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Summary

Predicting the performance of a fusion plasma as a function of the plasma power
gains, is one of the crucial challenges in fusion plasma physics. With that in mind,
turbulence and heat transport must be modelled in a precise theoretical framework
which in this case involves the use of “first principle” non-linear simulations. The 5D
(3 spatial coordinates, 2 velocity coordinates) gyrokinetic equations for each species
(ions and electrons), coupled with the 3D Maxwell equations form a self-consistent
description of the problem. Studies of transport in the core of a tokamak plasma have
now reached maturity. Several first principle codes exist which are capable of handling
this problem. However, despite their many successes, their prediction capabilities
remain limited by the energy content, in particular in the case of discharges with
optimised confinement time. In order to push past this limitation, the gyrokinetic
models must be extended towards the region at the edge of a tokamak, and, where
possible, should treat the transport at the edge and at the core in the same way.

The 5D gyrokinetic non-linear GYSELA (V. Grandgirard, Abiteboul, J. Bigot, et al.
2016) code developed by IRFM/CEA is special in that it is global (simulates the entire
torus), makes no scale separation approximations (“full F code”) and drives turbu-
lence via particle, momentum and heat sources. The additional use of an immersed
boundary condition, imitating the extraction of heat by a limiter, makes the GYSELA
code one of the rare codes capable of addressing the problem of edge-core turbulence.
It is already capable of studying the impact of the edge on the turbulence in the core
for electrostatic simulations (i.e. simulations where electrons are considered to be
adiabatic). In order to run these simulations, it uses petascale high performance
calculations (100 million CPU hours/year). The long-term objective for the code is to
simulate a turbulent plasma in both the edge and the core with kinetic electrons for
the international tokamak ITER which is currently being built at Cadarache (France).
We already know that such simulations will not only require tomorrow’s exascale
resources, but also major numerical changes in the code.

This thesis lies within this context and it has a double objective: (i) develop new
scalable numerical methods, adapted to the semi-Lagrangian scheme used in the
GYSELA code, capable of solving the problem of large fluctuations and temperature
variations (1-2 orders of magnitude) at the edge of the plasma, and (ii) take into
account more realistic magnetic configurations than the concentric circles currently
simulated by the code.

Concerning the handling of steep gradients at the edge of the plasma, as the current
5D grids (3 spatial coordinates, 2 velocity coordinates) already represent more than
100 billion points, the proposed solution for adding more points in the edge region is
to use a non-equidistant mesh in the radial direction. Even if splines, which have up
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till now shown themselves to be the best compromise in terms of calculation precision
and cost, are retained, adding non-equidistant meshes requires in-depth changes to
the compute kernels. From a theoretical perspective, I present a new approach for
quadrature using splines, which limits the condition number for the procurement
of such quadrature coefficients. One of the disadvantages of splines for their paral-
lelisation is their global nature. I present a local spline method where derivatives are
transported between patches, and show its stability for semi-Lagrangian advection.
From a numerical perspective, bearing in mind that the GYSELA code is a code with
more than 50 000 lines, based on a hybrid MPI/OpenMP parallelisation, and optimised
for more than 100 000 cores, the choice was made to carry out in-depth studies of the
semi-Lagrangian method based on non-uniform splines on a model with reduced
dimensionality. The problem examined is a Vlasov-Poisson 1D-1V model, used for
studies of the plasma sheath, which is a section of the plasma, which presents numeri-
cally troublesome steep gradients. The existing VOICE code (which is a mini version
of GYSELA), designed to study such problems, has been modified and optimised on a
GPU to operate on a non-uniform mesh. These improvements allowed simulations to
be carried out which were previously unattainable, and allowed the validation of the
semi-Lagrangian method on non-uniform splines.

As regards the new more realistic magnetic configurations in the GYSELA code,
the choice was made to implement a Culham equilibrium. This equilibrium has the
benefit of being based on analytical formulae, while also taking into account the im-
portant shaping parameters of an equilibrium plasma: elongation, triangularity, and
Shafranov shift. Co-variant and contra-variant transformation matrices were derived
and implemented in the code to allow the 5D Vlasov equations to take this geometry
into account. The Poisson equation has up to now been solved numerically by pro-
jecting each 2D poloidal slice into Fourier space in the periodic poloidal direction,
and by using second order finite differences in the radial direction. This solver has
been replaced by a 2D finite elements solver based on splines(Zoni and Güçlü 2019)
which was extracted from the SELALIB library (SeLaLib Development Team 2018).
The inclusion of this new magnetic configuration has been successfully numerically
validated on the linear benchmarks used for geodesic acoustic mode (GAM) studies.
In parallel, a test platform for the 2D Poisson solver was developed in order to nu-
merically compare this spline finite elements solver to two other multi-grid solvers:
(i) a solver based on the AMReX library(al. 2019) which uses finite volumes on a uni-
form cartesian mesh with embedded boundaries, and (ii) a solver developed by the
CERFACS which uses finite differences on a logical mesh(Martin J Kühn, Kruse, and
Rüde 2022). The advantage of a solver using embedded boundaries would be to more
easily handle configurations with an X-point geometry. As for the solver developed
by CERFACS, its main advantage would be to potentially use a highly optimised 3D
multi-grid solver in order to be able to simulate stellarator configurations with the
GYSELA code.

Keywords: semi-Lagrangian scheme, B-splines, non-equidistant meshes, Vlasov-
Poisson equations, finite elements, HPC plasma turbulence simulations

8



Résumé

Prédire les performances des plasmas de fusion en termes de facteur d’amplification,
autrement dit le rapport de la puissance fusion sur la puissance injectée, est l’un des
challenges cruciaux dans la physique des plasmas de fusion. Dans cette perspective, la
turbulence et le transport de chaleur doivent être modélisés dans un cadre théorique
précis consistant ici à utiliser des outils de simulations "premier-principes" non-
linéaires. Les équations gyrocinétiques 5D (3 coordonnées d’espace, 2 coordonnées
de vitesse) pour chaque espèce (ions & électrons), couplées aux équations 3D de
Maxwell représentent une description auto-consistante appropriée du problème. Les
études de transport au coeur des plasmas de tokamak ont maintenant atteint une
maturité avec plusieurs codes premiers principes dans le monde capables d’aborder
ce problème. Cependant, malgré leurs nombreux succès à ce jour, leur capacité de
prédiction reste contrainte par le contenu énergétique en particulier dans le cas de
décharges optimisées. Réussir à franchir ce cap demande de pousser les modèles
gyrocinétiques vers la région de bord du tokamak et dans la mesure du possible de
traiter sur un même pied d’égalité le transport de bord et de coeur.

Le code gyrocinétique 5D non-linéaire GYSELA (V. GRANDGIRARD, ABITEBOUL, J.
BIGOT et al. 2016) développé à l’IRFM/CEA a la particularité d’être global (simulation
de l’ensemble du tore), de ne pas faire d’approximation de séparation d’échelle (“code
full F”) et de forcer la turbulence via des sources de particules, de moment et de chaleur.
Ajouté à cela une condition de frontière immergée imitant l’extraction de chaleur par
un limiteur, le code GYSELA est l’un des rares codes au monde capable d’adresser ce
problème de turbulence plasma couplée coeur-bord. Il est déjà en capacité d’étudier
l’impact du bord sur la turbulence de coeur pour des simulations electrostatiques
(i.e où les électrons sont considérés adiabatiques). Il utilise pour cela de manière
intensive les moyens de calcul haute performance petascales (100 millions d’heures
CPU/an). L’objectif à long terme pour le code est de simuler une turbulence plasma
couplée coeur-bord avec des électrons cinétiques pour le tokamak international ITER
actuellement en construction à Cadarache (France). On sait d’ores et déjà que de telles
simulations nécessiteront non seulement les ressources exascales de demain mais
aussi des évolutions numériques majeures du code.

Cette thèse s’inscrit dans ce cadre et son objectif est double : (i) développer des
méthodes numériques innovantes adaptées au schéma semi-Lagrangien utilisé dans
le code GYSELA, passant à l’échelle, capables de résoudre le problème de grande
amplitude de fluctuations et de variation de température (1 à 2 ordres de grandeurs)
au bord du plasma et (ii) prendre en compte des configurations magnétiques plus
réalistes que les configurations magnétiques concentriques circulaires jusqu’alors
simulées dans le code.
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Concernant le traitement de fort gradients aux bords du plasma, les maillages 5D (3D
en espace et 2D en vitesse) actuels représentent déjà plus de 100 milliards de points,
la solution envisagée pour raffiner le bord est d’utiliser un maillage non-équidistant
dans la direction radiale. Même en conservant une interpolation par splines, qui
s’est avérée le meilleur compromis jusqu’à présent en termes de précision et de
coût de calcul, le passage à un maillage non-équidistant nécessite une modification
en profondeur des noyaux de calcul. Sur le plan théorique, nous présentons une
nouvelle approche pour la quadrature par splines, qui limite le conditionnement pour
l’obtention des coefficients de quadrature. L’un des inconvénients des splines en terme
de parallélisation est leur caractère global. Nous présentons une approche splines
locales avec transport des dérivées entre chaque patch; et démontrons sa stabilité
pour une advection semi-Lagrangienne. Sur le plan numérique sachant que le code
GYSELA est un code de plus de 50 000 lignes, basé sur une parallélisation hybride
MPI/OpenMP et optimisé à plus de 100 000 coeurs, le choix a été fait de réaliser les
études approfondies des méthodes semi-Lagrangiennes basées sur des splines non-
uniformes sur un modèle de dimensionnalité réduite. Le problème considéré est un
modèle Vlasov-Poisson 1D-1V utilisé pour l’étude de la gaine dans un plasma qui
présente de très forts gradients numériquement contraignants. Le code VOICE (mini-
application de GYSELA) qui était utilisé jusqu’à présent pour les simulations de gaine a
été modifié et optimisé sur GPU pour prendre en compte un maillage non-équidistant.
Ces améliorations ont permis d’atteindre des simulations encore jamais réalisées et
de valider l’approche semi-Lagrangienne avec splines non-uniformes.

Concernant la prise en compte d’une configuration magnétique plus réaliste dans
le code GYSELA, le choix a été fait d’implémenter un équilibre de Culham. L’avantage
de cet équilibre est de rester sur des bases analytiques, tout en permettant de prendre
en compte les paramètres importants d’un équilibre plasma qui sont l’élongation, la
triangularité et le décalage de Shafranov. Les matrices co-variantes et contra-variantes
de transformations ont été dérivées et implémentées dans le code pour une prise en
compte dans les équations de Vlasov 5D. Le solveur de Poisson – jusqu’à présent résolu
numériquement en projetant chaque coupe poloidale 2D dans l’espace de Fourier
dans la direction périodique poloidale et par des différences finies d’ordre 2 dans la
direction radiale – a été remplacé par un solveur 2D éléments finis basés sur des splines
(ZONI et GÜÇLÜ 2019) qui a été extrait de la librairie SELALIB(SELALIB DEVELOPMENT

TEAM 2018). La prise en compte de cette configuration magnétique plus réaliste a été
validée numériquement avec succès sur les benchmarks linéaires d’étude des modes
géodésiques accoustiques (GAM). En parallèle, une plate-forme de tests du solveur
de Poisson 2D a été développée pour pouvoir comparer numériquement ce solveur
basé sur des éléments finis splines à deux autres solveurs multigrilles : (i) l’un basé
sur la bibliothèque AMREX(AL. 2019) qui utilise des volumes finis sur un maillage
cartésien uniforme et (ii) l’autre, développé par le CERFACS qui utilise des différences
finies sur un maillage logique(Martin J KÜHN, KRUSE et RÜDE 2022). L’avantage d’un
solveur basé sur des frontières immergées serait de pouvoir traiter plus facilement
des configurations avec point de champ-X. L’avantage d’utiliser le solveur développé
au CERFACS serait quant à lui de pouvoir bénéficier d’un solveur 3D multigrille très
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optimisé en vue de pouvoir à terme simuler avec le code GYSELA des configurations
stellarators.

Mots clés : schémas semi-lagrangiens, B-splines, maillages non-équidistants, équa-
tions Vlasov-Poisson, éléments finis, simulations HPC de plasma turbulent
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1. Introduction

Energy production is a critical problem in the world today. Population increases
and technological advancement lead to ever increasing energy demands. Currently
all methods of production have significant downsides. Coal, oil, and gas all create
carbon emissions contributing to global warming. Wind and solar power do not
release carbon emissions, but are both subject to favourable weather conditions
and require large areas of land to generate useful quantities of energy. Meanwhile,
hydroelectric power can only be harnessed in a select number of locations depending
on the appropriate geography being available. Finally, nuclear power does not release
carbon emissions, and is reasonably compact, but it generates highly radioactive
waste material and accidents can occasionally have catastrophic effects.

One possible solution to this problem is to generate power via nuclear fusion. This re-
action generates large quantities of energy from small quantities of a readily-available
fuel: hydrogen. The process does not release carbon emissions, and requires external
input in order to propagate. As a result it is not susceptible to dangerous accidents.
Finally although the process generates small quantities of radioactive waste, this waste
is minimal and has a half-life of hundreds of years, compared to several thousands for
nuclear fission waste.

1.1. Nuclear Fusion

Nuclear fusion is the process through which the nuclei of two atoms fuse together to
form one nucleus of a heavier element. This process liberates the additional binding
energy necessary to hold the nuclei together. Figure 1.1 shows the binding energy as a
function of the atomic mass of an element. We can see that this process only liberates
energy when lighter elements are fused together to form heavier elements. Nuclear
fission also produces energy by liberating binding energy, this time by splitting heavy
elements into lighter elements, however as shown in Figure 1.1 this process releases
significantly less energy than fusion reactions with a hydrogen fuel source.

In order to fuse elements, the nuclei must overcome electromagnetic forces to arrive
sufficiently close to one another for strong forces to become dominant, allowing the
creation of the fused nucleus. In order for the nuclei to overcome the electromagnetic
forces, they must have sufficient energy. In practice this means that they must be
sufficiently hot (more than one million degrees). At such high temperatures electrons
are stripped off atoms leaving behind a soup of ions and electrons, known as a plasma.

The plasma must also be confined to ensure a sufficient density for nuclei to en-
counter one another. As a plasma is ionised this can be done using large powerful
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Figure 1.1.: Binding energy of different elements
Source: www.nuclear-power.com

magnets. There are two main categories of machines capable of creating these condi-
tions: tokamaks which are axisymmetric, and stellarators which have a more compli-
cated twisted geometry (Chen 2016). There are several existing tokamaks, including
Joint European Torus (JET)1 at Culham in the UK, W Environment in Steady-state
Tokamak (WEST)2 at IRFM/CEA in France, where I conducted my thesis, Tokamak
à Configuration Variable (TCV)3 at Lausanne in Switzerland, and Axially Symmetric
Divertor Experiment (ASDEX)4 at Garching in Germany. Future, larger tokamaks have
already been planned including International Thermonuclear Experimental Reactor
(ITER)5 (first plasma planned for 2025), and Demonstration Power Plant (DEMO)6

(first plasma planned for after 2050).
Although nuclear fusion is a promising domain, there are still several challenges

before this technique can be employed in energy production. In order for fusion
reactions to produce net power, the plasma must be maintained in a state where
enough fusion occurs, for at least one second. If too little fusion occurs then the
output power will not offset the power necessary to heat and confine the plasma
(Gibney 2022). This milestone has not yet been achieved. The JET tokamak holds the

1https://ccfe.ukaea.uk/research/joint-european-torus/
2https://irfm.cea.fr/en/west/
3https://www.epfl.ch/research/domains/swiss-plasma-center/research/tcv/
4https://www.ipp.mpg.de/16195/asdex
5https://www.iter.org/
6https://www.euro-fusion.org/programme/demo/
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current record for the highest sustained energy pulse (Gibney 2022).
In order to push the results further, to the point where fusion can become an energy

source, we must develop a theoretical understanding of the processes that control
plasma behaviour.

1.2. Plasma

A plasma is a state of matter where unbound ionised particles behave similarly to
atoms in a gas. In tokamaks, this state is obtained by heating a gas to temperatures so
high that electrons have enough energy to break free from the atoms.

Plasma behaviour at a microscopic scale is described by Maxwell’s electromagnetic
equations. At a macroscopic scale the equations describing the behaviour are not
yet well defined. One reason for the difficulty in describing plasmas macroscopically
is their inherently turbulent nature. Turbulence is particularly difficult to describe
analytically so it is important to create reduced models which provide insights into
how to control the plasma.

Additional knowledge in this domain can only be obtained by analysing experimen-
tal data. Nevertheless, physical experiments are extremely costly and the machines are
not easily configurable once built. For example, although changes can be made to the
internal shape of a machine, it is not cost-effective to do this more than once a decade.
One way to access more varied experimental results without incurring astronomical
costs is to use numerical experiments.

1.3. Numerical Plasma Simulations

Although the microscopic behaviour of a plasma can be described analytically using
Maxwell’s electromagnetic equations, a simulation modelling all 1022 particles (for a
plasma in an ITER-sized tokamak), based only on these equations would be extremely
costly. On today’s High Performance Computing (HPC) machines we would therefore
be limited to simulations covering a tiny area in space and only simulating a few
nanoseconds; otherwise the simulation would run for a prohibitively long time and
would not fit in the memory of the supercomputer.

Methods exist which reduce the size of the problem to allow results to be obtained
in a reasonable time. The most simplified models are fluid models or Magnetohy-
drodynamics (MHD) models. In this case the plasma is modelled as a magnetised or
non-magnetised fluid. As a result the simulation can rely on our extensive knowledge
of fluid behaviour and only uses three dimensions. This results in relatively cheap
simulations with around 107 points. However this change neglects the charges inside
the plasma which have a non-negligible effect on the turbulence. Charges are also
important in other domains such as plasma sheath physics, which describes the sepa-
ration of charges near a wall. Jorek (Guido Huijsmans and Czarny 2007) is an example
of a MHD code, while Soledge3X (H. Bufferand, Bucalossi, Ciraolo, et al. 2021) is an
example of a fluid code.
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A more common and more precise set of models are kinetic models. In this case the
simplification that is made is that the particle distribution function of each species in
the plasma is studied instead of the individual particles. The distribution function is a
continuous function defined in both space and velocity space. Simulations describing
these functions are therefore 6D.

Amongst the set of kinetic models, the gyrokinetic model is of particular interest
(Xavier Garbet, Idomura, Laurent Villard, et al. 2010). In this case, the model is reduced
further by neglecting the rapid gyration of the charged particles around the magnetic
field lines. This gyration occurs at a frequency much higher than any other phenomena
in the plasma, so this movement has negligible impact on the behaviour of the plasma.
This simplification allows the problem to be reduced from six phase-space dimensions
to five. Despite this reduction the resulting simulations still remain very large using
around 1011 points. This thesis falls within the context of gyrokinetic models.

Several numerical methods exist to solve the gyrokinetic equations. They generally
fall into two categories, Lagrangian methods and Eulerian methods.

Particle In Cell (PIC) methods are an example of a Lagrangian method. They model
the distribution function with macro particles which are followed throughout the
duration of the simulation. One disadvantage of the PIC method, and Lagrangian
methods in general, is that the choice of macro particles can have an effect on the
solution. Certain physical phenomena can push particles away from specific spatial
regions. While some remain, if these particles were not in the original subset, the
PIC method will have no information about the behaviour of the plasma in this
region. Examples of EU codes using this method are the ORB5 code (S. Jolliet, Bottino,
Angelino, et al. 2007) and EUTERPE (Hatzky, Tran, Könies, et al. 2002).

Eulerian methods such as Finite Difference Method (FDM), Finite Element Method
(FEM), or Finite Volume Method (FVM) are used by codes such as GENE (Jenko,
Dorland, Kotschenreuther, et al. 2000). A disadvantage of these methods is that they
have Courant–Friedrichs–Lewy (CFL) conditions which restrict the size of the time
step for explicit methods.

In addition to Lagrangian and Eulerian methods, the semi-Lagrangian method
can also be used. This method was designed to eliminate the aforementioned dis-
advantages of the Lagrangian and Eulerian methods. This is done by evaluating the
distribution function on a grid, as in Eulerian methods, but treating those grid points
like macro particles during advections, as in Lagrangian methods. This technique
will be described in detail in Chapters 3 and 4. The GYSELA code (V. Grandgirard,
Abiteboul, J. Bigot, et al. 2016) is a gyrokinetic semi-Lagrangian code, and it will be the
focus of this thesis.

1.4. GYSELA

The GYSELA code takes its name from its main numerical methods: “Gyrokinetic Semi-
Lagrangian”. It is a highly parallel 5D first principle code, which has been developed at
the IRFM/CEA since 2001. Additional contributions are provided from researchers
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and engineers from a plethora of different institutions including the Maison de la
Simulation in Paris, IPP in Garching, Germany, the University of Strasbourg, and the
University of Marseille. Such collaborations involving people from different research
areas including HPC development, mathematics, and plasma physics, are essential to
develop an efficient code, using state of the art numerical and physical methods.

The model used in the code is based on the gyrokinetic Vlasov-Poisson equations.
The Vlasov equation, describing the movement of particles, contains a multitude of
terms modelling not only the basic movement of particles in an electric field, but
also collisions, source terms, and various sink terms, including penalisation sink
terms describing the wall surrounding the plasma. This equation is solved using
Strang splitting (Strang 1968). The resulting independent equations describing the
movement are solved using the backwards semi-Lagrangian method which will be
described in detail in Chapter 3. This method currently relies on uniform cubic splines.
The additional terms each have dedicated solvers which have been discussed in other
works (V. Grandgirard, Abiteboul, J. Bigot, et al. 2016). Before this thesis, the Poisson
equation was solved by projecting 2D poloidal slices into Fourier space in the poloidal
direction using Fast Fourier Transform (FFT)s and using second order FDM radially.
This choice will be discussed in Chapters 5 and 6.

The code is written in Fortran with some modules in C. It uses both OpenMP and
MPI parallelism to run efficient simulations on more that 100 000 cores. Each simula-
tion runs for several days, for a total of up to 100 million CPU hours per year. Each
timestep generates 2TB of data. These simulations run on petascale supercomputers
including the GENCI network of French national resources 7 (including IDRIS in Orsay,
CINES in Montpellier and TGCC in Bruyères-Le-Châtel), the EU Fusion dedicated
resource MARCONI8, and the Japanese Fugaku computer9. These statistics put the
code at the limits of current petascale resources. As GYSELA simulates larger and
larger plasmas, aiming to simulate the large ITER tokamak, these requirements will be
increased further requiring exascale HPC capacities.

Exascale machines are currently being planned and constructed, however these
machines have a different architecture to their forebears. Specifically, they are based
on heterogeneous accelerated computing nodes. This choice requires GYSELA to
be performant on a variety of architectures, including GPUs and ARM instruction
sets which have not been used in GYSELA until recently. First tests with ARM have
unfortunately not shown promising results (loss of efficiency of a factor of 3 on the
Fugaku machine). A rewriting of the code in C++ using modern programming models
is therefore necessary.

7https://www.genci.fr/fr
8https://www.hpc.cineca.it/hardware/marconi
9https://www.fujitsu.com/global/about/innovation/fugaku/
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1.5. Edge-Core Challenges

Since its inception, GYSELA has been capable of using gyrokinetic models to study
turbulent plasma in the core of a tokamak (V. Grandgirard, Abiteboul, J. Bigot, et al.
2016). However over time it has extended its capabilities to allow it to simulate a larger
region extending up to the plasma wall (Guilhem Dif-Pradalier, Philippe Ghendrih,
Yanick Sarazin, et al. 2022). This carries with it new challenges which require specially
designed numerical methods.

Firstly, the edge region contains very steep gradients. Guilhem Dif-Pradalier, Philippe
Ghendrih, Yanick Sarazin, et al. 2022 have shown that this region has an important
effect on the turbulence in the core. It is therefore vital to ensure that this area is
sufficiently discretised to productively model the gradients. Although this can be done
by increasing the number of points uniformly, this would be wasteful as the additional
refinement is not necessary in the core region. Furthermore the GYSELA code already
runs simulations using 10 Petabytes (PB) of data. Increasing the memory excessively
can therefore easily result in a simulation which is too large to run on today’s petascale
computing resources. This thesis will therefore focus on non-uniform methods as a
solution to this problem.

Another problem as we extend the simulation towards the edge region is the break-
down of previously valid hypotheses. In the core region a circular cross section is a
reasonable representation of the geometry. This is therefore the geometry that has
thus far been used in the GYSELA code. However in the edge region this geometry
provides a poor representation of the shape of the cross-section. This thesis will also
examine the implementation of a new, more realistic geometry known as the “Culham”
geometry and the tools necessary to handle this change.

1.6. Outline of the thesis

In Chapter 2 a review of splines, which underpin the majority of the methods used in
this thesis, is provided. Additionally splines as tools for quadrature are discussed and
I propose a new method for calculating the quadrature coefficients of Schoenberg’s
“best” quadrature, with significantly improved precision.

These splines are used in Chapter 3 to improve an existing code, known as VOICE
(Vlasov Open boundary Ion Coupling to Electrons), which examines sheath physics.
This problem demonstrates many of the problems due to steep gradients that are also
encountered by GYSELA, while remaining simpler as it is only 1D-1V. Furthermore
the VOICE code is written using many of the same numerical tools as the GYSELA
code. It is therefore used as a test bed to trial non-uniform splines and examine the
performance costs incurred by abandoning uniform splines. In (Bourne, Munschy,
Virginie Grandgirard, et al. 2022), the advantages are shown to outweigh the costs
in this case, and I further use GPUs to tip the scales in favour of the non-uniform
solution. The resulting simulation can model more complex problems allowing a
better understanding of the sheath, as presented by Munschy, Bourne, Guilhem Dif-
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Pradalier, et al. 2022.

As a mini version of GYSELA, the VOICE code provides a perfect test bed to trial
the use of modern C++ to create a more performant version of the code. As part
of my thesis, I contributed towards the development of the new code VOICE++. I
provided the spline modules, which were previously tested in VOICE by coupling
Fortran and C++ code using Iso C Bindings. These modules were modified with the
help of researchers from the Maison de la Simulation, to use a new optimised discrete
domain computation (DDC) (Julien Bigot and Padioleau 2021) library.

In Chapter 4 I present a new approach to local splines as a solution to avoid the costs
incurred due to non-uniform points by using locally uniform splines. As an additional
benefit this approach would allow GYSELA to further increase its parallelism or avoid
some of the costly MPI communications required to ensure that all data associated
with a given dimension is available on one node for the construction of a global spline.
Moreover, I prove the stability of the semi-Lagrangian method on these local splines.
The next step for this work will be to implement this method in VOICE++.

To handle a more realistic geometry, the GYSELA team made the choice to use an
“analytical” magnetic equilibrium to define the coordinates, rather than coupling the
code with an equilibrium code such as CHEASE (Lütjens, Bondeson, and Sauter 1996)
or CEDRES (Hertout, Boulbe, Nardon, et al. 2011). In Chapter 5, this new “analytical”
equilibrium, referred to as the “Culham” equilibrium, is introduced. The changes
necessary to add this geometry to the GYSELA code are discussed. This includes a
discussion on generalised coordinates and the coupling of a new solver, extracted
from the SeLaLib library (SeLaLib Development Team 2018), for the quasi-neutrality
equation. This 2D FEM solver includes a special treatment of the singular point
arising in the curvilinear coordinates, using C1 polar splines (Zoni and Güçlü 2019).
Results of Geodesic Acoustic Mode (GAM) tests using the GYSELA code with this new
geometry are compared to results from other major codes to show the successful
implementation. This work was carried out in collaboration with Kevin Obrejan, Peter
Donnel and two interns (Ken Leleux and Baptiste Legouix).

Finally the chosen solver, is compared with two alternative solvers: (i) a FDM solver
using a multigrid method to solve the problem on a curvilinear mesh, developed
by CERFACS (Martin J Kühn, Kruse, and Rüde 2022), and (ii) a FVM solver using a
multigrid method to solve the problem on a cartesian mesh with embedded boundary
conditions, developed using the AMReX library (al. 2019). In order to facilitate this
comparison I developed a python script which auto-generated the code necessary to
describe the various problems investigated, for each of the three solvers, in Fortran
and C++, with the help of the pyccel library (Bourne, Güçlü, Saïd Hadjout, et al. 2022).
This open-source library is a transpiler which translates python code to Fortran or C.
It featured heavily in my master’s thesis (Bourne 2018) and I have since continued to
contribute to its development. This comparison is used to determine which solver
provides an implementation which is best suited to the restrictions imposed by the
code and the supercomputers where GYSELA is run. Advantages and disadvantages
are shown for each of the three solvers in (Bourne, Leleux, Kormann, et al. 2022).
Additionally I examine the difficulties associated with using the solvers on more
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complex geometry such as an X-point geometry. This work was carried out as part of
an Energy oriented Centre of Excellence 2 (EoCoE-II) project in collaboration with
the Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
(CERFACS) and Max Planck Institute for Plasma Physics (IPP Garching).

Finally, in Chapter 7 the results of the thesis are summarised.
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2.1. Introduction

Spline-based tools are used throughout this thesis for plasma simulations. In order
to evaluate these methods, it is important to have a thorough understanding of what
a spline is, and how it is used in different contexts. Splines have already been ex-
plained in detail by several different authors (Piegl and Tiller 1996; Farin 1993; Gordon
and Riesenfeld 1974; De Boor 1978; de Boor 1972; Hämmerlin and Hoffman 1991;
Patrikalakis and Maekawa 2002), but this chapter aims to summarise this work and
present the sections relevant to this thesis.

In Section 2.2, the theory underpinning splines is explained in general terms. In prac-
tice, most numerical methods to not remain this general, but are instead expressed
on the spline basis functions. These functions and their derivation are explained in
Section 2.3. In Section 2.4, I explain how this framework can be extended to handle
multi-dimensional problems, including polar domains using the method proposed by
Toshniwal, Speleers, Hiemstra, et al. 2017. Next, in Section 2.5, I explain how splines
are constructed in the context of interpolation problems. The most common bound-
ary conditions for this problem are presented in section 2.5.1. In Section 2.6, I explain
how the splines are evaluated and discuss the costs associated with solving general
problems vs highly specialised problems. Following this I explain how the derivatives
are calculated in Section 2.7. Finally I discuss how to integrate spline representations
in Section 2.8.1. Spline integration can be leveraged to provide precise quadrature
schemes. This is discussed in Sections 2.8.1 and 2.8.2. In particular Section 2.8.2
discusses the “best” quadrature using Schoenberg’s criteria. This theoretical result
is not often used as the existing methods for calculating the quadrature coefficients
are poorly conditioned. In addition to presenting the existing methods, I also present
my new method for calculating the coefficients which presents significantly better
conditioning. Having avoided the conditioning problems which prevented the use
of this quadrature, I present comparisons of this method with classic Newton-Cotes
quadrature.

2.2. General Theory

Splines are smooth piecewise polynomial functions defined over a given domain [a,b].
For the rest of this work they will be noted by Sd (x) where d is the maximum degree
of the polynomials. They are characterised by nc +1 break points a = z0 < z1 < ·· · <
znc−1 < znc = b which split the domain [a,b] into nc cells. The nc pieces of the spline
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are noted S j ,d (x) and are each polynomials of degree d or less, which can be described
as follows:

S j ,d (x) =
d∑

i=0

pd ,i , j xi ∀0 ≤ j < nc (2.1)

where pd ,i , j are the polynomial coefficients for the j -th polynomial of degree d or less.
The spline is defined as:

Sd (x) =






S0,d (x) if x ∈ [z0, z1[
...

Snc−1,d (x) if x ∈ [znc−1, znc [

(2.2)

The most general spline is therefore characterised by nc (d +1) unknowns.

Different conditions of smoothness can be imposed on the splines at the break
points {z j }. The smoothest and most common splines are constructed such that
Sd (x) ∈ Cd−1([a,b]) (where d ≥ 1, splines of degree 0 are discontinuous). Unless
otherwise specified, in this work splines will always respect this condition. In other
words, the splines and their first d −1 derivatives are continuous. This condition can
also be expressed as:

∂k
x S j ,d (z j+1) = ∂k

x S(k)
j+1,d

(z j+1) ∀0 ≤ k < d ∀0 ≤ j < nc −1 (2.3)

The condition adds d · (nc −1) constraints to the system which reduces the number
of degrees of freedom of the system from nc · (d +1) to

nc · (d +1)−d · (nc −1) = nc d +nc −nc d +d = nc +d .

2.3. B-Splines

There are multiple ways to describe splines. The most straightforward definition
describes the piecewise polynomials using the polynomial coefficients as described in
equation (2.1). However this description has nc · (d +1) unknowns. When handling
smooth splines, there are only nc +d degrees of freedom, it is therefore possible to
find a simpler description which takes the smoothness into account and only requires
nc+d unknowns. This description is obtained by expressing the spline on basis splines,
or b-splines:

Sd (x) =
nc+d−1∑

i=0

ci bi ,d (x) (2.4)

where ci are the coefficients of the spline which represent the degrees of freedom.

For a set of functions {bi ,d (x)} to define a basis of the spline function space, they
must respect the following conditions:

1. bi ,d (x) is a piecewise polynomial function of degree d ≥ 0 or less
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2. bi ,d (x) ∈ Cd−1([a,b]), ∀d > 0

3. The set of all b-splines with support in the domain [z j , z j+1] must define a basis
of all polynomials of degree d or less

In addition, we require that the basis splines bi ,d (x) have compact support.
As a polynomial of degree d has d +1 degrees of freedom, condition 3 implies that

there must be exactly d +1 basis functions with support on an interval [z j , z j+1]. In
order for this condition to be respected over the entire domain, while respecting the
compact support condition, the support for each basis spline must cover at most d +1
consecutive intervals. This implies that it also has minimal support. We will note the
support of the basis spline bi ,d (x) as [ki ,ki+d+1] where ki are known as the knots of
the b-spline. Without loss of generality we assume that the ki are ordered:

k0 ≤ k1 ≤ ·· · ≤ knc+2d−1 ≤ knc+2d (2.5)

Additionally as condition 2 is valid over the entire domain and not just the support
of the function, we can also infer the following:

∂k
x bi ,d (ki ) = ∂k

x bi ,d (ki+d+1) = 0 ∀0 ≤ k < d (2.6)

As each b-spline is a piecewise-polynomial of degree d defined over d +1 intervals
its representation following equation (2.1) contains (d +1)2 unknowns. The continuity
condition 2 described by equations (2.3) and (2.6) imposes d(d +2) conditions. These
conditions are therefore not sufficient to define a unique set of basis splines. A final
normalisation condition must be added to have a complete definition. The following
normalisation choices are the most common:

Partition of Unity
nc+d∑

i=0

bi ,d (x) = 1 ∀x ∈ [a,b] (2.7)

Unit Integral ∫b

a
Qi ,d (x)d x = 1 (2.8)

where Qi ,d (x) is the b-spline normalised to unit integral.
Qi ,d (x) and bi ,d (x) are related by the following equation (Boor, Lyche, and Schu-

maker 1976):

bi ,d (x) =
supp(bi ,d (x))

d +1
Qi ,d (x) = ki+d+1 −ki

d +1
Qi ,d (x) (2.9)

As the support of bi ,d (x) covers d+1 cells, in the case of equidistant knots this equation
can be written as:

bi ,d (x) = h(d +1)

d +1
Qi ,d (x) = hQi ,d (x) (2.10)
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where h = z j+1 − z j is the spatial resolution.

In this work partition of unity is used for the normalisation. This gives us the
following definition for the b-splines (Gordon and Riesenfeld 1974):

bi ,0(x) =
{

1 if ki ≤ x < ki+1

0 otherwise

bi ,d (x) = x −ki

ki+d −ki
bi ,d−1(x)+ ki+d+1 −x

ki+d+1 −ki+1
bi+1,d−1(x)

(2.11)

Up to this point we have simplified the problem by ignoring the behaviour of the
b-splines at the boundaries. For a smooth spline the break points can be mapped to
the nc +1 inner knots:

ki+d = zi ∀0 ≤ i ≤ nc (2.12)

However for splines of degree d > 0 a definition of the boundary knots is also re-
quired to fully define the b-splines in this region. These knots can be chosen arbitrarily,
however a simple choice is:

{
ki = a − b−a

nc
(i −d) 0 ≤ i < d

knc+d+i = b + b−a
nc

i 0 ≤ i < d
(2.13)

In the case of equidistant break points this adds d ghost cells to the boundary region,
each having the same size as the cells within the domain. Figure 2.1 shows the b-
splines for the domain [0,3] defined using this choice of additional knots.

Figure 2.1.: B-splines of degree 2 for the domain [0,3] with additional knots outside
the domain
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2.3.1. General B-Splines

B-splines can be used not only in the case where the continuity constraint Sd (x) ∈
Ck−1([a,b]) is fully respected, but also in cases where the continuity condition is
reduced at specific break points. In order to reduce the continuity at a break point to
Ck−1−r , r additional knots are placed at this point.

In this case the b-splines are more accurately described by the following equation:

bi ,0(x) =
{

1 if ki ≤ x < ki+1

0 otherwise

bi ,d (x) = x −ki

ki+d −ki
bi ,d−1(x)δki+d 6=ki

+ ki+d+1 −x

ki+d+1 −ki+1
bi+1,d−1(x)δki+d+1 6=ki+1

(2.14)

where δw is a function equal to 1 when w is true and 0 otherwise.

This definition leads to a new way of defining the additional knots at the boundary.
Instead of placing equidistant points as described in equation (2.13) we may choose
to place all additional knots on the boundary:

{
ki = a ∀0 ≤ i < d

knc+d+i = b ∀0 ≤ i < d
(2.15)

This choice leads to the following properties for b-splines near the boundary:

∂ j

∂x j
bi ,d (x) = 0 ∀ j + i < d (2.16)

∂ j

∂x j
bnb−i ,d (x) = 0 ∀ j < i (2.17)

where nb = nc +d is the number of basis functions. Figure 2.2 shows the b-splines for
the domain [0,3] defined using this choice of additional knots.

This choice is especially useful for imposing boundary conditions when interpolat-
ing a function as we will see in section 2.5.
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Figure 2.2.: B-splines of degree 2 for the domain [0,3] with additional knots at the
edge of the domain

2.4. N-D Splines

Splines as described so far are inherently 1D objects, however this framework can
easily be expanded to multiple dimensions. A spline defined on N dimensions is
expressed on a b-spline basis as follows:

Sd (x1, x2, . . . , xN ) =
nb1∑

j1=0

. . .
nbN∑

jN=0

N∏

i=1

b ji ,d (xi )c j1,..., jN (2.18)

The basis of such a spline is therefore comprised of products of 1D b-splines.
As each dimension behaves independently, different degrees may be used along the

different dimensions.
For example, the basis of a 2-D spline would be described as follows:

bi , j ,dx ,dy
(x, y) = bi ,dx

(x)b j ,dy
(y) (2.19)

2.4.1. Polar coordinate systems

N-D splines are simple in the case of cartesian coordinates, but they can also be used
with more complex geometry. Nevertheless, complications occur when trying to use
splines with coordinate systems which have a singular point. While the behaviour is
well defined away from the singularity, at the singularity there are many knots in the
same place. This is not reflected in the spline representation however, which can lead
to an undefined value at the singular point. Toshniwal, Speleers, Hiemstra, et al. 2017
have suggested a possible solution to this problem.
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Their solution uses two tools which will be explained briefly before explaining the
method. These tools are barycentric coordinates and Bernstein polynomials.

2.4.1.1. Barycentric Coordinates

Barycentric coordinates are a coordinate system used to locate a point ~P inside a
triangle with vertices ~v1, ~v2, and ~v3. The barycentric coordinates, denoted (λ1,λ2,λ3),
are the weights such that:

~P =λ1~v1 +λ2~v2 +λ3~v3 (2.20)

and λ1 +λ2 +λ3 = 1.

These weights have a physical interpretation. If point masses of weight λi are placed
at the vertices ~vi , then the centre of mass can be found at the point ~P . The coordinate
values λi are defined on the domain [0,1] as long as ~P is located inside the triangle.

The coordinates are related to cartesian coordinates via the following equations:

λ1 =
(y2 − y3)(x −x3)+ (x3 −x2)(y − y3)

(y2 − y3)(x1 −x3)+ (x3 −x2)(y1 − y3)
(2.21)

λ2 =
(y − y3)(x1 −x3)+ (x3 −x)(y1 − y3)

(y2 − y3)(x1 −x3)+ (x3 −x2)(y1 − y3)
(2.22)

λ3 =1−λ1 −λ2 (2.23)

2.4.1.2. Bernstein Polynomials

Bernstein polynomials provide a basis for bivariate polynomials of degree k. A bivari-
ate polynomial p(x, y) of degree k can be written as:

p(x, y) =
k∑

i=0

k−i∑

j=0

αi , j xi y j (2.24)

where αi , j are the coefficients of the polynomial. The number of basis functions nb

required to describe the system, is equal to the number of coefficients αi , j :

nb =
k∑

i=0

k−i∑

j=0

1 =
k∑

i=0

(k +1− i ) =
k+1∑

m=1
m = (k +1)(k +2)

2
(2.25)

Therefore (k+1)(k+2)
2 Bernstein polynomials are required to describe the space of

bivariate polynomials of degree k.

These polynomials, denoted Ti1,i2,i3 (λ1,λ2,λ3), are defined as follows:

Ti1,i2,i3 (λ1,λ2,λ3) = k !

i1!i2!i3!
λ

i1
1 λ

i2
2 λ

i3
3 (2.26)

where (λ1,λ2,λ3) are the barycentric coordinates, and the indices i1, i2, i3 are positive
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Figure 2.3.: Bernstein polynomial basis for zero degree bivariate polynomials

integers such that i1 + i2 + i3 = k. In other words the indices are such that:

i1 ∈ [0,k] (2.27)

i2 ∈ [0,k − i1] (2.28)

i3 = k − i1 − i2 (2.29)

Figures 2.3 - 2.5 show the shape of the Bernstein polynomials for degree zero, one,
and two.

Figure 2.4.: Bernstein polynomial basis for first degree bivariate polynomials

Each of the Bernstein polynomials are positive on their domain triangle, and the
basis respects partition of unity:

k∑

i1=0

k−i1∑

i2=0

Ti1,i2,k−i1−i2 (λ1,λ2,λ3) = 1 (2.30)
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Figure 2.5.: Bernstein polynomial basis for second degree bivariate polynomials

2.4.1.3. Ck Polar Splines

In this section I will explain the method presented by Toshniwal, Speleers, Hiemstra, et
al. 2017 for constructing Ck polar splines. The idea is based on replacing the innermost
rings of the 2D b-splines defined on polar coordinates (r,θ), with linear combinations
of these values. The innermost m b-splines are the b-splines:

bi , j ,dr ,dθ
(r,θ) ∀0 ≤ i < m ∀0 ≤ j < nbθ (2.31)

Their physical interpretation can be seen in Figure 2.6.

In order to obtain a spline which is Ck , the system must be constructed such that the
value and the first k derivatives at the singular point are well-defined. Therefore the
new basis splines must be linear combinations of all the old basis splines whose value
or first k-th derivatives are non-zero at the singular point boundary. Assuming that all
boundary knots are placed at the boundary and we are therefore in the configuration
described in Figure 2.2, this means that we must replace the k+1 innermost rings.

For example, for a polar coordinate system, the b-splines which lead to a discon-
tinuous representation in the centre, and must therefore be replaced, are defined
as:

bi , j ,dr ,dθ
(r,θ) = bi ,dr

(r )b j ,dθ
(θ) ∀0 ≤ i < k, ∀0 ≤ j < nbθ (2.32)
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Figure 2.6.: The representation of the polar space on b-splines. The innermost ring
which leads to a discontinuous representation at the singular point is
highlighted in blue

Additionally, in order to obtain a spline which is Ck it is important that the basis
functions over the singular point represent a basis of k-th degree bivariate polynomials.
As explained in section 2.4.1.2 such a basis contains (k+1)(k+2)

2 elements. There are

therefore (k+1)(k+2)
2 nbθk coefficients to be determined in order to define the linear

combinations.

