the sensitivity property at x as follows:

ηSNS(h, x) = AV G
x́∈ρ(x)

(dist(h(x, f), h(x́, f))) (6.3)

where dist denotes a distance (or dissimilarity) function between x and a perturbed instance x́. One can
sample the data and have a representative assessment of the sensitivity property. According to Equation
6.3, the larger the output, the better is h in terms of sensitivity.

Since our objective is to assess the gain or loss in terms of sensitivity due to the aggregation operation,
we compare on average the sensitivity of individual label feature attributions (before aggregation) w.r.t
the sensitivity of resulting global feature attribution (after aggregation). The results are presented in
Table 6.6. Several findings are possible from Table 6.6. In particular, we notice on the different datasets
that most of the time, we obtain the best (here highest) values (highlighted in red) of sensitivity at the
level of individual label feature attributions (before aggregation), except for the MNIST dataset.

Data-explanation stability For any feature attribution function h, we can measure its stability fol-
lowing Definition 6.4. Given a classifier f , a feature attribution method h, a data point x and a set of
perturbed instances ρ(x) defined as ρ(x) ={ x́ : dist(x, x́) ⩽ r and f(x́)=f(x) }, we assess the stability

Oracle Before AV G
(ηSNS(fi, x))

After AV G
(ηSNS(fi, x))

Before MAX
(ηSNS(fi, x))

After MAX
(ηSNS(fi, x))

Before MIN
(ηSNS(fi, x))

After MIN
(ηSNS(fi, x))

YELP SHAP 3.143 3.0 3.44 3.54 2.69 3.16
LIME 2.2 0.96 2.31 0.97 2.06 0.92

MNIST SHAP 0.37 1.19 0.38 1.39 0.361 1.25
LIME 0.294 0.44 0.3 0.46 0.291 0.40

FOOD SHAP 2.09 1.1 2.14 1.48 2.03 1.24
TRUCK LIME 0.92 0.37 0.94 0.38 0.9 0.34
NYS15 SHAP 1.29 1.1 1.54 1.483 1.34 1.15

LIME 0.76 0.36 0.85 0.37 0.66 0.33
IMDB SHAP 0.43 1.0 0.44 1.17 0.42 1.03

LIME 0.228 0.373 0.232 0.38 0.224 0.35

Table 6.6: Evaluation of aggregation-based feature attribution wrt the sensitivity property.
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Oracle Before AV G
(ηSTB(fi, x))

After AV G
(ηSTB(fi, x))

Before MAX
(ηSTB(fi, x))

After MAX
(ηSTB(fi, x))

Before MIN
(ηSTB(fi, x))

After MIN
(ηSTB(fi, x))

YELP SHAP 0.92 1.75 1.4 3.05 0.7 2.65
LIME 2.11 0.68 2.29 0.7 1.79 0.54

MNIST SHAP 0.39 1.73 0.41 1.979 0.36 1.19
LIME 0.24 0.485 0.25 0.498 0.22 0.401

FOOD SHAP 0.75 1.36 0.82 1.48 0.66 1.08
TRUCK LIME 0.91 0.389 0.94 0.396 0.88 0.347
NYS15 SHAP 0.82 1.26 0.83 1.37 0.80 1.03

LIME 0.22 0.33 0.24 0.345 0.2 0.3
IMDB SHAP 0.48 1.52 0.49 1.73 0.4 1.07

LIME 0.16 0.41 0.169 0.422 0.15 0.342

Table 6.7: Evaluation of aggregation-based feature attribution wrt the data-explanation stability property.

property between h(x, f) and attributions of close instances ∈ ρ(x) as follows :

ηSTB(h, x) = AV G
x́∈ρ(x)

(dist(h(x, f), h(x́, f))), (6.4)

where dist denotes a distance (or dissimilarity) function between x and a perturbed instance x́. Equation
6.4 quantitatively assesses the stability property at a data instance x. One can sample the data and have
a representative assessment. According to our way of evaluating stability, the lower the result, the better
the feature attribution in terms of stability.

For the data-explanation stability property, we compare on average the data-explanation stability of
individual label feature attributions (before aggregation) w.r.t the data-explanation stability of resulting
global feature attribution (after aggregation). The results are presented in Table 6.7.

We obtain the best (here smallest) values (highlighted in green) at the level of the individual label
feature attributions, meaning that the property of stability is better preserved before aggregation and
merging the individual label feature attributions degrades it. Regarding the best aggregation operator,
it can be seen that max aggregation selects the highest values and thus benefits the sensitivity to the
detriment of stability. Conversely, for stability, min aggregation is more suitable because it ensures high
stability but this is to the detriment of sensitivity. We also observe that the SHAP method seems better
than LIME with a higher average value for sensitivity and a lower average value for stability (underlined
values per dataset).

