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Every living being is an engine geared to
the wheelwork of the universe. Though
seemingly affected only by its immediate
surrounding, the sphere of external influ-

ence extends to infinite distance.

Nikola Tesla

To see a world in a grain of sand and a
heaven in a wild flower, hold infinity in
the palm of your hand and eternity in an

hour.

William Blake

If you cannot do great things, do small

things in a great way.

Napoleon Hill

If opportunity doesn't knock, build a

door.

Milton Berle

Imagination is everything. It is the pre-

view of life’s coming attractions.

Albert Einstein

Opportunity is missed by most people
because it is dressed in overalls and

looks like work.

Thomas Edison

Two roads diverged in a wood, and |—I
took the one less traveled by, and that

has made all the difference.

Robert Frost
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Abstract

The kinship verification field attracted much attention in the few past years due to its
capacity to improve biometrics systems as a soft biometric for face verification (kinship
traits) and an important role in many society applications (kinship verification). Among
these applications include the creation of family trees, family album organization, image
annotation, finding missing children and forensics. Although, the DNA test is the most
trustworthy way for kinship verification, it cannot be used in many situations. Automatic
kinship verification from facial images can exemplary be done in video surveillance scenes.

In this thesis, facial kinship verification over facial images is studied. At this end, we start
with the previously proposed approaches like features learning-based kinship verification
methods, metric learning-based kinship verification methods, and convolutional deep
learning-based kinship verification methods. Also, the general facial kinship verification
system is presented, challenges and measures of characteristics are mentioned. Furthermore,
the various evaluation terms are illustrated. Concluding with the proposed approaches and
the obtained results on various databases. The proposed frameworks comprise of three
main phases as follows: 1) features extractions; 2) subspace transformations analysis; 3)
kinship verification decision.

The aim of feature extraction is to extract discriminative representations of facial images.
This phase is important since the kinship traits are very sensitive to the unconstrained
environments (i.e. facial images captured under uncontrolled environments without any
restrictions in terms of pose, lighting, background, expression, and partial occlusion). Also,
it can affect the final decision performance of the framework. Subspace transformations
analysis phase extract and select the more attractive and discriminative facial traits.
Therefore, the features are extracted by a projection of the original data (features) of the
previous phase to get better discrimination and make more precise decisions. In the last
phase, cosine similarity is used as the best metric compatible with discriminant analysis
methods (subspace transformations analysis methods) and kinship verification. The final
metric between two facial images is compared to a threshold to decide if the pair facial
images come from the same family or not.

Finally, our results show great improvement for facial kinship verification on the largest
and smallest databases. Also, a robust and good performance was achieved by the proposed
systems and comparing favorably with the state of the art approaches. The proposed
frameworks are also convenient for real-time applications.

Keywords: facial kinship verification, facial images, feature extraction, subspace
transformations analysis, features learning-based kinship verification, metric learning-

based kinship verification, convolutional deep learning-based kinship verification, forensics.
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Résumé

Le domaine de la vérification de la parenté a attiré beaucoup d’attention ces dernieres années
en raison de sa capacité a améliorer les systémes biométriques en tant que biométrique
souple pour la vérification du visage (traits de parenté) et un rdle important dans de
nombreuses applications de la société (vérification de la parenté). Parmi ces applications,
citons la création d’arbres généalogiques, I'organisation d’albums de famille, ’annotation
d’images, la recherche d’enfants disparus et la criminalistique. Bien qu'un Le test ADN
est le moyen le plus fiable pour la vérification de la parenté, il ne peut pas étre utilisé dans
de nombreuses situations. La vérification automatique de la parenté a partir d’images
faciales peut étre réalisée a titre d’exemple dans les scenes de vidéosurveillance.

Dans cette these, la vérification de la parenté faciale sur les images faciales est étudiée.
A cette fin, nous commencons avec les approches précédemment proposées telles que
les méthodes de vérification de parenté basées sur les fonctionnalités, les méthodes de
vérification de parenté basées sur 'apprentissage métrique et les méthodes de vérification
de parenté basées sur 'apprentissage profond par convolution. En outre, le systéeme général
de vérification de la parenté faciale est présenté, les défis et les mesures des caractéristiques
sont mentionnés. De plus, les différents termes d’évaluation sont illustrés. Conclusion
avec les approches proposées et les résultats obtenus sur diverses bases de données. Les
systémes proposés comprennent trois phases principales comme suit: 1) extractions de
caractéristiques; 2) analyse des transformations du sous-espace; 3) décision de vérification
de la parenté.

Le but de 'extraction de traits est d’extraire des représentations discriminantes d’images
faciales. Cette phase est importante car les traits de parenté sont tres sensibles aux environ-
nements non contraints (i.e. images capturées dans des environnements non controlés sans
aucune restriction termes de pose, d’éclairage, d’arriere-plan, d’expression et d’occlusion
partielle). En outre, cela peut affecter la performance de décision finale du systeme. La
phase d’analyse des transformations du sous-espace extrait et sélectionne les traits du
visage les plus attrayants et discriminants. Par conséquent, la les caractéristiques sont
extraites par une projection des données originales (caractéristiques) de la phase précédente
pour obtenir une meilleure discrimination et prendre des décisions plus précises. Dans la
derniere phase, la similarité cosinus est utilisée comme la meilleure métrique compatible
avec les méthodes d’analyse discriminante (méthodes d’analyse des transformations de
sous-espace) et la vérification de parenté. La métrique finale entre deux images faciales est
comparée a un seuil pour décider si les images faciales de la paire proviennent ou non de
la méme famille.

Enfin, nos résultats montrent une grande amélioration pour la vérification de la parenté
faciale sur les bases de données les plus grandes et les plus petites. En outre, les systéemes

proposés ont obtenu une performance robuste et bonne et se comparent favorablement 1’état
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de 'art approche. Les systemes proposés sont également pratiques pour les applications
en temps réel.

Mots clés: vérification de la parenté faciale, images faciales, extraction de caractéris-
tiques, analyse des transformations du sous-espace, vérification de la parenté basée sur les
caractéristiques, vérification de la parenté basée sur 'apprentissage métrique, Vérification

de la parenté basée sur I'apprentissage profond par convolution, criminalistique.
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Introduction

1.1 Context and motivation

The capacity to determine the identity of persons and to accord personal traits (e.g. name,
age, nationality, and so on) with a person has been very intrinsic to the structure of our
society. Generally, humans utilized appearance characteristics such as voice, face and
gait as well as other contextual data information (for example, clothing and location)
to identify themselves. The set of traits associated with an individual describes their
own personal identity. At the beginning of civilization, people lived in limited small
communities where persons could easily identify each other. Furthermore, a big explosion
of population expansion accompanied by raised mobility in the modern society which has
required the development of advanced identity management automatic-based systems that
can efficiently record, preserve and erase the private identities of peoples.

A facial biometric system is subdivided into two phases, the training stage (offline
training) and the test stage (online classification/verification). The training stage will be
carried out only once in which the enrollment of the facial images of the different individuals
is used in order to extract and describe the biometric signature of each individual. During
the test stage, the new data is compared with the training data that is automatic learned
in the training stage in order to make a decision to accept or reject the candidate. The
steps carried out in these two phases in a face recognition system are subdivided into
three main modules [70]: face detection, feature extraction and recognition (classification).
The general face recognition system scheme is illustrated in Fig. [I.I} A detailed face
recognition system scheme is illustrated in Fig. [1.2]

Verification

Image and identification

Face recognition —»

—»  Face detection Features extraction

A
A

Face database

Figure 1.1: Face recognition structure.

Three essential steps are utilized to develop a robust facial recognition system: (i) face
detection, (ii) feature extraction, and (iii) face recognition (shown in Figure[L.1). The face
detection stage is utilized to detect and determine the human facial image acquired by the
system. The feature extraction stage is used to extract the discriminant feature data for
each human face determined in the first stage. Finally, the face recognition stage comprises
the extracted features from the human facial that compare it with whole template facial

databases to determine the human facial identity.
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User = » System Administrator Excep'flon
Exception . Handing
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lometric Claim | Template : .
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Interface 7'y . . Threshold
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Acquired :
Sample : : - Recognition
Features f........... ¥~ [FEEREIL S, T Application
Bilnewey Extractor [=== - ®Matcher oo
Query or Input Match
Features Score

(Recognition)

Figure 1.2: Basic building blocks of a generic biometric system [72].

o Face Detection: The face recognition system starts first with the center on of the
human facials in a input image. The aim of this stage is to define if the target image
comprises human facials or not. The illumination variations and facial expression
can block proper facial detection. In order to make easier the design of a robust face
recognition system and create it more effective, pre-processing stages are performed.
Many approaches are utilized to detect and define the human facial image, as an
example, Viola—Jones detector [152,/180], histogram of oriented gradient (HOG) [137],
and principal component analysis (PCA) [141]. Furthermore, the face detection
stage can be utilized for image and video classification [122], regression [51], object

tracking [148], region-of-interest detection [141], and so on.

o Feature Extraction: The essential function of this stage is to describe the facial
images captured in the detection stage. This stage explains a face as a group of
features vector called a “traits” that characterizes the discriminate features of the
facial image such as mouth, nose, and eyes with their geometrical distribution [122].
Each facial is described by its size, structure, and shape, which permit it to be
identified. Many approaches involve extracting the form/shape of the eyes, mouth,
or nose to identify the facial utilizing the size and/or distance [122]. HOG [137],
Eigenface [149], independent component analysis (ICA) [88], Gabor filter [10§]

approaches are widely utilized to extract the facial features.

« Face Recognition: This stage considers the features vector extracted from the
background within the feature extraction stage and compares it with similar facial

stocked in a specific dataset. There are two essential general applications for face
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recognition, one is called recognition or identification and another one is called
verification. Within the identification stage, a test facial is compared with a group
of facials aiming to find the most similar match. Within the verification stage, a test
facial is compared with a known facial in the dataset in order to make a decision of

the acceptance or rejection.

Several systems proposed and implemented to identify a human facial in 2D or 3D images.
We classify these systems into three methods based on their detection and recognition
approach (Fig. [1.3): (1) local, (2) holistic (subspace), and (3) hybrid approaches. The
first method is classified according to specific face features, not considering the whole face.
The second method employs the whole face as input information and then projects into a
small and discriminative subspace or in correlation sub-plane. The third method utilizes

global and local features in order to enhance face recognition accuracy.

: SIFT
Key-Points-based SURF
methods BRIE
etc...

Local methods

LBP

LPQ
BSIF
etc...

Local appearance-
based methods

PCA
LDA
Eigenfaces
etc...

Linear methods

FEER EERE e Holistic methods

NS S

methods KPCA
Non-linear EDA
methods CNN
etc...
. Local+Holistic
Hybrid methods methods

Figure 1.3: Face recognition methods. SIFT, scale-invariant feature transform; SURF, Speeded Up Robust Features; BRIEF,
binary robust independent elementary features; LBP, local binary pattern; BSIF, binarized statistical image
feature; LPQ), local phase quantization; PCA, principal component analysis; LDA, linear discriminant analysis;
KPCA, kernel PCA; CNN, convolutional neural network; EDA, exponential discriminant analysis.

Kinship verification from face images, one of the new topics in computer vision that
has been studied and used for several years, can be applied to potential applications,
such as the creation of family trees, family album organization, image annotation, finding
missing children and forensics. Checking if two persons are from the same family or not
can be automatically verified through facial images. Learn and extract the face similarities

between family members is challenging. Many encouraging results have been shown over




Introduction

the past a few years, kinship verification from face images still remains open. Although, a
DNA test is the most trustworthy way for kinship verification, it cannot be used in many
situations. Automatic kinship verification from facial images can exemplary be done in
video surveillance scenes. In addition to the obstacle generally faced the face verification in
unconstrained environments (i.e. facial images captured under uncontrolled environments
without any restrictions in terms of pose, lighting, background, expression, and partial
occlusion), kinship verification inserts another layer of obstacles which is far from being
easy. Kinship verification treats facial images which belong inevitably to different persons
with a considerable age difference and in some condition with different gender. Further,
the face traits of persons of the same family may offer a large dissimilarity whereas pair
faces of persons with no kinship may look similar. All these challenges greatly increase
the difficulties of the automatic kinship verification problem.

Through the different chapters, we highlight the interest of using algorithms based on
mono-dimensional (vector-based) and multi-dimensional (tensor-based) analysis using deep

and shallow features in kinship verification.

1.2 Kinship verification challenges

Kinship verification, one of the basic topics in computer vision and pattern recognition,
has received substantial attention in recent years. Many approaches have been proposed to
kinship verification in unconstrained environments, while each of these approaches consists
in checking if two persons are from the same family or not through facial images.
Verifying kinship through facial images is difficult due to the high degree of variability
of the visible effects such as genetic difference, gender difference and age gap. In short,

the following two factors have a major impact on problem solving:

e Unique challenges: The appearance gap in the kinship verification problem is
much greater than in the traditional facial verification setup (for example, by looking
at two pictures with different genders and different ages, and checking whether
these two subjects have a relationship between the parent and child). Moreover, the
relationships of different relatives will have different patterns of similarity. These

may cause major challenges for all facial kinship verification frameworks.

e Common challenges: Due to the challenges in verifying faces, the appearance of
close-up faces is sensitive to changing various factors, such as variations in facial
expressions, obstruction and position. Furthermore, some other influence factors
may be presented in the real scene, like to as illumination, opacity or low resolution,

may change the visual representation of kinship from facials in various ways.

Figure illustrates the mentioned challenges. Several algorithms have been suggested

to meet these challenges over the past decade. More recently, [4,[30], have studied various
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representative approaches of verifying kinship in the situation of the small sample training
data only with a few kinds of relations, namely father-son, father-daughter, mother-son
and mother-daughter. Therefore, it remains to be test whether modern kinship checking
approaches work well on large samples training data with various closer relationships,
particularly now that the released FIW dataset has been published [138]. As Figure
illustrates, the more varied samples relationships of family members pose larger challenges

to the issue of kinship verification and are far from resolved.

Increasing Age

(a) Same Generation | (b) 15! Generation (c) 2" Generation

Figure 1.4: Samples of 11 pair types of FIW. Each type is of a unique pair randomly selected from a set of diverse families
to show variation in ethnicity, while four faces of each individual depict age variations .

1.3 Benchmark databases

To evaluate the performance of the proposed kinship verification approaches, we consid-
ered six kinship databases: Cornell KinFace database, UB KinFace database, TSKin-
Face database, KinFaceW-I database, KinFaceW-II database and FIW database. These
databases consist of four kinds of Parent-Child relationships (except FIW database which
contains eleven relations of four Parent-Child relations, three Siblings relations and four
Grandparent-Grandchild relations). The face images are with various ages and ethnicities,
and captured under uncontrolled environments and no restriction in terms of pose. For
face verification (face matching or self-kinship), we considered two challenging databases
namely Labeled Faces in the Wild (LFW) database and YouTube Face (YTF) database.
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1.3.1 Kinship verification databases

Cornell KinFace database [44] consists of 143 pairs of parents and children images
gathered from the web. There are 286 cropped frontal face images of size 100 x 100 pixels.
Most of the images were taken from Google Images. To ensure that the facial extracted
characteristics are in high quality, only frontal face images with a neutral facial expression
are chosen. We note that, 7 families are taken out of the original database which consists
of 150 families for privacy issues.

UB KinFace database [170] includes 600 images of 400 people which are divided into
200 pairs of child-young parent (set 1) and 200 pairs of child-old parent (set 2). These
two sets of pairs are used to enhance, test, and evaluate kinship verification algorithms.
Most of images in the database are real-world combinations of public figures (celebrities
and politicians) from Internet. It is the first database that comprises all children, young
parents and old parents for the purpose of kinship verification.

TSKinFace database [133] consits of two types of tri-subject kinship relations which
are: Father-Mother-Daughter (FM-D) and Father-Mother-Son (FM-S). The FM-D contains
502 relations and FM-S has 513 relations (4060 face images). These images are from public
figures gathered from the Internet. The face images are cropped using the position of
eyes into 64 x 64 pixels resolution. For fair comparison, we restructured the database by
separating the group of Father-Mother-Daughter into two groups Father-Daughter and
Mother-Daughter kinship relations, and the group of FatherMother-Son into two groups
Father-Son and Mother-Son kinship relations.

Kinship Face in the Wild database (KinFaceW) [103] consists of two different
sub-databases: KinFaceW-I and KinFaceW-II. Both sub-databases are gathered through
Internet research, including some public figures with their parents and/or children. In the
KinFaceW-I dataset, there are 156, 134, 116, and 127 pairs corresponding to the F-S, F-D,
M-S, and M-D relations, respectively. For the KinFaceW-II dataset, each kin relation type
contains 250 pairs. In total KinFaceW-I counts 1066 face images and 2000 face images for
KinFaceW-II.

FIW database [138] we considered the largest FIW kinship database using: four rela-
tions, Grandfather-Granddaughter (GF-GD), Grandfather-Grandson (GF-GS),
Grandmother-Granddaughter (GM-GD) and Grandmother-Grandson (GM-GS) face sub-
sets. In GF-GD subset, there are 7,078 pairs of images for positive and negative relations.
In GF-GS subset, there are 4,830 pairs of images for positive and negative relations. In
GM-GD subset, there are 6,512 pairs of images for positive and negative relations. In

GM-GS subset, there are 4,614 pairs of images for positive and negative relations.
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1.3.2 Face verification databases

Labeled Faces in the Wild (LFW) database [67] is a big dataset collected from
the web, specially gathered to study the problem of face recognition in unconstrained
environments containing real-world variations in terms of lighting, pose, expressions, blur,
occlusion, resolution, and so on. This challenging dataset consists 13,233 facial images
belonging to 5,749 different subjects.

YouTube Face (YTF) database [162] consists of 3425 videos from 1595 different
subjects with various variations of pose, expression and illumination, and the average

length of each video clip is 181.3 frames.

1.4 Objectives and contributions

The main thesis focuses on the development, implementation and evaluation of automatic
and efficient kinship verification frameworks based on metric learning techniques of linear
and multi-linear subspaces in uncontrolled environments in which the variations of pose,
lighting, background, expression, and partial occlusion are very different between the

training and the test classes.

We can organize our contributions in classification stage into two essential categories:
i) vector-based methods and ii) tensor-based methods. These two categories need the
features extraction stage, which we categorized theme into two essential categories as
it: i) shallow features (shape/texture features), and deep&shallow features. Figure
illustrated our main contributions on classification stage using different features extraction

categories for kinship verification.

9 Chapter 3 Kinship verification
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Figure 1.5: Thesis map: our main contributions over different categories of classification stage (vector-based and tensor-
based strategies design) for kinship verification using different features extraction categories.

We summarize the main research contributions of this thesis as follows:

o Study of the State Of the Art (SOA) of different kinship verification approaches

based on deep learning and metric learning.




Introduction

e Develop and design of robust kinship verification frameworks against variations in
expression, illumination and pose, based on vector-based and tensor-based metric
learning, using the shallow features (i.e. texture/shape) and deep features of intensity

facial images and color facial images.

We can subdivide our contributions into four folds as follow:

e
[

First contribution (illustrated in Chapter |3)):

We introduce an efficient method for facial kinship verification based on multiple
scale feature extraction projected through Side Information Exponential Discriminant
Analysis (SIEDA) subspace and combined different features using Logistic Regression

(LR) method scores fusion.

We evaluate the effectiveness of color-texture information data over discriminative

subspace utilizing two-step learning technique, STEDA and Logistic Regression, for

automatic facial verification of kinship from facial images.

We evaluate different color spaces and descriptors on four benchmark kinship
databases. Especially, each color channel of face image from a specified color
space is projected through the same implicit learned color channel subspace, and

then all the channels information are combined to achieve better discrimination.

We study the combination of the different descriptors from the different color

components.
II- Second contribution (illustrated in Chapter [4)):

o We introduce a novel discriminative subspace of the proposed Side-Information based
Linear Discriminant analysis integrating Within Class Covariance Normalization
(SILD4+WCCN) subspace transformation analysis method for facial kinship verifica-
tion. Therefore, WCCN minimises the class intra-variability impact by minimising

the expected classification error on the training stage [9)].

o We suggest a two robust automated facial kinship verification systems appropriate
for bi-subject and tri-subject kinship verification, from facial images captured in
unconstrained environments. The facial data is exemplified as a multiple view feature
based on the fusion of different deep and shallow features in order to get a more

discriminative facial model.

« We evaluate the effectiveness of deep/shallow information data over a novel discrimi-
native subspace using the two-step learning technique, SILD+WCCN, and Logistic

Regression, for automatic verification of kinship from facial images.
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« We extensively test our SILD+WCCN/LR technique versus the state-of-the-art
approaches utilizing two challenging facial kinship databases namely KinFaceW-II
and TSKinFace.

ITI- Third contribution (illustrated in Chapter [5)):

o Introducing a new native feature for describing facial photos. Our descriptor is based

on the local statistical features of the face image and the original BSIF descriptor.

o We propose a new SIWEDA method to verify face and kinship based on the classic
SIEDA method. Moreover, to mitigate the internal variance of the class, we proposed
two variants SIEDA + WCCN and SIWEDA + WCCN by incorporating WCCN
into SIEDA and SIWEDA, respectively.

o We broadly evaluate our approach against the state-of-the-art approaches using
five challenging face and kinship databases namely Cornell KinFace, UB KinFace,
TSKinFace, YTF and LFW.

IV- Fourth contribution (illustrated in Chapter [6)):

o For the first time, we are dealing with the problem of verifying facial kinship as a
cross-view matching problem because each kinship usually changes from two facial

images belonging to two different people.

o We suggest a robust and suitable automatic face verification framework for kinship
verification, from face photos taken in unrestricted environments. The face data
is represented as a high-level tensor that relies on a combination of different local

features in order to provide a more robust face model.

o We propose a new method for reducing and classification dimensions, called Ten-
sor Cross-view Quadratic Discriminant Analysis (TXQDA), which preserves data
structure, expands the margin between samples, helps alleviate the problem of small

sample size, and reduces computational cost.

o We evaluate our TXQDA method broadly against state-of-the-art methods using
five challenging facial kinship databases namely Cornell KinFace, UB KinFace,
TSKinFace, KinFaceW-II, and FIW.

Finally, we can classified our contributions (cited in Chapters and [6)) as mentioned
in Figure [I.5] as follows: In Chapter [3] we used the combination of Shallow features
projected through SIEDA (vector-based) method. In Chapter , we used the combination
of Deep&Shallow features projected through the proposed SILD+WCCN (vector-based)
method. For Chapter [0, we used the combination of Shallow features projected through
the proposed SIWEDA+WCCN (vector-based) method. For Chapter [0 we used the
combination of Shallow features over a tensor design projected through the proposed

TXQDA (tensor-based) method.

10
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1.5 Machine learning explanations

In computer vision field, a published framework in the literature works should take into
account several points and must be explainable. As mentioned in [112], an explanation
way for a black-box (a framework/a method) machine learning approach should take into
account the following properties:

e Accuracy. This trait refers to how degree of success that an explanation predicts new
tested data (unseen data). weak explanation accuracy could be fine only if the black-box
framework to be explained is also inaccurate.

e Fidelity. The explained model predictions should correspond and conclude the
explanations. There is high relation between accuracy and fidelity: where if the explanation
has larger fidelity and black-box model is high accurate, the explanation of the model has
also larger accuracy

« Consistency. Explanations must apply equally important to all model trained using
the same train data set.

e Stability. Similar instances must present similar explanations, as long as particular
instances was provided its explanations.

« Representativeness. A highly representative explanation is one that can be applied
to many decisions on many instances.

e Certainty. If the method at study provides a measure of confidence on its decisions,
an explanation of this decision must reflect this.

« Novelty. This property indicates to the ability of the explanation paradigm to cover
instances far from the training space.

e Degree of importance. The explanation must pinpoint the important characteris-
tics.

« Comprehensibility. Explanations must be comprehensible to humans. This belongs
on the target audience and has psychological and social implications, although short
explanations ordinarily go a long way across comprehensibility.

Miller studied explainability from the social sciences perspective [110] and notes four
essential observations: (i) people prioritize contrastive explanations, i.e. why the model
took a specific decision does not matter to us as much as why a different decision was not
taken instead; (ii) people choose only a few reasons from the various reasons that make up
an explanation, and personal biases evidence this selection; (iii) refer ring to probabilities
orstatistical links is not as efficient as refer ring to reasons; and (iv) explanations are
social, and thus should be portion of a larger conversation, or an interaction between the
explainer and the explainee.

In [58], the authors confirm the importance of human domain experts guiding the
growth and evaluation of explanation paradigms, given that current machine learning

frameworks work on a statistical and/or model-free setting, and demand context from

11
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human /scientific frameworks to transfer convincing explanations (particularly for other
domain experts). No single explanation model in the current literature works is able to
satisfy all the mentioned properties (for more details refer to ,, for extensive
surveys workbooks on explainable artificial intelligence frameworks).

In our frameworks, all these points were taken into consideration. Furthermore, as
mentioned in Chapters and |§|, our contributions/publications achieved all of these

points.

1.6 Repercussion the limits of biometric on kinship systems

Kinship verification systems suffer and affected by traditional factors of biometric systems
as well. Some of the main factors affecting the accuracy of the biometric systems are

as follows:

1. Noise in sensed data: Noise in the obtained biometric face sample could result
from degraded and improperly maintained cameras or unfavorable ambient (uncon-
strained environment) conditions. For instance, quality camera also could result in a
noisy face image as shown in Fig. Noisy biometric face sample could not be

felicitous matched, for genuine users, by their competent templates in the dataset or

cloud infelicitous matched with the impostors, in which leading to a considerable
minimisation in the performance of the framework [160,/161].

Figure 1.6: Typical frames from surveillance videos. (a) and (c) are the surveillance images from a camera with CIF size
(pixels) and a camera with 720P size (pixels) respectively; (b) shows two noisy interested faces extracted from

(a) and (c) [73].

2. Intra-class variations: Intra-class variations in biometric face samples are exem-
plary created by the user’s unsuitable interaction with the time span at capture or
the camera e.g., incorrect facial pose - see Fig. , changes in the environment
conditions (e.g., illumination changes) [182], use of various cameras during enroll-
ment and verification, or temporal-related variation in the biometric features such
as aging . Huge intra-class variations generally reduce the genuine acceptance

rate (GAR) of a biometric system.
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Figure 1.7: Example face images with (a) illumination variations in different sessions [182], (b) expression variations in
different sessions [182], (c) pose variations in different sessions , and (d) Positive sample pairs from AgeDB
\ with the gap of 30 years, facial appearances undergo dramatically changes in this time span .

3. Inter-class similarities: Inter-class similarity is known as the interference of the
biometric samples, in the feature level space, according to different classes or peoples.
The weak of singularity in the biometric trait set leading to a maximize in the false
acceptance rate (FAR) of the framework. Therefore, there is a maximum bound

on the number of singular individuals that could be assimilation by the biometric

framework.
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4. Non-universality: Universality denotes that each person utilizing a biometric
framework is capable of ready the respective biometric feature. The biometric
framework could not be capable to extract significative biometric information from
a dataset of users. For example, the National Institute of Standards and Technology
(NIST) has reported that it is impossible to extract correct minutia traits from the
fingerprints of two persons of the population (manual workers with various bruises
and cuts on their own fingertips, individuals with hand-related inabilities etc.), due
to the low quality of the ridges [21]. This contributes to maximize in the failure to

enroll (FTE) rate. Therefore, there is no biometric feature is truly universal.

5. Interoperability issues: Generality biometric frameworks are contagious and
designed by the presumption that the biometric sample to be verified is acquired
utilizing the same camera and, therefore, are restricted in their capability to match

or verify biometric samples resulting from various cameras.

6. Spoof attacks: A biometric spoof attack is the intentional attempt to tamper
one’s biometric features in order to dodge verification, or the induction of physical

biometric artifacts in order to reincarnate on the identity of another individual.

In kinship verification field, all the proposed methods must be face all these challenges
(challenges of biometric systems) before dealing with the kinship factor. In Chapters
and [6] our results performed by the proposed frameworks show that all these challenges
are treated successfully over kinship verification databases captured in unconstrained

environments.

1.7 Performance evaluation

Biometrics is the scientific term for body measurements and computations. It indicates to
metrics belonged to human traits. Biometrics verification (or realistic authentication) is
utilized in computer vision as a form of matching identity and accessing control. We refer
that also utilized to identify persons in groups that are under surveillance.

Biometric recognizers are the discriminatory, measurable traits utilized to describe and
label persons. Biometric recognizers are overwhelmingly classified as physiological against
behavioral traits. Physiological traits are belonged to the the body shape. Examples
involve, but are not limited to palm veins, fingerprint, facial recognition, palm print, DNA,
hand geometry, retina and odour/scent, iris recognition. Behavioral traits are belonged to
the modality of behavior of a individual, involving but not limited to typing rhythm, gait,
and voice. Some researchers have used the term behaviometrics to characterize the latter
class of biometrics.

More conventional means of accessing control comprise token-based recognition systems,

such as a driver’s license or passport, and knowledge-based identification systems, such
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as a password or personal identification number. Since biometric identifiers are singular
to each person, but they are highly reliable in the identity verification than token and
knowledge-based methods; furthermore, the set of biometric identifiers elevates privacy

issues about the integral utilize of this information traits.

1.7.1 Biometric functionality

Many various aspects of person physiology, behavior or chemistry may be utilized for
biometric verification. The choose of a specific biometric for utilize in a particular
application includes a weighting of various factors. Jain et al. [69] describe seven important
factors (indication points) to be utilized when estimating the suitability of any feature for

utilize in biometric verification.

o Universality means that each person utilizing a system must take possession of the

feature.

o Uniqueness means the trait must be sufficiently varied for persons in the pertinent

population such that they may be differentiated from one another.

o Permanence belongs to the way in which a feature changes over time. More particu-
larly, a feature with ’good’ permanence will be rationally unchanged over time with

conserve to the particular matching model.

o Measurability (collectability) belongs to the facility of measurement and/or storage
of the feature. Also, acquired information must be in a shape that simply permits

subsequent treatment and extraction of the pertinent trait sets.

o Performance belongs to the speed, accuracy, and robustness and effectiveness of

technology utilized (see performance subsection for more specifics).

o Acceptability belongs to how highly persons in the pertinent population consent the
technology in which that they are ready to have their biometric feature captured

and processed.

o Circumvention belongs to the simply with which a feature should be imitated utilizing

a substitute or an artifact.

Proper biometric utilize is extremely application dependent. Furthermore, certain
biometrics should be better than other ones based on the in demand levels of security
convenience [17]. No monocular biometric should meet all the requirements of all possible
application [69].

The block diagram of bimetric system includes two essential modes of a biometric
models [70]. First, in verification (or authentication) model the system executes a one-to-

one verification of a measured biometric with a special template stocked in a biometric
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dataset in which simpler verifying the individual target is the same person they should to
be. In general, three procedures are include in the person identity verification [139]. In
the first stage, reference frameworks for all users where they are produced and stocked in
the framework dataset. In the second stage, some of the samples where they are matched
with reference frameworks to produce the impostor and genuine scores and compute the
threshold. The third stage is the testing stage. This step may utilize a smart card (SC), ID
number or username (e.g. PIN) to signalize which template must be utilized for verification
comparison. 'Positive identification’ is a joint use of the authentication mode, "where the
goal is to block multiple users from utilizing the unique identity" [139].

Second, the identification/recognition mode, the framework proceed a one-to-many
verification/comparison versus a biometric dataset in an effort to found the identity of an
unknown person. The system could succeed to manage the identifying of the person if
the verification of the biometric sample tested to a template in the datatset falls within
a previously set threshold. Recognition/Identification mode may be utilized many for
‘true recognition’ (so that the user doesn’t have to show any information data about the
template to be utilized) or for ’false recognition’ of the individual "where the framework
founds whether the individual is who she (explicitly or implicitly) denies to be" [139).
This latter may only be done over biometrics since the other approaches of personal

identification such as PINs, passwords or keys are unavailing.

1.7.2 Performance

In the following, the utilized as performance metrics for biometric systems (for more

details, see Appendix [B)):

« False match rate (FMR, also named as FAR = False Accept Rate): represent
the probability of that the framework misclassified the test input pattern to a non-
matching sample in the dataset. It represents the percent of null and void inputs
that are wrongly accepted. In situation of similarity measure, if the individual is
an imposter in reality, but the matched score is larger than the threshold, then we
treated it as genuine. This maximizes the FMR, in which thus also relies onto the
threshold score [139].

« False non-match rate (FNMR, also named FRR = False Reject Rate): the
likelihood that the framework wrongly indicate that there is a match between the
sample input pattern and a matched template in the dataset. It computes the

percent of useful inputs that are wrongly rejected.

» Receiver operating characteristic or relative operating characteristic (ROC):
The ROC is a visual plot characterization of the trade-off between the FMR (FAR)
and the FNMR (FRR). Generally, the matching approach generates a decision based
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on a threshold that defines how close to a template the sample input necessarily
to be for it to be look as a match. When the threshold is decreased, there should
be smallest false non-matches but additional false accepts. Furthermore, a larger
threshold should decrease the FMR but enlarge the FNMR. A common difference
is the Detection error trade-off (DET), by which it is acquired utilizing normal of
deviation scales on the two axes. This more linear graph lighten the divergences for

greater performances (scarce errors).

« Equal error rate or crossover error rate (EER or CER): the rate at which both
rejection and acceptance errors are equal. The rate of the EER can be simply
extracted using the ROC curve. The EER is a rapid way to be compare the accuracy
of machines with various ROC curves. Generally, the machine with the smallest
EER is the high accurate.

 Failure to enroll rate (FTE or FER): the rate at which tries to generate a template
from an sample input is failing. This is high commonly inspired by low-quality sample

inputs.

 Failure to capture rate (FTC): Within automatic frameworks, the likelihood that

the framework fails to determine a biometric sample input when given correctly.

o Template capacity: the extreme number of collections of data that may be stocked

in the framework.

1.8 Articulation of the thesis

The thesis manuscript is structured around seven chapters:

In Chapter [I, we gave a general introduction of the contexts, motivations, objectives
and contributions of this thesis.

In Chapter [2| we mention a general overview state of the art methods of the kinship
verification as well as their different types: features learning-based kinship verification,
metric learning-based kinship verification and convolutional deep learning-based kinship
verification. On the other hand, we presented the kinship problem from facial images and
its measuring characteristics as well as the general kinship verification system.

In Chapter |3| (our first contribution), we present a Facial Kinship Verification (FKV)
approach based on an automatic and more efficient two-step learning into color /texture
information. Most of the proposed methods in automatic kinship verification from face
images consider the luminance information only (i.e. gray-scale) and exclude the chromi-
nance information (i.e. color) that can be helpful, as an additional cue, for predicting
relationships. We explore the joint use of color-texture information from the chrominance

and the luminance channels by extracting complementary low-level features from different
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color spaces. More specifically, the features are extracted from each color channel of the
face image and fused to achieve better discrimination. We investigate different descriptors
on the existing face kinship databases, illustrating the usefulness of color information,
compared with the gray-scale counterparts, in seven various color spaces. Especially, we
generate from each color space three subspaces projection matrices and then score fusion
methodology to fuse three distances belonging to each test pair face images. Experiments
on three benchmark databases, namely the Cornell KinFace, the KinFaceW (I & II) and
the TSKinFace database, show superior results compared to the state of the art.

In Chapter [4| (our second contribution), we present the combination of deep and shallow
features (multi-view features) using the proposed metric learning (SILD+WCCN/LR)
approach for kinship verification. Our approach based on an automatic and more efficient
two-step learning into deep/shallow information. First, five layers for deep features and
five shallow features (i.e. texture and shape), representing more precisely facial features
involved in kinship relations (Father-Son, Father-Daughter, Mother-Son, and Mother-
Daughter) are used to train the proposed Side-Information based Linear Discriminant
Analysis integrating Within Class Covariance Normalization (SILD+WCCN) method.
Then, each of the features projected through the discriminative subspace of the proposed
SILD+WCCN metric learning method. Finally, a Logistic Regression (LR) method is
used to fuse the six scores of the projected features. To show the effectiveness of our
SILD+WCNN method, we do some experiments on LEW database. In term of evaluation,
the proposed automatic Facial Kinship Verification (FKV) is compared with existing
ones to show its effectiveness, using two challenging kinship databases. The experimental
results showed the superiority of our FKV against existing ones for bi-subject matching
on KinFaceW-II and TSKinFace. Also, the experimental results showed the superiority of
our FKV on the available TSKinFace database for Father-Mother-Son and Father-Mother-
Daughter.

In Chapter [5| (our third contribution), we develop a novel criterion, named Side-
Information based Weighted Exponential Discriminant Analysis (SIWEDA), that is based
on the classical SIEDA method. We reformulate and generalize the classical Fisher crite-
rion function in order to maximize it, with the property to pull as close as possible the
intra-class samples (within-class samples), and push and repulse away as far as possible the
inter-class samples (between-class samples). Thus, SIWEDA selects the eigenvalues of high
significance and eliminate those with less discriminative information. To reduce the feature
vector dimensionality and lighten the class intra-variability, we use SIWEDA and within
class covariance normalization (WCCN) using the proposed statistical binarized image
features (StatBIF). Moreover, we use score fusion strategy to extract the complementarity
of different weighting scales of our StatBIF descriptor. We conducted experiments to
evaluate the performance of the proposed method under unconstrained environment, using
five datasets namely LEW, YTF, Cornell KinFace, UB KinFace and TSKinFace datasets,
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in the context of matching faces and kinship verification in the wild conditions. The
experiments showed that the proposed approach outperforms the current state of the art.
Very interestingly, our approach showed superior performance compared to methods based
on deep metric learning.