In order to be sure that there are the correct number of degrees of freedom at the
singular point, Toshniwal, Speleers, Hiemstra, et al. 2017 suggest that each of the
new (k+1)(k+2)

2 basis functions b̂l (r,θ) are chosen such that they respect the following
(k+1)(k+2)

2 conditions:

lim
(r,θ)→(0,0)

∂m1+m2

∂r m1∂θm2
b̂l (r,θ) = ∂m1+m2

∂r m1∂θm2
Tl (0,0) (2.33)

where m1,m2 ≥ 0 are integers such that m1 +m2 ≤ k, and Tl (r,θ) is the l -th Bernstein
polynomial, as defined in section 2.4.1.2.

The linear combination can be written as follows:




b̂0(r,θ)

b̂1(r,θ)
...

b̂ 1
2 (k+1)(k+2)−1(r,θ)




=

(
A0 A1 . . . Ak

)





b∗
0

b∗
1
...

b∗
k



 (2.34)
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where:

b∗
i =





bi ,dr
(r )b0,dθ

(θ)
bi ,dr

(r )b1,dθ
(θ)

...
bi ,dr

(r )bnθ−1,dθ
(θ)



 (2.35)

Thanks to the partition of unity of the original b-splines bi , j ,dr ,dθ
(r,θ), and the choice

of boundary knots we know that A0 can be defined as follows:

A0 =





T0(0,0) T0(0,0) . . . T0(0,0)
T1(0,0) T1(0,0) . . . T1(0,0)

...
T 1

2 (k+1)(k+2)−1(0,0) T 1
2 (k+1)(k+2)−1(0,0) . . . T 1

2 (k+1)(k+2)−1(0,0)




(2.36)

The remaining conditions relate to the derivatives. Taking the example of the first
order derivative, we see that we have two equations to satisfy:

lim
(r,θ)→(0,0)

∂

∂x
b̂l (r,θ) = ∂

∂x
Tl (0,0) (2.37)

lim
(r,θ)→(0,0)

∂

∂y
b̂l (r,θ) = ∂

∂y
Tl (0,0) (2.38)

In polar coordinates this condition is written:

lim
(r,θ)→(0,0)

∂

∂r
b̂l (r,θ) = ∂

∂r
Tl (0,0) (2.39)

lim
(r,θ)→(0,0)

∂

∂θ
b̂l (r,θ) = 0 (2.40)

Equation (2.40) must hold for the b-spline to be Ck (with k>0 such that we care about
the first derivative) and is therefore already enforced by writing the b-spline as a linear
combination.

2.4.1.4. C1 polar splines

In the case of C1 polar splines, equation (2.34) is written as:




b̂0(r,θ)

b̂1(r,θ)

b̂2(r,θ)



=
(

A0 A1
)(b∗

0
b∗

1

)
(2.41)

Toshniwal, Speleers, Hiemstra, et al. 2017 have shown that the matrix (A0 A1) can
be defined as:

Al ,(i , j ) = Tl (ki j ) (2.42)

where l is the row index, i j is the column index, corresponding to the indexation of
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the original b-splines bi , j ,dr ,dθ
(r,θ), and ki j is the control point at the intersection of

the knots ri and θ j . At i = 0, ri = 0 which means that we correctly recover equation
(2.36).

The new b-splines are therefore defined as:

b̂l (r,θ) =
1∑

i=0

nθ∑

j=0

Tl (ki j )bi ,dr
(r )b j ,dθ

(θ) ∀0 ≤ l < 3 (2.43)

b̂l+3(r,θ) = bm,dr
(r )bp,dθ

(θ) ∀0 ≤ l < (nr −2)nθ (2.44)

where m = ⌊l/nbθ⌋ and p = (l mod nθ)+2.
This definition will be revisited in Chapter 6 where it will be used for a finite elements

scheme.

2.5. Interpolating Splines

Splines are often used as a solution to interpolation problems. An interpolation
problem consists of finding a function φ(x) which satisfies the following equation:

φ(x j ) = f j = f (x j ) ∀0 ≤ j < np (2.45)

for np given nodes: x0 < x1 < ·· · < xnp−1 on a domain [a,b], and the corresponding
values at those nodes f0 = f (x0), ...., fnp−1 = f (xnp−1) ∈R, where f (x) is the function
which is interpolated.

In order to use a spline as a solution to the interpolation problem, knots must be
chosen. One frequently used solution to this problem is to choose the break points zi

such that zi = xi . Figure 2.7 shows the interpolation of a Gaussian function by splines
of degree 1 and 3 with break points chosen to coincide with the interpolation points.

If the problem leaves us with some flexibility in the choice of interpolation points,
then it is also possible to define the knots and deduce the optimal interpolation points.
This is notably possible in the case of simulations where the initial condition is known
analytically. In this case the same interpolation points must be used throughout, but
the problem doesn’t enforce their position.

Optimal interpolation points are usually considered to be the Greville abscissae,
which are defined as:

xi =
∑i+k

l=i+1 kl

d
(2.46)

where k is the degree of the interpolation. This is because the spline which interpolates
these points is bounded independent of the knot sequence for d < 20 (Jia 1986).

2.5.1. Boundary Conditions

As mentioned in section 2.3 a spline with no repeated knots in the domain has nc +d

degrees of freedom. With np interpolation points nc +d −np additional conditions are
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Figure 2.7.: Interpolation of the Gaussian function exp
(
−x2

0.1

)
by a 1st degree and 3rd

degree spline over 10 interpolation points

required in order to fully define the system. These additional conditions are usually
provided by boundary conditions. In this section we will discuss several common
choices.

2.5.1.1. Periodic Boundary Conditions

Periodic boundary conditions are commonly used to describe angles (poloidal or
toroidal coordinates), or infinite spaces. They assume that the edges of the spline
a and b both describe the same point. In order for the spline to remain Cd−1 an
additional continuity condition is required:

∂k
x Snc−1,d (znc ) = ∂k

x S0,d (z0) ∀0 ≤ k < d (2.47)

The b-splines are modified to include the additional continuity conditions at this
point. The resulting b-splines can be seen in Figure 2.8. These additional d equations
reduce the degrees of freedom of the system from nc +d to nc .

Both the use of the break points as interpolation points, and the use of Greville
abcissae lead to np = nc in this case, so no additional information is required to fully
define the system.

2.5.1.2. Greville Boundary Conditions

For non-periodic domains, the choice of the boundary knots affects the number of
Greville abcissae inside the domain. If the boundary knots are placed on the boundary
as described by equation (2.15) then there are np = nc +d Greville abcissae.
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1 2 3
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B1, 2(x) B2, 2(x) B3, 2(x) B0, 2(x)

B-Splines

Figure 2.8.: B-splines of degree 2 for the domain [0,4] with periodic boundary condi-
tions

Here, as in the periodic case, no additional information is required to fully define
the system.

2.5.1.3. Hermite Boundary Conditions

If however the interpolation points are placed at the break points, there are only
nc +1 interpolation points. Similarly, if the boundary knots are placed as described by
equation (2.13) then there are only nc +(d mod 2) interpolation points. An additional
d −1 or d − (d mod 2) conditions are therefore required.

In the case of splines of even degree, placing interpolation points at the break points
therefore leads to an unbalanced situation. An odd number of additional conditions
must be imposed and it is not clear where this should be done. We will therefore avoid
this case.

In the case of splines of odd degree d −1 = d − (d mod 2). There is therefore an
even number of conditions to be imposed. There is also an even number of conditions
to be imposed for even degree splines with Greville abcissae as interpolation points.
In both cases d−(d mod 2)

2 conditions are imposed at each boundary.
Hermite boundary conditions enforce the value and first m derivatives at the bound-

aries.
If there are already interpolation points located at the boundary, the values to be

provided for Hermite boundary conditions are therefore:

∂k
x f (a)

∂k
x f (b)

}

∀0 < k ≤ d − (d mod 2)

2
(2.48)

This is notably the case when break points are used as interpolation points. It is also
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true when Greville abcissae are used with an odd degree if the knots are equidistant or
the boundary knots are located at the boundary, as described by equation (2.15).

If however the interpolation points do not intersect with the boundaries, the values
to be provided for Hermite boundary conditions are:

∂k
x f (a)

∂k
x f (b)

}

∀0 ≤ k < d − (d mod 2)

2
(2.49)

This is the case for even degree splines with Greville abcissae used as interpolation
points. It may also be true for splines with non-equidistant knots when the boundary
knots are placed outside the domain.

2.5.1.4. Natural Boundary Conditions

Natural boundary conditions describe a situation very similar to Hermite boundary
conditions in that the same number of conditions must be imposed in the same
locations. In this case however it is not the first d−(d mod 2)

2 derivatives which are pro-

vided, but the last d−(d mod 2)
2 derivatives which are forced to zero. Thus the additional

conditions for natural boundary conditions are:

∂k
x f (a) = 0

∂k
x f (b) = 0

}

∀ d + (d mod 2)

2
≤ k < d (2.50)

2.5.2. Coefficient Calculation

The coefficients ci defined in equation (2.4) must be calculated to find the spline
representation. These coefficients are found by solving a set of linear equations which
can also be written in matrix form:

B~c = ~f (2.51)

The matrix B is known as the interpolation matrix. In the case of interpolating splines
the equations to solve are the interpolation conditions (see equation (2.45)) and the
boundary conditions.

For the simplest boundary conditions where no additional equations are required
(periodic or Greville), the coefficients ci ,d are the solution to the following matrix
equation:





b0,d (x0) b1,d (x0) . . . bnb−1(x0)
b0,d (x1) b1,d (x1) . . . bnb−1(x1)

...
...

b0,d (xnp−1) b1,d (xnp−1) . . . bnb−1(xnp−1)









c0,d

c1,d
...

cnb−1,d



=





f (x0)
f (x1)

...
f (xnp−1)



 . (2.52)

This matrix is invertible under the following condition (Hämmerlin and Hoffman
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1991):
b j ,d (x j ) 6= 0 ∀0 ≤ j < nb , (2.53)

which is always satisfied for Greville abcissae or break points as interpolation points.

As mentioned in Section 2.3 the support of a b-spline bi ,d (x) is [ki ,ki+d+1]. This
information can be used to reduce the memory footprint of the matrix as it can be
represented as a banded matrix (or periodic banded in the case of periodic splines).

If the knots are used as interpolation points then the following is true:

bi ,d (x j ) 6= 0 ∀i +1 ≤ j < i +d (2.54)

The matrix is therefore banded with d diagonals.

If the Greville abcissae are used as interpolation points then the following is true:

k j+1 ≤ x j ≤ k j+d (2.55)

bi ,d (x j ) 6= 0 ∀i ≤ j < i +d +1 (2.56)

For equidistant knots the Greville abcissae coincide with the knots for odd degree
splines and are found at the centre of cells for even degree splines. As a result, the
bounds can be reduced further:

bi ,d (x j ) 6= 0 ∀i ≤ j < i +d +1− (d mod 2) (2.57)

For Greville boundary conditions with knots that are equidistant inside the domain,
the first and last d −1 rows of the matrix respect equation (2.54) while all other rows
respect equation (2.57). In order to minimise the necessary memory and reduce the
number of FLOPS required to solve the system we leverage this information to write
the system in block form:

B =





δ1 λ1 δ2

γ1 Q γ2

δ3 λ2 δ4



 (2.58)

Where Q is a banded matrix with d diagonals, and δ1, δ2, δ3, δ4, γ1, γ2, λ1 and λ2

are small sub-matrices. Depending on the chosen boundary conditions these sub-
matrices may be known to only contain zeros.

For boundary conditions where additional equations are required to complete the
matrix, this information will be contained in the sub-matrices. In this case the matrix
remains invertible as long as the following condition is satisfied:

b j ,d (ξ j ) 6= 0 ∀0 ≤ j < nb , (2.59)

where ξ j are the positions where the value or a derivative of the spline is fixed. For
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example for Hermite boundary conditions on odd degree splines:

ξ j =a ∀0 ≤ j < k (2.60)

ξ j =x j−k ∀k ≤ j < nb −k (2.61)

ξnb− j =b ∀0 ≤ j < k (2.62)

where k = d−(d mod 2)
2 is the number of derivatives provided in this case. This condition

is satisfied for all boundary conditions described in section 2.5.1.

For Hermite boundary conditions on odd degree splines the condition described by
equation (2.48) can be expressed most simply as:

(
δ1 λ1 δ2

)
=





∂xb0,d (a) ∂xb1,d (a) . . . ∂xbnb−1(a)
∂2

xb0,d (a) ∂2
xb1,d (a) . . . ∂2

xBnb−1(a)
...

...
∂k

x b0,d (a) ∂k
x b1,d (a) . . . ∂k

x bnb−1(a)



 (2.63)

(
δ3 λ2 δ4

)
=





∂xb0,d (b) ∂xb1,d (b) . . . ∂xbnb−1(b)
∂2

xb0,d (b) ∂2
xb1,d (b) . . . ∂2

xBnb−1(b)
...

...
∂k

x b0,d (b) ∂k
x b1,d (b) . . . ∂k

x bnb−1(b)



 (2.64)

where k = d−(d mod 2)
2 .

For natural boundary conditions the condition described by equation (2.50) can be
expressed most simply as:

(
δ1 λ1 δ2

)
=





∂l
xb0,d (a) ∂l

xb1,d (a) . . . ∂l
xbnb−1(a)

∂l+1
x b0,d (a) ∂l+1

x b1,d (a) . . . ∂l+1
x bnb−1(a)

...
...

∂d
x b0,d (a) ∂d

x b1,d (a) . . . ∂d
x bnb−1(a)



 (2.65)

(
δ3 λ2 δ4

)
=





∂l
xb0,d (b) ∂l

xb1,d (b) . . . ∂xbnb−1(b)
∂l+1

x b0,d (b) ∂l+1
x b1,d (b) . . . ∂l+1

x bnb−1(b)
...

...
∂d

x b0,d (b) ∂d
x b1,d (b) . . . ∂d

x bnb−1(b)



 (2.66)

where l = d+(d mod 2)
2 .

2.5.2.1. Solving the Spline Interpolation Matrix

The spline interpolation matrix as described by equation (2.51) has the following form:
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B =





δ1 λ1 δ2

γ1 Q γ2

δ3 λ2 δ4



 (2.67)

where Q is a matrix with a narrow band, the matrices δ1, λ1, γ1, γ2, λ2 and δ4

describe the area of the matrix with a wider band, and δ2 and δ3 contain only zeros.

A simple exchange of indices allows us to re-arrange this into the following form:

B ′ =





Q γ1 γ2

λ1 δ1 δ2

λ2 δ3 δ4



 (2.68)

This matrix can be written more simply as follows:

B ′ =



 Q γ

λ δ



 (2.69)

A matrix equation B ′c ′ = f ′ where B ′ is of the form described above can be solved
using Schur’s complement.

The blockwise LU decomposition of the matrix is:

B ′ =LU (2.70)

L =



 Q 0

λ δ′



 (2.71)

U =



 I β

0 I



 (2.72)

where δ′ is the Schur’s complement of Q defined as δ′ = δ−λβ, and β is the solution
to the equation Qβ= γ.

Finally, the solution to the equation Bc = f can be calculated by splitting and
reorganising the vectors c and f in a similar fashion:

c =




e1

d

e2



 c ′ =




d

e1

e2



=
(

d

e

)
(2.73)

We can then solve the following equations:
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1. Lu = f ′ : 

 Q 0

λ δ′




(

v

w

)
=

(
g

h

)

2. Uc ′ = u 

 I β

0 I




(

d

e

)
=

(
v

w

)

The steps are therefore as follows:

1. Solve Qv = g for v

2. Solve δ′e = h −λv for e

3. Calculate d = v −βe

2.5.2.2. Condition Number

It is important that the interpolation matrix is well conditioned so that the coefficients
ci can be calculated to an acceptable error range. In general k digits of accuracy of the
solution of the matrix system are lost for a condition number κ(A) = 10k (Cheney and
Kincaid 2012). As these operations are conducted on a computer, any problem will
always have an accuracy of at least machine precision (∼ 10−16).

Spline interpolation problems tend to be well conditioned thanks to their mini-
mal support and the partition of unity property. However the choice of boundary
conditions can sometimes have a negative effect on the conditioning. This can be
understood intuitively for Hermite or natural boundary conditions as the lines of the
matrix pertaining to the boundary conditions are all non-zero in the same positions,
making these lines less orthogonal than the rest of the matrix.

The conditioning of the matrices can also be improved somewhat through line
normalisation. For natural boundary conditions, this can be done in the boundary
region without worrying about the consequences for the right-hand side of the matrix
equation as the right-hand side corresponding to these lines contains only zeros. Each
line of the matrix is divided by its L-1 norm. For the central lines described by equation
(2.52), the L-1 norm is equal to 1 thanks to the partition of unity normalisation as
described by equation (2.7).

Theorem 1. Let A be a non-singular matrix. Let M be a diagonal matrix such that the

diagonal contains the L-1 norm of each line of the matrix A: Mi ,i =
∑

j |ai j |, let κ (⋆)
denote the condition number on the ∞-norm, then

κ
(
M−1 A

)
≤ κ (A)
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Proof. The ∞-norm of A is defined as:

‖A‖∞ = max
i

{
∑

j

|ai j |
}

= max
i

{
mi ,i

}

M is defined such that
∥∥M−1 A

∥∥
∞ = 1.

κ
(
M−1 A

)
=

∥∥M−1 A
∥∥
∞

∥∥∥
(
M−1 A

)−1
∥∥∥
∞

=
∥∥A−1M

∥∥
∞

= max
i

{
∑

j

∣∣∣
(
a−1)

i , j m j , j

∣∣∣

}

≤ max
k

{
mk,k

}
max

i

{
∑

j

∣∣∣a−1
i , j

∣∣∣

}

= ‖A‖∞
∥∥A−1

∥∥
∞ = κ (A) (2.74)

As we will see in section 2.8, this normalisation is not always sufficient to obtain a
well-conditioned matrix.

2.5.3. Coefficient Calculation for N-D Splines

The coefficients for N-D splines can be calculated similarly to in the 1D case, by solving
a matrix equation as defined in equation (2.51). The main difference between the two
cases is the size and sparsity pattern of the interpolation matrix.

As mentioned in section 2.4 the basis functions of N-D splines on domains without
singular points are defined as products of 1-D basis splines. This information helps
understand the sparsity pattern of the interpolation matrix. The matrix B is simply
defined as the Kronecker product of the interpolation matrices Bi for 1D splines along
each dimension i :

B = B1 ⊗B2 ⊗·· ·⊗BN (2.75)

This configuration also allows some simplifications to be made when solving the
matrix. Rather than solving for the coefficients in one calculation, it is possible to
break the equation up into multiple problems equivalent to finding the coefficients of
a 1D spline. This is possible due to the following identity:

B1 ⊗B2 ⊗·· ·⊗BN = (B1 ⊗ I2 ⊗·· ·⊗ IN ) . . . (I1 ⊗·· ·⊗ IN−1 ⊗BN ) (2.76)

For example in the case of a 2D spline with coefficients ci j the coefficient calculation
can be expressed as follows:

(B1 ⊗ I2)(I1 ⊗B2)c = f (2.77)
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where c is the vector containing the coefficients ci j , and f is the vector containing
the values of the function at the interpolation points. By introducing an intermediate
vector d we obtain the following 2 equations:

(B1 ⊗ I2)d = f (2.78)

(I1 ⊗B2)c = d (2.79)

If we define di and fi the sub-vectors of d , and f containing all the values correspond-
ing to the i-th index in the first dimension we can write equation (2.78) as:

B1di = fi ∀0 ≤ i < N1 (2.80)

Similarly, if we define c j and d j the sub-vectors of c, and d containing all the values
corresponding to the j-th index in the second dimension we can write equation (2.79)
as:

B2c j = d j ∀0 ≤ j < N2 (2.81)

In the case of Ck N-D splines with singular points, the Kronecker structure is not
preserved over the first (k+1)(k+2)

2 rows and columns of the matrix, so this trick cannot
be used and the matrix equation must be solved as written.

2.6. Spline Evaluation

Evaluating a spline at a given point x is a simple calculation once the spline coefficients
are known:

Sd (x) =
∑

i

ci bi ,d (x) (2.82)

This calculation can then be reduced further by considering the support of the basis
functions. We therefore have:

Sd (x) =
i∗+d∑

i=i∗
ci bi ,d (x) (2.83)

where i∗ is the index of the last knot before x.

In the case of uniform splines the knots {ki } are defined as ki = a+ i h with h = (b−a)
nc

.
It is therefore trivial to find i∗:

i∗ =
⌊x −a

h

⌋
(2.84)

In the non-uniform case, used in the spatial dimension, the knots {ki } inside the
domain are placed arbitrarily, while the knots outside the domain are chosen such
that:

k−d = k1−d = ·· · = k0 < k1 < . . .

< knc−1 < knc = . . .knb−1 = knb
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i∗ can therefore no longer be found trivially; instead a search algorithm is used. In the
codes referenced in this thesis the binary search algorithm will be used. The average
and worst cases for this algorithm are O(logn) operations (Knuth 1998).

The remaining complexity in the evaluation of the spline comes from the calculation
of the d +1 values bd

i
(x) for i∗ ≤ i ≤ i∗+d . The efficiency of this calculation depends

on the constraints that are placed on the system.

In sections 2.6.1 - 2.6.3 I will describe three different constraints and their require-
ments in FLOPs. The performance of these methods will be examined in the context
of a full simulation in chapter 3.

2.6.1. Cubic Uniform B-Splines

The most efficient calculation is available in the most restrictive case, where the algo-
rithm is designed for a chosen degree and the knots are equidistant. The evaluation of
the b-splines for cubic splines defined on equidistant knots is defined as follows:

o = (x −xi⋆) i _d x (2.85)

b =1−o (2.86)

bi⋆−3,3(x) =b3 (2.87)

bi⋆−2,3(x) =1+3(1−b2(2−b)) (2.88)

bi⋆−1,3(x) =1+3(1−o2(2−o)) (2.89)

bi⋆,3(x) =o3 (2.90)

where i _d x = 1
d x

is the inverse of the step between consecutive knots which can be
calculated in advance.

This calculation requires 19 FLOPs to calculate the necessary values {bi ,d (x)}.

2.6.2. Uniform B-Splines of Arbitrary Order

Although the use of cubic splines on uniform knots is highly optimised, when test-
ing splines of different degrees it is simpler to make the degree a parameter of the
algorithm.

The following algorithm calculates the value of the non-zero b-splines at a given
evaluation point for a given degree:
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Algorithm 1 Algorithm for calculating the value of arbitrary order uniform b-splines

Input: x : Evaluation point
Input: d : Spline degree
Input: i⋆ : The index of the last knot before the evaluation point
Input: ki⋆ : The position of the last knot before the evaluation point
Input: ∆x : The step between consecutive knots

v0
1 = 1

o = ki⋆−x

∆x

for j = 1, . . . ,d do

s0 = 0
for r = 1, . . . , j −1 do

v
j
r = sr−1 + (o + r )

v
j−1
r

j

sr = ( j − (o + r ))
v

j−1
r

j

end for

v
j
r = sk

end for

for j = 1, . . . ,d do

bi⋆+ j−1,d (x) = vd
k

end for

The number of FLOPs required for this algorithm is counted as follows:

F LOPs =1+D IV +
d∑

j=1

j∑

t=1
5+D IV = 5+

d∑

j=1

9 j = 5+9
d(d +1)

2
(2.91)

where the terms
v

j−1
r

j
and o+r are calculated to avoid repetition. A division is assumed

to be equal to 4 FLOPs.

This calculation implies that 59 FLOPs are required for cubic splines.

The index and position of the last knot before the evaluation point, i⋆ and ki⋆ , can
be calculated from the evaluation point x, and the step between consecutive knots:

i⋆ = ⌊x −a

∆x
⌋, (2.92)

ki⋆ =∆xi⋆. (2.93)

However this calculation is not described in Algorithm 1 as it would not be fair to
compare FLOPs calculated with these calculations to FLOPs calculated without the
equivalent operation (the integer binary search) in the non-uniform case described by
Algorithm 2.
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2.6.3. Non-Uniform B-Splines of Arbitrary Order

Depending on the problem considered, we cannot always rely on having equidistant
knots. The following algorithm describes the most general case where the degree
is a parameter and the knots are non-equidistant. This algorithm was proposed in
Algorithm A2.2 in Piegl and Tiller 1996. Algorithm 1 is a slightly optimised version of
this algorithm which was obtained by simplifying expressions using the fact that the
knots are equidistant.

Algorithm 2 Algorithm for calculating the value of arbitrary order non-uniform b-
splines

Input: x : Evaluation point
Input: d : Spline degree
Input: k : An array containing the knots of the spline
Input: i⋆ : The index of the last knot before the evaluation point

v0
1 = 1

for j = 1, . . . ,d do

lk = x −ki⋆− j−1

rk = ki⋆− j −x

s0 = 0
for t = 1, . . . , j do

v
j
t = st−1 + rt

v
j−1
t

rt−l j−t

st = l j−t
v

j−1
t

rt−l j−t

end for

v
j
t = sk

end for

for j = 1, . . . ,d do

bi⋆+ j−1,d (x) = vd
j

end for

The number of FLOPs required for this algorithm is counted as follows:

F LOPs =
d∑

j=1

2+
j∑

t=1
4+D IV = 2d +8

d∑

j=1

j = 2d +8
d(d +1)

2
= 4d 2 +6d (2.94)

where the term
v

j−1
t

rt−l j−t
is precalculated to avoid repetition. As previously, a division is

assumed to be equivalent to 4 FLOPs.

This calculation implies that 54 FLOPs are required for cubic splines.

It is interesting to note that the non-equidistant case uses fewer FLOPs than the
equidistant case, however it requires the storage of an additional 2d variables and the
aforementioned binary search.
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2.7. Spline Derivatives

As a b-spline is composed of polynomials which can be differentiated easily, it is
equally simple to find the derivative of a spline. Taking the definition of a b-spline as
written in equation (2.14) we see that:

∂xbi ,1(x) =






1
ki+1−ki

δki+1 6=ki
if ki ≤ x < ki+1

−1
ki+2−ki+1

δki+2 6=ki+1 if ki+1 ≤ x < ki+2

0 otherwise

(2.95)

∂xbi ,d (x) =δki+d 6=ki

(
1

ki+d −ki
bi ,d−1(x)+ x −ki

ki+d −ki
∂xbi ,d−1(x)

)

+δki+d+1 6=ki+1

( −1

ki+d+1 −ki+1
bi+1,d−1(x)+ ki+d+1 −x

ki+d+1 −ki+1
∂xbi+1,d−1(x)

)

(2.96)

By induction it can be proven that this is equivalent to the following definition:

dbi ,d (x)

d x
= d

(
δki+d 6=ki

bi ,d−1(x)

ki+d −ki
−δki+d+1 6=ki+1

bi+1,d−1(x)

ki+d+1 −ki+1

)
(2.97)

Proof. In the following proof the Dirac functions are removed to simplify the expres-
sions.

d=1

dbi ,1(x)

d x
=

(
bi ,0(x)

ki+d −ki
−

bi+1,0(x)

ki+d+1 −ki+1

)
(2.98)

=






1
ki+1−ki

if ki ≤ x ≤ ki+1

−1
ki+2−ki+1

if ki+1 ≤ x ≤ ki+2

0 otherwise

(2.99)

d+1

∂xbi ,d+1(x) =
bi ,d (x)

ki+d+1 −ki
+ x −ki

ki+d+1 −ki
∂xbi ,d (x)

−
bi+1,d (x)

ki+d+2 −ki+1
+ ki+d+2 −x

ki+d+2 −ki+1
∂xbi+1,d (x)

=
bi ,d (x)

ki+d+1 −ki
+ x −ki

ki+d+1 −ki
d

(
bi ,d−1(x)

ki+d −ki
−

bi+1,d−1(x)

ki+d+1 −ki+1

)

−
bi+1,d (x)

ki+d+2 −ki+1
+ ki+d+2 −x

ki+d+2 −ki+1
d

(
bi+1,d−1(x)

ki+1+d −ki+1
−

bi+2,d−1(x)

ki+d+2 −ki+2

)
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=
bi ,d (x)

ki+d+1 −ki
−

bi+1,d (x)

ki+d+2 −ki+1

+d

[
(x −ki )

ki+d −ki

bi ,d−1(x)

ki+d+1 −ki
− ki+d+2 −x

ki+d+2 −ki+2

bi+2,d−1(x)

ki+d+2 −ki+1

]

+d
bi+1,d−1(x)

ki+d+1 −ki+1

[
(ki+d+2 −x)(ki+d+1 −ki )− (x −ki )(ki+d+2 −ki+1)

(ki+d+2 −ki+1)(ki+d+1 −ki )

]

=
bi ,d (x)

ki+d+1 −ki
−

bi+1,d (x)

ki+d+2 −ki+1

+d

[
(x −ki )

ki+d −ki

bi ,d−1(x)

ki+d+1 −ki
− ki+d+2 −x

ki+d+2 −ki+2

bi+2,d−1(x)

ki+d+2 −ki+1

]

+d
bi+1,d−1(x)

ki+d+1 −ki+1

[
(ki+d+2 −ki+1)(ki+d+1 −x)− (ki+d+1 −ki )(ki+d+2 −x)

(ki+d+2 −ki+1)(ki+d+1 −ki )

]

=
bi ,d (x)

ki+d+1 −ki
−

bi+1,d (x)

ki+d+2 −ki+1

+ d

ki+d+1 −ki

[
x −ki

ki+d −ki
bi ,d−1(x)+ ki+d+1 −x

ki+d+1 −ki+1
bi+1,d−1(x)

]

− d

ki+d+2 −ki+1

[
x −ki+1

ki+1+d −ki+1
bi+1,d−1(x)+ ki+d+2 −x

ki+d+2 −ki+2
bi+2,d−1(x)

]

=
bi ,d (x)

ki+d+1 −ki
−

bi+1,d (x)

ki+d+2 −ki+1
+ d

ki+d+1 −ki
bi ,d − d

ki+d+2 −ki+1
bi+1,d

=(d +1)

(
bi ,d (x)

ki+d+1 −ki
−

bi+1,d (x)

ki+d+2 −ki+1

)
(2.100)

Equation (2.97) can easily be evaluated using the algorithms described in Section
2.6.

2.8. Spline Integration

The integral of a spline, defined by equation (2.4), is expressed simply as:

∫b

a
Sd (x)d x =

nb−1∑

i=0

ci

∫b

a
bi ,d (x)d x (2.101)

where ci are the coefficients of the spline approximation and bi ,d (x) are the b-splines.

The integral of a b-spline bi ,d (x) over its support can be expressed using equa-
tion (2.9) which relates b-splines respecting partition of unity (bi ,d (x)) to b-splines
normalised to have unit integral(Qi ,d ):

∫ki+d+1

ki

bi ,d (x)d x = ki+d+1 −ki

d +1

∫ki+d+1

ki

Qi ,d (x)d x = ki+d+1 −ki

d +1
(2.102)
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The case is slightly more complicated for b-splines in the boundary region with
boundary knots outside the domain, or when integrating over a part of the domain.
In this case we cannot necessarily integrate the b-spline over its entire support. To
handle these cases we use the following equation (Boor, Lyche, and Schumaker 1976):

∫v

u
bi ,d (x)d x = ki+d+1 −ki

d +1

(
∑

j≥i

b j+1,d+1(v)−
∑

j≥i

b j+1,d+1(u)

)

(2.103)

The integration of the b-spline only makes sense for values within its domain. I.e.
for u (and v) such that bi ,d (u) 6= 0, and ki ≤ u ≤ ki+d+1. In this case we can rewrite
equation (2.103) as follows:

∫v

u
bi ,d (x)d x = ki+d+1 −ki

d +1

(
i+d∑

j=i

[
b j+1,d+1(v)−b j+1,d+1(u)

]
)

(2.104)

2.8.1. Spline Quadrature

The integral of a function f (x) on a domain [a,b] can be approximated by calculating
the integral of its interpolating spline on that domain:

∫b

a
f (x)d x ≈

nb−1∑

i=0

ci

∫b

a
bi ,d (x)d x (2.105)

where nb is the number of basis functions.

Let us define the constants I (bi ) =
∫b

a bi ,k (x)d x. As the spline is an interpolating
spline, the coefficients ci are obtained by solving the matrix equation (2.51). The
equation can therefore be written as:

∫b

a
f (x)d x ≈

nb−1∑

i=0

nb−1∑

j=0

(
B−1)

i j f j I (bi ) (2.106)

=
nb−1∑

i=0

nb−1∑

j=0

(
B−1)T

j i I (bi ) f j (2.107)

By calculating the coefficients qi =
∑

j

(
B−1

)T

j i bi in advance and choosing boundary
conditions which do not require derivatives to be provided, this expression can be
reduced to a quadrature formulation:

∫b

a
f (x)d x ≈

nb−nbc∑

i=0

qi+nbc
fi (2.108)

where nbc is the number of derivatives fixed at each edge. For example, in the case of
natural boundary conditions on splines of odd degree: nbc = d−1

2 .

The quadrature coefficients can be calculated simply by solving the following matrix
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equation:
B T

~q =~Ib (2.109)

where~Ib is the vector containing the constants I (bi ).

2.8.2. “Best” Quadrature

Schoenberg has shown that the “best” quadrature (by which we mean the quadrature
which minimises the error for a given degree d and set of points {xi }) is one derived by
integrating a spline approximation of the function interpolated at the break points,
with natural boundary conditions such that the spline is of degree d at the edge of the
domain (Schoenberg 1964).

The “best” quadrature of degree d is therefore the integral of a spline approximation
of degree 2d +1 with natural boundary conditions and interpolation points found at
the break points.

The standard definition of the interpolation matrix B is described in section 2.5.2,
with the boundary conditions being described by equations (2.65) and (2.66). As
the derivatives are all set to zero the conditioning of the matrix can be improved as
described in section 2.5.2.2. However specifying high derivatives in this way tends to
be a poorly conditioned problem. Although the condition number is improved it still
remains quite high. I will refer to this method as the “intuitive” method.

An alternative method for determining the quadrature coefficients was proposed
by Secrest 1965. However, this method is also poorly conditioned (see table 2.1). The
conditioning of interpolation matrices tends to increase with the degree of the spline
being interpolated. As a result this is a critical problem for this method where large
degrees are required.

I propose a new formulation which is significantly less susceptible to conditioning
problems.

2.8.2.1. Proposed Implementation

My method is based on two observations. Firstly, that the (d +1)-th derivative of a
spline of degree 2d+1 is a spline of degree d . I will note this spline as Td (x). In order to
respect the boundary conditions described by equation (2.50) this spline must respect
the following equations:

∂i
xTd (k0) = ∂i

xTd (kNc ) = 0 ∀0 ≤ i < d (2.110)

Secondly, I observe that in order to respect equation (2.110), the first d coefficients
of the spline Td (x) must be equal to 0.

In order to use these observations, the coefficients of the spline Td (x) must be ex-
pressed as a function of the coefficients of the original spline S2d+1(x). The equations
that we will use are derived from the following recurrence relationship (Hämmerlin
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and Hoffman 1991):

∂xbi ,p (x) = p

(
bi ,p−1(x)

ki+p −ki
−

bi+1,p−1(x)

ki+1+p −ki+1

)
(2.111)

Note that b-splines of lower order require fewer knots to describe the system. Thus if
the b-splines are defined using equation (2.11) with the knots which describe a spline
of degree r = 2d +1, the b-splines bi ,r− j are outside the domain [a,b] for all i < j and
N − i < N − j .

I now use all this information to describe the derivative of a spline, Sp (x), of degree p,

defined on the knots which describe the spline Sr (x) of degree r such that ∂
(r−p)
x Sr (x) =

Sp (x). I obtain the following:

∂xSp (x) =
Nc+r−1∑

i=r−p+1

c
[r−p+1]
i

bi ,p−1(x) (2.112)

=
Nc+r−1∑

i=r−p

c
[r−p]
i

∂xbi ,p (x) (2.113)

=
Nc+r−1∑

i=r−p

c
[r−p]
i

p

(
bi ,p−1(x)

ki+p −ki
−

bi+1,p−1(x)

ki+1+p −ki+1

)
(2.114)

= c
[r−p]
r−p p

br−p,p−1(x)

kr −kr−p
− c

[r−p]
Nc+r−1p

bNc+r,p−1(x)

kNc+r+p −kNc+r
+

Nc+r−1∑

i=r−p+1

p
c

[r−p]
i

− c
[r−p]
i−1

ki+p −ki
b

p−1
i

(x)

(2.115)

where c
[ j ]
i

denotes the i-th coefficient of the spline describing the j-th derivative of

the spline S2d+1(x) expressed on the full set of knots. This means that c
[ j ]
i

= 0 ∀i < j

as these coefficients describe b-splines which are either outside the domain or have
no support. By comparing coefficients I therefore obtain the following recursive
relationship:

c
[ j ]
i

= (r − j +1)
c

[ j−1]
i

− c
[ j−1]
i−1

ki+r− j+1 −ki
(2.116)

Equation (2.110) implies:

c [d+1]
d+1+i

= 0 ∀0 ≤ i < d (2.117)

c [d+1]
Nc+2d+1−i

= 0 ∀0 ≤ i < d (2.118)

A combination of equations (2.116), (2.117), and (2.118) provides the equations re-
quired to fill the first and last d rows of the interpolation matrix.

Due to the recursive nature of equation (2.116), I will refer to this method as the
“recursive” method.
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The algorithm which constructs the necessary matrix is based on the fact that
equation (2.116) can be expressed as a matrix equation:

c
[ j ]
i

=
[
− (r− j+1)

ki+r− j+1−ki

(r− j+1)
ki+r− j+1−ki

](
c

[ j−1]
i−1

c
[ j−1]
i

)

(2.119)

= (r − j +1)

ki+r− j+1 −ki

[
−1 1

]



− (r− j+2)

ki+r− j+1−ki−1

(r− j+2)
ki+r− j+1−ki−1

− (r− j+2)
ki+r− j+2−ki

(r− j+2)
ki+r− j+2−ki








c

[ j−2]
i−2

c
[ j−2]
i−1

c
[ j−2]
i



 (2.120)

The algorithm therefore loops over j calculating the line of the matrix representing

c [d+1]
i

(
c

[d+1− j ]
i− j

, . . . ,c
[d+1− j ]
i

)
until j = d +1.

The algorithm is as follows:

Algorithm 3 My algorithm for calculating the line matrix describing natural boundary
conditions
Input: i : Index of the coefficient to be expressed
Input: d : Degree of the spline which should be interpolated exactly

Output: M d : 1 × (d + 1) matrix expressing c [d+1]
i

as a linear combination of

c [0]
i−d−1

, . . . ,c [0]
i

s = d+1
ki+d+1−ki

M 0
0 =−s

M 0
1 = s

for j = 1, . . . ,d do

s = d+ j+1
ki+d+1−ki− j

v = M
j−1
0 s

M
j
0 =−v

for c = 1, . . . , j do

s = d+ j+1
ki+c+d+1−ki− j+c

M
j
c = v −M

j−1
c s

v = M
j−1
c s

end for

M
j

j+1 = v

end for

L1 = 0
for j = 0, . . . ,d +1 do

L1 = L1 +
∣∣∣M d

j

∣∣∣
end for

M d = M d

L1

This block matrix has the following sparsity pattern (example given for a spline of
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degree 7 at the bound x0):




∗ ∗ ∗ ∗ ∗ . . .

∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ ∗ . . .





Whereas the intuitive method has the following sparsity pattern:





∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .



 (2.121)

The increased orthogonality of the equations leads to a smaller condition number as
we will see in section 2.8.2.2.

2.8.2.2. Precision Comparison

We therefore have 3 methods to compare. The first is the method proposed by Secrest
(Secrest 1965), the second is the intuitive method described by equations (2.65) and
(2.66), and the third is the recursive method described by equations (2.117), and
(2.118). As explained in section 2.5.2.2, the condition number of the matrix required
to calculate the quadrature coefficients is related to the final precision obtained after
solving the equation. Supposing we desire a final precision of 10−8 any matrix with a
condition number κ(A) > 108 would be unusable.

Table 2.1 shows the conditioning of the three different methods. We can see that
Secrest’s method is very poorly conditioned, especially for large problems. For the
requested precision we are limited to low quadrature degrees and few points. In
contrast the two b-spline based methods perform much better when the number of
points is increased. These methods remove the dependency of the condition number
on the problem size which allows much larger problems to be tackled effectively.
Although the intuitive method performs significantly better than Secrest’s method for
a large number of points, the condition number still increases rapidly with the degree.
As a result for the requested precision we would still be limited to 5th order quadrature.
In contrast my proposed recursive method does not suffer from this problem. While
the condition number also increases with the degree it does so gradually. As a result,
for the requested precision, quadrature coefficients can be calculated up to 20th order.
The small condition number for low degrees also means that we can be sure that the
calculation of the quadrature coefficients will not introduce significant errors into the
final quadrature calculation.

2.8.2.3. Newton-Cotes Quadrature

In order to evaluate the spline quadrature, a comparison point is needed. Three
non-uniform Newton-Cotes schemes are used to provide this comparison: the well-
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Quadrature
degree

Spline
degree

Number
of

points
Secrest Intuitive Recursive

1 3
10 1.10 ·102 3.06 ·100 3.06 ·100

100 1.14 ·104 3.21 ·100 3.21 ·100

1000 1.14 ·106 3.21 ·100 3.21 ·100

2 5
10 9.75 ·103 2.99 ·101 6.57 ·100

100 1.07 ·108 2.97 ·101 7.85 ·100

1000 1.07 ·1012 2.97 ·101 7.86 ·100

3 7
10 2.49 ·105 8.96 ·102 1.24 ·101

100 3.48 ·1011 8.62 ·102 1.91 ·101

1000 6.15 ·1018 8.62 ·102 1.92 ·101

4 9
10 2.94 ·106 4.38 ·104 1.96 ·101

100 6.05 ·1014 4.12 ·104 4.68 ·101

1000 7.48 ·1024 4.12 ·104 4.71 ·101

5 11
10 1.71 ·107 2.78 ·106 2.47 ·101

100 1.40 ·1018 2.98 ·106 1.15 ·102

1000 5.17 ·1024 2.98 ·106 1.16 ·102

6 13
10 5.03 ·107 2.30 ·108 4.62 ·101

100 3.92 ·1022 3.08 ·108 2.82 ·102

1000 7.46 ·1026 3.08 ·108 2.85 ·102

7 15
10 1.53 ·108 3.59 ·1010 1.05 ·102

100 5.42 ·1023 4.31 ·1010 6.93 ·102

1000 2.02 ·1026 4.31 ·1010 7.03 ·102

Table 2.1.: Table showing the conditioning of the matrix required to find the coef-
ficients of a natural spline with equidistant knots on the domain [−1,1]
calculated using three different methods

known trapezoid rule, Simpson’s rule, and Boole-Villarceau’s rule. These quadrature
methods are usually expressed on uniform points. Shklov 1960 explains how to express
Simpson’s rule on non-uniform points. The expression for Boole-Villarceau’s rule
cannot be found in the literature, so I derive it here.

The equidistant form of Boole-Villarceau’s rule is the following:

∫
f (x)d x ≈ 4h

90

N /4−1∑

i=0

(
7 f4i +32 f4i+1 +12 f4i+2 +32 f4i+3 +7 f4i+4

)
(2.122)

where h = hi = xi+1 −xi , and f (xi ) = fi .

The non-equidistant version has the following form:

∫
f (x)d x ≈

N /4−1∑

i=0

(
αi f4i +βi f4i+1 +γi f4i+2 +ζi f4i+3 +ηi f4i+4

)
(2.123)
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The coefficients αi , βi , γi , ζi and ηi are chosen to minimise the error.