In addition to sensitivity and stability, we assess label-explanation correlation in order to choose a
feature attribution oracle. In this experiment, we assessed this property by the mean of the Pearson
correlation coefficient and Mutual Information (MI). Note that the main difference is that the Pearson’s
correlation coefficient aims to capture linear relationships between variables while mutual information
measures general dependence. Given the base classifiers of a multi-label classifier, we measure the
correlation of predictions for each pair of labels and their respective SHAP and LIME explanations.

The results on the different datasets are presented in the Figures 6.4 and 6.5. where the X axis groups
the pairs of labels sharing the same MI or Pearson’s R interval. For example, the last bin will represent all
the pairs of labels yi and yj having MI(yi, yj) or Pearson’s R belonging to the interval ]0.9, 1]. On the Y
axis, the mean of MI or Pearson’s R of the scores corresponding to the instances predicted with the pair
(yi, yj) is represented. We can see that both SHAP and LIME manage to capture strong label-explanation
correlation when the labels are strongly correlated. However, the results diverge when it comes to weakly
correlated labels where we observe that the mean values of the MI and Pearson’s R metrics are still high
for weakly correlated labels, indicating strong correlation between the explanations. Indeed, for the
IMDB and the augmented MNIST, we notice that LIME, closely followed by SHAP, tends to capture
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Figure 6.4: Evaluating label-explanation correlation using the mutual information (MI) coefficient.
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Figure 6.5: Evaluating label-explanation correlation using the Pearson’s R coefficient.

strong correlation regardless of the relationship that exists between the labels. This may be due to the
assessment in our experiments of this property on restricted neighborhoods (therefore with very similar
instances, possibly similar attributions due to the stability property).

6.5.2 Evaluating problem transformation-based feature attribution scheme

We keep up with the same multi-label classifiers and the same oracles (SHAP and LIME) to evaluate
multi-label feature attribution through problem transformation. Table 6.8 gives the results of the eval-
uation wrt the sensitivity and stability properties. The main finding is that the problem transformation
approach ensures the smallest values for the stability property over the different datasets. Such results
are expected since the approach by definition reduces the task of explaining a multi-label classifiers to
explaining a single classifier, which makes it possible to minimize the discrepancies that there could be
between the explanations of similar instances.

6.5.3 Evaluating symbolic explanation-based feature attribution scheme

The objective here is to evaluate our three basic properties using a symbolic explanation-based oracle.
The same multi-label models used for the evaluation of aggregation-based attribution scheme are used in
this part.
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Property Dataset SHAP LIME

Sensitivity

YELP 0.28 0.75
AUG. MNIST 0.18 0.15
FOODTRUCK 0.29 0.5
NYS15 0.25 0.75

Data-explanation stability

YELP 0.05 0.4
AUG. MNIST 0.38 0.09
FOODTRUCK 0.6 0.33
NYS15 0.05 0.4

Table 6.8: Evaluation of multi-label feature attribution through problem transformation.

The feature attribution oracles used are : Feature Involvement (FI), Feature Responsibility (FR) and Fea-
ture Generality (FG) from ASTERYX.

Before AV G
(ηSNS(fi, x))

After AV G
(ηSNS(fi, x))

Before MAX
(ηSNS(fi, x))

After MAX
(ηSNS(fi, x))

Before MIN
(ηSNS(fi, x))

After MIN
(ηSNS(fi, x))

YELP FRCF 2.51 2.43 2.86 3.15 2.18 2.02
FGCF 1.61 1.41 1.82 1.87 1.41 1.11
FICF 1.26 1.05 1.41 1.46 1.26 0.78

MNIST FRCF 1.77 2.49 1.8 2.83 1.75 2.29
FGCF 1.7 1.65 1.74 1.9 1.66 1.49
FICF 1.53 1.23 1.56 1.46 1.5 1.09

FOOD FRCF 2.05 1.71 2.13 2.37 1.98 1.46
TRUCK FGCF 1.77 1.41 1.82 2.02 1.71 1.14

FICF 1.48 1.15 1.51 1.75 1.44 0.9

NYS15 FRCF 2.22 1.71 2.45 2.33 1.97 1.48
FGCF 1.8 1.44 1.88 2.0 1.71 1.18
FICF 1.39 1.17 1.45 1.71 1.32 0.93

IMDB FRCF 1.29 2.2 1.33 2.49 1.24 2.05
FGCF 1.51 1.62 1.55 1.85 1.47 1.5
FICF 1.33 1.28 1.34 1.5 1.32 1.15

Table 6.9: Evaluation of multi-label feature attribution through aggregation by assessing sensitivity for
counterfactuals (CF).