In Chapter @ (our fourth contribution), we present a new Tensor Cross-view Quadratic
Discriminant Analysis (TXQDA) method based on the XQDA method for kinship veri-
fication in the wild. Many researchers used metric learning methods and have achieved
reasonably good performance in kinship verification, none of these methods looks at the
kinship verification as a cross-view matching problem. To tackle this issue, we propose a
tensor cross-view method to train multilinear data using local histograms of local features
descriptors. Therefore, we learn a hierarchical tensor transformation to project each pair
face images into the same implicit feature space, in which the distance of each positive pair
is minimized and that of each negative pair is maximized. Moreover, TXQDA was proposed
to separate the multifactor structure of face images (i.e. kinship, age, gender, expression,
illumination and pose) from different dimensions of the tensor. Thus, our TXQDA achieves
better classification results through discovering a low dimensional tensor subspace that
enlarges the margin of different kin relation classes. Experimental evaluation on five
challenging databases namely Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-11
and FIW databases, show that the proposed TXQDA significantly outperforms the current
state of the art. In addition, our TXQDA method works well on smallest or limited
training data classes and on biggest or large-scale training data classes.

In Chapter |7} we conclude this thesis by summarizing the main points of our contributions

and we mention some interesting perspectives to be explored following our work.
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2.1 Introduction

Kinship verification models consists in checking if two persons are belonging to the same
family or not is termed kinship (or family) verification. Automatic kinship verification
aiming to discover computational models to decide whether two persons are from the
same family or not and purely based on patterns such as voices, faces and gaits. The
automatic kinship verification systems define their inputs by two faces (Face A and Face
B) and the predictable output is a decision whether Person A is with relation with a family
member (father, mother, brother, sister etc.) of Person B or not. Many applications can
be beneficial e.g. for forensics, finding missing children, social media comprehension and
image annotation. Though a DNA test is the most precise way for kinship verification, it
regrettably cannot be used in many situations such as in video surveillance.

The existing works on kinship verification essentially share similar face features as in
face recognition. This involves for instance the use of shallow features LBP (Local Binary
Patterns), LPQ (Local Phase Quantization) and HOG (Histograms Of Gradients) features
for inputs to SVMs (Support Vector Machines) for verification of kin relation [44}/100].
Such methods work better under some limited face image variations (in terms of image
resolution, illumination, blur etc.) but always to suffer under unconstrained environment
or to generalize to unseen data. However, the very recently developments in machine
learning suggest that highest performance can be obtained from learned features e.g. based
on deep learning methods [174] instead of shallow features e.g. LBP, LPQ and HOG.

Many authors feed their method by different features or multiple features (multi-view
data) to represent facial images for kinship verification. Lu et al. used the Multiview
neighborhood repulsed metric learning (MNRML) [103] method to train four multi-
view features, Local Binary Patterns (LBP), Learning-based descriptor (LE), SIFT and
Three-patch LBP (TPLBP). Yan et al. [174] employed three different feature descriptors
including Local Binary Patterns(LBP), Spatial Pyramid LEarning (SPLE) and Scale-
Invariant Feature Transform (SIFT) to extract different and complementary information
from each face image through DMML method. Yan et al. [175] applied three dif-ferent
feature descriptors including LBP, spatial pyramid l[Earning (SPLE), and SIFT to extract
different and complementary information from each face image to train the MPDFL
method. Lu et al. [101] used four features as it; Local Binary Patterns (LBP), Dense SIFT
(DSIFT), the histogram of oriented gradients (HOG) and LPQ for train DDMML method.
Lu et al. [60] used MvDML to train four multi-view features, Local Binary Patterns
(LBP), Learning-based descriptor (LE), SIFT and Three-patch LBP (TPLBP). Laiadi et
al. [83] used three features LPQ, BSIF and CoALBP to train SIEDA method. Dornaika
et al. used MNRML to train the two features, FC7 layers of VGG-F and VGG-Face for
the purpose of kinship verification. Laiadi et al. proposed TXQDA [84] method to train
LPQ and BSIF features using ten scales.
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2.2 Kinship verification

Many psychology researches [5}28,33,74,75] studied the human perception of kinship
verification aiming to understand the ability of kin inference from faces. Motivated by this
research, machine learning and computer vision communities are showing increasing interest
in incubating and promoting computational approaches to verify kin relations between
humans. Although several works have been published in the recent years, satisfactory
results are still beyond. To the best of our knowledge, the work of Fang et al. [44] was
among the first effort to deal with the challenge of kinship verification from face images by
collecting the first database containing kin-related image pairs. They utilized 22 features
(such as distance from eye to nose, skin color, etc.) for kinship classification. Firstly, by
using a simplified pictorial structure model, they localized the essential facial features
in an image, which are extracted to characterize the face. Then, they computed the
differences between feature vectors of corresponding parent and child, and applied the
k-nearest-neighbor (KNN) and support vector machine (SVM) classifiers to classify the
pairs of face images. More recently, Xia et al. [169}/170] proposed a transfer subspace
learning algorithm for kinship verification. Their main idea is to use an intermediate
young parent set of face images to minimize the dissimilarity between the children and old
parent images, basing on the hypothesis that the children and young parents have more
facial similarity.

Later on, Lu et al. [103] released two databases, KinFacel & KinFacell, for kinship
verification which greatly promoted the research on the topic. They also suggested a
neighborhood repulsed metric learning (NRML) method for kinship verification. The
purpose is to learn a distance metric with the property to pull as close as possible the
intra-class samples (with a kinship relation), push and repulse away as far as possible the
inter-class samples (without a kinship relation) lying in a neighborhood. Similarly, Yan et
al. [62,/174], proposed a discriminative multimetric learning method for kinship verification
through facial image analysis. Firstly, they extracted various features to describe face
images from several aspects in order to obtain integral information. Then, the multimetric
approach was applied to different features to learn suitable metrics for each one.

Dehghan et al. [35] employed autoencoders with a discriminative neural network layer
to learn both the features and metrics. They proposed an algorithm that integrates the
two techniques to determinate parent-offspring relationships. Moreover, they examined
and discussed the interconnection between the automatically detected features and those
in anthropological studies. Liu et al. [96], proposed inheritable Fisher vector feature
(IFVF) method. First, the Fisher vector is extracted from each image by assembling the
intensity sampled SIFT features from the RGB color space. Second, a new inheritable
transformation, which simultaneously increases the similarity between kinship images while

decreasing that between non-kinship images, is learned based on the Fisher vectors. As a
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result, and from each image, the IFVF is extracted by using the inheritable transformation
applied on the Fisher vector. The authors also applied a fractional power cosine similarity
measure for kinship verification. Recently, Wu et al. [168] investigated for the first time
the usefulness of color information in the verification of kinship from facial images by using
a simple scoring approach. For this purpose, they extracted joint color-texture features
from RGB, HSV and YCbCr spaces using different descriptors. The features are then
concatenated to form an enhanced feature vector. Finally, they applied cosine similarity
between the feature vectors of the pair of the two face images.

Yan H [172] presented a neighborhood repulsed correlation metric learning (NRCML)
method for kinship verification through facial image analysis. The author utilized the
correlation similarity measure where the kin relation of facial images can be better
highlighted. Since negative kinship samples are usually less correlated than positive
samples, the most discriminative negative samples are automatically identified in the
training set to learn the distance metric so that the most discriminative information
encoded by negative samples can be better exploited.

In summary, the existing facial kinship verification methods could be categorized into
three groups: (a) feature learning-based [2}20,,38l44},49,86|,87,(98}, 105,114}, 156,168,170,
173,/175]. (b) metric learning-based [14}39,/61,|101,/103,/131}/193,/195|. (c) convolutional
deep learning-based [79,[804|155}/157,177,[178,/188,/189].

2.3 Measuring kinship characteristics

Searching a true facial representation is the solution to any face analysis framework. If
the obtained facial traits are really effectively discriminative, one could easy publish the
note book as the nearest neighbor. Furthermore, verifying the relationships of kinship, the
general idea of this kind of research was to used certain discriminative traits extracted
from facial images of cut facials to obtain stable cues linked to kinship. In the following, a
review of the several features and traits that have been developed and proposed in the

literature works to verify kinship.

2.4 The general kinship verification framework

Due to the hardness and difficulty of kinship verification task, we look at the various
differences at several stages with the division strategy to conquer them, as shown in Fig.
[2.1] We can see that the architecture scheme is roughly subdivided into four components,
namely preprocessing, feature extraction and the degree of similarity to the kinship and
verification [132]. It is necessary to note that we only provide the general tasks for the

facial kinship verification task and that not all blocks are important for instantiation.
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Figure 2.1: A global system framework for kinship verification [132].

2.5 Features learning-based kinship verification

In this section, we cite and illustrate the state of the art methods which learn features/traits
of kinship to describe the face images.

Fang et al. [44] considered the first one who propose kinship verification over facial
images, where they used a set of low-level features. They make a test and evaluation of the
individual performance of numerous low-level traits of face images, and then select the best
14 features. We split these best features into three parts: the color, face parts distances,
and the gradient histograms. More recently, Lopez et al. [98] proposed to make prediction
over the use of the chrominance distance metric between each pair of face images as the
confidence score. These types of approaches can extend to a certain precision, but there is
the existence of many problems, amongst that the hypothesis of each face kinship pair
is cropped using the same photo and the pose variation of face images is comparatively
simple are generally outstanding problems.

Xia et al. [170] provided two model features that simply can separate positive child-parent
face images pairs from the negative ones. The first one was based on the facial appearance
and taken by 40 collection of Gabor [1] filters parameters (eight directions and five scales).
MoreoverFurthermore, they firstly subdivided each of the facial image into regions in five
parts, as shown in Fig. 2.2l As shown in this figure, the total face image is the first part.
Furthermore, the second part includes many regions as it: upper, lower, left, right and
center regions of the face image. The brow, nose, eyes, mouth, and the areas of cheek are
include the third part and their finer sub-parts form the fourth part. Finally, a collection
of sub parts based on the four fiducial points form the fifth part. After that, they used
Gabor filters on each aforementioned local parts. The same idea has been utilized in [164]
to describe the face expressions through local traits description. Intuitively, facial kinship
verification is also a process on local parts. Meaning that when people are talking about
face kinship, they predominantly focus on parts of the face between parents and their
children and decide whether they share comparable eyes, noses, or mouths. Another trait
is based on the anthropometric model [135] which basically looks for structure data of
facials. Based on the captured key points, they obtained 6-D structure traits of ratios of

typical region distances, e.g., “eye—eye” metric versus “eye-nose” metric. Structured data
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is supposed to inherit widely from parents, and therefore might be a key step for kinship
verification . However, due to aging factor between the parents and their children [135],
the old parents facial structures are transformed from the ones when they were young. So,

they use transfer learning subspace to lighten the age degrading factor.
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Figure 2.2: Face partitions in different layers and face image illumination normalization. For simplicity, only four layers are
illustrated instead of five. Red dots on faces in Layerl illustrate four key points mentioned in this work .

As seen in Fig. , Wang et al. utilised the height differences and the closeness of
persons change in family and non-family face images. Under a reasonable hypothesis of
camera pose. The camera positions of faces in an image supply an estimate of proportional
height of people in the image (which may signalize their proportional age), and proportional
physical nearness in the photograph (which may signalize social context). Although these
estimates may not be true, the total geometry of face positions is a key step for family photo
classification. The geometric data of a group facial images has shown to be more helpful
for event recognition . For social relationship analysis in a group face image, there

have been efforts to add this new factor into account. Pairwise measure of two persons

positions is the most generally utilized method. Wang et al. [153] utilized the metric
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between two individuals to represent the closeness in a face image. Counting the number
of individuals between the samples being compared was utilized in [25]. Furthermore,
these measurements only measure the relative proportional of two people, instead of the

total geometry as we longing.
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Figure 2.3: Face partitions in different layers and face image illumination normalization. For simplicity, only four layers are
illustrated instead of five. Red dots on faces in Layerl illustrate four key points [170].

Bottinok et al. [20] relies upon more concentrate on texture features, including LPQ,
WLD, TPLBP and FPLBP. The proposed framework products the highest performance on
the image restrict setting in the second kinship competition [100]. Furthermore, Bottino
et al. [19] and Vieira et al. [151] used a collection of geometric, holistic or texture traits.
These two approaches got 81.5% on KinFaceW-II database. The results show that multiple
traits instead of monocular trait is more powerful to got a higher performance for kinship
verification.

Besides the geometry, color and texture traits, appearance features is another efficient
path to characterize kin facials due to the gaining obtained in facial analysis task. This
kind of method comprises Gabor wavelet [196], salient part [54] and self similarity [7§].

Wang et al. [156] used both features, the appearance and geometry traits. For the
appearance trait, pyramid facial images are first constructed on each facial to get an
overlapping blocks then feature extraction is performs within those blocks. A Gaussian
blend model is used to find the similar block pairs in corresponding locations of two
facial images. Then, the absolute gap between two similar blocks traits is calculated as
the appearance trait. For geometry trait, face landmarks are first calculated and then
projected to a new subspace called the Grassmann manifold. Finally, the Geodesic metric
between two facial frames is computed as the geometry trait.

Moreover, Dibeklioglu et al. [38] show that facial dynamics may provide more effective
information cues for facial kinship verification. To this end, videos of expressions (enjoyment
smiles) instead of still face images are utilized to extract facial dynamic traits fused with
spatio-temporal appearance description. The prudence of this approach is that the casual
facial expressions of born-blind individual and their considered family are similar [129] not
only depends on the appearance of the expression but also related to its dynamics.

More recently, many of researches have been performed on feature learning in the
domain of computer vision, and a lot of different types of feature learning methods have
been presented. In facial kinship verification, representative feature learning methods

comprise spatial pyramid learning-based (SPLE) approach [194], gated auto-encoder [35]
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and Convolutional Neural Networks [79,80,/155,|157,(177,,178,/188,/189]. These methods
usually learn representations by encoding some prior understanding, such as sparsity,
smoothness, or spatial and temporal coherence, directly through raw pixels [13].
Differently from the aforementioned approaches, Yan et al. [175] used mid-level trait
by means of low-level features instead of the raw pixels, where the learned trait vector
comprises of various decision values from one SVM (support vector machine) hyperplane.
Furthermore, a big unlabeled facial dataset and a very small dataset of facial pairs labeled
with kinship pairs relations are utilized to augment an target function so that facials with
kin relation are prospective to have identical decision scores from the used hyperplane.
The work of Yan et al. [175] proposed a novel prototype-based discriminative feature
learning (PDFL) approach for facial kinship verification. Differently from most prior works
on kinship verification which utilize low-level hand-crafted (shallow) descriptors including
local binary pattern (LBP) and Gabor traits for facial representation, their work goal is
to learn a new and more discriminative mid-level features to perfectly describe the kin
relation of facial images for kinship verification. To perform this, they collect a group
of facial images with unlabeled kinship relation from the LEW (labeled face in the wild)
dataset as the baseline set. After that, each face in the training facial kinship database
is demonstrated as a mid-level feature (trait) vector, where each input is the identical
decision score from one SVM hyperplane. Thereafter, they design an target function
by decreasing the intra-class faces (with a kin relation) and increasing the neighboring
inter-class faces (without a kin relation) with the mid-level traits. Finally, they used
multiple low-level traits for mid-level feature learning. Therfore, they further suggested a
multi-view PDFL (MPDFL) approach to learn multiple mid-level traits to improve the
verification of kinship performance. Fig. shows the illustration of the proposed pipeline

for facial kinship verification.
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from LFW B " | Representation Learning Hyperplanes
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Figure 2.4: Pipeline of the proposed kinship verification approach. First, they construct a set of face samples from the LFW
dataset as the prototypes and represent each face image from the kinship dataset as a combination of these
prototypes in the hyperplane space. Then, they use the labeled kinship information and learn mid-level features
in the hyperplane space to extract more semantic information for feature representation. Lastly, the learned
hyperplane parameters are used to represent face images in both the training and testing sets as a discriminative
mid-level feature for kinship verification |175].

The work of Moujahid et al. [114] presented a new approach for image-based kinship
verification eligible to effectively fuse local and global facial traits information extracted
from various descriptors. As shown in Fig. the proposed framework depends on
two main steps: (1) they model the facial images utilizing a Pyramid Multi-level (PML)

description where local face descriptors are extracted through many blocks at various
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size scales; (2) they calculated the covariance (second-order statistics) of various local
features describing each individual block in the PML description. This allows rise to a
facial descriptor with a two effective properties: (i) that the PML description, different
scales and facial regions are explicitly fused together in the final description without the
need to detect the face landmarks; (ii) the covariance descriptor describes spatial traits of

any kind granting the combination of various state-of-the-art color and texture features.
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Figure 2.5: (Top) Multi-block covariance descriptor and (Bottom) Pyramid Multi-Level (PML) covariance descriptor [114].

v

Lan et al. proposed a simpler efficient approach called quaternionic Weber local
descriptor (QWLD) for color face image traits extraction. Fig. illustrates the proposed
QWLD framework for color images. Combining quaternionic representation (QR) of the
color facial image and Weber’s law (WL), QWLD has both their proprieties. It utilizes
QR form to deal with all color channels of the facial image in a global way while saving
their relations (neighborhood from different channels), and applied WL to guarantee that
the combined descriptors are more robust and more discriminative. Utilizing the QWLD
approach, they further discover the quaternionic-increment-based Weber descriptor and
quaternionic-distance-based Weber descriptor in terms of multiple perspectives.

Wu et al. realized that the generality of the proposed approaches for facial kinship
verification have essentially based on processing only the luminance (i.e.gray-scale) of the
facial images, hence excluding the chrominance (i.e. color) information data which may

be a powerful additional trait to verify kinship from faces. Their work shows for the first
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Figure 2.6: QWLD framework .

time that the color information contains an additional traits in the verification of kinship
from face images. For this objective, they used joint color-texture traits to describe both
the luminance and the chrominance data information in the color facial images. The
kinship verification performance utilizing both color and texture analysis is compared
to the counterpart methods using only gray-scale data information. Fig. shows an

illustration of the Color/Texture classification method for facial kinship verification.
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Figure 2.7: An illustration of the Color/Texture classification method \ .

>

Mahpod et al. proposed a multiview hybrid combined symmetric and asymmetric
distance learning (CSADL) network for face kinship verification. Both discriminative
descriptions are combined for the parents and the children utilizing a margin maximization
learning framework, while the kinship verification is formed as a classification task solved
by SVM. Fig. describes the proposed hybrid distance learning (HDL) network for
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facial kinship verification.
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Figure 2.8: The proposed hybrid distance learning (HDL) network. (1) A training set consisting of pairs of faces images
of parents and their children. (2) Computation of image descriptors. (3) Training the HDL per feature. (4)
Applying the HDL projection. (5) concatenating the multiple learnt representations. (6) Training the HDL
using the fused features. (7) Fused representation of the pair of input images. (8) Kernel SVM classification.
(9) Kin verification result [105].

Aliradi et al. [2] proposed a novel framework that used discriminative data information,
which is focused on the exponential discriminant analysis (DIEDA) fused with various
scale descriptions. The histograms of multiple blocks are assembled together to get a high
dimensional vector of features, which demonstrates a specific descriptor of the scale. The
projected features based histograms for each region used the cosine similarity distance to
minimize the feature data vector dimension. Finally, region scores depending to several
descriptors extracted at multiple scales are then fused together and compared by utlizing
a classifier. Their work feats effective side information data for face matching and kinship
verification in the wild conditions (to decide if the facial image pairs are taken from the
same person or not). To tackle this problem, they take samples of the face images with
unlabeled kinship facial images from the labeled face in the wild dataset as the baseline set.

They created an optimized target function by descreasing the intra-class samples (with
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a kin relation) and increasing the interclass samples (without a kinship relation) with
the proposed framework. Fig. 2.9 shows the architecture of the dieda face and kinship

verification system.
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Figure 2.9: The architecture of the dieda face and kinship verification system .

Lan et al. suggested a simpler and effective framework named quaternion-Michelson
descriptor (QMD) to encode local features for color facial image classification. Fig.
illustrates schematic picture of Quaternion-Michelson descriptor (QMD). Unlike the most
local descriptors using directly from the original (raw face) image data, QMD is deduced
from the Michelson contrast law and the quaternionic representation (QR) of color facial
images. The Michelson contrast is a robust measurement of facial images tenor from the
multiple view paints of human vision, while QR is capable to deal with all the color data
information of the facial image holisticly and top save the dynamics over various color
channels. Therefore, QMD combines both the merits of Michelson contrast and QR. Based
on the QMD approach, the authors further proposed two new quaternionic Michelson

contrast binary pattern descriptors from various perspectives.
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Figure 2.10: schematic picture of Quaternion-Michelson descriptor (QMD) .

Yan et al. proposed a new weakly-supervised (semi-supervised) feature learning
approach called discriminative compact binary face descriptor (D-CBFD) for face kinship
verification. Unlike the generally previous kinship verification approaches where hand-
crafted (shallow features) features are utilized for face description, their D-CBFD performs
effective face description from a collect of weakly-labeled data samples. Given a facial
image, they first calculated pixel difference vectors (PDVs) at different local regions.

Then, they learn a effective projection space to map each PDV and project them into a
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new discriminative low-dimensional binary features space, where the total energy data
information of the PDV should be well saved and the metric of the positive pairs is smaller
and that of the negative pairs is greater. Finally, they pool all binary features vectors
over each facial into a histogram extraction features as the final description. Fig. [2.11

illustrates the D-CBFD method proposed for kinship verification.

D-CBFD
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Figure 2.11: The flow-chart of face representation by using D-CBFD. They first divide each training face into several non-
overlapped regions and learn the feature mapping W and the codebook for each region. Then, they first project
each PDV into a low-dimensional binary feature vector. Then, they pool these binary feature vectors within
each face into a histogram feature as the final representation .

Golay et al. proposed a new eccentricity-based facial kinship verification (EKV)
approach to show powerful of dominant face regions for kinship verification. The proposed
EKYV approach used eccentricity of ellipse-approximated dominant face regions as effec-
tive parameter to describe facial images for kinship verification. It shows two essential
frameworks, named single eccentricity (SE) and fused eccentricity (FE). SE framework for
EKV approach built single formulation by utilizing single face region. For each used face
region, it approximated as an ellipse to calculate eccentricity parameter and implement
verification. Next, FE framework for EKV approach utilized multi-view description by
using two or more face regions. Eccentricity of various ellipse-approximated face regions is
calculated and combined to form a converted parameter and implement verification. Fig.

shows a samples of ellipse estimation for facial images in kinship databases.
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Figure 2.12: Samples of ellipse estimation for facial images in kinship databases. The first, second, fifth and sixth columns
in each row correspond to original images. The third, fourth, seventh and eighth columns correspond to images
with elhpse estlmatlon on facial sections of respective images. Kinship image pairs are distributed as (a) F-S,

(b) F-D, (c) M-S, (d) M-D [49].

2.6 Metric learning-based kinship verification

In this section, we show and describe the state of the art methods that learn a metric
distance through a deep learning metric learning strategy or subspace transformation
metric learning strategy proposed for kinship verification task.

Lu et al. proposed a novel neighborhood repulsed metric learning (NRML) approach
for facial kinship verification. Encouraged by the conviction that inter-class samples face
images (without a kinship relation) that with huge similarity actually lie in a neighborhood
and are more readily misclassified compared to those with less similarity, they goal is to

discover a metric distance by which the intra-class samples face images (with a kinship
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relation) are pulled as close as possible and inter-class samples face images lying in a
neighborhood are repulsed and pushed away as far as possible, Furthermore, such that
more effective information can be extracted for kinship verification. To show better
utilize of multiple features description and to extract integral information, they further
proposed a multiview NRML (MNRML) method to compute a common metric distance to
combine multiple features over a subspace fusion to enhance the facial kinship verification
performance. Fig. [2.13] shows framework of the proposed kinship verification approach via

facial image analysis

bad ; - — Classification
Training Facial Feature Distance Metric . :
Face Pairs Representation Learning Kin or Non-kin
Test Face Facial Feature
Pair Representation

Figure 2.13: Framework of the proposed kinship verification approach via facial image analysis. Given a set of training
face images, they first extract features for each face image and learn a distance metric to map these feature
representations into a low-dimensional feature subspace, under which the kinship relation of face samples can
be better discriminated. For each test face pair, they also extract features of each face image and map these
features to the learned low-dimensional feature subspace. Finally, a classifier is used to verify whether there is
a kinship relationship or not between the test face pair [103].

Zhou et al. [195] proposed a novel kinship metric learning (KML) approach with a
merged deep neural network (DNN) model. As mentioned in Fig. KML clearly models
the cross-generation contradiction inherent on parent-child pairs face images, and learns a
merged deep similarity metric such that the facial image pairs with kinship relation are
thrown close (pulled close), while those without kinship relation (but with high appearance
similarity) are thrown away (pushed as far away as possible). Furthermore, by assessing
the intra-connection assortment and inter-connection uniformity over the merged DNN,
they present the property of hierarchical compactness into the merged network to make
easier deep metric learning with finite collection of kinship training information data.

The work of Bessaoudi et al. [14] proposed a framework based on tensor-based metric
learning (high order tensor) design of facial images. The facial tensor is structured based
on local texture descriptors extracted from multi-scales. Furthermore, they proposed a
novel Multilinear Side-Information based Discriminant Analysis (MSIDA) to deal the semi-
supervised multi-linear subspaces projections reduction and classification. By utilizing
only the weakly labeled information data, MSIDA allows to project the input facial
tensor into a discriminative subspaces defined by tensor subspaces analysis in which the
discrimination is enhanced and the size (dimension) of each tensor modes are minimized
simultaneously. As depicted in Fig. 2.15 the block diagram of the MSIDA approach consists
of three fundamental components: feature extraction, tensor subspace transformation and
comparison.

Each facial image is appeared by two local texture descriptors, MSLPQ and MSBSIF,
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Figure 2.14: The meta-view of the KML method with a carefully designed deep architecture KinNet \ .
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Figure 2.15: Block diagram of the MSIDA face pair matching system .
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performed at various scales subjecting many features vectors of each face image. The
features vectors of the total training facials are stacked as a third order tensor (i, ia,3),
where i; represents the feature length of single feature vector, i represents the various
local texture descriptors extracted from multiple scales, and i3 represents the facial images
samples contained in the training dataset. The built tensor is firstly projected by MPCA
[154] to minimize the subspace dimensions to j; X jo X i3, where j; X jo << iy X ia.
The cause for effect MPCA before to MSIDA is to process the small sample size (SSS)
problem in several tensor modes. This problem appears when the dimension length of the
features vector is bigger than the number of training samples face images, resulting to the
singularity of different MSIDA scatter matrices. Minimizing the dimension length of each
tensor mode firstly is therefore applied.

After performing MPCA, the training information data tensor was split into two sub-
tensors according to the positive pairs (match pairs) and negative pairs (non-match pairs),
respectively. The subdivision was done corresponding to the third tensor mode i3. The
positive tensor was utilized to calculate the within-class scatter matrix (S™4%), and the
negative tensor was utilized to calculate the between-class scatter matrix (S™), of the
MSIDA method. The information data tensor was projected through MSIDA subspaces to
obtain a lower and more discriminative fearures k; X kg, where ki X kg << j3 X Jja.

In the test stage, each of the facial images of the pair was checked the matching was
represented as a second order tensor defined by stacking the local texture descriptors of
the facial image. Furthermore, the two tensors were projected though MPCA method
and then MSIDA method. Finally, the cosine similarity distance between the test pair
was calculated and utilized to decide whether the pair is positive (belonging to the same
person/family) or not.

The work of Dornaika et al. [39] introduced a novel scheme that extract facial deep
traits for kinship verification. The approach merges effective features selection and kinship-
oriented prominent data information projection. The presented framework comprised of
three stages of fusion: (1) an early fusion of features descriptors where the filter selection
chooses the most discriminant deep features, (2) a middle-level fusion which used a kinship-
based multi-view metric learning (MNRML) method, and (3) a late-level fusion that
combines classifiers (SVM) responses. In their work, facial features are obtained by the
pre-trained deep convolutional neural networks VGG-F and VGG-Face that were basically
proposed for classifying groups of objects and identities, respectively.

They focus on four relations of kinship relations. The four relations are: Father—Son
(F-S), Father-Daughter (F-D), Mother—Son (M-S), and Mother— Daughter (M-D). Fig.
[2.16] shows an overview of the structure of the proposed framework. The input is a pair of
facial images. The first image was given to describe a child and the second for the parent.
Furthermore, a child facial image according to either a child or an adult. The parent

facial image according to a young adult or an old person. The confirm that the order of
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positioning of the pairs in the facial images is not important. Therefore, the output of
their proposed framework was a binary decision which verifies the facial kinship relation.

Given a pair of facial images (Parent—Child), the deep facial features descriptions by
VGG-F and VGG-Face are defined as the vectors p, ¢ and p’ and ¢’, respectively. Each

was a vector € R4, The processing shown that the data information thrown over a

pipeline.
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Figure 2.16: Pipeline flowing from left to right, turning the pair of input images into a predicted class. Each block performs
a change in its input and its output is connected to the input of another block. The pipeline architecture is
the same for any number of descriptor types [39].

Lu et al. [101] proposed a DDML approach to train a deep neural network that can be
learn a group of hierarchical non-linear transformations subspaces to project facial images
pairs into the same implicit features space, in which the metric of each positive pair was
minimized and that of each negative pair was maximized, respectively. To better exploit
the commonality of different features descriptors and to make all the features more effective
for facial and kinship verification, they developed a efficacious deep multi-metric learning
(DDMML) method to together learn multiple neural networks by which the correlation
of various features of each sample is increased, and the metric of each positive pair is
decreased and that of each negative pair is maximized, respectively.

As illustrated in Fig. [2.17] DDML learns one neural networks from a monocular feature
description and cannot deal with various feature descriptions directly. In facial and kinship
verification, it is simply to extract various features for each facial image for various feature
fusion. However, the features were extracted from the same facial image are generally
extremely correlated to each other even if they could describe facial images from several
aspects [45]. For various feature fusion, these extremely correlated information data should
be saved because they generally reflect the fundamental information data of samples. An
significant principle to utilize multi-feature metric learning is to simultaneously learn a
multiple distance metrics by saving the correlation between various feature pairs facial

images.
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Figure 2.17: The flowchart of the proposed DDML method for face verification. Given a pair of face images 1 and z2, we

map them into the same feature space th) and th) by learning a set of hierarchical nonlinear transformations,
where the similarity between their outputs at the top level of the network is computed to determine whether
the pair is from the same person or not. |101].

Hu et al. discussed that the most existing metric learning methods performed to
learn only one Mahalanobis distance metric from a monocular feature description for each
facial image and cannot make utilize of various feature description directly. In several
face-related topics, it can be easily extract various features for a facial image to perform
more complementary data information, and it is eligible to learn distance metrics from
these various features so that more effective information data can be extracted than those
extracted from single features. To get this, they presented a large-margin multi-metric
learning (LM3L) approach for facial and kinship verification, which together learns various
global distance metrics by which the correlations of various feature descriptions of each
sample are enlarged, and the distance of each positive pair is minimal than a low threshold
and that of each negative pair is bigger than a high threshold. To better extract the local
data structures of facial images, they also proposed a local metric learning (LML) and
a local large-margin multi-metric learning (L2M3L) approaches to learn a group of local
metrics for face and kinship verification.

Qin et al. proposed to learn and predict with gender-unknown kin relations. To

address this issue, they presented a novel heterogeneous similarity learning (HSL) approach.
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Encouraging by the fact that various kinship relations may not only share several common
genetic traits but also have its own inherited characteristics from parents to offspring.
They goal to learn a similarity metric by which the commonality among various kinship
relations were kept and the geometry of each relation was saved, simultaneously. They
further extended a multi-view HSL approach by optimal merge of the similarity methods
from various feature descriptions, such that the integrally knowledge in multi-view kinship
data information can be leveraged to obtain a better refined information. Fig. shows
illustration of pipeline of (a) the gender-fixed kinship verification and (b) the proposed

heterogeneous kinship verification.

R [
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Figure 2.18: Pipeline of (a) the gender-fixed kinship verification and (b) the proposed heterogeneous kinship verification.
For (a), one first train a classifier for each kind of kin relationship. When a pair of testing samples come
in, one first pick out the corresponding classifier according to the genders of the query samples. Then, the
selected classifier is conducted to find the real label of the testing samples; For (b), one first train a classifier
for heterogeneous kin data. When a pair of testing samples come in, a fine classification is conducted to find
the real label of the testing samples by using the trained classifier .

Zhao et al. discussed that the related work methods focused either on discovering
hand-crafted feature (shallow feature) descriptions to represent the facial or on learning
the Mahalanobis metric distance to compute the similarity between face images. Instead,
they proposed a new Multiple Kernel Similarity Metric (MKSM), by which, unlike from
the Mahalanobis metric, the similarity calculation is essentially based on an inherent
nonlinear feature transformation space. The general MKSM is a weighted collection
of basic similarities and therefore have the capacity for features fusion. The essential
similarities are derived from base kernels and local texture features, and the weights are
resulted by solving a mannered linear programming (LP) problem that derived from a Large

margin (LM) criterion. Furthermore, the LM criterion not only saves the generalization
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on unseen data samples when the training data is very small, but also leads to sparsity in

the weights vector in which turn boost the effectiveness at the prediction phase.

2.7 Convolutional deep learning-based kinship verification

In this section, we presented the state of the art methods were based essentially on deep
convolutional neural networks to the problem of kinship verification.

Zhang et al. proposed to learn high-level features descriptions for kinship verification
based on deep convolutional neural networks. Their method is end-to-end, with non
complex pre-processing often utilized in traditional approaches. The high-level features
descriptions are resulted from the neuron activations of the last hidden layer, and then fed
into a softmax classifier to make verifying the kinship of two facial images. Considering the
significance of face key-points, they also extracted key-points-based features descriptions
for kinship verification. Fig. shows CNN-basic architecture.
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Figure 2.19: The architecture of basic CNN for kinship verification. For all layers,the length of each cuboid is the map
number, and the width and height of each cuboid are the dimension of each map. The inside small cuboids and
squares denote the 3D convolution kernel sizes and the 2D pooling region sizes of convolutional and pooling
layers. The input is a pair of RGB images and the output is a two-value label .
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Kohli et al. made a human study that performed to understand the abilities of
human perception and to identify the discriminated regions of a facial that smooth
kinship cues. The visual stimuli offered to the participants define their capability to
identify kinship relationship utilizing the total facial as well as particular facial parts. The
influence of participant age and gender and kinship pairs of the stimulus is studied utilizing
quantitative measurement such as accuracy, discriminability index d’, and perceptual
information entropy. Using the information data acquired from the human study, a
hierarchical kinship verification via representation learning (KVRL) approach was used
to better learn the description of various facial parts in an unsupervised manner. They
proposed a new method for feature description named as filtered contractive deep belief

networks (fcDBN). The proposed feature description combnes relational information data
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present in facial images using filters and contractive regularization penalty. A compact
description of face images of kinship was used as an output from the learned model and
a multi-layer neural network was used to verify the kinship accurately. A novel WVU
kinship database was collected, which comprises of several facial images per person to
make easier kinship verification. The results conclude that the proposed deep learning
approach (KVRL-fcDBN) outperforms the state-of-the-art kinship verification accuracy on
the WVU kinship dataset and on four existing benchmark databases. Moreover, kinship
information data was utilized as a soft biometric quality to increase the performance of
facial verification by product of likelihood ratio and support vector machine based methods.
Fig. [2.20] shows the KVRL-fcDBN approach for kinship verification.
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Figure 2.20: hierarchical kinship verification via representation learning (KVRL-fcDBN) framework. In the first stage of
a), representations of individual regions are learned. A combined representation is learned in the second

stage of Fig. a). Fig. b) shows the steps involved in kin vs non-kin classification. .

Kohli et al. proposed a novel deep learning approach for facial kinship verification in
unconstrained videos utilizing a new Supervised Mixed Norm AutoEncoder (SMNAE). This
novel autoencoder formularization presents class-specific sparsity includes in the matrix

weight. The proposed three-stage SMNAE based facial kinship verification approach uses
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the learned spatio-temporal description in the still video frames to verify the kinship in
a pairs of videos. A novel kinship video (KIVI) dataset of more than 500 persons with
variations due to occlusion, pose, illumination, ethnicity, and expression was gathered
for their research. It includes basically of 355 positive kin video pairs with over 250 000
image frames. The efficiency of the proposed approach was applied and performed on the
KIVI dataset and six other existed facial kinship datasets. On the KIVI dataset, SMNAE
obtained video-based kinship verification accuracy of 83.18% which is at least 3.2% better
than the existed methods. The approach was also tested on six publicly available facial
kinship databases and achieves the best reported results. Fig. illustrates the proposed

kinship verification framework.
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Figure 2.21: kinship verification framework: two input videos are divided into non-overlapping vidlets and for every vidlet,
SMNAE features are extracted. The final video classification is performed by fusion of all the vidlet pair
scores [80].

Yan et al. [178] presented an approach for face kinship verification, which utilizes an
attention network to concentrate on obtaining discriminative information of local facial
regions. Unlike most existed methods that use low-level features descriptions for kinship
verification, they introduced an attention mechanism in the deep network to obtain high-
level traits for face description. They also proposed a self-supervised method to orientate
the attention network. Furthermore, they at random include a mask to five face features
regions of each facial to get more help the network to focus on obtaining more effective data
information at these group of regions. The visualization of the overall process illustrated
in Fig. [2.22,

Wang et al. [155] proposed a towards-young cross-generation framework for efficient
facial kinship verification by combining the two factors age and identity divergences. Fig.
[2.23] shows Illustration of the cross-generation generative kinship verification framework.
Furthermore, they explored a conditional generative method to force in an intermediate
space to connect each pair. Moreover, they could obtain more discriminative features
over deep networks with a newly-designed Sparse Discriminative Metric Loss (SDM-Loss),
which was exploited to include the positive and negative data information.