The problem is simplified by examining a small section of the integral:

1

h1 +h2 +h3 +h4

[∫x+h3+h4

x−h1−h2

f (x)d x

−α f (x −h1 −h2)−β f (x −h2)−γ f (x)−ζ f (x +h3)−η f (x +h3 +h4)
]

(2.124)

= 1
∑4

i=1 hi

[F (x +h3 +h4)−F (x −h1 −h2)

−α f (x −h1 −h2)−β f (x −h2)−γ f (x)−ζ f (x +h3)−η f (x +h3 +h4)
]

(2.125)

= 1
∑4

i=1 hi

[

F (x)+
∞∑

i=0

(h3 +h4)i+1

(i +1)!
f (i )(x)

−F (x)+
∞∑

i=0

(−1)i (h1 +h2)i+1

(i +1)!
f (i )(x)−α

(
∞∑

i=0

(−1)i (h1 +h2)i

i !
f (i )(x)

)

−β

(
∞∑

i=0

(−1)i
hi

2

i !
f (i )(x)

)

−γ f (x)−ζ

(
∞∑

i=0

hi
3

i !
f (i )(x)

)

−η
(
∞∑

i=0

(h3 +h4)i

i !
f (i )(x)

)]

(2.126)

A series of equations can now be defined to determine the coefficients which min-
imise the error:

h3 +h4 +h1 +h2 −α−β−γ−ζ−η= 0 (2.127)

(h3 +h4)2

2
− (h1 +h2)2

2
+α(h1 +h2)+βh2 −ζh3 −η(h3 +h4) = 0 (2.128)

(h3 +h4)3

3!
+ (h1 +h2)3

3!
−α

(h1 +h2)2

2
−β

h2
2

2
−ζ

h2
3

2
−η

(h3 +h4)2

2
= 0 (2.129)

(h3 +h4)4

4!
− (h1 +h2)4

4!
+α

(h1 +h2)3

3
+β

h3
2

3
−ζ

h3
3

3
−η

(h3 +h4)3

3
= 0 (2.130)

(h3 +h4)5

5!
+ (h1 +h2)5

5!
−α

(h1 +h2)4

4
−β

h4
2

4
−ζ

h4
3

4
−η

(h3 +h4)4

4
= 0 (2.131)

This gives the following expressions:

α=
∑4

i=1 hi

60h1 (h1 +h2) (h1 +h2 +h3)

(
12h3

1 +21h2
1h2 +6h2

1h3 −9h2
1h4 +6h1h2

2

+2h1h2h3 −8h1h2h4 −4h1h2
3 +2h1h3h4 +6h1h2

4 −3h3
2 −4h2

2h3

+h2
2h4 +h2h2

3 +2h2h3h4 +h2h2
4 +2h3

3 +h2
3h4 −4h3h2

4 −3h3
4

)
(2.132)
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β=
(∑4

i=1 hi

)3

60h1h2 (h2 +h3) (h2 +h3 +h4)

(
3h2

1 +6h1h2 +h1h3 −4h1h4

+3h2
2 +h2h3 −4h2h4 −2h2

3 +h3h4 +3h2
4

)
(2.133)

γ=−
(∑4

i=1 hi

)3

60h2h3 (h1 +h2) (h3 +h4)

(
3h2

1 +h1h2 +h1h3 −4h1h4 −2h2
2

−4h2h3 +h2h4 −2h2
3 +h3h4 +3h2

4

)
(2.134)

ζ=
(∑4

i=1 hi

)3

60h3h4 (h2 +h3) (h1 +h2 +h3)

(
3h2

1 +h1h2 −4h1h3 −4h1h4 −2h2
2

+h2h3 +h2h4 +3h2
3 +6h3h4 +3h2

4

)
(2.135)

η=−
(∑4

i=1 hi

)

60h4 (h3 +h4) (h2 +h3 +h4)

(
3h3

1 +4h2
1h2 −h2

1h3 −6h2
1h4 −h1h2

2

−2h1h2h3 −2h1h2h4 −h1h2
3 +8h1h3h4 +9h1h2

4 −2h3
2 −h2

2h3 +4h2
2h4

+4h2h2
3 −2h2h3h4 −6h2h2

4 +3h3
3 −6h2

3h4 −21h3h2
4 −12h3

4

)
(2.136)

For equidistant points this simplifies to:

α= 14h

45
= 4h

7

90
(2.137)

β= 64h

45
= 4h

32

90
(2.138)

γ= 8h

15
= 4h

12

90
(2.139)

ζ= 64h

45
= 4h

32

90
(2.140)

η= 14h

45
= 4h

7

90
(2.141)

The expression is O
(
h6

)
for non-equidistant points and O

(
h7

)
for equidistant

points. The simplified case is equivalent to the expected result from equation 2.122.

2.8.2.4. Convergence

The convergence of the quadrature scheme proposed in Section 2.8.2.1 is investi-
gated using equations for which the exact integral is known. The first equation is a
Maxwellian test function used in Section 3.4.1 to describe a distribution function, the
second is an integral suggested by Bailey, Jeyabalan, and Li 2011 for testing quadrature:

∫30

−30

1

2π
exp

(
−x2

2

)
d x = 1

p
2π

erf

(
30
p

2

)
(2.142)

∫1

0

arctan
(
2+ t 2

)

(1+ t 2)
p

2+ t 2
d x = 5π2/96 (2.143)
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The results can be seen in Figure 2.9. We see that in the Maxwellian case examined
in Figure 2.9a where the natural boundary conditions provide a good representation
of the actual boundary conditions, the order of convergence of the spline scheme is
closer to the order of the underlying spline. As a result the spline scheme performs
significantly better than the Newton-Cotes schemes.

In contrast, in Figure 2.9b we see that the spline quadrature does not always perform
better when integrating equation 2.143. However as it is much easier to implement
higher-order non-uniform schemes with this method it is easy to use higher-order
schemes to obtain improved errors.

(a) Equation (2.142). (b) Equation (2.143).

Figure 2.9.: The convergence of the error when solving Equations (2.142) and (2.143)
with different degree Newton-Cotes (NC) or spline (S) quadrature schemes.

2.9. Conclusion

In this chapter, the various aspects of splines used in this work have been explained.
This will form the basis for most of the methods described in the rest of this thesis.
Interpolating splines are used in Chapters 3 and 4 to underpin the semi-Lagrangian
method. Splines are used in the finite element method in Chapters 3, 5, and 6, in
particular C1 polar splines are used in Chapters 5, and 6.

A new approach to Schoenberg’s “best” quadrature was presented. The new method
proved to massively improve the conditioning of the problem, improving the precision
of the quadrature coefficients by several significant figures. For example, in the case
of the fifth order scheme, four additional significant figures of precision are obtained.
This quadrature is used in Chapter 3 in the context of plasma sheath simulations.
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3. Non-Uniform Splines for
Semi-Lagrangian Kinetic
Simulations of the Plasma
Sheath

3.1. Introduction

This chapter reproduces the work of Bourne, Munschy, Virginie Grandgirard, et al.
2022. In it, non-uniform splines of varying degrees are used to run kinetic semi-
Lagrangian simulations of the plasma sheath.

The plasma sheath is the part of a hot plasma adjacent to a comparatively cold
wall. In this area there are steep gradients (Guilhem Dif-Pradalier, Philippe Ghendrih,
Yanick Sarazin, et al. 2022), for example in temperature, and density, compared to the
rest of the plasma (Coulette and Giovanni Manfredi 2014). These constraints make
this area particularly difficult to simulate. The behaviour in this area is inherently
kinetic since particle velocity plays a strong role in establishing the plasma current.
Furthermore, electrons and ions, having different average velocities, exhibit distinct
behaviour. It is this difference in behaviour which leads to the formation of the sheath;
therefore each species must be modelled individually. This precludes the use of
simpler models such as fluid models and forces the use of more complicated kinetic
models.

The main kinetic methods available for simulating this region are PIC methods and
Eulerian methods. The low density in the sheath imposes challenges for PIC methods
as a very large number of particles must be simulated in order to obtain reasonable
accuracy in the low-density regions. Similarly, steep gradients pose problems for Eule-
rian methods as a sufficient number of points must be used to sufficiently describe the
slope. In a typical sheath simulation, the steep gradients occur over a distance which
is smaller than the Debye length, while the simulation domain ought to be up to one
million Debye lengths long. If too few sampling points are used then the areas of steep
gradients can appear as discontinuities in the simulation. Such discontinuities can
propagate over time causing non-physical behaviour often resulting from oscillations.
It is therefore important to resolve this area with a spatial resolution smaller than the
Debye length.

When using equidistant sampling points, such a small resolution comes with a very
large cost both in computation and memory consumption. This is especially the case
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for large multi-dimensional simulations such as the GYSELA code (V. Grandgirard,
Abiteboul, J. Bigot, et al. 2016) which simulates the entirety of a tokamak in five di-
mensions. Such simulations already operate at the bounds of what is possible on
today’s supercomputers. It is therefore not feasible for these simulations to drastically
increase the number of points used in the simulation. Non-equidistant sampling
points allow the steep gradient to be resolved without unduly increasing the memory
required for the simulation. This can cause significant memory gains in a five dimen-
sional simulation as the removal of just one point in a given dimension, reduces the
data required by n2n3n4n5 points, where n2, n3, n4, and n5 are the number of points
in the other four dimensions.

On the other hand, non-equidistant points can potentially increase the calculation
requirements, as they require more complex algorithms in which the varying spatial
resolution is calculated and handled appropriately. The choice between equidistant
and non-equidistant points is therefore a trade-off between memory and computa-
tional requirements and is dependent upon the machine on which the calculations are
run. Specifically the availability of GPUs can have a noticeable effect on this balance.

In this chapter we will investigate the changes necessary to move from a semi-
Lagrangian simulation on equidistant points to one with non-equidistant points, with
a view to extending the GYSELA code (V. Grandgirard, Abiteboul, J. Bigot, et al. 2016)
to more accurately simulate the edge domain of a tokamak plasma. Given the com-
plexity of the GYSELA code, a reduced model based on the same algorithms is used to
investigate this problem and determine whether the memory-calculation trade-off is
acceptable. This reduced model will consider only the sheath, which is a complicated
problem in its own right having been investigated in multiple other papers (Coulette
and Giovanni Manfredi 2014; G. Manfredi and Valsaque 2004; Manfredi, Hirstoaga,
and Devaux 2010; Badsi, M., Mehrenberger, M., and Navoret, L. 2018). The handling of
the wall in this area as well as steep gradients in the sheath region itself mean that this
simulation is highly pertinent for the testing of non-equidistant points, in addition to
actually describing the region that will be added to GYSELA.

Previous works simulating the sheath with non-uniform points have used finite
volumes methods (Coulette and Giovanni Manfredi 2014; G. Manfredi and Valsaque
2004); however this gives rise to time and spatial step restrictions. The GYSELA code
(V. Grandgirard, Abiteboul, J. Bigot, et al. 2016) takes a different approach using a
semi-Lagrangian method to reduce these restrictions. This is crucial in such a large
code in order to facilitate running simulations over large time scales. Previous works
using a semi-Lagrangian method for sheath simulations include the work of Badsi, M.,
Mehrenberger, M., and Navoret, L. 2018. They use Lagrange interpolation on uniform
points to reconstruct the function, whereas in this chapter, as in the GYSELA code
(V. Grandgirard, Abiteboul, J. Bigot, et al. 2016), a spline interpolation will be used.
Manfredi, Hirstoaga, and Devaux 2010 also studied the sheath on uniform points,
using a semi-Lagrangian method, additionally using a slope corrector to ensure the
positivity of the distribution function. Semi-Lagrangian advection on cubic splines
with non-equidistant points in the velocity dimension has previously been investi-
gated by Afeyan et al. in a different context: the study of Kinetic Electrostatic Electron
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Nonlinear (KEEN) waves (Afeyan, Casas, Nicolas Crouseilles, et al. 2014).
This work distinguishes itself from previous work by the use of non-equidistant

points in all dimensions, Greville abcissae to avoid explicit boundary conditions, and
the use of the “best” quadrature in the sense of Schoenberg as described in chapter 2.
This quadrature is rarely used as it is difficult to calculate the quadrature coefficients
to a sufficient precision. In section 2.8 we presented a new method to calculate these
coefficients, which solves this problem.

This chapter presents work which is organised as follows. Section 3.2 presents the
physical system being modelled. Section 3.3 presents the different schemes used to
resolve the system. Section 3.4 discusses the convergence of the different methods
for non-equidistant points. Section 3.5 presents the non-equidistant simulations and
discusses the gains that were achieved as compared to equidistant points. Finally
section 3.6 gives our conclusions.

3.2. Physical System

(a) A poloidal cut of a tokamak. The simu-
lation follows a line inside the Scrape-
Off Layer (SOL) shown in yellow from
one divertor to the other. This line is
outside the Last Closed Flux Surface
(LCFS).
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(b) The simulation domain following a mag-
netic field line in the SOL. Mask functions
indicate whether a given point is in the wall.
The wall region is shown in blue. Mw1 is
a mask describing the absorption of parti-
cles by the wall, Mw2 is a mask describing
the absorption of momentum and energy
by the wall, and Mk is a mask describing the
kinetic source.

Figure 3.1.: The 1D spatial simulation domain.

The plasma sheath is the small layer adjacent to a wall in a plasma. In this region a
positive charge develops, thus creating an electric potential which accelerates ions
towards the wall, and confines electrons. This ensures that the plasma can attain a
steady state with an appropriate source to balance the losses through the sheath. The
plasma then remains quasi-neutral at typical scales longer than the Debye length.
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The sheath model used for the simulations in this chapter describes a highly sim-
plified situation. The domain is considered to be one-dimensional. This dimension
describes a line which follows a magnetic field line, beginning and ending in a wall.
This situation can be seen in Figure 3.1 (see Figure 3.1a for a 2D diagram of a tokamak
plasma cross-section, and Figure 3.1b for the 1D simulation domain). The simulation
consists of three regions, two wall regions and the plasma region.

At the edge of the vessel the plasma interacts with the wall. Electrons move faster
than ions, and would be rapidly absorbed by the wall. To prevent an overly large
charge difference building in this area, violating quasi-neutrality, electron losses must
be inhibited. As a result a potential difference is created which accelerates the ions
towards the wall, and decelerates electrons approaching the wall, restoring conditions
for a weak plasma current loss.

As a result of this behaviour the electric potential has a very steep gradient close to
the wall (Guilhem Dif-Pradalier, Philippe Ghendrih, Yanick Sarazin, et al. 2022). This
can be understood as a standing shock wave localised at the wall. In order to take
into account the behaviour due to this gradient it is important to resolve the system
with a small spatial resolution in this area. This prevents the wall being seen as a
discontinuity in the distribution function. Discontinuities can propagate through a
simulation causing non-physical behaviour such as oscillations.

This high resolution results in costly simulations with little gain outside of the sheath
area. Non-equidistant points are a valuable tool for circumventing this problem.
However many of the numerical methods commonly used in such simulations are
optimised for equidistant points.

3.2.1. Vlasov-Poisson

The system is known as the Vlasov-Poisson system as it is composed of a Vlasov
equation and a Poisson equation. The Vlasov equation (3.1) is an advection equation
describing the evolution of the distribution function fs(t , x, v) for electrons (s = e),
and ions (s = i ). The Poisson equation (3.2) describes the quasi-neutrality condition:

∂t fs(t , x, v)+ v∂x fs(t , x, v)− qs

ms
∂xφ(t , x)∂v fs(t , x, v) = Ss(t , x, v)+Css(t , x, v) (3.1)

∂2
xφ(t , x) =−

ρq (t , x)

ε0
(3.2)

Where x is the spatial coordinate, v is the velocity coordinate, t is the temporal co-
ordinate, qs and ms are respectively the charge and mass of the species s, Ss(t , x, v)
is a source term, Css(t , x, v) is a intra-species collision operator, φ(t , x) is the electric
potential, ρq is the charge density, and ε0 is the permittivity of free space.
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The charge density ρq is defined from the particle density ns as follows:

ρq (t , x) =
∑

s

qsns(t , x) (3.3)

ns(t , x) =
∫

fs(t , x, v)d v (3.4)

The collision operator Css(t , x, v) resembles the operator used in GYSELA (G. Dif-
Pradalier, Diamond, V. Grandgirard, et al. 2011), and is defined as follows:

Css(t , x, v) = ∂v

[
Dv (t , x, y(x, v))∂v fs(t , x, v)+ fs(t , x, v)Dv (t , x, y(x, v))ms

v −VM (t , x)

TM (t , x)

]

(3.5)
where VM (t , x) and TM (t , x) are functions which ensure that the collision operator
correctly conserves the momentum and energy, and Dv is a diffusion coefficient
defined as:

Dv (t , x, y(x, v)) = D0(t , x)

[
ψ(y)

y
− ψ(y)

2y3
+ ψ′(y)

y2

]
(3.6)

D0(t , x) = 3
p

2πTs(t , x)

4ms
νss (3.7)

Ts(t , x) =
∫

ms(v −Vs(t , x))2

ns(t , x)
fs(t , x, v)d v (3.8)

Vs(t , x) =
∫

v

ns(t , x)
fs(t , x, v)d v (3.9)

ψ(y) = 2
p
π

∫y

0
exp

(
−z2) d z (3.10)

y(x, v) =
|v |pmsp
2Ts(t , x)

(3.11)

where νss is the two-species collision frequency for collisions between particles of the
same species s.

The constants VM (t , x) and TM (t , x) are the solutions to the following system of
equations:

〈Dv〉VM +
〈D ′

v〉
ms

TM = 〈vDv〉 (3.12)

〈vDv〉VM + 〈(vDv )′〉
ms

TM = 〈v2Dv〉 (3.13)

The operator 〈·〉 is defined as:

〈G〉 =
∫

R

G fs(t , x, v)d v (3.14)
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The source term Ss(t , x, v) contains three different terms:

Ss(t , x, v) = Ss,w1 +Ss,w2 +Ss,k (3.15)

Ss,w1 is a sink term describing the loss of particles in the wall. This operator con-
serves the charge. Ss,w2 is an additional sink term describing the loss of momentum
and energy in the wall. Both sink terms are Bhatnagar-Gross-Krook (BGK) operators
(Bhatnagar, Gross, and Krook 1954). Ss,k is a kinetic source term similar to the one
used in GYSELA (Y. Sarazin, V. Grandgirard, Abiteboul, et al. 2011), which describes the
addition of particles and energy from the body of the plasma in order to compensate
for the particles lost into the wall. Once a steady state is reached, this operator ensures
that the total number of particles remains constant. The terms are defined as follows:

Ss,w1 (t , x, v) =−νs,w1 (t , x)Mw1 (x)[ fs(t , x, v)− gs,w (nw ,Tw1 , v)] (3.16)

Ss,w2 (t , x, v) =−νw2Mw2 (x)
[

fs(t , x, v)− gs,w (ns(t , x),Tw2 (t ), v)
]

(3.17)

Ss,k (t , x, v) = Mk (x)
∫Lx

0 Mk (x ′)d x ′

sk
p

msp
2πTk

e
−ms v2

2Tk (3.18)

where νs,w1 (t , x) is the adjusted amplitude of the particle sink for species s, Mz (x) are
mask functions (with z ∈ {w1, w2,k}), gs,w (n,T, v) is the distribution function targeted
by the sink operators in the wall region defined in equation (3.19), nw is the target
density in the wall, Tw1 is the target temperature in the wall, νw2 is the constant
amplitude for the momentum and energy sink in the wall, ns(t , x) is the particle
density defined in equation (3.4), Tw2 (t ) is the target temperature defined in equation
(3.21), sk is the magnitude of the source term and Tk is the temperature of the source.

The distribution function gs,w (n,T, v), and target temperature for the momentum
and energy sink Tw2 (t ) are defined as follows:

gs,w (n,T, v) =
n
p

msp
2πT

exp

(
−ms v2

2T

)
(3.19)

Tw2 (t ) = 1

6

[∫
[ns(t , xLw )v −

∫
v f (t , xLw , v)d v]2 f d v

ns(t , xLw )3
+ (3.20)

∫
[ns(t , xRw )v −

∫
v f (t , xRw , v)d v]2 f d v

ns(t , xRw )3

]
(3.21)

where xLw and xRw are the left and right boundaries between the plasma region and
the wall region.

The adjusted amplitudes of the particle sink νs,w1 (t , x) are chosen such that the op-
erator conserves charge locally. They are defined such that they respect the following
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equation:

νi w1 (t , x) = νw1 (3.22a)

νew1 (t , x) = νw1

ni (t , x)−nw

ne (t , x)−nw
(3.22b)

where νw1 is the constant amplitude for the particle sink in the wall. This makes the
operator somewhat unusual for a BGK operator, in that the coefficients are not only
space-dependent, but also time-dependent. This specificity means that the equation
cannot be solved analytically, instead a Runge-Kutta scheme will be used.

The mask functions Mz (x) allow different behaviour to be specified in the wall and
in a central region where a particle source is added. They are defined as follows:

M(x, xL , xR ,d) =1

2

[
tanh

(x −xL

d

)
− tanh

(x −xR

d

)]
(3.23)

Mw (x) =1−M(x, xLw , xRw ,dw ) (3.24)

Mk (x) =M(x, xLk , xRk ,dk ) (3.25)

Mw2 (x) =
[

1−M

(
x,

x0 +4xLw

5
,

xN +4xRw

5
,

xLw −x0

125

)]
·

[
1−M

(
x,

3x0 +2xLw

5
,

3xN +2xRw

5
,

x0 +4xLw

30

)]
(3.26)

where xLk and xRk are the left and right boundaries of the region in which the plasma
source is located, and dw and dk are input parameters which control the steepness of
the masks at the transition between regions. In the real world dw would be infinitely
small, however this cannot be resolved in our simulation without creating unphysical
oscillations. The presence of this parameter therefore provides us with a transition
region. It is important that there are sufficiently many points along this region to
represent the transition without introducing unphysical behaviour. However it is
equally important to strive to use as sharp a mask as possible in order to have a more
realistic simulation.

The shape described by equations (3.24) - (3.26) can be seen in Figure 3.1b. This use
of a mask function is a penalisation technique, as described by Paredes, H. Bufferand,
Ciraolo, et al. 2014. The same mask function has previously been used in a very similar
problem by Caschera, G. Dif-Pradalier, Ph. Ghendrih, et al. 2018.

The equations used in the simulation are unitless. This is achieved by normalising
the variables in equations (3.1)-(3.13). Each unitless variable V̂ is defined as follows:

V̂ = V

V ⋆
(3.27)

where V is V̂ expressed in a given set of units, and V ⋆ is the normalisation parameter,
as defined in table 3.1.
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Variable Symbol
Normalisation parame-

ter
Definition

Density ns Reference density n0

Temperature Ts Reference temperature T0

Mass ms Electron mass me

Charge qs Proton Charge e

Time t
Inverse of the electron
plasma frequency

1

ωpe
=

√
meε0

n0e2

Length x Debye length
λD0 =

√
ε0T0

n0e2

Velocity of
species s

vs
Thermal velocity of
species s

vths =λD0ωps

=
√

T0
ms

Distribution
function

fs
Reference density in
phase space

n0

vths

Electric poten-
tial

φ
Reference electric poten-
tial

T0

e

Electric field E Reference electric field T0

eλD0

Collision fre-
quency

νs,y
Electron plasma fre-
quency

ωpe

Table 3.1.: The parameters used to normalise the different variables that appear in
the equations. The index s denotes the species (ion or electron). The index

y denotes the region (wall or plasma). ε0 is the permittivity of free space.
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Equations (3.1) and (3.2) are therefore expressed as:

[

∂t̂ +
1

√
m̂s

(
v̂s∂x̂ − q̂s∂x̂φ̂(t̂ , x̂)∂v̂s

)
]

f̂s(t̂ , x̂, v̂s) = Ŝs(t̂ , x̂, v̂s)+ Ĉs(t̂ , x̂, v̂s) (3.28)

∂2
x̂φ̂(t̂ , x̂) =−ρ̂q (t̂ , x̂) (3.29)

Where m̂s is the normalised mass of species s, v̂s is the velocity normalised for
species s, x̂ is the normalised spatial coordinate, q̂s is the normalised charge for
species s, φ̂(t̂ , x̂) is the normalised electric potential, Ŝs(t̂ , x̂, v̂s) is the normalised
source term, Ĉs(t̂ , x̂, v̂s) is the normalised collision term, and ρ̂q (t̂ , x̂) is the charge
density.

For simplicity the notation ·̂ will be dropped in the rest of the chapter.

3.2.2. Conservation Laws

The equations described above are kinetic equations. By multiplying equation (3.28)
by powers of vs and integrating, conservation equations can be obtained from the
kinetic equations. This gives a fluid model of our simulation which depends on the
fluid density ns (defined in equation (3.4)), the particle flux Γs , the Reynold’s stress Πs

and the heat flux Qs . These quantities are defined as follows:

Γs(t , x) =
∫

vs fs(t , x, vs)d vs (3.30)

Πs(t , x) =
∫

v2
s fs(t , x, vs)d vs (3.31)

Qs(t , x) =
∫

1

2
v3

s fs(t , x, vs)d vs (3.32)

The conservation equations describe the conservation of the particle density (3.33),
the mean velocity (3.34), and the kinetic energy (3.35):

∂t ns(t , x)+ 1
p

ms
∂xΓs(t , x) =

∫
Ss(t , x, vs)+Css(t , x, vs)d vs (3.33)

∂tΓs(t , x)+ 1
p

ms

(
∂xΠs(t , x)+qs∂xφ(t , x)ns(t , x)

)
=

∫
vsSs(t , x, vs)+ vsCss(t , x, vs)d vs

(3.34)

∂tΠs(t , x)+2
1

p
ms

(
∂xQs(t , x)+qs∂xφ(t , x)Γs

)
=

∫
v2

s Ss(t , x, vs)+ v2
s Css(t , x, vs)d vs

(3.35)

These equations therefore provide a method for evaluating the error of the system.
This is done by comparing numerical approximations of the left and right-hand sides
of equations (3.33)-(3.35). These errors will be used in Section 3.5 to evaluate the
precision of the numerical schemes.
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3.3. Semi-Lagrangian Scheme

In this section the main methods used to resolve the system defined by equations
(3.28) and (3.29) will be described. Namely the time stepping method, the source and
sink operators, the collision operator, the semi-Lagrangian advection, and the Poisson
solver. Three of these methods are based on splines.

The numerical schemes used in the simulation are all accurate to at least third order
in space and second order in time.

The data will be stored on a non-periodic grid representing the domain [x0, xNx−1]×
[v0, vNv−1], where Nx and Nv are respectively the number of interpolation points in the
spatial and velocity dimensions. One particularity of this work is that non-equidistant
points are used in both dimensions.

3.3.1. Time Stepping

The system described by equations (3.28) and (3.29) is solved using a predictor-
corrector scheme. Strang’s second order splitting scheme (Strang 1968) is used to
calculate ∂t fs,n = ∂t fs(tn , x, vs) at each step of the scheme. Equation (3.28) is therefore
broken up into six equations: a spatial advection equation (3.36), a velocity advec-
tion equation (3.37), two equations describing the sinks (3.38),(3.39), an equation
describing the source (3.40), and an equation describing the collisions (3.41):

∂t fs,n =− 1
p

ms
vs∂x fs,n (3.36)

∂t fs,n = qsp
ms

∂xφn∂vs fs,n (3.37)

∂t fs,n =−νs,w1 (t , x)Mw1 (x)( fs,n − gs,w (nw ,Tw1 , vs)) (3.38)

∂t fs,n =−νw2Md (x)( fs,n − gs,d (ns(t , x),Tw2 (t ), v)) (3.39)

∂t fs,n = Mk (x)
∫xNx−1

x0
Mk (x ′)d x ′

skp
2πTk

e
− v2

s
2Tk (3.40)

∂t fs,n =∂vs

(
Dvs (t , x, vs)∂vs fs,n +Dvs (t , x, vs)

(vs −VM (t , x))

TM (t , x)
fs,n

)
(3.41)

where φn is the approximation of the function φ (tn , x).

Equation (3.37) is chosen as the central operator of the Strang splitting.

Let us define fn the vector { fi ,n , fe,n}, and six operators : X∆t , V∆t (φn), W∆t , D∆t ,
K∆t , C∆t which are defined as the operators which solve the six equations (3.36)-(3.41)
for fi ,n , then fe,n .

The operator A∆t which solves equation (3.28) is therefore defined as:

A∆t

(
fn ,φn

)
=

(
W∆t

2
C∆t

2
K∆t

2
D∆t

2
X∆t

2
V∆t (φn)X∆t

2
D∆t

2
K∆t

2
C∆t

2
W∆t

2

)
fn (3.42)

The second-order time stepping algorithm, which approximates the solution to the
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system described by equations (3.28) and (3.29), can finally be summarised as follows:

fn+1 =A∆t

(
fn ,PA∆t

2
fn

)
(3.43)

φn+1 =P
(

fn+1
)

(3.44)

where P is the Poisson operator described in Section 3.3.3.

3.3.2. Vlasov

The advection equations (3.36) and (3.37) are solved using a backward semi-Lagrangian
scheme. This scheme is a mixture between the well-known PIC and Eulerian methods
(Sonnendrücker, Roche, Bertrand, et al. 1999). The trajectories that particles located
at each grid point would have followed, are traced back to find the location of the
particles at the previous time step. These trajectories are known as characteristics and
the location at the previous time step is known as the foot of the characteristic. During
a simple advection, the value of the distribution function remains constant along a
characteristic; therefore the value at the grid point is equal to the value at the foot of
the characteristic. Figure 3.2 illustrates the location of the foot of the characteristic x⋆

6
for a grid point x6. For constant advection the foot of the characteristic can be found
trivially.

x0

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

x7

x8

x8

x9

x9

n∆t

(n+ 1)∆t

x⋆
6

f((n+ 1)∆t, x6) = f(n∆t), x⋆
6
)

Figure 3.2.: A visual description of the semi-Lagrangian scheme where x⋆

6 is the foot
of the characteristic of x6.

As seen in Figure 3.2, the foot of the characteristic is not necessarily found at a grid
point. Therefore an interpolation method is required to approximate the value at
this point. In this work, a spline interpolation method is used. This is a common
choice used in many codes (Manfredi, Hirstoaga, and Devaux 2010; Afeyan, Casas,
Nicolas Crouseilles, et al. 2014), including the GYSELA code (V. Grandgirard, Abiteboul,
J. Bigot, et al. 2016) The values at the previous time step are used to construct a spline
representation of the function. The spline representation can then be evaluated at any
point on the domain as described in Section 2.6. It is evaluated at the feet to provide
the updated value of the function at the grid point.

The distribution function is assumed to be constant outside of the domain. There-
fore if the foot of the characteristic falls outside the domain, the boundary value is
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used to update the value of the function at the grid point. This is justified by the
fact that the distribution function falls to zero in the wall and tends to zero for large
velocity magnitudes.

3.3.3. Poisson

The quasi-neutrality condition defined in equation (3.29) takes the form of a Poisson
equation. It is solved using the FEM constructed on a spline basis. Most other codes,
including the GYSELA code use alternative methods such as Fourier transforms (V.
Grandgirard, Abiteboul, J. Bigot, et al. 2016) or FDM (G. Manfredi and Valsaque 2004;
Manfredi, Hirstoaga, and Devaux 2010). The choice was made to use FEM instead of
FDM as it is simpler to express the equations on non-uniform points. FEM is preferred
over Fourier transforms as the latter place unnecessary restrictions on the geometry
of the problem. As GYSELA will be extended in the future to include more complex
geometries it is important to test methods which do not constrain these choices.

The spline basis used for the FEM is a spline basis with all boundary knots placed on
the boundary. We use the notation {b0,d (x), . . . ,bnb−1,d (x)} to denote the spline basis
for splines of degree d , where nb is the number of basis splines. Greville boundary con-
ditions are used in the simulation, so that nb is equal to the number of interpolation
points (Nx in the spatial direction, and Nv in the velocity direction).

The approximations of the electric potential (3.45) and the charge density (3.46) are
expressed on the spline basis as follows:

φ̃n (x) =
nb−1∑

j=0

b j ,d (x)Cφ j
(3.45)

ρ̃n,q (x) =
nb−1∑

j=0

b j ,d (x)Cρq, j
(3.46)

where ρ̃n,q (x) is the approximation of ρq (tn , x), and Cφ j
and Cρq, j

are respectively the

spline coefficients of the approximations φ̃n(x) and ρ̃n,q (x).

This leads to the following expression for the weak form of equation (3.29):

nb−1∑

j=0

[
∂xbi ,d (x)b j ,d (x)

∣∣xNx−1

x0
−

∫xNx−1

x0

∂xbi ,d (x)∂xb j ,d (x)d x

]
DCφ j

(3.47)

=
nb−1∑

l=0

Cρq,l

∫xNx−1

x0

bi ,d (x)bl ,d (x)d x (3.48)

for all integer values 0 ≤ i < nb .

Dirichlet boundary conditions are imposed on the electric potential:

nb−1∑

j=0

b j ,d (x0)φ j =
nb−1∑

j=0

b j ,d (xNx−1)φ j = 0 (3.49)
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As shown in Figure 2.2, the non-uniform spline basis is defined such that the subset
{bd

1 , . . . ,bd
nb−2} is a basis for splines respecting the Dirichlet condition. Equation (3.48)

can therefore be simplified to:

−
nb−2∑

j=1

∫xNx−1

x0

∂xbi ,d (x)∂xb j ,d (x)d x Cφ j
=

nb−1∑

l=0

Cρq,l

∫xNx−1

x0

bi ,d (x)bl ,d (x)d x (3.50)

for all integer values 0 < i < nb −1.

By allowing the index i to vary over all functions in the reduced basis, equation

(3.50) leads to a matrix equation of the form S
*

φ =*
r , where each of the elements of

the matrix S and the vector
*
r are defined as:

Si j =−
∫xNx−1

x0

∂xbi ,d (x)∂xb j ,d (x)d x (3.51)

ri =
nb−1∑

l=0

ρq,l

∫xNx−1

x0

bi ,d (x)bl ,d (x)d x (3.52)

The matrix S is referred to as the stiffness matrix. The vector
*

φ contains the spline
coefficients φ j .

There are several possible ways of calculating the integrals in equation (3.50). Dif-
ferent options including Gauss-Legendre quadrature, integration by parts, and re-
cursive solutions using the properties of B-Splines were explored by Vermeulen et
al. (Vermeulen, Bartels, and Heppler 1992). In this work we choose Gauss-Legendre
quadrature as the sample points can be chosen such that the product of two splines of
degree d is integrated exactly. This is achieved by using d +1 sample points per cell.
Thus no additional error is introduced unnecessarily.

Using equation (3.3), the charge density ρq,n is defined as:

ρq,n(t , x) =
∫

fi ,n(t , x, vi )d vi −
∫

fn,e (t , x, ve )d ve (3.53)

This integral does not describe a product of splines so the options suggested by Ver-
meulen et al. (Vermeulen, Bartels, and Heppler 1992) are not adapted to this situation.
It would be possible to use these methods by first approximating the functions with a
spline, however the calculation of the spline coefficients is a costly operation. To avoid
this unnecessary cost, a quadrature method is used to calculate the charge density
and all other integrals which don’t involve splines. The chosen quadrature method is
described in Section 2.8.2.1 and is derived from spline integration.

3.3.4. BGK Wall

The wall is described by equations (3.38) and (3.39), which are BGK operators. In the
case of equation (3.38), the coefficients νs,w1 , defined in equation (3.22), are time-
dependent, while in the case of equation (3.39), it is the function gs,w (ns(t , x),Td (t ), v)
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which is time-dependent. These are non-standard versions of the operator which
require special handling, as it means that it is not possible to solve equations (3.38)
and (3.39) exactly. Instead, a second-order explicit Runge-Kutta scheme, known as the
midpoint method is used. This method is defined as follows:

fs,n+ 1
2
= fs,n + ∆t

2
∂t fs,n (3.54a)

fs,n+1 = fs,n +∆t∂t fs,n+ 1
2

(3.54b)

where fs,n = fs(tn , ·, ·) is the approximation of the distribution function at time tn , ∆t

is the time step, and ∂t fs,n is given by equation (3.38) or (3.39).

Let us define the operator ν
(

fn

)
which calculates the normalised frequencies given

the approximations of the distribution functions at a given time tn using equations
(3.4) and (3.22):

ν
(

fn

)
=

{
νi ,w1 = νw1

νe,w1 = νw1

∫
fi ,n (x,vi )d vi−nw∫
fe,n (x,ve )d ve−nw

(3.55)

The integrals required for this calculation are the same as those in equation (3.53) and
will therefore be solved in the same way; namely using the spline quadrature scheme
described in Section 2.8.2.1.

Once the normalised frequencies have been calculated, equations (3.38) and (3.39)
can be solved analytically.

Let us define the operator W∗
∆t

(
fn ,νs

)
which resolves equation (3.38) for known

frequencies. The second-order operator W∆t

(
fn

)
is therefore defined as:

W∆t

(
fn

)
=W∗

∆t

(
fn ,ν

{
W∗

∆t
2

(
fn ,ν

{
fn

})})
(3.56)

Similarly, by defining the operator D∗
∆t

(
fn , gs,d

)
which resolves equation (3.39) for a

given density and temperature, we obtain:

D∆t

(
fn

)
=D∗

∆t

(
fn , g

{
D∗

∆t
2

(
fn , g

{
fn

})})
(3.57)

3.3.5. Kinetic Source

The particle source evolution is defined in equation (3.40). This equation is sufficiently
simple to allow it to be solved analytically. None of the terms depend on time or on
the distribution function. Therefore the operator K∆t is defined simply as:

K∆t ( fs,n) = fs,n +∆t
Mk (x)

∫xNx−1
x0

Mk (x ′)d x ′
skp

2πTk

e
− v2

s
2Tk (3.58)
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3.3.6. Collisions

The intra-species collisions are described by equation (3.41). By expressing the distri-
bution function on the spline basis, this equation can be rewritten as:

∂t fs,n =
∑

i=0

[
∂v Dv (x j , v)∂v bi ,d (v)+Dv (x j , v)∂2

v bi ,d (v)+∂v Dv (x j , v)
ma(v −VM (x j ))

TM (x j )
bi ,d (v)

+Dv (x j , v)
ma

TM (x j )
bi ,d (v)+Dv (x j , v)

ma(v −VM (x j ))

TM (x j )
∂v bi ,d (v)

]
C f n

i , j
(3.59)

where C f n
i , j

are the coefficients of the splines representing the distribution function

fs,n(x j , v) along the velocity dimension, and bi ,d are the basis splines of degree d.

This is a stiff equation so a semi-implicit method is used, namely the Crank-Nicolson
scheme. In order to solve the equation implicitly it is assumed that VM (x), TM (x) and
Dv (x) vary sufficiently slowly to allow the following approximation:

VM ((n +1)∆t , x j , v) ≈VM (n∆t , x j , v) (3.60)

TM ((n +1)∆t , x j , v) ≈TM (n∆t , x j , v) (3.61)

Dv ((n +1)∆t , x j , v) ≈Dv (n∆t , x j , v) (3.62)

The derivative ∂v Dv (x, v) can be calculated analytically using the definition of
Dv (x, v). The integrals necessary to define the temperature Ts(t , x) and average veloc-
ity Vs(t , x) are calculated similarly to the density ns(t , x) using the spline quadrature
described in Section 2.8.

The semi-implicit Crank-Nicolson scheme is expressed as follows:

fs

(
(n +1)∆t , x j , v

)
− fs

(
n∆t , x j , v

)

∆t
= 1

2

[
Css((n +1)∆t , x j , v)+Css(n∆t , x j , v)

]
(3.63)

Combining equations (3.63) and (3.59) allows us to express the scheme as a matrix
equation of the form:

(I −M)C f n+1
j

= (I +M)C f n
j

(3.64)

where C f n
j

is a vector containing the coefficients of the spline representation of the

distribution function at time t = n∆t , and at point x j , and the matrix M is defined as:

Ml i =
∆t

2

{[
∂v Dv (x j , vl )(vl −VM (x j ))+Dv (x j , vl )

] ma

TM (x j )
bi ,d (vl )

+
(
∂v Dv (x j , vl )+Dv (x j , vl )

ma(vl −VM (x j ))

TM (x j )

)
∂v bi ,d (vl )+Dv (x j , vl )∂2

v bi ,d (vl )

}

(3.65)
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3.3.7. Conservation

The error in the conservation equations (3.33) - (3.35) is calculated by approximating
each of the terms using the calculated distribution function and comparing the left
and right-hand side of the equations.

All derivatives in these equations are calculated using spline interpolation. All
integrals in these equations are calculated using the spline quadrature described in
Section 2.8.2.1.

Numerical approximations of the L2 and L∞ norms of the errors will be studied.
The L2 norm is calculated using the trapezoid rule.

Equations (3.30) - (3.35) contain integrals which are calculated on the domain
[−∞,∞], however a numerical representation cannot capture the entire domain. This
means that the choice of grid can influence the conservation error. A larger domain in
the velocity dimension will lead to less potential error in the conservations. Despite
this, it is not necessary to have a very large domain in the velocity dimension. The
distribution function can be approximated by a Maxwellian function in the velocity
direction. Maxwellians can be truncated at relatively low values without causing large
errors in the integrals. This is detailed in A. For our simulations we will use the domain
[−6,6] which would lead to an error of 4.95 ·10−9 for a Maxwellian function centred on
0.

3.4. Non-Uniform Convergence results

There are many different ways to define a set of non-uniform points and different
choices for these points can lead to different convergence behaviour. The method
used in this work is based on the following weight function (Farrashkhalvat and Miles
2003):

W (x) =
√

1+α2 (ux(x))2 (3.66)

where ux (x) is the gradient of the function u(x) for which the points are being chosen,
and α= 0.1 is a constant. The coefficient α controls the ratio between the largest and
smallest point density. The value of 0.1 was chosen as a good compromise in order
to be sufficiently non-uniform to see the benefits, while keeping a reasonable point
density in the rest of the domain.

In the case of the simulations, the function u(x) is the distribution function f (t , x, v).
This function is defined in two dimensions and varies with time, therefore the role of
ux(x) is modified slightly so that it is defined as follows:

ux(x) =Lx max
t ,v

∣∣∂x f (t , x, v)
∣∣ (3.67)

where Lx = (xNx−1 −x0) is the length of the domain. It is used to normalise the deriva-
tive such that the severity of the slope is evaluated relative to the size of the domain.
When determining the weight function in the velocity direction the roles of x and v
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are inverted.

The exact value of the distribution function is not known. It is therefore approx-
imated from the results of a test simulation run with a small number of uniform
points. The derivatives are approximated using a spline interpolation of the data. The
resulting weight function can be quite noisy. This is due to multiple effects. Firstly,
the simulation itself is noisy as the mesh is not sufficiently narrow to capture all the
physics. This may in turn introduce noise into the spline approximation. Secondly the
sampling rate may also introduce noise. As the position of the steep gradient changes
rapidly at the beginning of the simulation, the position may have moved by more
than the mesh step size between sampling points. If this is the case then the weight
function may appear lower at an intermediate grid point for which the moment where
the weight function was maximal was not sampled. In order to reduce these various
sources of noise, Fourier transforms are used to remove all frequencies corresponding
to these error sources.

The method used in this work is designed to generate cells of equal sizes locally. The
weight function is therefore used to identify zones requiring a higher point density.
The zones are selected using a cutoff of the normalised weight function Ŵ (x) defined
as:

Ŵ (x) = W (x)−1

maxx [W (x)−1]
(3.68)

The domain is split at every point where the normalised weight function is equal to
0.2n , with n ∈Z.

Once the zones have been determined, the cell size inside that zone is chosen to be
inversely proportional to the largest value of W (x) within the zone.

An alternative method for calculating the non-equidistant points from the weight
function is the equipartition method. In this method the points [x0 < ·· · < xN ] are
placed such that the grid : [W (x0), . . . ,W (xN )] is equidistant. The difficulty with this
method is the need to know the weight function precisely. This means that any change
to the simulation parameters requires another test simulation to be run with uniform
points. If the simulation becomes so large that even with the maximum number of
uniform points (dependent upon the available memory) NaN values appear, then a
non-uniform simulation with points chosen using the equipartition method would
not be possible. On the other hand, by defining the points such that they are uniform
by zone, it is simple to estimate the point density required for larger simulations. For
example, if the simulation domain is increased such that the plasma takes up an
additional distance d , then the point density can be maintained, but the size of the
two zones between the plasma source and the wall should each be increased by d/2.
Similarly if the mask describing the wall is made twice as sharp, the point density in
this region can be doubled.