In Tables 6.9 and 6.10, we notice that we mainly obtain a higher sensitivity at the level of the global
feature attribution obtained after the aggregation for the sufficient reasons, while the opposite is observed
for the explanations counterfactuals, where we find a greater sensitivity before aggregation. In Table 6.10,
we notice a strong stability at the level of the explanations before the aggregation for the SRs. For CFs,
the results are more mixed with a slight advantage for aggregation (cf Table 6.9).
In terms of the oracle, none of the three oracles stand out in a striking way, with a slight advantage for
the FR for sensitivity in CF explanations and for the FI for SR explanations which seem to achieve better
scores for the Sensitivity property (underlined in Tables 6.9 and 6.10) i.e. tend to be more sensitive to
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Before AV G
(ηSNS(fi, x))

After AV G
(ηSNS(fi, x))

Before MAX
(ηSNS(fi, x))

After MAX
(ηSNS(fi, x))

Before MIN
(ηSNS(fi, x))

After MIN
(ηSNS(fi, x))

YELP FRSR 3.27 3.34 3.51 4.08 3.04 2.82
FGSR 3.6 3.56 3.8 4.47 3.41 2.96
FISR 3.81 3.7 3.99 4.62 3.63 3.1

MNIST FRSR 1.4 2.23 1.43 2.65 1.38 1.94
FGSR 2.69 2.97 2.78 3.55 2.5 2.6
FISR 2.56 3.09 2.63 3.67 2.5 2.71

FOOD FRSR 2.627 1.8 2.7 2.66 2.56 1.4
TRUCK FGSR 3.08 2.32 3.12 3.31 3.03 1.85

FISR 3.09 2.31 3.15 3.24 3.05 1.87

NYS15 FRSR 2.51 1.88 2.75 2.7 2.27 1.49
FGSR 2.73 2.32 2.36 3.29 2.59 1.91
FISR 2.64 2.34 2.82 3.22 2.46 1.92

IMDB FRSR 1.97 2.21 2.01 2.58 1.94 1.97
FGSR 2.07 2.72 2.09 3.2 2.04 2.47
FISR 1.92 2.77 1.95 3.23 1.89 2.52

Table 6.10: Evaluation of multi-label feature attribution through aggregation by assessing sensitivity for
sufficient reasons explanations (SR).

perturbations of data causing a change in prediction. With regard to Data-explanation stability, the FR
stands out with the lowest scores (underlined in Tables 6.12 and 6.11) reflecting a similarity in the feature
attributions attributed to instances that have undergone little change that does not impact their prediction.
For the choice of aggregation functions, the same analysis made at the level of aggregation-based feature
attribution applies to symbolic-based feature attribution oracles (max aggregation for sensitivity and min
aggregation for Data-explanation stability)
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Before AV G
(ηSTB(fi, x))

After AV G
(ηSTB(fi, x))

Before MAX
(ηSTB(fi, x))

After MAX
(ηSTB(fi, x))

Before MIN
(ηSTB(fi, x))

After MIN
(ηSTB(fi, x))

YELP FRSR 2.58 1.95 2.99 3.93 2.25 1.03
FGSR 3.66 2.67 4.008 5.45 3.34 1.39
FISR 3.75 2.76 4.08 5.61 3.44 1.45

MNIST FRSR 1.02 1.95 1.11 3.93 0.94 1.s03
FGSR 2.26 2.67 2.43 5.45 2.105 1.39
FISR 2.01 2.76 2.17 5.61 1.85 1.45

FOOD FRSR 2.11 1.85 2.17 2.47 2.04 1.55
TRUCK FGSR 3.31 2.59 2.954 3.48 2.84 2.19

FISR 3.34 2.62 2.96 3.53 2.79 2.2

NYS15 FRSR 0.46 1.68 0.48 2.2 0.4 1.43
FGSR 1.27 2.44 1.64 3.17 1.1 2.1
FISR 1.08 2.42 1.42 3.17 0.97 2.07

IMDB FRSR 2.72 1.82 2.76 2.84 2.1 1.34
FGSR 2.70 2.53 2.91 3.97 2.4 1.84
FISR 2.81 2.52 2.92 4.01 2.1 1.83

Table 6.11: Evaluation of multi-label feature attribution through aggregation by assessing data-
explanation stability for sufficient reasons explanations (SR).