Zhang et al. [189] show that the most existing approaches for facial kinship verifica-

tion could be subdivided as handcrafted features-based shallow learning methods and
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Figure 2.22: Flow chart of the experimental process. First cover a mask of the same local part for one image pair, then
superimpose the two images together as an input to the network. The network outputs two different labels,
where the local parts label records the location of the added mask, and the kinship label reports the verification

result .
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Figure 2.23: Illustration of the cross-generation generative kinship verification framework. The towards-young generative
model is proposed to first generate young parents from its input old images and then the second stage network
deal with the identity variation for a family pair with age gap mitigated and a newly-designed Sparse Discrim-
inative Metric Loss (SDM-Loss), which is exploited to involve the positive and negative information m
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convolutional neural network (CNN)-based deep-learning methods. Furthermore, these
approaches are still deal the challenging problem of identifying kinship traits from face
images. Moreover, the reason is that all the family ID identifiers information data and the
distribution diverse of pairwise kinship from facials are seldom taken into consideration in
facial kinship verification problems. Therefore, a family ID-based data adversarial convolu-
tional network (AdvKin) approach mainly focused on effective Kinship traits was proposed
for both kinds of kinship databases (large-scale and small-scale facial kinship verification).
The advantages of their proposed framework are four-fold: 1) for kinship relationships
detection, a simpler yet efficiency self-adversarial paradigm based on a negative maximum
mean discrepancy (NMMD) loss was proposed as attacks in the first (FC-1) fully connected
layer; 2) a pair-wise contrastive loss and family ID-based softmax loss are then together
formulated in the second and third (FC-2 and FC3) fully connected layer, respectively, for

supervised strategy training; 3) a two-stream network scheme with residual connections
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was proposed in AdvKin; and 4) for more fine-grained deep kinship traits augmentation, an
ensemble of patch-wise AdvKin networks was proposed (E-AdvKin). Fig. illustrated

the two-stream shared AdvKin approach.
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Figure 2.24: Pipeline of the two-stream shared AdvKin approach. C denotes convolution layer, P denotes pooling layer, and
FC denotes fully connected layer. Note that the parts (i.e., residual connection versus SL layer) indicated by
dashed lines are specifically added for large-scale kinship verification tasks |189).

Wang et al. proposed a effective sampling approach to obtain the most efficient
negative samples via deep reinforcement learning for facial kinship verification. Fig. [2.25
shows the deep convolutional architecture utilized for kinship verification. Unlike the
most previous facial kinship verification approaches which focus basically on extracting
discriminative features with the random sampling paradigm, they developed a deep
reinforcement learning approach to obtain samples which are more suitable for learning
discriminative kinship traits, so that the total performance could be enhanced. Furthermore,
their approach utilizes two sub-networks to tackle the facial kinship verification problem:
one DQN-based sampling architecture to filter the negative samples, and one multi-layer

convolutional architecture to verify the kinship and make the final decision.
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Figure 2.25: The figure details the structure of the deep convolutional network used for kinship verification. Each layer
included in the network is shown in the figure. The dimension marked in the picture is the size of the data
after passing through each layer. .

Yan et al. [177] proposed a deep relational network in which extracts multiple scale
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information data of face images for kinship verification. Unlike the most previous deep
learning based face kinship verification approaches which mostly used convolutional neural
networks to obtain holistic features, they presented a deep model to obtain face kinship
relationship from local parts. For each input pair of facial images, their method utilized
two convolutional neural networks which share parameters to extract various scales of
features, by which expected to give global contextual data information of facial images.
They subdivide a set of traits at the one scale into multiple collections, where various
collections capture information data of various local parts. For each face pair of local
feature collections which are extracted from the same scale and position, they proposed a
relation network to source their relationship, and utilized a verification model to infer the
kinship relation based on the results of local relations from various facial parts. Fig. [2.26

shows the detailed structure of the deep relational network for facial kinship verification.
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Figure 2.26: The detailed structure of the deep relational network. The network takes a pair of face images as the input.
It first uses two convolutional neural networks with shared parameters to transform facial images into three
scales of features. These features are only generated by partial face image regions due to different convolutional
kernel sizes. These three scales of features provide both local and global information of face images. Features
from two faces are concatenated together, and are processed by using a multi-layer perceptron with shared
weights. The network then adds these features and uses another multi-layer perceptron to determine whether
there is a kin relation or not for a given pair of face images m

We summarize in Table the previous research works that show advance in the facial
kinship verification field as well as their years of publication, results and benefiting of

external training data for facial kinship verification or not.
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Table 2.1: Review of facial kinship verification approaches. Outside Training column represents if an external face database

was required for training the algorithm.

Year | Authors Algorithm Database Accuracy (%) Out.Sl.de
Training
3 , KinFace-I 69.90
Lu et al. [103] MNRML KinFace Tl =6 E0
2014 KinFace-I 72.25
Lu et al. [174] DMML KinFace-II 78.25
Cornell KinFace | 73.75
KinFace-I 70.10 No
3 , KinFace-I1 77.00
S01s Yan et al. [176] MPDFL Cornell KinFace | 71.90
UB KinFace 67.30
; . KinFace-1 77.50
Zhang et al. [188] CNN-Points KinFace Tl RAV
Cornell KinFace | 89.50
. 3 UB KinFace 91.80
2016 | Kohli et al. [79] KVRL+fcDBN KinFaceT 9610 Yes
KinFace-II 96.20
; KinFace-I 66.30
Yan et al. [172] NRCML KinFaco T 7270
. . 3 . 3 KinFace-1 80.50
92017 Dibeklioglu et al. [37] | Method in |37] KinFace I 230
KinFace-1 83.50
Lu et al. [102] DDMML KinFace-1I 84.30
TSKinFace 84.15 N
KinFace-I 76.80 ©
; KinFace-I1 90.20
Dawson et al. [32] FSP T<KinFace 38.60
Cornell KinFace | 76.70
KinFace-1 90.47
2018 Liang et al. [92)] WGEML KinFace-II 82.80
TSKinFace 78.70
KinFaceW-1 96.90
KinFaceW-II 97.10
Kohli et al. [80] Method in [80] | Cornell KinFace | 94.40 Yes
UB KinFace 95.30
TSKinFace 88.11
L q KinFace-1 88.20
Moujahid et al. [114] | PML-COV-S KinFace Tl 3890
UB KinFace 84.50
. 3 / - | KinFace-I 84.55
Dornaika et al. [39] MNRML+SVM KinFacoll 36.90
KinFace-I 82.80
: , KinFace-IT 85.70
2019 | Zhou et al. [195] KML Cornell KinFace | 81.40
UB KinFace 75.50
KinFace-1 78.70
; . KinFace-II 88.00
2020 | Zhang et al. |189] AdvKin Cornell KinFace 17500 No
UB KinFace 81.40
3 KinFace-1 78.60
Wang et al. [157] NESN-KVN KinFace Tl %9.00
3 } . 1 | KinFace-I 85.60
Yan et al. [177] Method in [177] KinFace Tl 3880
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2.8 Conclusion

In this chapter, we introduced the general common challenges encountering facial kinship
verification. Also, we explored the various measuring kinship characteristics which can
be benefit from the facial kinship verification systems. Moreover, we described the
general kinship verification framework and each essential components to make a decision.
Furthermore, an overview was presented about facial kinship verification frameworks
and we roughly categorise them into three types as it: Features learning-based kinship
verification methods, Metric learning-based kinship verification methods and Convolutional

deep learning-based kinship verification methods.

47



3 Kinship Verification from Face Images in

Discriminative Subspaces of Color Components

Contents
8.1  Introductionl . . . . . . . . . . .. 49
3.2 Color-based face kinship verification| . . . . . . . . . ... ... 50
3.2.1 Color spaces| . . . . . . . . . . . 50
322 Feature extractionl . . . . . . . . . . . ..o 51

[3.2.3  Side-Information based Exponential Discriminant Analysis (SIEDA)| 52

3.3 Experiments| . . . . . . .. ... 54
[3.3.1 Parameter Settings| . . . . . . ... ... 54
13.3.2  Face kinship similarities in color spaces| . . . . . . . . . . ... 59
8.3.3 Results and discussion| . . . . . . . .. .. ... 56
13.3.4 Comparison with the results of the state of theart| . . . . . . . 60

B.4 Conclusionl . . . . . . ... L o 62

48



3 Kinship Verification from Face Images in Discriminative Subspaces of Color Components

3.1 Introduction

The majority of previous works on automatic verification of kinship have focused on the
use of gray-scale information of face images, thus ignoring color information that can
be an important clue for enhancing the verification performance. Biologically [144], the
human traits’ color can differentiate between individuals. For this reason, the chromaticity
of the face parts, such as skin and eye color, is considered as significant imprint that
distinguishes individuals. Furthermore, prior research indicates that color-texture provides
useful information for face recognition compared with the luminance information. The
experimental results in [147] show that the principal component analysis method using
color information can improve the recognition rates compared with utilizing the luminance
information only. The results in [183] show that color cues play a role in face recognition
and their contribution becomes evident when shape cues are degraded. The results
in [26] further elucidate that color cues can greatly ameliorate recognition performance
compared with luminance-based features for dealing with low resolution face images. Other
works from research community also demonstrate the efficiency of color-texture for face
recognition [64,97,(165,/181].

There exists a number of different color representations of images. Color spaces are the
mathematical representation of color images in computer vision. The most frequently used
image color space is RGB. However, RGB space has some limitations compared with other
chrominance-luminance spaces, such as Luv and YCbCr spaces, since they are very close
to human perception [18].

The purpose of this chapter is to investigate the efficiency of color-texture features
extracted from facial images for the verification of kinship relations. Therefore, we consider
the effect of seven color spaces, HSL, HSV, Lab, Luv, RGB, YCbCr and YUV. We
compare the effectiveness of using different descriptors in gray-scale component versus their
counterparts from color images in the seven spaces. More specifically, we use the color-
texture characteristics from color images to encode the chrominance and the luminance

information together. The contributions of this work are summarized as follows:

1. We propose an effective approach for kinship verification based on multiscale feature
extraction projected into side information exponential discriminant analysis (SIEDA)

subspace and fused various features using Logistic Regression (LR) scores fusion.

2. We investigate the efficiency of color-texture information through discriminative
subspace using two-step learning approach, SIEDA and Logistic Regression, for

automatic verification of kinship from facial images.

3. We evaluate various color spaces and descriptors on four benchmark kinship databases.

Especially, each color channel of face image from a specified color space is projected
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through the same implicit learned color channel subspace, and then all the channels

information are fused to achieve better discrimination.

4. We study the complementarity of the different descriptors from the different color

components.

The chapter is organized as follows: Our proposed method for color face kin verification
is described in Section [3.2] The experimental data and setup are presented and results are
discussed in Section [3.3] Finally, concluding remarks are given in Section [3.4]

3.2 Color-based face kinship verification

We aim to investigate the effectiveness of using color information by extracting face
representations from luminance and chrominance components in several color spaces using
different texture descriptors. Figure [3.1] shows our kinship verification scheme. The
Parent-Child pair of face images is given as an input. First, the pair face images is cropped
and normalized into an X x Y pixels. Then, we convert each pair of face images from
(RGB) into different color spaces (e.g. HSV'). Then, we extract the local features from each
channel using multi-scale local descriptors of the considered color space (e.g. H, S and
V). The encoded images are divided into K non-overlapping rectangular patches and each
patch is summarized by a histogram. The histograms of different patches are concatenated
to form a high dimensional feature vector. The features are then projected into (SIEDA)
subspace. We compute the cosine similarity between the projected feature vectors of the
pair for each color channel. We apply score fusion of the three scores resulting from the
considered color space channels using Logistic Regression method (LR) |56]. Finally, the
fusion score is compared to a threshold, set from the receiver operating characteristic
(ROC) curve during performance evaluation, to decide whether the pair belongs to the
persons from the same family or not. In the following we provide the details of the steps

of our approach.

3.2.1 Color spaces

A color space is a mathematical representation of a set of colors. There are three popular
color models: RGB (utilized in computer graphics), YUV or YCbCr (utilized in video
systems) and CMYK (utilized in color printing). However, none of these color spaces
is connected to the notions of hue, saturation and brightness. Therefore, other models,
such as HSL and HSV, are invented to facilitate programming, processing, and end-user
manipulation. All of the color spaces can be extracted from the RGB information provided
by devices such as cameras and scanners.

In this work, in addition to RGB color space, we consider six other color spaces:
HSL, HSV, Lab, Luv, YCbCr and YUV to examine the effectiveness of the color-texture
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Figure 3.1: The proposed kinship verification approach.

information for kinship verification problem. The RGB color space is mostly used in
computer graphics and displays. Red, green, and blue are the three primary individual
components that can be mixed together to create a desired color. The colors are represented
by a three-dimensional Cartesian coordinate system. On the other hand, HSV and HSL
are the cylindrical-coordinate representation of every point in the RGB color space. These
two color spaces avoid the RGB-like representation (the Cartesian cube) to achieve
better perceptual description. Lab and Luv are two CIE (Commission Internationale de
I’Eclairage) based color spaces. Both are founded on the CIE system of color measurement,
which is based on human vision. The component L stands for lightness and (a, b and u,
v) for the two color components green-red and blue-yellow. YCbCr and YUV are used
for image pipeline specially in video and digital photography. The component Y in the
both spaces represents the luminance, or intensity, which is appropriate for black and
white display devices. Cb and Cr are the blue-difference and red-difference chrominance
components, respectively in YCbCr space color. In YUV space color, U and V represent

chrominance components.

3.2.2 Feature extraction

To describe face images, we extract three popular local texture descriptors: the Binarized
Statistical Image Feature (BSIF) [77], the Local Phase Quantization (LPQ) [120] and
the Co-occurrence of Adjacent Local Binary Patterns (CoALBP) [117]. To increase the
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verification rate, we extract the three descriptors at multiple scales by varying the values
of their parameters, i.e., W the filter size of BSIF; M the window size of LPQ; and S the
number of directions and R the radius of circle of CoOALBP. As an illustrative example,
Figure |3.2] shows the application of LPQ and BSIF on the gray-scale, H, S and V color

components.

LPQ (M=3)BS
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Figure 3.2: Illustrative example of application of Local Phase Quantization (LPQ) and Binarized Statistical Image Features
(BSIF) on gray-scale and H, S and V color components of a face image.

3.2.3 Side-Information based Exponential Discriminant Analysis (SIEDA)

In order to enhance the discrimination of the extracted features, supervised methods,
such as linear discriminant analysis, are usually applied to transform these features into
(sub)space where their separability becomes easier. Supervised methods require the
availability of class information for each sample. In the case of LDA this information
is used to compute the within class scatter matrix (M,,) and the between class scatter

matrix (M,). However, in kinship verification the only available information at training
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stage is whether a pair of images belongs to the same family or not. Usually, the identity
(or label) of each image is not available. In such case, refereed to as weakly labeled or
weakly supervised, LDA is not applicable. To tackle this issue, Kan et al. [109] proposed
a new approach where M, and M, matrices are computed using the weak labels (or
side-information). In this case, the positive image pairs are utilized to calculate the within
class scatter matrix and the negative image pairs are used to compute the between class
scatter matrix. Let Puqss = {(2i, 2;) : k(2;) = k(2;)} be the set of positive image pairs and
Neass = {(2a, %) : k(z4) # k(25)} the set of negative image pairs, where the image z is
represented by the class label k(z). The within-class and between-class scatter matrices
of Side-Information based Linear Discriminant analysis (SILD) method are obtained as

follows:

MM = 3 (z—z)(z— )" (3.1)

(Ziazj)epclass

Mt = > (2a— 2)(20 — z) 7 (3.2)

(Za 7Zb) €Nclass

The optimization function for SILD is:

sild UTMI.)sildU
Uopt = argmary UT MU (3 3)
|UT (VT 4,V,)U| :

= AT U TV T A, V) U
This problem is reduced to finding the eigenvectors V and the eigenvalues A of the
matrix M, ' M,.

MM, = VAV (3.4)

One particular problem that is frequently confronted to when applying LDA-like methods
is the small sample size problem of LDA-based facial recognition frameworks. The
dimension of feature vectors is usually very high compared with the number of per class
samples, which causes the singularity of the within-class scatter matrix of LDA and SILD.
To overcome this limitation, Kan et al. [109] apply PCA [40] first to lower the dimension
of feature vectors then SILD is applied. However, proceeding so has the inconvenient that
the discriminative information included in the null space of M are lost. To retain this
useful discriminative information, Ouamane et al. |[121] proposed the Side-Information
Exponential Discriminant Analysis (SIEDA). Inspired by EDA [190], SIEDA replaces A,
the eigenvalues of M2 by exp(A,r) and Ay, the eigenvalues of My by exp(Ay,). Thus,
the target function for SILD becomes:

Usieds — qrgmazy ||[§'J;((‘i/§exp(Ab)Vb)U|
w exp(Aw) Vi )U| (3.5)

opt
. UT exp(Mp1)U
= argmaxy UT exp(Msa)U
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The projection matrix U, j;id“ is composed by the most significant eigenvectors of
(eap(Mgid))exp(M;id)

The advantages of SIEDA compared to SILD are threefold: firstly, from the properties of
matrix exponential, the matrix exp(Mf’U“d) is a full-rank matrix. Therefore, the null space
of M3 which includes the discriminant information in the solution of Equation will
be preserved. Secondly, a kernel method (diffusion) is utilized for the transformation of the
nonlinear posed problem toward linear problem. Similarly to the kernel methods, the scatter
matrices are transformed into a new space by the exponential function [124]. Finally, the
target function for SILD is to maximize the distance of the between-class and minimize the
distance of the within-class. The corresponding trace of scatter matrices, trace( M) =
App+Npo+ -+ App and trace( M) = Ay + Ayo+- - -+ Ay, ensures the satisfaction of the
two conditions. Thus, the larger of the ratio Ay,/Ayy is, the higher of the discrimination
power. From the matrix exponential properties, we have: trace(exp(Mg?)) = exp(Ay) +
exp(Ay) + - -+ + exp(Ay,) and trace(exp(M:1)) = exp(Ay1) + exp(Awa) + -+ + exp(Awn)-
Therefore, the ratio exp(Ay)/exp(Ayi) is bigger than Ay, /Ayrk. Thus, one can conclude
that there is a difference in the spread scale through the within and between-class distances

which leads to a better separation.

3.3 Experiments

In this section, we perform a number of experiments to evaluate the proposed kinship
verification system and investigate the strengths of color-texture representations. In
addition to their fusion, different color spaces are studied individually. Firstly, we present
the benchmark databases used in our experiments. Then, we investigate the advantage
of color-texture for kinship verification. Finally, we provide and discuss the results and
compare the best ones with those of the state of the art.

Figure [3.3| shows samples of positive pairs and negative pairs from the kinship databases.

3.3.1 Parameter Settings

The performance of the proposed approach is evaluated on the same experimental protocol
as the literature works [103}|172}/174], where five-fold cross-validation for kin verification
is performed while keeping the number of pairs images roughly equal in all folds. This
protocol is followed to ensure that our results are directly comparable to the state of the
art. The negative pairs for kinship are generated randomly such that each image appears
only once in the training set. The number of positive pairs and negative pairs is the same
for both training and test.

To mitigate the effect of face normalization and to be consistent with several previous
works, including [3,,35,96,/101},103,/168),172,/174}/175], all feature descriptions are extracted
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3 Kinship Verification from Face Images in Discriminative Subspaces of Color Components

Figure 3.3: (Left) Positive pairs (with kinship relation) and (right) negative pairs. From top to bottom the pairs are from
Cornell, TSKinFace, KinFaceW-I and KinFaceW-II databases, respectively.

from face images that are aligned and cropped using the position of the eyes to 64 x 64
pixels.

Regarding feature extraction, we use eight filters with different sizes W = 3, 5, 7 in
the Multi-Scale Binarized Statistical Image Features (MSBSIF). In the Multi-Scale Local
Phase Quantization (MSLPQ), the window size is M = 3, 5, 7. The choice of these
scales is to depend on the size of the face image. Every face image is subdivided into 64
blocks, each of size 8 x 8 pixels. We use histograms of 256 bins to aggregate the local
features extracted from each block. By concatenating the histograms of all the 64 blocks,
a vector of dimension 3 X 64 x 256 is obtained. For Multi-Scale Co-occurrence of Adjacent
Local Binary Patterns (MSCoALBP), the extracted features from each face image are the
combination of three histograms where the size is 3 x 1024, using the LBP+ operator with
radius R = 1, 2, 4 and the identical directions specified by the distances S = 2, 4, 8.

3.3.2 Face kinship similarities in color spaces

To analyze the effect of different color spaces on kinship verification, we first perform
a preliminary experiment on the face similarities. As shown in Figure [3.4] similarities
between face pairs in different color components are computed. The similarity between

the pair of feature vectors is computed using the normalized cosine distance:

sim(U, V) = @@ (3.6)

The using of cosine similarity distance after discriminant analysis methods has an
adventage comes from its connection to the Bayes decision rule, as the optimal used
method is the Bayes classifier for decreasing the classification error [95].

For this particular example in Figure the similarity of the negative pair in gray-scale
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is larger than that of the positive one. When considering the similarity between the same
parts in the components of HSV color space, the similarity of the negative pair is lower
than that of the positive pair with a significant margin. This means that, for this example,
the kinship verification is clearly easier in HSV color space. For a general analysis, we plot,
in Figure [3.5] the distributions of the similarities of positive pairs and negative pairs on
TSKinFace database. The positive and negative pairs similarities in gray scale are dense
and their overlap is considerable while the distributions in RGB and HSV color spaces are
spread and the overlap is less significant. This first experiment suggests that color spaces
are more discriminative through subspace transformation method (i.e. SIEDA) for kinship

verification from face images. In the subsequent experiments this hypothesis will be tested.

( ( MSLPQ +)( MSLPQ +) MSLPQ +)[ MSLPQ +)
- -:‘ # Y SIEDA SIEDA ! SIEDA + § SIEDA
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Figure 3.4: Example for computing the kin similarity between face image pairs in gray-scale and HSV components.

3.3.3 Results and discussion

To demonstrate the efficiency of SIEDA projection, we compare its performance to PCA
and SILD methods as well as simple cosine scoring with no projection in kinship verification.
We run the experiments on all the databases for gray-scale. Table shows the obtained
mean accuracy of kinship verification of different methods using MSLPQ features. These
results show the superiority of SIEDA compared to other methods. This is mainly due to
the enhanced discriminative power of SIEDA.

The experimental results of the three face descriptors, MSBSIF, MSLPQ and MSCoALBP
separately as well as four fusion variants: Fusionl (MSBSIF+ MSLPQ), Fusion2 (MSB-
SIF+ MSCoALBP), Fusion3 (MSLPQ+ MSCoALBP) and Fusion4 (MSBSIF+ MSLPQ+
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Figure 3.5: The distribution of similarities between the positive pairs (blue) and negative pairs (red) of TSKinFace Database
using gray-scale images RGB and HSV color spaces.

Table 3.1: The mean accuracy (%) of kinship verification for simple scoring, PCA, SILD and SIEDA methods using MSLPQ
for the gray-scale on each database.

Database Method Simple scoring | PCA | SILD | STIEDA
Cornell 68.13 69.93 | 73.11 | 76.94
TSKinFace 72.86 77.25 | 81.53 | 83.23
KinFaceW-1 71.75 73.27 | 74.24 | 76.30
KinFaceW-II 70.65 70.75 | 76.20 | 77.00

MSCoALBP) are depicted in Figures , and for Cornell, TSKinFace,
KinFaceW-I and KinFaceW-II, respectively. For detailed results of color spaces on the
four databases, see Appendix [D] The descriptor fusion is performed with the Logistic
Regression method (LR) [56]. The performances of the different feature descriptors and
their fusions are computed for the gray-scale as well as HSL, HSV, Lab, Luv, RGB, YCbCr
and YUV color image representations.

Furthermore, these Figures clearly depict the fact that all the color spaces outperform
the gray-scale in all configuration through the descriptors and databases. Table [3.2] shows

the best accuracy from each color space in the experimental databases. The performance
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Figure 3.6: Mean kinship verification accuracy for individual descriptors and their fusion for the gray-scale and the seven
color spaces on Cornell database.
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Figure 3.7: Mean kinship verification accuracy for individual descriptors and their fusion for the gray-scale and the seven
color spaces on TSKinFace database.

is improved with variation between 2.4% and 9.6%. Moreover, the RGB, which is the
most used color space for kinship verification, face recognition and analysis as well as
many image processing applications, gives lower performance than the other spaces in
most cases. The gain in performance using other color spaces than RGB is clearer and
significant on Cornell, TSKinFace, KinFaceW-I and KinFaceW-II databases.

Generally on Cornell, KinFaceW and TSKinFace databases, MSBSIF performs the
best compared to MSLPQ and MSCoALBP. On an other hand, each of Fusionl, Fusion2,
Fusion3 and Fusion4 further improves the performances of individual descriptors through

the color spaces and databases.
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Figure 3.8: Mean kinship verification accuracy for individual descriptors and their fusion for the gray-scale and the seven
color spaces on KinFaceW-I database.
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Figure 3.9: Mean kinship verification accuracy for individual descriptors and their fusion for the gray-scale and the seven
color spaces on KinFaceW-II database.

Table 3.2: Best obtained accuracies (%) on each database for different color spaces and gray-scale.

Color space | par | 149y | Lab | Luv | RGB | YChCr | YUV | Gray
Database
Cornell 80.45 | 81.50 | 79.13 | 78.38 | 77.89 | 79.06 | 79.77 | 77.60
TSKinFace 87.76 | 88.11 | 86.95 | 86.96 | 84.88 | 87.52 | 87.66 | 83.63
KinFaceW-I 79.18 | 80.00 | 78.98 | 79.44 | 78.71 | 78.41 | 79.06 | 77.59
KinFaceW-IT 87.60 | 87.40 | 84.45 | 84.90 | 80.15 | 85.10 | 84.50 | 78.05

To check the performance of different kinship relations, we plot in Figures|3.10] and
the ROC curves for each relation on TSKinFace and KinFaceW-II databases. For clarity
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purpose, only curves of Fusion4 for gray-scale and color spaces are depicted. The ROC
curves confirm the previous remarks for individual relations. Color spaces are better than
gray-scale and RGB performances are less than the other color spaces. Furthermore, HSV

color space outperforms all color spaces in the most cases.
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Figure 3.10: ROC curves of Fusion4 for (a) F-D, (b) F-S, (c¢) M-D and (d) M-S on TSKinFace database considering different
color spaces.

3.3.4 Comparison with the results of the state of the art

The best kinship verification performances of our approach are achieved using: MSBSIF on
Cornell, the three descriptors (Fusion4) on KinFaceW-1, and the two descriptors (Fusion2)
on TSKinFace and KinFaceW-II databases. For color, verification rates of 81.50%, 88.11%
and 87.60% are reported on Cornell, TSKinFace and KinFaceW-II databases, respectively.
These results are compared with the state of the art in Table [3.3] From KinFaceW-
I, we see that our proposed method achieve competitive performance with the cited

kinship verification methods. The comparison reveals that our proposed color-texture
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Figure 3.11: ROC curves of Fusion4 for (a) F-D, (b) F-S, (¢c) M-D and (d) M-S on KinFaceW-II database considering
different color spaces.

analysis based method outperforms the recent state of the art on the three databases,
Cornell, TSKinFace and KinFaceW-II. This demonstrates the effectiveness of using the
face color-texture information in STEDA subspace for kinship verification.

Our approach vs. Simple scoring approach [168] From the evaluation on TSKin-
Face database using the Gray and HSV spaces, we can see that our approach improves the
performance about 9.6% and 6.9% using the Gray and HSV spaces, respectively. The work
of Wu et al. [168] was based on simple scoring method, where only cosine similarity was
used to compare kinship face images and obtained 74.03% and 81.19 % using Gray and
HSV spaces, respectively. However, in our work, we used the two-step learning method
(i.e. SIEDA/LR) to learn the kinship face images achieving better performances, 83.63%
and 88.11% using Gray and HSV spaces, respectively. Furthermore, our approach used
the three channels from each color space to learn three subspaces specific to each color
space using SIEDA method. Then, the projected face pairs by three SIEDA subspaces
are fused by Logistic Regression method. This is different from the work of [168] which
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simply extracts features from separate channels without tacking redundancy, correlation
and complementarily into account. Therefore, our approach considers and handles better

these aspects.

Table 3.3: Comparison with state of the art.

’ Author ‘ Cornell ‘ TSKinFace ‘ KinFaceW-I ‘ KinFaceW-II ‘
Fang et al. [44] (2010) 70.67 / / /
Lu et al. [103] (2014) 71.60 / 69.90 76.50
Yan et al. [174] (2014) 73.50 / 72.00 78.00
Dehghan et al. [35] (2014) / / 74.50 82.20
Yan et al. [175] (2015) 71.90 / 70.10 77.00
Liu et al. [96] (2015) / / 73.45 81.60
Alirezazadeh et al. [3] (2015) / / 81.30 86.15
Zhou et al. [197] (2016) / / 78.60 75.70
Wu et al. |168| (2016) / 81.19 / /
Yan [172] (2017) / / 66.30 78.70
Lu et al. {101] (2017) / 84.15 83.50 84.30
Proposed-Gray 77.60 83.63 77.59 78.05
Proposed-Color 81.50 88.11 80.00 87.60

3.4 Conclusion

In this chapter, we proposed an approach to the problem of kinship verification through
face texture representations in components of various color spaces. We experimented with
three texture descriptors (MSLPQ, MSBSIF and MSCoALBP) and their fusion in seven
color spaces (RGB, HSL, HSV, Lab, Luv, YCbCr and YUV), considering the gray-scale as
baseline. Thorough experiments are performed on the available kinship facial databases,
namely the Cornell KinFace, TSKinFace and KinFaceW. The obtained results show the
effectiveness of using the color information for kinship verification compared with the
gray-scale counterparts. Generaly, HSV color space outperforms the other spaces. These
results point out the importance of face color information for kinship verification in all
scenarios. Additionally, our results compare favorably against the recent approaches in the
literature on the benchmark databases. As a future work fusion of different color spaces
will be investigated. Also, generate new color space by using mixture of different color

spaces channels (chrominance/luminance) for kinship verification.
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4.1 Introduction

The learning of metric distance or differential function of data plays an important role in
various visual analysis tasks such as multimedia retrieval [167], image clustering [171] and
object recognition [159]. While a number of distance metric learning methods have been
proposed over the past decade [31,47,53]/116,(143(159(171]. In general, these metric learning
methods mainly focus on learning a single distance scale, either in a monolithic pattern
to represent the feature, or sequentially representing multiple types of features, which
are usually deficient: first, complementary information cannot be used well of multiview
representations; another is that such a direct sequential manner ignores the importance of
different perspectives and a short chain of meaningful explanation physically because each
single viewing feature possesses its own characteristics. While many multi-view distance
learning methods have been introduced [60,(101},/103,|174},193], these methods generally
assign multiple data terrain in an area so latent that they cannot maintain a property
specific to each view.

In this chapter, we present a deep and shallow multi-view metric learning
(SILD+WCCN/LR) method by exploiting more traits of multi-view data. The
SILD+WCCN/LR jointly learns an optimal combination of multiple scores on multi-
view representations, in which it not only learns an individual distance metric for each
view to retain its specific property but also learns a shared representation for different
views in a unified latent subspace to preserve their common properties. In addition, to
exploit the nonlinear structure of data points, we used deep and shallow features (multi-
view) through the proposed SILD+WCCN combined with Logistic Regression (LR) [56]
method (score fusion strategy). VGG-Face [128] method shows best performances for face
verification topic, and obtained 98.95% on LFW database. Inspired by this work, we used
in our work deep and shallow features projected into the discriminative subspace of the
proposed SILD+WCCN method combined with LR method for kinship verification. In our
frameworks, the set of face images are represented as a deep and shallow features of the
different descriptors, VGG-Face [128], Multi-scale Local Phase Quantization (MSLPQ)
[120], Multi-scale local Binarised Statistical Image Features (MSBSIF) [77], Multi-Scale
Local Binary Patterns (MSLBP) [119], the Histogram of Oriented Gradients (HOG) [29]
and Multi-Scale Co-occurrence of Adjacent Local Binary Patterns (CoALBP) [117]. The

contributions of this work are summarized as follows:

1. We propose a new discriminative subspace of the proposed Side-Information based
Linear Discriminant analysis integrating Within Class Covariance Normalization
(SILD4+WCCN) subspace transformation method for kinship verification. Thus,
WCCN decreases the class intra-variability effect by reducing the expected classifica-

tion error on the training step [9].

2. We propose a two robust automated kinship verification frameworks suitable for
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bi-subject and tri-subject kinship verification, from face images captured in uncon-
strained environments. The face data is represented as a multi-view feature based
on the combination of different deep and shallow features in order to provide a more

powerful face model.

3. We investigate the efficiency of deep/shallow information through new discrimina~
tive subspace using the two-step learning approach, SILD+WCCN, and Logistic

Regression, for automatic verification of kinship from facial images.

4. We extensively evaluate our SILD+WCCN/LR method against the state-of-the-
art methods using two challenging kinship databases namely KinFaceW-II and
TSKinFace.

The chapter is organized as follows: Our bi-subject and tri-subject kinship verification
frameworks are presented in Section [4.2] The experimental data and setup are presented

and results are given in Section Finally, concluding remarks are given in Section [4.4]

4.2 Proposed kinship verification frameworks

We aim to investigate the effectiveness of using deep and shallow features through the
proposed SILD+WCCN method. For this issue, we propose two frameworks for Bi-Subject
matching and Tri-Subject matching problems. Figure [4.1] shows our two frameworks
scheme. The Parent-Child pair of face images is given as an input. First, the pair face
images is cropped and normalized into an X x Y pixels. Then, we extract the features
from each face image (i.e. deep and shallow features) using five layers of VGG-Face
[128] (i.e. pools, fc6, relu6, fc7 and relu7 ) and five local texture/shape descriptors (i.e.
LPQ, BSIF, LBP, HOG and CoALBP). The features are then projected into the proposed
(SILD+WCCN) subspace.

Bi-subject matching: We compute the cosine similarity between the projected feature
vectors of one pair for each feature type (Deep&Shallow). We apply score fusion of the
six scores resulting from the considered pair face image using Logistic Regression method
(LR) [56]. Finally, the fusion score is compared to a threshold, set from the Receiver
Operating Characteristic (ROC) curve during performance evaluation, to decide whether
the pair belongs to the persons from the same family or not.

Tri-subject matching: We compute the cosine similarity between the projected feature
vectors of the two pairs (F-S and M-S for FM-S tri-Subject, and F-D and M-D for FM-D
tri-Subject) for each feature type (Deep&Shallow). We refer that F, M, S, and D mean,
Father, Mother, Son, and Daughter, respectively. We apply score fusion for two pairs of the
six scores resulting from the first pair and the six scores resulting from the second pair face

image using Logistic Regression method [56]. Finally, the fusion score is compared to a
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threshold, set from the Receiver Operating Characteristic (ROC) curve during performance

evaluation, to decide whether the Child belongs to the persons from the same family

(Father and Mother) or not. In the following we provide the details of the steps of our

approach.
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Figure 4.1: The two proposed kinship verification frameworks using deep and shallow features through the proposed

SILD4+WCCN method, (a) Bi-Subject framework and (b) Tri-Subject framework.
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4.2.1 Framework design

In the offline (training) stage, the optimal projection matrices are estimated, and in
online (test) stage, new samples are projected by these matrices and matched. The
training is constructed using deep and shallow features extracted from the training face
images. The six models of the proposed SILD+WCCN method are defined as follows:
VGGHSILD+WCCN, LPQ+SILD+WCCN, BSIF4+SILD+WCCN, LBP+SILD+WCCN,
HOGHSILD+WCCN and CoALBP+SILD+WCCN.

The training data of SILD+WCCN method includes the positive pairs and negative
pairs. The positive pairs are used to compute the covariance matrix of the within-class
scatter matrix and the negative pairs are used to compute the covariance matrix of the
between-class scatter matrix of SILD+WCCN method.

In the test phase, each face pair passes the same steps of feature extraction as in the
training phase, then each pair projected, in the dimensionality reduction and classification
(SILD4+WCCN). Finally, the cosine similarity is used to check whether the pair of reduced

features are match (belonging to the same family) or not.

4.2.2 Feature extraction

To describe face images, we extracted two kind of features (Deep and Shallow):

Deep features (VGG-Face [128]): We extracted deep features from color face
images of size 224 x 224 x 3 using five layers: the pool5 layer consists of 7 x 7 x 512
weights (25,088D). The fc6 layer is the sixth fully connected layer which contains 4,096D
weights. The relu6 layer is the sixth Rectified Linear Unit (ReLU) activation function
layer which contains 4,096D weights. The fc7 layer is the seventh fully connected layer
which contains 4,096D weights. The relu7 layer is the seventh Rectified Linear Unit
(ReLU) activation function layer which contains 4,096D weights. We concatenate all
weights resulted from the five layers of VGG method.

Shallow features (texture/shape features): Regarding shallow features extraction,
we resize the gray face images into 64 x 64 x 1. Five local texture/shape descriptors (i.e.
LPQ, BSIF, LBP, HOG and CoALBP) was used. We use eight filters with different sizes
W = {3, 5, 7} in the Multi-Scale Binarized Statistical Image Features (MSBSIF) [77].
In the Multi-Scale Local Phase Quantization (LPQ) [120], the window size is M = {3,
5, 7}. The choice of these scales is to depend on the size of the face image. We extract
at Multi-Scale the Local Binary Patterns (LBP) [119], the radius R = {1, 2, 3} and the
number of pixels in the neighborhood P = 8. Every face image is subdivided into 64 blocks,
each of size 8 x 8 pixels. We use histograms of 256 bins to aggregate the local features
extracted from each block. By concatenating the histograms of all the 64 blocks, a vector
of dimension 3 x 64 x 256 is obtained. For Histogram of Oriented Gradients (HOG) [29],

the window size is 8 x 8. For Multi-Scale Co-occurrence of Adjacent Local Binary Patterns
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(CoALBP) |117], the extracted features from each face image are the combination of three
histograms where the size is 3 x 1024, using the LBP+ operator with radius R = {1, 2, 4}
and the identical directions specified by the distances S = {2, 4, 8}.