The chosen cells are then used as the cells of the splines. The points on which the
simulation evolves are the interpolation points of the splines, defined as the Greville
abcissae (see equation (2.46)).

87



3. Non-Uniform Splines for Semi-Lagrangian Kinetic Simulations of the Plasma

Sheath – 3.4. Non-Uniform Convergence results

3.4.1. Splines

The convergence of the non-uniform splines is examined by interpolating a Maxwellian
function defined as:

f (x) = 1

2π
exp

(
−x2

2

)
(3.69)

A Maxwellian function is an approximation of the distribution of particles in velocity
space in a plasma, it is therefore an interesting test case when examining the conver-
gence. In the simulations the domain [−6,6] will be used, however in this section the
domain [−30,30] is considered. A larger domain is considered here as the gradients
of a Maxwellian function in the domain [−6,6] are small compared to the size of the
domain. This leads to quasi-equidistant points. This is not the case in the simulation,
as larger gradients arise due to the interaction between the plasma and the wall as we
will see in Section 3.5.

Figure 3.3.: The error for the spline interpolation of equation (3.69), for splines of
varying degrees. The knots of the spline are shown in black, while the
interpolation points are shown by red dashed lines.

Figure 3.3 shows the error of the spline approximation of the function defined in
equation (3.69) for various degrees of splines. The knots and Greville points are shown
on the figure. We can see that the main factor of influence on the error is the proximity
to an interpolation point. We also note that the L-∞ error decreases as the degree of
the spline increases, however using an overly high ordered spline is not necessarily
advantageous as they can introduce small spurious oscillations in areas with little
variation. In Figure 3.3, this can be seen near the boundary where the error increases
with the spline degree.

A spline of degree d is said to be of order d +1, it is therefore important to confirm
that the order agrees with our expectations. Figure 3.4 shows the convergence of
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the L2 norm of the interpolation error as a function of the number of cells. We see
that the order increases as the degree increases, and that it is close to the expected
value. However the non-equidistant points do have an effect on the convergence order.
The order of convergence is slightly lower in the non-uniform case. Despite this, the
improved choice of points leads to a smaller error unless a very large number of points
are used.

Figure 3.4.: The convergence of the L2 norm of the interpolation error for a spline
interpolation of a Maxwellian function for different degrees. “U - d” indi-
cates uniform splines of degree d , while “NU - d” indicates non-uniform
splines of degree d .

Given that the error decreases rapidly for higher order splines it seems natural to
use higher order splines in our simulations. However there is a trade-off between
the error that can be obtained from the spline approximation and the time required
to carry out the calculation. One way to reduce the temporal cost associated with
higher order splines is to use effective parallelisation techniques. GPUs can allow us
to carry out a large number of similar calculations in parallel. The use of GPUs for
Vlasov equations solved using a backward semi-Lagrangian method on a spline basis
with equidistant knots has already been studied by multiple groups (Mehrenberger,
M., Steiner, C., Marradi, L., et al. 2013; Guillaume Latu 2011). However as discussed in
Section 2.6, non-uniform splines are less performant and may therefore potentially
benefit more from the use of GPUs. This point will be discussed in Section 3.4.2.

3.4.2. Advection

There are two potential sources of errors for semi-Lagrangian advection: the calcula-
tion of the foot of the characteristic, and the evaluation of the function at that point.
In this work we consider constant advection which allows an exact calculation of the
foot of the characteristic. The error is therefore entirely described by the spline error.
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Figure 3.3 shows the error over the domain. We can see that the advection error will be
smallest when the step is such that the feet of the characteristics are close to the knots.
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Figure 3.5.: The time required to run an advection step for a grid with 2048 grid points
for uniform (x) and non-uniform (◦) splines of various degrees on code
accelerated with OpenMP for multi-threading or OpenACC for GPUs. Tests
were run at the Centre de Calcul Intensif d’Aix Marseille.

As constant semi-Lagrangian advection consists only of spline interpolation and
spline evaluation, the advection module can be used to examine the performance of
the splines. Figure 3.5 shows the time taken for each advection step of the simulation
for different parallelisation methods and spline degrees, for uniform and non-uniform
splines. The OpenMP tests were run on a SkyLake processor with 192 GB of RAM. The
OpenACC tests were run on a NVIDIA V100 GPU with 380GB of RAM. As expected,
we note that non-uniform splines are significantly more costly than uniform splines,
and that higher degree splines are also more costly. However we can also see that the
scheme scales well when it is parallelised using OpenMP. This can allow the cost to
be attenuated somewhat. We also see that GPUs present themselves as the natural
solution to this problem. When using GPUs the increased cost is minimal and the total
time required to run even potentially heavy simulations using non-uniform splines of
degree 7 is still not significantly more costly than running uniform splines of degree 1
in serial.

3.4.3. Poisson

The implementation of the finite elements solver is tested using two manufactured
solutions defined as linear combinations of Lorentzian functions. The right hand side
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of the equation is defined as:

G(x, x0, w) = 1

w + (x −x0)2
(3.70)

ρ1(x) = 200[G(x,−115,1000)−G(x,−125,2000)+G(x,115,1000)−G(x,125,2000)]
(3.71)

ρ2(x) =G(x,−120,5)−G(x,−125,10)+G(x,120,5)−G(x,125,10) (3.72)

where G(x, x0, w) is a Lorentzian function, and x ∈ [−200,200]. This choice provides
an equation with an analytical solution. The shape of ρ1(x) and ρ2(x) is chosen to be
similar to the expected charge density profile (see Section 3.5). The shape can be seen
in Figure 3.6.
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(a) Equation (3.71).
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(b) Equation (3.72).

Figure 3.6.: The right-hand side of the test equation for the non-uniform Poisson
solver.

The results are shown in Figure 3.7. In Figure 3.7a, we see that once again there is
some loss of convergence order compared to the theoretical value due to the use of
non-equidistant knots. However the error still improves as the degree of the spline in-
creases and machine precision is reached rapidly for higher order splines. In contrast,
in Figure 3.7b we see that uniform points struggle to handle very steep gradients. The
order of convergence cannot be calculated for these points. For the first few points we
see a superposition of the calculated error. This occurs because there are not enough
points at the peaks to accurately describe their shape. Thus, until there is a sufficient
number of points, the convergence describes the sampling issues, not the Poisson
scheme. On the other hand non-uniform points have no problem with such steepness
as there is a higher point density in this area. These points therefore converge with
the expected order.
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mi 400 me 1 qi 1 qe -1 nw 10−11 Tw 0.5
νw 0.1 νd 0.1 sk 0.1 Tk 1 νi i 0.1 νee 0.1
xLw 147 xRw 553 xLk 322 xRk 378 dw 0.1 dk 20
∆t 0.1 x0 0 xNx−1 700 v0 -6 vNv−1 6

Table 3.2.: Definition of the constants used in the simulation described in Section 3.2.
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U - 1
U - 3
U - 5
U - 7
NU - 1
NU - 3
NU - 5
NU - 7

102 103

N cells

10 11

10 9

10 7

10 5

10 3

10 1

L 2
 N

or
m

 o
f E

rro
r

2.1

3.5

5.9
8.0
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Figure 3.7.: The convergence of the L2 norm of the error when solving equations
(3.71) and (3.72) with the uniform (x) and non-uniform (◦) Poisson solver
for different degrees of splines.

3.5. Plasma Simulations with Non-Equidistant

Meshes

The tools described in sections 3.3 and 3.4 will now be used to run the simulation
described in Section 3.2. The code used for this simulation is known as VOICE (Vlasov
Open boundary Ion Coupling to Electrons). The domain used for the simulation is
[0,700]× [−6,6]. The parameters are described in table 3.2. The simulation was run
for 20 000 time steps to a final time of T = 2000.

First we show some basic physical results showing that our simulation acts as
expected. In figure 3.8a we see that the plasma is correctly redistributed. The initial
conditions describe a plasma with a homogeneous density throughout the domain;
but the plasma density in the wall rapidly falls to zero as an equilibrium is established
between particles injected by the source and particles absorbed by the wall. A higher
density is seen in the central region where the particle source is placed.

In figure 3.8b we see the charge density profile. The quasi-neutrality is respected
in the plasma region, but a positive charge develops in front of the wall forming the
sheath region. This shows a build-up of ions approaching the wall which have been
accelerated by the sheath. Electrons in the sheath are accelerated towards the plasma,
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(a) Ion density as defined in equation
(3.4).

(b) Charge density as defined in equation
(3.3).

Figure 3.8.: Physical results of a simulation with 2500 non-uniform points in the spatial
dimension, 2000 non-uniform points in the velocity dimension at time
t=2000, and splines of degree 3.

however fast electrons are not sufficiently affected to change their trajectory, as a
result we also see a build-up of electrons inside the wall which have been slowed as
they exit the plasma region. These electrons have not yet been absorbed in order
to preserve total charge. This is a direct consequence of the charge conservation
imposed by equation (3.22) and explains the negative charge seen inside the wall. This
equilibrium is discussed by Munschy, Bourne, Guilhem Dif-Pradalier, et al. 2022 in a
paper which focuses on the physical system.

(a) Spatial dimension. (b) Velocity dimension.

Figure 3.9.: The weight function in each dimension calculated from a reference simu-
lation with 1500 equidistant points in the spatial dimension, 500 equidis-
tant points in the velocity dimension, and splines of degree 3, and the
point density inferred from that function.

The non-uniform points chosen were calculated from a reference simulation run
with equidistant points. This simulation was run with 1500 equidistant points in the
spatial dimension and 500 equidistant points in the velocity dimension. The number
of points used for this simulation was kept to a minimum, however the number
of points in the spatial dimension is still relatively high. This is because the steep
wall creates oscillations in under-resolved simulations which eventually lead to the
appearance of NaN values in the simulation. The weight functions calculated for this
reference simulation can be seen in Figure 3.9.
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As mentioned in Section 3.2.2 equations (3.33)-(3.35) are used to provide a method
for evaluating the error which is decoupled from the equations used to solve the
system. Here we only consider the error for the ions. Electrons move much faster so
their resolution is time-limited. This makes it very costly to run simulations which
would allow us to observe convergence in the spatial dimension. The different terms in
the conservation equations can be seen in Figure 3.10. We see that spatial derivatives
close to the steep gradients describing the wall oscillate unphysically and the value at
the plasma-wall transition is extremely large.

The error associated with these equations is shown in Figure 3.11a. The error is
concentrated around the wall transition region, with additional errors propagated into
the plasma region due to oscillations. Non-equidistant points can be used to improve
these errors.

(a) Simulation with 1500 equidistant
points in the spatial dimension and
500 equidistant points in the velocity
dimension.

(b) Simulation with 2500 non-equidistant
points in the spatial dimension and
2000 equidistant points in the velocity
dimension.

Figure 3.11.: The error associated with the conservation of density (equation (3.33)),
velocity (equation (3.34)), and energy (equation (3.35)) for ions at time
t=2000 with splines of degree 3.

Figure 3.12 shows the variation of the conservation errors as the number of uni-
form or non-uniform points in the spatial dimension is varied. We see that the error
converges much more rapidly when non-uniform points are used, rapidly reaching
an error equivalent to the truncation error discussed in Section A. The conservation
errors for a case refined with non-equidistant points can be seen in Figure 3.11b. We
see that the large unphysical oscillations have been removed from the simulation.

The conservation represents fluid quantities, however the code described here is a
kinetic code. Such codes contain more details which can be hard to model. We will
therefore also examine a second non-fluid criteria: the presence of negative values
in the plasma. A distribution function can never be negative, however our numerical
methods do not impose the positivity. Spurious oscillations caused by steep gradients
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can easily lead to the presence of negative values. Figure 3.13 shows the convergence
of the negative values in the plasma. The plasma region is identified as the central
region between 2 points identifying the start of the wall. The start of the wall is defined
as the place where the charge density is equal to zero. This is calculated for the most
refined non-uniform case and the same positions are used to identify the region for
all other cases.

The simulation can only be used for physical studies when there are no more neg-
ative values in the plasma region. We see that for non-uniform points this occurs at
Nx=2500. However the convergence for uniform points is much slower. It was not
feasible to run a large enough simulation to remove all negative points while using
equidistant points, however if it is assumed that the necessary spatial resolution would
be equal to the smallest resolution in the successful non-equidistant case, we calculate
that 23 217 points would be necessary. This is more than 9 times as many points as in
the non-uniform case.

In Section 3.4 we showed that higher order splines can lead to lower errors and
that the cost of using these splines is minimal when using GPU acceleration. It is
therefore logical to try to use higher order splines in our simulation. Table 3.3 shows
the results for a case with 1000 cells in the spatial dimension and 503 cells in the
velocity dimension. Tests cannot be run with degree 1 splines as the collisions use the
second derivative of the spline so the problem would not be fully defined. We see that
the L2 norm of the conservation errors decreases as the spline order increases from
3 to 5 however the difference stagnates as we increase to degree 7. This is due to the
oscillations that are introduced by high order splines (as seen in Figure 3.3).
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Figure 3.13.: The magnitude of the most negative values in the distribution function
restricted to the plasma region for simulations with 2000 points in the
velocity dimension and splines of degree 3.

For negative values in the plasma, the higher degree introduces oscillations which
quickly cause problems, as can be seen in table 3.4. Negative values appear in the
plasma region of both the ion and electron distribution function for degrees larger than
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L2-Norm of Convergence Error for
Ions

Degree Density Velocity Energy

3 1.46 ·10−8 3.66 ·10−8 1.16 ·10−7

5 2.06 ·10−9 5.69 ·10−9 2.00 ·10−8

7 2.53 ·10−9 6.73 ·10−9 2.28 ·10−8

Table 3.3.: Comparison of conservation errors for different degrees of splines for a
simulation with 1000 cells in the spatial dimension and 503 cells in the
velocity dimension.

Degree
Smallest negative value in the dis-
tribution function restricted to the
plasma region

Ions Electrons

3 0 0
5 0 −5.59 ·10−10

7 0 −6.84 ·10−9

Table 3.4.: Comparison of negative values in the distribution function for different
degrees and different species.

3. For electrons the convergence usually occurs more quickly as they move towards a
stable configuration more quickly. This can be seen in Figure 3.13b. However this is
not the case for higher order splines. As a result more points are required to respect
the positivity of the distribution function when higher order splines are used.

3.6. Conclusion

In this chapter we have shown that a judicious choice of non-uniform points can be
used to reduce the memory constraints for sheath simulations with steep gradients by
89%. Without this reduction it would be impossible to run the equivalent simulation
with uniform points on a GPU node of the Centre de Calcul Intensif d’Aix Marseille
(380GB of RAM). These improvements have therefore permitted the physical study
conducted by Munschy, Bourne, Guilhem Dif-Pradalier, et al. 2022. Furthermore
although these are already large simulations, they do not yet represent the real dimen-
sions of the domain we are simulating. These improvements will allow the simulation
domain to be extended to simulate a situation closer to reality.

Different degrees of spline were compared for the main numerical schemes used
in the simulation. It was found that high-order schemes converge faster but can
introduce spurious oscillations. This means that high-order schemes are not adapted
to kinetic simulations as more points are required to ensure that the distribution
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function remains positive. Cubic splines seem to be a good compromise, as they
converge quickly without adding too many oscillations, which allows the distribution
function to preserve its positivity with a limited number of points.

The fluid convergence results indicate that high-order schemes may be more useful
for simulating regions whose behaviour is sufficiently described by a fluid model. In
these areas the kinetic properties, such as the positivity of the distribution function,
are less important, so they can be permitted to oscillate as long as this does not have a
negative effect on the fluid quantities.

The numerical cost of higher-order non-uniform spline schemes was also studied.
Higher-order spline schemes are slower than lower-order spline schemes, and non-
uniform schemes are slower than uniform schemes. For cubic splines on GPUs,
non-uniform schemes are 30% slower than uniform schemes (see Figure 3.5). The
reduction in the number of points when using non-uniform schemes in place of
uniform schemes must therefore be at least 30% for the simulation to run in a similar
time frame on the same machine. In contrast, on 8 OpenMP threads, non-uniform
schemes are 85% slower than uniform schemes (see Figure 3.5). The reduction in
points must therefore be at least 85% for the simulation to run in a similar time
frame. In the simulations described, an 89% reduction in the number of points was
obtained for equivalent results. This means that there would be very limited speed
gains when moving to non-uniform points, if these simulations are run on OpenMP.
However the parallelisation methods used by GPUs seem more effective, therefore
allowing non-uniform simulations to run 5.5 times faster than uniform simulations
providing equivalent results. GPU parallelisation is therefore an important tool when
accelerating non-uniform schemes based on splines.

These simulations provide a clear path to the implementation of non-uniform
points in the GYSELA code. The memory gains there should be even larger than those
seen in this chapter as small reductions in one dimension lead to large reductions in
the total number of points in a 5D simulation.
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(a) Density conservation, equation
(3.33).

(b) Velocity conservation, equation
(3.34).

(c) Energy conservation, equation (3.35).

Figure 3.10.: Terms from the conservation equations (3.33)- (3.35) for ions for a simu-
lation with 1500 equidistant points in the spatial dimension, 500 equidis-
tant points in the velocity dimension at time t=2000, and splines of degree
3. The axis of ordinates is truncated to illustrate the shape of the func-
tions.
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Figure 3.12.: Conservation errors as described in Section 3.2.2 at time t=2000 with 2000
points in the velocity dimension. “U - X” indicates the X conservation for
uniform splines of degree 3, while “NU - X” indicates the X conservation
for non-uniform splines of degree 3. The saturation of the error at 10−9 is
expected due to the truncation error discussed in Section A.
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4. Local Splines

4.1. Introduction

Semi-Lagrangian advection is a well-known technique which is used for a variety of
different simulations including plasma simulations (Cheng and Knorr 1976; Sonnen-
drücker, Roche, Bertrand, et al. 1999; V. Grandgirard, Abiteboul, J. Bigot, et al. 2016)
and weather simulations (Bates and McDonald 1982; Staniforth and Côté 1991). The
stability of this method has been proved for linear and quadratic interpolation (Bates
and McDonald 1982) as well as for the spline interpolation of arbitrary degree (Besse
and Mehrenberger 2008), and the Lagrange interpolation of arbitrary degree (Besse
and Mehrenberger 2008). However to the author’s knowledge the stability has not
been proven for non-uniform spline interpolation.

The simulations which use this method are often massively parallel (V. Grandgirard,
Abiteboul, J. Bigot, et al. 2016). While splines are a useful tool for accurately modelling
a function, they can be cumbersome in massively parallel simulations, as all data
required for the interpolation must be found on the same node. In the case of high-
dimensional problems such as plasma physics problems (V. Grandgirard, Abiteboul,
J. Bigot, et al. 2016), this therefore requires a large amount of data transfer between
nodes. Local splines present themselves as a solution to this problem, by reducing
the amount of data transfer required. A previous attempt to provide an effective
method for local splines has been made by Nicolas Crouseilles, Guillaume Latu, and
Sonnendrücker 2009. Here we present a similar method which also works for non-
uniform points, and the proof of the stability of this method.

The proposed method is studied in the context of an advection equation. In Section
4.2 I describe the problem that we would like to solve. In Section 4.2.1 I describe the
necessary spline construction for each local splines, such that the stability can be
proven. In Section 4.3 the stability of the method is proven. Finally in Section 4.4 I
describe how to use these local splines to create a parallel Vlasov-Poisson simulation.

The convergence of semi-Lagrangian schemes on the Vlasov-Poisson system has al-
ready been examined by many authors, see for example (Filbet 2001; Besse 2004; Besse
2008; Besse and Mehrenberger 2008; Campos Pinto and Mehrenberger 2008; Bostan
and Nicolas Crouseilles 2009; Charles, Després, and Mehrenberger 2013; Einkemmer
and Ostermann 2014). This makes it a good test bed to examine this method.
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Interpolation

4.2. Constant Semi-Lagrange Advection with

Local Spline Interpolation

We consider the following periodic system describing an advection equation:






∂t u = v∂xu

u(0, x) = f (x)

u(t , x) = u(t , x + (b −a))

(4.1)

where v is a constant representing respectively the velocity of the advection, and
u(t , x) and f (x) are (b −a)-periodic functions in the periodic Sobolev space H k

per [a,b],

the space of functions with k ≥ 0 weak derivatives in L2.

This equation is solved using the backward semi-Lagrangian method (Sonnen-
drücker, Roche, Bertrand, et al. 1999). This method evaluates a function on a grid
{xi }. The values u(tn+1, xi ) of the function at time tn+1 are calculated from the values
u(tn , xi ) at the previous time step tn by tracing trajectories from the grid points xi ,
back to their position at time tn , and using an approximation of the function u(tn , x) at
this position to provide the updated value. This is possible as the function is constant
along the characteristics. These trajectories are known as characteristics and the
location at the previous time step is known as the foot of the characteristic x⋆

n+1,i . In
the case of constant advection, as considered here, the semi-Lagrangian method is
simple as the feet of the characteristics can be found exactly. The only complexity
comes from the approximation of the function u(tn , x) from the values u(tn , xi ) in
order to obtain the updated values u(tn+1, xi ) = u(tn , x⋆

n+1,i ). The function u(tn , x) is
approximated using local spline interpolation.

4.2.1. Local Spline Interpolation

I now describe how the proposed local splines interpolate a function f (x) over the
domain [a,b]. This domain is divided into ns local splines Si ,2m+1(x) of degree 2m +1
or less, which are each defined on a domain [ai ,bi ] such that:

a = a0 < b0 = a1 < b1 . . .bns−2 = ans−1 < bns−1 = b

Each spline is defined on nc,i cells which are bounded by nc,i +1 break points zi , j

such that:
ai = zi ,0 < zi ,1 < ·· · < zi ,nc,i = bi .

For this problem to be well defined, nb,i = nc,i +2m +1 conditions must be provided,
where nb,i is the number of basis functions of the i -th spline. For local splines we use
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Interpolation

the following conditions:

Si ,2m+1(zi , j ) = f (zi , j ) ∀0 ≤ j < nc,i +1 (4.2)

∂k

∂xk
Si ,2m+1(ai ) = ∂k

∂xk
f (ai ) ∀0 ≤ k ≤ m (4.3)

∂k

∂xk
Si ,2m+1(bi ) = ∂k

∂xk
f (bi ) ∀0 ≤ k ≤ m (4.4)

In other words, we use interpolation points found at the break points, and Hermite
boundary conditions. We will use I to denote the interpolation operator which
constructs a spline respecting Equations (4.2)-(4.4). Figure 4.1 shows the interpolation
of f (x) = sin(x) for cubic splines using ns = 3 local splines and the values necessary to
define these splines.

Figure 4.1.: An interpolation of f (x) = si n(x) for cubic splines using ns = 3 local
splines, defined using the values and derivatives shown.

The complete spline:

S(x) =






S0(x) if x ∈ [a0,b0]
...

Sns−1(x) if x ∈ [ans−1,bns−1]

(4.5)

is therefore equivalent to a spline defined on the domain [a,b] with reduced smooth-
ness at the points ai = bi−1, ∀1 ≤ i < ns . This spline S(x) is therefore Cm([a,b]), while
each of the local splines Si (x) is C2m([ai ,bi ])

Let us note pn(x), the spline approximation of the solution to Equation (4.1) at
time tn = nτ using the semi-Lagrangian method on the local splines described above,
where τ is the time step of the method. At time t = 0, p0(x) is therefore simply the
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spline interpolation of the initial function u(0, x) = f (x):

p0(x) =I f (x) (4.6)

We use A to denote the exact advection operator,

Apn(x) =
{

pn(x − vτ) if x − vτ ∈ [a,b]

pn(x +b −a − vτ) otherwise
(4.7)

The periodicity of the system is used to ensure that x − vτ ∈ [a,b]. As pn+1(x) is
constructed from pn(x) using the semi-Lagrangian method with constant advection,
the proposed numerical scheme is therefore summarised as follows:

p0(x) =I f (x) (4.8)

pn+1(x) =IApn(x) (4.9)

Written more explicitly, the equations that the interpolator I must satisfy are:

p0(zi , j ) = f (zi , j ) ∀0 ≤ i < ns , ∀0 ≤ j ≤ nc (4.10)

∂k

∂xk
p0(a0) = ∂k

∂xk
f (a0) ∀0 ≤ k ≤ m (4.11)

∂k

∂xk
p0(bi ) = ∂k

∂xk
f (bi ) ∀0 ≤ k ≤ m, ∀0 ≤ i < ns (4.12)

pn+1(zi , j ) = pn(zi , j − vτ) ∀0 ≤ i < ns , ∀0 ≤ j ≤ nc (4.13)

∂k

∂xk
pn+1(ai ) = ∂k

∂xk
pn(ai − vτ) ∀0 ≤ k ≤ m, ∀0 ≤ i < ns (4.14)

∂k

∂xk
pn+1(bi ) = ∂k

∂xk
pn(bi − vτ) ∀0 ≤ k ≤ m, ∀0 ≤ i < ns (4.15)

4.3. Stability of Semi-Lagrange Advection on

Local Splines

I will now prove the stability of the backward semi-Lagrangian advection on the local
splines. To do this, I first define an inner-product and its associated norm:

〈
f , g

〉
=

∫b

a
f (x)g (x)d x

∥∥ f
∥∥2 = 〈 f , f 〉 (4.16)
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Note that the advection operator preserves this norm thanks to the periodicity of the
function:

∥∥A f
∥∥2 =

∫b

a
A f (x)A f (x)d x

=
∫b

a+vτ
f (x − vτ) f (x − vτ)d x +

∫a+vτ

a
f (x +b −a − vτ) f (x +b −a − vτ)d x

=
∫b−vτ

a
f (y) f (y)d y +

∫b

b−vτ
f (y) f (y)d z =

∫b

a
f (y) f (y)d y =

∥∥ f
∥∥2

(4.17)

For this proof I will also use the periodic Sobolev spaces H k
per [a,b], the space of func-

tions with k ≥ 0 weak derivatives in L2. In other words a function f is in H k
per [a,b]

if: ∫b

a
|Dk f (x)|2d x <∞ (4.18)

where Dk f (x) is the k-th weak derivative of the function f (x). I note that this means
that H k

per [a,b] ⊂ H r
per [a,b] for all k ≥ r .

Lemma 1. The result of a projection of a function f ∈ H m+1
per [a,b] onto the spline space

with the local spline interpolation is such that:

I f ∈ H m+1
per [a,b] (4.19)

Proof. Each local spline is a piecewise polynomial of degree 2m +1 or less, and the
global spline is Cm . We can prove that the m+1-th derivative of a piecewise polynomial
of degree 2m +1 is a piecewise polynomial function of degree m:

∫b

a
I f (x)

∂m+1φ(x)

∂xm+1
d x =

ns−1∑

i=0

nc,i−1∑

j=0

∫zi , j+1

zi , j

I f (x)
∂φ(x)

∂x
d x (4.20)

=
ns−1∑

i=0

nc,i−1∑

j=0

∂mφ(x)

∂xm
I f (x)|zi , j+1

zi , j
−

∫zi , j+1

zi , j

∂

∂x
I f (x)

∂mφ(x)

∂xm
d x

(4.21)

=
m∑

k=0

ns−1∑

i=0

∂kφ(x)

∂xk
Dm−kI f (x)|zi , j+1

zi , j

+ (−1)m+1
∫zi , j+1

zi , j

Dm+1I f (x)φ(x)d x (4.22)

where Dm−kI f (x) is well defined on the interval [ai ,bi ] for k ≤ m as it is a piecewise
polynomial. As the global spline I f (x) ∈ Cm we have:

∫b

a
I f (x)

∂m+1φ(x)

∂xm+1
d x = ∂kφ(x)

∂xk
Dm−kI f (x)

∣∣∣∣
b

a

+ (−1)m+1
∫b

a
Dm+1I f (x)φ(x)d x

(4.23)
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Furthermore, using the periodicity of the function we have:

∫b

a
I f (x)

∂m+1φ(x)

∂xm+1
d x = (−1)m+1

∫b

a
Dm+1I f (x)φ(x)d x (4.24)

Theorem 2. For all f , g ∈ H m+1
per [a,b],

〈
Dm+1I f ,Dm+1(g −Ig )

〉
= 0

Proof. Integrating by parts we have:

〈
Dm+1I f ,Dm+1(g −Ig )

〉

=
ns−1∑

i=0

nc,i−1∑

j=0

∫zi , j+1

zi , j

Dm+1I f (x)Dm+1(g −Ig )(x)d x (4.25)

=
ns−1∑

i=0

nc,i−1∑

j=0

[
m∑

k=0

(−1)k Dm+1+kI f (x)Dm−k (g −Ig )(x)
∣∣∣

zi , j+1

zi , j

+(−1)m+1
∫zi , j+1

zi , j

D2m+2I f (x)(g −Ig )(x)d x

]

(4.26)

=
ns−1∑

i=0

nc,i−1∑

j=0

[
m∑

k=0

(−1)m−k D2m+1−kI f (x)Dk (g −Ig )(x)
∣∣∣

zi , j+1

zi , j

+(−1)m+1
∫zi , j+1

zi , j

D2m+2I f (x)(g −Ig )(x)d x

]

(4.27)

Since I f (x) on the interval [zi , j , zi , j+1] is a polynomial of degree no greater than
2m +1:

D2m+2I f (x) = 0 ∀x ∈ [zi , j , zi , j+1]

This leaves:

〈
Dm+1I f ,Dm+1(g −Ig )

〉

=
ns−1∑

i=0

nc,i−1∑

j=0

m∑

k=0

(−1)m−k D2m+1−kI f (x)Dk (g −Ig )(x)
∣∣∣

zi , j+1

zi , j

=
ns−1∑

i=0

m∑

k=0

[
(−1)m−k D2m+1−kI f (bi )Dk (g −Ig )(bi )

− (−1)m−k D2m+1−kI f (ai )Dk (g −Ig )(ai )

−
nc,i−1∑

j=1

(−1)m−k D2m+1−kI f (x)Dk (g −Ig )
∣∣∣

zi , j+

zi , j−

]

(4.28)

where f (zi , j−) denotes the left limit of f (x) at zi , j , and zi , j+ denotes the right limit of
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f (x) at zi , j . As the interpolating points are at the knots:

Ig (zi , j ) = g (zi , j ) ∀0 ≤ i ≤ ns , ∀0 ≤ j ≤ nc,i

Furthermore, thanks to the continuity of both g and the spline interpolations:

Dk (g −Ig )(zi , j−) =Dk (g −Ig )(zi , j+), 0 ≤ k ≤ 2m (4.29)

DkI f (x−) =DkI f (x+), 0 ≤ k ≤ 2m (4.30)

This leaves:

〈
Dm+1I f ,Dm+1(g −Ig )

〉
=

ns−1∑

i=0

m∑

k=1

[
(−1)m−k D2m+1−kI f (bi Dk (g −Ig )(bi )

− (−1)m−k D2m+1−kI f (ai )Dk (g −Ig )(ai )
]

(4.31)

The local splines apply Hermite boundary conditions between splines (i.e. at the
knots k j ). Hermite boundary conditions involve specifying the first m derivatives at
the boundary. This means that the interpolation error for these derivatives is also zero:

Dk (g −Ig )(a j ) = Dk (g −Ig )(b j ) = 0 0 ≤ k ≤ m 0 ≤ j < ns

Corollary 1. Let f (x) ∈ H m+1
per [a,b], let I be the interpolation operator previously defined,

then ∥∥Dm+1( f −I f )
∥∥≤

∥∥Dm+1 f
∥∥ (4.32)

Proof. We have:

∥∥Dm+1 f
∥∥2 =

∥∥Dm+1( f (x)−I f (x))−Dm+1I f (x)
∥∥2

(4.33)

=
∥∥Dm+1( f (x)−I f (x))

∥∥2 +
∥∥Dm+1I f (x)

∥∥2

+2〈Dm+1I f (x),Dm+1( f (x)−I f (x))〉 (4.34)

The final term is zero, thanks to Theorem 2.

Lemma 2. Let f ∈ H m+1
per [a,b], let {z0,0, . . . , zns−1,nc,i } be the mesh upon which the interpo-

lation operator I is defined, and let h = maxi<ns

(
max j≤nc,i (zi , j+1 − zi , j )

)
. There exists

a constant C dependent upon k and r such that:

∥∥Dr ( f −I f )
∥∥≤C hm+1−r

∥∥Dm+1( f −I f )
∥∥≤C hm+1−r

∥∥Dm+1 f
∥∥ ∀0 ≤ r ≤ m +1

(4.35)
We note that in the above statements and in what follows, C stands for any constant

independent of h.
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Proof. The proof of this expression is derived from Theorem 7 in (Schultz and Varga
1967), but I summarise it here for completeness.

I first note that the simplest case r = m +1 is equivalent to Corollary 1. I will now
show the proof for r < m +1.

The interpolation operator I satisfies equations (4.2) - (4.3). Therefore on each local
spline there are nc,i +1 points ξi , j ,0 where:

f (ξi , j ,0)−I f (ξi , j ,0) = 0 ∀0 ≤ i < ns , ∀0 ≤ j ≤ nc,i (4.36)

Using Rolle’s theorem we see that there are nc,i points ξi , j ,1 where:

D1 f (ξi , j ,1)−D1I f (ξi , j ,1) = 0 ∀0 ≤ i < ns , ∀1 ≤ j < nc,i +1 (4.37)

In addition the extremal points ai and bi where the Hermite boundary conditions are
applied also respect this condition which allows us to define ξi ,0,1 = ai and ξi ,nc,i+1,q =
bi . We apply this criteria recursively to obtain nξ,r = nc,i +1+ r points such that:

Dr f (ξi , j ,r )−DrI f (ξi , j ,r ) = 0 ∀0 ≤ i < ns , ∀0 ≤ j < nξ,r (4.38)

with r ≤ m. with ξ0 = ai and ξnξ−1 = bi . We therefore have:

∥∥Dr ( f −I f )
∥∥2 =

∫b

a
(Dr ( f (x)−I f (x)))2d x =

ns−1∑

i=0

nξ−2∑

j=0

∫ξi , j+1,r

ξi , j ,r

(Dr ( f (x)−I f ))2d x

(4.39)
Using the Poincaré-Wirtinger inequality we then obtain:

∥∥Dr ( f −I f )
∥∥2 ≤

(
(r +1)h

π

)2 ns−1∑

i=0

nξ−2∑

j=0

∫ξi , j+1,r

ξi , j ,r

(Dr+1( f (x)−I f ))2d x (4.40)

as ξi , j+1,r − ξi , j ,r ≤ (r + 1)h. The proof of equation (4.35) is therefore constructed
recursively from the following two identities:

∥∥Dr ( f −I f )
∥∥2 ≤

(
(r +1)h

π

)2 ∥∥Dr+1( f −I f )
∥∥2

(4.41)

∥∥Dm( f −I f )
∥∥2 ≤

(
(m +1)h

π

)2 ∥∥Dm+1( f −I f )
∥∥2

(4.42)

Lemma 3. Let f ∈ H 2m+2
per [a,b], let {z0,0, . . . , zns−1,nc,i } be the mesh upon which the interpo-

lation operator I is defined, and let h = maxi<ns

(
max j≤nc,i (zi , j+1 − zi , j )

)
. There exists

a constant C dependent upon k and r such that:

∥∥Dr ( f −I f )
∥∥≤C h2m+2−r

∥∥D2m+2 f
∥∥ ∀0 ≤ r ≤ m +1 (4.43)

Proof. The proof of this expression is derived from Theorem 9 in (Schultz and Varga
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1967), but I summarise it here for completeness.

Using theorem 2 we have:

∥∥Dm+1 f
∥∥2 =

∥∥Dm+1( f −I f )
∥∥2 +

∥∥Dm+1I f
∥∥2

(4.44)

Let us apply Cauchy-Schwarz’s theorem and integration by parts as in equation (4.28):

∥∥Dm+1( f −I f )
∥∥2 ≤

∥∥D2m+2( f −I f )
∥∥∥∥ f −I f

∥∥ (4.45)

Remembering that H 2m+2
per [a,b] ⊂ H m+1

per [a,b] we can use Lemma 2:

∥∥Dm+1( f −I f )
∥∥2 ≤C hm+1

∥∥D2m+2( f −I f )
∥∥∥∥Dm+1( f −I f )

∥∥ (4.46)

by cancelling the positive term
∥∥Dm+1( f −I f )

∥∥ we have an equation which we can
use to complete the proof:

∥∥Dr ( f −I f )
∥∥≤C hm+1−r

∥∥Dm+1( f −I f )
∥∥ (4.47)

≤C h2m+2−r
∥∥D2m+2 f

∥∥ (4.48)

I now summarise the results from Lemmas 2 and 3 that I will use in this proof. They
are that the local spline interpolation operator I satisfies:

∥∥g −Ig
∥∥≤C h2m+2

∥∥D2m+2g
∥∥ for g ∈ H 2m+2

per [a,b] (4.49)
∥∥Dm+1 (

g −Ig
)∥∥≤C hm+1

∥∥D2m+2g
∥∥ for g ∈ H 2m+2

per [a,b] (4.50)
∥∥g −Ig

∥∥≤C hm+1
∥∥Dm+1g

∥∥ for g ∈ H m+1
per [a,b] (4.51)

The method used to prove stability closely follows the method used in (Goodrich,
Hagstrom, and Lorenz 2006). Like them we note that if we set g = q −Iq in equation
(4.51) and observe that I(q −Iq) = 0 then we obtain:

Corollary 2.

∥∥q −Iq
∥∥≤C hm+1

∥∥Dm+1(q −Iq)
∥∥ for q ∈ H m+1

per [a,b] (4.52)

Let un ∈ H m+1
per [a,b] be the solution to the equation (4.1):

un = u(nτ, ·) (4.53)

The error en ∈ H m+1
per [a,b] is therefore defined as:

en = un −pn (4.54)

Substituting equation (4.53) into equation (4.9) allows us to define a local truncation
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error ηn :

un+1 = IAun +ηn (4.55)

ηn = un+1 −Iun+1 (4.56)

where we have used the fact that the advection operator is exact. We can therefore see
that the truncation error is an interpolation error.

Theorem 3. Let λ = τ/h > 0 and let T > 0 be fixed. Suppose f ∈ H 2m+2
per [a,b] a periodic

function f (x) = f (x+(b−a)) and pn = I f . Then there exists a constant C , independent

of h such that: ∥∥un −pn

∥∥≤C h2m+1
∥∥D2m+2 f

∥∥ for 0 ≤ nτ≤ T

Proof. Combining equations (4.55) and (4.9) we obtain another expression for the
error:

en+1 = IAun +ηn −IApn = IAen +ηn (4.57)

Using equation (4.49) and the definition of the truncation error from equation (4.56)
we have: ∥∥ηn

∥∥≤C h2m+2
∥∥D2m+2un+1

∥∥ (4.58)

We note that un+1 =Aun and A preserves the norm so
∥∥D2m+2un+1

∥∥=
∥∥D2m+2 f

∥∥

I now examine the L2-norm of en+1. Using the triangle inequality we have:

‖en+1‖ ≤‖IAen‖+
∥∥ηn

∥∥

≤‖IAen‖+C h2m+2
∥∥D2m+2 f

∥∥

=‖Aen − (Aen −IAen)‖+C h2m+2
∥∥D2m+2 f

∥∥

≤‖Aen‖+‖Aen −IAen‖+C h2m+2
∥∥D2m+2 f

∥∥ (4.59)

Using the fact that the advection operator preserves the norm we can write this
more succinctly as:

‖en+1‖ ≤ ‖en‖+‖Aen −IAen‖+C h2m+2
∥∥D2m+2 f

∥∥ (4.60)

Using Corollary 2 we obtain:

‖Aen −IAen‖ ≤C hm+1
∥∥Dm+1(Aen −IAen)

∥∥ (4.61)

There is no obvious bound for the right hand side of this equation. We will there-
fore work with similar equations until a bound can be found. Firstly we examine∥∥Dm+1en+1

∥∥ using equation (4.55) and theorem 2:

∥∥Dm+1en+1

∥∥=
∥∥Dm+1IAen +Dm+1ηn

∥∥ (4.62)
∥∥Dm+1en+1

∥∥2 =
∥∥Dm+1IAen

∥∥2 +
∥∥Dm+1ηn

∥∥2
(4.63)
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Using equations (4.50) and (4.56) we therefore have:

∥∥Dm+1en+1

∥∥2 ≤
∥∥Dm+1IAen

∥∥2 +
(
C hm+1

∥∥D2m+2 f
∥∥)2

(4.64)

We now consider the term Dm+1Aen :

∥∥Dm+1Aen

∥∥2 =
∥∥Dm+1IAen +Dm+1(Aen −IAen)

∥∥2
(4.65)

=
∥∥Dm+1IAen

∥∥2 +
∥∥Dm+1(Aen −IAen)

∥∥2
(4.66)

which is once more thanks to corollary 2.

In order to simplify calculations let us now define 2 terms:

ǫn :=
∥∥Dm+1en

∥∥ (4.67)

δn :=
∥∥Dm+1(Aen −IAen)

∥∥ (4.68)

Inserting equations (4.67) and (4.68) into equations (4.64) and (4.66), and using the
fact that

∥∥Dm+1Aen

∥∥=
∥∥Dm+1en

∥∥, we obtain:

ǫ2
n+1 ≤ǫ2

n −δ2
n +C h2m+2

∥∥D2m+2 f
∥∥2

(4.69)

≤ǫ2
n +C h2m+2

∥∥D2m+2 f
∥∥2

(4.70)

ǫ2
n ≤ǫ2

0 +nC h2m+2
∥∥∥D2m+2 f

∥∥∥
2

(4.71)

δ2
n ≤ǫ2

n −ǫ2
n+1 +C h2m+2

∥∥D2m+2 f
∥∥2

(4.72)

This provides us with the missing boundary for equation (4.60):

‖en+1‖ ≤‖en‖+C hm+1δn +C h2m+2
∥∥D2m+2 f

∥∥ (4.73)

‖en‖ ≤‖e0‖+C hm+1
n−1∑

k=0

δk +nC h2m+2
∥∥D2m+2 f

∥∥ (4.74)

Using the Cauchy-Schwarz inequality we have:

n−1∑

k=0

δk ≤
[

n−1∑

k=0

1
n−1∑

k=0

δ2
k

] 1
2

(4.75)

n−1∑

k=0

δ2
k ≤

n−1∑

k=0

[
ǫ2

k −ǫ2
k+1 +C h2m+2

∥∥D2m+2 f
∥∥2

]
(4.76)

=ǫ2
0 −ǫ2

n +nC h2m+2
∥∥D2m+2 f

∥∥2
(4.77)

≤ǫ2
0 +nC h2m+2

∥∥D2m+2 f
∥∥2

(4.78)

=
∥∥Dm+1u0 −Iu0

∥∥2 +nC h2m+2
∥∥D2m+2 f

∥∥2
(4.79)

≤
[
C hm+1

∥∥D2m+2 f
∥∥]2 +nC h2m+2

∥∥D2m+2 f
∥∥2

(4.80)
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We note that 0 ≤ nτ≤ T and λ= τ/h >, therefore:

n ≤ T

λh
(4.81)

Therefore we can simplify equation (4.75) further to:

(
n−1∑

k=0

δk

)2

≤C n2h2m+2
∥∥D2m+2 f

∥∥2
(4.82)

≤T 2

λ2
C n2h2m

∥∥D2m+2 f
∥∥2

(4.83)

=C h2m
∥∥D2m+2 f

∥∥2
(4.84)

Finally we insert this into equation (4.74) to obtain the final error bound:

‖en‖ ≤‖u0 −Iu0‖+C h2m+1
∥∥D2m+2 f

∥∥+C h2m+1
∥∥D2m+2 f

∥∥ (4.85)

≤C h2m+1
∥∥D2m+2 f

∥∥ (4.86)

4.3.1. Extension to Semi-Lagrangian Advection on

Non-Periodic Splines

Having shown the stability for the periodic case on local splines, we can use this
information to deduce boundary conditions for the non-periodic case which will give
rise to a stable simulation.