Before AV G
(ηSTB(fi, x))

After AV G
(ηSTB(fi, x))

Before MAX
(ηSTB(fi, x))

After MAX
(ηSTB(fi, x))

Before MIN
(ηSTB(fi, x))

After MIN
(ηSTB(fi, x))

YELP FRCF 0.8 1.39 1.19 2.88 0.62 0.82
FGCF 0.48 0.96 0.72 2.4 0.37 0.43
FICF 1.23 1.03 1.47 2.75 1.005 0.39

MNIST FRCF 0.41 1.39 0.51 2.88 0.32 0.82
FGCF 0.49 0.96 0.61 2.4 0.35 0.43
FICF 1.03 1.03 2.75 2.12 0.396 0.619

FOOD FRCF 0.84 1.04 0.9 1.5 0.78 0.86
TRUCK FGCF 0.69 0.89 0.79 1.34 0.62 0.72

FICF 1.31 1.14 1.37 1.69 1.24 0.92

NYS15 FRCF 0.38 0.94 0.89 1.325 0.4 0.79
FGCF 0.69 0.88 0.78 1.26 0.62 0.74
FICF 0.4 1.14 1.03 1.26 0.2 0.74

IMDB FRCF 0.27 1.12 1.34 1.88 0.2 0.83
FGCF 0.6 0.89 0.886 1.63 0.3 0.6
FICF 1.27 1.1 1.37 2.005 1.24 0.75

Table 6.12: Evaluation of multi-label feature attribution through aggregation by assessing data-
explanation stability for counterfactuals (CF).
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YELP AUG. MNIST FOODTRUCK NYC15

Sensitivity

FRCF 2.46 2.75 3.6 2.46
FRSR 2.6 1.64 2.11 2.6
FGCF 2.26 2.18 2.69 2.25
FGSR 3.8 2.47 3.53 3.81
FICF 2.13 1.83 2.25 2.13
FISR 3.82 2.43 3.54 3.82
FRCF 0.83 1.11 1.67 0.83
FRSR 1.63 1.64 1.9 1.4

Data-explanation FGCF 1.4 1.42 3.42 1.39
stability FGSR 2.39 2.47 3.01 3.26

FICF 1.81 0.97 2.32 1.81
FISR 2.4 2.44 2.58 3.3

Table 6.13: Evaluating symbolic explanation-based feature attribution scheme through problem transfor-
mation with respect to the Sensitivity and Data-explanation stability properties.

Table 6.13 presents the evaluation results of the symbolic-based feature attribution through problem
transformation scheme. SRs explanations seem to be more sensitive to change with higher values com-
pared to those of CFs (underlined in table 6.13). On the other hand, CF explanations seem more stable
with smaller values than those of SRs (underlined in Table 6.13). In terms of which oracle to choose,
the FR seems to provide the most stable explanations and along with FI, providing the most sensitive
explanations too.

The last property we check on the symbolic-based feature attribution explanations is the Label-
explanation stability. The results are presented in Figures 6.6 and 6.7. The green bar-charts represent the
results of SRs explanations while the blue ones represent the results of the CFs. As shown in the fig-
ures, all of the oracles manages to keep a strong stability between the explanations of related labels. We
notice on the graph of certain datasets (in particular MNIST, Yelp and Nyc-mental-illness) that weakly
correlated labels are associated with weakly correlated explanations, which reflects a low stability be-
tween explanations of labels that are not related. We also note that label-explanation stability is better
preserved at the level of the explanation SRs compared to the CFs.
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Figure 6.6: Evaluating label-explanation stability using the mutual information (MI) coefficient.

6.5.4 Comparative study

Now that we have seen the results for the different schemes proposed to define feature attribution expla-
nations for a multi-label predictor, we compare them to see if we can identify the best scheme or even
the best oracle feature attribution to use. We summarize the main points as follows:

- Speed (runtime) : it is obvious that the problem transformation scheme is faster than the aggre-
gation ones. In the first scheme we call the feature attribution oracle only once while we will have
to do k calls in the second scheme.

- Representation of the explanation : the final representation is the same for all schemes. The
multi label explanation will be presented as a vector of size n representing the influence of each
feature on the whole (or a subset) predicted labels

- Nature of explanations : the problem transformation scheme retains the nature of the explana-
tions generated, by transforming the multi-label problem into a binary classification problem, we
can directly use the multiple interpretability methods defined for single-label problems and thus,
preserve the nature of the explanations and their properties. This is not the case with aggregation.

- Feature attribution oracle : there is no clear explanation function that stands out more than the
others to best measure the properties according to the different approaches. We notice that SHAP
often makes it possible to obtain the smallest values for the criterion of Data-explanation stability
while the symbolic-based feature attribution methods seem to get out of it better if we consider the
property of sensitivity. Regarding the Label-explanation stability property, symbolic-based oracles
seem to stand out compared to SHAP and LIME.
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Figure 6.7: Evaluating label-explanation stability using the Pearson’s R coefficient.

6.5.5 Evaluating feature attribution inference

The goal here is to infer explanations given related classes of a multi-label predictor. To do so, we com-
pare the difference between scores that we will call "deduced" and the real explanations calculated for
the label in question. This evaluation is done on different multi-label predictors having MLP Classifier,
Logistic Regression and Random Forest Classifier as base classifiers. The feature attribution oracles used
are SHAP, LIME and ASTERYX.