4.2.3 Side-Information based Linear Discriminant analysis (SILD)

Supervised subspace transformation methods, such as Linear Discriminant Analysis (LDA)
[127] and Exponential Discriminant Analysis (EDA) [190], enhance the discrimination
of the extracted features by transform these data into subspace where make easier their
separation and classification. These methods need the handy of class information for
each sample where the classes are supervised of each sample, and the within class scatter
matrix (S,) and the between class scatter matrix (.S,) must be calculated with full label
information.

That means, LDA and EDA fail in weakly labeled data. Kan et al. [109] proposed a new
representation to resolve this problem by directly operating the S, and S, matrices with the
side-information. While, the positive classes pair images are directly utilized to calculate
the within class scatter matrix and the negative classes pair images are used to compute
the between class scatter matrix. Let us refer that P.ge, = {(v},éll) (€D = l(é})} as
the collection of positive-class image pairs and N, = {(V?’é?) L 1(E9) # l(élo)} as the
collection of negative-class image pairs, where the image £ is represented by the class label
[(§). Here, the within-class and between-class scatter matrices of Side-Information based

Linear Discriminant analysis (SILD) method can be represented by:

St =226 —&)E& — &) (4.1)
i=1
St =26 - )& - &))" (4.2)
i=1
The target function for SILD is:
. T ¢sild
Uoséid = argmaty ngfsuudg' (4.3)

The problem in can be solved by a two-step method [145]. Firstly, S,, is diagonalized

as follows:

S, =HAHT (4.4)

(HA V)T S, (HA™Y?) =1 (4.5)

Secondly, Sy, is also diagonalized:
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(HA V)T Sy (HAY?) = ZEZ" (4.6)

Finally, the projection matrix can be computed as:

Usld = A7V 7 (4.7)

where H and Z are orthogonal matrices and A and E are diagonal matrices.

A solution to the optimization problem in is obtained via solving the generalized
eigenvalue problem. The projection matrix of SILD is formed by the first k eigenvectors
in that ordered in the descending order of eigenvalues.

In Eq. , the inter-class distance of training samples from different subjects (€2, £9)|%,
for all pairs is maximized by the numerator while the intra-class distance of training samples
£1

from the same subjects (£}, £1)|", for all pairs is minimized by the denominator. This

equation derived from the following multiobjective programming problem:

UngildU
utu

(4.8)

. UTSSildU
w
min=—g:#;

The between-class distance (dist,) and the within-class distance (dist,,) can be calculated
by trace of two scatter matrices: dist, = trace(Si") = Ay, + Ay, + -+ + Ay, and
dist, = trace(S5M) = Ny + Ay + -+ + A, -

4.2.4 Within-class covariance normalization

The first use of the Within-Class Covariance Normalization (WCCN) is in the community
of speaker recognition. While Dehak et al. [34] founded that it is the best technique
to project the reduced-vectors of LDA method to a new subspace determined by the

square-root of the inverse of the within-class covariance matrix. We propose a new variant
of SILD by integrating WCCN:

Uszld)Tél (Usild)Tél
Z (Usitd Tgl (Usild)Téil

where, U*% is the SILD projection matrix found in Eq. The WCCN projection
matrix C'is obtained by Cholesky decomposition [68,184] of the inverse of W: W~ = CCT.
Where the new projection matrix B¥#4Tween s obtained by: Bsidtween — OTysild By

imposing upper bounds on the classification error metric [9], WCCN decreases the

(4.9)

within-class variations effect by reducing the expected classification error on the training
step.
The procedure of this proposed method, SILD+WCCN; is detailed in algorithm [I}
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Algorithm 1 SILD+WCCN

Input:

- The matrix £ of the N training samples.

- The weak labels (labelsy,) for extracting the positive-class image pairs
Priass = {( L el (e = l(é})} and negative-class image pairs

Nclass = {(?7 é'?) : l(ézo) 7é l(é’?)}

Output:

- The projection matrix Bsild+ween of SILD+WCCN.

Saild — (6 - ENE - &N

Syl = o6 - ENE - T

Compute the matrices: S$4¢ and S

Sort the m eigenvectors U*!? = (H Z);, according to A,;l/ ? in decreasing order.
W = S0 (UTE! — ()T ()T — (T

Compute WCCN projection matrix (C): W—! = CCT

Compute the new Bsildtween — CTysild

4.2.5 Matching

To compare between two faces pair, we used the six reduced deep and shallow features
projected through the proposed SILD+WCCN subspace. Then, we applied cosine similarity
[116] for each of the six features from pair test of the two face images, so a six match scores
are done. After discriminant analysis methods, the using of cosine similarity distance has
an advantage comes from its connection to the Bayes decision rule [95]. Cosine similarity

between two vectors X and Y is defined as the following:

X"y
cos(X,Y) = ———= (4.10)
XY
Where ||.|| is the Euclidean norm. A high value of the produced score means a high

probability that X and Y are same family.

4.2.6 Score Fusion

Score fusion interested in normalizing the multiple scores and then fusing them. The
similarity scores, for deep feature, and the loglikelihood scores, for shallow scores, were
normalized to produce probabilities such that the scores lie in the range [0, 1]. We got
this by using logistic regression [56] method, hence taking y; as the input and generating

probability, P;, as the output:
P = (1+ exp(ay; +b))~! (4.11)

where a is a scaling factor and b is a bias.

We chose to use logistic regression for two reasons. First, it is a well establish method in
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statistics, pertinent to a family of methods called generalized linear models. Its optimization
procedure, known as "gradient ascent" [57], is well understood; it converges to a global
minimum, meaning that there is a unique solution. Second, its output can be interpreted
as a probability and so presenting this information to the user is more meaningful than
just the raw score.

The final combined score is obtained by taking the product of the two scores, Preature
for first feature and Ppegiurez for second feature. Although the sum rule could have also

been used. Both rules result in similar generalization performance.

4.3 Experiments

In this section, we perform a number of experiments to evaluate the proposed kinship
verification systems and investigate the strengths of the proposed SILD+WCCN. Firstly,
we present the benchmark databases used in our experiments. Then, we discuss the
parameter settings used for kinship verification. Finally, we provide and discuss the results

and compare them with those of the state of the art.

4.3.1 Parameter Settings

Our approach’s performance is evaluated based on the same experimental protocol found
in the literature works [103}|172,(174], in which five-fold cross-validation for kin verification
is performed by keeping the same number of pairs images for each fold. This protocol is
followed to make sure that our results are directly comparable to the state of the art. The
negative pairs for kinship are generated randomly such that each image appears only once
in the training set. The number of positive pairs and negative pairs is the same for both
training and test. For score fusion, we use LR method and two SVMs methods [126] (i.e.
linear SVM and Kernel SVM). For performance evaluation, we use 4 folds for training and
the remaining fold for testing through five-folds cross-validation for both LR and linear
SVM methods. For Kernel SVM (with RBF kernel), we use 3 folds for training, one fold
for performance evaluation (parameter tuning) of RBF kernel and the last fold for testing
through five-folds cross-validation. For the SVM methods, the code we developed is based
on OSU SVM Classifier Matlab Toolbox [104] which implements a Matlab interface to
access LIBSVM [23]. For linear SVM, the value of penalty parameter is C' = 1. For kernel
SVM, the penalty parameter C' € [0,1000] and the standard deviation of RBF kernel
o € 10.01,10].

4.3.2 Results and discussion

In this subsection, we introduce and discuss the evaluation’s results of the proposed

approach. Moreover, all the experiments were done for the original approach (SILD
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method), which works as a baseline for evaluating the proposed SILD+WCCN method.
Furthermore, the performances of the deep and shallow features are separately examined
as well as their fusion.

Experiments on LFW [67]: To show the effectiveness of the proposed method, we
compared our SILD+WCCN method to SILD [109], PHL+SILD [76], DDMML [101]
and MvDML [60] methods for face verification on LFW database as shown in Table
In this comparison, we compared our method with the methods that used only shallow
features under image-restricted setting. Our SILD+WCCN method used MSBSIF as a

baseline descriptor.

Table 4.1: Performances (mean accuracy =+ standard error (%)) of our SILD+WCCN compared with state of the art on
LFW database using only shallow features under image-restricted setting.

Method ‘ Mean Accuracy + Standard Error (%) ‘
SILD [109] 87.68 £ 0.50
PHL+SILD [76] 88.67 £ 0.70
DDMML ([101] 93.28 + 0.39
MyDML [60] 03.27 + 0.28
MSBSIF1SILD (Owr) 86.17 + 1.05
MSBSIF+SILD+WCCN (Our) 94.63 + 0.86

From this comparison, we see that our method got the first rank by using only MSBSIF
features description. Unlike to SILD, PHL4SILD, DDMML and MvDML methods which
used the combination of various features. SILD and PHL+SILD methods used eight features
using Original and Square root of Intensity, LBP, Gabor and Block Gabor. PHL+SILD
improves SILD with 1% using the same features description (i.e. the combination of eight
features), unlike to our SILD4+WCCN method which improves SILD method with 8%
using the same features (i.e. MSBSIF description). This demonstrates that SILD method
fails to project MSBSIF features into discriminative subspace, unlike our SILD+WCCN
which projects these features to get more better discrimination.

This first experiment suggests that MSBSIF features is more discriminative through
the proposed subspace transformation method (i.e. SILD+WCCN) than SILD for face
verification from face images. The corresponding ROC curves of our SILD+WCCN and
SILD methods on LFW database are depicted in Figure

Face recognition using deep features (i.e. VGG-Face [12§]) shows interesting and
motivating results (i.e. 98.95% on LFW database). We inspired by the work of Parkhi et
al. [128] to project VGG-Face features into the discriminative subspace of the proposed
SILD+WCCN method for kinship verification.

Experiments on KinFaceW-II [103] and TSKinFace [133]: Tables[4.2] and
show kinship verification accuracy from different deep and shallow features and their fusion
using the proposed SILD+WCCN /LR method compared with SILD/SVM, SILD/KSVM,
SILD/LR, SILD4+WCCN/SVM and SILD+WCCN/KSVM methods on KinFaceW-II and
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Figure 4.2: ROC curves of MSBSIF+SILD4+WCCN and MSBSIF+SILD methods on the LFW database.

TSKinFace databases, respectively. These tables show that our SILD+WCCN method
improves the SILD method with a large margin. The performance is improved with
variation between 3% and 6%. It is also noticeable that the best results are obtained by
(Deep&Shallow) features description.

We start by studying the kinship verification accuracy using six features description
separately. These results, given in Tables and [£.3] The combinations of deep and
shallow features used for multi-view kinship verification. We also used the VGG descriptor
that is based on a deep network [128], and was thus trained using a training set other than
the KinFaceW-II and TSKinFace databases. It follows that the proposed multiview-based
SILD+WCCN/LR approach outperforms the other approaches for all features description
separately. In particular, when using the VGG, MSLPQ and MSBISF features, our
SILD4+WCCN method shows the highest kinship verification accuracy. We compare the
accuracy of multi-view deep and shallow features for kinship verification based on the
SILD+WCCN/LR approach on Father-Son (F- S), Father-Daughter (F-D), Mother-Son
(M-S) and Mother-Daughter (M-D) relations. For that we considered six multi-view of
deep and shallow features that were shown to have the highest kinship verification accuracy

in Tables [4.2] and (4.3l
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Table 4.2: Performance comparisons (%) with the metric learning methods on KinFaceW-II database.

’ Method \ Feature H F-S F-D \ M-S \ M-D \ Mean ‘
SILD LPQ 7820 | 74.60 | 77.00 | 72.60 | 75.60
SILD BSIF 80.40 | 75.20 | 76.60 | 73.00 | 76.30
SILD LBP 79.00 | 72.80 | 72.60 | 70.20 | 73.65
SILD HOG 73.00 | 66.00 | 69.80 | 65.20 | 68.50
SILD CoALBP 71.00 | 71.00 | 68.40 | 69.00 | 69.85
SILD VGG 75.40 | 70.60 | 75.00 | 75.80 | 74.20
SILD/SVM Deep&Shallow || 82.40 | 77.40 | 79.20 | 77.40 | 79.10
SILD/KSVM Deep&Shallow || 82.00 | 77.60 | 79.40 | 78.40 | 79.35
SILD/LR Deep&Shallow || 85.20 | 77.40 | 81.20 | 79.00 | 80.70
SILD+WCCN LPQ 84.20 | 80.60 | 78.00 | 77.40 | 80.05
SILD+WCCN BSIF 83.80 | 77.20 | 79.80 | 78.80 | 79.90
SILD+WCCN LBP 82.80 | 79.20 | 74.80 | 73.20 | 77.50
SILD+WCCN HOG 72.80 | 74.80 | 72.80 | 72.40 | 73.20
SILD+WCCN CoALBP 76.80 | 75.60 | 76.20 | 74.80 | 75.85
SILD4+WCCN VGG 7820 | 74.00 | 76.80 | 80.20 | 77.30
SILD+WCCN/SVM | Deep&Shallow | 86.20 | 82.60 | 84.20 | 83.80 | 84.20
SILD+WCCN/KSVM | Deep&Shallow || 85.80 | 82.60 | 83.80 | 83.40 | 83.90
SILD+WCCN/LR Deep&Shallow || 88.40 | 84.20 | 85.80 | 86.40 | 86.20

Table 4.3: Performance comparisons (%) with the metric learning methods on TSKinFace database.

| Method | Feature || F-S | F-D | M-S | M-D | Mean [| FM-S [ FM-D |
SILD LPQ 81.09 | 79.37 [ 80.60 | 79.28 [ 80.09 || 84.12 | 83.06
SILD BSIF 80.59 | 80.36 | 81.20 | 80.88 | 80.76 | 83.92 | 83.05
SILD LBP 77.18 | 76.89 | 78.54 | 76.71 | 77.33 | 81.37 | 79.19
SILD HOG 73.38 | 72.30 | 73.78 | 73.90 | 73.34 | 76.52 | 75.49
SILD CoALBP 71.32 | 73.60 | 70.76 | 71.42 | 71.78 || 73.19 | 74.50
SILD VGG 7213 | 73.00 | 73.40 | 77.29 | 73.96 || 76.32 | 78.77
SILD/SVM Deep&Shallow || 82.06 | 81.46 | 82.96 | 82.17 | 82.16 || 84.99 | 84.65
SILD/KSVM Deepd&Shallow || 82.06 | 81.45 | 82.46 | 82.13 | 82.03 | 84.78 | 84.71
SILD/LR Deep&Shallow || 81.66 | 81.96 | 82.65 | 82.87 | 82.29 || 85.38 | 85.05
SILD+WCCN LPQ 86.64 | 85.06 | 85.30 | 85.26 | 85.57 | 87.82 | 88.15
SILD+WCCN BSIF 85.76 | 84.66 | 83.55 | 86.25 | 85.06 || 86.75 | 87.15
SILD+WCCN LBP 80.21 | 79.37 | 80.32 | 81.96 | 80.47 | 84.12 | 83.95
SILD+WCCN HOG 76.71 | 73.51 | 77.29 | 76.99 | 76.13 || 79.24 | 78.49
SILD+WCCN CoALBP 79.04 | 77.59 | 80.20 | 78.79 | 78.91 | 82.35 | 79.58
SILD+WCCN VGG 84.12 | 82.68 | 85.87 | 85.75 | 84.61 || 87.63 | 87.84
SILD+WCCN/SVM | Deep&Shallow || 88.40 | 87.15 | 88.11 | 89.54 | 88.30 || 90.36 | 90.54
SILD+WCCN/KSVM | Deep&Shallow || 88.16 | 87.00 | 87.69 | 89.58 | 83.11 || 90.50 | 90.97
SILD+WCCN/LR Deep&sShallow || 89.08 | 87.05 | 88.59 | 89.63 | 88.59 || 90.94 | 91.23

For each specific case of Tables and (regardless the features, databases, and

relations types), the proposed approach SILD+WCCN performs better than the SILD

counterpart which obviously demonstrates the effectiveness of the proposed SILD+WCCN
method. Moreover, our results demonstrate that SILD+WCCN is able to extract better
discriminative features than SILD method. Figures and show the performance
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comparisons of projection the different deep and shallow features (i.e. LPQ, BSIF, LBP,
HOG, CoALBP, VGG and Deep&Shallow) using the proposed SILD+WCCN method
compared with SILD method on KinFaceW-II and TSKinFace databases, respectively.
In these figures, the abbreviations D&S/SVM, D&S/KSVM and D&S/LR represent the
Deep&Shallow features fusion using the three different score fusion methodology. These
figures confirm the previous remarks and clearly depict that the proposed SILD+WCCN
greatly outperforms the SILD method using the different features description for both
KinFaceW-II and TSKinFace databases. Furthermore, all the score fusion methodology
(i.e. linear SVM, kernel SVM and LR) extract the complementarity of the different deep
and shallow features and each of these methods shows performances better than each
feature’s description individually. Moreover, LR method performs better than linear SVM

and kernel SVM methods in the most cases.
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Figure 4.3: Performance comparisons (%) of projection the different deep and shallow features on KinFaceW-II database

using the proposed SILD+WCCN method compared with SILD method, obtained on (a) F-S set, (b) F-D set,
(c) M-S set and (d) M-D set, respectively.

To check the performance of different kinship relations, we plot in Figures and
the ROC curves of different methods (SILD+WCCN and SILD) using different deep and
shallow features on KinFaceW-II and TSKinFace databases. For clarity purpose, we plot
the deep and shallow features separately as well as their fusion (Deep&Shallow). The ROC
curves confirm the previous remarks for individual relations. Deep&Shallow features are
better than each feature individually and SILD performances are less than the proposed
SILD-+WCCN metric learning method.

To analyze the effect of SILD/LR method and the proposed SILD+WCCN/LR method
on kinship verification, we perform an experiment on the face similarities. For a general
analysis, we plot, in Figure [4.7] the distributions of the similarities of positive pairs and
negative pairs for the all four relations types on KinFaceW-II and TSKinFace databases.
The similarities between face pairs in different methods are computed using Deep&Shallow
feature description. The positive and negative pairs similarities in SILD are dense and their

overlap is considerable while the distributions in SILD4+WCCN subspace is spread and the
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Figure 4.4: Performance comparisons (%) of projection the different deep and shallow features on TSKinFace database using
the proposed SILD+WCCN method compared with SILD method, obtained on (a) F-S set, (b) F-D set, (¢) M-S
set, (d) M-D set, (¢) FM-S set and (f) FM-D set, respectively.

overlap is less significant. This experiment suggests that deep and shallow features are more
discriminative through the proposed subspace transformation method (i.e. SILD+WCCN)
for kinship verification from face images.

The corresponding ROC curves of different methods (SILD and SILD+WCCN) using the
different deep and shallow features on TSKinFace database for FMS and FMD relations are
depicted in Figure This figure clearly depicts that our SILD+WCCN metric learning
method projects the face images pairs to discriminative subspace which facilitate the
score learning (score fusion) with the score fusion methods. Furthermore, our tri-subject
framework performs better than the bi-subject framework, benefiting the core of family
on Father-Mother-Son and Father-Mother-Daughter relations. Where the tri-subject
framework using FMS relation face images performs better than the bi-subject framework
using the Father-Son and Mother-Son separately relations, and the tri-subject framework
using FMD relation face images performs better than the bi-subject framework using the

Father-Daughter and Mother-Daughter separately relations.

4.3.3 Comparison with the results of the state of the art

The best kinship verification performances of our approach are achieved using deep
and shallow features (Deep&Shallow) on KinFaceW-II and TSKinFace databases. Our
SILD+WCCN/LR approach based on multi-view deep and shallow features outperforms the
current state of the art multi-view metric learning including [60,[101}[103}[174[175,[193] on
KinFaceW-II and TSKinFace databases for bi-subject and tri-subject matching problems.
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Figure 4.5: ROC curves of different methods (SILD and SILD+WCCN) using the different deep and shallow features on
KinFaceW-II database obtained on (a) F-S set, (b) F-D set, (c) M-S set and (d) M-D set, respectively.

Bi-subject face matching: For the SILD/LR method, verification rates of 80.70%
and 82.29% are reported on KinFaceW-II and TSKinFace databases, respectively. For
SILD+WCCN/LR method, verification rates of 86.20% and 88.59% are reported on
KinFaceW-II and TSKinFace databases, respectively. These results are compared with
the state of the art in Tables [4.4] and [4.5] The comparison reveals that the proposed
SILD+WCCN/LR method outperforms the recent state of the art on the two databases,
KinFaceW-II and TSKinFace.

Tri-subject face matching: For the SILD /LR method, verification rates of 85.38% and
85.05% are reported on TSKinFace database for FM-S and FM-D relations, respectively.
For SILD+WCCN/LR method, verification rates of 90.94% and 91.23% are reported
on TSKinFace database for FM-S and FM-D relations, respectively. These results are
compared with the state of the art in Table [.5] The comparison reveals that the proposed
SILD+WCCN/LR method outperforms the recent state of the art on the TSKinFace
database for both FM-S and FM-D relations.

Proposed SILD+WCCN method vs. SILD method: From the evaluation on
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Figure 4.6: ROC curves of different methods (SILD and SILD+WCCN) using the different deep and shallow features on
TSKinFace database obtained on (a) F-S set, (b) F-D set, (¢c) M-S set and (d) M-D set, respectively.

the LFW database (face verification) using MSBSIF description, our SILD4+WCCN
method performs better than the SILD method with about 8%. Further, for bi-subject
kinship verification on both KinFaceW-II and TSKinFace databases using Deep&Shallow
description, our SILD+WCCN method outperforms the SILD method with about 5.5%
and 6.3% on KinFaceW-II and TSKinFace databases, respectively. For tri-subject kinship
verification, our SILD+WCCN method outperforms the SILD method using Deep&Shallow
description on TSKinFace database with about 5.56% and 6.18% for FM-S and FM-D
relations, respectively. For a general observation, from individual features description
and their fusion (i.e. LPQ, BSIF, LBP, HOG, CoALBP, VGG and Deep&Shallow), our
SILD4+WCCN work well and projects each of these features into new discriminative
subspace where their classification becomes easy compared with SILD counterpart. Which
means, the integrate of WCCN on SILD play an important role in the enhancement of
classification performances through decreasing the within-class variations effect by reducing

the expected classification error on the training step.
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Figure 4.7: The distribution of similarities between the positive pairs (blue) and negative pairs (red) using Deep&Shallow fea-
tures with, (a) SILD and (b) SILD+WCCN methods on KinFaceW-II database, (¢) SILD and (d) SILD+WCCN
methods on TSKinFace database.
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79




4 Learning Multi-view Deep and Shallow Features through new Discriminative Subspace...

Table 4.4: Performance comparisons (%) with state-of-the-art methods on KinFaceW-II database.

| Method | F-S | F-D | M-S | M-D | Mean |
MNRML [103] 76.90 | 74.30 | 77.40 | 77.60 | 76.50
DMML [174] 78.50 | 76.50 | 78.50 | 79.50 | 78.25
MPDFL [175] 77.30 | 74.70 | 77.80 | 78.00 | 77.00
DDMML [101] 87.40 | 83.80 | 83.20 | 83.00 | 84.30
NRCML [172] 79.80 | 76.10 | 79.80 | 80.00 | 78.70
MKSM  [193] 83.80 | 81.20 | 82.40 | 82.40 | 82.45
MvDML [60] 80.40 | 79.80 | 78.80 | 81.80 | 80.20
SILD/LR (Deep&Shallow) 85.20 | 77.40 | 81.20 | 79.00 | 80.70
SILD+WCCN/LR (Deep&Shallow) | 88.40 | 84.20 | 85.80 | 86.40 | 86.20

Table 4.5: Performance comparisons (%) with state-of-the-art methods on TSKinFace database.

[ Method [ F-S | F-D | M-S | M-D [ Mean || FM-S [ FM-D |
RSBM [133] 83.00 | 80.50 | 82.80 | S1.10 | S1.85 || 86.40 | 84.40
BSIF-HSV_[168 81.47 | 81.40 | 79.90 | 82.00 | 81.19 || / /

DDMML_ {101} 86.60 | 82.50 | 83.20 | 84.30 | 84.15 || 88.50 | 87.10
MKSM 193 84.80 | 83.20 | 85.19 | 84.90 | 84.52 | / /

SILD/LR (Deep&Shallow) S1.66 | 81.96 | 82.65 | 82.87 | 82.29 || 85.38 | 85.05
SILD+WCCN/LR (Deep&Shallow) | 89.08 | 87.05 | 88.59 | 89.63 | 88.59 | 90.94 | 91.23

4.4 Conclusion

In this chapter, we presented an effective approach based on deep and shallow features
to the problem of kinship verification. To achieve a low dimensional and discriminative
subspace, we proposed the SILD+WCCN method. SILD+WCCN finds the projection
subspace, where the separation between data classes is enhanced. The experimental
evaluation shows the superiority of our method compared with its original form (i.e. SILD
method). The best results of our approach are obtained by fusing scores of six multi-view
deep and shallow features (Deep&Shallow) projected with the proposed SILD+WCCN/LR
method. These results outperform the state of the art on KinFaceW-II and TSKinFace
databases for bi-subject matching problem, and outperform the state of the art on the
available TSKinFace database for tri-subject matching problem. Furthermore, these results
point out to the need of using deep/shallow features for kinship verification. As future
work, we plan to investigate the complementarity of more features description for face
representation with the proposed dimensionality reduction method (SILD+WCCN/LR).
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5.1 Introduction

Biometric facial images include large human traits, such as identity, gender, expression,
age, and ethnicity [11,106],123]. Over the past two decades, automatic face recognition
under controlled conditions showed increasing results and best performances in wide-scale
biometric topics. However, satisfactory performances are still beyond reach because of
the big challenge of weakly labeled data setup and under unconstrained environments, in
which the latter is characterized by blurring images, low quality, without any restrictions
in terms of pose, background, expression, lighting, and partial occlusion. More recently,
many public datasets [44,67,133,162,[170] studied face and kinship applications that deal
with facial images in unconstrained environments. Most of the applications deal with a
scenario of verifying a pair of facial images to check whether the images belong to the
same person or to different persons. Therefrom, check the same person who appears in
the passport photo is a typical example where identity verification via face can operate,
especially by the security organizations [15}55]/107].

Therefore, pairs of facial images are used for the training stage, over weakly labeled
data that denotes if the pair of images belong to the same person or the two facial images
belong to two different persons. Whereas in test stage, a new pair of facial images is
presented to check the appropriate decision if it is matched /mismatched to the person [66].
Other face application under unconstrained environments through weakly labeled data is
checking if two facial images belong to persons from the same family or not. The challenge
is to understand and extract the face similarities between family members, because many
research works have investigated and proved that facial traits are significant cues to verify
the kinship [44,101,{103}/133},/175].

To tackle this problem, several algorithms have been proposed in the previous literature
works to increase the performance of the verification systems. Subspace transformation
methods are mostly used for face recognition, which is considered as one of the efficient
applied methods in this topic, the mutual role of using these methods is predominantly
to transform the high dimensional features into a new lower and discriminative subspace.
Which means, enhancing the separation between the classes [190]. The most used and
well-known subspace transformation methods are Principle Component Analysis (PCA)
[22] and Linear Discriminant Analysis (LDA) [127].

Unsupervised subspace transformation methods cannot properly conserve the features
structure model of different classes (i.e the structure of each data class is not taken
into consideration). Discriminative features are often conserved by supervised subspace
transformation methods. LDA (also called Fisher’s linear discriminant or FLD) is the
traditional method which learns extracted features and transforms them into discriminant
subspace. Unfortunately, it cannot be directly applied because of the small size sample

(SSS) problem [8,/136] at the reason of the within-class scatter matrix’s singularity. As we
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know, face recognition is a typical small size problem. Many works have been reported to
use LDA for face recognition. The mostly used approach, called Fisherface (or PCA4+LDA),
was proposed by Belhumeur et al. [12] and Swets et al. [145]. In their approach, PCA
was first employed to minimize the size of the original feature space from M to d, and then
the classical FLD is applied to minimize the dimension from d to n (n < d). Whereas
some useful discriminative information may be lost, caused by the features that are thrown
away in the PCA phase. On the other hand, the PCA phase cannot guarantee the success
of transforming the within-class scatter matrix to be nonsingular.

Later on, the Exponential Discriminant Analysis (EDA) [190] method is proposed to
solve the singularity problem, which has showed interesting results in face recognition, by
projecting the features through nonlinear subspace. However, the supervised subspace
dimensionality reduction and transformation methods like LDA and EDA need the full
labeled class information. Sometimes this information is not available for all classes under
the unconstrained settings (i.e. the only information is that pair is match or mismatch/kin
or nonkin). Therefore, Kan et al. [109], proposed subspace transformation method called
Side-information based Linear Discriminant Analysis (SILD), in which they proposed a
substitutional solution to compute the between-class scatter matrix (S,) and within-class
scatter matrix (S,,). Besides, defining a new representation that directly can be computed
through the side-information (i.e. weakly supervised information, where only the pairwise
label information is available to train the methods). Inevitably, SILD method suffers from
the SSS problem, thus the authors suggested the solution of Fisherface approach applied
in LDA-based methods. Recently, Ouamane et al. [121], proposed an effective method
named Side-information based Exponential Discriminant Analysis (SIEDA). Inspired by
EDA, the authors benefit from the advantages of the matrix exponential which preserved
the discriminative information included in the null space of the within-class scatter matrix
unlike to PCA+4SILD approach. In addition, a kernel method (diffusion) is used for the
transformation of the nonlinear posed problems across linear problems. Similarly, to
the kernel methods, the within-class and between-class scatter matrices are transformed
through a new space by the exponential function [99,125/158|/166.|185,186]. Motivated by
this research, we propose in this work a novel Side-information based Weighted Exponential
Discriminant Analysis (SIWEDA) method for face and kinship verification in the wild.
We reformulate the Fisher criterion of the classical SIEDA to maximize the distance of the
between-class scatter matrix and minimize the distance of the within-class scatter matrix
using a weighting factor («) in order to make best separation between classes. Moreover,
in unconstrained environment, the applicability of the texture information may be limited
by the image degradations. For this reason, feature extraction is a key step that promoted
and incubated from the facial recognition research community to describe facial images (i.e.
Local Binary Patterns (LBP) [119], Local Phase Quantization (LPQ) [120], Binarized
Statistical Image Features (BSIF) [77], Context-Aware Local Binary Feature Learning

83



5 A Weighted Exponential Discriminant Analysis through Side-Information for Face and...

(CA-LBFL) [42], Rotation-Invariant Local Binary Descriptor (RI-LBD) [41] and Deep
Binary Descriptor with Multi-Quantization (DBD-MQ) [43]). We propose new local face
descriptor called Statistical Binarized Image Features (StatBIF). Our descriptor shows
more efficient traits unlike the well-known local descriptors in the literature works.

The purpose of this chapter is to investigate the efficiency of the proposed framework
based on local histogram features of the local descriptors, Multi-scale Local Binary
Patterns (MLBP), Multi-scale Local Phase Quantization (MLPQ), Multi-scale Binarized
Statistical Image Features (MBSIF), and Statistical Binarized Image Features (StatBIF).

The contributions of this work can be summarized as follows:

1. We introduce a novel local feature for describing facial images. Our descriptor is

based on the local statistics traits of the facial image and the original BSIF operator.

2. We propose a new method SIWEDA for face and kinship verification based on the
classical STEDA method. Furthermore, to lighten the class intra-variability, we
proposed two variants SIEDA4+WCCN and SIWEDA+WCCN by integrating WCCN
in STEDA and SIWEDA, respectively.

3. We extensively evaluate our approach against the state-of-the-art methods using
five challenging face and kinship databases namely Cornell KinFace, UB KinFace,
TSKinFace, YTF and LFW databases.

The rest of the chapter is organized as follows: Section gives demonstration of
the proposed descriptor for face and kinship verification. We present and describe our
SIWEDA method in Section [5.3] The experimental data and setup are presented and
results are discussed in Section [5.4] Finally, concluding remarks are given in Section [5.5]

5.2 Statistical Binarized Image Features (StatBIF)

We propose a new operator to describe kin relation facial images inspired by the statistical
operator and the Binarized Statistical Image Features (BSIF) operator [77]. The BSIF
operator computes an image patch code I of size [ x [ pixels and a linear filter Z; which

contains N filters of the same size, the filter response s; is obtained by

si= Y Zi(m,n)I(m,n) (5.1)

mn

In order to enhance the discrimination of BSIF feature to local changes in the facial
image and to increase its robustness, we determine a new image space described by the
local statistical features extraction. Considering the same method as in LBP operator,
each pixel of a given facial image is represented by a statistical value calculated using

its neighborhood pixels to form a new image. Thus defined by the number of pixels P
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and the circle of radius R. When the new statistical images are produced, the basic BSIF
operator, with filter size [ x [, is applied to each image separately. The binarized feature b;
is obtained by setting b; = 1 if s; > 0 and b; = 0 otherwise. Formally, the Statistical BIF

feature can be obtained by decimal conversion of the binarization of the filters response:

N A
StatBIF = Y bi( Y Zi(m,n)Statpr(m,n)) x 27! (5.2)

=1 m,n
where P and R are defined as the circle for calculating the statistical value of the pixel
where (R = 1—71 and P =R x N) and [ x [ is the filter size for computing the BSIF code
(see Fig. . In Eq. , Stat refers to the statistical function used to generate the new

local statistical representation. In our experiments, we consider six statistical functions:

e The median:

medianp (i) = median {iy—g, ..., ip—p—1} (5.3)
e The mean:
. P-1
meanpr(l) = & Zo ip (5.4)
p:

e The standard deviation:

P—1
Z (ip—meanp r(i))? (5.5)
Stdp,R(i) = p=0

P—1

e The variance:

variancepp(i) = 5 Y (i, — meanp p(i))? (5.6)

e The skewness:

P—1

% Z (ip—meanpyR(i))?’
p=0

P 3/2 (5.7)
( % Z (ipmeanp7R(i))2>

p=0

skewnessp (i) =

o The kurtosis:
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P—1

% Z (ip—meanp, (i)
p=0

P-1 2
(% Z (ip—meanp7R(i))2)
p=0

kurtosispr(i) = (5.8)

The computation of StatBIF features is illustrated in Fig. [5.1] Examples of images
obtained by applying StatBIF feature for different statistical functions, on facial image
are shown in Fig. [5.2]

—R : Radius of circle

N : Number of filters

% : Convolution ole @

o|o|0 %
o |o -
o
Stat patch BSIF filters s
N
=
2]
£
Decimal /Q
A|A|A| conversion
Stat operator A A -
A A
StatBIF
StatBIF operator

Figure 5.1: Computation of the statistical binarized image features. First, the local statistics of the image are estimated on
the circle (P, R). Then, the original BSIF operator, with parameters [ X [, is applied.

5.3 Side-Information based Weighted Exponential Discriminant
Analysis (SIWEDA)
5.3.1 Matrix Exponential

To introduce SIWEDA method we are going to give the following definitions and properties.
Let X be a ¢ x ¢ square matrix with its exponential denoted by exp(X) or e, is defined
as:

x X7 X2 Xn . . . .
exp(X) =Y 57 =1+ X+ 5 +...4+ < +..., where [ is the unit matrix with the
F=%1 [ !
same size of X. Following are some properties of the matrix exponential:

1. exp(0) = 1.
2. exp(X) is a full rank matrix.
3. f XY =YX, then exp(X +Y) = exp(X)exp(Y) = exp(Y)exp(X).

4. (exp(X))™! = exp(—X).
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MedianBIF

MeanBIF

StdBIF

VarBIF

SkewnessBIF

KurtosisBIF

N\

R=6,
1=13

Scale

e

Figure 5.2: Examples of the generated faces by applying the statistical binarized image features, with various scales.

5. For the invertible matrix Z, exp(Z ' X Z) = Z 'exp(X)Z.
6. If X = diag(xy, o, ..., xy) is a diagonal matrix, exp(X) = diag(exp(xy), exp(xs), ..., exp(xy,)).
7. lexp(X)| = exp(tr(X)).

8. If (v, g, ..., v,) are eigenvectors for matrix X and Ay, As, ..., A,, the corresponding
eigenvalues, then (vq, vy, ..., v,) are also eigenvectors of exp(X) that correspond to

the eigenvalues exp(Ay), exp(As), ..., exp(Ay,).
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5.3.2 Side-Information based Exponential Discriminant Analysis (SIEDA)

Supervised subspace transformation methods, such as linear discriminant analysis (LDA)
[127] and exponential discriminant analysis (EDA) [190], enhance the discrimination of
the extracted features by transforming these data in a sub-space where it is easier to
perform its separation and classification. These methods need the class information for
each sample. The within class scatter matrix (S,,) and the between class scatter matrix

(Sp) must be calculated with full label information:

Z;i&l—m (& —m)" (5.9)
Sy = z;(mi —m)(m' —m)" (5.10)

where L represents the total number of classes. The mean of the i*" class is m’ and
the total mean is m. While fj- represents each sample included in the i class, and n;
represents the number of samples contained in the " class.