For a spline of degree 2m + 1, an acceptable boundary condition would be one
where the function outside the bounds is described by a polynomial of degree at most
2m +1 whose derivatives match those provided to the Hermite boundary conditions
of the spline. In this way the boundary conditions can be exactly described by a spline
which means that the above proof can be expanded for a domain going from negative
to positive infinity.

One simple example of boundary conditions satisfying these conditions are constant
boundary conditions where the value of the function does not vary outside the domain
and the Hermite boundary conditions are:

Dk p(a0) =0 ∀0 < k ≤ m (4.87)

Dk p(bns−1) =0 ∀0 < k ≤ m (4.88)

4.4. Parallelisation

In this section I will use the example of a 1D-1V Vlasov-Poisson simulation to show the
implementation details of a system using local splines to increase parallelism. This
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system describes the evolution of the distribution functions fs(t , x, v) of a ions (s = i )
and electrons (s = e), in a plasma, on a domain [x0, xN ]× [v0, vN ]. It comprises the
Vlasov advection equation (4.89) and the Poisson equation (4.90):

[
∂t +

1
p

ms

(
v∂x −qs∂xφ(t , x)∂v

)]
fs(t , x, v) = 0 (4.89)

∂2
xφ(t , x) =−ρq (t , x) (4.90)

where ms and qs are the mass and charge of the species s, φ(t , x) is the electric
potential, and ρq (t , x) is the charge density, defined as:

ρq (t , x) =
∑

s∈{i ,e}

qs

∫vN

v0

f (t , x, v)d v (4.91)

Equation (4.89) will be solved using Strang splitting (Strang 1968). This breaks the
equation into the following two equations:

∂t fs(t , x, v)+ v

ms
∂x fs(t , x, v) = 0 (4.92)

∂t fs(t , x, v)− qs

ms
∂xφ(t , x)∂v fs(t , x, v) = 0 (4.93)

I use a predictor-corrector method to solve this system of equations.

Local splines lend themselves to parallelisation using MPI. Each MPI process will
describe a sub-domain using a local spline. The local splines can be used in either
the spatial or the velocity direction, leaving global splines to describe the remaining
direction in the habitual way. Although they could be used in both directions, this
would result in a large number of patches, incurring significant communication costs.
It is unlikely that the problem described would require a numbers of grid points
sufficiently large to offset these costs in both the spatial and velocity direction. In this
work we will divide the domain in the spatial dimension only.

Bourne, Munschy, Virginie Grandgirard, et al. 2022 have previously studied a similar
system with additional terms in the right hand side of equation (4.89) to model a wall.
The system was used for sheath simulations where a large domain is required in the
spatial direction. Furthermore, Bourne, Munschy, Virginie Grandgirard, et al. 2022
showed that in the case of sheath simulations, splines which are uniform by zone can
be used to decrease memory consumption while retaining a high enough resolution
to successfully model the steep gradients that arise near the wall. In the case of global
splines, this implies the use of costly non-uniform methods, however the use of local
splines in the spatial direction could avoid this constraint by using different spatial
discretisations for each local spline.

In Section 4.4.1, I will explain how equation (4.92) can be solved using local splines.
In Section 4.4.2, I will explain how equation (4.90) can be solved using local splines.
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4.4.1. Advection

The backward semi-Lagrangian method combines the benefits of the well-known PIC
and Eulerian methods (Sonnendrücker, Roche, Bertrand, et al. 1999). As previously
described in Section 4.2, this method evaluates a function on a grid {xi }. The values of
the function at time tn+1 are calculated from the values at the previous time step tn

by tracing trajectories from the grid points xi , back to their position at time tn , and
using an approximation of the function at this position to provide the updated value.
The approximation is provided by the local splines. The trajectories are known as
characteristics and the location at the previous time step is known as the foot of the
characteristic x⋆

n+1,i .
The foot of the characteristic is not necessarily found on the same local spline. It is

therefore important to consider how to handle the junction between local splines. In
the case of constant advection, such as equation (4.92), the feet of the characteristics
are known ahead of time. One option is therefore for each local spline to calculate the
values at the feet of the characteristics which are found on its support. They can then
share those values with the threads which need those values.

However, in most cases, such as equation (4.93), the feet are not found in the same
places throughout the duration of the simulation. An alternative method, using ghost
cells, is therefore better adapted to most problems. This introduces a CFL condition to
the problem, as the feet of the characteristics must be located inside the local spline
domain or its ghost regions. The number of cells ng in the ghost region must be
chosen to ensure that the CFL condition is sufficiently large, while avoiding excessive
communication between processes. Figure 4.2 illustrates the ghost cells for a local
spline Si (x). We can see that the size of the cells in the adjacent local splines also
affects the CFL condition.

Each ghost region is represented with an additional local spline. If the knots are
chosen to coincide with the relevant knots of the adjacent local spline, and the in-
terpolation values, including the Hermite boundary conditions, are provided by the
adjacent local spline representation, then, thanks to the unicity of solutions for the
spline interpolation problem, the ghost spline will represent the same function as
the adjacent local spline. We note that only the nbc boundary conditions at the outer
edges need to be provided, as the boundary conditions at the intersection of the
ghost splines and the local spline are equal to the boundary conditions of the local
spline. Figure 4.2 shows the data which needs to be transferred between processes for
a configuration with two ghost cells and splines of degree 3.

The advection scheme in the spatial direction is therefore summarised as follows:

• Construct the local spline using the stored values at the interpolation points and
the stored derivatives at the boundary

• Pass 2(ng +nbc ) values describing the two ghost regions (shown in orange in
Figure 4.2) to the neighbouring processes

• Use the backward semi-Lagrangian method to update the values at the break
points
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• Use the backward semi-Lagrangian method to update the derivatives at the
domain boundaries

Figure 4.2.: Illustration of the ghost cells and splines for a local spline Si (x) of degree
3, and the data necessary to construct the equivalent ghost cells for the
adjacent local splines.

As we do not distribute the data in the velocity direction, no special treatment of the
backward semi-Lagrangian method is required in this case. However, in order to be
able to construct the spline in the spatial direction at the next iteration, it is important
to advect, not only the distribution function f (x, v), but also its spatial derivative at
the boundaries, ∂x f (ai , v) and ∂x f (bi , v).

4.4.2. Poisson Solver

The Poisson equation (4.90) can be solved using a finite element method. The weak
form of equation (4.90) is:

∂xφ(t , x)bi ,d (x)
∣∣b

a −
∫b

a
∂xφ(t , x)∂xbi ,d (x)d x =−

∫b

a
ρq (t , x)bi ,d (x)d x ∀0 ≤ i < nb

(4.94)
where {bi ,d (x)} are the basis functions of splines of degree d , and nb is the number
of basis functions. We impose periodic boundary conditions and break the equation
into the sub domains:

ns−1∑

i=0

∫bi

ai

∂xφ(t , x)∂xbi ,d (x)d x =
ns−1∑

i=0

∫bi

ai

ρq (t , x)bi ,d (x)d x (4.95)

Each equation of the form:

∫bi

ai

∂xφ(t , x)∂xbi ,d (x)d x =
∫bi

ai

ρq (t , x)bi ,d (x)d x (4.96)

can be solved individually. The remaining problem is then the definition of the bound-
ary conditions of the local problem (4.96). The integral introduces two integration
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constants which cannot be defined using only the local information. Instead I pro-
pose solving the local problem defined by equation (4.96) with Dirichlet boundary
conditions. The resulting spline is noted SD,i (x). Once this is done the resulting
boundary conditions are shared with the other threads. A correction corresponding
to the addition of a linear function mi x +pi can then be calculated to find the final
spline representation:

SC ,i (x) = SD,i (x)+mi x +pi (4.97)

This is done by solving the following system of equations:

SC ,i (bi ) = mi bi +pi = mi+1ai+1 +pi+1 = SC ,i+1(ai+1) ∀0 ≤ i < ns (4.98)

∂xSD,i (bi )+mi = ∂xSD,i+1(ai+1)+mi+1 ∀0 ≤ i < ns (4.99)

where periodic boundary conditions imply that all objects indexed with ns are equiv-
alent to the same objects indexed with 0. As the number of domains ns will usually
be small, this system of equations should form a small matrix equation which will be
easy to solve. The matrix system is of size 2ns ×2ns . For example in the case where
there are three subdomains the matrix equation is:





b0 1 −b0 −1 0 0
1 0 −1 0 0
0 0 b1 1 −b1 −1
0 0 1 0 −1 0

−a0 −1 0 0 b2 1
−1 0 0 0 1 0









m0

p0

m1

p1

m2

p2





=





0
∂xSD,1(a1)−∂xSD,0(b0)

0
∂xSD,2(a2)−∂xSD,1(b2)

0
∂xSD,0(a0)−∂xSD,1(b2)





(4.100)

In this periodic case, the matrix is singular. The final row must therefore be replaced
with an alternative equation. Usually this equation is used to enforce the fact that the
integral of the function over the periodic domain should be equal to zero.

ns−1∑

i=0

∫bi

ai

SD,i (x)+mi x +pi d x =
ns−1∑

i=0

∫bi

ai

SD,i (x)d x +
mi

(
b2

i
−a2

i

)

2
+pi (bi −ai ) = 0

(4.101)
This means that a total of 3 elements from each of the ns sub-domains (the integral,
the left-hand derivative, and the right-hand derivative) must be shared with each of
the other sub-domains.

The final result can either be given point-wise or in spline form. Point-wise at points
xi , the result is obtained by evaluating the spline SD,i (x) at the chosen points and
adding a correction:

φ̃(xi ) = SD,i (xi )+mi xi +p (4.102)

∂xφ̃(xi ) = ∂xSD,i (xi )+m (4.103)

where φ̃(xi ) is the calculated approximation of the electric potential at the requested
point xi .
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In spline form, the result is obtained by correcting the coefficients of the local
splines. The coefficients cCi of the corrected spline SC ,i (x) are equal to the sum of the
coefficients cDi of the spline respecting Dirichlet conditions SD,i (x) and coefficients
cLi of a spline, represented on the same basis, which interpolates the linear function
mi x +pi :

cCi = cDi + cLi

Fortunately, as explained in Theorem 4, the latter coefficients can be calculated trivially
using equation (4.105), without requiring the resolution of a second matrix equation.

Theorem 4. Let S(x) be a spline expressed on nb basis splines of degree d ≥ 1 respecting

partition of unity, denoted {b0,d (x), . . . ,bnb−1,d (x)}:

S(x) =
nb−1∑

i=0

ci bi ,d (x) (4.104)

where ci are the coefficients of the spline, and the basis is expressed on a series of knots

k0 ≤ ·· · ≤ knb+d .

The coefficients of the spline that interpolates the linear function f (x) = mx +p are

equal to the value of the function at the Greville abcissae gi ,d :

ci = mgi ,d +p ∀0 ≤ i < nb (4.105)

where the Greville abcissae are defined as the knot averages:

gi ,d =
d∑

j=1

ki

d
(4.106)

Proof.

S(x) =
nb−1∑

i=0

(mgi ,d +p)bi ,d (x) (4.107)

=p +m
nb−1∑

i=0

gi ,d bi ,d (x) (4.108)

=p +m
nb−1∑

i=0

gi ,d

[
x −ki

ki+d −ki
bi ,d−1(x)+

(
1− x −ki+1

ki+d+1 −ki+1

)
bi+1,d−1(x)

]
(4.109)

=p +mg0,d
x −k0

kd −k0
b0,d−1(x)+mgnb−1,d

(
1−

x −knb

knb+d −knb

)
bnb ,d−1(x)

+m
nb−1∑

i=1

[
gi ,d

x −ki

ki+d −ki
+ gi−1,d

(
1− x −ki

ki+d −ki

)]
bi ,d−1(x) (4.110)

Using the fact that b0,d−1(x) is defined on [k0,kd ] and that k0 ≤ kd = a, and that
bnb+1,d−1(x) is defined on [knb

,knb+d ] and that b = knb
≤ knb+d , we can neglect these
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terms which are outside the spline that we consider.

S(x) =p +m
nb−1∑

i=1

[
x

ki+d −ki
(gi ,d − gi−1,d )+ gi−1,d

− ki

ki+d −ki
(gi ,d − gi−1,d )

]
bi ,d−1(x) (4.111)

The definition of the greville abcissae implies the following relationship:

d(gi ,d − gi−1,d ) = d
d∑

j=1

(
ki+ j

d
−

ki+ j−1

d

)
= ki+d −ki (4.112)

Which we now use to simplify the equation and prove the theorem:

S(x) =p +m
nb−1∑

i=1

[
x

d(gi ,d − gi−1,d )
(gi ,d − gi−1,d )+ gi−1,d

− ki

d(gi ,d − gi−1,d )
(gi ,d − gi−1,d )

]
bi ,d−1(x) (4.113)

=p +m
x

d

nb−1∑

i=1

bi ,d−1(x)+m
nb−1∑

i=1

∑d
j=1 ki−1+ j

d
− ki

d
bi ,d−1(x) (4.114)

=p +m
x

d
+m

nb−1∑

i=1

∑d−1
j=1 ki+ j

d
bi ,d−1(x) (4.115)

=p +m
x

d
+m

d −1

d

nb−1∑

i=1

gi ,d−1bi ,d−1(x) (4.116)

=p +m
x

d
+m

(d −1)x

d
= mx +p (4.117)

4.5. Conclusion

In this chapter I presented a new approach to local spline interpolation. I showed that
semi-Lagrangian advection on these local splines is stable. Furthermore I described
the steps necessary to create a parallel Vlasov-Poisson simulation using MPI paral-
lelism. The next step is to implement the described simulation to verify the scaling
properties of the described scheme and ensure that the loss of smoothness of the
solution does not negatively affect the simulation results.

In Chapter 3, I showed that non-uniform splines are significantly slower than uni-
form splines, especially if GPUs are not available. This work provides a solution to that
problem as different refinements can be used on different local splines. This allows
the simulation to have the best of both worlds by, not only using fast uniform splines,
but also having different refinements to ensure that steep gradients are fully resolved.
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In the context of the GYSELA code (V. Grandgirard, Abiteboul, J. Bigot, et al. 2016),
this method is also useful as it provides an effective parallelisation method. Currently,
in order to use splines in a given direction, all data along that direction must be
available in order to construct a global spline. As a result the GYSELA code copies
and transposes data between processes (G. Latu, N. Crouseilles, V. Grandgirard, et al.
2007). Such MPI communication is costly. This method could allow some of these
data transfers to be avoided, replacing them with the small communications required
to define the ghost cells.

Compared to the local spline method presented by Nicolas Crouseilles, Guillaume
Latu, and Sonnendrücker 2009, the method presented here uses similar ghost cells, but
it uses an alternative method to define them. It is simpler than the method presented
by Nicolas Crouseilles, Guillaume Latu, and Sonnendrücker 2009, and can be used for
splines of any degree not divisible by two, instead of only degree three. Furthermore
the method works for non-uniform splines in addition to uniform splines. The stability
of this method was proven, while that of the method presented by Nicolas Crouseilles,
Guillaume Latu, and Sonnendrücker 2009 was not. The local spline method presented
by Nicolas Crouseilles, Guillaume Latu, and Sonnendrücker 2009 was shown to work in
two dimensions. In this chapter I have restricted myself to one dimensional problems,
however the theory can easily be extended to two dimensions. The implementation
and tests of such a 2D version of these local splines is left for future work.
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5. Realistic geometry in GYSELA

The GYSELA code (V. Grandgirard, Abiteboul, J. Bigot, et al. 2016) was originally
designed with toroidal geometry as shown in Figure 5.1a. A toroidal geometry is
defined by three coordinates (r,θ,ϕ), where r is the radial coordinate, and θ and ϕ

are respectively the poloidal and toroidal angles. This geometry has a circular cross-
section. A circle is a good approximation of the magnetic flux surfaces in the core of
the plasma, near the centre of the tokamak. However as the development of GYSELA
has progressed, improvements to the code have pushed the simulated domain closer
and closer to the boundary. In this region the circle is a very poor approximation of
the geometry of most tokamaks whose cross-section is more accurately described as
D-shaped, as shown in Figure 5.1b. The Tore-Supra machine at IRFM/CEA used to be
an exception to this rule as it had a circular geometry. However as part of its upgrade
in 2013, a tungsten wall and a divertor were installed, changing this geometry. The
tokamak has since been renamed WEST.

R

z

θ
φ

r

(a) The coordinates and geometry originally
used in the GYSELA code.

(b) The shape of ITER. Source: https://

www.iter.org/mach.

Figure 5.1.: A comparison of the geometry originally used in the GYSELA code and the
actual shape of ITER

The D-shaped geometry is characterised by an elongation, a Shafranov shift, and a
triangularity. Figure 5.2 shows how each of these deformations affects a geometry. The
elongation is defined as κ= b

a
. The triangularity δ is defined as δ= d

a
. It is important to

take each of these characteristics into consideration as they can have an effect on the
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5. Realistic geometry in GYSELA –

turbulence in the plasma (Riva, Lanti, Sébastien Jolliet, et al. 2017; Angelino, X. Garbet,
L. Villard, et al. 2009; Marinoni, Brunner, Camenen, et al. 2009). In order to do so the
definition of the geometry in GYSELA must be updated.

a

b

(a) Elongation.

∆(r)

(b) Shafranov shift.

d

a

(c) Triangularity.

Figure 5.2.: The different types of deformation required for the D-shaped geometry.

There are several options for how to define the geometry. The ORB5 code (S. Jolliet,
Bottino, Angelino, et al. 2007) is coupled to the CHEASE code (Lütjens, Bondeson, and
Sauter 1996) which calculates the axisymmetric ideal MHD equilibria. The numerical
equilibrium calculated with the simulation parameters is then used to define the
geometry. This leads to an excellent approximation of the equilibrium, however it is a
costly solution. The GENE code has two possible operating modes. It can either use
the CHEASE code like ORB5 (Lapillonne, Dannert, Brunner, et al. 2008), or it can use
the analytical Miller geometry (Mikkelsen, Howard, White, et al. 2018; Miller, Chu,
Greene, et al. 1998). The solution chosen for the GYSELA code is to use an analytical
geometry which can be calculated at the initialisation of the simulation. The geometry
chosen is not the Miller geometry, but a geometry known as the “Culham geometry”
(Connor, Cowley, Hastie, et al. 1988). This geometry will be presented in Section
5.1. The definitions of the various terms used are derived in Appendix B, using the
techniques originally investigated by an intern, Guillaume Ferrière.

In Section 5.2 I present the changes that are made to the code in order to use this
geometry. The new geometry is not orthogonal. This causes two major changes to the
code. Firstly, all equations in the code must be expressed in generalised coordinates to
ensure that new terms, are taken into account. Secondly the Poisson solver, which was
previously based on the orthogonality assumption, must be replaced. Changes to the
Poisson solver were made with the help of Kevin Obrejan. Finally, in Section 5.3 some
preliminary results from GAM simulations, showing the successful implementation of
the new geometry, are presented. This work, which validates the new geometry, was
carried out by multiple physicists and interns; namely: Ken Leleux, Kevin Obrejan,
Baptiste Legouix, and Peter Donnel.
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5.1. Culham Geometry

The geometry for tokamak simulations is chosen to follow magnetic flux surfaces as
most of the equations are defined in relation to the magnetic field. For toroidally
axisymmetric systems, the flux ψ of the magnetic field across a closed curve is a
solution to the Grad-Shafranov equation:

∆ψ= R
∂

∂R

(
1

R

∂ψ

∂R

)
+ ∂2ψ

∂Z 2
=−µ0R2 d p(ψ)

dψ
− I (ψ)

d I (ψ)

dψ
(5.1)

where R, and Z are cylindrical coordinates describing a tokamak as shown in Figure
5.1a, µ0 is the magnetic constant, p(ψ) is the plasma pressure and I (ψ) is the plasma
current.

Several possibilities exist for defining a geometry from the Grad-Shafranov equation.
Cerfon and Freidberg 2010 have provided analytical solutions to the equation using
truncated polynomials. However these solutions only provide a radial coordinate for
the flux surface. Defining a poloidal coordinate from this geometry is non-trivial as it
also describes the geometry outside the LCFS. Miller, Chu, Greene, et al. 1998 have
provided formulae for determining the magnetic field whose field lines are described
by a basic description of a D-shaped geometry. Connor, Cowley, Hastie, et al. 1988
have also provided an analytical solution to the equation. In the GYSELA code we have
chosen to use the geometry described by Connor, Cowley, Hastie, et al. 1988 which we
will refer to as the “Culham geometry”.

The analytical expression for this geometry is:

R(r,θ) = r cos(θ)−E(r )cos(θ)+T (r )cos(2θ)− A(r )cos(θ)+∆(r )+R0

Z (r,θ) = r sin(θ)+E(r )sin(θ)−T (r )sin(2θ)− A(r )sin(θ)
(5.2)

where E (r ), T (r ), and ∆(r ) are functions controlling respectively the elongation, trian-
gularity, and Shafranov shift, and A(r ) is a correction term. ∆(r ) is directly equal to
the Shafranov shift. Approximate relations between E (r ) and T (r ), and the elongation
κ and the triangularity δ will be derived in Section 5.1.1. The coordinates which will
be used in the code are (r,θ), these replace the previous circular coordinates which
were also noted (r,θ) and are shown in Figure 5.1a.

We introduce the functions f (r ) and g (r ) which are used to note the components of
the magnetic field B(r ) which is orthogonal to ∇r :

B(r ) =∇φ×∇ψ(r )+ I (r )∇φψ′(r ) = B0R0
(

f (r )∇θ+ g (r )∇φ
)

(5.3)

where ∇r , ∇θ and ∇φ are respectively vectors in the radial, poloidal and toroidal
directions.

The safety factor q(r ) defines the ratio between the number of times the magnetic
field wraps around the torus toroidally compared to poloidally. The definition of the
classical safety factor q(r ) in the large aspect ratio, and the zero-th order approxi-
mation of the Grad-Shafranov equation in the small parameter ε= a

R
, where a is the
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minor radius of the tokamak, can be used to define a relation between f (r ) and g (r ).
Appendix C.3 shows the details of the Grad-Shafranov approximation. The relation
between f (r ) and g (r ) is expressed as:

f (r ) = ζ(r )g (r ) (5.4)

ζ(r ) = r

q(r )R0
(5.5)

f (r ) f ′(r )+ f (r )2

r
+ g ′(r )+ µ0p ′(r )

B 2
0

= 0 (5.6)

where q(r ) is approximated by the following equation:

q(r ) = q0 + (qa −q0)r 2, (5.7)

where q0 = q(0) and qa = q(a). We use the following definition of the plasma pressure:

p(r ) = pa + (p0 −pa)
(
1− r 2)γ , (5.8)

where γ is a constant, and p0 and pa are the pressures at respectively r = 0 and r = a.

The definitions of E(r ), T (r ), ∆(r ) and A(r ) are obtained using the first order ap-
proximation of the Grad-Shafranov equation in the small parameter ε = a

R
, and a

quasi-toroidal assumption (see Appendix B). The details of this calculation can be
found in Appendix C.3.

A(r ) = r 3

8R2
0

+ rδ(r )

2R0
− E(r )2

2r
− T (r )2

r
(5.9)

E ′′(r )+
(

1

r
+ 2 f ′(r )

f (r )

)
E ′(r )−3

E(r )

r 2
= 0, (5.10)

T ′′(r )+
(

1

r
+ 2 f ′(r )

f (r )

)
T ′(r )−8

T (r )

r 2
= 0, (5.11)

δ′(r ) = 1

R0r 2 f (r )2

(∫r

0
r ′ f (r ′)2dr ′−

∫r

0

2r ′2µ0p ′(r ′)

B 2
0

dr ′
)

(5.12)

The integration constants of the functions E(r ), T (r ) and δ(r ) are defined using the
constants CE and CT such that E(a) =CE , T (a) =CT , and δ(a) = 0.

These equations are analytical, but cannot easily be solved analytically. There-
fore Equations (6.35), (6.36), and (6.41) are solved using a fourth order Runge-Kutta
method with the following initial conditions:

E(r0) = r0, (5.13)

E ′(r0) = 1, (5.14)

T (r0) = r 2
0 , (5.15)

T ′(r0) = 2r0, g (r0) = 1. (5.16)
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The integrals required for the definition of the Shafranov shift are also calculated
numerically.

The parameters used to define the geometry are summarised in Table 5.1 along with
example values which are used to define the geometry shown in Figure 5.3. In the
GYSELA code these parameters are inputs which can be chosen for each simulation.

Ea 0.25 Ta 0.1 q0 0.8 qa 0.7 γ 1.0
p0 105 pa 104 B0 1.0 R0 5.0

Table 5.1.: Parameters used to define the Culham geometry from Equations (6.33) -
(6.43) in Figure 5.3

Figure 5.3.: Example of the magnetic field lines generated by the Culham geometry
defined by the parameters in table 5.1

5.1.1. Geometric Properties

It is useful to have an approximation of the elongation and triangularity of this geome-
try.

These geometric properties are defined as shown in Figure 5.2. In order to obtain
approximations we will neglect the correction term A(r ) which has a lower order than
the other terms O(R0ε

3) <O(R0ε
2). We also note that the Shafranov shift was chosen

to be equal to 0 on the boundary.
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It is therefore simple to estimate the relation between E(a) and κ by examining a
case with no triangularity:

κ= b

a
≈ a sin(π/2)+E(a)sin(π/2)

a cos(0)−E(a)cos(0)
= a +E(a)

a −E(a)
(5.17)

E(a) = a
1−κ

1+κ
(5.18)

The calculation for triangularity is more complex. We will examine a case with no
elongation to obtain the estimation. The triangularity is defined as (Sauter 2016):

δ= 1

2

(
δtop +δbottom

)
= 1

2

(
Rmid −R(Z = Zmax)

ravg
+ Rmid −R(Z = Zmin)

ravg

)
(5.19)

where

Rmid = (Rmax +Rmin)/2 = 1

2
(R0 +a +T (a)+R0 −a +T (a)) = R0 +T (a) (5.20)

and

ravg = (Rmax −Rmin)/2 = 1

2
(R0 +a +T (a)−R0 +a −T (a)) = a (5.21)

The vertical component is an extremum when the following expression is satisfied:

∂θZ (a,θ) = a cos(θ)−2T (a)cos(2θ) = a cos(θ)−4T (a)cos2(θ)+2T (a) = 0 (5.22)

The positions where Z is extremal are therefore:

cos(θ) =
a ±

√
a2 +32T (a)2

8T (a)
= a

1±
√

1+32 T (a)2

a2

8T (a)
(5.23)

The function T (r ) behaves similarly to r 2, we therefore rewrite this as:

cos(θ) ≈ a
1±

√
1+32

T 2
a a4

a2

8Ta a2
=

1±
√

1+32T 2
a a2

8Ta a
(5.24)

The case where ± is + can be ignored as it would give cos(θ) > 1 for any small Ta a.
Remembering that:

cos(2θ) =
cos(θ)

2T (a)
(5.25)
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The triangularity can therefore be expressed as:

δ= 1

a
(R0 +T (a)−R0 −cos(θ)−T (a)cos(2θ))

= 1

a

(
T (a)−cos(θ)−T (a)

cos(θ)

2T (a)

)

= 1

a

(
T (a)− 3

2
cos(θ)

)

=T (a)

a
− 3

2

1−
√

1+32 T (a)2

a2

8T (a)

To simplify this expression further we use a Taylor expansion using the assumption

that 32 T (a)2

a2 < 1:

δ= T (a)

a
− 3

16T (a)

(
1−

(
1+16

T (a)2

a2
+O(T (a)4)

))
≈ T (a)

a
+ 3T (a)

a2
(5.26)

These equations are usually considered in normalised coordinates, therefore a = 1,
which leaves:

δ≈ 4T (a) (5.27)

T (a) ≈ δ

4
(5.28)

5.2. Modifications to GYSELA

Changing the underlying geometry of the equations should not change how they need
to be solved. However when writing efficient code, simplifications are made based
on the properties of the coordinates used in the simulation. In the case of cylindrical
coordinates, several simplifications arise from the fact that the radial and poloidal
coordinates are orthogonal.

In order to correctly model a system on non-orthogonal coordinates it is important
to ensure that all equations are expressed correctly in generalised coordinates.

5.2.1. Generalised coordinates

An expression written in generalised coordinates is not written using vectors, but
rather the components are used directly. I begin by a short overview of generalised
coordinates and the formulae used for later calculations. These formulae can be found
in a textbook on tensor calculus, for example (Sochi 2016a; Sochi 2016b). If a N-D
vector ~v is expressed on the basis {ê1, . . . , êN }, it can be written as:

~v =
N∑

i=1

v i êi (5.29)
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the components v i are known as the contravariant components of the vector ~v . The
components vi , defined as:

vi =~v · êi =
N∑

j=1

v j ê j · êi , (5.30)

are known as the covariant components.

On an orthonormal basis ê j · êi = δi j , where δi j is the Kronecker symbol defined as:

δi j =
{

1 if i = j

0 otherwise
(5.31)

However in a more general case this is not true. Instead the results of the scalar
products of basis vectors are summarised in a matrix known as the contravariant

metric tensor:

g =




g11 . . . g1N

...
...

gN 1 . . . gN N



=




ê1 · ê1 . . . ê1 · êN

...
...

êN · ê1 . . . êN · êN



 (5.32)

The determinant |g | of this matrix is also very useful.

This allows us to describe the relation between covariant and contravariant compo-
nents:

vi =~v · êi =
N∑

j=1

(v j ê j ) · êi =
N∑

j=1

v j gi j . (5.33)

We see that this is equivalent to a matrix multiplication. Thus we can define the
covariant metric tensor elements g i j such that:

v j =
N∑

i=1

vi g i j (5.34)

as the elements of the inverse of the contravariant metric tensor:

g−1 =




g 11 . . . g 1N

...
...

g N 1 . . . g N N



=




g11 . . . g1N

...
...

gN 1 . . . gN N





−1

(5.35)

Contravariant components can be thought of as the elements of a column vector,
while covariant components can be thought of as the elements of a row vector. This
intuition shows us how covariant and contravariant components can be combined. It
is possible to sum over elements, as long as one term in the element is covariant and
the other is contravariant.

Expressions using covariant and contravariant components usually contain many
summations. Therefore in order to declutter the notation, Einstein’s convention is
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frequently used. Einstein’s convention says that all indices which appear on only one
side of an equality are summed over. Thus with Einstein’s convention a scalar product
can be written as:

~v ·~u = v i ui (5.36)

Finally to complete the notation we also mention the gradient. The contravariant
component is denoted ∇i , but it is more often often used in its covariant form:

∇· êi = ∂i =
∂

∂ξi
(5.37)

where ξi is the covariant form of the i-th curvilinear coordinate associated with the
direction êi .

With these definitions we now enumerate some useful equations which we will use
in the rest of this chapter:

∇ j vk = ∂ j vk − viΓ
i

k j (5.38)

∇ j vk = ∂ j vk + v i
Γ

k

j i
(5.39)

∇·~v = 1
√
|g |

∂

∂ξi

(√
|g |v i

)
(5.40)

∇2 f = 1
√

|g |
∂

∂ξi

(√
|g |g i k ∂ f

∂ξk

)
(5.41)

Γ
j

i k
= 1

2
g j l (∂k gi l +∂i glk −∂l gki ) (5.42)

Γ
i

i k = 1
√

|g |
∂k

√
|g | (5.43)

where ~v is a vector, and f is a scalar.

5.2.1.1. Generalised coordinates in GYSELA

Luckily GYSELA was originally designed with generalised coordinates in mind (V.
Grandgirard, Abiteboul, J. Bigot, et al. 2016). As a result the majority of the equations
are already solved using the covariant and contravariant components of the necessary
vectors.

In order to express these covariant and contravariant components on the new
geometry the only additional information required is the definition of the metric
tensor.

The new 2D geometry is defined on the unit vectors êr = ∇r , and êθ = ∇θ. The
contravariant metric tensor is therefore defined as follows:

(
gr r grθ

gθr gθθ

)
=

(
|∇r |2 ∇θ ·∇r

∇θ ·∇r |∇θ|2
)

(5.44)

The definition of the Culham geometry given in Equation (6.33) is not invertible as
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the terms E(r ), T (r ), ∆(r ), and A(r ) cannot be expressed analytically, so a definition
of r (R, Z ) and θ(R, Z ) is not available. However the gradients can be deduced using
the Jacobian of the system:

(
dR

d Z

)
=

(
∂r R ∂θR

∂r Z ∂θZ

)(
dr

dθ

)
⇒

(
dr

dθ

)
= 1

J

(
∂θZ −∂θR

−∂r Z ∂r R

)(
dR

d Z

)

with J = ∂r R∂θZ −∂r Z∂θR. The gradients are therefore defined as:

dr = 1

J
(∂θZ dR −∂θR d Z ) ⇒∇r = 1

J
(∂θZ ∇R −∂θR ∇Z )

dθ = 1

J
(∂r Rd Z −∂r Z dR) ⇒∇θ = 1

J
(∂r R∇Z −∂r Z∇R)

(5.45)

The contravariant metric tensor is therefore defined as follows:

1

J 2

( (
(∂θZ )2 + (∂θR)2

)
− (∂r R∂θR +∂r Z∂θZ )

− (∂r R∂θR +∂r Z∂θZ )
(
(∂r R)2 + (∂r Z )2

)
)

(5.46)

The determinant of this matrix is:

g = 1

J 4

(
(∂θZ )2 + (∂θR)2)((∂r R)2 + (∂r Z )2)− 1

J 4
(∂r R∂θR +∂r Z∂θZ )2 (5.47)

= 1

J 4

[
(∂r R)2(∂θZ )2 + (∂r R)2(∂θR)2 + (∂r Z )2(∂θZ )2 + (∂r Z )2(∂θR)2

−(∂r R)2(∂θR)2 −2∂r R∂θR∂r Z∂θZ − (∂r Z )2(∂θZ )2] (5.48)

=
[
(∂r R)2(∂θZ )2 −2∂r R∂θR∂r Z∂θZ + (∂r Z )2(∂θR)2

]

J 2
[
(∂r R)2 (∂θZ )2 −2∂r R∂r Z∂θR∂θZ + (∂r Z )2 (∂θR)2

] (5.49)

= 1

J 2
(5.50)

The covariant metric tensor is therefore defined as:

(
g r r g rθ

g θr g θθ

)
=

( (
(∂r R)2 + (∂r Z )2

)
(∂r R∂θR +∂r Z∂θZ )

(∂r R∂θR +∂r Z∂θZ )
(
(∂θZ )2 + (∂θR)2

)
)

(5.51)

These components can easily be determined from Equation (6.33) and are described
in Appendix C.

The only equation which was not already expressed in general coordinates was the
quasi-neutrality equation. In this case the fact that

grθ = gθr = g rθ = g θr = 0

was used to simplify the calculations. If this equality holds then the radial and poloidal
directions can be treated independently. Therefore a FFT was used in the poloidal
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direction, while FDM was used in the radial direction (V. Grandgirard, Abiteboul, J.
Bigot, et al. 2016). This equality does not hold in the case of the Culham geometry.
The equation must therefore be expressed on general coordinates and must be solved
using a 2D method.

5.2.2. Quasi-neutrality equation

The normalised quasi-neutrality equation in the case of kinetic electrons is:

− 1

ne0

∑

s∈{i ,e}

As∇⊥ ·
(

ns0

B0
∇⊥φ

)
= ρi 1

ne0
(5.52)

where Ai is the normalised mass of the ions, ni 0 and ne0 are respectively the nor-
malised equilibrium density of the ions and electrons, B0 is the amplitude of the
magnetic field, φ is the electric potential, and ρi 1 is the normalised ion charge density
perturbation.

The normalised quasi-neutrality equation in the case of adiabatic electrons is:

− 1

ne0
Ai∇⊥ ·

(
ni 0

B0
∇⊥φ

)
+ 1

Z 2
0 Te

(
φ−〈φ〉F S

)
= ρi 1

ne0
(5.53)

where Z0 is the normalised charge, Te is the normalised temperature of the electrons,
and ρi 1 is the normalised ion charge density perturbation. ∇⊥ denotes the gradient
perpendicular to the magnetic field defined as ∇−∇∥ = ∇− b̂

(
b̂ ·∇

)
, where b̂ is the

unit vector in the direction of the magnetic field. The bracket 〈·〉F S denotes the flux
surface average. This value is defined as follows:

〈φ〉F S(r ) =
∫
φ(r,θ,φ)Jxdθdφ∫

Jxdθdφ
(5.54)

where Jx is the normalised Jacobian of the coordinate system (r,θ,φ):

Jx = R(r,θ)J (r,θ) (5.55)

where J(r,θ) is the Jacobian of the chosen 2D coordinates (r,θ) as defined in section
5.2.1. It is equal to J = r in circular geometry, and is calculated for the Culham
geometry in Appendix C.

We can use the following notation to describe both equation (5.53) and equation
(5.53):

−∇⊥ ·
(
α∇⊥φ

)
+β(φ−〈φ〉F S) = RHS (5.56)

where for the kinetic electron case α=∑
s∈{i ,e}

As ns0
B0

, β= 0, and RHS = ρi 1, and for the

adiabatic electron case α= Ai ni 0
B0

, β= ne0/(Z 2
0 Te ), and RHS = ρi 1.

Equation (5.53) is a 3D equation which is difficult to solve. In order to understand
what simplifications may be made to allow solving this equation, we begin by express-
ing it in generalised coordinates.
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In order to simplify the calculations, we begin by noting the following property:

∇∥ · b̂ = 0 (5.57)

Proof. Using the dot product rule:

∇ (A ·B) = (A ·∇)B + (B ·∇) A+ A× (∇×B)+B × (∇× A)

if A = B = b̂ then:

1

2
∇

(
b̂ · b̂

)
= 0 =

(
b̂ ·∇

)
b̂ + b̂ ×

(
∇× b̂

)
=⇒

(
b̂ ·∇

)
b̂ =

(
∇× b̂

)
× b̂

where I have used the fact that b̂ · b̂ = 1. We can now prove equation (5.57)

∇∥ · b̂ =b̂
(
b̂ ·∇

)
· b̂ = b̂ ·

(
b̂ ·∇

)
b̂ = b̂ ·

[(
∇× b̂

)
× b̂

]
︸ ︷︷ ︸

perpendicular to b̂

= 0

First let us consider the Laplacien:

∇⊥ ·
(
α∇⊥φ

)
=∇⊥α ·∇⊥φ+α∇2

⊥φ (5.58)

In order to write the equation in generalised coordinates we first need to rewrite the
equation without ∇⊥ and ∇∥. I begin by considering the first term in equation (5.58):

∇⊥α ·∇⊥φ

=
[
∇α− b̂

(
b̂ ·∇α

)]
·
[
∇φ− b̂

(
b̂ ·∇φ

)]

=∇α ·∇φ−∇α · b̂
(
b̂ ·∇φ

)
−

(
b̂ ·∇α

)
b̂ ·∇φ+ b̂ · b̂

(
b̂ ·∇α

)(
b̂ ·∇φ

)

=∇α ·∇φ−
(
∇α · b̂

)(
b̂ ·∇φ

)
(5.59)

This term can be then expressed in generalised coordinates as:

∇⊥α ·∇⊥φ=(∇α)i (∇φ)i −
(
(∇α)i bi

)(
b j (∇φ) j

)

=g i j ∂α

∂ξ j

∂φ

∂ξi
−bi b j ∂α

∂ξi

∂φ

∂ξ j
(5.60)

I now consider the second term in equation (5.58):

α∇2
⊥φ=α∇⊥ ·

[
∇φ− b̂

(
b̂ ·∇φ

)]

=α∇⊥ ·∇φ−α∇⊥ ·
[
b̂

(
b̂ ·∇φ

)]

=α∇⊥ ·∇φ−αb̂ ·∇⊥
(
b̂ ·∇φ

)
−α

(
b̂ ·∇φ

)
∇⊥ · b̂
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=α∇2φ−αb̂
(
b̂ ·∇

)
·∇φ−α

(
b̂ ·∇

)(
b̂ ·∇φ

)
+αb̂ · b̂

(
b̂ ·∇

)(
b̂ ·∇φ

)

−α
(
b̂ ·∇φ

)
∇· b̂

=α∇2φ−αb̂ ·
(
b̂ ·∇

)
∇φ−α

(
b̂ ·∇φ

)(
∇· b̂

)
(5.61)

This term can be then expressed in generalised coordinates as:

α∇2
⊥φ= α

√
|g |

∂

∂ξi

(√
|g |g i k ∂φ

∂ξk

)
−αbk b j∇ j (∇φ)k −αbi (∇φ)i

1
√
|g |

∂

∂ξ j

(√
|g |b j

)

= α
√
|g |

∂

∂ξi

(√
|g |g i k ∂φ

∂ξk

)
−αbk b j

(
∂2φ

∂ξ j∂ξk
− ∂φ

∂ξi
Γ

i
k j

)

− α
√

|g |
bi ∂φ

∂ξi

∂

∂ξ j

(√
|g |b j

)
(5.62)

Equation (5.56) can therefore be written in generalised coordinates as:

bi b j ∂α

∂ξi

∂φ

∂ξ j
− g i j ∂α

∂ξ j

∂φ

∂ξi
− α

√
|g |

∂

∂ξi

(√
|g |g i k ∂φ

∂ξk

)

+αbk b j

(
∂2φ

∂ξ j∂ξk
− ∂φ

∂ξi
Γ

i
k j

)
+ α

√
|g |

bi ∂φ

∂ξi

∂

∂ξ j

(√
|g |b j

)
+βφ−β〈φ〉F S = RHS

In GYSELA this equation is simplified by taking the first order approximation of b̂ =
êϕ+O(ε2). This implies that br = bθ = 0 which allows us to deduce bϕ using the fact

that b̂ is a unit vector:

bϕbϕ = bϕbϕgϕϕ = 1 =⇒ bϕ = 1
p

gϕϕ

The equation can finally be written as:

1

gϕϕ

∂α

∂ϕ

∂φ

∂ϕ
− g i j ∂α

∂ξ j

∂φ

∂ξi
− α

√
|g |

∂

∂ξi

(√
|g |g i k ∂φ

∂ξk

)

+ α

gϕϕ

(
∂2φ

∂ϕ2
− ∂φ

∂ξi
Γ

i
ϕ ϕ

)
+ α

√
|g |

1
p

gϕϕ

∂φ

∂ϕ

∂

∂ϕ

(√
|g |

gϕϕ

)

+βφ−β〈φ〉F S = RHS (5.63)

5.2.2.1. Circular geometry

Up to now GYSELA used a circular geometry for the poloidal cross-section. This
geometry is defined on the curvilinear coordinates (r,θ,ϕ), and has the following
metric tensor:

g (r ) =




1 0 0
0 r 2 0
0 0 R2



 g−1(r ) =




1 0 0
0 1

r 2 0

0 0 1
R2



 (5.64)
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The determinant |g | = r 2R2. With this geometry the Christoffel symbol Γ
i

ϕ ϕ
is defined

as:

Γ
i

ϕ ϕ
= 1

2
g i l (∂ϕgϕl +∂ϕglϕ−∂l gϕϕ) =−1

2
g i l∂l gϕϕ =−1

2
g i l∂l R2

We therefore have:

Γ
i

ϕ ϕ =− 1

2
∂r R(r,θ)2 (5.65)

Γ
i

ϕ ϕ
=− 1

2R2
∂θR(r,θ)2 (5.66)

Γ
i

ϕ ϕ =0 (5.67)

Equation (5.63) in circular geometry can therefore be written as:
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+βφ−β〈φ〉F S = RHS

which simplifies to:
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The terms α
2R2

∂φ
∂r

∂R
∂r

and α
2R4∂φ∂θ

∂R
∂θ are considered to be negligible so the expression

becomes:
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We see that there are no terms dependent on ϕ. This is due to the simplification
b̂ ≈ êϕ. We also note that there are no terms which contain derivatives in r and θ. This
allows the equation to be solved using different methods in each direction. Namely
FFT in θ and F DM in r were used.
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5.2.2.2. Culham geometry

The metric tensor in the geometry described by Culham’s equilibrium on the curvilin-
ear coordinates (r,θ,ϕ) takes the following form:

g (r,θ) =




gr r grθ 0
grθ gθθ 0

0 0 R2



 g−1(r,θ) =




g r r g rθ 0
g rθ g θθ 0

0 0 1
R2



 (5.68)

The determinant |g | = R2|g̃ (r,θ)|, where |g̃ (r,θ)| is the determinant of the submatrix

g̃ (r,θ) =
(

gr r grθ

grθ gθθ

)
. With this geometry the Christoffel symbol Γ
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is defined as:
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2
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2
g i l∂l R2

Equation (5.63) in Culham geometry can therefore be written as:
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+βφ−β〈φ〉F S = RHS (5.69)

Finally using the fact that none of the elements of the metric tensor depend on ϕ, this
simplifies to:
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As for the circular geometry there are no terms dependent on ϕ and the terms
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1
2R2 g i l∂l R2 are neglected leaving:
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+βφ−β〈φ〉F S = RHS (5.71)

5.2.2.3. Solving the Poisson equation

Now that we have all the tools necessary to write all the elements of equation (5.53) on
the Culham geometry, I will explain how this equation is solved in the updated version
of GYSELA.