Different metrics such as euclidean distance and mean squared error (MSE) were used to compute
the difference between the real feature attribution explanations and the deduced ones and are represented
on the Y axis. They give a relatively high weight to large difference between real and deduced scores,
which means the smaller the weight, the closer the fit is to the real feature attribution scores.
The X axis represents the MI (resp Pearsons’s R) coefficient between pairs of labels of the same data
instances. For example, pairs of labels yi and yj having MI(yi, yj)=1 (resp Pearsons’s R(yi, yj)=1) are
strongly correlated around V (x, r). On the Y axis, the mean of distances between real feature attribution
scores and the MI-deduced (resp Pearson’s R-deduced) scores corresponding to the instances predicted
with the pair (yi, yj) is represented. To sum up, we have on the X axis of Figures 6.8 and 6.9, the MI(yi,
yj) of different pairs of labels. On the Y axis, the average distance between the real and alpha-score
deduced from MI(scores) where alpha is the coefficient between the related pair of labels.

The curves in Figures 6.8 and 6.9 show that all the explanation methods used tend to generate expla-
nations very similar to those inferred from a relationship between two classes. These latter are obtained
by multiplying the real scores with the coefficient between the related pair of labels. Note that the greater
the correlation coefficient between the labels, the smaller the difference between the explanation vectors
and those for the two measurements used (MSE and Euclidean distance).

123



Chapter 6. Feature-attribution explanations for multi-label classification

SHAP LIME

A
U

G
M

E
N

T
E

D
M

N
IS

T
Y

E
L

P
N

Y
S1

5
IM

D
B

Figure 6.8: Average difference between real vs deduced feature attribution scores (SHAP/LIME) given
the MI between labels.
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Figure 6.9: Average difference between real vs deduced feature attribution scores(FR/FIxFG) given the
MI between labels.
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This track is interesting because in addition to the power of optimization that there may be in terms of
the number of calls to a multi-class oracle and the number of explanations to be processed, the inference
of explanations can be used to "learn to explain" by training a model on the generated explanations.

6.6 Conclusion

The literature reports many approaches for explaining binary and multi-class classifiers but only a few
are dedicated to the multi-label setting. In this chapter, we addressed feature attribution for multi-label
classification problems. The main objective is to take advantage of existing feature attribution methods
for multi-class classification and provide schemes to use them as oracles to provide features attributions in
a multi-label classification setting. We proposed three schemes for achieving this task : i) an aggregation-
based scheme, ii) a problem transformation-based scheme and iii) symbolic explanation-based one. In
order to assess the relevance of feature attributions obtained using our three schemes, we first highlighted
three desirable properties : sensitivity, data-explanation stability and label-explanation correlation, then
used such properties to assess empirically the quality of our feature attribution schemes.We proposed
to go further concerning the property of label-explanation correlation by exploiting it to infer feature
attributions relative to a label by using the explanations already calculated for another label with which
it is correlated. Clearly, the preliminary results we have obtained confirm our intuition regarding the
new property of label-explanation correlation. In addition to the feature attribution inference, it would be
interesting to exploit the correlations to better present explanations. This is a track that we will investigate
in our future work.
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Conclusion and future work avenues

This thesis brings different contributions on explaining individual predictions of multi-class and multi-
label classifiers.

Let’s first summarize our results and some perspectives that we think are most relevant and promising.
Note that the work of this thesis has been the subject of international publications (see ([BCAMT20]),
([BCAMT21a]), and ([BCAMT21a])).

In chronological order, we first worked on proposing a symbolic approach to generate two types of
complementary explanations to explain predictions of a multi-class classification problem. We proposed
a generic and declarative approach based on the encoding of the model to be explained in an equivalent
symbolic representation. This latter serves to generate in particular two types of symbolic explanations
which are sufficient reasons and counterfactuals. We rely on SAT-solving where we encode the problems
of generating our symbolic explanations as two common problems related to satisfiability testing which
are enumerating minimal reasons of why a formula is inconsistent (MUSes) and minimal changes to
restore the consistency of a formula (MCSes).
For instance, our contribution makes it possible to equip the symbolic approach proposed in [SCD19]
with a module for counterfactual explanations. Our work presented in [BCAMT20] takes advantage of
well-defined concepts and proven tools for the MCSes enumeration. Moreover, it is specifically designed
to provide exact, valid and complete explanations with a rigorous foundation since it is based on the en-
coding of a classifier into an equivalent and tractable symbolic representation. However, such approach
suffered from some limitations. The main issue faced with this contribution is that it required a com-
pilation process to get the symbolic representation of a classifier where the compilation algorithms (e.g
[SCD19, SSDC20] ) remain specific to the type of model studied and thus, limit the type of models that
could be explained. The other issue was the complexity of exact methods where the size of the symbolic
encoding such as Ordered Decision Diagram (ODD) associated with the classifier becomes intractable
(exponential) for problems with a few dozen input variables, which makes the explanations too expensive
to compute. This is not new as it is known that scalability is a weak point of all exact methods developed
for full-precision or binarized networks. Moreover, another issue that arose was the question of how to
choose an explanation and on what basis given the large number of explanations generated. Recall that
an inconsistent Boolean formula formed by p clauses, can potentially have a large set of explanations
(the number of MUSes and MCSes can be in the worst case exponential in p [LS08]).