That means, LDA and EDA fail in weakly labeled data. Kan et al. [109] proposed a new
representation to resolve this problem by directly operating the S, and S, matrices with
the side-information. The positive classes pair images are directly utilized to calculate the
within class scatter matrix and the negative classes pair images are used to compute the
between class scatter matrix. Let us refer P, s = {( Ll (e =1 (é})} as the collection
of positive-class image pairs and Ny, = {( LEDY L 1(£9) £ 1(50)} as the collection of
negative-class image pairs, where the image ¢ is represented by the class label [(£). Here,
the within-class and between-class scatter matrices of Side-Information based Linear

Discriminant analysis (SILD) method can be represented by:

Ch
Seild = N(E - ENE — DT (5.11)
=1
. CO v, A, Y7 A,
Syt =3(&) — e — )" (5.12)

=1

The target function for SILD is:

T sild
sild __ S U
Uopt argmaxy UTSsz_ldU 1
|UT(VTAbe)U\ (5.13)
= argMATy [GT v T 40 V)0
where:
Sszld VTA V (5 14)

Sszld ‘/2) Ab%
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To make better separation of the discriminative information, Ouamane et al. [121]
proposed SIEDA method. Like EDA [190], SIEDA replaces the eigenvalues A,, by
exp(Ay, ) in S5 and the eigenvalues Ay, by exp(Ay, ) in S5, Thus, from property (8) of

the matrix exponential the target function for SILD becomes:

T T
steda __ |U (Vb easp(/lb)Vb)U‘
Uopt = argmaxy |UT(V10T€£{:p(/1w)Vw)U| (5 15)
o UTeasp(Slf”d)U :

This problem is reduced to a generalized eigenvalue problem:

(exp(SEth)) “texp(Sit) = VIAV (5.16)

The SIEDA transformation matrix is given by the eigenvectors V;, of (exp(S5id))~texp(S5id),
ordered according to their corresponding eigenvalues A; in descending order of magnitude.

In Eq. (5.13), the inter-class distance of training samples from different subjects
(£9,£9)|%, for all pairs are maximized by the numerator while the intra-class distance

of training samples from the same subjects (v},ézl) & for all pairs are minimized by
the denominator. This equation derived from the following multiobjective programming

problem:

UT gsildyy
ML =g

(5.17)
. yTgsildyy
min it

The between-class distance (dist,) and the within-class distance (dist,,) can be calculated
by trace of two scatter matrices: dist, = trace(Si') = Ay, + Ay, + -+ + Ay, and
dist,, = trace(S5) = Ny + Ay + -+ + Ay, -

Whereas, from property (6) of the matrix exponential, the two distances becomes: dist, =
trace(exp(S;™)) = exp(Ap, ) + exp(Ap,) + - - + exp(Ay,) and dist,, = trace(exp(Sitd)) =
exp(Ay,) + exp(Ay,) + -+ - + exp(Ay,)-

Therefore, the ratio exp(Ay,)/exp(Ay, ) is bigger than Ay, /A, . Thus, we can conclude
that there are differences in diffusion scale between the within and between-class distances

and that leads to a best separation.

5.3.3 Proposed Side-Information based Weighted Exponential Discriminant
Analysis (SIWEDA)

To enhance the separation between the positive and negative classes, we propose SIWEDA
method to maximize the objective function of SIEDA method. (o = 1) is the particular
weighting factor value of the objective target function ([5.15)) of the classical STEDA. We
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generalize the objective target function to contain and accept different values of weighting
factor («).

From ([5.13) the generalized objective target function of SILD is:

siwld __ UTaSgildU
Uopt = argmaxy UT aSsiay
|UTa(V;T A V,)U |
= ArgMATY (5T T A V) U] (5.18)
|UT (VT adpVi)U |

= ArgMAX U 5T VT oA, Vi )U|

where a > 0.
Then, from property (8) of the matrix exponential the generalized target function

becomes:

‘UT(VbTexp(a/lb)Vb)U|
= argmaxy |UT (VE exp(ady)Vi)U| (5.19)
. UTexp(aSg’” )12 '
= Argmary fro, st

stweda
Uopt

The aim of SIWEDA is to seek m discriminant vectors such the trace of between-class
scatter matrix is maximized and the trace of within-class matrix is minimized. While
the objective function for discriminant SIEDA criterion is to increase simultaneously the
between-class distance and decrease the within-class distance. However, the difference
between the two distances is limited by using the specific weighting factor (a = 1).

By applying the weighting factor (c), the distance becomes: dist, = trace(exp(aS;i?)) =
exp(aly,) + explaly,) + -+ - + exp(aly,) and dist,, = trace(exp(aS:i?)) = exp(aly,) +
exp(aly,) + - -+ exp(ady,,).

Therefore, the ratio:

exp(aly,)/exp(al,,) > exp(Ay,)/exp(Ay,) > Ap, /A, (5.20)

where a > 1.

The projection matrix Ujﬁ’wda is composed by the most significant eigenvectors of
(exp(aSy'))~ exp(aSi™).

From SIWEDA method, we can deduce that there is a large difference in the diffusion
scale across the within and between-class distances which enhance the separation.

For more explanation of our method, Figure[5.3|illustrates an example of the proportion of
Ay, exp(Ay) and two weighting exponentials exp(2x Ay) and exp(5x Ay) and their respective
sums. In this figure, the largest eigenvalue Ay = 33.33% while its corresponding exponential
exp(A5) = 63.64%, exp(2 x As) = 88.47% and exp(5 x As) = 99.33% and the smallest
eigenvalue A; = 6.67% while its corresponding exponential exp(A;) = 1.17%, exp(2 X
Ay) = 0.029% and exp(5 x Ay) = 107%. We have: Ay, /Ay, < exp(Ay,)/erp(Ay,) <
exp(2 x Ay, )/exp(2 X Ay,) < exp(b x Ay,)/exp(5 x Ay,). We see that (a = 5) neglected
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the A4 which may contain a significant information with sum of 0.67%, unlike to (« = 2)
which conserve the A4 with sum of 11.70%. This means that, each set of training data from
different datasets is adapted with a specific weighting factor («), that can be simplified
the separation between the positive and negative classes.

In section [5.4] our experiments show that by changing the value of the weighting factor
(cv) gives us the ability for easier selection the eigenvalues of high significance and eliminate
those with less discriminative information. Thus, the small eigenvalues are reduced and

large eigenvalues are enlarged.

100 T T T T —
90 - -Ak R
exp(A
o %exEEZ i)Ak) |
B IRCE) 1
60 - :
50 :
40 -
30 :
20 -
' L h |
LI
1 2 3 4 5

Figure 5.3: Example of the proportions ZAIj\ (blue bars), % (green bars), % (yellow bars) and
k erp(Ag exrp k

exp(5XAL)

S ean(ax An) (orange bars).

5.3.4 Within-class covariance normalization

The first use of the within-class covariance normalization (WCCN) is in the community
of speaker recognition. While Dehak et al. [34] founded that it is the best technique
to project the reduced-vectors of LDA method to a new subspace determined by the

square-root of the inverse of the within-class covariance matrix. We propose a new variant

of SIWEDA by integrating WCCN:

Uszweda)Tgl (Usiweda)Tgil

o Z Uszweda Té'l _ (Usiweda)Tgl

where, U™ js the SIWEDA projection matrix found in Eql5.19, The WCCN projection
matrix C' is obtained by Cholesky decomposition of the inverse of W: W~! = CC*. Where

the new projection matrix Z*™ed is obtained by: Z%wede — CT{siwede By imposing

(5.21)
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upper bounds on the classification error metric |10], WCCN decreases the within-class
variations effect by reducing the expected classification error on the training step.

The procedure of this proposed variant, Side-Information Weighted Exponential Dis-
criminant Analysis integrating within class covariance normalization (SIWEDA+WCCN),
is detailed in algorithm

Algorithm 2 Side-Information Weighted Exponential Discriminant Analysis plus Within Class Covariance Normalization

Input:
- The matrix & of the N training samples.
- The weak labels (labelsy, ) for extracting the positive-class image pairs

Piiass = {( L el (e = l(f})} and negative-class image pairs

70

Nelass = {(vzo’ézo) : l(gzo) 7& l(ézo)}

- « is the maximum separation weighting value.

Output:
- The projection matrix Z*"¢@ of SIWEDA.
Algorithm:
1 S = (& - E(E - &)
2 Spid = 0 (& — &) (E - &)
3: Compute the weighted matrices: exp(aS:i?) and exp(aS;i?)
4: Compute the eigenvectors Vi and corresponding eigenvalues Aj  of

(ezp(aSy™)) texp(aSy™).

Sort the m eigenvectors U = V. according to Ay in decreasing order.
W = Zgl((Usiweda)Tgil o (Usiweda)Téil)((Usiweda)Tgil o (Usiweda)Téil)T
Compute WCCN projection matrix (C): W—! = CCT

Compute the new Zswede — T [jsiweda

5.3.5 Similarity measure

We compute the similarity of the two feature vectors by the cosine distance in the
SIWEDA+WCCN subspace as follows:
(CT Usiwedaé)T (CT Usiwedaé)

003(575) - H(C«TUsiwedagw H(CTUsiwedaé)H (5'22)

After discriminant analysis methods, the using of cosine similarity distance has an
advantage comes from its connection to the Bayes decision rule, as the optimal used

method is the Bayes classifier for decreasing the classification error [95].

5.4 Experiments

The experiments are organized into three parts: First part presents the benchmark

datasets utilized in our experiments; Second part gives the parameter settings utilized in
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our framework; Third part provides the results with their discuss and compare the best

ones with those of the state of the art.

5.4.1 Parameter Settings

Face matching

The LFW dataset is divided into two views: view 1 is utilized for model selection, and
view 2 is put to evaluate performance, containing three evaluation paradigms: 1) the image
unrestricted protocol, 2) the image restricted protocol and 3) the unsupervised protocol.
In our experiments, the aligned images (LFW-a) were used, and the proposed approach
was evaluated on the view 2 using image restricted protocol, where no outside additional
training data was used. The dataset is subdivided into 10 disjoint folds cross-validation.
While for training step, 9 folds are used and the remaining fold for testing step. Each
fold includes 300 matched (positive) pairs and 300 mismatched (negative) pairs. The final
performance is reported as the mean accuracy + standard deviation (SE) as well as the
ROC curve through the 10-fold cross-validation.

The YouTube Face (YTF) dataset we followed the same evaluation protocol founded
in [162] of unconstrained face verification including 5000 video pairs, which were divided
into 10 folds and each fold contains 250 positive pairs and 250 negative pairs. We learned
the feature representation using MLBP, MLPQ and MBSIF descriptors and our StatBIF
descriptor for each frame of video clips, separately. As all facial images have been aligned
already, we averaged all descriptors of one video clip to make a mean vector as the feature
of the video.

Kinship verification We evaluated the performance of the proposed framework on
the same experimental protocol cited in the literature works [103,174], whither five-fold
cross-validation for kinship verification is carried out, while preserving the number of pairs
images nearly equal in all folds. By following this protocol, we ensure that our results
directly compared to the state of the art. We generated the negative pairs of the kinship
randomly such that the appearance of every facial image is only once in the training set.
In the training and test phases, the number of negative pairs and positive pairs is equal.

Features extraction Concerning the face normalization, all face attributes descriptions
are extracted from images that are aligned and cropped into a resolution of 64 x 64 pixels.
We extract at Multi-scale the Local Binary Patterns (MLBP) [119], the radius R = {1, 2,
3,4, 5, 6} and the number of pixels in the neighborhood P = 8. For Multi-scale Binarized
Statistical Image Features (MBSIF) [77] we use eight filters with different sizes W = {3, 5,
7,9, 11, 13}. In the Multi-scale Local Phase Quantization (MLPQ) [120], the window size
is M = {3,5,7,9, 11, 13}. For Statistical Binarized Image Features (StatBIF), we use six
scales, StatBIF)_3, StatBIF,_5, StatBIF)_;, StatBIF,_y, StatBIF;—_1; and StatBIF;_q5.
From each scale the extracted features are the combination of six statistical features of

(median, mean, standard deviation, variance, skewness and kurtosis).
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Every facial image is subdivided into 36 blocks, each of size 12 x 12 pixels. By using
histograms of 256 bins, we assemble the local features extracted from each block. Thereafter,
we concatenate the histograms of all the 36 blocks, where the dimension of the obtained

vector from each descriptor is 6 x 36 x 256.

5.4.2 Results and discussion

To verify our framework, we generate several experiments listed in Tables [5.1]and 5.2l The
mean verification accuracies of our SIEDA+WCCN method compared to SIEDA using the
proposed StatBIF descriptor and the three existing descriptors MLBP, MLPQ and MBSIF
on the experimental datasets is shown in Table[5.1} As can be seen in this table, the best
performance for kinship verification using StatBIF descriptor through SIEDA+WCCN
method outperforms the use of this descriptor through SIEDA method only. Whereas,
our StatBIF descriptor shows the best accuracy with scales, [ = 13 for Cornell KinFace
dataset and [ = 5 for both, UB KinFace and TSKinFace datasets. As we can see from
LFW dataset, SIEDA+WCCN failed to project the StatBIF features into discriminative
subspace, because there is a limitation of separation over the specific weighting factor
(a=1).

Table 5.1: Mean verification accuracy (%) of our SIEDA+WCCN method compared to the classical SIEDA method using
StatBIF, MLBP, MLPQ and MBSIF descriptors on Cornell KinFace, UB KinFace, TSKinFace and LFW.

Cornell UB KinFace TSKinFace LFW

Descriptor Mean Set 1 | Set 2 | Mean F-S F-D M-S M-D | Mean Mean + std
MLBP+SIEDA 71.39 | 71.51 | 67.46 | 69.49 | 80.02 | 79.48 | 81.19 | 81.06 | 80.44 | 93.97 + 1.01
MLPQ+SIEDA 73.85 | 72.23 | 68.69 | 70.46 | 81.88 | 80.38 | 83.43 | 83.55 | 82.31 | 93.67 + 0.97
MBSIF+SIEDA 74.94 | 72.01 | 68.66 | 70.34 | 80.71 | 80.18 | 81.48 | 82.95 | 81.33 | 94.43 + 0.96
MLBP+SIEDA+WCCN 73.83 | 72.51 | 69.44 | 70.98 | 80.80 | 79.97 | 82.26 | 82.06 | 81.27 | 93.97 + 1.01
MLPQ+SIEDA+WCCN 75.25 | 72.22 | 70.91 | 71.57 | 82.47 | 80.78 | 83.72 | 84.65 | 82.91 | 94.30 + 0.86
MBSIF+SIEDA+WCCN 75.95 | 72.51 | 70.90 | 71.71 | 82.07 | 81.38 | 82.65 | 84.35 | 82.61 | 94.43 + 0.96
StatBIF|_3 + SIEDA 76.89 | 72.73 | 69.95 | 71.34 | 81.10 | 80.98 | 81.28 | 83.75 | 81.78 | 92.20 + 1.17
StatBIF|_5 + SIEDA 73.12 | 72.73 | 70.66 | 71.70 | 81.19 | 82.57 | 82.16 | 84.75 | 82.67 | 93.50 £+ 0.97
StatBIF|—; + SIEDA 73.56 | 72.74 | 69.41 | 71.08 | 80.90 | 81.08 | 82.94 | 83.85 | 82.19 | 93.60 + 1.07
StatBIF|_g + SIEDA 74.61 | 70.76 | 68.91 | 69.84 | 80.90 | 80.08 | 82.84 | 84.05 | 81.97 | 93.77 £ 1.01
StatBIF|—;; + SIEDA 75.62 | 71.26 | 68.67 | 69.97 | 81.68 | 79.68 | 82.65 | 82.86 | 81.72 | 93.57 £ 0.99
StatBIF|—;3 + SIEDA 76.28 | 70.72 | 68.91 | 69.82 | 81.19 | 78.59 | 81.77 | 82.86 | 81.10 | 94.13 + 0.92
StatBIF—3 + SIEDA + WCCN | 76.91 | 73.22 | 71.42 | 72.32 | 82.37 | 81.87 | 82.16 | 84.75 | 82.79 | 92.60 £ 1.12
StatBIF_5 + SIEDA + WCCN | 7591 | 73.23 | 71.66 | 72.44 | 82.46 | 82.87 | 83.04 | 86.05 | 83.61 | 93.87 £ 0.93
StatBIF_; + SIEDA + WCCN | 75.28 | 73.74 | 71.13 | 72.44 | 81.97 | 81.37 | 83.82 | 85.15 | 83.08 | 94.00 £+ 1.00
StatBIF—g + SIEDA + WCCN | 75.63 | 71.74 | 70.14 | 70.94 | 81.97 | 80.58 | 83.62 | 84.25 | 82.61 | 94.20 + 0.92
StatBIF|—;; + SIEDA + WCCN | 77.01 | 72.24 | 69.65 | 70.95 | 82.94 | 81.37 | 83.53 | 83.56 | 82.85 | 94.03 + 0.96
StatBIF|_13 + SIEDA + WCCN | 77.71 | 72.73 | 70.41 | 71.57 | 82.85 | 79.69 | 83.43 | 83.86 | 82.46 | 94.27 £+ 0.90

Table [5.2] demonstrates the mean verification accuracy of our SIWEDA+WCCN method
using different descriptors with different weighting factors on the experimental datasets.
This table shows that the weighting factors (o« > 1) have the best performance com-
pared with the SIEDA4+WCCN method (o = 1). Also, there is specific value of («)
that was adapted to the training set of different datasets, which increase the perfor-
mance of face and kinship verification through the SIWEDA method. We see that by
using SIWEDA+WCCN method over different weighting descriptors (StatBIF|_11 4—5),
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(StatBIF|_5 4—20), (MBSIF,_15), (StatBIF|_g ,—15), and (StatBIF|_g,—5) show the best
accuracies compared to the classical SIEDA+WCCN method (o = 1) for Cornell Kin-
Face dataset, UB KinFace dataset, TSKinFace dataset, LFW dataset and YTF dataset,

respectively.

Table 5.2: Mean verification accuracy (%) of our SIWEDA+WCCN method using StatBIF descriptor with different weighted
factors on Cornell KinFace, UB KinFace, TSKinFace, LFW and YTF datasets.

Cornell UB KinFace TSKinFace LFW YTF
Descriptor Mean | Set 1 | Set 2 | Mean | F-S F-D M-S M-D | Mean | Mean + std Mean =+ std
MLBP (a =1) 73.83 | 72.51 | 69.44 | 70.98 | 80.80 | 79.97 | 82.26 | 82.06 | 81.27 | 93.97 £ 1.01 | 70.80 £ 0.58
MLPQ (a=1) 75.25 | 72.22 | 70.91 | 71.57 | 82.47 | 80.78 | 83.72 | 84.65 | 82.91 | 94.30 +£ 0.86 | 71.92 £ 0.52
MBSIF (a = 1) 75.95 | 72.51 | 70.90 | 71.71 | 82.07 | 81.38 | 82.65 | 84.35 | 82.61 | 94.43 £ 0.96 | 70.92 £ 0.51

StatBIF (I =3,a=1) 76.91 | 73.22 | T1.42 | 72.32 | 82.37 | 81.87 | 82.16 | 84.75 | 82.79 | 92.60 £ 1.12 | 71.40 £ 0.42
StatBIF (I =5,a=1) 75.91 | 73.23 | 71.66 | 72.44 | 82.46 | 82.87 | 83.04 | 86.05 | 83.61 | 93.87 £0.93 | 72.40 £ 0.33
StatBIF (I =7, =1) 75.28 | 73.74 | 71.13 | 72.44 | 81.97 | 81.37 | 83.82 | 85.15 | 83.08 | 94.00 £ 1.00 | 71.68 £ 0.44
StatBIF (I =9,a=1) 75.63 | 7174 | 70.14 | 70.94 | 81.97 | 80.58 | 83.62 | 84.25 | 82.61 | 94.20 £0.92 | 71.32 £ 0.48
StatBIF (I =11,a = 1) 77.01 | 72.24 | 69.65 | 70.95 | 82.94 | 81.37 | 83.53 | 83.56 | 82.85 | 94.03 £0.96 | 70.96 £+ 0.62
StatBIF (I =13,a =1) 7771 | 7273 | 70.41 | 71.57 | 82.85 | 79.69 | 83.43 | 83.86 | 82.46 | 94.27 £0.90 | 70.72 £ 0.62

MLBP (a =5) 78.07 | 74.48 | 74.19 | 74.34 | 81.49 | 79.27 | 82.94 | 82.36 | 81.52 | 94.20 £ 1.00 | 75.28 £ 0.50
MLPQ (a =5) 7729 | 7246 | 73.66 | 73.06 | 83.64 | 81.17 | 84.89 | 85.95 | 83.91 | 95.43 £0.80 | 75.84 £ 0.43

MBSIF (a = 5) 78.04 | 73.44 | 744 | 73.92 | 84.61 | 82.07 | 85.48 | 86.35 | 84.63 | 95.10 £ 0.88 | 74.56 £ 0.67
StatBIF (I = 3,a =5) 7799 | 73.94 | 75.39 | 74.67 | 83.54 | 81.97 | 83.63 | 86.05 | 83.80 | 93.60 £ 0.99 | 74.48 £ 0.38
StatBIF (I = =5) 75.91 | 7472 | T4.92 | 74.82 | 83.73 | 82.96 | 84.59 | 86.45 | 84.43 | 94.73 £ 0.87 | 77.04 £ 0.61
StatBIF (I = 7 a=25) 75.95 | 7491 | T4.15 | 74.53 | 83.82 | 82.56 | 85.08 | 86.15 | 84.40 | 95.13 £0.86 | 76.92 £ 0.70
StatBIF (I =9,a =5) 7729 | 75.48 | 73.44 | 74.46 | 83.53 | 81.17 | 85.28 | 85.75 | 83.93 | 9523 £ 0.80 | 78.56 £ 0.44
StatBIF (I =11, =05) | 78.40 | 74.94 | 73.43 | 74.19 | 84.31 | 81.67 | 84.89 | 85.36 | 84.06 | 94.93 + 0.81 | 78.28 £ 0.56
StatBIF (I =13,a =5) 77.66 | 74.42 | 76.89 | 75.66 | 83.43 | 81.47 | 84.21 | 84.76 | 83.47 | 95.03 £0.79 | 77.52 £ 0.30

MLBP (« = 10) 76.65 | 73.21 | 75.95 | 74.58 | 80.71 | 77.98 | 81.96 | 80.77 | 80.36 | 94.30 £0.96 | 75.44 £+ 0.44
MLPQ (a = 10) 7723 | 73.96 | 74.17 | 74.07 | 83.63 | 80.97 | 85.08 | 86.05 | 83.93 | 95.73 £0.75 | 76.60 £ 0.41
MBSIF («a = 10) 76.91 | 74.69 | 76.40 | 75.55 | 84.61 | 81.77 | 86.45 | 85.95 | 84.70 | 95.47 £ 0.80 | 75.08 £ 0.54

StatBIF (I = 3,a = 10) 7799 | 7493 | 76.64 | 75.79 | 83.73 | 81.86 | 84.40 | 85.45 | 83.86 | 93.80 £0.97 | 73.68 £ 0.46
StatBIF (I = 5,a = 10) 76.63 | 75.46 | 76.41 | 75.94 | 84.22 | 82.67 | 85.08 | 86.75 | 84.68 | 95.20 £0.82 | 77.28 £ 0.71
StatBIF (I =7,a = 10) 75.17 | 75.65 | 75.15 | 75.40 | 84.21 | 82.56 | 85.09 | 86.05 | 84.48 | 95.57 £0.78 | 77.12 £ 0.57
StatBIF (I =9, a = 10) 76.58 | 75.19 | 74.66 | 74.93 | 83.92 | 81.67 | 85.77 | 85.65 | 84.25 | 95.73 £ 0.74 | 79.24 £+ 0.44
StatBIF (I =11, =10) | 77.64 | 75.67 | 75.16 | 75.42 | 84.50 | 82.36 | 85.97 | 85.26 | 84.52 | 95.33 £ 0.75 | 78.96 £ 0.54
StatBIF (I =13, =10) | 76.91 | 75.14 | 76.89 | 76.02 | 83.14 | 82.17 | 84.60 | 85.36 | 83.82 | 95.17 £ 0.75 | 77.16 £ 0.49

MLBP (o = 15) 76.76 | 72.94 | 76.19 | 74.57 | 80.22 | 77.18 | 81.67 | 80.67 | 79.94 | 94.27 £0.94 | 75.40 £ 0.52
MLPQ (a = 15) 76.52 | 7471 | T4.67 | 74.69 | 83.54 | 80.97 | 84.98 | 85.75 | 83.81 | 95.67 £ 0.75 | 77.48 £ 0.34
MBSIF (« = 15) 77.26 | 75.17 | 76.39 | 75.78 | 84.80 | 82.27 | 86.16 | 86.35 | 84.90 | 95.57 £ 0.75 | 75.32 £ 0.57

StatBIF (I = S,Lv =15) 7725 | 75.69 | 76.37 | 76.03 | 83.93 | 81.56 | 84.40 | 85.05 | 83.74 | 93.70 £ 1.00 | 73.16 £ 0.57
StatBIF (I =5,a = 15) 76.92 | 75.46 | 76.92 | 76.19 | 83.92 | 83.16 | 84.99 | 86.95 | 84.76 | 95.33 £0.80 | 77.16 £ 0.78
StatBIF (I = 7 a =15) 75.17 | 75.65 | 75.40 | 75.53 | 83.82 | 82.36 | 85.28 | 86.05 | 84.38 | 95.90 £ 0.75 | 77.80 £ 0.55
StatBIF (I =9,a = 15) 76.19 | 75.17 | 75.15 | 75.16 | 84.02 | 81.57 | 85.86 | 84.96 | 84.10 | 95.97 £+ 0.66 | 79.60 + 0.57
StatBIF (I =11, =15) | 76.91 | 75.16 | 75.39 | 75.28 | 84.41 | 82.16 | 86.16 | 84.16 | 84.22 | 95.43 + 0.80 | 78.56 £ 0.60
StatBIF (I =13, =15) | 76.91 | 75.63 | 76.16 | 75.90 | 83.33 | 81.57 | 83.81 | 85.56 | 83.57 | 95.33 £ 0.71 | 77.32 £ 0.48

MLBP (« = 20) 75.88 | 73.95 | 76.21 | 75.08 | 79.73 | 76.68 | 80.89 | 79.77 | 79.27 | 94.17 £0.96 | 75.08 £ 0.62
MLPQ (a = 20) 76.16 | 75.19 | T4.69 | 74.94 | 83.54 | 81.37 | 85.76 | 85.05 | 83.93 | 95.43 £0.79 | 77.68 £ 0.35
MBSIF (a = 20) 76.56 | 75.16 | 76.92 | 76.04 | 85.00 | 81.67 | 85.86 | 85.95 | 84.62 | 95.43 £0.79 | 75.72 £ 0.53

StatBIF (I = 3,0 = 20) | 76.56 | 75.93 | 75.87 | 75.90 | 84.02 | 81.56 | 84.89 | 85.15 | 83.91 | 93.63 &+ 1.04 | 72.20 % 0.72
StatBIF (I =50 =20) | 75.15 | 75.71 | 76.92 | 76.32 | 83.83 | 83.16 | 85.18 | 86.55 | 84.68 | 95.40 + 0.81 | 76.52 + 0.74
StatBIF (I = 7 a=20) | 7484 |76.16 | 75.65 | 75.91 | 83.62 | 82.86 | 85.67 | 85.35 | 84.38 | 95.80 &£ 0.73 | 77.80 & 0.44
StatBIF (I=9,a =20) | 76.54 | 75.68 | 75.40 | 75.54 | 83.73 | 81.07 | 85.38 | 84.86 | 83.76 | 95.93 £ 0.66 | 79.20 £ 0.74
StatBIF (1= 11,0 =20) | 76.91 | 74.90 | 75.14 | 75.02 | 84.31 | 82.07 | 86.06 | 83.66 | 84.03 | 95.40 + 0.83 | 78.12 + 0.66
StatBIF (I =

3a720) 7725 | 75.63 | 76.16 | 75.90 | 83.04 | 81.67 | 83.62 | 84.66 | 83.25 | 95.33 £0.75 | 77.24 £+ 0.46

5.4.3 Weighting factor («) effect

For each specific case of Table (regardless the features, datasets, and face matching
problem), the proposed approach SIWEDA+WCCN performs better than its classical
SIEDA+WCCN counterpart which obviously demonstrates the effectiveness of the proposed
SIWEDA+WCCN method. Moreover, our results demonstrate that SIWEDA+WCCN is
able to extract better discriminative features than SIEDA+WCCN.
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5.4.4 Effect of score fusion

Toward to answer the question: What is the best weighting scale of our StatBIF descriptor
can be used? We check the complementarity of different weighting scales (i.e. a = 15
and o = 20) of StatBIF descriptor. The Multi-scale StatBIF (MStatBIF) score fusion is
performed using logistic regression method [56]. We experimented with three datasets
LFW and YTF for face matching problem and TSKinFace for kinship verification problem.
Table 5.3 shows the comparison of MStatBIF with different weighting scales of our StatBIF
descriptor. As we can see from this table, our MStatBIF shows best and stable performance
from the three datasets LEFW, YTF and TSKinFace. Furthermore, the Cornell KinFace
and UB KinFace datasets are gathered with a mixture of four relations types, Father-Son,
Father-Daughter, Mother-Son, and Mother-Daughter pair images, unlike to TSKinFace
dataset that subdivided into four subsets (i.e. F-S subset, F-D subset, M-S subset, and

M-D subset) which make better scores learning with logistic regression method [83}85].

TSKinFace datasets.

Table 5.3: Mean verification accuracy of MStatBIF with different weighting scales of StatBIF descriptor on LFW, YTF and

‘ Method LFW YTF ‘ TSKinFace
StatBIF (I =3,a=15) | 93.70 &£ 1.00 | 73.16 4+ 0.57 83.74
StatBIF (I =5,a=15) | 95.33 £ 0.80 | 77.16 &+ 0.78 84.76
StatBIF (I =7,a=15) | 95.90 £ 0.75 | 77.80 £+ 0.55 84.38
StatBIF (I =9,a =15) | 95.97 £ 0.66 | 79.60 £+ 0.57 84.10
StatBIF (I =11, =15) | 95.43 + 0.80 | 78.56 + 0.60 84.22
StatBIF (I =13, =15) | 95.33 +£0.71 | 77.32 + 0.48 83.57
StatBIF (I =3,a=20) | 93.63 £ 1.04 | 72.20 £+ 0.72 83.91
StatBIF (I =5,a =20) | 95.40 + 0.81 | 76.52 + 0.74 84.68
StatBIF (I =7,a=20) | 95.80 +£ 0.73 | 77.80 £+ 0.44 84.38
StatBIF (I =9,a =20) | 95.93 £ 0.66 | 79.20 4+ 0.74 83.76
StatBIF (I =11, =20) | 95.40 + 0.83 | 78.12 + 0.66 84.03
StatBIF (I =13, =20) | 95.33 £ 0.75 | 77.24 + 0.46 83.25

MStatBIF (a = 15) 96.03 + 0.66 | 80.08 £ 0.53 86.37
MStatBIF (« = 20) 96.20 + 0.63 | 80.24 + 0.47 86.30

5.4.5 Computational cost

We calculated the computational time needed for the face and kinship verification of one
pair face samples using different weighting scales of our SIWEDA+WCCN method. The
experiments were implemented using MATLAB 2018a on a PC with an Intel Core i7 2.00
GHz CPU and 8 GB of RAM. The feature extraction for the MLBP, MLP(Q, MBSIF
and StatBIF descriptors takes 7.3 ms, 37.6 ms, 27.3 ms and 23.1 ms for each sample,
respectively. Furthermore, in addition to its robustness, our StatBIF descriptor got the
second rank in term of time cost compared with the three well known descriptors. In

training step (offline), the estimation of the projection matrices is performed only once. In
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the online step, we evaluate the time cost needed by each method to project and match the
test pair which is provided in Table in ms. This table shows that the best performing
method, SIWEDA | runs faster compared with the SIEDA method (i.e. a=1). Furthermore,
we see that the time cost of feature extraction is negligible compared to the projection

and matching time.

Table 5.4: Time Cost (TC), in ms, taken by different weighting factors for the projection of one pair of facial images.
Projection and matching
Database a=1 | a=5 | a=10 | a=15 | a=20
Cornell KinFace | 42.03 | 39.18 | 35.64 | 32.53 | 31.15
UB KinFace 45.88 | 41.22 | 37.45 | 34.80 | 30.88
TSKinFace 52.60 | 48.14 | 46.39 | 41.01 | 39.06
LFW 73.22 | 71.68 | 46.21 | 43.56 | 39.25
YTF 67.95 | 65.41 | 63.55 | 59.96 | 57.26

5.4.6 Comparison with the results of the state of the art

- Matching Face pairs in the Wild Table [5.5| shows the comparison of our results
under restricted setting protocol with the state of the art methods on the LFW dataset.
The corresponding ROC curves of our framework and the state of the art methods on
LFW dataset are depicted in Fig. [5.4l The best achieved verification accuracy of our
framework is 96.20%, which is very close to the human performance (i.e. 97.53% on
LFW dataset). Furthermore, 80 positive and negative pairs facial images from the 6,000
pairs (almost average of 8 positive and negative pairs for each fold) that are misclassified
by our approach compared to human performance. Comparing to the state of the art,
our result is the first. The framework MRF-Fusion-CSKDA [7] achieves currently the
second rank on the LF'W dataset in term of verification accuracy. MRF-Fusion-CSKDA is
resulted by the fusion of three descriptors which extracted at multi-scale features, MSLBP,
MSBSIF, and MSLPQ, and kernel methods. Differently, we utilized only one descriptor
(StatBIF), with an effective approach, SIWEDA+WCCN, achieving first rank. Thus, our
framework is less complicated and more efficiently computational than the second ranking
method. Furthermore, Table shows the comparison of our results under restricted
setting protocol with the state of the art methods on the YTF dataset. The corresponding
ROC curves of our framework and the state of the art methods on YTF dataset are
depicted in Fig. [5.5. Thus, our framework got a competitive performance compared to
state of the art methods on YTF dataset under restricted setting protocol.

- Kinship Verification in the wild Table [5.7 compares the proposed approach with
the state of the art methods on the Cornell KinFace, UB KinFace and TSKinFace datasets.
We notice that the best verification accuracy of our framework achieves 78.40% on Cornell
KinFace, 76.32% on UB KinFace and 86.37% on TSKinFace. As can be seen from these
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results, our approach outperforms the other state of the art methods on two kinship
datasets. In addition, we can see that SIWEDA+WCCN improves with a significant
margin the kinship performance (more than 4% improvement on Cornell KinFace and UB
KinFace). From TSKinFace dataset, we see that the proposed SIWEDA-+WCCN method
obtains the first best results for all relationships.

Our approach vs. DeepFace [146] (using 4.4M outside data) We compared our
approach using the provided data only on LEFW dataset with DeepFace [146] method which
used 4.4 Millions outside facial images belonging to more than 4,000 identities for training
the network model. We got a competitive performance compared with DeepFace method
under restricted setting on LFW dataset (we refer that our StatBIF+SIWEDA+WCCN
method and DeepFace method got a verification accuracies of 96.20% and 97.15%, respec-
tively). Moreover, the authors in [146] combine three networks feeding by three types of
inputs (i.e. a 3D-aligned 3-channels (RGB) facial images; a gray facial images plus image
gradient magnitude and orientation; and a 2D-aligned RGB facial images) of size 152 by
152, unlike to our approach (StatBIF+SIWEDA+WCCN) which used gray input facial
images of size 64 by 64 with no preprocessing stage applied to the facial images (a raw
facial images was used).

Our approach vs. Deep multi-metric learning [101] In this comparison, we focus
on three datasets LFW, YTF and TSKinFace. We see that our approach improves the
performance with about 3% from LFW dataset, got a competitive performance from YTF
dataset, and improves the performance with about 2% from TSKinFace dataset compared
with DDMML. The Discriminative Deep Multi-Metric Learning (DDMML) [101] method
used the combination of multiple features (multi-view features) to describe the facial
images. The work of Lu et al. |101] adopts the different sizes to extract the features of
the input facial images for each dataset (i.e. 80 x 150 for LEFW dataset, 100 x 100 for
YTF dataset, and 64 x 64 for TSKinFace dataset). Furthermore, they extract different
features for each dataset, which are six original and square root features of Sparse SIFT
(SSIFT) [53] on the “funneled” LFW dataset, histogram of oriented gradients (HOG)
[29] on the LFW-a dataset and high-dimensional LBP (HDLBP) [24] on the original
LFW (i.e. they used the combination of six of original and square root features applied on
three versions of LFW dataset). For YTF dataset, three features description including
LBP [119], Center-Symmetric LBP (CSLBP) [162] and Four-Patch LBP (FPLBP) [163]
are used as in [162]. For TSKinFace dataset, they used four descriptors LBP, Dense
SIFT (DSIFT), HOG and LPQ. On the other hand, our approach used efficient methods
(SIWEDA+WCCN) using the proposed descriptor (StatBIF) only. Furthermore, our
approach used the same parameter settings of the all four used descriptors in our work for
both face matching and kinship verification problems (i.e. for each dataset the input size is
64 x 64 and we used the same features extraction parameters for MLBP, MBSIF, MLPQ,

and MStatBIF descriptors on each dataset) attains stable, robust and good performances.
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Therefore, the DDMML method accepts only a specific input size of facial images and

adapted descriptors (under human surveillance/guidance learning) for each dataset, unlike

SIWEDA+WCCN do. Besides, this means that the DDMML method has weak learning
compared with our SIWEDA+WCCN method for face and kinship verification in all

scenarios.

Table 5.5: Comparison verification accuracy of StatBIF+SIWEDA-+WCCN with image restricted setting (no outside train-

ing data was used) on LFW dataset.