The equation is solved using FEM on the C1 polar splines described in Section 2.4.1.4.
The solver was developed by Zoni and Güçlü 2019 as part of the Selalib library SeLaLib
Development Team 2018 which was designed to provide modules for GYSELA. It will
be described in detail in Chapter 6, where it will be compared with two alternative
solvers. All three solvers are designed to solve the following 2D equation:

∇·
(
α∇φ

)
+βφ= f (5.72)

As we can see, this equation does not include the flux surface average. This is because
including this while maintaining a performant solver is very difficult. In particular for
matrix based methods the inclusion of the flux surface average destroys any sparsity
patterns, significantly increasing the memory requirements and total FLOPs for the
solver. For the case with kinetic electrons described by equation (5.52), the flux surface
average does not appear, so solvers of this form are sufficient to solve the problem.

For the case with adiabatic electrons, the equation will be solved iteratively, using
the following two equations describing a fixed point scheme:

−∇·
(

ni 0

B0
∇φ̃n+1

)
= ρi 1

Ai
− ne0

Z 2
0 Te Ai

(
φ̃n −〈φ̃n〉F S

)
(5.73)

−∇·
(

ni 0

B0
∇φ̃n+1

)
+ ne0

Z 2
0 Te Ai

φ̃n+1 = ρi 1

Ai
− ne0

Z 2
0 Te Ai

〈φ̃n〉F S (5.74)

where φ̃n is the n-th approximation of φ calculated by the iterative solver. Equation
(5.73) is efficient at converging low radial modes, while equation (5.74) is efficient at
converging high radial modes. We therefore have two cases for the solver:

(A) Solving equation (5.73), with α, β, and f from equation (5.72) defined as:

α= ni 0

B0
β= 0 f = ρi 1

Ai
− ne0

Z 2
0 Te Ai

(
φ̃n −〈φ̃n〉F S

)
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(B) Solving equation (5.74), with α, β, and f from equation (5.72) defined as:

α= ni 0

B0
β= ne0

Z 2
0 Te Ai

f = ρi 1

Ai
− ne0

Z 2
0 Te Ai

〈φ̃n〉F S

The complete method for solving equation (5.53) is then:

1. Initialise by solving case (A)

2. Solve case (B), stop if method has converged

3. Solve case (B), stop if method has converged

4. Solve case (A)

5. Repeat from step 2 until convergence

The convergence is checked at the steps solving case (B) (2 and 3).

The convergence is determined using the L2 norm:

∥∥φn+1 −φn
∥∥

2 ≤ T OL
∥∥φn+1

∥∥
2 (5.75)

where T OL is the chosen tolerance.

The number of repetitions of each case (two for (B) and one for (A)) was chosen after
testing to try to obtain the fastest convergence. Some results of these tests, conducted
by Kevin Obrejan, can be seen in Figure 5.4. These results were obtained during the
execution of the GYSELA code with a typical configuration. In order to minimise the
number of iterations, the previous solution is used as an initial guess, allowing faster
convergence of the conjugate gradient method. We see that of the three solutions
presented, the case with 2 repetitions of step 2 is faster on average.
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Figure 5.4.: Time, number of iterations of the conjugate gradient method, and number
of iterations of the fixed point scheme for subsequent calls to the quasi-
neutrality solver

5.3. GAM simulations with D-shaped geometry

In order to verify the implementation of the Culham geometry in GYSELA we will now
study GAMs. In this section multiple simulations will be run with slightly different
geometry. Unless otherwise specified the Culham geometry will be parameterised
such that the Shafranov shift is 0 at the outer boundary, the outermost elongation κ

is 1.0 (no elongation), and the outermost triangularity δ is 0.0 (no triangularity). The
safety factor q(r ) = q1, which is a measure of the shape of the magnetic field, is set to
1.4. The other parameters necessary to define a simulation with the GYSELA code, as
specified by V. Grandgirard, Abiteboul, J. Bigot, et al. 2016, are shown in Table 5.2.

When a plasma with homogeneous temperature and density is perturbed initially,
the perturbed electric potential is Landau damped. The amplitude of the perturbation
therefore decreases exponentially while oscillating, leaving only the homogeneous
potential. This residual potential and the oscillations, known as GAMs, can be seen
in the Fourier modes (Rosenbluth and Hinton 1998). The Fourier modes are denoted
(m,n), where m is the index of the poloidal mode and n is the index of the toroidal
mode. The oscillations describe the behaviour in the (0,0) mode, but are observed
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ρ⋆
1

160 As 1.0 Zs 1.0 R0
a

5.0 rint
a

0.0 rext
a

1.0
Torus 1.0 nbv th0 7.0 µmax 12.0 q1 1.4 q2 0.0 q3 1.

rpeak

a
0.5 κns0 10−7

∆rns0 0.2 κTs0 10−7
∆rTs0 0.1 Ti

Te
1.0

κ 1.0 δ 0.0 Nr 256 Nθ 64 Nφ 16 NvG∥ 128
Nµ 8

Table 5.2.: Common parameters defined in V. Grandgirard, Abiteboul, J. Bigot, et
al. 2016 used for GAM tests. The velocity phase space is defined by
−nbv th0vTs0 ≤ vG∥ ≤ nbv th0vTs0 and 0 ≤ µ ≤ µmaxT0/B0. Torus indicates
the fraction of the torus simulated. The safety factor radial profile is defined
as q(r ) = q1+q2exp(q3log (r /a)). The radial density profile is defined by its
gradient as d logns0(r )/dr =−κns0 cosh−2

(
(r − rpeak/a)/∆rns0

)
. The same

analytical expression is used for the temperature with κTs0 and ∆rTs0 .

in the (0,0) and (1,0) modes. The appearance in the (1,0) mode is due to the charge
separation which arises due to the vertical magnetic drift. Although the same effect
occurs in the distribution function of both the electrons and the ions, as the potential
depends on both, the (1,0) mode is affected.

Figure 5.5.: Parameters characterising GAMs on simulations from GYSELA, run with
q = 1.5, E = 1.0, and T = 0.0.

Figure 5.5 shows the evolution of the (0,0) mode of the electric potential as a func-
tion of time. The time is normalised by the cyclotron frequency Ωc . The oscillating
behaviour seen is characterised by a frequency ω, a rate of exponential decay γ, and
the residual Q. Sugama and Watanabe 2006 and Gao 2011 have provided theoretical
predictions for the evolution of these characteristics. However both of these works rely
on strong assumptions to simplify the problem which are not valid for a wide range of
values (Biancalani, Bottino, Ehrlacher, et al. 2017). It is therefore more pertinent to
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compare the results to other codes designed to solve similar problems, such as the
Lagrangian PIC code ORB5 (S. Jolliet, Bottino, Angelino, et al. 2007), or the Eulerian
code GENE (Jenko, Dorland, Kotschenreuther, et al. 2000). Values for these codes are
provided in the work by Biancalani, Bottino, Ehrlacher, et al. 2017. Biancalani, Bottino,
Ehrlacher, et al. 2017 also provided comparisons with the GYSELA code, however as
a complex geometry had not yet been implemented they were only able to compare
results with a dependence on geometrical parameters.

(a) The frequency of the GAM oscillations as
a function of the safety factor q .

(b) The rate of damping γ of the GAM oscil-
lations as a function of the safety factor
q .

(c) The residual remaining after damping as
a function of the safety factor q .

Figure 5.6.: Variation of GAM parameters as a function of the safety factor q for GY-
SELA, according to the theoretical results provided by Sugama, and where
available ORB5 and GENE.

Sugama and Watanabe 2006 provide theoretical predictions for how the safety factor
q influences the frequency, rate of decay, and residual. Figure 5.6 shows the variation
of these parameters as a function of the safety factor for GYSELA, according to the
theoretical results provided by Sugama, and where available ORB5 and GENE. This
comparison had previously been carried out by Biancalani, Bottino, Ehrlacher, et al.
2017 using GYSELA’s circular geometry. It is repeated here to validate the implementa-
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tion of the new geometry. We recall that even without elongation or triangularity, the
new geometry is not equivalent to a circular geometry as it still contains a Shafranov
shift and the correction term A(r ). We can see that the frequency and the residual
are very close to the theoretical predictions. ORB5 and GENE also reproduce the
analytical results for the frequency. In the case of the rate of decay, the results are less
convincing. ORB5 and GENE produce results close to the theory for safety factors of
less than 4, however there are differences for larger safety factors. In contrast GYSELA
only manages to reproduce the expected profile for safety factors of 1.5 or less. Beyond
this, the profile has the expected shape but not the expected magnitude. It should be
noted that as Figure 5.6b is the only figure using a logarithmic scale, any differences in
the results therefore appear more pronounced in this case.

(a) The frequency of the GAM oscillations
as a function of the elongation.

(b) The rate of damping γ of the GAM oscil-
lations as a function of the elongation.

(c) The residual remaining after damping
as a function of the elongation.

Figure 5.7.: Variation of GAM parameters as a function of the elongation for GYSELA,
according to the theoretical results provided by Gao and Xiao, and where
available ORB5 and GENE.

Gao 2011 and Xiao and Catto 2006 provide theoretical predictions for how the
elongation of the geometry influences the frequency, rate of decay, and residual.
Figure 5.7 shows the variation of these parameters as a function of the elongation for
GYSELA, according to the theoretical results provided by Gao, and where available
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ORB5 and GENE. While the frequency results remain reasonably close to the theory,
both the frequency and the damping rate results show the limitations of the theoretical
approximations. In Figures 5.7a and 5.7b the numerical results are all in much closer
agreement with one another than with the theory. As GYSELA produces results similar
to those achieved with ORB5 and GENE this still allows the validation of the method.
The results for the residual shown in Figure 5.7c, were unfortunately unavailable for
ORB5 and GENE, however we can see that GYSELA’s results are of the same order
of magnitude as the analytical results and the overall gradient is similar. We do not
expect to see a better correlation with the theory given the poor correlation shown in
Figure 5.7b.

Figure 5.8.: The residual remaining after damping as a function of the triangularity for
GYSELA, according to the theoretical results provided by Xiao.

Xiao and Catto 2006 also provide theoretical predictions for how the triangularity of
the geometry influences the residual. Figure 5.8 shows the variation of the residual
with the triangularity. Given that the theoretical result is based on the same simplifica-
tions as those used to obtain the estimations in Figure 5.7 we cannot expect a more
precise result than the one obtained in Figure 5.7b. GYSELA’s results are of the same
order of magnitude as the analytical results and the overall gradient is similar, which
suggests that the results are correct.

The preliminary results shown here for the Culham geometry with elongation,
triangularity and Shafranov shift are encouraging. They therefore open the door to
allow large simulations to be run with this geometry. For example the impact of the
triangularity on turbulent transport can now be studied.

5.4. Conclusion

In this chapter a new realistic geometry, known as the “Culham geometry”, was pre-
sented. This geometry is elongated with triangularity and a Shafranov shift. It is an
analytical solution to the Grad-Shafranov equation which describes the magnetic flux
surfaces in a plasma.

I derived the covariant and contravariant metric tensors for this geometry to allow
the 5D Vlasov equation to be expressed in generalised coordinates. I also detailed the
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definition of the Poisson equation in generalised coordinates for both circular geome-
try and “Culham geometry”. This highlighted the possible choices of solver for this
equation. As the new geometry requires a 2D solver, a new solver was implemented in
GYSELA. This solver, and two alternatives will be discussed in the next chapter.

Finally analytical results concerning GAMs were compared to both the GYSELA
code and results from ORB5 code (S. Jolliet, Bottino, Angelino, et al. 2007) and GENE
(Jenko, Dorland, Kotschenreuther, et al. 2000), to show that the updated GYSELA code
is capable of reproducing the expected physical behaviour. This new feature of the
GYSELA code will now allow more complex studies to be conducted, for example
studying the impact of the triangularity on turbulent transport.
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6.1. Introduction

This chapter reproduces the work of Bourne, Leleux, Kormann, et al. 2022. In it
we compare the Spline FEM solver used in Section 5.2.2 to two alternative solvers.
These solvers may be useful, not only for the GYSELA code, but potentially for other
gyrokinetic codes.

At each time step in gyrokinetic codes, one 5D Vlasov equation must be solved for
each species, as well as a 3D Poisson-like equation describing the quasi-neutrality. The
solution of the latter 3D system is very computationally expensive. While some codes,
such as GENE-X (Michels, Stegmeir, Ulbl, et al. 2021) and EUTERPE (Hatzky, Tran,
Könies, et al. 2002), solve this equation in its entirety, the majority of codes including
GYSELA (Bouzat, Bressan, Virginie Grandgirard, et al. 2018), and ORB5 (S. Jolliet,
Bottino, Angelino, et al. 2007) simplify the equation to a series of independent 2D
equations. The 3D equation contains a derivative along the direction perpendicular
to the magnetic field lines. These lines have a poloidal and a toroidal component,
however in an axisymmetric configuration, it is possible to neglect the small poloidal
component. This limits the configurations that can be simulated, thus GYSELA,
and ORB5 can only simulate tokamaks while GENE-X and EUTERPE can also model
stellarators.

In this chapter, we are interested in the solution of the 2D gyrokinetic Poisson-like
equation Lu = f with homogeneous Dirichlet boundary conditions, defined as:

Lu =−∇· (α∇u)+βu = f in Ω,

u = 0 on ∂Ω,
(6.1)

where Ω ⊂ R
2 is a disk-like domain, f : Ω→ R is the right hand side, α : Ω→ R is a

non-constant coefficient involving the density profile, and β : Ω→R is a non-constant
coefficient inversely proportional to the temperature profile. Three different solvers
are compared, which use a variety of methods to solve Equation (6.1). The goal is to
determine which solver is best adapted to this problem given the constraints of the
framework where it will be implemented. In particular, we focus on an implementa-
tion in the GYSELA code (V. Grandgirard, Abiteboul, J. Bigot, et al. 2016), however, we
strive to present the advantages and disadvantages of each solver in a way that allows
this comparison to be generalised to other codes. The three solvers and their imple-
mentations are described in detail in subsequent sections. They are a spline-based
finite elements solver operating on polar coordinates, referred to as the Spline FEM
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solver (Section 6.2), a geometric multigrid solver operating on polar coordinates, re-
ferred to as the GmgPolar solver (Section 6.3), and a finite differences solver operating
on Cartesian coordinates with an embedded boundary approach, referred to as the
Embedded Boundary solver (Section 6.4). The main similarities and differences of the
solvers are summarised in Table 6.1.

Spline FEM solver GmgPolar solver Embedded Boundary
solver

Numerical Method Finite Elements Finite Differences Finite Volumes
Linear equation solver Conjugate Gradient Multigrid Multigrid

Singular Point C1 polar splines Handled in discretisation N/A
Coordinates Polar Polar Cartesian

Asymptotic accuracy Degree dependent Up to 4 Up to 2

Table 6.1.: Comparison of the main similarities and differences of the three solvers. De-
tails about these results can be found in Sections 6.2-6.4 and the references
therein.

The Spline FEM solver and the GmgPolar solver represent the domain using polar
coordinates (r,θ), i.e. based on an invertible mapping from the Cartesian coordinates
(x, y) to the polar coordinates (r,θ) ∈ (r0, a]× [0,2π), where r is the normalised radius,
θ is the poloidal angle, r0 is the minimum value of r , and the maximum value of r is
the minor radius a of the torus describing the tokamak. The mapping is illustrated
in Figure 6.1. The Cartesian coordinates are sometimes referred to as the “physical”
coordinates, while the polar or curvilinear coordinates are known as the “logical”
coordinates.

x

y

θ

r

F−1

F

(a, 0)

(r0, 0)
(r0, 2π)

(a, 2π)

Figure 6.1.: The curvilinear coordinates defined by a mapping F between the Carte-
sian and polar coordinates (r,θ) ∈ [r0, a]× [0,2π).

Polar coordinates are most commonly used to describe a circle, however this is a
poor representation of the cross-section of a tokamak. According to Connor, Cowley,
Hastie, et al. 1988, the cross-section can be described by a disk to which multiple trans-
formations are applied. These transformations elongate the disk, give it triangularity,
or introduce a Shafranov shift. In this work, we will aim to describe the problem on
the geometry described by Connor, Cowley, Hastie, et al. 1988, known as the “Culham
geometry”. The GYSELA code has recently been adapted to target this geometry in
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order to take more realistic geometries into account. However, it is not possible to
compute an analytical solution to Equation (6.1) on this geometry so it cannot be used
to compute the error which arises when using each of the three solvers. In order to
evaluate the comparative accuracy of the solvers, preliminary tests will be carried out
on analytical geometries in Section 6.5.

The polar coordinates, used by the Spline FEM solver and the GmgPolar solver, pro-
vide a more natural representation of the geometries than the Cartesian coordinates
used by the Embedded Boundary solver, but they give rise to two challenges. First, an
artificial singularity is introduced at the origin of the mapping. This point is difficult
to handle numerically, so many solvers choose a positive minimum radius r0 > 0.
However, there are important problems in magnetic fusion where a correct treatment
of the pole is essential. Therefore, a solver targeting a plasma simulation code such
as GYSELA should ideally handle this singularity. The Spline FEM solver employs C1

smooth polar splines as explained by Zoni and Güçlü 2019 to handle the singularity.
The GmgPolar solver uses finite differences across the origin to avoid the issue, as
detailed by Martin J Kühn, Kruse, and Rüde 2022.

The second challenge is due to the anisotropy which appears in the meshing of the
(r,θ) plane. The finite elements scheme used in the Spline FEM solver uses the metric
tensor to handle this anisotropy. The 9-point finite differences scheme used in the
GmgPolar solver was constructed to naturally handle the use of anisotropic meshes.
Both solvers can handle non-uniform meshes which allows the use of additional
refinements to compensate for the anisotropy.

The chapter is organised as follows, in Section 6.2 the Spline FEM solver is intro-
duced, the GmgPolar solver is introduced in Section 6.3, and the Embedded Boundary
solver in Section 6.4. In Section 6.5, we compare these three approaches for the solu-
tion of the gyrokinetic Poisson-like equation on analytical test cases. In Section 6.6, we
compare the behaviour of the three solvers on the non-analytical “Culham geometry”.
In Section 6.7, we discuss the difficulties encountered when tackling more complex
geometries. The goal of this chapter is to give the advantages of each solver with a
view to an integration in the GYSELA code.

6.2. Spline FEM

In Zoni and Güçlü 2019, the authors propose a B-spline finite element solver where,
following the approach of isogeometric analysis, the geometry is described by a spline
mapping. This solver uses specially constructed basis functions, proposed by Toshni-
wal, Speleers, Hiemstra, et al. 2017, around the singularity to ensure that a C1 smooth
solution can be found. These basis functions are described in detail in Chapter 2.4.1.4.
In this section, we summarise the scheme. For more details see Zoni and Güçlü 2019.

The grid upon which the solution evolves is constructed from the 2D spline repre-
sentation, which is in turn constructed from a grid of break points. The grid of break
points is defined as a cross product of ncr +1 break points in the r -direction and ncθ

break points in the periodic θ-direction (see Figure 6.1). These break points can be
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uniform or non-uniform. There are therefore ncr ncθ cells on the grid. 1D splines of
degree d in the r -direction are defined on this grid by choosing knots such that

k0 = k1 = ·· · = kd = b0 < kd+1 = b1 < . . .kncr +d = bncr +1 = kncr +d+1 = ·· · = kncr +2d ,
(6.2)

where ki is the i-th knot, and bi is the i-th break point; and 1D splines of degree d in
the θ-direction are defined on the grid using periodic knots:

k0 = bncθ−d < ·· · < kd−1 = bncθ
< kd = b0 < . . .

· · · < kncθ+d = bncθ
< kncθ+d+1 = b0 < ·· · < kncθ+2d = b

2D splines which do not handle the singular point are obtained using a basis defined
as

Bl (r,θ) = Bi ncθ+ j (r,θ) = bi ,dr
(r )b j ,dθ

(θ), (6.3)

where Bl (r,θ) is the l-th 2D basis function, l = i ncθ+ j , bi ,dr
(r ) is the i -th basis spline

of degree dr in the r -direction, and b j ,dθ
(θ) is the j -th basis spline of degree dθ in the

θ-direction. In this work, the same degree is always used in the r -direction and the
θ-direction, d = dr = dθ. This results in nbr nbθ basis functions where nbr = ncr +dr is
the number of basis functions in the non-periodic r -direction, and nbθ = ncθ is the
number of basis functions in the periodic θ-direction. There are nbr nbθ interpolation
points defined as the cross product of the Greville points (Farin 1993) of the splines in
the r -direction and the θ-direction.

In the solver described by Zoni and Güçlü 2019, the smallest radial break point r0 = 0
represents the singular point. In order to obtain a basis which is C1 at the singular
point, the first 2nbθ basis functions

Bi nθ+ j (r,θ) = bi ,dr
(r )b j ,dθ

(r ) ,∀i ∈ {0,1},∀0 ≤ j < nbθ (6.4)

are replaced by three new basis functions B̂l (r,θ). The replaced basis functions are
illustrated in Figure 6.2. The new basis functions {B̂0(r,θ), B̂1(r,θ), B̂2(r,θ)} are con-
structed such that they form a basis of a 2D bivariate polynomial of degree 1 at the
singular point. The basis functions for the θ-direction splines which are used in this
solver are therefore {B̂0(r,θ), B̂1(r,θ), B̂2(r,θ)} and

B̂l+3(r,θ) = Bl+2nbθ
(r,θ) ,∀0 ≤ l < (nbr −2)nbθ. (6.5)

The interpolation points remain the same. There are therefore (nbr −1)nbθ+1 inter-
polation points as the singular point only needs to be provided once.
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Figure 6.2.: The radial component of the 2D basis splines of degree 3. The basis-splines
which are replaced by the C1 polar basis functions are shown in red

With the chosen basis functions, Equation (6.1) can be solved using a finite elements
solver by writing the equation in its weak form:

∫∫[
β(r )u(r,θ)B̂l (r,θ)+α(r )∇u(r,θ) ·∇B̂l (r,θ)

]
J dr dθ

=
∫∫

f (r,θ)B̂l (r,θ)Jdr dθ, (6.6)

where J is the determinant of the Jacobian matrix of the coordinate transformation.
The solution u(r,θ), and the right hand side f (r,θ) can be expressed on the same basis
functions, which leads to an expression of the form

u(r,θ) =
nbθ(nbr −2)+3∑

l=0

ul B̂l (r,θ). (6.7)

This allows the system to be expressed using the matrix equation

(M +S) û = M f̂ , (6.8)

where the vectors û and f̂ contain the spline coefficients necessary to represent the
functions u and f on the spline basis, the matrix M , known as the mass matrix, is
defined as

Mi , j =
∫∫

β(r,θ)B̂i (r,θ)B̂ j (r,θ)J dr dθ, (6.9)

and the matrix S, known as the stiffness matrix, is defined as

Si , j =
∫∫

α(r,θ)

[
∑

ξ1∈{r,θ}

∑

ξ2∈{r,θ}

∂B̂i

∂ξ1
(r,θ)g ξ1ξ2

∂B̂ j

∂ξ2
(r,θ)

]

J dr dθ. (6.10)

where g ξ1ξ2 is the scalar product between êξ1 , the unit vector in the ξ1 direction, and
êξ2 , the unit vector in the ξ2 direction. In the case of an orthogonal coordinate system
g r r = g θθ = 1 and g rθ = g θr = 0, however this is not true for an arbitrary coordinate
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system (see Section 5.2.1 for details). The “Culham geometry” which will be considered
in Section 6.6 is an example of a non-orthogonal coordinate system.

The ability to express our problem as a matrix equation is practical as there are many
existing methods for solving such equations. In our work, we use a preconditioned
conjugate gradient method. This is possible as the matrix describing the system is
symmetric positive-definite. The preconditioner used is a Jacobi preconditioner. The
matrix is quite large which could make it costly to store, however the properties of
the basis splines allow us to reduce the storage significantly from [(nbr −2)nbθ+3]2 =
O

(
n2

bθ
n2

bθ

)
elements to (nbr −2)nbθ(2 ·dr +1)(2dθ+1)+9+6nθdr =O (nbr nbθdr dθ).

This reduction is done by remarking that each 1D b-spline only overlaps with d

b-splines to its left, and d b-splines to its right. In order to use this fact the matrix
defining the system H = M +S is expressed in block-format:

H =
(

H1 H2

H3 H4

)
(6.11)

with H1 ∈R3×3 handling the terms containing only the central C1 basis splines, H2 ∈
R

3×(nbθ(nbr −2)) and H3 ∈ R(nbθ(nbr −2))×3 handling the terms containing both central
C1 basis splines and the other splines, and H4 ∈R(nbθ(nbr −2))×(nbθ(nbr −2)) handling the
terms containing only basis splines defined as a product of 1D basis splines. The
elements of H4 are therefore expressed as:

H4 = H4,i , j (B̂i , B̂ j ) = H4,i , j (bk,dr
bl ,dθ

,bm,dr
bp,dθ

) = H4,k,l ,m,p (6.12)

with i = kncθ+ l and j = mncθ+p. The sparsity is such that:

H4,k,l ,m,p 6= 0 ∀k +dr ≤ m ≤ k −dr ,∀l +dθ ≤ p ≤ l −dθ (6.13)

Similarly H2 and H3 can be expressed using three indices (i , j ,k) corresponding to the
C1 basis spline, the radial 1D spline, and the poloidal 1D spline. The sparsity is such
that:

H2,i , j ,k = H3,i , j ,k = 0 ∀ j > dr (6.14)

6.2.1. Preconditioners

In this work the Jacobi preconditioner is used. This is quite a simple preconditioner
and is therefore not expected to be the best preconditioner possible. Multiple different
preconditioners were tested for this problem, however unfortunately none of those
tested produced improved results. In this section we summarise the preconditioners
that have been tested thus far.

In general these preconditioners will take the following form:

(
PH1 0

0 PH4

)
(6.15)
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where PH1 and PH4 are respectively the preconditioner for H1 and H4. PH1 is typically
either the inverse of the diagonal of H1 or is simply the inverse of H1 (easy to calculate
as H1 has only 9 elements).

Our aim is therefore to find a matrix which is sufficiently similar to H4 while also
being easily invertible.

6.2.1.1. Jacobi Preconditioner

This is the simplest preconditioner to implement. The preconditioner is the following:

(
diag(H1)−1 0

0 diag(H4)−1

)
(6.16)

The use of this preconditioner approximately reduces the number of iterations by a
factor 2.

6.2.1.2. FFT Preconditioner

This preconditioner is based on the idea that equidistant splines have the same shape.
We therefore wish to approximate H4 by a blockwise circulant matrix with circulant
blocks. If the hypothesis is valid then we expect that this matrix will only differ from
H4 in the boundary regions. This preconditioner is based on work by Kormann and
Sonnendrücker 2021. To increase the chances that the values on the diagonals of the
matrix are the same this preconditioner will not approximate the problem matrix H4

but rather a normalised version of this matrix:

Ĥ4 = diag(H4)−
1
2 H4diag(H4)−

1
2 (6.17)

Once Ĥ4 has been constructed the preconditioner is constructed from one of its
lines. The blockwise circulant matrix approximation with circulant blocks can be
easily inverted using 2d Fourier transforms.

Experiments show that this method works effectively for the mass matrix but is
ineffective when dealing with the stiffness matrix or a linear combination of the two
matrices. This is presumably due to the fact that the hypothesis of the same values
on the diagonals of the matrix is not valid (even after renormalisation using a Jacobi
preconditioner) in non-cartesian geometry.

6.2.1.3. FFT Banded preconditioner

As the circulant hypothesis is invalid in the radial direction another possibility is to use
the assumption in the poloidal direction only. This simplifies the problem such that
instead of solving a matrix equation with (nbr −2)nbθ× (nbr −2)nbθ terms, we are able
to solve nbθ problems involving (nbr −2)× (nbr −2) sized banded matrices. Solving a
reasonably sized banded matrix can be carried out easily using LAPACKAnderson, Bai,
Bischof, et al. 1999. This solution works well for mass matrices and for the stiffness
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matrix in the case of circular geometry. However for other arbitrary geometries, such
as the ones that we will use in Sections 6.5 and 6.6, the metric tensor term gs,θ is not
necessarily 0. In this case this solution is no longer helpful.

6.2.1.4. Mass matrix as a preconditioner

Some papers suggest using the mass matrix as a preconditioner. This was tried briefly
on a small test case but did not yield useful results. It also seems problematic as the
mass matrix does not necessarily have an easily invertible form.

6.3. GmgPolar

In the design of the Geometric multigrid solver for curvilinear coordinates (GmgPolar)
solver in Kühn, Kruse, and Rüde 2021; Martin J Kühn, Kruse, and Rüde 2022; Martin
Joachim Kühn, Leleux, Kruse, et al. 2021, the authors focused on an interplay of a
cheap discretisation technique with possible convergence to a higher order, and a
fast solver for the solution of the linear system. A finite differences discretisation with
the possibility for a matrix-free implementation was chosen, including an implicit
extrapolation technique to increase the convergence order from 2 to 3 or 4. For
the solution of the obtained linear system, a tailored multigrid (MG) method was
developed. Multigrid methods exhibit low computational complexity, and can achieve
high parallelism (Trottenberg, Oosterlee, and Schuller 2000). The family of geometric
multigrid methods relies on mesh information, and is defined on a hierarchy of grids.
Their design in the context of curvilinear coordinates was studied, e.g. in Barros 1988,
and then generalised to curvilinear geometries in Martin J Kühn, Kruse, and Rüde
2022. In this section, we first briefly summarise the symmetric discretisation scheme
for the Poisson-like equation, then we describe the corresponding geometric multigrid
scheme introduced in Kühn, Kruse, and Rüde 2021; Martin J Kühn, Kruse, and Rüde
2022.

As in the case of the spline FEM solver, GmgPolar is defined on the domain rep-
resented by the curvilinear coordinates (r,θ). A standard 9-point finite differences
discretisation of the partial differential equation (6.1) on the curvilinear domain would
lead to a non-symmetric matrix. Since symmetric matrices are numerically advanta-
geous, we instead discretise the energy functional

J (u) :=
∫

Ω

(
1

2
α|∇u|2 + 1

2
βu2 − f u

)
d(x, y), (6.18)

related to Equation (6.1) over a suitable Sobolev space incorporating the boundary con-
ditions uD . Here, d(x, y) is the corresponding measure on Ω. This energy functional-
focused approach maintains the symmetry of the matrix even for anisotropic grids,
and yields a quadratic discretisation error. For more details, including the stencils in
explicit form, see Kühn, Kruse, and Rüde 2021. In addition to this finite differences
discretisation, we include a technique called implicit extrapolation. This technique
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was introduced by Jung and Rüde in Jung and Rüde 1998 for a finite element discreti-
sation on a hierarchical grid. In this approach, the system matrix is computed using
a non-standard numerical integration rule and restructured, so that the obtained
matrix is equivalent to the one obtained by the discretisation with quadratic finite
elements. As a result, cubic convergence can be proven without having the extra cost
from applying the numerical integration of the quadratic basis functions. In practice,
we often even observe the convergence order 4. The application of that same idea to
the finite differences scheme yielded similar results, see Martin J Kühn, Kruse, and
Rüde 2022. For a more detailed motivation of the implicit extrapolation, see Schwarz
2021, Sec. 4.5 and the references therein. In both cases, with and without extrapola-
tion, we obtain a matrix A ∈R

m×m with the size m = nr ·nθ, where nr is the number of
nodes in the r -direction, and nθ is the number of nodes in the θ-direction.

As additional requirement, the singularity at the origin of the mapping can also
be handled. One option to circumvent this problem is the enforcement of Dirichlet
boundary conditions on some small r0 > 0. However, as this information is often
synthetic and not available, another option is introduced. In Kühn, Kruse, and Rüde
2021, the heuristic discretisation approach “across the origin” was proposed. There,
the origin is not chosen as a particular node of the mesh. Instead, the finite differences
stencil for all points with (r0,θ), r0 > 0, is extended across the origin. In Martin J Kühn,
Kruse, and Rüde 2022, it was shown that this approach yielded the same convergence
order as with Dirichlet boundary conditions on the innermost circle if r0 is reasonably
small, e.g. r0 = 10−3.

As described above, a geometric multigrid method is applied to obtain an efficient
solver with low memory requirements. As described in Section 6.1, the grid is obtained
from a uniform refinement in each direction, and possible radial or poloidal additional
refinement in order to take into account variations in the coefficient α(r ) or the solu-
tion of Equation (6.1). One last uniform refinement is finally applied such that a node
is added in the middle of all the intervals in r - and θ-directions. With this additional
refinement, we obtain a locally structured grid, allowing a natural integration of the
implicit extrapolation in the multigrid scheme (Jung and Rüde 1998; Martin J Kühn,
Kruse, and Rüde 2022). We thus obtain a grid with nr and nθ nodes in the radial and
poloidal directions respectively, i.e. in total there are again m = nr ·nθ nodes in the
grid. To apply the multigrid scheme, we do not need one mesh but a set (or hierarchy)
of meshes. Let us denote the finest level in the multigrid hierarchy of GmgPolar, the
initial mesh introduced before, by Ω1. Then, a hierarchy of l > 1 nested grid levels Ωl

are defined. These domains Ωl are built using successive coarsening steps, i.e. such
that Ωl+1 ⊂Ωl . We use standard coarsening by keeping points at r = r0 and r = a, then
taking one point over two in both directions of the polar plane.

The prolongation operator P l
l+1 which transfers the information between the con-

secutive grid levels l +1 and l is defined using bilinear interpolation for anisotropic
meshes. The restriction operator from grid level l to l +1 is defined using the varia-

tional property R l+1
l

= P l
l+1

T
(Briggs, Henson, and McCormick 2000).

For the problem of interest, but also for standard polar coordinates, standard coars-
ening combined with point smoothers is not efficient enough, partly due to the high
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anisotropy of the problem represented with curvilinear coordinates. Hence, special
care has to be taken to define each one of the multigrid components. One way to im-
prove a multigrid solver is to use semi-coarsening in the direction of anisotropy (Trot-
tenberg, Oosterlee, and Schuller 2000). Since in our approach we focus on standard
coarsening techniques, the other possibility is to improve the smoothing procedure.
Line smoothers such as circle (or radial) relaxation relax all the degrees of freedom
(DOFs) of a circle (radius), i.e. DOFs with a constant radius r (angle θ). Note that we
use the term circle or radius here although for deformed geometries one line does not
represent a circle with constant radius. This means that we denote by a circle, a line of
nodes (r,θ) with r constant.

Based on Barros 1988, it can be shown that the smoothing factors obtained with such
relaxation schemes highly depend on the position in the domain. In particular, a circle
line smoother is efficient on the interior of the domain, and a radial line smoother
is efficient on the exterior part. This is explained by the fact that polar (or certain
curvilinear) transformations imply strong connections between DOFs on circle lines
on the interior part of the circular domain, and strong connections between DOFs
on radial lines on the outer part. To address this problem, the type of smoother is

switched from circle to radial for nodes where
k j

hi
ri > 1 with ri the radius, hi the next

radial interval, and ki the next poloidal interval. This is a simple heuristic obtained
from the analytical expression of the smoothing factor in Barros 1988, and has been
empirically shown to be the best choice also in our case, see Martin J Kühn, Kruse, and
Rüde 2022. In the implementation of GmgPolar, we thus partition the domain into
two subdomains, corresponding to each smoother coloured alternatingly in black and
white. When using compact stencils for each smoother, as it is the case here, all lines
with the same colour are then independent, see Figure 6.3. This is useful to obtain a
partial parallelisation of the combined relaxation method.

Figure 6.3.: The circular domain is split in two subdomains (shown with light grey
and dark grey background colours) depending on the use of a circle line
smoother (dark grey) and a radial line smoothing (light grey). The nodes
on these subdomains are coloured alternatingly in black and white. Corre-
sponding colouring schemes are used for deformed geometries such as
Figure 6.6a or Figure 6.6b.
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The resulting smoother is an alternating zebra relaxation consisting in the succes-
sive application of the circle and radial smoothers, similar to a block Gauss-Seidel
method, with a parallel handling of black and white coloured lines. Note that the two
subdomains could also be smoothed in parallel, similarly to a block Jacobi method.
However this leads to slightly worse iteration numbers, and a similar speed-up can
be obtained with partial parallelisation, see Martin J Kühn, Kruse, and Rüde 2022. To
apply the block Gauss-Seidel type of smoother, small linear systems must be factorised
(once) and solved, each corresponding to one circle or radial line, and this can also be
performed in parallel. When using the "across-the-origin" discretisation, the linear
system solved in the smoother for the first circle of the polar plane produces a large
fill-in upon factorisation, which can affect the performance of the solver. In order to
mitigate this downside, we handle the corresponding system using the state-of-the-art
sparse direct solver MUMPS1(Amestoy, Duff, L’Excellent, et al. 2001), with the version
5.4.1.

Based on all of the previous elements, the multigrid scheme, possibly combined
with an implicit extrapolation (Jung and Rüde 1998; Martin J Kühn, Kruse, and Rüde
2022) that only needs to act between the two finest grids, uses a traditional V-cycle. The
observed convergence order when using implicit extrapolation is up to 4, see Martin J
Kühn, Kruse, and Rüde 2022. The asymptotic complexity of GmgPolar can be shown
to be optimal, i.e. linear with respect to the size of the matrix, in the sense that

• the convergence of the multigrid scheme is mesh-independent as shown empiri-
cally in Martin J Kühn, Kruse, and Rüde 2022.

• the computational and memory complexities are linear, except for the cost of
the coarsest grid correction which becomes negligible when enough levels are
used in the multigrid hierarchy. This is shown in Martin Joachim Kühn, Leleux,
Kruse, et al. 2021. We use the direct solver MUMPS to solve the system on the
coarsest level.

The main implementation of the GmgPolar solver follows a matrix-free scheme,
i.e. the matrices are not assembled but constructed and applied on-the-fly. The
solver also include the possibility to use matrices which are fully assembled during
the initialisation phase.

6.4. Embedded boundary solver based on AMReX

An alternative possibility to handle partial differential equations in complex geome-
tries is to use a simple Cartesian mesh, and to cut out the computational domain
based on a level set function defining the interior, boundary, and exterior of the do-
main. Compared to the use of a curvilinear mesh, this approach yields a simpler
structure and operations related to the coordinate transformation are avoided. Most
importantly however, there is no need for a single coordinate transformation, so more

1http://mumps.enseeiht.fr/
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complex geometries—like an X-point geometry—can be handled in the same way.
Several approaches of such embedded boundary methods have been proposed in re-
cent years, including approaches based on finite volumes (Johansen and Colella 1998;
Berger and Helzel 2012), the cut finite elements method (Burman, Claus, Hansbo,
et al. 2015), and the finite cell method (Parvizian, Düster, and Rank 2007). The AM-
ReX library (AMReX Development Team, A. Almgren, Beckner, et al. 2022; al. 2019)
implements a finite volume solver based on the work of Johansen and Colella 1998.
The discretisation is based on a box that includes the full physical domain. Then,
the physical domain is cut out of the box by finding the intersections of the domain
boundary and the cell boundaries. The physical domain is finally represented by
the piecewise linear representation connecting the intersection points with the cell
boundaries. Figure 6.4 illustrates the situation.

F
eb
i,j

Ui,j+1 Ui+1,j+1

Ui+1,jUi,j

Fi,j+1/2

Fi+1/2,j

Figure 6.4.: Illustration of the finite volume approach with embedded boundaries.
The shaded part of the cells is inside, the white part outside of the domain.
The fluxes through the boundary of the lower left cell are shown.

For the finite volume solution, Equation (6.1) is reformulated as follows by integrat-
ing over one cell. Let Ui , j ≈ u((i −1/2)∆x, ( j −1/2)∆y) be the value in the middle of
the cell (i , j ) of the Cartesian grid. Then, the differential operator L in Equation (6.1)
is discretised as

(LU )i , j =− 1

∆x∆y

(
Fi+1/2, j −Fi−1/2, j +Fi , j+1/2 −Fi , j−1/2

)
+β(xi , y j )Ui , j , (6.19)

where ∆x, ∆y are the length of the cell in x and y , respectively, and the fluxes Fi+1/2, j

at the cell boundary point (xi + ∆x
2 , y j ) are given as

Fi+1/2, j =∆y α(xi+1/2, y j )
Ui+1, j −Ui , j

∆x
. (6.20)

For cells that are cut by the boundary, this formula has to be modified to account for
the volume fraction Λi , j included in the physical domain, the area fraction ai+1/2, j

of the face (i +1/2, j ), called aperture, as well as the addition face defined by the line
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connecting the intersection points of the cell boundaries and the physical boundaries.
The approximation of the operator in Equation (6.19) is modified on the partially
covered cells to

(LU )i , j =− 1

∆x∆yΛi , j

(
Fi+1/2, j −Fi−1/2, j +Fi , j+1/2 −Fi , j−1/2 −F eb

i , j

)
+β(xi , y j )Ui , j .

(6.21)
For the fraction on the cell boundary, the modified flux formula is given as

Fi+1/2, j = ai+1/2, j∆yαm

(
1+ai+1/2, j

2

Ui+1, j −Ui , j

∆x
+

1−ai+1/2, j

2

Ui+1, j+1 −Ui , j+1

∆x

)
,

(6.22)
where αm is a linear interpolation of the value of α at the midpoint of the partial
cell boundary. The flux through the boundary F eb

i , j
is computed from the value at the

boundary and a linearly interpolated value along the first intersection of the inward-
pointing normal and a cell-boundary. The fluxes are illustrated in Figure 6.4. Note
that this approximation of the flux is only first order accurate, while the rest of the
method is second order accurate. Johansen and Colella 1998 have proposed a second
order reconstruction of the flow through the boundary. However, we use the first order
version, as we rely on AMReX which only implements this version. The complete
solver is observed to have second order despite the reduced order on the 1D curve.
The resulting system is then solved based on a matrix-free geometric multigrid solver
with a Gauss–Seidel smoother and a biconjugate gradient stabilised coarse grid solver.
The solver can handle any number of points, however, a ratio of 2 between various
levels is fixed. On a uniformly refined grid, let the number of cells per direction be
given as n = 2l m, where m is not divisible by 2. This means, the number of levels in
the multigrid solver is restricted to l at most and the coarse grid solver has to solve a
system with at least m points in this direction. If the number m becomes too large,
the convergence of the coarse grid solver can become slow and the complete solver
is inefficient. Patches containing multiple grid cells can be further refined where
a maximum refinement ratio of 1:4 is enforced on boundaries of different levels of
refinement. The reflux coarse-fine boundary update that is implemented in AMReX to
enable multigrid solution with refined patches is described in A. S. Almgren, J. B. Bell,
Colella, et al. 1998.

An important ingredient in the construction of the problem is the definition of the
level set function to find the intersection of the physical boundary with the cells of
the computational grid. For the mappings considered in this chapter, the boundary
corresponds to a level set r = a of a radial mapping of the form

(x, y) = F (r,θ).