In a second time and in order to overcome the scalability limitation mentioned above, we introduced
the surrogate modeling to the encoding step of our approach. Henceforth, the encoding of a classifier
is done either : (1) using model encoding algorithms if available (compilers already exist for Bayesian
networks [SCD19], decision trees and some neural nets) and if the encoding is tractable (non agnostic
case); (2) Or using a surrogate approach consisting in the approximation of the classifier’s decisions by
the mean of a surrogate model trained on the locality of an instance (agnostic case). The aim of such
proposal is to balance between the guarantees of using a formal method and its feasibility in practice.
Thus, we keep a rigorous symbolic formalism and we introduce the surrogate modeling to enhance the
scalability of the approach and makes it more general as it assumes no knowledge whatsoever about the

127



Conclusion and future work avenues

model (model-agnostic). The surrogate model should guarantee to be i) as faithful as possible to the
initial model (ensures same predictions) and ii) allows to obtain a tractable CNF encoding. We used
the Random Forest classifiers as it showed a good trade-off between the desiderata just mentioned. The
experiments showed interesting results in reducing the time and the size of the encoding representation
confirming that introducing a symbolic approximation through a surrogate model makes the approach
more scalable.

Afterwards, we shifted our attention to the score-based explanations where we equipped our generic
model-agnostic approach to explain individual outcomes with a third module (Explanation and feature
relevance scoring) that aims to evaluate the explanations by assessing their relevance w.r.t a set of nat-
ural properties. Moreover, such module allows to assess the relevance of features and to evaluate their
individual contributions to the outcome using scoring functions w.r.t to a set of intuitive properties. The
objective of the approach is to explain the predictions of a black-box model by providing both symbolic
and score-based explanations with the help of Boolean satisfiability concepts. To the best of our knowl-
edge, our approach is the first that generates different types of symbolic explanations and fine-grained
score-based ones. It allows on the one hand to exploit the strength of modern SAT-solvers and on the
other hand to consider other forms of symbolic explanations.

Our work then turned to the multi-label tasks, where typically many labels are predicted for each
instance. First, we extended our proposed approach from a multi-class setting to explain predictions in a
multi-label setting by adapting the definitions of the symbolic explanations. We defined several symbolic
explanation types and showed how we can enumerate them using the existing SAT-based oracles. By tak-
ing advantage of the structural relationships between labels, a new concept for label-based explanations
is introduced resulting in a reduction of the number of generated explanations and leading to a better
presentation. The contributions of this work, namely, developing concepts specific to the multi-label
case such as label-based and fine-grained explanations are not simple extensions from the multi-class
framework to the multi-label one.

Finally, we propose a novel model-agnostic feature-based approach based on widely-used feature
attribution methods and symbolic explainers. We propose two techniques to generate multi-label expla-
nations: (1) by combining label’s explanation using aggregation functions and (2) by learning a binary
classifier that only recognizes the outcome to explain (transformation problem). Furthermore, we pro-
pose to infer explanations from the relationships between the output classes of a multi-label classifier.
We extend the properties of sensitivity, stability to the multi-label setting in addition to a new property
specific to multi-label classification that we called label-explanation correlation. We show the method’s
effectiveness with an empirical analysis on real-world data, yet, none of the XAI methods significantly
outperforms the others.

Prospects and future work

Different avenues for future work are still open after this thesis. Firstly, our analysis of the practical fea-
sibility of the approach has been carried out on few different application cases, but all of them designed
to use binary classifiers. It would be interesting to test the applicability of our approach extended to the
multi-class case. We also want to check empirically the impact of fidelity of a surrogate model on the
generated explanations and their quality. For example, we would check their consistency by testing if the
explanations of the surrogate model and the original are approximately the same. We can also evaluate
the number of explanations generated and see if it increases/decreases with respect to the fidelity of the
surrogate model.
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As for numerical explanations, we plan in the future to study the relationships between score-based ex-
planations w.r.t the different properties of sufficient reasons and counterfactuals and check if the minimal
hitting set duality between MUSes and MCSes is reflected at the scores level. Another track would also
be to check the consistency between the scores calculated for the variables and those calculated for the
explanations. Intuitively, a variable that has an important weight w.r.t to some property is expected to
participate in explanations that also have a high score and vice versa. Thus, if such a relationship were to
be confirmed, one could, for example, infer the score of an explanation from the variables that compose
it, and conversely, assign weights to variables from the scores of the explanations in which they partic-
ipate. We also intend to explore the use of inconsistency measurements to assign scores to the different
explanations obtained.
Another interesting avenue would be to check experimentally whether the proposed approach is efficient
in verifying the robustness of a model and finding adversarial examples. We stress that even if for the ex-
isting approaches proposed to generate adversarial examples, the optimization problem is similar to the
one posed in the generation of counterfactuals, the desiderata are different. For example, in adversarial
learning (often applied to images), the goal is an imperceptible change in the input image enough to fool
models into producing incorrect predictions, while for counterfactual enumeration, the goal is provide
users with actionable explanations in the form of data instances that would have received a different
outcome.