Method

| Mean Accuracy + Standard Error (%) |

Eigenfaces, original [150)] 60.02 £ 0.79
Nowak2, original |118| 72.45 £ 0.40
Nowak2, funneled |65 73.93 £ 0.49
Hybrid descriptor-based, funneled [163] 78.47 £ 0.51
3x3 Multi-Region Histograms |140) 72.95 + 0.55
Pixels/MKL, funneled [130! 68.22 £+ 0.41
V1-like/MKL, funneled [L30) 79.35 + 0.55
APEM (fusion), funneled [90; 84.08 £ 1.20
MRF-MLBP [6] 79.08 £ 0.14

Fisher vector faces [142] 87.47 £ 1.49

Eigen-PEP [01] 88.97 & 1.32

MRF-MBSIF-CSKDA |7 93.63 £ 1.27

MRF-Fusion-CSKDA |7 95.89 £+ 1.94

POP-PEP [R9] 01.10 & 1.47

DDML {59 90.68 + 1.41

LML [63) 89.57 + 1.53

Discriminative deep multi-metric learning [101] 93.28 £+ 0.39

CA-LBFL [42] 92.75 + 1.13
StatBIF-SIWEDA-WCCN (Our) 96.20 = 0.63

Table 5.6: Comparison verification accuracy of StatBIF+SIWEDA+WCCN with image restricted setting (no outside train-

ing data was used) on YTF dataset.

Method

| Mean Accuracy + Standard Error (%) |

MBGS L2 mean [162] 76.40 £ 1.80
APEM-FUSION |90 79.10 £ 1.50
STFRD+PMML |27 79.50 £ 2.50

VSOF+0SS (115 79.70 + 1.80

DDML [59 82.34 + 1.47

LML (63 81.30 + 1.20

Discriminative deep multi-metric learning [101] 82.54 £+ 1.58
CA-LBFL [42] 83.30 + 1.30
StatBIF-SIWEDA-WCCN (Our) 80.24 + 0.47
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Table 5.7: Comparison verification accuracy of StatBIF+SIWEDA+4+WCCN with state of the art on the Cornell KinFace,
UB KinFace and TSKinFace datasets.

’ Method \ Cornell \ UB KinFace \ TSKinFace ‘

Pictorial structure model [44 70.67 / /
Transfer subspace learning [170 / 68.50 /
Neighborhood repulsed metric learning 71.60 67.05 /
Discriminative multimetric learning 73.50 72.25 /
Prototype discriminative feature learning 71.90 67.30 /

Relative symmetric bilinear model / / 81.85

BSIF-HSV / / 81.19

Discriminative deep multi-metric learning / / 84.15
MHDL3 - {HOG + Color + LPQ} 76.60 / /
Heterogeneous similarity learning 68.40 56.20 /

StatBIF-SIWEDA-WCCN (Our) 78.40 76.32 86.37
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Figure 5.4: ROC curve of StatBIF-SIWEDA-WCCN and other state-of-the-art methods on the LFW dataset under image
restricted setting.
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Figure 5.5: ROC curve of StatBIF-SIWEDA-WCCN and other state-of-the-art methods on the YTF dataset under image
restricted setting.

5.5 Conclusion

In this chapter, we proposed an approach to the problem of face and kinship verification
through the weighting factor («) of SIWEDA+WCCN method in various texture descriptors
(MSLBP, MSLPQ, MSBSIF and the proposed StatBIF), we experimented with four
weighting factors (a = 5,a = 10, = 15 and o = 20) in addition to the classical value
(o = 1). Thorough experiments are performed on five datasets in the wild, namely the
LFW, the YTF, the Cornell KinFace, the UB KinFace and the TSKinFace. The obtained
results show the effectiveness of using our StatBIF descriptor over the different values of
weighting factors superior to one (« > 1) for face and kinship verification compared with
the classical value of weighting factor (« = 1). These results point out the importance
of StatBIF-STWEDA-WCCN approach for face and kinship verification in all scenarios.
Additionally, our results compare favorably against the recent approaches in the literature
on the benchmark datasets. Moreover, our approach demonstrates better results than the

discriminative deep multi-metric learning method on LFW and TSKinFace datasets.
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6.1 Introduction

Many researchers [101}|103},/105,/133}|134},/168,/174}|175,/191,/193] used metric learning
methods and have achieved reasonably good performance in kinship verification, but none
of these methods tackle the kinship verification as a cross-view matching problem.

To our best knowledge, our work is the first effort that tackles the kinship verification
problem with a method used in the cross-view matching problem that arise from many
applications like heterogeneous face recognition [94] and viewpoint invariant person
re-identification [50]. The Cross-view Quadratic Discriminant Analysis (XQDA) [93]
method shows the best performances in person re-identification field. Motivated by this
research, we propose Tensor Cross-view Quadratic Discriminant Analysis (TXQDA) to
analyze the multifactor structure of face images which is related to kinship, age, gender,
expression, illumination and pose.

In our framework, the set of face images are represented as a third-order tensor based
on local histogram features of the local descriptors, Multi-Scale Local Phase Quantization
[120], and Multi-Scale local Binarised Statistical Image Features [77]. The contributions

of this work are summarized as follows:

1. We tackle for the first time the kinship verification problem as a cross-view matching
problem because every kin relation is typically viewpoint changes from two face

images belonging to two different persons.

2. We propose a robust automated facial verification framework suitable for kinship
verification, from face images captured in unconstrained environments. The face
data is represented as a high order tensor based on the combination of different local

features in order to provide a more powerful face model.

3. We propose a novel method for dimensionality reduction and classification, called
Tensor Cross-view Quadratic Discriminant Analysis (TXQDA), which preserves the
data structure, enlarges the margin between samples, helps lighten the small sample

size problem and reduced the computational cost.

4. We extensively evaluate our TXQDA method against the state-of-the-art methods
using five challenging kinship databases namely Cornell KinFace, UB KinFace,
TSKinFace, KinFaceW-II and FIW.

The chapter is organized as follows: Section[6.2]describes the proposed Tensor Cross-view
Quadratic Discriminant Analysis. Our tensor kinship verification pipeline is presented in
Section [6.3] The experiments and results are given in Section Finally, concluding
remarks are given in Section [6.5]
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6.2 Tensor Cross-view Quadratic Discriminant Analysis

The variables and mathematical notations that we used in our work are as follows :
Lowercase and uppercase symbols (e.g., i, j, F, N and V) indicate scalars; Bold lowercase
symbols (e.g., x, y and z) indicate vectors; italic uppercase symbols (e.g., U, X, ¥ and
W) indicate matrices; bold italic uppercase symbols (e.g., X, Y, and Z) indicate tensors.
A tensor is explained as a multidimensional array [82,[179]. N is considered the order of
the tensor and X is called an N*-order tensor. I, 1 <k < N, is the dimension of the k'"

mode. For more details on concepts of tensor algebra, see Appendix [C|

6.2.1 Cross-view Quadratic Discriminant Analysis (XQDA)

XQDA ]93] is the extended method of the Bayesian face [111] and KISSME [8]]
approaches to cross-view metric learning, where considered to learn a subspace W =
(W1, Wa,...,w,) € RV with cross-view (i.e. Parent-Child) data, and learn a distance
function in the r dimensional subspace for the cross-view similarity measure at the same
time. We assume that we have a cross-view training set {X, Z} of ¢ classes, in which
X = (x1,X,...,Xy) € R" includes n samples in a d-dimensional space from one view
(i.e. Parents samples), Z = (z1,2o,...,2n) € R>™ includes m samples in the same
d-dimensional space but from the other view (i.e. Children samples). Note that Z is
the same with X in the single-view matching scenario. Considering a subspace W, the

distance function in the r dimensional subspace is computed as:

dw(x,2) = (x —2)TW(S =27 HWwT(x —z) (6.1)

Where ¥ = WTS;W and ¥ = WIS pW. Then, we learn a kernel matrix M (W) =
W(E =S HWT. In 93] the projection direction W is optimized such that X7 /% is

maximized. Consequently, ¥ /% corresponds to the Generalized Rayleigh Quotient:

WIS

JW) = ———— 6.2
W) = sy (62)

The two covariance matrices X and >; are computed as follow:
nY; = XXT + 72727 — SRT — RST (6.3)

Where X = (\/M1X1, /M X, ...y /T Xy, -« /TeXy),
Z - (\/n_lzl7 \/n_lz27 tt \/n_lzm17 ct \/Il_czm>,
S=(X xi, X Xiy..., %), R=(X 2, X 2,..., > z), yi and ]; are class labels, n;
1 2 yi=c lj:1 1j:2 lj:C

yi= yi=
is the number of samples in class i of X, and m; is the number of samples in class i of Z.

Yy = mX X’ +nZ7" —sr’ —rs” — Y (6.4)
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n m
Where s = 21 x; and r = 21 Z;
1= j=

6.2.2 Tensor Cross-view Quadratic Discriminant Analysis (TXQDA)

Let a Tensor cross-view training set {X, Z} of ¢ classes, where: X € fhixI2x-xhoa
contains n samples of one view (Parents samples) and Z € RRI*I2X>Inxm containg m
samples of other view (Children samples). The goal of our TXQDA is the calculation of
N projection matrices (W) € §R11XI/1, Wy € 3?12“/2, N NS S%INXI%). Thus, we calculate
one projection matrix for each tensor mode. The objective function of XQDA is

transformed into:

WISk W
JWy) = —=_E_< (6.5)
WISk,
We calculate the two covariance matrices X% and XX for each k mode by:
Ho;ﬁk Lo _ B ~ B
HIZI _ Z DIEI}), HIE? — Xk,p(xk,p)T + Zk,p(zk,p)T . Sk,p<Rk,p)T o Rk,p(sk,p)T (66)
p=1

Where ka = (\/ lell(’p \/_XIQ(’pv . \/_Xm Y \/ﬁcxi(l’p)?
Zkp = (\/_Zlf’p \/_zk’p . \/_Zm17"' N.Z<P),
Sk’p—(Zx’pr’p LY P, Rkp—(zz I ,...,Zz’p)

yi=l1 yi=2 yi=c ;=1 1;=2 li=c
Where, for all presentations, x*P and z"P are the p* column vectors of the k-mode

unfolded matrices X* and Z* of sample tensors X and Z, respectively.

Ho;ék Lo
npYp = . npXh,npXl = mXOP(XOP) 4nZi(ZR) T gl (plr)T gl (ghr)T_pn 3P
p=1
(6.7)
Where X*P = (x 11( XS JXEP L XEP), 2P = (zlf’p, z5%, .. L 2P, ZeP), st =

i X%(’p and r¥P = .Z z; kp

1_1NOW that the S(;l_ultion for one mode is known, the optimization problem in equation
can be solved iteratively. The projection matrices Wi, Wy, ..., Wy are first initialized
to identity. At each iteration Wy, Ws, ... Wy 1, Wii1,... Wy are hypothetical known
and Wy is estimated. Set: U = X x; Wi... Xx1 Wi1 X1 Wiar ... Xy Wy and
Y=Zx Wy...x 1 Wk 1 X1 Wiir ... Xy Wy are replaced in equation by X and

Z. The new equation can be solved by the generalized eigenvalue decomposition problem:

SEW = A5 (6.8)
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Where, Wy is the eigenvectors matrix and Ay the eigenvalues matrix.

The iterative process of TXQDA breaks up on the recognition of one of the following

situations: i) The number of iterations reaches a predefined maximum; or ii) the difference

of the estimated projection between two consecutive iterations is less than a threshold,
HWliter — Wﬁter_lH < IiIxe, where I is the k mode dimension of Wj*'. The number

of iterations, for our TXQDA algorithm, is empirically tuned and the better value is

Iteration,x = 2.

We summarize the advantages of our algorithm, Tensor cross-view quadratic discriminant
analysis (TXQDA), as follows:

1.

TXQDA preserves the data structure, where these data stacked in a tensor mode
providing the maximum extraction of information. Unlike in the case of XQDA
method, the feature vectors are purely concatenated neglecting the natural structure
of data.

. TXQDA also helps lightening the small sample size problem. This is an intrinsic

limitation of the XQDA when applying the histograms concatenation of local de-
scriptors for all face blocks (the features length is larger than the number of training

samples)

. TXQDA is a cross-view dimensionality reduction method. It can obviate the curse

of dimensionality dilemma by using higher order tensors and k-mode optimization
approach, where the latter is performed in a much lower-dimension feature space
than the traditional vector-based methods, such as XQDA, do.

Many more feature dimensions are available in TXQDA than in XQDA because
the available feature dimension of XQDA is theoretically limited by the number of
classes in the data, whereas the TXQDA is not.

. TXQDA reduces the computational cost to a large extent, as the k-mode optimization

in each step is performed on a feature space of smaller size.

Consequently, the classification with the proposed TXQDA is better than XQDA. The
entire procedure for the proposed Tensor Cross-view Quadratic Discriminant Analysis
(TXQDA) is provided in Algorithm [3] The input of this algorithm is defined as follow:

The tensor X € R *12X>Inxn contains n samples of one view (Parents samples).
The tensor Z € R1*12XxIN¥m containg m samples of other view (Children samples).
Iteration,,,x is the maximal number of iterations.

The final lower dimensions: I/l X 1,2 X o X 11/\1-

106



6 Tensor Cross-view Quadratic Discriminant Analysis for Kinship Verification in the Wild

Whereas the output can defined as follow:

o« The projection matrices W, = Wit € %IkXIL, k=1,---,N

Algorithm 3 Tensor Cross-view Quadratic Discriminant Analysis (TXQDA)
Input:

o X € Plixlax-xIyxn
o 7 € RPhxlzxxIyxm
o Iterationmax
o I, xTpx - xIy
Output:
o« Wy = Wliter c %Ikxli(’k —1,--- N
Algorithm:
1. Initialization: W = L, , W = L,,--- , W3 = I,

2. For iter : 1 to Iteration.y

a) For k=1 to N

_ iter—1 iter—1 iter—1 iter—1
. U—XX1W1 ...><k_1Wk_1 Xk+1Wk+1 ...XNWN

. Uk < U
o Y = Z g W gy WS e WS e T
U Yk <k Y
Ho¢k Lo ~ ~ ~ ~
. DIZ[ = Z DIZ?,HIE? = Uk’p(Uk’p)T + Yk,p(yk,p)T - Sk’p(Rk’p)T -
=1
Rk’p(Sk’p);
Ho;éklo
. HEEE = Z HEE%, DEE% = mUk’p(Uk’p)T + nYk,p(Yk,p)T - sk’p(rk’p)T —
p=1

r'oP(sP)T — X
o Compute SEWiter = A SXIViter obtain Witer,
b) If iter > 2 and HWﬁter _ Wliterqu < Tidwe, k=1,--- N, break;

3. Sort the Iy eigenvectors Wit € Rl according to Ay in decreasing order,
k=1--- N.
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6.3 Proposed Tensor Kinship verification pipeline

In this section, we explain the details of employing the proposed TXQDA for kinship
verification from pairs of face images. As depicted in Fig. [6.1], the block diagram of
the proposed approach consists of three essential components: feature extraction, tensor
subspace transformation and comparison. We focus in this work on subspace transformation

and the feature extraction based multiple scales local descriptor.
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Figure 6.1: Block diagram of the proposed face pair matching system.

6.3.1 Feature extraction

To describe face images, we extract two popular local texture descriptors: the Binarized
Statistical Image Feature (BSIF) |77] and the Local Phase Quantization (LPQ) |120]. To
increase the verification rate, we extract the two descriptors at multiple scales by varying
the values of their parameters, i.e., W the filter size of BSIF; M the window size of LPQ.
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6.3.2 Tensor Design

In the offline (training) stage, the optimal multilinear projection matrices are estimated,
and in online (test) stage, new samples are projected by these tensors and matched. The
training 3"¢ order tensors X, Z € R1*12¥I3 ig constructed using the histograms of different
local descriptors extracted from the training face images. The three modes of the tensors X
and Z are defined as follows: I; corresponds to the local descriptors extracted at different
scales, Iy represents the histograms, and I3 face samples in the database .

The input tensors X and Z are reduced according to I; and I modes and projected
into another subspace based on the proposed TXQDA method. Then, we obtain a reduced
tensor with Ty x I < I; x T.

The training data of TXQDA method includes the match pairs (positive pairs) only.
The two tensors (X and Z) are used to compute the covariance matrix of the intrapersonal
variations Y; and the covariance matrix of the intrapersonal variations Xz of the TXQDA
method.

In the test phase, each face pair passes the same steps of feature extraction as in the
training phase, then projected in the tensor dimensionality reduction and classification
(TXQDA). Finally, the cosine similarity is used to check whether the pair of reduced

features matches (belonging to the same family) or not.

6.3.3 Matching

To compare between two faces pair, we used the reduced features projected through the
TXQDA space which are concatenated to form one feature vector. Then, we applied cosine
similarity [116] for each pair test of the two face images, so a match score is done. After
discriminant analysis methods, the use of cosine similarity distance has an advantage
which comes from its connection to the Bayes decision rule [95]. Cosine similarity between

two vectors by, and by, is defined as the following:

b by
cos(by,, by,) = — 22 (6.9)
PR b b |
Where |.|| is the Euclidean norm. A high value of the produced score means a high

probability that by, and by, belong to the same family.

6.4 Experiments

In this section, we perform a number of experiments to evaluate the proposed kinship
verification system and investigate the strengths of the Tensor representation. Firstly, we
present the benchmark databases used in our experiments. Then, we discuss the parameter
settings used for kinship verification. Finally, we provide and discuss the results and

compare them with those of the state of the art.
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6.4.1 Parameter Settings

Our approach’s performance is evaluated based on the same experimental protocol found
in the literature [103],172,/174], in which five-fold cross-validation for kin verification is
performed by keeping the same number of pairs images for each fold. This protocol is
considered to make sure that our results are directly comparable to the state of the art.
The negative pairs for kinship are generated randomly such that each image appears only
once in the test set. The number of positive pairs and negative pairs is the same in the
test stage.

To mitigate the effect of face normalization and to be consistent with several previous
works, including [101,[103}|105}|133},/168,174,(175,|187,/191}/193], all feature descriptions are
extracted from face images that are aligned and cropped using the position of the eyes to
64 x 64 pixels.

Regarding feature extraction, we use eight filters with different sizes W = {3, 5, 7, 9,
11, 13, 15, 17} in the Multi-Scale Binarized Statistical Image Features (MSBSIF). In the
Multi-Scale Local Phase Quantization (MSLPQ), the window size is M = {3, 5, 7, 9, 11,
13, 15, 17} . Every face image is subdivided into 16 blocks, each of size 16 x 16 pixels. We

use histograms of 256 bins to aggregate the local features extracted from each block.

6.4.2 Results and discussion

In this subsection, we introduce and discuss the results of the proposed approach based on
third order tensor representation. Moreover, all the experiments were done for the original
linear approach XQDA, which works as a baseline for evaluating the proposed TXQDA
method. Furthermore, the performances of the local descriptors MSLP(Q and MSBSIF are
separately examined as well as their fusion. In the linear case, feature level fusion is made
by concatenating vectors from different scales for each face descriptors. For the proposed
multilinear case, fusion is performed based on tensor, where vectors of different scales of
two descriptors, LPQ and BSIF, are stacked in the second mode of the tensor.

Tables [6.1] and show kinship verification accuracy from different
descriptors and their fusion using the proposed TXQDA method compared with linear
XQDA method on Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-II and FIW
databases, respectively. We remarked that the performance is improved with variation
between 5% and 9%. Moreover, the proposed TXQDA method stacked the features in
the second tensor mode to provide the maximum extraction of information. Consequently,
many more feature dimensions are available in TXQDA than in XQDA. Furthermore,
XQDA is theoretically limited by the number of classes in the data, whereas the TXQDA
is not. It is also noticeable that the best results are obtained by (MSLPQ345474+9111) +
MSBSIF (34547+9+11) ) description.

In Table [6.3] the tri-subject kinship verification is performed by Logistic Regression
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(LR) [56] score fusion method as used in [83]. The scores of Father-Son and Mother-Son
are fused to generate FM-S scores for tri-subject matching. The scores of Father-Daughter
and Mother-Daughter are fused to generate FM-D scores for tri-subject matching.

As shown in Table our TXQDA method processes the age difference factor and
benefits from the child-young parent set (Set 1) in which this set is gathered to lighten the
age difference shown in the child-old parent set (Set 2). XQDA method does not benefit
from the child-young parent set and this demonstrates that the XQDA method neglected
to process the age difference factor. Moreover, the multifactor structure (kinship, gender,
age, expression, illumination and pose) was analyzed and separated from different tensor
dimensions of the proposed TXQDA method.

Table shows kinship verification accuracy of the proposed TXQDA method compared
with linear XQDA method and three other methods (i.e. Neighborhood Repulsed Metric
Learning [103] (NRML) method, Side-Information based Linear Discriminant analysis
[109] (SILD) method and Multilinear Side-Information based Discriminant Analysis [14]
(MSIDA) method) using (MSLPQ+MSBSIF) features description on Cornell KinFace, UB
KinFace, TSKinFace, KinFaceW-II and FIW databases.

Moreover, the NRML and SILD methods, which are the most used methods for kinship
verification, give lower performance than the XQDA and TXQDA methods in all cases.
The performance becomes clear, significant and better by using the viewpoint changes
methods compared with NRML and SILD methods.

Furthermore, Cornell KinFace and UB KinFace databases are gathered with mixture of
four kin relations, which make hard learning of kin relations from different persons with
different gender and with high significant age difference. Our proposed Tensor cross-view
based method shows the superiority with a large margin in results compared with NRML
and SILD methods on Cornell KinFace and UB KinFace. On Cornell KinFace database,
TXQDA method performs with 9% of performance better than XQDA method, 9.42%
of performance better than MSIDA, 18% of performance better than SILD and 17.5 %
of performance better than NRML. On UB KinFace database, TXQDA method works
with a performance of 9% better than XQDA method, a performance of 9.48% better than
MSIDA, a performance of 24% better than SILD and a performance of 21 % better than
NRML.

This demonstrates that the proposed Tensor XQDA works well on the difficult cases,
where the viewpoint changes exist under the mixture of four kin relations (i.e. Father-
Daughter and Mother-Son are a face images pairs that include two different person with
different gender, and Father-Son and Mother-Daughter are a face images pairs that include
two different person with same gender). Furthermore, TXQDA method works with a
performance of 4.4% better than XQDA method, a performance of 4.83% better than
MSIDA, a performance of 6.8% better than SILD and a performance of 7.3 % better than
NRML on the TSKinFace database. Our TXQDA method works with a performance
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of 5.50% better than XQDA method, a performance of 5.00% better than MSIDA, a
performance of 10.65% better than SILD and a performance of 14.20% better than NRML
on the KinFaceW-II database. Moreover, our TXQDA method works with a performance
of 7.93% better than XQDA method, a performance of 9.98% better than MSIDA, a
performance of 11.05% better than SILD and a performance of 9.61% better than NRML
on the FIW database.

Besides, our results show that the multifactor structure belonging to kinship, gender, age,
expression, illumination and pose is taken into consideration in our TXQDA method to a
large extent than the XQDA method. It is remarkable that SILD method used the positive
and negative pairs in the training stage unlike the proposed TXQDA which obtained better
performances than SILD by using only the positive pairs. Our TXQDA presented the
face image as a matrix, where the face feature descriptions are stacked in a tensor mode
providing the maximum extraction of information. Unlike in the case of XQDA method,
the feature vectors are purely concatenated neglecting the natural structure of data. As

shown in our results, the tensor is an elegant way of presenting and fusing data.

Table 6.1: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different MSLPQ and MSBSIF
scales and their fusion on the Cornell KinFace database.

XQDA | TXQDA
Descriptor Mean Mean
MSLPQ 34547 83.93 91.71
MSLPQs4740) 81.07 | 92.71
MSLPQ 9411413 av 90.59
MSLPQ13415+17) 76.51 89.89
MSLPQ345+47+9) 83.12 92.38
MSLPQ 3454 7+9+11) 83.83 92.74
MSBSIF (34547 81.61 92.66
MSBSIF (54749) 79.60 92.32
MSBSIF (g4 11413) 7715 | 92.28
MSBSIF (13415417 79.65 89.85
MSBSIF (3454 7+9) 80.97 92.00
MSBSIF (34 5474+9+11) 80.98 92.33
MSLPQ54749+11) +
MSBSI%(3+5+7+9+L) 84.10 | 93.04
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Table 6.2: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different MSLPQ and MSBSIF
scales and their fusion on the UB KinFace database.

XQDA TXQDA
Descriptor Set 1 | Set 2 | Mean | Set 1 | Set 2 | Mean
MSLPQ345+7) 76.74 | 80.21 | 78.48 | 91.28 | 90.53 | 90.91
MSLPQ 740) | 78.50 | 80.96 | 79.73 | 91.03 | 89.27 | 90.15

MSLPQo411413 | 74.71 | 76.19 | 75.45 | 90.25 | 88.29 | 89.27
MSLPQuss1541m | 75.47 | 75.66 | 75.57 | 87.00 | 88.04 | 87.52
MSLPQs454740) | 79.22 | 80.19 | 79.71 | 91.28 | 90.02 | 90.65
MSLPQs45 740411 | 78.46 | 80.93 | 79.70 | 91.76 | 90.26 | 91.01
MSBSIF (357 77.00 | 76.73 | 76.87 | 91.02 | 90.77 | 90.90
MSBSIF (5. 7+9) 79.69 | 78.90 | 79.30 | 91.26 | 91.28 | 91.27
MSBSIF g 11413 | 79.23 | 80.47 | 79.85 | 91.28 | 90.76 | 91.02
MSBSIF 13415417 | 77.39 | 73.43 | 75.41 | 89.78 | 89.02 | 89.40
MSBSIF (5 5:719) | 82.25 | 79.70 | 80.98 | 91.25 | 91.03 | 91.14
MSBSIF (31 54710411) | 79.45 | 80.41 | 79.93 | 91.51 | 90.77 | 91.14

MSLPQs454+7+9+11) +
MSBSIF (554710411 | 5224 | 82.92 | 82.58 | 92.03 | 91.02 | 91.53

Table 6.3: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different MSLPQ and MSBSIF
scales and their fusion on the TSKinFace database.

XQDA TXQDA
Descriptor FS [ F-D | MS | M-D | Mean | FMS | FM-D | F-S | F-D | M-S | M-D | Mean | FM-S | FM-D
MSLPQs547) 86.84 | 83.47 | 83.33 | 85.06 | 84.68 | S7.41 | 85.46 | 87.18 | 88.42 | 88.54 | 83.69 | 83.21 | 92.82 | 94.45
MSLPQgs7.40) 83.63 | 81.78 | 83.33 | 84.66 | 83.35 | 86.64 | 85.36 | 84.27 | 85.05 | 85.73 | 86.11 | 85.29 | 91.26 | 91.77

MSLPQ 9411413 81.48 | 79.18 | 79.53 | 81.37 | 80.39 | 85.20 | 84.86 || 82.23 | 81.78 | 84.08 | 83.13 | 82.81 | 90.58 | 90.18
MSLPQ3415+17) 80.90 | 78.69 | 78.95 | 78.28 | 79.21 | 85.38 | 83.67 || 81.55 | 80.89 | 83.69 | 82.63 | 82.19 | 90.19 | 87.89
MSLPQ 3451749 85.77 | 84.66 | 84.99 | 86.35 | 85.44 | 87.31 | 86.15 | 87.09 | 87.72 | 88.16 | 89.09 | 88.02 | 92.91 | 94.45
MSLPQ1s517490411) | 86.84 | 84.06 | 83.72 | 84.76 | 84.85 | 87.22 | 85.95 | 88.35 | 88.61 | 88.25 | 89.28 | 88.62 | 93.01 | 94.44
MSBSIF (34547 83.14 | 82.76 | 81.77 | 85.15 | 83.21 | 85.78 | 85.25 | 88.06 | 88.32 | 88.54 | 89.68 | 88.65 | 93.98 | 94.34
MSBSIF (54749 84.32 | 82.57 | 81.97 | 84.56 | 83.36 | 86.74 | 86.85 || 86.41 | 88.12 | 88.54 | 88.10 | 87.79 | 93.69 | 94.74
MSBSIF (9411413 82.95 | 79.99 | 80.51 | 82.67 | 81.53 | 84.79 | 84.36 || 85.15 | 85.45 | 86.80 | 86.01 | 85.85 | 92.52 | 91.96
MSBSIF (13415417 82.27 | 75.90 | 79.14 | 79.29 | 79.15 | 84.99 | 85.45 | 84.17 | 83.37 | 86.70 | 85.11 | 84.84 | 91.75 | 91.46
MSBSIF (3154719 84.90 | 84.26 | 82.26 | 86.15 | 84.39 | 87.52 | 87.35 | 89.03 | 88.32 | 89.13 | 89.48 | 88.99 | 94.08 | 94.44
MSBSIF (3451749+11) | 85.29 | 83.06 | 84.02 | 86.35 | 84.68 | 87.32 | 87.35 | 89.03 | 88.12 | 89.13 | 89.38 | 88.92 | 94.08 | 94.34

MSLPQs 454740411y +
MSBSTF 354 749.11) 87.04 | 85.26 | 84.40 | 86.85 | 85.89 | 88.02 | 88.35 || 89.32 | 90.69 | 90.29 | 90.97 | 90.32 | 94.85 | 95.63
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Table 6.4: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different MSLPQ and MSBSIF
scales and their fusion on the KinFaceW-II database.

XQDA TXQDA
Descriptor FS [ F-D | MS | M-D | Mean | F-S | F-D | M-S | M-D | Mean
MSLPQrs1m 83.80 | 7740 | 79.00 | 80.20 | 80.10 | 88.00 | 83.20 | 83.60 | 83.60 | 34.60
MSLPQ(s.7+) 83.80 | 78.20 | 79.60 | 77.80 | 79.85 | 89.20 | 83.40 | 84.00 | 84.20 | 85.20
MSLPQqos1141s | 81.80 | 79.00 | 77.80 | 78.40 | 79.25 | 87.00 | 81.40 | 83.80 | 85.20 | 84.35
MSLPQqzs1501m | 80.80 | 77.60 | 75.40 | 78.20 | 78.00 | 89.00 | 80.80 | 81.80 | 83.60 | 83.80
MSLPQsys5i740 | 84.20 | 77.60 | 80.20 | 80.00 | 80.50 | 89.20 | 83.80 | 83.00 | 84.80 | 85.20
MSLPQqs151700011) | 84.00 | 78.80 | 80.40 | 80.00 | 80.80 | 89.40 | 83.40 | 83.60 | 85.00 | 85.35
MSBSIF (3157 | 83.60 | 78.60 | 79.20 | 79.60 | 80.25 | 86.60 | 85.20 | 82.20 | 83.20 | 84.30
MSBSIF (54710 | 8440 | 79.40 | 78.80 | 77.80 | 80.10 | 88.00 | 84.20 | 83.40 | 82.00 | 84.10
MSBSIF (o411 | 83.40 | 78.60 | 77.40 | 77.20 | 79.15 | 86.60 | 82.20 | 81.20 | 82.00 | 83.00
MSBSIF (15015017 | 82.00 | 76.00 | 77.20 | 76.60 | 77.95 | 86.40 | 81.20 | 82.80 | 81.60 | 83.00
MSBSIF 545.710) | 84.40 | 80.20 | 79.20 | 79.60 | 80.85 | 87.60 | 85.20 | 81.60 | 83.80 | 84.55
MSBSIF (345 7+0:11) | 84.60 | 79.20 | 78.80 | 79.60 | 80.55 | 88.00 | 85.80 | 82.20 | 85.00 | 85.25
%%ggg;iﬁiﬁ; 85.00 | 80.60 | 80.60 | 80.40 | 81.65 | 90.20 | 86.40 | 85.60 | 86.40 | 87.15

Table 6.5: The mean accuracy (%) of kinship verification for TXQDA and XQDA using different MSLPQ and MSBSIF
scales and their fusion on the four grandparent-grandchild subsets of FIW database.

XQDA TXQDA

Descriptor GF-GD | GF-GS | GM-CGD | GM-GS | Mean | GF-GD | GF-GS | GM-GD | GM-GS | Mean
MSLP Q151 5501 | 57.02 | 53.08 | 5750 | 57.38 | 6557 | 6302 | 63.85 | 6508 | 64.61
MSLPQ(s 4740, 55.73 | 58.07 | 57.78 | 57.87 | 57.36 | 6554 | 6481 | 63.96 | 64.62 | 64.73
MSLPQoy11413) 5598 | 58.30 | 57.85 | 57.16 | 57.32 | 66.11 | 64.23 | 63.00 | 64.54 | 64.47
MSLPQusiiseiry | 5607 | 5806 | 5722 | 5670 | 57.01 | 6549 | 6518 | 62.65 | 6414 | 64.37
MSLPQ 3154710, 56.15 | 58.20 | 57.98 | 5854 | 57.74 | 65.89 | 6443 | 63.82 | 64.71 | 64.71
MSLPQs, 5074041y | 56.36 | 58.90 | 58.27 | 5815 | 57.92 | 6532 | 6379 | 6349 | 6415 | 64.19
MSBSIF (315,17, 55.85 | 50.06 | 5846 | 57.26 | 57.66 | 6535 | 6450 | 6432 | 64.61 | 64.70
MSBSIF 5,70, 5558 | 58.03 | 59.27 | 57.06 | 57.49 | 65.25 | 6421 | 6352 | 6445 | 64.36
MSBSIF 911413, 56.30 | 56.80 | 5844 | 56.73 | 57.07 | 66.00 | 65.04 | 6474 | 6495 | 65.18
MSBSIF 13415417 | 5632 | 58.01 | 57.81 | 56.53 | 57.17 | 65.46 | 6418 | 63.24 | 6475 | 64.41
MSBSIF(3,5.700) | 5604 | 5861 | 59.00 | 57.60 | 57.81 | 6520 | 6459 | 63.15 | 6443 | 64.34
MSBSIF 354740411 | 55.93 | 58.43 | 5935 | 57.70 | 57.85 | 6526 | 64.22 | 63.78 | 65.33 | 64.65
“ﬁggﬁg;ﬁiﬁj 56.04 | 59.23 | 59.00 | 5812 | 58.10 | 66.43 | 66.79 | 65.24 | 65.67 | 66.03

Table 6.6: Comparison verification accuracy (%) of the proposed TXQDA with XQDA, NRML, SILD and MSIDA methods
using MSLPQ+MSBSIF features description on the Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-II
and FIW databases.

Cornell KinFace | UB KinFace TSKinFace KinFaceW-II | FIW

Method Mean Mean Mean ‘ FM-S ‘ FM-D Mean Mean
NRML 75.52 70.55 80.83 | 84.26 | 85.53 72.95 56.42
SILD 71.38 67.36 83.46 | 86.44 | 87.82 76.50 54.98

XQDA 84.10 82.58 85.89 | 88.02 | 88.35 81.65 58.10
MSIDA 83.62 82.05 85.49 | 91.26 | 91.27 82.15 56.05
TXQDA 93.04 91.53 90.32 | 94.85 | 95.63 87.15 66.03

To analyze the performance of different kinship relations,
and [6.5{the ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA)
using the best performing features (MSLPQ+MSBSIF) on UB KinFace set 1, UB KinFace
set 2, Cornell KinFace, TSKinFace, KinFaceW-II and FIW databases, respectively.

we plot in Figures[6.2] [6.3]
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Figure 6.2: ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA) using the best performing
features (MSLPQ+MSBSIF) obtained on (a) UB KinFace set 1, (b) UB KinFace set 2, (¢) Cornell KinFace
databases, respectively.

6.4.3 The robustness’s evaluation of the proposed TXQDA method

In this subsection, we tested the robustness of the proposed tensor method on TSKinFace
database through additive noise and degradation of test set. For the clarification, we
express the interference of face recognition n = ny + 1, [48], where 7, indicates facial
variations such as kinship, expression, illumination, misalignment and age, and 7, indicates
the image variation due to sensor or coding-related issues, such as Gaussian noise, blur,
compression, and low resolution. Most of the studies on the TSKinFace database focused
only on the effect of 7;, whereas our extended experiments study both the pure effect of 7,
and the superposed interference of 7y + n,. For an inclusive study, we generate four types
of noise or degradations that are most common in real-world systems but that have not
appeared in the standard database. Specifically, we generate the following versions of test
sets: 1) three levels of Gaussian noise. The images are normalized in the range of (0; 1),
and then we apply additive Gaussian noise with zero mean and standard derivations of o
= 0.01; 0.02; 0.03; 2) three different Gaussian blur test sets using a Gaussian kernel of size
10 x 10 with o = {1; 3/2; 2}; 3) three different compressed images using MATLAB’s JPEG

115



6 Tensor Cross-view Quadratic Discriminant Analysis for Kinship Verification in the Wild

True Positive Rate

---NRML ---NRML
SILD SILD
XQDA XQDA
o2 ---MSIDA || °2f ---MSIDA ||
—TXQDA —TXQDA
00 0.‘2 014 0.‘6 0.‘8 00 0.‘2 0.‘4 016 0.‘8
False Positive Rate False Positive Rate
(a) (b)
1 : = T L S ——— e
08 08
% 06 % 06
g -~ -NRML g -~ -NRML
R SILD N SILD
XQDA XQDA
02 ---MSIDA | 02 ---MSIDA ||
—TXQDA —TXQDA
00 012 014 0.‘6 0.‘8 00 0.‘2 0.‘4 016 O.‘S
False Positive Rate False Positive Rate
(c) (d)

True Positive Rate

Figure 6.3: ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA) using the best performing
features (MSLPQ-+MSBSIF) on TSKinFace database obtained on (a) F-S set, (b) F-D set, (¢c) M-S set and (d)
M-D set, respectively.

codec of quality 60, 45 and 30; and 4) three different low-resolution sets of test images by
first downsampling the images by ratios of 2, 3, and 4 and then interpolating them to the
original resolution by the “nearest” method in MATLAB. Example test images are shown
in Fig. [6.6] and as shown in this figure, these degraded faces are recognizable by humans
and are very common in real-world surveillance scenarios. Therefore, it is important to
study how the accuracy of the metric learning methods change under these degradations.
Table shows that TXQDA and XQDA show much better robustness than the other
methods under image blur, noise, compression, and reduced resolution. However, our
Tensor XQDA preserves the data structure and extracts more discriminative information

from degraded face images compared with XQDA method.