Both the coefficients α and β in Equation (6.1) and the right-hand-side are given
as functions of (r,θ), which is the usual case in the context of the GYSELA code that
uses the curvilinear coordinate system. In order to evaluate the functions at the grid
point and in order to reconstruct the physical boundary, we thus need to invert this
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mapping. In simple cases the inversion can be found analytically, but in general this
needs to be obtained numerically. This is done with a Newton iteration starting from
a good initial guess. As an initial guess, it turns out that a circular mapping around
the singular point F (0,0) is a good guess in a small circle around the singular point.
Further out, we evaluate the mapping on a fine regular grid in (r,θ) and use the closest
point on this grid as a starting guess for the Newton iteration.

6.5. Comparison of the three solvers for the

gyrokinetic Poisson-like equation

We now compare the three solvers on analytical test cases. Our goal is to show the
advantages of each solver and estimate

1. in which conditions each solver should be preferred for use in the GYSELA code,

2. how far is each solver from meeting the requirements of realistic plasma simula-
tions.

The GmgPolar solver follows a matrix-free implementation with two different schemes,
with and without implicit extrapolation (for more details, see Section 6.3). In our
analysis, we consider both cases. In the case of the GmgPolar solver with implicit
extrapolation, we also include performance results for an implementation using fully
assembled matrices, which are stored in memory. Similarly for the Spline FEM solver,
the degree is a parameter of the method and any value can be used. We consider two
configurations, specifically quadratic and cubic splines. Cubic splines are chosen as
the splines used in GYSELA are also cubic (V. Grandgirard, Abiteboul, J. Bigot, et al.
2016). Quadratic splines are chosen to provide a comparison case with an order closer
to that of the other schemes studied. A larger degree could also have been used to
obtain a higher convergence rate. The accuracy order is not configurable in the current
version of the Embedded Boundary solver.

The maximum of the residual is used as the stopping criteria for the iterative meth-
ods used by each solver to solve the linear system that they describe.

6.5.1. Test cases

The solvers will be compared based on several criteria. We expect that different solvers
will be better adapted to different geometries or solutions. Two different analytical
geometries and three different manufactured solutions are therefore used for this
study. In addition we provide analytical definitions of the coefficients α and β in
Equation (6.1). In curvilinear coordinates, these coefficients depend only on the
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radius r . We define the coefficients similarly to Zoni 2019:

α(r ) = exp

[
− tanh

(
r − rp

δr

)]
, (6.23)

β(r ) =−1/α(r ). (6.24)

In contrast to their approach, we consider a steeper gradient δr = 0.05, nearer to the
wall rp = 0.7. This situation is slightly more realistic in the case of a tokamak plasma.
The radial profile of the diffusivity coefficient α(r ) can be seen in Figure 6.5.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

r

α
(r
)

Figure 6.5.: Radial profile of the diffusivity coefficient α(r ) defined in (6.23) for the
gyrokinetic Equation (6.1).

The first geometry is a stretched ellipse with a Shafranov shift defined by the map-
ping

x(r,θ) = (1−E0)r cosθ−δ0r 2,

y(r,θ) = (1+E0)r sinθ,
(6.25)

where E0 is the elongation and δ0 the Shafranov shift. In our investigations, we refer
to this geometry as the “Shafranov” geometry, and use the same parameters as Zoni
and Güçlü 2019: E0 = 0.3, and δ0 = 0.2. The second geometry, originally proposed by
Czarny and Huysmans 2008, has a triangular shape and ellipticity, and is defined by
the mapping:

x(r,θ) = 1

ε

(
1−

√
1+ε (ε+2r cosθ)

)
,

y(r,θ) = y0 +
eξr sinθ

2−
p

1+ε (ε+2r cosθ)
= y0 +

eξr sinθ

1+εx(r,θ)
,

(6.26)

where y0 corresponds to the centre of the mapping, ε is the inverse aspect ratio, e

the ellipticity, and ξ= 1/
p

1−ε2/4. In our investigations, we refer to this geometry as
the “Czarny” geometry, we use the same parameters as Zoni and Güçlü 2019: y0 = 0,
ε = 0.3 and e = 1.4. Figure 6.6 shows the “Shafranov” and the “Czarny” geometries.
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These geometries have previously been investigated by Bouzat, Bressan, Virginie
Grandgirard, et al. 2018 and Zoni and Güçlü 2019.

(a) “Shafranov” geometry defined by
Equation (6.25) with E0 = 0.3 and
δ0 = 0.2

(b) “Czarny” geometry defined by
Equation (6.26) with y0 = 0, ε =
0.3, and e = 1.4

Figure 6.6.: Analytical geometries of the domain for the 2D gyrokinetic Poisson-like
equation.

We now introduce three manufactured solutions which respect the homogeneous
Dirichlet boundary conditions:

1. Polar solution: A solution with oscillations aligned with the polar grid which can
be used as an initial perturbation in the GYSELA code (V. Grandgirard, Abiteboul,
J. Bigot, et al. 2016):

u(x, y) =C (r (x, y))6(r (x, y)−1)6 cos(mθ), (6.27)

where r (x, y) is the radial coordinate defined by the mapping, C = 212 ·10−4 and
m = 11.

2. Cartesian solution: A solution with oscillations aligned with the Cartesian grid:

u(x, y) =C
(
1+ r (x, y)

)6 (
1− r (x, y)

)6
cos(2πx)sin

(
2πy

)
, (6.28)

where r (x, y) is the radial coordinate defined by the mapping, and C = 212 ·10−4.

3. Multi-scale solution: A solution with large oscillations aligned with the polar
grid in the centre, and small oscillations, also aligned with the polar grid, near
the edge region. This solution mimics the physics in a tokamak where large
structures appear near the centre, and smaller structures appear near the edge
(Guilhem Dif-Pradalier, Philippe Ghendrih, Yanick Sarazin, et al. 2022). The
solution is defined as:

u(x, y) = h(r (x, y), 0.45, 0.02)cos(9θ)+h(r (x, y), 0.9, 0.0003)cos(21θ), (6.29)
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where h(r,c, w) is a function, constructed from the Gaussian functions g (r,c, w)
centred on c with standard deviation w . u(x, y) is constructed such that its value
and its first derivative are continuous at the singular point:

h(r,c, w) =g (r,c, w)− r
∂g

∂r
(0,c, w)− g (0,c, w)

+
(
r
∂g

∂r
(0,c, w)+ g (0,c, w)− g (1,c, w)

)
r 2, (6.30)

g (r,c, w) = exp
(
−(r − c)2/w

)
, (6.31)

The right hand side f corresponding to these solutions is obtained analytically. Fig-
ure 6.7 shows the shape of all three solutions on the “Czarny” geometry defined in
Equation (6.26).

(a) Polar solution defined in
Equation (6.27)

(b) Cartesian solution de-
fined in Equation (6.28)

(c) Multi-scale solution de-
fined in Equation (6.29)

Figure 6.7.: Shape of the manufactured solutions on the “Czarny” geometry defined
by Equation (6.26).

We begin by considering four test cases on equidistant meshes: the polar solution
(Figure 6.7a) and the Cartesian solution (Figure 6.7b) defined on both the “Shafranov”
geometry (Figure 6.6a) and the “Czarny” geometry (Figure 6.6b). Following this study,
we will focus on the “Czarny” geometry, which exhibits stronger poloidal anisotropy,
to examine the effects of local grid refinement for the previous solutions as well as the
multi-scale solution (Figure 6.7c).

6.5.2. Accuracy

The results of the L2-error convergence from the application of the three solvers for
the four equidistant cases can be seen in Figure 6.8. In order to ensure that each solver
has converged to the most accurate result possible, the stopping criteria is set to 10−14

for the Spline FEM solver, and 10−11 for the other solvers. The errors are plotted as a
function of

p
N , where N is the total number of points in the simulation (N = Nr Nθ

for the Spline FEM solver and the GmgPolar solver, N = Nx Ny for the Embedded
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(a) Equation (6.27), “Shafranov” geometry
(Equation (6.25))

(b) Equation (6.28), “Shafranov” geometry
(Equation (6.25))

(c) Equation (6.27), “Czarny” geometry
(Equation (6.26))

(d) Equation (6.28), “Czarny” geometry
(Equation (6.26))

Figure 6.8.: L2 error normalised by the ∞-norm of the solution as a function of the
total number of points N , when solving different equations on different
geometries with the five solver configurations.
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Boundary solver), which ensures that the gradient is equal to the order of convergence.
The expected orders of convergence are obtained for all solvers. The Spline FEM
solver converges with an order equal to d + 1, where d is the degree of the spline.
The GmgPolar solver without extrapolation has second order convergence, while the
extrapolation increases the order to 4 for the polar solution, and around 3.5 for the
Cartesian solution. The Embedded Boundary solver has second order convergence. A
larger error is observed for all solvers in the case of the Cartesian solution, defined by
Equation (6.28), even the Embedded Boundary solver despite the fact that it is based
on a Cartesian grid. This is because the coefficients α(r ) and β(r ) are still defined
radially. Thus, the solution is not entirely aligned with a Cartesian grid, but also
contains a radial component. We see that the cubic Spline FEM solver outperforms
the other solvers in terms of L2 error. The GmgPolar solver with implicit extrapolation
provides a similar accuracy to the quadratic Spline FEM solver, outperforming it for
the cases with 512 or more cells.

The choice of the geometry does not seem to influence the accuracy of the solvers,
and it has no effect on the operations performed. As a result, in what follows, we
focus on a single geometry. Specifically, the “Czarny” geometry is used to allow the
investigation of poloidal anisotropy.

The smaller error in the spline case allows fewer points to be used to attain the same
precision as other methods. A smaller number of points can reduce the memory re-
quirements and decrease the execution speed. On the other hand, different resolution
methods have different memory requirements, so the fact that a method requires the
lowest number of points is no guarantee that it will demonstrate the best performance.

6.5.3. Performance

In this section, we compare the memory consumption and execution times of the
three solvers. First, we target a fixed error to be attained, using the lowest number of
points for each solver, to estimate their behaviour in an actual simulation code. Then,
we use fixed problem sizes in order to estimate the computational efficiency of each
solver. Finally, the parallel scalability is detailed for all solvers for a problem of size
4 ·106. The stopping criteria is set to 10−8 for all solvers. The tests were run at the
Centre de Calcul Intensif d’Aix Marseille. The cluster uses Intel Xeon Gold 6142 (Sky
Lake) cores at 2.6 GHz, for a theoretical peak performance of 579 TFLOPS/s. Each of
its 158 compute nodes is a 2-socket system with 192 GB memory, where the 16 cores
of each socket constitute a separate NUMA (non-uniform memory access) domain.
The cluster uses the Intel OmniPath interconnect. All three codes are compiled with
the “-O3” flag, but no further compiler-based optimisations are applied. Execution
times are calculated by taking the average time measured over ten runs.

In the case of the GmgPolar solver, the main implementation follows a matrix-free
scheme, i.e. the matrices required for the multigrid iterations are directly applied
on-the-fly and never stored. In order to highlight the specificities from the matrix-free
implementation, denoted by “matrix-free”, we also include in the following, the results
from an implementation of the GmgPolar solver with extrapolation where the matrices
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are assembled and stored in memory during the initialisation phase, denoted by “with
matrix”.

In order to investigate the performance, in terms of computation and memory cost
as a function of a required error, we must first determine the minimum number of
points required to obtain an error lower than the required error. This is achieved
via a binary search (Knuth 1998). In order to handle the two dimensions the binary
search is carried out while ensuring that there are the same number of points in both
dimensions. Once the smallest number of points respecting this criteria has been
found, a second binary search is carried out along whichever dimension can use fewer
points without the error passing the limit. For the GmgPolar and spline FEM solvers
this is the radial dimension as, due to the curvilinear coordinates, significantly more
points (around a factor of 4) are needed in the θ-direction to correctly model the
solution shown in Figure 6.7a. The Embedded Boundary solver solution is equally
constrained in both dimensions. Experiments have shown that decreasing the number
of points in either dimension leads to the error being exceeded. Both GmgPolar and
the Embedded Boundary solver rely on multigrid methods. To ensure that the required
hierarchy of grids can be constructed using standard coarsening, the number of points
in each direction is chosen such that it can be expressed as NC ·C 2l−1, where l is the
chosen number of levels, NC is the minimum number of points in each direction on
the coarsest grid, generally NC = 2, and C ≤ 5 is not divisible by two.

(a) Memory requirements (b) Serial execution speed

Figure 6.9.: Performance in terms of a) memory requirements and b) CPU time, as a
function of the desired error, for the solution described by Equation (6.27)
on the “Czarny” geometry described by Equation (6.26).

Figure 6.9 shows the serial performance of the different methods as a function of
the required error, for the polar solution, described by Equation (6.27), on the “Czarny”
geometry, described by Equation (6.26). Figure 6.9a gives the memory consumption
for all solvers, with respect to the required error. For target errors smaller than 10−7,
the GmgPolar solver with implicit extrapolation has the lowest memory requirements,
followed closely by the Spline FEM solver requiring around 2 times more memory for
the best accuracy, and finally the Embedded Boundary solver consuming 100 times
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more memory. The low consumption of the GmgPolar solver is mainly due to the
matrix-free implementation in which the matrix operators are constructed on-the-fly
instead of being stored explicitly, as well as the high order of the method. Although
the Embedded Boundary solver is also matrix-free, its definition of the boundary
consumes a large amount of memory. When constructing the matrix in the GmgPolar
solver explicitly, the memory consumption grows 2 times larger, close to the cubic
Spline FEM solver. In the case of the GmgPolar solver without the extrapolation, the
lower order of the method implies the use of more points to attain the same accuracy,
and thus more memory. Figure 6.9a also shows that the Embedded Boundary solver
has a minimum memory usage of around 20MB. This is due to optimisations inside the
AMReX library which allocates memory in batches in order to optimise the memory
management. Similarly, the GmgPolar solver has a minimum memory usage of around
3MB, which corresponds to the initial allocation of the MUMPS library to handle both
the coarsest problem and the singularity of the polar plane in the smoother. The
Spline FEM solver is a high order method requiring a smaller number of points to
attain the same accuracy, and thus uses less memory than the GmgPolar solver for
target errors larger than 10−7.

The serial execution time is also compared. In order to provide the most pertinent
information for an implementation in the GYSELA code where the solver will be exe-
cuted multiple times without modifying the setup, the initialisation phase is excluded
from the execution time. In the execution time comparison, shown in Figure 6.9b,
the smaller number of points required to attain a fixed error leads to the spline FEM
solver showing the best performance. For a required error of 10−8, the GmgPolar solver
with extrapolation is approximately 25 times slower, and the Embedded Boundary
solver is 90 times slower than the cubic Spline FEM solver. In the case of the GmgPolar
solver, the slower execution time is also due to the overhead from the matrix-free
implementation: while we do not need to store the matrix operators of the multigrid
scheme, they must be reconstructed on-the-fly at each step of each iteration, which
is expensive. GmgPolar with extrapolation can be sped up significantly (around 4
times faster) when using the assembled matrix version, denoted by “with matrix”.
The Embedded Boundary solver is slightly faster than the GmgPolar solver for target
errors larger than 10−7 despite requiring at least three times as many points for these
cases. This is due to the fact that the code relies on the heavily optimised AMReX
library(Zhang, A. Almgren, Beckner, et al. 2019). It is important to note that this
speed comparison based on error requirements determined via binary searches is not
the most advantageous for GmgPolar and the Embedded Boundary solver. Both use
multigrid methods to solve the equations which restricts the choice of points found
with the binary search to a multiple of powers of 2 such that an efficient multigrid
preconditioning can be obtained with the current implementations. This number
of points may then be significantly larger than necessary to attain a required error,
compared to the Spline FEM solver which can use the minimum number of points.

In the context of a plasma simulation such as the GYSELA code (V. Grandgirard,
Abiteboul, J. Bigot, et al. 2016), the error arising from the Poisson solver may not be
the limiting factor for the choice of points. Other methods used in the simulation,
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(a) Memory requirements (b) Serial execution speed

Figure 6.10.: Performance in terms of a) memory requirements and b) CPU time, as a
function of the total number of points N , for the solution described by
Equation (6.27) on the “Czarny” geometry described by Equation (6.26).

such as the advection or the collision operators, may be less accurate and require
more points than would be necessary for simply solving the quasi-neutrality equation.
It is therefore equally important to examine the performance as a function of the
number of points. Figure 6.10 shows the serial performance of the different methods
for the solution described by Equation (6.27) on the “Czarny” geometry described
by Equation (6.26), as a function of the problem size. The results for the Embedded
Boundary solver are obtained with nx = ny , where nx and ny are the number of
points in the x and y directions, while the results for the GmgPolar solver and the
Spline FEM solver are obtained with 2nr = nθ, where nr and nθ are the number of
points in the r and θ directions. The ratio 2nr = nθ is chosen to match the usual ratio
used in GYSELA (imposed by physical considerations). All solvers have a memory
consumption growing linearly as the number of points increases, making the memory
requirements easy to predict for larger cases. We see that the GmgPolar solver with
the implicit extrapolation has the lowest memory consumption for problems of size
103 or larger. This memory describes around 10 vectors of size N . On a single node of
the same cluster, with 192GB memory, it would then be possible to solve a problem of
size 109 using the matrix-free GmgPolar solver, of size 107 for the cubic Spline FEM
solver, and of size 108 for the other solvers. In the case of the GmgPolar solver, using
the implicit extrapolation does not increase memory consumption, as the solver still
benefits from the matrix-free implementation. We also provide the requirements for
the assembled matrix version which grow similarly but needs about five times more
memory than the matrix-free version. The memory requirements for the Embedded
Boundary solver are also reasonable, especially for larger cases, with only 3 times more
memory than the GmgPolar solver for the largest size. In contrast, the Spline FEM
solver is very memory heavy, requiring approximately ten times more memory than
the GmgPolar solver. Again, we observe that both the Embedded Boundary solver and
the GmgPolar solver have a minimum memory usage with a plateau for small problem
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sizes.

Figure 6.11.: Execution time to solve for the polar solution described by Equa-
tion (6.27) on the “Czarny” geometry described by Equation (6.26) on
2048×2048 points.

Figure 6.10b shows the serial execution time as a function of the total number
of points N . We see that the Embedded Boundary solver is the fastest, followed by
the GmgPolar solver for problems larger than 105. Using the assembled matrices in
GmgPolar improves the execution times by a factor of seven for the largest problems,
making it less than two times slower than the Embedded Boundary solver. The Spline
FEM solver takes longer to solve larger problems, with the execution time increasing
faster than the other two solvers. The execution times shown for the GmgPolar solver
illustrate the advantage that can be gained by using the largest possible number of
levels.

We now have highlighted the serial performance of each solver in terms of memory
consumption and execution time. However, an effective parallelisation is also a crucial
point for the simulation of large systems. The GmgPolar solver and the Spline FEM
solver use OpenMP to accelerate the code. The Embedded Boundary solver has the
advantage of being based on the parallel library AMReX(Zhang, A. Almgren, Beckner,
et al. 2019). As a result, it can be run with both OpenMP and MPI. Please note that
the matrix-version of GmgPolar has not been well parallelised so far, as the focus
has been the matrix-free version to reduced the memory consumption. It is only
printed for completeness. Figure 6.11 shows the performance of each solver in a
parallel setup for the polar solution described by Equation (6.27) on the “Czarny”
geometry described by Equation (6.26) using 2048×2048 points. Up to 16 threads, the
OpenMP parallelisation of all three solvers show similar speed-ups, then we have a
speed-down when arriving at 32 threads. This speed-down is due to the threads being
placed in separate sockets inside the node when using all 32 threads, which slows
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down the communication between threads, and thus increases the overall execution
time. We see that the Embedded Boundary solver has the most efficient parallelisation
especially when MPI is used, where the speed-up continues to grow further with the
use of 32 processes. This MPI parallelism, makes it the only solver capable of using
more than one node, or efficiently exploiting all 32 threads inside a node.

To summarise, for equidistant points Figure 6.8 shows that the Spline FEM solver
allows us to obtain the smallest errors, and therefore the smallest number of points for
a given error. Thus, Figure 6.9b shows that the Spline FEM solver is the fastest to attain
a specific error. Then, the results from Figure 6.10b show that the Embedded Boundary
solver is the fastest in terms of degrees of freedom per second, with the matrix-version
of GmgPolar coming close for the largest problems considered. Additionally, the
Embedded Boundary solver has the best parallelisation, as illustrated in Figure 6.11.
Finally, the results from Figures 6.9a and 6.10a show that the GmgPolar solver has the
lowest memory requirements when using the matrix-free implementation and, when
used with implicit extrapolation, seems to present a good compromise between a
solution obtained with relatively fast speed, and a high order approximation involving
a small number of points.

6.5.4. Refinement

Having shown that the three methods work as expected for uniform points, we will
now tackle the more complex case of non-uniform points. In the following, we use
three different ways to refine the domain:

1. around a certain radius in order to accurately capture the variations of the
coefficient α(r ), or the variations of the solution (as seen in the multi-scale
solution shown in Figure 6.7c), i.e. a localised radius refinement as shown in
Figure 6.12a.

2. in the θ direction in order to account for the anisotropy introduced by the
curvilinear coordinates, i.e. a localised θ refinement, as shown in Figure 6.12b.

(a) Radial refinement (b) Poloidal Refinement (c) Refinement on Cartesian
patches

Figure 6.12.: Different ways to define and refine grids on the Czarny geometry.
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3. on a specific patch where the error is higher, as shown in Figure 6.12c.

While these additional refinements allow specific effects in the domain to be treated
with a greater accuracy, they also require very specific developments for the discretisa-
tion and the solver. As detailed in Sections 6.2 and 6.3, the Spline FEM solver and the
GmgPolar solver can be refined in the r -direction or the θ-direction. The Embedded
Boundary solver can refine on patches as described in Section 6.4.

As in Section 6.5.2, the stopping criteria is set to 10−14 for the Spline FEM solver, and
10−11 for the other solvers.

Figure 6.13 shows the errors obtained when solving for Equation (6.28) on the
“Czarny” geometry defined by Equation (6.26) with 64× 64 points. This geometry
demonstrates anisotropy due to the triangular shape. Although the small number
of points used in this test case allows a reasonable approximation of the solution to
be obtained (L∞ norm of the error is 3.51 ·10−5 for the Spline FEM solver, 8.29 ·10−4

for the GmgPolar solver, and 7.27 ·10−3 for the Embedded Boundary solver), it is not
sufficient to adequately resolve the equation poloidally. This highlights the anisotropy
problems. The Embedded Boundary solver is unaffected by this as it does not use the
geometry to define the grid, hence the error in Figure 6.13c has a similar shape to that
of the manufactured solution shown in Figure 6.7b. In contrast, the spline FEM and
GmgPolar solvers show increased errors in the negative x region where the poloidal
points are more widely spaced. Poloidal refinement can be used to counteract this
effect. Figure 6.14 shows how the error is affected by adding 50% more points in the
region θ = [−π/4,π/4]. We see that this change is more than sufficient to compensate
the additional error due to the anisotropy for both solvers.

In a tokamak plasma simulation, radial refinement is often desired as the turbulence
is created at larger scales in the central region compared to the edge region (Guilhem
Dif-Pradalier, Philippe Ghendrih, Yanick Sarazin, et al. 2022). In order to examine
this possibility, we will investigate the solution shown in Figure 6.7c and described by
Equation (6.29), which is designed to mimic this situation. The GmgPolar and spline
FEM solvers will use radial refinement in the region r ∈ [0.8,1.0] to handle the steeper
gradients seen in u and f in this region, as shown in Figure 6.12a. The Embedded
Boundary solver will use patches overlapping this region as shown in Figure 6.12c.
Three cases will be compared, the first is the uniform case with no refinement. In this
case, the Embedded Boundary solver will use the same number of points in the x and
y directions. The Spline FEM solver and the GmgPolar solver will use four times as
many points poloidally as radially. In the second case, denoted by “1 refinement”, the
number of points is doubled in the region of interest. The GmgPolar solver needs the
total number of radial points to be a multiple of 2l−1 where l is the number of levels.
To ensure this condition is satisfied, after doubling, the density in the region [0.8,1.0]
is increased until this condition is satisfied. Finally, in the third case denoted by “2
refinements”, the number of points in the region of interest is quadrupled, with similar
adjustments made in the GmgPolar case.

Figure 6.15 shows the convergence of the L∞ norm of the error for this case. We see
that all the solvers benefit from the refinement. The Spline FEM solver introduces the
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smallest number of additional points for the most gain. The quadratic splines show
more impressive results than the cubic splines as the higher order of the cubic splines
means that they already provide an accurate representation of the solution with a
single refinement. Fewer points are introduced here as compared to the GmgPolar
solver as the Spline FEM solver does not have to respect any additional restrictions
regarding the number of points. The Embedded Boundary solver introduces the most
points per level as the patches refine in two dimensions instead of one. Additionally,
in order to refine radially, square patches are chosen which overlap with the desired
domain r ∈ [0.8,1.0]. The refined domain is therefore larger than necessary. As a result,
the large gains obtained for the Embedded Boundary solver through the refinement
do not seem significant, especially in the case of “2 refinements”. Were this method
to be used in a plasma simulation, a study of the choice of the refinement domain
should be conducted to obtain these benefits without increasing the number of points
as dramatically.

Figure 6.16 shows the convergence of the L2 norm of the error for the same case.
The results are similar to the results described for the L∞ norm in Figure 6.15. There is
a notable difference in the case of the Embedded Boundary solver. When examining
the L2 norm in the “2 refinements” case, we see that the increase in the number of
points has very little effect on the L2 norm despite the fact that the L∞ norm decreased.
This is because the area with large errors is quite small compared to the rest of the
simulation. Once the gains have been achieved through the first refinement, further
refinement has negligible effect on the L2 norm as the refined area is no longer a major
contributor to the total error.

Finally in Figure 6.17, the errors for the different solvers are compared. The “2
refinements” case is used for the Spline FEM solver and the GmgPolar solver, however
as the Embedded Boundary solver does not seem to benefit from a second refinement,
the “1 refinement” case is used here. We see that the Embedded Boundary solver is
no longer the least accurate solver. This is due to the advantages that come with the
ability to refine in two dimensions on patches. While the GmgPolar and the Spline
FEM solver can refine poloidally, neither solver can do this exclusively in the outer
region where the smaller scale structures are found.

6.5.5. Code Usability

In addition to the measurable differences which are compared above, there are addi-
tional points which should be taken into consideration when choosing which solver
is best adapted to the GYSELA code. One important consideration is the potential
difficulties which may be encountered when trying to couple the solver to the GYSELA
code. All the solvers use existing libraries. The Embedded Boundary solver is based
on the AMReX library(Zhang, A. Almgren, Beckner, et al. 2019), the Spline FEM solver
is based on the SeLaLib library(SeLaLib Development Team 2018), and the GmgPolar
solver uses the MUMPS library(Amestoy, Duff, L’Excellent, et al. 2001). On some
supercomputers, it can be difficult to access all the necessary tools to couple large
complicated libraries to existing codes. This is especially bothersome in the case of

170



6. Poisson Solver – 6.5. Comparison of the three solvers for the gyrokinetic

Poisson-like equation

codes such as GYSELA which are regularly run on a variety of different machines. In
the case of the SeLaLib library this problem is minimal for two reasons. First, it is not
the whole library which must be coupled, but just the relevant modules. Secondly, the
SeLaLib library was designed to provide modules for the GYSELA code, so a minimum
of intercompatibility is to be expected. In contrast, the AMReX library is quite large
and would need to be fully integrated into the GYSELA code in order to compile and
use the Embedded Boundary solver. This may make it complicated to couple the two.
The MUMPS library would also need coupling, but this library is a common tool which
is pre-installed on most supercomputers.

Another important consideration is the choice of grid points. Only the GmgPolar
solver allows the user to choose exactly where they would like the grid points to be
located. The Embedded Boundary solver requires that the points be equidistant on
each level, although additional refinement can be added on uniform patches. The
Spline FEM solver allows the user to choose the position of the knots of the spline,
but not the position of the points themselves. In special cases (odd degree, uniform
knots), the majority of the interpolation points coincide with the knots, however in the
general case the user defines the knots and the points are deduced as Greville abcissae.
This does however allow the user to specify where there should be refinement. As
the GYSELA code evolves on logical coordinates, this means that only the GmgPolar
code could be coupled to it without requiring additional steps to move between the
points used by GYSELA and the points used by the solver. As the Spline FEM solver
also evolves on a logical grid, the problem could be avoided in this case if GYSELA
decides to define its points as Greville abcissae.

An additional consideration in the choice of grid points is their number. This time it
is the Spline FEM solver which is the least restrictive. As both the Embedded Boundary
solver and the GmgPolar solver use multigrid methods, the number of points in a
given direction n must be chosen to ensure the number of levels l is sufficiently large.
We can determine the maximum number of levels possible for a given problem by
writing the number of points as

n = NC ·C 2l−1, (6.32)

where NC is the minimum number of points in each direction on the coarsest grid,
generally NC = 2, C is a constant not divisible by two. Indeed if C is too large, the con-
jugate gradient method, used to solve the coarsest level in the Embedded Boundary
solver, fails to converge. This must be taken into consideration when choosing the
grid points, and can be an especially cumbersome restriction when trying to add local
refinement. The Embedded Boundary solver avoids this difficulty by defining refine-
ments on patches which are on separate multigrid levels, however for the GmgPolar
solver refinement in a given area is often more complicated than simply doubling
the number of grid points in this area. In contrast, the Spline FEM solver has no
restrictions on the number of knots that can be supplied.
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6.6. Culham Geometry

We will now apply our three solvers to the non-analytical “Culham geometry” (Connor,
Cowley, Hastie, et al. 1988). As mentioned in Section 6.1,this geometry provides a
good description of the cross-section of a tokamak and has been chosen to take into
account more realistic geometry in GYSELA. The geometry of a plasma is defined
through the shape of the magnetic flux surfaces of an MHD equilibrium satisfying
the Grad-Shafranov equation. This geometry is a valid solution to this equation in
the limit ε= a

R0
→ 0, where a and R0 are respectively the minor and major radius of a

tokamak. In this section, we will describe this geometry and show that the solvers all
function correctly on it.

The mapping describes the electromagnetic equilibrium in a tokamak. It is cal-
culated using a Taylor expansion on the small parameter ε≪ 1. As previously, we
will consider normalised coordinates such that a = 1. The terms in the mapping are
accurate to O(ε2). The mapping is defined as follows:

x(r,θ) = r cos(θ)−E(r )cos(θ)+T (r )cos(2θ)−P (r )cos(θ)+δ(r )+R0

y(r,θ) = r sin(θ)+E(r )sin(θ)−T (r )sin(2θ)−P (r )sin(θ)
(6.33)

where E (r ), T (r ), and δ(r ) are functions controlling respectively the elongation, trian-
gularity, and Shafranov shift. These terms are considered to be of order R0ε

2. P (r ) is an
additional term of order R0ε

3 used to ensure that the transformation is quasi-toroidal,
and is defined as follows:

P (r ) = r 3

8R2
0

+ rδ(r )

2R0
− E(r )2

2r
− T (r )2

r
. (6.34)

The geometric properties are defined as follows:

E ′′(r )+
(

1

r
+ 2 f ′(r )

f (r )

)
E ′(r )−3

E(r )

r 2
= 0, (6.35)

T ′′(r )+
(

1

r
+ 2 f ′(r )

f (r )

)
T ′(r )−8

T (r )

r 2
= 0, (6.36)

δ′(r ) =− 1

R0r 2 f (r )2

(∫r

0
r ′ f (r ′)2dr ′−

∫r

0

2r ′2µ0p ′(r ′)

B 2
0

dr ′
)

, (6.37)

where µ0 is the magnetic constant, p(r ) is the plasma pressure, and f (r ) and B0 are
terms used to define the magnetic field B(r ):

B(r ) = B0R0
(

f (r )êθ+ g (r )êφ
)

, (6.38)

where êθ and êφ are the unit vectors in the poloidal and toroidal directions. The inte-
gration constants of the functions E (r ), T (r ) and δ(r ) are defined using the constants
CE and CT such that E(a) =CE , T (a) =CT , and δ(a) = 0.

The functions f (r ) and g (r ) are approximated from the following system of equa-
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tions:

f (r ) = ζ(r )g (r ), (6.39)

ζ(r ) = r

q(r )R0
, (6.40)

g ′(r ) =

(
ζ(r )

r
+ζ′(r )

)
g (r )+ µ0p ′(r )

B 2
0 p0 f (r )

ζ(r )+ 1
f (r )

, (6.41)

where q(r ) is the classical safety factor in the large aspect ratio approximated by the
following equation:

q(r ) = q0 + (qa −q0)r 2, (6.42)

where q0 = q(0) and qa = q(a). In our investigations, we will use the following defini-
tion of the plasma pressure:

p(r ) = pa + (p0 −pa)
(
1− r 2)γ , (6.43)

where γ is a constant, and p0 and pa are the pressures at respectively r = 0 and
r = a. Equations (6.35), (6.36), and (6.41) are solved using a fourth order Runge-Kutta
method with 1000 equidistant radial points and the following initial conditions:

E(r0) = r0, (6.44)

E ′(r0) = 1, (6.45)

T (r0) = r 2
0 , (6.46)

T ′(r0) = 2r0, g (r0) = 1. (6.47)

The integrals required for the definition of the Shafranov shift are calculated using the
trapezoidal rule. Values not on the final grid of calculated values are calculated using
linear interpolations.

In order to test the three solvers, we will use the values in Table 6.2 as the parameters
defining the “Culham geometry”.

Ea 0.25 Ta 0.1 q0 0.8 qa 0.7 γ 1.0
p0 105 pa 104 B0 1.0 R0 5.0

Table 6.2.: Parameters used to define the “Culham geometry” in Equations (6.33) -
(6.43)

Figure 6.18 shows the result of solving Equation (6.1) with α(r ) defined by Equa-
tion (6.23), β(r ) = 1/α(r ), and the right hand side f (x, y) defined in the same way as
the solution in the multi-scale example defined in Equation (6.29). The experiment
is run with a number of points similar to a typical GYSELA simulation, i.e. 512 radial
points and 1024 poloidal points. In the case of the Embedded Boundary solver which
does not use curvilinear coordinates and therefore does not have a dimension requir-
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ing more points, 1024 points are used in both the x-direction and the y-direction. As
the Embedded Boundary solver has larger errors than the other solvers, in a produc-
tion code it is likely that we would take a cautious approach by using more, rather
than fewer points. In addition, the Embedded Boundary solver is fast with reasonable
memory consumption so using more points is not excessively restrictive.

Code Number of Points Max Memory (MB) Time (s)

Spline FEM solver

degree 2
512×1024

792.0 53.23±0.64
degree 3 1357 75.36±0.56

GmgPolar solver

no extrapolation, matrix-free
512×1024

147.5 16.23±0.02
implicit extrapolation, matrix-
free

128.6 40.21±0.04

implicit extrapolation, with
matrix

268.8 1.41±0.09

Embedded Boundary solver 1024×1024 396.6 1.53±0.01

Table 6.3.: Comparison of the performance of the three solvers on the “Culham geom-
etry” with the right hand side defined by Equation (6.29).

Table 6.3 shows the results from using the three solvers. As in Section 6.5, we observe
that the GmgPolar solver has the lowest memory requirements, and the Embedded
Boundary solver is the fastest. The GmgPolar solver could be sped up to a similar
execution time as the Embedded Boundary solver by using assembled matrices, at
the price of a greater memory consumption. The error cannot be evaluated for this
case as the exact solution is unknown. All solvers produce comparable results, with
the same L∞ norm of the solution: 1.30 ·10−3.

6.7. X-Point Geometry

Ideally, tokamak simulations would like to model not just the core, but also the edge of
the plasma. This introduces two additional problems which have not been considered
in the rest of this chapter. Firstly, the boundary can have a more complicated shape.
It will not follow the geometry of the system, which is chosen to describe the closed
magnetic field lines. The Spline FEM solver and the GmgPolar solver in their current
form cannot describe a boundary with a more complex geometry without additional
developments. However, the embedded boundary used by the Embedded Boundary
solver is specifically designed to handle this problem.

For simulations reaching the edge of the plasma, the magnetic field lines are not
all closed. At the transition between open and closed field lines, a second singular
point appears. This is the source of the second problem. However, this problem
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only becomes critical if the singular point appears explicitly in the mapping. If the
GmgPolar solver or the Spline FEM solver were modified to include a method for
handling the boundary, then they would extend the chosen curvilinear coordinate
system outwards. As these coordinates do not have a singular point at the so called
x-point, the singularity should not be problematic. However, the choice of these
curvilinear coordinates is somewhat arbitrary outside the LCFS where they no longer
describe the magnetic field lines.

Figure 6.19 shows the results obtained using the Embedded Boundary solver with
a right hand side defined by Equation (6.29). In the central region, the geometry is
approximated by the “Culham geometry”. In the outer region, including the divertor
region, a constant extrapolation of α(r ), β(r ) and f (x, y) is used to define the values.
The boundary is defined using the analytical solution to the Grad–Shafranov equation
proposed by Cerfon and Freidberg 2010. The configuration representing a lower single
null National Spherical Torus Experiment (NSTX)-like equilibrium is chosen. The final
boundary is obtained by adding a buffer of size 0.15 around the equilibrium. The
equation describing the equilibrium is detailed in D.

As we can see the boundary is not convex. This presents difficulties for the em-
bedded boundary scheme. In each cell, it is assumed that the boundary can be
approximated by a straight line. This assumption breaks down at the inflection points
near the X-point. To generate the results shown in Figure 6.19, the grid was carefully
chosen such that the inflection points are found on the grid. This avoids the problem
but is not ideal as the points must be known to a high precision. Additionally, as
three points must be found on the grid it puts large constraints on the choice of grid.
As mentioned previously, the total number of points n in a direction is written as
n = C 2l−1 where C is as small as possible. Therefore, the position of the inflection
points dictates the boundaries of the simulation. Furthermore, as the points must be
on grid points at each viable level, the total number of levels is also restricted.

In order to use a X-point boundary in a plasma simulation, methods capable of
handling convex boundaries and their effects on the convergence should be investi-
gated. Other codes handling X-point geometry have also encountered these problems.
In Jorek (Hoelzl, G.T.A. Huijsmans, Pamela, et al. 2021), flux-surface aligned grids
are used to avoid this problem. The domain is split into multiple patches to avoid
handling open and closed field-lines simultaneously. In Soledge3X (Bufferand, Balbin,
Baschetti, et al. 2022) the boundary is represented by a step function following the
edges of the cells. This could be implemented using the Embedded Boundary solver,
however this method may have an effect on the convergence, especially in the case
of a multigrid method which will struggle to describe the geometry effectively with a
0-th order method on the least refined levels. Further investigations should therefore
be conducted to determine the method the best adapted to the methods presented in
this chapter.
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Conclusion

We have presented three solvers for the gyrokinetic Poisson-like equation defined
by Equation (6.1) on geometries of increasing complexity, which represent a polar
cross-section of a tokamak reactor. The two most common choices of coordinates
in tokamak simulations were considered, namely Cartesian coordinates, and flux-
aligned curvilinear coordinates; the latter introduce an artificial singularity at the
magnetic axis which requires special care. The first solver, known as the Spline FEM
solver, uses isogeometric analysis, in other words spline finite elements, on a geometry
defined through a spline mapping, parameterised with the aforementioned curvilinear
coordinates. The singularity at the pole is handled through the use of so-called “polar
splines” which ensure C 1 smoothness of the solution. This allows the scheme to have a
flexible order of convergence which depends on the degree of the splines. The matrices
are solved using a preconditioned conjugate gradient scheme. The second, known
as the GmgPolar solver, uses finite differences to solve the equation on curvilinear
coordinates. The resulting matrices are solved using a multigrid method with the
possibility to use an implicit extrapolation scheme to increase the approximation
order of the method. The singular point is handled through the discretisation. Finally,
the third solver, known as the Embedded Boundary solver, uses second order finite
volumes to solve the equation on Cartesian coordinates. This choice of coordinates
does not lead to an artificial singularity but means that the boundaries are no longer
found at the grid points. Instead, the physical boundary is defined by an embedded
boundary approach. The resulting linear system is then solved with a geometric
multigrid method in a matrix-free implementation.

Performance and error criteria were used to compare these solvers on analytical
problems and more realistic cases including the so-called “Culham geometry” (Con-
nor, Cowley, Hastie, et al. 1988), and an X-point boundary. The Embedded Boundary
solver was found to be the fastest and have the most effective parallelisation (due to
its implementation using the AMReX library (Zhang, A. Almgren, Beckner, et al. 2019)).
The Spline FEM solver was found to reduce the error the most thanks to its higher
order scheme, although this did not necessarily compensate for its heavy memory
usage and slow execution time. It is possible that improvements could be made on this
aspect, for example by using an efficient sparse solver instead of the preconditioned
conjugate gradient method. The GmgPolar solver was found to have the smallest
memory requirements thanks to its matrix-free implementation, and is a compromise
between relatively fast execution and high order of approximation. If the focus is
on execution speed and memory limitations are not crucial, the assembled matrix
version of GmgPolar solver may be favourable as it speeds up the serial execution by a
factor of seven.

All three solvers allow refinement in troublesome areas. In the GmgPolar solver
and the Spline FEM solver this is achieved by allowing non-uniform points in the
polar coordinates. In the Embedded Boundary solver this is achieved via patches.
The Spline FEM solver was shown to benefit the most from additional refinement,
but all solvers demonstrated improved performance when refining in numerically
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troublesome areas.
While all solvers were capable of handling the realistic “Culham geometry”, at this

stage only the Embedded Boundary solver was capable of handling an X-point geome-
try. A small example was presented in Section 6.7, however this served to highlight a
difficulty facing any solver which aims to tackle this geometry in a simulation code;
namely the handling of a concave boundary.

Our conclusions so far concern the state-of-the-art of the three solvers and their
current implementation. The results suggest that high order and efficient solution
of the linear system—both in terms of algorithm and implementation—are two key
ingredients for an efficient solver. We note also, that each of the three solvers presented
can be improved in at least one of these two directions.
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(a) Cubic Spline FEM solver,
the L∞ norm of the error
is 3.51 ·10−5

(b) GmgPolar solver, the L∞
norm of the error is 8.29 ·
10−4

(c) Embedded Boundary
solver, the L∞ norm of
the error is 7.27 ·10−3

Figure 6.13.: The error, normalised by the ∞-norm of the solution, obtained when
solving for Equation (6.28) on the Czarny geometry defined by (6.26) with
64×64 points.
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(a) Cubic Spline FEM solver, the
L∞ norm of the error is 1.29 ·
10−5

(b) GmgPolar solver, the L∞
norm of the error is 6.91·10−4

Figure 6.14.: The error, normalised by the ∞-norm of the solution, obtained when
solving for Equation (6.28) on the “Czarny” geometry defined by (6.26)
with 64 uniform points in the r -direction and 72 non-uniform points
in the θ-direction. The additional points are added such that the point
density is 50% larger in the region θ = [−π/4,π/4]
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(a) Quadratic Spline FEM
solver

(b) Cubic Spline FEM solver

(c) GmgPolar solver without
extrapolation

(d) GmgPolar solver with im-
plicit extrapolation

(e) Embedded Boundary
solver

Figure 6.15.: L∞ norm of the error, normalised by the ∞-norm of the solution, ob-
tained when solving for the multi-scale solution described by Equa-
tion (6.29) on “Czarny” geometry described by Equation (6.29) with re-
finement on the domain r ∈ [0.8,1.0]. Results for the same grid before
and after refinement in the region r ∈ [0,0.8] are joined by dashed grey
lines.
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(a) Quadratic Spline FEM
solver

(b) Cubic Spline FEM solver

(c) GmgPolar solver without
extrapolation

(d) GmgPolar solver with im-
plicit extrapolation

(e) Embedded Boundary
solver

Figure 6.16.: L2 norm of the error, normalised by the ∞-norm of the solution, obtained
when solving for the multi-scale solution described by Equation (6.29)
on “Czarny” geometry described by Equation (6.29) with refinement
on the domain r ∈ [0.8,1.0]. Results for the same grid before and after
refinement in the region r ∈ [0,0.8] are joined by dashed grey lines.
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(a) L2 error (b) L∞ error

Figure 6.17.: Errors, normalised by the ∞-norm of the solution, when solving for
Equation (6.29) on “Czarny” geometry defined by Equation (6.26) with
different amounts of refinement in the region r ∈ [0.8,1.0]. The Spline
FEM solver and the GmgPolar solver are four times more refined radially
in the region r ∈ [0.8,1.0] than in the region r ∈ [0,0.8]. The Embedded
Boundary solver is twice as refined in both directions in the region r ∈
[0.8,1.0].
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(a) Solution calculated on “Culham geome-
try” with the Spline FEM solver

(b) Solution calculated on “Culham geome-
try” with the GmgPolar solver

(c) Solution calculated on “Culham geome-
try” with the Embedded Boundary solver

Figure 6.18.: The solution to Equation (6.1) with α(r ) defined by Equation (6.23),
β(r ) = 1/α(r ), and the right hand side f (x, y) defined in the same way as
the solution in the multi-scale example defined in Equation (6.29) on the
“Culham geometry”.
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Figure 6.19.: The solution obtained when solving Equation (6.1) with the right hand
side defined by Equation (6.29) on an X-Point configuration with 256
points in the x-direction, and 256 points in the y-direction
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7. Conclusion

In this thesis I have explained my contributions towards the exascale version of the
GYSELA code (V. Grandgirard, Abiteboul, J. Bigot, et al. 2016). This future version of
GYSELA includes a treatment of both the core and edge regions of the plasma. In the
edge region, two problems arise that have been neglected in the GYSELA code up to
now. Firstly there are steeper gradients (Guilhem Dif-Pradalier, Philippe Ghendrih,
Yanick Sarazin, et al. 2022), and secondly the geometry can rarely be realistically
modelled by a circular geometry. This thesis fits into this context and discusses
potential solutions to these problems.