There are several relevant directions for future work for the multi-label setting as well. In particular,
we intend to focus on how to extract the relations between the labels from the predictions of the clas-
sifiers and how to exploit the relations extracted during the generation of explanations. In theory, any
relationship between labels can be exploited. In practice, we limited ourselves to certain types of rela-
tionships that are easy to extract and easy to understand for the user, but it can be interesting to explore
other types of relationships linking the output classes.
Another idea for a multi-label setting would be to consider the explanations set generated using a XAI
oracle (e.g LIME or SHAP) for a label as an argumentation system, and multi-label explainability as a
problem fusion of argumentation systems. For example, a variable from the test input may have a posi-
tive influence (score) for a given label and a negative influence (score) for another one, thus, the question
about how to attribute a final score to such variable w.r.t to the whole multi-label prediction arises. Such
idea is motivated by the objective of using the concepts of argumentation for the resolution of conflicts
between the beliefs of a rational agent (here explanations of a data instance input).

Another possible avenue would be the integration of preferences and knowledge of the domain up-
stream of the enumeration, given that SAT modeling allows us to do so.
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Résumé

Cette thèse étudie une méthode d’explicabilité qui allie à la fois le caractère "agnostique" des méth-
odes numériques et qui propose des explications plus "rigoureuses" qui caractérisent les explications
symboliques. Le but étant d’expliquer les prédictions des techniques de classification mono-étiquette
et multi-étiquettes. Plusieurs contributions sont apportées dans cette thèse. Premièrement, nous avons
travaillé sur le cas mono-étiquette. Nous avons proposé une approche qui va de l’encodage en représen-
tation symbolique du modèle dont on souhaite expliquer les prédictions à la génération d’explication
basée sur un oracle SAT. L’idée est de prendre un classifieur, avec une instance, et de produire une
formule propositionnelle que nous utiliserons pour générer nos explications. L’inconsistance de cette
formule permet d’expliquer les prédictions. Nous considérons les deux cas où nous pouvons avoir la
représentation logique du modèle dans son ensemble ou une approximation basée sur un modèle de sub-
stitution. Nous nous intéressons à deux types complémentaires d’explications symboliques : les raisons
suffisantes qui correspondent à un sous-ensemble minimal de l’entrée conduisant à une prédiction spéci-
fique et les contrefactuelles qui correspondent à un sous-ensemble de l’entrée permettant de déterminer
les modifications minimales à apporter pour obtenir une prédiction différente. Deuxièmement, nous
avons proposé des propriétés à considérer afin de prioriser et sélectionner les explications en évaluant
leur pertinence ainsi que celle des variables les composants. Par la suite, nous nous sommes intéressés
à l’explication des prédictions multi-étiquettes. Nous avons proposé des explications multi-étiquettes
à différents niveaux de granularité et étudié la combinaison d’explications mono-étiquette ainsi que les
relations structurelles entre classes comme moyen de les générer. Enfin, nous nous sommes intéressés
aux scores d’importance au niveau des caractéristiques pour déterminer dans quelle mesure chacune
contribue à la sortie d’un modèle multi-étiquettes. Cette contribution examine deux possibilités dif-
férentes d’utiliser des méthodes existantes pour le cas mono-étiquette comme oracles ou d’utiliser des
attributions de caractéristiques obtenues à partir d’explications symboliques. Afin d’évaluer la qualité
des attributions de caractéristiques, nous étendons les propriétés de sensibilité, de stabilité des données
au cas multi-étiquettes en plus d’une nouvelle propriété spécifique à la classification multi-étiquettes que
nous appelons corrélation label-explication.