6.4.4 Computational cost

We computed the computational time needed for the kinship verification of one pair face

samples (Parent-Child) using different methods. The experiments were implemented using

MATLAB 2014a on a PC with an Intel Core i7 2.00 GHz CPU and 8 GB of RAM. The

116



6 Tensor Cross-view Quadratic Discriminant Analysis for Kinship Verification in the Wild

081 1 1
g -~ -NRML g -~ -NRML
gy e SILD R SILD
XQDA XQDA
02 ---MSIDA || ---MSIDA ||
—TXQDA —TXQDA
00 O,‘Z 014 Oj6 0.‘8 1 00 0.‘2 0,‘4 016 OJB 1
False Positive Rate False Positive Rate
(a) (b)
1 1 S Ty
081 4 0.8 4
% 06 1 % 06 1
2 2 -~ -NRML
gos go¢ SILD
it XQDA
0z} ---MSIDA |] al ---MSIDA |]
—TXQDA —TXQDA
00 O,‘Z 014 04‘6 0.‘8 1 OO 0,‘2 0,‘4 016 04‘8 1
False Positive Rate False Positive Rate

(c) (d)

Figure 6.4: ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA) using the best performing
features (MSLPQ+MSBSIF) on KinFaceW-II database obtained on (a) F-S set, (b) F-D set, (c) M-S set and
(d) M-D set, respectively.

Table 6.7: Comparative verification rates (%) of extended TSKinFace evaluation on the robustness to the four types of
common degradations. Accuracy loss of each degradation degree on each test set is reported in detail.

Relation Basic Gaussian Blur Gaussian Noise JPEG Compression Reduced Resolution Summarized
Method Tona Accu- 1 3/2 2 0.01 0.02 0.03 60 45 30 1/2 1/3 1/4 Accrracy 2

“FS TaY.00 -7.02  -7.81 -1268| -6.93 -8.49 -14.33| -5.95 -6.63 -7.22 | -6.73 -7.12 -12.97 | 72.34 (-8:66)
FD '79.88 -6.27  -847 -13.65 | -7.67 -9.66 -13.45| -7.07 -9.16 -12.85 | -6.57 -8.67 -13.94 | 70.09 (-9.79)
NRML MS 81.48 -8.67 -10.92 -14.13 | -9.25 -11.11 -13.15 | -9.06 -10.62 -13.64 | -8.48 -10.43 -13.94 | 70.36 (-11.12)
MD 80.97 -5.38  -9.37 -13.85| -5.38 -847 -13.35| -5.38 -8.67 -13.15 | -5.38 -8.67 -13.95| 71.72 (-9.25)
Mean 80.83 -6.83 -9.14 -13.57| -7.3 943 -13.57| -6.86 -877 -11.71] -6.79 -872 -13.7 71.13 (-9.7)

FS 84,60 -9.25 -10.81 -12.76 | -9.35 -10.23 -13.35 | -6.43  -8.57 -9.06 | -9.06 -9.45 -11.20 | 74.64 (-9.96)

FD 81.76 -9.05 -11.64 -12.94 | -11.64 -11.84 -12.44 | -8.65 -885 -9.25 | -8.65 -9.35 -10.94 | 71.32 (-10.44)

SILD MS 83.72 |-10.52 -12.86 -16.46 | -10.71 -12.57 -15.68 | -10.32 -11.01 -11.20 | -11.30 -11.98 -13.44 | 71.38 (-12.34)
MD 83.76 -9.17 -11.16 -15.04 | -8.88 -10.66 -14.55 | -9.97 -11.06 -14.15 | -10.67 -10.87 -11.56 | 72.28 (-11.48)

Mean 83.46 -9.50 -11.62 -14.30 | -10.15 -11.32 -14.01 | -8.84 -9.87 -10.91 | -9.92 -1041 -11.79 | 72.41 (-11.05)

FS 87.04 -6.73 -887 -10.72 | -5.85 -7.12 -887 | -3.90 -7.12 -7.99 | -6.14 -887 -10.73 | 79.30 (-7.74)

FD 85.26 -5.08  -7.77 -10.25 | -4.08 -4.98 -7.07 | -3.59 -4.78 -4.98 | -3.98 -6.68 -10.16 | 79.14 (-6.12)

XQDA MS 84.40 -4.09 -6.05 -8.68 | -3.61 -448 -5.75 | -3.12 487 -527 | -3.61 -5.65 -8.87 | 79.06 (-5.34)
MD 86.85 -5.88 -7.27 -887 | -5.68 -7.87 -7.97 | -5.68 -7.27 -7.27 | -6.28 -6.87 -9.16 | 79.68 (-7.17)

Mean 85.89 -545 749 963 | 481 -6.11 -742 | 408 -6.01 -6.38 | -5.00 -7.02 -9.73 | 79.30 (-6.59)

FS 89.32 -146  -456 -7.18 | -0.87 -4.37 -6.80 | -2.14 -3.01 -3.59 | -2.62 -4.37 -7.09 | 85.32 (-4.00)

FD 90.69 -2.27 515 970 | -1.38  -4.95 -841 | -3.07 -416 -4.55 | -3.26 -5.74 -10.49 | 85.43 (-5.26)

TXQDA MS 90.29 -1.94  -5.63 -864 | -0.78 -4.46 -7.57 | -1.26 -3.69 -4.17 | -2.62 -4.66 -7.86 | 85.85 (-4.44)

MD 90.97 -1.68  -546 -8.53 | -1.29 -5.65 -6.95 | -1.59 417 -546 | -248 -4.96 -8.13 | 86.27 (-4.70)
Mean 90.32 -1.84 520 -851 | -1.08 -486 -743 | -2.02 -3.76 -4.62 | -275 -4.93 -8.39 | 85.72 (-4.60)

To provide a comprehensive result, the verification accuracy across the three types of probe sets is reported.
! The verification accuracy on the original TSKinFace database.
2 The verification accuracy across all types and all degrees of the tested noise and degradations.
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Figure 6.5: ROC curves of different methods (NRML, SILD, XQDA, MSIDA and TXQDA) using the best performing
features (MSLPQ+MSBSIF) on FIW database obtained on (a) GF-GD set, (b) GF-GS set, (¢) GM-GD set and
(d) GM-GS set, respectively.
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Figure 6.6: Examples of original and degraded images used in our extended T'SKinFace evaluation. The last four columns
correspond to the most severe degrees of Gaussian noise, Gaussian blur, JPEG compression, and reduced
resolution applied on the test images.
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feature extraction for the case of MSLPQ+MSBSIF description takes 0.104 s. In training
stage (offline), the estimation of the projection matrices is performed only once. In the
online phase, we evaluate the time cost needed by each method to project and match the
test pair which is provided in Table in ms. This table shows that the best performing
variant, TXQDA, runs faster compared with all the other methods. Furthermore, we
see that the time cost of projection and matching is negligible compared to the feature
extraction time. The total time cost for our framework using MSLPQ-+MSBSIF features
and TXQDA method is about 0.109 s for both Cornell KinFace and UB KinFace databases,
and 0.110 s from TSKinFace and KinFaceW-II databases, and 0.115 s for FIW database.

Table 6.8: Time Cost (TC), in ms, taken by different methods for the projection of one pair of face images.

Projection and matching All steps
Database Feature extraction | NRML | SILD | XQDA | MSIDA | TXQDA | NRML | SILD | XQDA | MSIDA | TXQDA
Cornell KinFace 14.22 | 22.93 | 10.61 5.22 4.54 119.14 | 127.85 | 115.53 | 110.14 | 109.46
UB KinFace 15.17 | 11.91 | 7.06 5.73 4.94 120.09 | 116.83 | 111.98 | 110.65 | 109.86
TSKinFace 104.92 43.04 | 12.15 | 10.92 5.90 5.88 147.96 | 117.07 | 115.84 | 110.82 | 110.80
KinFaceW-II 21.17 | 11.99 | 11.03 6.32 6.05 126.09 | 116.91 | 115.95 | 111.24 | 110.97
FIW 97.27 | 90.11 | 78.96 21.16 10.41 | 102.19 | 195.03 | 183.88 | 126.08 | 115.33

6.4.5 Comparison with the results of the state of the art

The best kinship verification performances of our approach are achieved using two de-
scriptors (MSLPQ34547+9+11) + MSBSIF (345471+9111) ) on Cornell KinFace, UB KinFace,
TSKinFace, KinFaceW-II and FIW databases. For the XQDA (linear), verification rates of
84.10%, 82.58%, 85.89%, 81.65% and 58.10% are reported on Cornell KinFace, UB KinFace,
TSKinFace, KinFaceW-II and FIW databases, respectively. For TXQDA (multilinear),
verification rates of 93.04%, 91.53%, 90.32%, 87.15% and 66.03% are reported on Cornell
KinFace, UB KinFace, TSKinFace, KinFaceW-II and FIW databases, respectively. These
results are compared with the state of the art in Tables 16.10} [6.11} 16.12] and [6.13] The
comparison reveals that the proposed Tensor cross-view analysis based method outperforms
the recent state of the art on the five databases, Cornell KinFace, UB KinFace, TSKinFace,

KinFaceW-II and FIW. This demonstrates the effectiveness of using the cross-view methods
in kinship verification topic.

TXQDA vs. KVRL-fcDBN [79]: In this comparison, we focus on two databases
Cornell KinFace and UB KinFace. The work of Kohli et al. [79] was based on a deep
learning approach (KVRL-fcDBN), where fcDBN algorithm was used to learn more than
600,000 outside face images and obtained 89.50 % on Cornell KinFace and 91.80 % on
UB KinFace databases. However, in our work, we used Tensor cross-view metric learning
method (i.e. TXQDA) to learn the provided data only (i.e. no outside data was used) and
we achieved good performances, 93.04 % and 91.53 % on Cornell KinFace and UB KinFace
databases, respectively. Our TXQDA outperforms the KVRL-fcDBN approach on Cornell

KinFace database and got a competitive performance on UB KinFace database.
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TXQDA vs. DDML [101], DDMML [101] and MvDML [60]: In this
comparison, we focus on TSKinFace and KinFaceW-II databases for monocular and
multiple feature description. From mono-view feature description, the Discriminative
Deep Metric Learning (DDML) [101] method used LPQ descriptor with face images with
input size of 64 x 64. First they divide each face image into 4 x 4 non-overlapping blocks,
where the size of each block is 16 x 16. Then, they extract a 256-bin LPQ histogram with
window size of 3, 5 and 7 for each block respectively, and finally concatenate them to
form a 12,288-D feature vector, which is the same used face features description in our
work (i.e. MSLPQ(3+5+7)). For bi-subject kinship verification, from the MSLPQ34547)
features description, our TXQDA method outperforms the DDML method with about 8.28
% and 2.40 % on TSKinFace and KinFaceW-II databases, respectively. For tri-subject
kinship verification, from the MSLPQ 34547 features description, our TXQDA method
outperforms the DDML method with about 9.12 % and 11.25 % on TSKinFace database
for FM-S and FM-D relations, respectively. From multi-view feature description, we can
see that our approach which using the MSLPQ+MSBSIF feature description, improves
the performance with about 2.85 % and 6.95 % compared with DDMML and MvDML
on KinFaceW-II database, respectively. Furthermore, our TXQDA method improves the
performances with about 6 % compared with DDMML for bi-subject kinship verification
on TSKinFace database and improves the performances with about 6.35 % and 8.53 %
compared with DDMML for FM-S and FM-D tri-subject relations on TSKinFace database.

TXQDA vs. MSIDA [14]: From the five kinship databases, our TXQDA outper-
forms the MSIDA [14] method with about 9.42%, 9.48%, 4.83%, 5.00% and 9.98% on
Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-II and FIW databases, respectively.
Furthermore, our TXQDA used only the positive pairs in the training step, unlike MSIDA
do. The framework of Bessaoudi et al. [14] needs the MPCA method step for the features
dimension reduction before using the MSIDA method. Our TXQDA method deals with
the face images directly, without the need of using the features dimension reduction step.
Furthermore, our TXQDA method work well compared with MSIDA method when the
data classes contain face images from different persons with very large age difference (i.e.

the four grandparent-grandchild relations of FIW database).
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Table 6.9: Performance comparisons (%) with state-of-the-art methods on Cornell KinFace database.

Method ‘ Mean Accuracy (%) ‘
Pictorial structure model [44] 70.67
Neighborhood repulsed metric learning [103! 69.50
Multiview neighborhood repulsed metric learning [103] 71.60
Discriminative multimetric learning [174] 73.50
Prototype discriminative feature learning [175) 71.90
MHDL3 - {HOG + Color + LPQ} [105 76.60
Multiple kernel similarity metric [193] 81.70
Heterogeneous similarity learning [131] 68.40
Kinship metric learning [195] 81.40
Multilinear side-information based discriminant analysis [14] 86.59
Neighborhood repulsed metric learning [103] (Our) 75.52
Side-information based linear discriminant analysis [109] (Our) 71.38
Cross-view quadratic discriminant analysis [93] (Our) 84.10
Multilinear side-information based discriminant analysis [14] (Our) 83.62
TXQDA (Our) 93.04

Table 6.10: Table 8: Performance comparisons (%) with state-of-the-art methods on UB KinFace database.

Method Mean Accuracy (%) |
Transfer subspace learning [170] 68.50
Neighborhood repulsed metric learning [103] 65.60
Multiview neighborhood repulsed metric learning [103] 67.05
Discriminative multimetric learning [174] 72.25
Prototype discriminative feature learning [175] 67.30
Heterogeneous similarity learning [131] 56.20
PML-COV-S [114] 84.50
Kinship metric learning [195)] 75.50
Multilinear side-information based discriminant analysis [14] 83.34
Neighborhood repulsed metric learning [103| (Our) 70.55
Side-information based linear discriminant analysis [109] (Our) 67.36
Cross-view quadratic discriminant analysis 93] (Our) 82.58
Multilinear side-information based discriminant analysis [14] (Our) 82.05
TXQDA (Our) 91.53

Table 6.11: Performance comparisons (%) with state-of-the-art methods on TSKinFace database.

Method | Mean Accuracy (%) [ FM-S (%) | FM-D (%) |
Relative symmetric bilinear model [133] 81.85 86.40 84.40
BSIF-HSV 168 81.19 /

Discriminative deep multi-metric learning [101] 84.15 88.50 87.10

Multiple kernel similarity metric [193] 84.52 / /

Multilinear side-information based discriminant analysis [14] 85.18

SILD+WCCN/LR [83] 88.59 90.94 91.23
Neighborhood repulsed metric learning [103| (Our) 80.83 84.26 85.53
Side-information based linear discriminant analysis [109] (Our) 83.46 86.44 87.82
Cross-view quadratic discriminant analysis [93] (Our) 85.89 88.02 88.35
Multilinear side-information based discriminant analysis [14] (Our) 85.49 91.26 91.27
TXQDA (Our) 90.32 94.85 95.63
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Table 6.12: Performance comparisons (%) with state-of-the-art methods on KinFaceW-II database.

Method ‘ Mean Accuracy (%) ‘
Multi-view multi-task learning [134] 77.20
Discriminative deep multi-metric learning [101] 84.30
Multi-view deep metric learning [60) 80.20
Heterogeneous similarity learning [131] 70.40
Multiple kernel similarity metric [193] 84.30
Large-margin multi-metric learning |61] 80.00
Kinship metric learning [195] 85.70
SILD+WCCN/LR [83] 86.20
Neighborhood repulsed metric learning [103] (Our) 72.95
Side-information based linear discriminant analysis [109| (Our) 76.50
Cross-view quadratic discriminant analysis [93] (Our) 81.65
Multilinear side-information based discriminant analysis [14] (Our) 82.15
TXQDA (Our) 87.15

Table 6.13: Performance comparisons (%) with state-of-the-art methods on the four grandparent-grandchild relations from
FIW database.

Method | Mean Accuracy (%) |
ResNet - CF [138 65.51
SphereFace [138] 65.60
ResNet+SDMLoss |155] 65.58
Neighborhood repulsed metric learning [103] (Our) 56.42
Side-information based linear discriminant analysis [109] (Our) 54.98
Cross-view quadratic discriminant analysis [93] (Our) 58.10
Multilinear side-information based discriminant analysis [14] (Our) 56.05
TXQDA (Our) 66.03

6.5 Conclusion

In this chapter, we presented an effective approach based on tensor cross-view method to
the problem of kinship verification. To achieve a low dimensional and discriminative tensor
subspace, we extended XQDA to TXQDA, which operate on multilinear data. TXQDA
finds multilinear projections of the tensor, where the separation between data classes is
enhanced. Furthermore, TXQDA was proposed to separate the multifactor structure of
face images related to kinship, age, gender, expression, illumination and pose from different
dimensions of the tensor. Therefore, TXQDA has many advantages as it, i) preserves
data structure, ii) enlarges the margin between samples, iii) helps lightening the small
sample size problem, and iv) reduces the computational cost. The experimental evaluation
showed the superiority of our method. The best results of our approach are obtained
by fusing histograms of two multiple scale local texture descriptors (MSLPQ+MSBSIF)
projected with the proposed TXQDA method. These results outperform the state of
the art on Cornell KinFace, UB KinFace, TSKinFace, KinFaceW-II and FIW databases.

Furthermore, these results point out to the need of using cross-view methods for kinship
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verification. As future work, we plan to investigate higher tensor orders (> 3) for face

representation with the proposed multilinear dimensionality reduction method.
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7.1 General conclusion

Kinship verification from facial images, one of the new topics in computer vision that
has been studied and used for several years. Moreover, facial kinship verification can
be applied to potential applications, such as the creation of family trees, family album
organization, image annotation, finding missing children and forensics. Checking if two
persons are from the same family or not can be automatically verified through facial
images. Furthermore, kinship verification shows more and more development. In addition
to the bi-subject matching challenges, verifying kinship encountering the more challenging
tri-subject matching problem. Learn and extract the face similarities between family
members is challenging. Many encouraging results have been shown over the past a few
years, kinship verification from facial images still remains open.

Over the recent years, many methods have been proposed to improve the performance
of the kinship verification frameworks from facial images. Metric learning methods which
are considered as one of the greatest applied dimensionality reduction methods, are widely
used for face recognition. The aim of these methods is to learn and reduce the subspace of
the large features in a low and distinct subspace, leading to a better separation between
the data classes.

One of the most important methods, are the linear dimensionality reduction methods
that include the PCA and LDA methods. The goal of PCA is to increase the variance
of transformed features, extracted in the projected subspace. However, LDA maximizes
the covariance of the inter-class while minimizes the covariance of the intra-class in the
projected subspace. For vector-based features representation, the key shortcoming is
that this representation forfeits part of the natural spatial structure of the facial images,
which impedes the subsequent algorithm to erect the optimal face model and thus a weak
classification model. To solve the aforementioned difficulty, many researchers proposed to
use tensor representation instead of vector-based representation as the input data. Many
researches proved that high order data representation based on tensor analysis, lead to
increase the performances in the face recognition. The linear dimensionality reduction
methods have been extended into multilinear subspace methods which are based on the
high order tensor representation replaced by their vectorized forms. Furthermore, the
multilinear transformations methods have the number of dimensions (N) that defines its
order, analyze the multifactor structure of the face images (i.e. expression, illumination
and pose) from different dimensions of the tensor. Therefore, this thesis was devoted
to the problem of automatic kinship verification from faces (bi-subject and tri-subject
kinship verification) by vector-based and tensor-based subspaces analysis. Our work
has contributed to the development of linear and multilinear metric learning subspaces
algorithms using multiple features (i.e. different scales of texture descriptors, multiple

deep and shallow features and multiple shallow features). Furthermore, the combination
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of multiple features was performed by two criterions as it: i) over a tensor design (early
tensorial features fusion); and ii) over a score fusion (late features fusion).

In chapter [I, we gave a general introduction of the contexts, motivations, objectives
and contributions of this thesis.

In chapter [2, we mentioned a general overview state of the art methods of the kinship
verification as well as their different types: features learning-based kinship verification,
metric learning-based kinship verification and convolutional deep learning-based kinship
verification. On the other hand, we presented the kinship problem from facial images and
its measuring characteristics as well as the general kinship verification system.

In chapter [3| we presented a new efficient method for facial kinship verification based
on multiple scales texture feature projected through Side Information Exponential Dis-
criminant Analysis (STEDA) nonlinear subspace and fused several features using Logistic
Regression (LR) scores fusion. Furthermore, we investigate the effectiveness of the color-
texture information over discriminative subspace utilizing the two-step learning strategy,
SIEDA and Logistic Regression methods, for automatic facial verification of kinship. More-
over, we tested various color spaces and descriptors on four benchmark kinship databases.
Especially, each color channel of facial image from each unique color space is projected over
the same implicit learned color channel subspace, and then all the channels information
are combined to achieve a better discrimination.

In chapter [4], we proposed a novel discriminative subspace by extending Side-Information
based Linear Discriminant analysis (SILD) to SILD integrating Within Class Covariance
Normalization (SILD4+WCCN) subspace transformation approach for facial kinship veri-
fication. Therfore, WCCN minimizes the class intra-variability influence by decreasing
the expected classification error on the training step. Moreover, we propose two effective
automated facial kinship verification frameworks appropriate for bi-subject and tri-subject
matching kinship verification, from facial images captured in unconstrained environments.
The facial data is appeared as a multiple feature based on the integration of various deep
and shallow traits in order to get a more descriminative face model. Also, we widely
evaluated the proposed SILD+WCCN /LR approach versus the state-of-the-art approaches
utilizing two challenging facial kinship databases namely KinFaceW-II and TSKinFace.

In chapter [5, we introduced a new local feature descriptor for extracting features from
facial images. Our descriptor is based on the local statistics traits of the facial image and
the original BSIF operator. Besides, we proposed a novel approach called STIWEDA for face
and kinship verification based on the classical SIEDA approach. Furthermore, to lighten
the class intra-variability, we proposed two variants SIEDA+WCCN and SIWEDA+WCCN
by integrating WCCN in SIEDA and SIWEDA respectively. We extensively evaluated
our approach against the stateof-the-art methods using five challenging face and kinship
databases namely Cornell KinFace, UB KinFace, TSKinFace, YTF (video still-frames)
and LFW databases.
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In chapter [0, we tackled for the first time the kinship verification problem as a cross-view
matching problem because every kin relation is typically viewpoint changes from two face
images belonging to two different persons. Moreover, we proposed a robust automated
facial verification framework suitable for kinship verification, from face images captured
in unconstrained environments. The face data is represented as a high order tensor
based on the combination of different local features in order to provide a more powerful
face model. Furthermore, we proposed a novel method for multi-linear dimensionality
reduction and classification, called Tensor Cross-view Quadratic Discriminant Analysis
(TXQDA), which preserved the data structure, enlarged the margin between samples,
helped lighten the small sample size problem and reduced the computational cost. Also,
we extensively evaluate the proposed TXQDA method against the state-of-the-art methods
using five challenging kinship databases namely Cornell KinFace, UB KinFace, TSKinFace,
KinFaceW-II and FIW.

The performance of the TXQDA method was compared to that of subspace metric
learning methods counterparts such as SILD, NRML, XQDA, and MSIDA. The proposed
method has been validated by several types of analyzes using five kinship databases:
Cornell KinFace, UB KinFace, TSkinFace, KinFaceW-II and FIW. The results of the
experimental study show that TXQDA is a robust and effective verification method for

tensor cross-view matching because it surpasses all the traditional metric learning methods.

7.2 Perspectives

This section presents some ideas for future research in order to design solutions for kinship
verification task, as well as to collect new databases in which the proposed methods can be
applied. Furthermore, many problems of facial recognition by multidimensional analysis
have been addressed in this thesis, the field of multilinear subspaces analysis still presents
many unresolved problems which have yet to be taken into account. Therefore, we tried to
conclude our perspectives into two big ideas including data collections and tensor subspace

analysis for kinship verification.

7.2.1 kinship verification and the lack of big collected data

« Kinship verification is lacking of largest family facial data. Furthermore, the proposed
algorithms for kinship verification still stacked in small databases which affect the
training performance of models. So, we planned to gather and collect a new database
to verify bi-subject matching, tri-subject matching and multi-subject matching

(family matching).

« Kinship verification has yet to show an advantage using other modalities than face

(i.e. voices, videos and gaits). Also, collecting videos, voices (extracted from videos
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7 General conclusion and perspectives

for example) and gaits images are one of the most important priorities of our next

works.

o The existing kinship verification databases includes only one face for parent and
one face for child. This is a very limited case for verifying kinship. In addition to
the obstacle generally faced the face verification in unconstrained environments (i.e.
facial images captured under uncontrolled environments without any restrictions
in terms of pose, lighting, background, expression, and partial occlusion), kinship
verification inserts another layer of obstacles which is far from being easy. So,
collecting a new database that includes different facial images of parents and their
children can extremely help automatic kinship verification algorithms to better

understand facial kinship cues.

7.2.2 Development of tensor subspaces analysis metric learning

o Evaluating of a new effective metric learning methods based on multilinear subspaces

analysis (tensor-based subspace analysis), which further enlarge the optimisation
criterion of our TXQDA method.

o Combining features has become one of the most effective strategies to improve the
kinship verification performance. The integration in chapter [6] of TXQDA with the
local texture descriptors MSLPQ and MSBSIF showed promising results for facial
kinship verification. It would therefore be interesting to study the integration of
the feature vectors projected by TXQDA with our StatBIF local statistical features
descriptor (proposed in Chapter [5)) in order to extract the most discriminating

information for better classification.

o Lastly, in multilinear subspaces analysis, there are still many unresolved issues, such
as optimal initialization, optimal projection order, and optimal stopping criterion.
This thesis has made some attempts to solve some of these problems in the proposed
methods TXQDA. However, it will be beneficial if further research leads to a deeper

understanding of these issues.
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Figure B.1: The relationship between sensitivity, specificity, and similar terms can be understood using the following table.
Consider a group with P positive instances and N negative instances of some condition. The four outcomes can
be formulated in a 2 X 2 contingency table or confusion matrix, as well as derivations of several metrics using
the four outcomes.
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C Notations and concepts of tensor algebra

This section focuses on the algebra of the multilinear Cross-view Quadratic Discriminant
Analysis (TXQDA) method. The variables and mathematical notations that we used in
our work are as follows : Lowercase and uppercase symbols (e.g., i, j, F, N and V) indicate
scalars; Bold lowercase symbols (e.g., x, y and z) indicate vectors; italic uppercase symbols
(e.g., U, X, Y and W) indicate matrices; bold italic uppercase symbols (e.g., X, Y, and
Z) indicate tensors. A tensor is explained as a multidimensional array [82,/179]. N is
considered the order of the tensor and X is called an N*'-order tensor. I, 1 < k < N, is
the dimension of the k™ mode.

The following definitions explain the mathematical tools used to deal with the high
order tensors

Definition 1. The inner product (X, Y') € RIt*12X*IN of two tensors X and Y which

have the same order and dimensions is defined by:

Ip..In

<X7 Y> - Z Xil...iNYil...iN (Cl)
i1=1.in=1
The Frobenius norm of a tensorX € R 12X *Ix s defined as || X||y = /(X, X), and
the Euclidean distance between two tensors X, Y € Rl *12XxIn i defined as D(X, Y) =
| XYy
Definition 2. The k-mode flattening a tensor B € Rl *12x-xIN t5 a matrix B® ¢
Rl i defined by:

B* <, B (C.2)
Where
K) N N
Bi(kj =B .q.j=1+ > Gi-1) [ L (C.3)
I=1,1#k o=I+1,0#k

The unfolding operation on a 3"d-order tensor is illustrated by Fig. .

Definition 3. The k-mode product of a tensorX € Rl <12>XxIN and a matrix
G e RN (k=1,2,... N)is an I; x Iy x ... Ly x I x I 1 X ... x Iy tensor denoted by
Y = X X G, where:

Ik
Yi1,~~-,ik71,i7ik+1 ,,,,, i — Z Xi17~--,ik—17i:ik+1 77777 iN Gi,j (C4)
=1
With j=1,...,Ix in which Gj; indicates the element in the matrix G of coordinates
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C Notations and concepts of tensor algebra

(i, j). Fig. illustrates an example of 1-mode vector product of third-order tensor
X € R300x6x4 with matrix G € RYBO resulting tensor X x 1 G € RXx4,

Mode 3
: z- mode vectors

1-mode vectors 2-mode vectors 3-mode vectors
>
B Mode 2
Mode 1
v Hode mode- l l l l l l
X L I Matricizing 13X Lls X Ijl3 3% L],
BeRE Mat, (B)e R Mat, (B)e R Mat;(B)e R
Figure C.1: Example of tensor unfolding.
1 mode
X vector
300x6x4
T
Xx G
GT Rows -
. ——

Figure C.2: Visual illustration of 1-mode vector product of third-order tensor X € R300X6X4 with matrix GT e R4*300,
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D Detailed results of color spaces on the four databases

Tables [D.1], [D.2], [D.3] and [D.4] provide the detailed mean accuracy of kinship verification of

different descriptors and color spaces on the Cornell KinFace, TSKinFace, KinFaceW-I and

KinFaceW-II databases, respectively. The values in the tables are the kinship verification

rates (accuracy in %).

Table D.1: The mean accuracy (%) of kinship verification on Cornell database.

_ Color space | oy | 3oy | Lab | Luv | RGB | YCCr | YUV | Gray
Descriptor
MSBSIF 80.45 | 81.50 | 76.57 | 76.95 | 76.19 | 78.01 | 77.68 | 74.48
MSLPQ 79.04 | 78.71 | 79.13 | 77.71 | 77.64 | 77.65 | 78.38 | 76.94
MSCoALBP 76.83 | 76.16 | 73.07 | 73.72 | 71.31 | 76.56 | 74.42 | 71.01
Fusion1 80.11 | 80.48 | 79.11 | 78.38 | 77.60 | 77.32 | 77.63 | 76.25
Fusion?2 79.70 | 79.68 | 77.28 | 76.24 | 75.51 | 79.06 | 77.31 | 73.77
Fusion3 79.34 | 78.96 | 77.65 | 77.98 | 77.26 | 78.70 | 79.07 | 77.60
Fusiond 79.32 | 79.37 | 77.65 | 77.63 | 77.89 | 77.98 | 79.77 | 75.51

Table D.2: The mean accuracy (%) of kinship verification on TSKinFace database.

. Color space | ot | 19y | Lab | Luv | RGB | YCCr | YUV | Gray
Descriptor
MSBSIF S7.54 | 87.74 | 86.34 | 86.78 | 83.47 | 87.44 | 87.32 | 82.39
MSLPQ 86.58 | 86.80 | 86.40 | 86.21 | 83.89 | 86.83 | 86.16 | 83.23
MSCoALBP 81.87 | 81.54 | 77.02 | 77.95 | 78.78 | 77.86 | 81.26 | 76.23
Fusion1 87.76 | 87.64 | 86.95 | 86.96 | 84.06 | 87.32 | 87.25 | 82.98
Fusion2 87.72 | 88.11 | 86.48 | 86.66 | 84.46 | 87.52 | 87.54 | 82.59
Fusion3 87.02 | 87.74 | 86.46 | 86.68 | 84.88 | 86.97 | 87.66 | 83.63
Fusion4 87.57 | 88.01 | 86.88 | 86.53 | 84.56 | 87.30 | 87.59 | 83.28

Table D.3: The mean accuracy (%) of kinship verification on KinFaceW-I database.

_ Color space | oy | gy | Lab | Luv | RGB | YCCr | YUV | Gray
Descriptor
MSBSIF 7810 | 78.98 | 78.11 | 78.70 | 77.55 | 78.41 | 78.05 | 76.50
MSLPQ 7751 | 76.94 | T7.44 | T7.40 | 76.75 | 77.36 | 77.77 | 76.30
MSCoALBP 74.44 | 73.80 | 73.50 | 72.50 | 72.36 | 72.41 | 73.04 | 71.33
Fusion1 78.13 | 78.85 | 78.04 | 78.97 | 77.42 | 78.18 | 78.35 | 76.91
Fusion?2 79.18 | 79.91 | 78.88 | 79.19 | 78.53 | 78.21 | 78.22 | 77.43
Fusion3 78.91 | 79.55 | 78.77 | 79.07 | 78.33 | 78.31 | 78.71 | 77.28
Fusion 78.86 | 80.00 | 78.98 | 79.44 | 78.71 | 78.11 | 79.06 | 77.59

154



D Detailed results of color spaces on the four databases

Table D.4: The mean accuracy (%) of kinship verification on KinFaceW-II database.

Color space

. HSL | HSV | Lab | Luv | RGB | YCbCr | YUV | Gray
Descriptor
MSBSIF 87.50 | 86.85 | 83.85 | 84.35 | 78.55 | 84.45 | 84.50 | 77.45
MSLPQ 86.15 | 85.70 | 82.85 | 82.50 | 78.20 | 84.55 | 83.00 | 77.00
MSCoALBP 79.60 | 81.00 | 74.75 | 74.50 | 74.05 | 79.00 | 77.60 | 72.25
Fusionl 87.50 | 87.35 | 84.00 | 84.90 | 79.00 | 84.50 | 84.65 | 77.35
Fusion2 87.60 | 87.40 | 83.75 | 84.15 | 79.30 | 85.05 | 84.50 | 77.85
Fusion3 86.65 | 86.55 | 83.25 | 83.45 | 79.95 | 85.10 | 84.15 | 78.05
Fusion4 87.55 | 87.30 | 84.45 | 84.45 | 80.15 | 85.00 | 84.25 | 77.95
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D Detailed results of color spaces on the four databases
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1.1 Contexte et motivation

La capacité de déterminer I'identité des personnes et d’accorder des traits personnels (par
exemple, nom, age, nationalité, etc.) & une personne a été tres intrinseque a la structure
de notre société. En général, les humains ont utilisé des caractéristiques d’apparence
telles que la voix, le visage et la démarche ainsi que d’autres informations contextuelles
(par exemple, les vétements et I'emplacement) pour s’identifier. L’ensemble des traits
associés a un individu décrit sa propre identité personnelle. Au début de la civilisation, les
gens vivaient dans de petites communautés limitées ot les personnes pouvaient facilement
s’identifier. En outre, une grande explosion de l’expansion de la population accompagnée
d’une mobilité accrue dans la société moderne qui a nécessité le développement de systemes
avancés de gestion automatique des identités capables d’enregistrer, de préserver et d’effacer
efficacement les identités privées des peuples.

Un systeme biométrique facial est subdivisé en deux phases, la phase de apprentissage
(apprentissage hors ligne) et la phase de test (classification / vérification en ligne). L’étape
de apprentissage ne sera effectuée qu’une seule fois au cours de laquelle 'enrdlement des
images faciales des différents individus est utilisé afin d’extraire et de décrire la signature
biométrique de chaque individu. Lors de la phase de test, les nouvelles données sont
comparées aux données de apprentissage automatiquement apprises lors de la phase de
apprentissage afin de prendre la décision d’accepter ou de rejeter le candidat. Les étapes
effectuées dans ces deux phases dans un systéme de reconnaissance faciale sont subdivisées
en trois modules principaux [14]: détection de visage, extraction des traits et reconnaissance
(classification). Le schéma général du systeme de reconnaissance faciale est illustré dans
Fig. [I.1] Un schéma détaillé du systéme de reconnaissance faciale est illustré dans Fig.
1w
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Figure 1.1: Structure du systéme de reconnaissance faciale.
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Figure 1.2: Eléments de base d’un systéme biométrique générique .

Trois étapes essentielles sont utilisées pour développer un systeme de reconnaissance
faciale robuste: (i) la détection du visage, (ii) I'extraction de caractéristiques et (iii) la
reconnaissance faciale (illustrée a la figure . L’étape de détection de visage est utilisée
pour détecter et déterminer I'image faciale humaine acquise par le systeme. L’étape
d’extraction de caractéristiques est utilisée pour extraire les données de caractéristiques
discriminantes pour chaque visage humain déterminé dans la premiere étape. Enfin, I’étape
de reconnaissance faciale comprend les caractéristiques extraites du visage humain qui le
comparent a des bases de données faciales complétes pour déterminer 'identité faciale

humaine.

o Détection facial: Le systéeme de reconnaissance faciale commence d’abord par
le centre des soins du visage humains dans une image d’entrée. Le but de cette
étape est de définir si I'image cible comprend ou non des soins du visage humains.

Les variations d’éclairage et ’expression du visage peuvent bloquer la détection
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du visage. Afin de faciliter la conception d’un systéme de reconnaissance faciale
robuste et de le rendre plus efficace, des étapes de prétraitement sont effectuées.
De nombreuses approches sont utilisées pour détecter et définir 'image du visage
humain, par exemple le détecteur Viola-Jones [32,137|, histogramme du gradient
orienté (HOG) [26], et analyse en composantes principales (PCA) [29]. En outre,
I’étape de détection de visage peut étre utilisée pour la classification d’images et de

vidéos [24], regression [9], suivi d’objets [30], détection de la région d’intérét [29], etc.

« Extraction de caractéristiques: La fonction essentielle de cette étape est de
décrire les images faciales capturées lors de ’étape de détection. Cette étape explique
un visage comme un vecteur de groupe de traits appelé «traits» qui caractérise les
traits discriminants de I'image du visage tels que la bouche, le nez et les yeux avec
leur distribution géométrique [24]. Chaque visage est décrit par sa taille, sa structure
et sa forme, ce qui lui permet d’étre identifié. De nombreuses approches impliquent
I'extraction de la forme / forme des yeux, de la bouche ou du nez pour identifier
le visage en utilisant la taille et / ou la distance [24]. HOG [26], Eigenface [31],
analyse indépendante des composants (ICA) 18], Filtre Gabor 20| les approches

sont largement utilisées pour extraire les traits du visage.