When simulations contain steep gradients it is important to sufficiently refine these
features. However the sizes of the problems currently tackled by GYSELA, are already
so large that a significant increase to the refinement would lead to a simulation which
is too memory-heavy to run on the existing petascale supercomputers. An obvious
solution to this problem is to use non-uniform points.

There are at two ways to add non-uniform points to a code: the various schemes can
be adapted to allow for non-uniform points, or patches can be used to separate the
domain into areas which will be treated differently. The best choice for a code depends
on the methods that it uses. The GYSELA code is based on the semi-Lagrangian
method, with the distribution function being approximated using splines at each
time step. As I explained in Chapter 2, there is nothing in the theory of splines which
precludes their use for non-uniform problems. However the use of uniform knots
to define these splines allows simplifications to be made to the evaluation method
(described in Section 2.6) which result in faster code. On the other hand, a spline
problem is inherently global. This makes the use of patches non-trivial. Boundary
conditions are introduced at the intersection of different patches which must be
handled in some way. This splitting of a spline domain results in local splines whose
theory is not yet fully investigated.

In Chapter 3 and (Bourne, Munschy, Virginie Grandgirard, et al. 2022), I investigated
the use of non-uniform splines as a way of increasing the number of points in a given
region. In order to test this, the context of sheath simulations was chosen. The plasma
sheath is the region of a plasma adjacent to a wall. This region exhibits particularly
steep gradients which require extremely fine refinement. As a first step this method
was not tested in the full GYSELA code, but rather in a mini-application, known as
VOICE. VOICE solves the Vlasov-Poisson equations in 1D-1V (one spatial dimension,
and one velocity dimension).

In order to adapt the VOICE code to run with non-uniform points, all the schemes
used had to be adapted to allow for non-uniform points. As splines are not inherently
uniform, it is often simpler to express schemes via these tools instead of deriving a
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non-uniform expression. This was seen in Chapter 2 with the example of quadrature.
The non-uniform Newton-Cotes schemes detailed in Section 2.8.2.3 are very long
which makes them prone to implementation errors. However the spline derivation of
a quadrature scheme can be expressed in a more compact manner. Furthermore the
“best” quadrature (using Schoenberg’s criteria, Schoenberg 1964) is intrinsically linked
to a spline problem.

In Chapter 2 I presented a new method for calculating the coefficients of this “best”
quadrature scheme. This method improved the conditioning of the problem, provid-
ing improved precision compared to a naive approach based on b-spline derivatives.
For example, in the case of a fifth order scheme, four extra significant figures of pre-
cision are obtained. As a result the calculated coefficients are sufficiently accurate
to be used for high precision quadrature even when using a high order scheme. This
method, presented in Section 2.8.2.1, represents essentially an improved handling
of the boundary conditions, such that the sparsity pattern of the matrix is more
favourable. I therefore believe that this result could be extended to help with the con-
ditioning of the interpolation problem for high-order splines with Hermite boundary
conditions which also exhibit high condition numbers. This should be particularly
easy in the case of uniform splines where the normalisation coefficient can be calcu-
lated trivially. This question could be explored in further work.

Having equipped VOICE with the necessary non-uniform schemes, tests were then
run to investigate the constraints associated with non-uniform points. A judicious
choice of non-uniform points were shown to reduce the memory constraints of the
sheath simulation by 89%. However a significant numerical cost was incurred due to
the use of non-uniform points. On 8 OpenMP threads, non-uniform schemes were
shown to be 85% slower than uniform schemes. While this cost was offset by the
reduction in points for this case, this may not be the case for problems with gentler
gradients. Use of GPU parallelism was, however, shown to help with this problem.
Non-uniform schemes were only 30% slower than uniform schemes when GPUs were
used to accelerate these methods. In the case of the simulations studied, non-uniform
simulations were therefore able to run 5.5 times faster than uniform simulations
providing equivalent results.

Chapter 3 also investigated the effect of the chosen degree on the solution. Higher-
order schemes were shown to converge quickly, however they also introduced spurious
oscillations. In the case of penalised sheath simulations which also contain a numeri-
cal representation of the wall, these oscillations easily lead to negative values in the
distribution function. This non-physical behaviour should be avoided in areas where
the results are analysed. In the case of sheath simulations, it is precisely at the inter-
section between the wall and the plasma where both the oscillations and the sheath
occur. As a result low order schemes are to be preferred in this case.

A low enough degree, and a large enough number of points therefore allowed the
avoidance of non-physical behaviour near the boundary. Furthermore these simula-
tions were shown to have good conservation properties. The mass, momentum and
energy were all conserved to a high degree of accuracy. These properties, as well as the
increased domain size made available through the use of non-uniform points, allowed
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Munschy, Bourne, Guilhem Dif-Pradalier, et al. 2022 to investigate the physics of the
sheath by running previously unreachable simulations.

The second method for adding non-uniform points to a simulation is the use of
patches and local splines. One possibility for the implementation of local splines has
already been investigated by Nicolas Crouseilles, Guillaume Latu, and Sonnendrücker
2009, however this method is limited to uniform splines with the same refinement
on each patch, rendering it useless for mesh refinement purposes. In Chapter 4,
I investigated a new local spline method. Semi-Lagrangian advection on splines
constructed via this method was proven to be stable. A parallelisation scheme was
also proposed for a Vlasov-Poisson system where both the Vlasov equation and the
Poisson equation are distributed. While this scheme seems very promising it cannot
be implemented in GYSELA without further tests. The next step for this work will be to
implement it in a test code and examine its performance. As described, this method is
1D, however the framework lends itself readily to an N-D implementation. A further
step will therefore be to implement a 2D version of these local splines.

The sheath simulation could also be used as a test bed for these further develop-
ments of the local splines. Changes would need to be made throughout the VOICE
code in order to implement the advection of the boundary derivatives, necessary for
the local spline implementation. Rather than modifying large swathes of the code,
this opportunity should be used to test the new version of VOICE written in C++. I
have already implemented the global splines in this code, the next step is therefore to
use these global splines locally to test the described scheme.

The second problem arising in the edge region is the shape of the geometry. In Chap-
ter 5 the changes made to the GYSELA code in order to handle a realistic D-shaped
geometry were presented. This new geometry is based on an analytical magnetic
equilibrium, known as the “Culham” equilibrium. The repercussions on the code
concern the definition of the terms in generalised coordinates and the choice of solver
for the Poisson equation. A spline FEM solver was implemented in the GYSELA code
and results of GAM tests (Rosenbluth and Hinton 1998) were used to validate the ge-
ometry in the GYSELA code. This was done by comparing the results to those obtained
by two other gyrokinetic codes: ORB5 (S. Jolliet, Bottino, Angelino, et al. 2007) and
GENE (Jenko, Dorland, Kotschenreuther, et al. 2000), using the results obtained by
Biancalani, Bottino, Ehrlacher, et al. 2017. The results were also compared to analytic
results (Sugama and Watanabe 2006; Gao 2011; Xiao and Catto 2006) however the
assumptions used to obtain these results were shown to limit their usefulness.

The solver chosen for the new geometry needs to be able to handle the non-
orthogonality of the chosen geometry, however ideally it also needs to be fast and
accurate with low memory requirements. In order to prepare for the future implemen-
tation of non-uniform points in the code it also needs to be able to handle such points
and be able to benefit from them. In Chapter 6 three possible solvers are compared.
They are a spline-based finite elements solver operating on polar coordinates, re-
ferred to as the Spline FEM solver (Section 6.2), a geometric multigrid solver operating
on polar coordinates, referred to as the GmgPolar solver (Section 6.3), and a finite
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differences solver operating on Cartesian coordinates with an embedded boundary
approach, referred to as the Embedded Boundary solver (Section 6.4).

All three solvers are shown to be capable of solving the equation on a realistic non-
analytical geometry. The Spline FEM solver and the GmgPolar solver, which both use
polar coordinates, also implement methods to handle the problem of the singular
point. The Spline FEM solver is shown to be the most accurate. The GmgPolar solver
is shown to use the least memory. The Embedded Boundary solver is shown to be the
fastest in most cases. On balance it seems that the GmgPolar solver provides the best
compromise solution for the GYSELA code. Memory is a critical problem, and the
GmgPolar solver is the second fastest. Furthermore, through the use of the implicit
extrapolation method, its convergence order approaches that of the cubic Spline FEM
solver.

All three solvers allow refinement in troublesome areas. In the GmgPolar solver
and the Spline FEM solver this is achieved by allowing non-uniform points in the
polar coordinates. In the Embedded Boundary solver this is achieved via patches. The
Spline FEM solver was shown to benefit significantly more from additional refinement
in numerically troublesome areas than the other two solvers, but all solvers demon-
strated improved performance. The GmgPolar solver and the Spline FEM solver were
however limited by the refinement in poloidal coordinates. As soon as the error near
the edge was limited poloidally, additional refinement was unable to improve the
error. It would be interesting to see if an efficient local spline version of the Spline
FEM solver could be developed based on the work in Chapter 4. This would allow this
solver to refine poloidally on a sub-domain.

The Embedded Boundary solver was additionally used to attempt to solve an X-
point geometry. If GYSELA wants to one day model the ITER tokamak in its entirety,
it will require a method of describing such a geometry. The presence of the singular
X-point makes this a particularly difficult challenge. No matter the solution chosen to
handle the equations, embedded boundaries will be required to accurately describe
the shape of the machine. This test therefore provides an idea of the problems that
GYSELA may face in the future if embedded boundaries are used with this, or another,
solver. In particular, the concave shape of the boundary poses problems for higher
order schemes.

The GmgPolar solver also provides potential for future developments in GYSELA.
Although the solver presented is 2D, the theory can easily be extended to a 3D problem.
Currently the Poisson solver only solves the problem in two dimensions. This is
possible as the poloidal component of the magnetic field lines is neglected when
defining the perpendicular gradient as described in Section 5.2.2. The neglected term
is second order in an axisymmetric configuration, however should GYSELA ever wish
to model a stellarator configuration this term will no longer be negligible. It is therefore
useful to have a solution to this problem to hand.

This thesis is therefore a mixture of theoretical work (including the proof of stability
of the semi-Lagrangian method on local splines in Chapter 4, and the expression of
equations in generalised coordinates in Section 5.2.1), numerical work (including the
study of non-uniform splines in Chapter 3 and solvers of a Poisson-like equation in
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Chapter 6), and computer science (including the implementations of the different
methods in Fortran, C++ and python, and the implementation of GPU routines); all
this in close collaboration with plasma physicists.
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A. Expected Conservation Error

When calculating the error for the conservation equations (3.33) - (3.35) in Chapter
3 some of the error will be due to the truncation of the domain and is therefore
unavoidable. In this appendix this unavoidable error is quantified. The distribution
function fs(t , x, vs) can be approximated by a Maxwellian with density ns(t , x) = 1,
and Ts(t , x) = 1:

fs(t , x, vs) = exp

(
−

v2
s

2

)
(A.1)

If the domain is truncated in the velocity dimension to [−vT , vT ], the error due to
this truncation is:

εi =Ci

∫∞

−∞
v i

s exp

(
−

v2
s

2

)
d vs −Ci

∫vT

−vT

v i
s exp

(
−

v2
s

2

)
d vs (A.2)

Ci =
∫∞

−∞
v i

s exp

(
−

v2
s

2

)
d vs (A.3)

where εi is the truncation error for the i -th moment of the distribution function, and
Ci is a normalisation coefficient.

Thanks to symmetry properties there is no truncation error for an even i . Thanks to
the normalisation, the error for an odd i is always the same. The truncation error is
expressed as follows:

ε=
p

2πerf

( ∞
p

2

)
−
p

2πerf

(
a
p

2

)
=
p

2π

(
1−erf

(
a
p

2

))
(A.4)

Table A.1 shows the truncation error for different cut-off values vT .
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A. Expected Conservation Error –

Expected error Required vT

10−15 8.13
10−14 7.86
10−13 7.56
10−12 7.26
10−11 6.94
10−10 6.60
10−9 6.25
10−8 5.88
10−7 5.49
10−6 5.07

Table A.1.: vT necessary to attain an expected error assuming that the distribution
function is Maxwellian, as defined in equation (A.4).
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B. Determination of Culham
Equations

The Culham equilibrium presented in Section 6.6 is defined by several parameters.
The definition of these parameters can be derived from a few assumptions. In this
annex I show the derivation of these definitions.

A. Magnetic Field Dependencies

The magnetic field B(r,θ) is orthogonal to ∇r which allows us to write B(r,θ) as:

B(r,θ) = B0R0
(

f (r,θ)∇θ+ g (r,θ)∇φ
)

(B.1)

where f (r,θ) and g (r,θ) are functions describing the poloidal and toroidal compo-
nents of the magnetic field. The divergence of B(r,θ) is 0:

∇·B(r,θ) =∇·
(

f (r,θ)∇θ+ g (r,θ)∇φ
)
= ∂ f (r,θ)

∂θ
+ ∂g (r,θ)

∂φ
= ∂ f (r,θ)

∂θ
= 0 (B.2)

Therefore f (r,θ) = f (r ). For an axisymmetric equilibrium the magnetic field B(r ) can
be written:

B(r ) = I (r )∇φ+∇φ×∇ψ(r ) (B.3)

where I (r ) is the plasma current and ψ(r ) is the flux of the magnetic field across a
closed curve. Therefore we have:

f (r ) = ψ′(r )

B0R0
(B.4)

g (r ) = I (r )

B0R0
(B.5)

The functions describing ψ(r ) and I (r ) are unknown, so this definition does not allow
us to calculate the values of f (r ) and g (r ).
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B. Determination of Culham Equations – B. Quasi-Toroidal Assumption

B. Quasi-Toroidal Assumption

For the next steps we will first need some properties of the Jacobian determinant J

which will be calculated in Appendix C.

J = ∂r R ∂θZ −∂r Z ∂θR (B.6)

1

J
= ∂R r∂Zθ−∂Z r∂Rθ = (∇r ×∇θ) · êφ = gφφ(∇r ×∇θ) ·∇φ (B.7)

= R(∇φ×∇r ) ·∇θ = Rψ′(r )

B0R0 f (r )
(∇φ×∇r ) ·∇θ (B.8)

= R

B0R0 f (r )
(∇φ×∇ψ) ·∇θ = RB ·∇θ

R0B0 f (r )
(B.9)

Before proceeding, we introduce the non-physical intrinsic angle θ⋆ such that:

B ·∇θ⋆

B ·∇φ
= 1

q(r )
(B.10)

This implies:

∂θ⋆

∂θ

B ·∇θ
B ·∇φ

= 1

q(r )
(B.11)

∂θ⋆

∂θ

R0B0 f (r )
R(r,θ)J (r,θ)

R0B0g (r,θ)(gφφ)2
= 1

q(r )
(B.12)

∂θ⋆

∂θ

f (r )R2

R(r,θ)J (r,θ)g (r,θ)
= 1

q(r )
(B.13)

∂θ⋆

∂θ
= J (r,θ)g (r,θ)

q(r ) f (r )R(r,θ)
(B.14)

We suppose that the transformation to the variables (r,θ⋆,φ) is quasi-toroidal, i.e.
that the Jacobian determinant J⋆(r,θ) is equal to R(r,θ)r

R0
:

R0

R(r,θ)r
= 1

J⋆(r,θ)
= R(r,θ)(∇r ×∇θ⋆) ·∇φ= ∂θ⋆

∂θ
R(∇r ×∇θ) ·∇φ (B.15)

= J (r,θ)g (r,θ)

q(r ) f (r )R

1

J (r,θ)
= g (r,θ)

q(r ) f (r )R(r,θ)
(B.16)

To provide an expression for this in terms of the elements of the geometry we return
to the definition of the intrinsic angle. By adding the periodic boundary conditions
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B. Determination of Culham Equations – B. Quasi-Toroidal Assumption

θ⋆(r,0) = θ⋆(r,2π) = 0 we obtain:

θ⋆(r,θ) =
∫θ

0

J (r,θ′)g (r )

f (r )R(r,θ′)q(r )
dθ′ (B.17)

∫2π

0

J (r,θ′)g (r )

f (r )R(r,θ′)q(r )
dθ′ = g (r )

f (r )q(r )

∫2π

0

J (r,θ′)

R(r,θ′)
dθ′ = 2π (B.18)

We must now calculate the integral. The expression will be truncated according to
the small parameter ε = a

R0
. The harmonic terms will be truncated at rε, while the

non-harmonic terms will be truncated at rε2. This is equivalent to calculating an
average of the terms accurate to rε2. The terms at rε are kept as multiplications of
harmonic terms can lead to non-harmonic terms. Remember that E(r ), T (r ), and
∆(r ) are considered to be of order rε2, while A(r ) is of order rε3. We first consider the
truncated expression for J (r,θ):

J (r,θ) = r − A(r )− r A′(r )−E(r )E ′(r )−2T (r )T ′(r )+ r∆′(r )cos(θ)

+ [E(r )− r E ′(r )]cos(2θ)+ [r T ′(r )−2T (r )]cos(3θ)+O(ǫ2) (B.19)

and R
R0

:

R(r,θ)

R0
= 1+ ∆(r )

R0︸ ︷︷ ︸
ε2

+ r

R0︸︷︷︸
ε

cos(θ)+O(ǫ2) (B.20)

Using the assumption that ε≪ 0 we therefore have:

(
R(r,θ)

R0

)−1

= 1− ∆(r )

R0
− r

R0
cos(θ)+

(
r

R0
cos(θ)

)2

+O(ǫ2) (B.21)

= 1− ∆(r )

R0
− r

R0
cos(θ)+

r 2

R2
0

cos(2θ)+1

2
+O(ǫ2) (B.22)

= 1− ∆(r )

R0
− r

R0
cos(θ)+

r 2

2R2
0

+O(ǫ2) (B.23)

Which finally gives:

R0 J (r,θ)

R(r,θ)
=r − A(r )− r A′(r )−E(r )E ′(r )−2T (r )T ′(r )+ r∆′(r )cos(θ)

+ [E(r )− r E ′(r )]cos(2θ)+ [r T ′(r )−2T (r )]cos(3θ)

− r∆(r )

R0
− r

R0
cos(θ)

[
r + r∆′(r )cos(θ)+ [E(r )− r E ′(r )]cos(2θ)

+[r T ′(r )−2T (r )]cos(3θ)
]
+ r 3

2R2
0

+O(ǫ2)
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=r − A(r )− r A′(r )−E(r )E ′(r )−2T (r )T ′(r )+ r∆′(r )cos(θ)

+ [E(r )− r E ′(r )]cos(2θ)+ [r T ′(r )−2T (r )]cos(3θ)−
r∆(r )

R0
− r 2

R0
cos(θ)

− r 2
∆
′(r )

R0

cos(2θ)+1

2
− r

R0
[E(r )− r E ′(r )]

cos(3θ)+cos(θ)

2

− r

R0
[r T ′(r )−2T (r )]

cos(4θ)+cos(2θ)

2
+ r 3

2R2
0

+O(ǫ2)

=r − A(r )− r A′(r )−E(r )E ′(r )−2T (r )T ′(r )+ r∆′(r )cos(θ)

+ [E(r )− r E ′(r )]cos(2θ)+ [r T ′(r )−2T (r )]cos(3θ)

− r∆(r )

R0
− r 2

R0
cos(θ)−

r 2
∆
′(r )

2R0
+ r 3

2R2
0

+O(ǫ2)

≈r − A(r )− r A′(r )−E(r )E ′(r )−2T (r )T ′(r )− r∆(r )

R0
− r 2

∆
′(r )

2R0
+ r 3

2R2
0

+
(
r∆′(r )− r 2

R0

)
cos(θ)+ [E(r )− r E ′(r )]cos(2θ)+ [r T ′(r )−2T (r )]cos(3θ)

(B.24)

Returning to equation (B.18) we then have:

R0
f (r )q(r )

g (r )
= R0

2π

∫2π

0

J (r,θ′)

R(r,θ′)
dθ′

≈r − A(r )− r A′(r )−E(r )E ′(r )−2T (r )T ′(r )− r∆(r )

R0
− r 2

∆
′(r )

2R0
+ r 3

2R2
0

(B.25)

Let us call this term γ.

This equation can be inserted into the quasi-toroidal assumption (equation (B.16))
to give:

R0

R(r,θ)r
= g (r,θ)

q(r ) f (r )R(r,θ)
= R0

R(r,θ)γ
(B.26)

Therefore γ= r . We use this condition to define A(r ):

∂(r A(r ))

∂r
=−E(r )E ′(r )−2T (r )T ′(r )− r∆(r )

R0
+ r 2

∆
′(r )

2R0
+ r 3

2R2
0

(B.27)

= ∂

∂r

(

−E(r )2

2
−T (r )2 − r 2

∆(r )

2R0
+ r 4

8R2
0

)

(B.28)

A(r ) = r 3

8R2
0

− E(r )2

2r
− T (r )2

r
− r∆(r )

2R0
(B.29)
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C. Geometric Parameter Definitions

The functions f (r ) and g (r ) must satisfy the Grad-Shafranov equation:

∇·∇ψ=−µ0R2∂p(ψ)

∂ψ
− I (ψ)

∂I (ψ)

∂ψ
(B.30)

∇·∇ψ=−µ0R2 1

ψ′(r )

∂p(r )

∂r
− I (r )

1

ψ′(r )

∂I (r )

∂r
(B.31)

∇·∇ψ(r ) =−µ0R2 1

B0R0 f (r )

∂p(r )

∂r
−B0R0g (r )

1

f (r )

∂g (r )

∂r
(B.32)

Using the definition of the Laplacien from Section 5.2.2.2 (equation (5.71), using the
fact that there is no coefficient α= 1, or β= 0, and that ψ(r ) only depends on r):

− 1

J (r,θ)

∂

∂r

(
J (r,θ)|∇r |2∂ψ

∂r

)
− 1

J (r,θ)

∂

∂θ

(
J (r,θ)∇r ·∇θ∂ψ

∂r

)

=µ0R2 1

B0R0 f (r )

∂p(r )

∂r
+B0R0g (r )

1

f (r )

∂g (r )

∂r
(B.33)

In order to simplify this equation we will write it in the coordinates (r,θ⋆,φ):

− R0

Rr

∂

∂r

(
Rr

R0
|∇r |2∂ψ

∂r

)
− R0

Rr

∂

∂θ⋆

(
Rr

R0
∇r ·∇θ⋆∂ψ

∂r

)

=µ0R2 1

B0R0 f (r )

∂p(r )

∂r
+B0R0g (r )

1

f (r )

∂g (r )

∂r
(B.34)

−1

r

∂

∂r

(
r |∇r |2∂ψ

∂r

)
− 1

r

∂

∂θ⋆

(
r∇r ·∇θ⋆∂ψ

∂r

)

=µ0R2 1

B0R0 f (r )

∂p(r )

∂r
+B0R0g (r )

1

f (r )

∂g (r )

∂r
(B.35)

−1

r

∂

∂r

(
r |∇r |2 f (r )

)
− 1

r

∂

∂θ⋆

(
r∇r ·∇θ⋆ f (r )

)

=µ0
R2

R2
0

1

B 2
0 f (r )

∂p(r )

∂r
+ g (r )

1

f (r )

∂g (r )

∂r
(B.36)

To use this expression we first need to calculate |∇r |2 and ∇r ·∇θ⋆ in the coordinates
(r,θ⋆,φ). Only terms up to the first order are required.

C.1. |∇r |2

The expression for |∇r |2 in the coordinate (r,θ,φ) is shown in Appendix C, equation
(C.16). This equation and others that will be used later require an expression for the
squared Jacobian which will be derived in Appendix C. Here I provide the truncated
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expression:

J 2(r,θ) =
(
r + r∆′(r )cos(θ)+

[
E(r )− r E ′(r )

]
cos(2θ)+

[
r T ′(r )−2T (r )

]
cos(3θ)

)2

+O(ε2)

≈r 2
(
1+∆

′(r )cos(θ)+
[

E(r )

r
−E ′(r )

]
cos(2θ)+

[
T ′(r )− 2T (r )

r

]
cos(3θ)

)2

=r 2
(
1+2∆′(r )cos(θ)+2

[
E(r )

r
−E ′(r )

]
cos(2θ)+2

[
T ′(r )− 2T (r )

r

]
cos(3θ)

)

(B.37)

which leads to the following approximation:

|∇r |2 = 1−2∆′(r )cos(θ)−2

[
E(r )

r
−E ′(r )

]
cos(2θ)−2

[
T ′(r )− 2T (r )

r

]
cos(3θ)+O(ε2)

(B.38)
In order to have this equation in the coordinates (r,θ⋆,φ) we return to our definition
of θ⋆:

θ⋆(r,θ) =
∫θ

0

J (r,θ)R0

R(r,θ)γ
dθ′ =

∫θ

0

J (r,θ)R0

R(r,θ)r
dθ′ (B.39)

Combining equations (B.24) and (B.29) we therefore obtain:

R0 J (r,θ)

R(r,θ)r
≈1−

(
r 2

8R2
0

− E(r )2

2r 2
− T (r )2

r 2
− ∆(r )

2R0

)

−
(

3r 2

8R2
0

− E(r )E ′(r )

r
+ E(r )2

2r 2
− 2T (r )T ′(r )

r
+ T (r )2

r 2
− ∆(r )

2R0
− r∆′(r )

2R0

)

− E(r )E ′(r )

r
− 2T (r )T ′(r )

r
− ∆(r )

R0
− r∆′(r )

2R0
+ r 2

2R2
0

+
(
∆
′(r )+ r

R0

)
cos(θ)+

(
E(r )

r
−E ′(r )

)
cos(2θ)+

(
T ′(r )− 2T (r )

r

)
cos(3θ)

≈1+
(
∆
′(r )− r

R0

)
cos(θ)+

(
E(r )

r
−E ′(r )

)
cos(2θ)+

(
T ′(r )− 2T (r )

r

)
cos(3θ)

θ⋆ ≈θ+
(
∆
′(r )− r

R0

)
sin(θ)+

(
E(r )

r
−E ′(r )

)
sin(2θ)

2
+

(
T ′(r )− 2T (r )

r

)
sin(3θ)

3
(B.40)

In equation (B.40) all harmonic terms are of order 1, therefore we can deduce the
following equation:

θ =θ⋆−
(
∆
′(r )− r

R0

)
sin

(
θ⋆

)
−

(
E(r )

r
−E ′(r )

)
sin

(
2θ⋆

)

2

−
(
T ′(r )− 2T (r )

r

)
sin

(
3θ⋆

)

3
+O(ε2) (B.41)
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Which gives:

cos(θ) =cos
(
θ⋆

)
− sin

(
θ⋆

)(
−

(
∆
′(r )− r

R0

)
sin

(
θ⋆

)
−

(
E(r )

r
−E ′(r )

)
sin

(
2θ⋆

)

2

−
(
T ′(r )− 2T (r )

r

)
sin

(
3θ⋆

)

3

)

=cos(θ)+
1

2

(
∆
′(r )− r

R0

)
+O(ε2)

Proceeding similarly for the other harmonics we get:

cos(2θ) ≈cos
(
2θ⋆

)
+ 1

2

(
E(r )

r
−E ′(r )

)
(B.42)

cos(3θ) ≈cos
(
3θ⋆

)
+ 1

2

(
T ′(r )− 2T (r )

r

)
(B.43)

A similar treatment for the sinus functions gives:

sin(θ) = sin
(
θ⋆

)
(B.44)

sin(2θ) = sin
(
2θ⋆

)
(B.45)

sin(3θ) = sin
(
3θ⋆

)
(B.46)

The truncated |∇r |2, in the coordinates (r,θ⋆,φ), is finally written as:

|∇r |2 =1−2∆′(r )cos
(
θ⋆

)
−2

(
E(r )

r
−E ′(r )

)
cos

(
2θ⋆

)
−2

(
T ′(r )− 2T (r )

r

)
cos

(
3θ⋆

)

+O(ε2) (B.47)

C.2. ∇r ·∇θ⋆

We proceed similarly for ∇r ·∇θ⋆. Using equations (C.18) and (B.37)

r∇r ·∇θ =∆′(r )sin(θ)−
(

E(r )

r
+E ′(r )

)
sin(2θ)+

(
2T (r )

r
+T ′(r )

)
sin(3θ)+O(ε2)

(B.48)

Using equation (B.40) we can then define:

∇θ =∇θ⋆
(
1+O

(
εcos

(
θ⋆

)))
+∇r

1

r

(
−

(
r∆′′(r )− r

R0

)
sin

(
θ⋆

)

+
(
r E ′′(r )−E ′(r )+ E(r )

r

)
sin

(
2θ⋆

)

2
−

(
r T ′′(r )−2T ′(r )+ 2T (r )

r

)
sin

(
3θ⋆

)

3
+O(ε2)

(B.49)
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We therefore have:

r∇r ·∇θ⋆ =
∆
′(r )sin

(
θ⋆

)
−

(
E(r )

r
+E ′(r )

)
sin

(
2θ⋆

)
+

(
2T (r )

r
+T ′(r )

)
sin

(
3θ⋆

)

1+O(εcos(θ⋆))

− |∇r |2

1+O(εcos(θ⋆))

(
−

(
r∆′′(r )− r

R0

)
sin

(
θ⋆

)

+
(
r E ′′(r )−E ′(r )+ E(r )

r

)
sin

(
2θ⋆

)

2

−
(
r T ′′(r )−2T ′(r )+ 2T (r )

r

)
sin

(
3θ⋆

)

3

)
(B.50)

≈
[
1+O

(
εcos

(
θ⋆

))](
∆
′(r )sin

(
θ⋆

)
−

(
E(r )

r
+E ′(r )

)
sin

(
2θ⋆

)

+
(

2T (r )

r
+T ′(r )

)
sin

(
3θ⋆

)
+

(
r∆′′(r )− r

R0

)
sin

(
θ⋆

)

−
(
r E ′′(r )−E ′(r )+ E(r )

r

)
sin

(
2θ⋆

)

2

+
(
r T ′′(r )−2T ′(r )+ 2T (r )

r

)
sin

(
3θ⋆

)

3

)
(B.51)

≈
(
∆
′(r )+ r∆′′(r )− r

R0

)
sin

(
θ⋆

)

−
(

r E ′′(r )

2
+ E ′(r )

2
+ 3E(r )

2r

)
sin

(
2θ⋆

)

+
(

r T ′′(r )

3
+ T ′(r )

3
+ 8T (r )

3r

)
sin

(
3θ⋆

)
(B.52)

C.3. Grad-Shafranov Approximations

We now have all the terms necessary to express equation B.36. We will do this term by
term. We further suppose that the Taylor expansions of f (r ), g (r ), and p(r ) have the
following form:

f = f1 + f3 + f4 + . . . (B.53)

g = 1+ g2 + g4 + . . . (B.54)

p = p0 +p2 +p4 + . . . (B.55)

The first version of this equation arises by using the 0-th order terms of R(r,θ)
R0

, |∇r |2,
∇r ·∇θ, and g (r ):

1

r

∂

∂r

(
r f (r )

)
+µ0

1

B 2
0 f (r )

p ′(r )+ g ′(r )

f (r )
= 0 (B.56)

This equation will be useful for defining f (r ) and g (r ).

214



B. Determination of Culham Equations – C. Geometric Parameter Definitions

We now write equation (B.36) using only the first order terms of R(r,θ)
R0

, |∇r |2, ∇r ·∇θ,
and g (r ):

1

r

∂

∂r

((
−2r∆′(r )cos

(
θ⋆

)
+2r E ′(r )cos

(
2θ⋆

)
−2r T ′(r )cos

(
3θ⋆

))
f (r )

)

+1

r

∂

∂θ⋆

(
f (r )

[(
∆
′(r )+ r∆′′(r )− r

R0

)
sin

(
θ⋆

)
−

(
r E ′′(r )

2
+ E ′(r )

2
+ 3E(r )

2r

)
sin

(
2θ⋆

)

+
(

r T ′′(r )

3
+ T ′(r )

3
+ 8T (r )

3r

)
sin

(
3θ⋆

)])
+µ0

2r

R0

1

B 2
0 f (r )

p ′(r )cos(θ) = 0 (B.57)

(
−2∆′(r )cos

(
θ⋆

)
+2E ′(r )cos

(
2θ⋆

)
−2T ′(r )cos

(
3θ⋆

))
f ′(r )

+ f (r )

r

(
−(2∆′(r )+2r∆′′(r ))cos

(
θ⋆

)
+ (2E ′(r )+2r E ′′(r ))cos

(
2θ⋆

)

−(2T ′(r )+2r T ′′(r ))cos
(
3θ⋆

))
+ f (r )

r

[(
∆
′(r )+ r∆′′(r )− r

R0

)
cos

(
θ⋆

)

−
(
r E ′′(r )+E ′(r )+ 3E(r )

r

)
cos

(
2θ⋆

)
+

(
r T ′′(r )+T ′(r )+ 8T (r )

r

)
cos

(
3θ⋆

)]

+µ0
2r

R0

1

B 2
0 f (r )

p ′(r )cos(θ) = 0 (B.58)

We can rewrite this as:
(

−2 f ′(r )∆′(r )− f (r )

r
∆
′(r )− f (r )∆′′(r )− f (r )

R0
+µ0

2r

R0

1

B 2
0 f (r )

p ′(r )

)

cos
(
θ⋆

)

+
(
2E ′(r ) f ′(r )+ f (r )

r
E ′(r )+ f (r )E ′′(r )− f (r )

r

3E(r )

r

)
cos

(
2θ⋆

)

+
(
−2T ′(r ) f ′(r )− f (r )

r
T ′(r )− f (r )T ′′(r )+ 8T (r )

r

)
cos

(
3θ⋆

)
(B.59)

which leaves us with the following three differential equations:

∆
′′(r )+

(
1

r
+ 2 f ′(r )

f (r )

)
∆
′(r )− 2rµ0p ′(r )

R0B 2
0 f (r )2

+ 1

R0
= 0 (B.60)

E ′′(r )+
(

1

r
+ 2 f ′(r )

f (r )

)
E ′(r )−3

E(r )

r 2
= 0 (B.61)

T ′′(r )+
(

1

r
+ 2 f ′(r )

f (r )

)
T ′(r )−8

T (r )

r 2
= 0 (B.62)

Equations (B.29) (B.56) (B.60), (B.61), and (B.62)
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C. Metric Tensor of the Culham
geometry

The metric tensor as described in Section 5.2.1 is an important tool for defining
equations in generalised coordinates. Here I present the equations necessary to
calculate the metric tensor from the analytical definition of the “Culham geometry”:

R(r,θ) = r cos(θ)−E(r )cos(θ)+T (r )cos(2θ)− A(r )cos(θ)+∆(r )+R0 (C.1)

Z (r,θ) = r sin(θ)+E(r )sin(θ)−T (r )sin(2θ)− A(r )sin(θ) (C.2)

These equations have been coded into GYSELA in a new module “magnetic_con-
fig/culham_equil.F90”.

The covariant metric tensor is defined as:

(
g r r g rθ

g θr g θθ

)
=

( (
(∂r R)2 + (∂r Z )2

)
(∂r R∂θR +∂r Z∂θZ )

(∂r R∂θR +∂r Z∂θZ )
(
(∂θZ )2 + (∂θR)2

)
)

(C.3)

The necessary derivatives are:

∂r R =cos(θ)+∆
′(r )−E ′(r )cos(θ)+T ′(r )cos(2θ)− A′(r )cos(θ), (C.4)

∂r Z =sin(θ)+E ′(r )sin(θ)−T ′(r )sin(2θ)− A′(r )sin(θ), (C.5)

∂θR =− r sin(θ)+E(r )sin(θ)−2T (r )sin(2θ)+ A(r )sin(θ), (C.6)

∂θZ =r cos(θ)+E(r )cos(θ)−2T (r )cos(2θ)− A(r )cos(θ). (C.7)
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The covariant metric tensor elements are therefore defined as:

g r r =(∂r Z )2 + (∂r R)2 (C.8)

=1−2A′(r )−∆
′(r )2 +E ′(r )2 +T ′(r )2

︸ ︷︷ ︸
ε2

+ A′(r )2

︸ ︷︷ ︸
ε4

+



+2∆′(r )︸ ︷︷ ︸
ε

+−2∆′(r )E ′(r )−2E ′(r )T ′(r )︸ ︷︷ ︸
ε2

−2∆′(r )A′(r )︸ ︷︷ ︸
ε3



cos(θ)

+



−2E ′(r )︸ ︷︷ ︸
ε

+2T ′(r )∆′(r )︸ ︷︷ ︸
ε2

+2E ′(r )A′(r )︸ ︷︷ ︸
ε3



cos(2θ)

+



2T ′(r )︸ ︷︷ ︸
ε

−2T ′(r )A′(r )︸ ︷︷ ︸
ε3



cos(3θ) (C.9)

g θθ =(∂θZ )2 + (∂θR)2 (C.10)

=r 2 +E(r )2 +4T (r )2 −2r A(r )︸ ︷︷ ︸
r 2ε2

+ A(r )2

︸ ︷︷ ︸
r 2ε4

−4E(r )T (r )︸ ︷︷ ︸
r 2ε2

cos(θ)+



2r E(r )︸ ︷︷ ︸
r 2ε

−2E(r )A(r )︸ ︷︷ ︸
r 2ε3



cos(2θ)

+



−4r T (r )︸ ︷︷ ︸
r 2ε

+4T (r )A(r )︸ ︷︷ ︸
r 2ε3



cos(3θ) (C.11)

g rθ =∂r R∂θR +∂r Z∂θZ (C.12)

=



−r∆′(r )︸ ︷︷ ︸
rε

+E(r )T ′(r )−2T (r )E ′(r )+E(r )∆′(r )︸ ︷︷ ︸
rε2

+∆
′(r )A(r )︸ ︷︷ ︸

rε3



sin(θ)

+



E(r )+ r E ′(r )︸ ︷︷ ︸
rε

−2∆′(r )T (r )︸ ︷︷ ︸
rε2

− A(r )E ′(r )−E(r )A′(r )︸ ︷︷ ︸
rε3



sin(2θ)

+



−2T (r )− r T ′(r )︸ ︷︷ ︸
rε

+ A(r )T ′(r )+2T (r )A′(r )︸ ︷︷ ︸
rε3



sin(3θ) (C.13)
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The Jacobian determinant J is defined as:

J =∂r R ∂θZ −∂r Z ∂θR

=r − A(r )−E(r )E ′(r )−2T (r )T ′(r )− r A′(r )︸ ︷︷ ︸
rε2

+ A A′(r )︸ ︷︷ ︸
rε4

+



r∆′(r )︸ ︷︷ ︸
rε

+2T (r )E ′(r )+E(r )∆′(r )+E(r )T ′(r )︸ ︷︷ ︸
rε2

− A(r )∆′(r )︸ ︷︷ ︸
rε3



cos(θ)

+



E(r )− r E ′(r )︸ ︷︷ ︸
rε

−2T (r )∆′(r )︸ ︷︷ ︸
rε2

+ A(r )E ′(r )−E(r )A′(r )︸ ︷︷ ︸
rε3



cos(2θ)

+



r T ′(r )−2T (r )︸ ︷︷ ︸
rε

− A(r )T ′(r )+2T (r )A′(r )︸ ︷︷ ︸
rε3



cos(3θ) (C.14)

≈r − A(r )− r A′(r )−E(r )E ′(r )−2T (r )T ′(r )+ r∆′(r )cos(θ)

+ [E(r )− r E ′(r )]cos(2θ)+ [r T ′(r )−2T (r )]cos(3θ)+O(ǫ2) (C.15)

Finally the contravariant metric tensor can be summarised as:

gr r = |∇r |2 = (∂θZ )2 + (∂θR)2

J 2
= C .11

(C .14)2
(C.16)

gθθ = r 2|∇θ|2 =
r 2

[
(∂r Z )2 + (∂r R)2

]

J 2
= C .9

(C .14)2
(C.17)

grθ = r∇θ ·∇r =−r [∂r R∂θR +∂r Z∂θZ ]

J 2
= −C .13

(C .14)2
(C.18)
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D. Analytical definition of the X
Point equilibrium

ψ(x, y) = x4

8
+ A

(
1

2
x2 ln x − x4

8

)
+

12∑

i=1

ciψi (x, y) (D.1)

where A =−0.05 is a constant, the twelve functions ψi (x, y) are defined as follows:

ψ1(x, y) =1, (D.2)

ψ2(x, y) =x2, (D.3)

ψ3(x, y) =y2 −x2 ln x, (D.4)

ψ4(x, y) =x4 −4x2 y2, (D.5)

ψ5(x, y) =2y4 −9y2x2 +3x4 ln x −12x2 y2 ln x, (D.6)

ψ6(x, y) =x6 −12x4 y2 +7x2 y4, (D.7)

ψ7(x, y) =8y6 −140y4x2 +75y2x4 −15x6 ln x +180x4 y2 ln x −120x2 y4 ln x, (D.8)

ψ8(x, y) =y, (D.9)

ψ9(x, y) =y x2, (D.10)

ψ10(x, y) =y3 −3y x2 ln x, (D.11)

ψ11(x, y) =3y x4 −4y3x2, (D.12)

ψ12(x, y) =8y5 −45y x4 −80y3x2 ln x +60y x4 ln x, (D.13)

and the coefficients ci are determined from the following boundary conditions:

ψ(1+ε,0) = 0 (D.14)

ψ(1−ε,0) = 0 (D.15)

ψ(1−δε,κε) = 0 (D.16)

ψ(1−1.1δε,−1.1κε) = 0 (D.17)

∂ψ

∂y
(1+ε,0) = 0 (D.18)

∂ψ

∂y
(1−ε,0) = 0 (D.19)

∂ψ

∂x
(1−δε,κε) = 0 (D.20)

∂ψ

∂x
(1−1.1δε,−1.1κε) = 0 (D.21)
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∂ψ

∂y
(1−1.1δε,−1.1κε) = 0 (D.22)

∂2ψ

∂y2
(1+ε,0) =− (1+α)2

εκ2

∂ψ

∂x
(1+ε,0) (D.23)

∂2ψ

∂y2
(1−ε,0) =− (1−α)2

εκ2

∂ψ

∂x
(1−ε,0) (D.24)

∂2ψ

∂x2
(1−δε,κε) = κ

εcos2α

∂ψ

∂y
(1−δε,κε) (D.25)
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