Mots-clés: IA explicable, Explications symboliques, Explications basées-score, Modèle-agnostique,
Classification multi-étiquettes, Satisfiabilité booléenne, Attribution de caractéristique.
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Abstract

This thesis studies the problem of explaining individual predictions of black-box machine learning
models. This problem is addressed in both single and multi-label classification. Firstly, we introduce an
explanation approach representing a combination of SAT solving and numerical measures to develop a
model-agnostic method for providing both symbolic and score-based explanations. The idea is to take a
single-label classifier, together with an instance, and produce a propositional formula that we will use to
generate our explanations. We consider both cases where we can have the logical representation of the
model as a whole or an approximation based on a surrogate model. In the second case, a crucial compo-
nent of the proposed approach is to approximate the model with another (simpler) one that does admit a
tractable logical representation to efficiently enumerate explanations. To comply with the original pre-
dictor, the selected surrogate model needs to ensure fidelity. Subsequently, this trained model is used to
generate symbolic and numerical explanations. In a second time, we consider a SAT framework with the
aim of using SAT solvers as the problem solving engine. Given an unsatisfiable formula corresponding
to a negative prediction, modern SAT solvers are able to report the cores generating an inconsistency.
In this contribution, we provide two complementary types of symbolic explanations of unsatisfiability
called sufficient reasons and counterfactuals centered around Minimal Unsatisfiable Subsets (MUS)
and Minimal Correction Subsets (MCS) respectively. Secondly, we have worked on defining measures
of the quality of an explanation and of a variable contribution to properly assess how relevant they are
as it becomes necessary to focus on those providing more insights. Next, we have worked on defining
possible explanation mechanisms to explain the outcomes of multi-label classifiers. We have introduced
explanations at different granularity levels which go from structural relationships between labels to the
selection of features. Finally, we were interested in feature-level importance scores for how much a given
input feature contributes to a multi-label model’s output. This contribution looks into two different pos-
sibilities of using existing methods for single-label as oracles or using feature attributions obtained from
symbolic explanations. In order to evaluate the quality of feature attributions, we extend the properties
of sensitivity, data-stability to the multi-label setting in addition to a new property specific to multi-label
classification we called label-explanation correlation.

Keywords: eXplainable AI (XAI), Symbolic explanations, Score-based explanation, Model-agnostic,
Multi-label classification, Satisfiability testing, Feature attribution.

162



163


	Couverture
	Acknowledgements
	Dédicace
	Contents
	List of Figures
	General introduction
	Background and notations
	Classification problems
	Single-label classification
	Multi-label classification 

	Propositional logic and Boolean satisfiability
	Syntax of propositional logic
	Semantics of propositional logic
	Normal forms

	Boolean satisfiability problem
	Boolean satisfiability problem
	Partial Maximum Satisfiability problem



	Part I State-of-the-art
	Explainable AI
	Explainable Artificial Intelligence
	The need to explanation
	Purpose of interpretability
	Audiences interested in explainable AI

	Related works
	Interpretable models (intrinsic methods)
	Post-hoc interpretability
	Local interpretability versus global interpretability


	XAI methodologies
	Ad-hoc methods
	Formal methods
	Knowledge compilation
	Abductive reasoning

	Conclusion


	Part II Symbolic explanations
	Symbolic explanations for single-label classification
	General framework
	Encoding of the model
	Direct encoding into CNF
	Surrogate model encoding into CNF

	Enumeration of symbolic explanations
	Satisfiability solving for explanation generation
	Enumerating sufficient reason explanations (SRx)
	Enumerating counterfactual explanations (CFx)
	On enumerating sufficient reasons and counterfactuals
	Beyond SRx and CFx explanations

	Experimental study
	Results

	Conclusion

	Symbolic explanations for multi-label classification
	Brief review of related works
	Feature-based explanations
	Entire-outcome explanations
	Fine-grained explanations

	Label-based explanations
	Impact of presence of relationships on explanations

	A model-agnostic SAT-based approach for enumerating symbolic explanations
	Step 1: Multi-label classifier symbolic modeling 
	Step 2: Symbolic explanation enumeration

	Experimental analysis
	Results

	Conclusion


	Part III Feature-attribution explanations
	Feature attribution explanations for single-label classification
	Feature attribution explanations
	Review of related works

	Feature attribution explanations for single-label classification
	Properties of symbolic explanations and scoring functions
	Properties of features-based explanations and scoring functions

	Experimental results
	Conclusion

	Feature-attribution explanations for multi-label classification
	Introduction
	Aggregation-based feature attribution
	Three basic properties for feature attribution in multi-label classification
	Aggregation operators

	Multi-label feature attribution through problem transformation
	Multi-label feature attribution through symbolic explanations
	Generating symbolic explanations
	From symbolic explanations to feature attributions

	Experimental study
	Evaluating aggregation-based feature attribution scheme
	Evaluating problem transformation-based feature attribution scheme
	Evaluating symbolic explanation-based feature attribution scheme
	Comparative study
	Evaluating feature attribution inference

	Conclusion


	Conclusion and future work avenues
	Bibliography
	Résumé
	Abstract