 Reconnaissance de visage: Cette étape considere le vecteur de caractéristiques
extrait de l'arriere-plan au cours de I'étape d’extraction de caractéristiques et le
compare avec un visage similaire stocké dans un ensemble de données spécifique. 11
existe deux applications générales essentielles pour la reconnaissance faciale, 'une
est appelée reconnaissance ou identification et une autre est appelée vérification. Au
cours de la phase d’identification, un test facial est comparé a un groupe de soins du
visage visant a trouver la correspondance la plus similaire. Au cours de la phase de
vérification, un facial de test est comparé a un facial connu de ’ensemble de données

afin de prendre une décision d’acceptation ou de rejet.

Plusieurs systemes proposés et mis en ceuvre pour identifier un visage humain en images
2D ou 3D. Nous classons ces systemes en trois méthodes en fonction de leur approche
de détection et de reconnaissance (Fig. [I.3)): (1) approches locales, (2) holistiques (sous-
espace) et (3) hybrides. La premiere méthode est classée en fonction des caractéristiques
spécifiques du visage, sans tenir compte de ’ensemble du visage. La deuxiéme méthode
utilise le visage entier comme information d’entrée et se projette ensuite dans un sous-espace
petit et discriminant ou dans un sous-plan de corrélation. La troisieme méthode utilise
des caractéristiques globales et locales afin d’améliorer la précision de la reconnaissance
faciale.

La vérification de la parenté a partir d’images de visage, 'un des nouveaux sujets de la

vision par ordinateur qui a été étudié et utilisé depuis plusieurs années, peut s’appliquer a
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Figure 1.3: Méthodes de reconnaissance faciale. SIFT, transformation de caractéristique invariante d’échelle; SURF, trans-
formation de caractéristique invariante d’échelle; BREF, caractéristiques élémentaires indépendantes robustes
binaires; LBP, modeéle binaire local; HOG, histogramme des dégradés orientés; LPQ, quantification de phase lo-
cale; PCA, analyse en composantes principales; LDA, analyse discriminante linéaire; KPCA, noyau PCA; CNN,
réseau neuronal convolutif; SVM, supporte la machine vectorielle.

des applications potentielles, telles que la création d’arbres généalogiques, I'organisation
d’albums de famille, I’annotation d’images, la recherche d’enfants disparus et la médecine
légale. Vérifier si deux personnes appartiennent ou non a la méme famille peut étre
automatiquement vérifié par des images faciales. Apprendre et extraire les similitudes de
visage entre les membres de la famille est un défi. De nombreux résultats encourageants ont
été obtenus au cours des dernieres années, la vérification de la parenté a partir des images
de visage reste ouverte. Bien qu’un test ADN soit le moyen le plus fiable pour la vérification
de la parenté, il ne peut pas étre utilisé dans de nombreuses situations. La vérification
automatique de la parenté a partir d’images faciales peut étre réalisée a titre d’exemple
dans les scenes de vidéosurveillance. En plus de I'obstacle généralement confronté a la
vérification du visage dans des environnements non contraints (c’est-a-dire des images
faciales capturées dans des environnements non controlés sans aucune restriction en termes
de pose, d’éclairage, d’arriere-plan, d’expression et d’occlusion partielle), la vérification
de parenté insere une autre couche d’obstacles qui est loin d’étre facile. La vérification
de la parenté traite des images faciales qui appartiennent inévitablement a des personnes
différentes avec une différence d’age considérable et dans certaines conditions avec un sexe
différent. En outre, les traits de visage des personnes de la méme famille peuvent offrir

une grande dissemblance alors que les visages de paires de personnes sans parenté peuvent
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sembler similaires. Tous ces défis augmentent considérablement les difficultés du probleme
de la vérification automatique de la parenté.

A travers les différents chapitres, nous mettons en évidence l'intérét d’utiliser des
algorithmes basés sur I’analyse mono-dimensionnelle (vectorielle) et multidimensionnelle
(basée sur les tenseurs) utilisant des fonctionnalités profondes et superficielles dans la

vérification de parenté.

1.2 Défis de vérification de la parenté

La vérification de la parenté, I'un des sujets de base de la vision par ordinateur et de la
reconnaissance des formes, a regu une attention considérable ces dernieres années. De
nombreuses approches ont été proposées pour vérifier la parenté dans des environnements
sans contrainte, alors que chacune de ces approches consiste a vérifier si deux personnes
sont de la méme famille ou non a travers des images faciales.

La vérification de la parenté au moyen d’images faciales est difficile en raison du degré
élevé de variabilité des effets visibles tels que la différence génétique, la différence entre
les sexes et 1’écart d’age. En bref, les deux facteurs suivants ont un impact majeur sur la

résolution de problemes:

e Des défis uniques: L’écart d’apparence dans le probleme de vérification de la
parenté est beaucoup plus grand que dans la configuration de vérification faciale
traditionnelle (par exemple, en regardant deux images avec des sexes différents et
des ages différents, et en vérifiant si ces deux sujets ont une relation entre le parent
et 'enfant). De plus, les relations entre différents parents auront différents modeéles
de similitude. Ceux-ci peuvent poser des défis majeurs pour tous les systémes de

vérification de la parenté faciale.

o Défis communs: En raison des défis liés a la vérification des visages, I’apparence
des visages en gros plan est sensible aux changements de divers facteurs, tels que
les variations des expressions faciales, 'obstruction et la position. En outre, cer-
tains autres facteurs d’influence peuvent étre présentés dans la scene réelle, comme
I’éclairage, I'opacité ou la faible résolution, peuvent changer la représentation visuelle

de la parenté des soins du visage de diverses manieres.

Figure illustre les défis mentionnés. Plusieurs algorithmes ont été proposés pour
relever ces défis au cours de la derniére décennie. Plus récemment, [1,/6], ont étudié
diverses approches représentatives de vérification de la parenté dans la situation du petit
échantillon de données de apprentissage uniquement avec quelques types de relations,
a savoir pere-fils, pere-fille, mere-fils et mere-fille. Par conséquent, il reste a tester si

les approches modernes de vérification de la parenté fonctionnent bien sur de grands
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échantillons de données d’entrainement avec diverses relations plus étroites, en particulier
maintenant que l'ensemble de données FIW publié a été publié. . Comme l'illustre
la figure [T.4] les relations d’échantillons plus variées des membres de la famille posent
des défis plus importants a la question de la vérification de la parenté et sont loin d’étre

résolues.

Increasing Age

(a) Same Generation | (b) 15! Generation (c) 2" Generation

Figure 1.4: Echantillons de 11 types de paires de FIW. Chaque type est d’une paire unique sélectionnée au hasard dans un
ensemble de familles diverses pour montrer la variation de l’appartenance ethnique, tandis que quatre visages
de chaque individu représentent les variations d’age .

1.3 Bases de données de référence

Pour évaluer les performances des approches de vérification de parenté proposées, nous
avons considéré six bases de données de parenté: base de données Cornell KinFace, base
de données UB KinFace, base de données TSKinFace, base de données KinFaceW-I, base
de données KinFaceW-II et base de données FIW. Ces bases de données se composent de
quatre types de relations parents-enfants (a l’exception de la base de données FIW qui
contient onze relations de quatre relations parents-enfants, trois relations freres et sceurs
et quatre relations grands-parents-petits-enfants). Les images de visage sont d’ages et
d’ethnies variés, et capturées dans des environnements non controlés et sans restriction en
termes de pose. Pour la vérification des visages (reconnaissance faciale ou auto-parenté),

nous avons considéré deux bases de données complexes, a savoir la base de données Labeled
Faces in the Wild (LFW) et la base de données YouTube Face (YTF).
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1.3.1 Bases de données de vérification de parenté

Base de données Cornell KinFace [8] se compose de 143 paires d’images de parents
et d’enfants recueillies sur le Web. 1l y a 286 images de visage frontal recadrées de taille
100 x 100 pixels. La plupart des images ont été tirées de Google Images. Pour garantir
que les caractéristiques du visage extraites sont de haute qualité, seules les images de face
frontales avec une expression faciale neutre sont choisies. Nous notons que 7 familles sont
retirées de la base de données originale qui se compose de 150 familles pour des questions
de confidentialité.

Base de données UB KinFace [36] comprend 600 images de 400 personnes réparties
en 200 paires de parents enfants-jeunes (ensemble 1) et 200 paires d’enfants-parents agés
(ensemble 2). Ces deux ensembles de paires sont utilisés pour améliorer, tester et évaluer
les algorithmes de vérification de la parenté. La plupart des images de la base de données
sont des combinaisons réelles de personnalités publiques (célébrités et politiciens) sur
Internet. C’est la premiere base de données qui comprend tous les enfants, les jeunes
parents et les vieux parents aux fins de vérification de la parenté.

Base de données TSKinFace [25] Il s’agit de deux types de relations de parenté
tri-sujets qui sont: Pere-Mere-Fille (FM-D) et Pere-Mere-Fils (FM-S). Le FM-D contient
502 relations et FM-S a 513 relations (4060 images de visage). Ces images proviennent de
personnalités publiques recueillies sur Internet. Les images du visage sont recadrées en
utilisant la position des yeux dans 64 x 64 résolution de pixels. Pour une comparaison
équitable, nous avons restructuré la base de données en séparant le groupe Pere-Mere-Fille
en deux groupes de relations de parenté Pere-Fille et Mere-Fille, et le groupe Pere-Mere-Fils
en deux groupes Pere-Fils et Mere-Fils relations de parenté.

Base de données visage de parenté dans la nature (KinFaceW) [19] se compose
de deux sous-bases de données différentes: KinFaceW-1 et KinFaceW-II. Les deux sous-
bases de données sont rassemblées grace a des recherches sur Internet, y compris des
personnalités publiques avec leurs parents et / ou leurs enfants. Dans ’ensemble de
données KinFaceW-1, il y a 156, 134, 116 et 127 paires correspondant aux relations F-S,
F-D, M-S et M-D, respectivement. Pour ’ensemble de données KinFaceW-II, chaque type
de relation parentale contient 250 paires. Au total, KinFaceW-I compte 1066 images de
visage et 2000 images de visage pour KinFaceW-II.

Base de données FIW [27] nous avons considéré la plus grande base de données de
parenté FIW utilisant: quatre sous-ensembles de visages Grand-pére-Petite-fille (GF-GD),
Grand-pere-Petit-fils (GF-GS), Grand-mere-Petite-fille (GM-GD) et Grand-mere-Petit-fils
(GM-GS). Dans le sous-ensemble GF-GD, il y a 7078 paires d’images pour les relations
positives et négatives. Dans le sous-ensemble GF-GS; il y a 4830 paires d’images pour les
relations positives et négatives. Dans le sous-ensemble GM-GD, il y a 6512 paires d’images

pour les relations positives et négatives. Dans le sous-ensemble GM-GS, il y a 4614 paires
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d’images pour les relations positives et négatives.

1.3.2 Bases de données de vérification faciale

Base de données des visages étiquetés dans la nature (LFW) [12] iest un grand
ensemble de données collectées sur le Web, spécialement rassemblées pour étudier le prob-
leme de la reconnaissance faciale dans des environnements sans contraintes contenant des
variations du monde réel en termes d’éclairage, de pose, d’expressions, de flou, d’occlusion,
de résolution, etc. Cet ensemble de données difficile comprend 13233 images faciales
appartenant a 5749 sujets différents.

Base de données YouTube Face (YTF) |[35] se compose de 3425 vidéos de 1595
sujets différents avec diverses variations de pose, d’expression et d’illumination, et la

longueur moyenne de chaque clip vidéo est de 181,3 images.

1.4 Objectifs et contributions

La these principale se concentre sur le développement, la mise en ceuvre et I’évaluation
de systémes de vérification de parenté automatiques et efficaces basés sur des techniques
d’apprentissage métrique de sous-espaces linéaires et multi-linéaires dans des environ-
nements non controlés dans lesquels les variations de pose, d’éclairage, d’arriere-plan,
d’expression et d’occlusion partielle sont tres différent entre la apprentissage et les classes
de test.

Nous pouvons organiser nos contributions en phase de classification en deux catégories
essentielles: 1) les méthodes vectorielles et ii) les méthodes tensorielles. Ces deux catégories
ont besoin de I'étape d’extraction des caractéristiques, que nous avons classée par theme
en deux catégories essentielles: i) les caractéristiques peu profondes (caractéristiques de
forme/texture) et les caractéristiques profondes et superficielles. Figure ont illustré
nos principales contributions sur I’étape de classification en utilisant différentes catégories
d’extraction de caractéristiques pour la vérification de la parenté.

Nous résumons les principales contributions de recherche de cette these comme suit:

« Etude de I'état de I'art (SOA) de différentes approches de vérification de parenté

basées sur I'apprentissage profond et 'apprentissage métrique.

« Développer et concevoir des systemes robustes de vérification de la parenté contre les
variations d’expression, d’illumination et de pose, basés sur un apprentissage métrique
vectoriel et basé sur les tenseurs, en utilisant les caractéristiques superficielles (c.-a-d.
Texture/forme) et les caractéristiques profondes des images faciales d’intensité et

des images faciales en couleur .
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Figure 1.5: Carte de thése: nos principales contributions sur différentes catégories d’étapes de classification (conception
de stratégies vectorielles et basées sur des tenseurs) pour la vérification de la parenté en utilisant différentes
catégories d’extraction de caractéristiques.

Nous pouvons subdiviser nos contributions en quatre volets comme suit:

I- Premiére contribution (illustré au Chapitre 3):

o Nous introduisons une méthode efficace pour la vérification de la parenté faciale basée
sur l'extraction de caractéristiques a plusieurs échelles projetée a travers le sous-
espace SIEDA (Side Information Exponential Discriminant Analysis) et combinant
différentes caractéristiques a 'aide de la fusion des scores de la méthode de régression
logistique (LR).

o Nous évaluons l'efficacité des données d’informations couleur-texture sur un sous-
espace discriminant a 1’aide d’une technique d’apprentissage en deux étapes, SIEDA
et régression logistique, pour la vérification faciale automatique de la parenté a partir

d’images faciales.

o Nous évaluons différents espaces colorimétriques et descripteurs sur quatre bases de
données de parenté de référence. En particulier, chaque canal de couleur d’image
de visage a partir d'un espace de couleur spécifié est projeté a travers le méme
sous-espace de canal de couleur appris implicite, puis toutes les informations de canal

sont combinées pour obtenir une meilleure discrimination.

e Nous étudions la combinaison des différents descripteurs des différentes composantes

de couleur.
II- Deuxiéme contribution (illustré au Chapitre 4):

« Nous introduisons un nouveau sous-espace discriminant de ’analyse discriminante

linéaire basée sur les informations secondaires, intégrant la méthode d’analyse de
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transformation de sous-espace de normalisation de covariance de classe (SILD+WCCN)
pour la vérification de la parenté faciale. Par conséquent, le WCCN minimise I'impact
intra-variabilité de classe en minimisant I'erreur de classification attendue au étape

de l'apprentissage. |[2].

o Nous suggérons deux systemes de vérification de la parenté faciale automatisés
robustes appropriés pour la vérification de la parenté bi-sujets et tri-sujets, a partir
d’images faciales capturées dans des environnements sans contraintes. Les données
faciales sont illustrées comme une fonction de vue multiple basée sur la fusion de
différentes caractéristiques profondes et peu profondes afin d’obtenir un modele facial

plus discriminant.

o Nous évaluons lefficacité des données d’informations profondes/superficielles sur un
nouveau sous-espace discriminant en utilisant la technique d’apprentissage en deux
étapes, SILD+WCCN et la régression logistique, pour la vérification automatique de

la parenté a partir d’images faciales.

» Nous testons en profondeur notre technique SILD+WCCN/LR par rapport aux
approches de pointe en utilisant deux bases de données de parenté faciales difficiles,
a savoir KinFaceW-II et TSKinFace.

ITI- Troisiéme contribution (illustré au Chapitre 5):

o Présentation d’une nouvelle fonctionnalité native pour décrire les photos du visage.
Notre descripteur est basé sur les caractéristiques statistiques locales de 'image du

visage et le descripteur BSIF original.

« Nous proposons une nouvelle méthode SIWEDA pour vérifier le visage et la parenté
basée sur la méthode classique SIEDA. De plus, pour atténuer la variance interne
de la classe, nous avons proposé deux variantes SIEDA + WCCN et SIWEDA +
WCCN en incorporant WCCN dans SIEDA et SIWEDA, respectivement.

o Nous évaluons globalement notre approche par rapport aux approches de pointe en
utilisant cing bases de données de visage et de parenté difficiles, a savoir Cornell
KinFace, UB KinFace, TSKinFace, YTF et LFW.

IV- Quatriéme contribution (illustré au Chapitre 6):

o Pour la premiere fois, nous traitons le probleme de la vérification de la parenté faciale
comme un probléme de correspondance croisée car chaque parenté change générale-

ment a partir de deux images faciales appartenant a deux personnes différentes.

o Nous suggérons un systeme de vérification automatique du visage robuste et adapté

pour la vérification de la parenté, a partir de photos de visage prises dans des

10
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environnements illimités. Les données de visage sont représentées sous la forme d’un
tenseur de haut niveau qui repose sur une combinaison de différentes caractéristiques

locales afin de fournir un modele de visage plus robuste.

e Nous proposons une nouvelle méthode de réduction et de classification des dimensions,
appelée analyse discriminante quadratique Tensor Cross-view (TXQDA), qui préserve
la structure des données, élargit la marge entre les échantillons, aide a atténuer le

probleme de la petite taille des échantillons et réduit les cofits de calcul.

e Nous évaluons globalement notre méthode TXQDA par rapport a des méthodes de
pointe en utilisant cinq bases de données de parenté faciales difficiles a savoir Cornell
KinFace, UB KinFace, TSKinFace, KinFaceW-II et FIW.

Enfin, nous pouvons classer nos contributions (citées dans les chapitres 3,4,5 et 6)
comme mentionné dans la figure [1.5] comme suit: Au Chapitre 3, nous avons utilisé
la combinaison d’entités peu profondes projetées par la méthode SIEDA (basée sur les
vecteurs). Au Chapitre 4, nous avons utilisé la combinaison des caractéristiques profondes
et peu profondes projetées par la méthode proposée SILD+WCCN (basée sur les vecteurs).
Pour le Chapitre 5, nous avons utilisé la combinaison d’entités peu profondes projetées
par la méthode proposée SIWEDA+WCCN (basée sur les vecteurs). Pour le Chapitre 6,
nous avons utilisé la combinaison de caractéristiques peu profondes sur une conception de

tenseur projetée par la méthode proposée TXQDA (basée sur les tenseurs).

1.5 Explications d’apprentissage automatique

Dans le domaine de la vision par ordinateur, un systéme publié dans les travaux de la lit-
térature doit prendre en compte plusieurs points et doit étre explicable. Comme mentionné
dans [22], une méthode d’explication pour une approche d’apprentissage automatique en
boite noire (un systeme / une méthode) devrait prendre en compte les propriétés suivantes:

e Précision. Ce trait fait référence au degré de succes d’une explication qui prédit de
nouvelles données testées (données invisibles). une faible précision des explications ne peut
convenir que si le systéme de la boite noire a expliquer est également inexact.

e Fidélité. Les prédictions du modele expliquées doivent correspondre et conclure
les explications. Il existe une relation élevée entre la précision et la fidélité: lorsque
I’explication a une plus grande fidélité et que le modele de boite noire est treés précis,
I’explication du modele a également une plus grande précision.

e Cohérence. Les explications doivent s’appliquer de la méme maniere a tous les
modeles entrainés a l'aide du méme ensemble de données de train.

e Stabilité. Des instances similaires doivent présenter des explications similaires, tant

que des instances particulieres ont été fournies.
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« Représentativité. Une explication tres représentative est celle qui peut étre appliquée
a de nombreuses décisions dans de nombreux cas.

e Certitude. Sila méthode a I’étude fournit une mesure de confiance dans ses décisions,
une explication de cette décision doit en tenir compte.

e Nouveauté. Cette propriété indique la capacité du paradigme d’explication a couvrir
des instances ¢éloignées de 'espace d’apprentissage.

e Degré d’importance. L’explication doit mettre en évidence les caractéristiques
importantes.

« Compréhensibilité. Les explications doivent étre compréhensibles pour les humains.
Cela appartient au public cible et a des implications psychologiques et sociales, bien que
de breves explications contribuent généralement a la compréhension.

Miller a étudié I'explicabilité du point de vue des sciences sociales [21] et note quatre
observations essentielles: (i) les gens donnent la priorité aux explications contrastives,
¢’est-a-dire pourquoi le modele a pris une décision spécifique n’a pas autant d’importance
pour nous que pourquoi une décision différente n’a pas été prise a la place; (ii) les gens ne
choisissent que quelques raisons parmi les diverses raisons qui composent une explication,
et les préjugés personnels témoignent de cette sélection; (iii) renvoyer aux probabilités
ou aux liens statistiques n’est pas aussi efficace que renvoyer aux raisons; et (iv) les
explications sont sociales et devraient donc faire partie d'une conversation plus large, ou
d’une interaction entre I'explicateur et la personne expliquée.

In [11], les auteurs confirment I'importance des experts du domaine humain pour guider
la croissance et 1’évaluation des paradigmes d’explication, étant donné que les systémes
d’apprentissage automatique actuels fonctionnent sur un systeme statistique et / ou sans
modele, et exigent un contexte de systemes humains / scientifiques pour transférer des
explications convaincantes ( en particulier pour les autres experts du domaine). Aucun
modele d’explication unique dans la littérature actuelle n’est en mesure de satisfaire toutes
les propriétés mentionnées (pour plus de détails, reportez-vous a [3}[10,22]pour les manuels
d’enquétes approfondies sur les systemes d’intelligence artificielle explicables).

Dans nos systemes, tous ces points ont été pris en considération. De plus, comme
mentionné dans les Chapitres 3, 4, 5 et 6, nos contributions/publications ont atteint tous

ces points.

1.6 Répercussion des limites de la biométrie sur les systéemes de

parenté
Les systemes de vérification de parenté souffrent et sont également affectés par les facteurs

traditionnels des systémes biométriques. Certains des principaux facteurs affectant la

précision des systémes biométriques [15] sont les suivants:

1. Bruit dans les données détectées: Le bruit dans I’échantillon de visage biométrique
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obtenu peut résulter de caméras dégradées et mal entretenues ou de conditions am-
biantes défavorables (environnement sans contrainte). Par exemple, une caméra de
qualité peut également produire une image de visage bruyante comme le montre la
figure [’échantillon de visage biométrique bruyant ne pouvait pas étre mis en
correspondance, pour les utilisateurs authentiques, par leurs modeles compétents

dans ’ensemble de données ou par le cloud malencontreux mis en correspondance avec

les imposteurs, ce qui conduisait a une minimisation considérable des performances

du systéme [33,/34].

(b)

Figure 1.6: systémes typiques de vidéos de surveillance. (a) et (c) sont les images de surveillance d’une caméra de taille
CIF (pixels) et d’une caméra de taille 720P (pixels) respectivement; (b) montre deux faces intéressées bruyantes
extraites de (a) et (c) [17].

2. Variations intra-classe: Les variations intra-classe dans les échantillons de visage
biométriques sont des exemples créés par l'interaction inappropriée de I'utilisateur
avec l'intervalle de temps a la capture ou la caméra, par exemple, pose faciale incor-
recte - voir Fig. changements dans le conditions d’environnement (par exemple,
changements d’éclairage) [38], utilisation de diverses caméras pendant l'inscription
et la vérification, ou variation temporelle des caractéristiques biométriques telles que
le vieillissement . D’énormes variations intra-classe réduisent généralement le taux

d’acceptation réel (GAR) d’un systéme biométrique.

3. Similitudes inter-classes: La similarité inter-classes est connue sous le nom
d’interférence des échantillons biométriques, dans ’espace au niveau des entités,
selon différentes classes ou peuples. La faiblesse de la singularité dans I’ensemble des
traits biométriques conduisant a une maximisation du taux de fausse acceptation
(FAR) du systeme. Par conséquent, il y a une limite maximale sur le nombre

d’individus singuliers qui pourraient étre assimilés par le systeme biométrique.

4. Non-universalité: L’universalité indique que chaque personne utilisant un sys-
teme biométrique est capable de préparer la caractéristique biométrique respective.
Le systeme biométrique ne pouvait pas étre capable d’extraire des informations

biométriques significatives d’un ensemble de données d’utilisateurs. Par exemple,
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Figure 1.7: Exemples d’images de visage avec (a) des variations d’éclairage dans différentes sessions [38], (b) des variations
d’expression dans différentes sessions , (c) posent des variations dans différentes sessions [38], et (d) Des paires
d’échantillons positifs d’AgeDB avec un écart de 30 ans, les apparences faciales subissent des changements

dramatiques au cours de cette période

I'Institut national des normes et de la technologie (NIST) a signalé qu’il est impossible
d’extraire les traits de minutie corrects des empreintes digitales de deux personnes
de la population (travailleurs manuels avec diverses ecchymoses et coupures au bout
des doigts, individus avec incapacités liées etc.), en raison de la faible qualité des

crétes [5]. Cela contribue & maximiser le taux d’échec d’inscription (ETP). Par
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conséquent, il n’y a pas de fonction biométrique qui est vraiment universelle.

5. Problemes d’interopérabilité: Généralités, les systemes biométriques sont con-
tagieux et congus par la présomption que 1’échantillon biométrique a vérifier est
acquis en utilisant la méme caméra et, par conséquent, sont limités dans leur capac-
ité a correspondre ou a vérifier les échantillons biométriques résultant de diverses

caméras.

6. Attaques par usurpation: Une attaque par usurpation biométrique est la tentative
intentionnelle de falsifier ses caractéristiques biométriques afin d’éviter la vérification,
ou l'induction d’artefacts biométriques physiques afin de se réincarner sur l'identité

d’un autre individu.

Dans le domaine de la vérification de parenté, toutes les méthodes proposées doivent
étre confrontées a tous ces défis (défis des systémes biométriques) avant de traiter
le facteur de parenté. Dans les Chapitres 3, 4, 5 et 6, Nos résultats réalisés par
les systemes proposés montrent que tous ces défis sont traités avec succes sur des
bases de données de vérification de parenté capturées dans des environnements sans

contraintes.

1.7 Evaluation des performances

La biométrie est le terme scientifique pour les mesures et les calculs corporels. Cela indique
que les métriques appartenaient a des traits humains. La vérification biométrique (ou
authentification réaliste) est utilisée dans la vision par ordinateur comme une forme de
correspondance d’identité et de contréle d’acces. Nous nous référons a cela également
utilisé pour identifier les personnes dans les groupes qui sont sous surveillance.

Les identificateurs biométriques sont les traits discriminatoires et mesurables utilisés
pour décrire et étiqueter les personnes. Les reconnaisseurs biométriques sont tres majori-
tairement classés comme physiologiques par rapport aux traits comportementaux. Les
traits physiologiques appartiennent a la forme du corps. Les exemples impliquent, mais
sans s’y limiter, les veines de la paume, 'empreinte digitale, la reconnaissance faciale,
I'empreinte de la paume, I’ADN] la géométrie de la main, la rétine et I'odeur / 'odeur,
la reconnaissance de l'iris. Les traits de comportement appartiennent a la modalité de
comportement d’un individu, impliquant, mais sans s’y limiter, le rythme de frappe, la
démarche et la voix. Certains chercheurs ont utilisé le terme de comportement pour
caractériser cette derniere classe de biométrie.

Des moyens plus conventionnels d’acces au contréle comprennent des systemes de
reconnaissance basés sur des jetons, tels qu'un permis de conduire ou un passeport, et
des systemes d’identification basés sur des connaissances, tels qu'un mot de passe ou un

numéro d’identification personnel. Etant donné que les identificateurs biométriques sont
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uniques a chaque personne, mais qu’ils sont tres fiables dans la vérification d’identité que
les méthodes basées sur les jetons et les connaissances; en outre, ’ensemble d’identifiants
biométriques souleve les problemes de confidentialité concernant 1'utilisation intégrale de

ces caractéristiques d’information.

1.7.1 Fonctionnalité biométrique

De nombreux aspects divers de la physiologie, du comportement ou de la chimie d’une
personne peuvent étre utilisés pour la vérification biométrique. Le choix d’une biométrique
spécifique a utiliser dans une application particuliere comprend une pondération de divers
facteurs. Jain et coll. [13] décrivent sept facteurs importants (points d’indication) & utiliser
lors de I'estimation de I'aptitude de toute caractéristique a étre utilisée dans la vérification

biométrique.

o L’universalité signifie que chaque personne utilisant un systéme doit prendre posses-

sion de la fonctionnalité.

o Unicité signifie que le trait doit étre suffisamment varié pour les personnes de la

population pertinente de sorte qu’elles puissent étre différenciées les unes des autres.

o La permanence appartient a la maniere dont une caractéristique change au fil du
temps. Plus particulierement, une fonctionnalité avec une «bonne» permanence sera
rationnellement inchangée au fil du temps avec conservation du modele correspondant

particulier.

o La mesurabilité (collectabilité) appartient a linstallation de mesure et / ou de
stockage de I’élément. En outre, les informations acquises doivent étre sous une
forme permettant simplement le traitement et 1’extraction ultérieurs des ensembles

de caracteres pertinents.

o Les performances appartiennent a la vitesse, la précision, la robustesse et 'efficacité

de la technologie utilisée (voir la sous-section performance pour plus de détails).

o L’acceptabilité dépend de la mesure dans laquelle les personnes de la population
concernée consentent a la technologie dans laquelle elles sont prétes a faire capturer

et traiter leur caractéristique biométrique.

e Le contournement appartient au simple avec lequel une caractéristique doit étre

imitée en utilisant un substitut ou un artefact.

Une utilisation biométrique appropriée dépend extrémement de 'application. En outre,

certaines données biométriques devraient étre meilleures que d’autres en fonction des
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niveaux de sécurité demandés en termes de commodité de sécurité [4]. Aucun monoculaire
biométrique ne doit répondre & toutes les exigences de toutes les applications possibles [13].
Le schéma bloc du systeme bimétrique comprend deux modes essentiels d'un modele
biométrique [14]. Premierement, dans le modele de vérification (ou d’authentification), le
systeme exécute une vérification individuelle d’une mesure biométrique avec un modele
spécial stocké dans un ensemble de données biométriques dans lequel la vérification plus
simple de la cible individuelle est la méme personne qu’elle devrait étre. En général,
trois procédures sont incluses dans la vérification d’identité de la personne [28]. Dans un
premier temps, des systémes de référence pour tous les utilisateurs ou ils sont produits et
stockés dans le jeu de données-systeme. Dans la deuxiéme étape, certains des échantillons
ou ils sont appariés avec des systeémes de référence pour produire I'imposteur et les scores
réels et calculer le seuil. La troisieme étape est la phase de test. Cette étape peut utiliser
une carte a puce (SC), un numéro d’identification ou un nom d’utilisateur (par exemple
un PIN) pour signaler quel modele doit étre utilisé pour la comparaison de vérification.
«L’identification positive» est une utilisation conjointe du mode d’authentification, «ou le
but est d’empécher plusieurs utilisateurs d’utiliser 'identité unique» [2§].
Deuxiemement, le mode d’identification / reconnaissance, le systéme procede a une véri-
fication / comparaison un-a-plusieurs par rapport a un ensemble de données biométriques
dans le but de trouver I'identité d’une personne inconnue. Le systeme pourrait réussir a
gérer I'identification de la personne si la vérification de I’échantillon biométrique testé a
un modele dans ’ensemble de données tombe a l'intérieur d’un seuil préalablement fixé.
Le mode de reconnaissance / identification peut étre utilisé beaucoup pour la «vraie recon-
naissance» (afin que l'utilisateur n’ait pas a afficher de données d’information sur le modele
a utiliser) ou pour la «fausse reconnaissance» de l'individu »ou le systéme détermine si le
I'individu est celui qu’elle nie (explicitement ou implicitement) étre " [28]. Ce dernier ne
peut étre fait que sur la biométrie puisque les autres approches d’identification personnelle

telles que les codes PIN, les mots de passe ou les clés sont inefficaces.

1.7.2 Performance

Dans ce qui suit, les utilisés comme mesures de performance pour les systémes biométriques:

« False match rate (FMR, également appelé FAR = False Accept Rate): représente la
probabilité que le framework ait mal classé le modele d’entrée de test en un échantillon
non correspondant dans I’ensemble de données. Il représente le pourcentage d’entrées
nulles et non avenues qui sont mal acceptées. En situation de mesure de similarité,
si I'individu est en réalité un imposteur, mais que le score apparié est supérieur au
seuil, alors nous 'avons traité comme authentique. Ceci maximise le FMR, dans

lequel repose donc également sur le score seuil [28].

« Faux taux de non-correspondance (FNMR, également nommé FRR = Faux taux
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de rejet): la probabilité que le systeme indique a tort qu’il existe une correspondance
entre le modele d’entrée de I’échantillon et un modele correspondant dans I’ensemble

de données. Il calcule le pourcentage d’entrées utiles qui sont rejetées a tort.

Caractéristique de fonctionnement du récepteur ou caractéristique de fonc-
tionnement relative (ROC): Le ROC est une représentation graphique graphique
du compromis entre le FMR (FAR) et le FNMR (FRR). En général, I’approche
d’appariement génére une décision basée sur un seuil qui définit a quel point
I’échantillon d’entrée doit nécessairement étre proche d’un modele pour qu’il ressem-
ble a une correspondance. Lorsque le seuil est diminué, il doit y avoir le plus petit
nombre de fausses non-concordances mais d’autres fausses acceptations. De plus,
un seuil plus grand devrait diminuer le FMR mais élargir le FNMR. Une différence
commune est le compromis d’erreur de détection (DET), par lequel il est acquis en
utilisant des échelles d’écart normales sur les deux axes. Ce graphe plus linéaire

allege les divergences pour de meilleures performances (erreurs rares).

Taux d’erreur égal ou taux d’erreur de croisement (EER ou CER): le taux auquel
les erreurs de rejet et d’acceptation sont égales. Le taux de 'EER peut étre
simplement extrait & l'aide de la courbe ROC. L’EER est un moyen rapide de
comparer la précision des machines avec différentes courbes ROC. Généralement, la

machine avec le plus petit EER est la haute précision.

Taux d’échec d’inscription (FTE ou FER): le taux auquel tente de générer un
modele a partir d’'un échantillon d’entrée échoue. Ceci est généralement inspiré par

des entrées d’échantillons de faible qualité.

Taux d’échec de capture (FTC): dans les systémes automatiques, la probabilité
que le systéme ne parvienne pas a déterminer une entrée d’échantillon biométrique

lorsqu’il est donné correctement.

Capacité du modele: le nombre extréme de collections de données qui peuvent

étre stockées dans le framework.

1.8 Articulation de la these

Le manuscrit de these est structuré autour de sept chapitres:

Dans le Chapitre 1, nous avons donné une introduction générale des contextes, motiva-

tions, objectifs et contributions de cette these.

Dans le Chapitre 2, nous mentionnons un apercu général des méthodes de pointe de la

vérification de la parenté ainsi que de leurs différents types: fonctionnalités de vérification

de la parenté basée sur I'apprentissage, la vérification de la parenté basée sur I'apprentissage
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métrique et la vérification de la parenté convolutive basée sur I'apprentissage profond .
D’autre part, nous avons présenté le probleme de parenté a partir d’images faciales et ses
caractéristiques de mesure ainsi que le systeme général de vérification de la parenté.

Dans le Chapitre 3 (notre premiere contribution), nous présentons une approche de
vérification de parenté faciale (FKV) basée sur un apprentissage automatique et plus
efficace en deux étapes de la couleur / informations de texture. La plupart des méthodes
proposées pour la vérification automatique de la parenté a partir des images de visage ne
prennent en compte que les informations de luminance (c’est-a-dire I’échelle de gris) et
excluent les informations de chrominance (c’est-a-dire la couleur) qui peuvent étre utiles,
en tant qu’indice supplémentaire, pour prédire les relations. Nous explorons l'utilisation
conjointe des informations couleur-texture de la chrominance et des canaux de luminance en
extrayant des caractéristiques complémentaires de bas niveau a partir de différents espaces
colorimétriques. Plus spécifiquement, les caractéristiques sont extraites de chaque canal de
couleur de I'image du visage et fusionnées pour obtenir une meilleure discrimination. Nous
étudions différents descripteurs sur les bases de données de parenté de visage existantes,
illustrant 1'utilité des informations de couleur, par rapport aux homologues en échelle de
gris, dans sept espaces colorimétriques différents. En particulier, nous générons a partir de
chaque espace colorimétrique trois matrices de projection de sous-espaces, puis évaluons
la méthodologie de fusion pour fusionner trois distances appartenant a chaque image de
visage de paire de test. Des expériences sur trois bases de données de référence, a savoir
Cornell KinFace, KinFaceW (I & II) et la base de données TSKinFace, montrent des
résultats supérieurs par rapport a 1’état de 'art.

Dans le Chapitre 4 (notre deuxiéme contribution), nous présentons la combinaison
de caractéristiques profondes et superficielles (caractéristiques multi-vues) en utilisant
I'approche d’apprentissage métrique proposée (SILD + WCCN / LR) pour la vérification
de la parenté. Notre approche basée sur un apprentissage automatique et plus efficace en
deux étapes de l'information profonde / superficielle. Tout d’abord, cing couches pour
les traits profonds et cinqg traits superficiels (c.-a-d. Texture et forme), représentant plus
précisément les traits du visage impliqués dans les relations de parenté (peére-fils, pere-fille,
mere-fils et mere-fille) sont utilisées pour former le Proposition d’analyse discriminante
linéaire basée sur les informations secondaires intégrant la méthode de normalisation de
la covariance de classe (SILD + WCCN). Ensuite, chacune des caractéristiques projetées
a travers le sous-espace discriminant de la méthode d’apprentissage métrique SILD +
WCCN proposée. Enfin, une méthode de régression logistique (LR) est utilisée pour
fusionner les six scores des caractéristiques projetées. Pour montrer I'efficacité de notre
méthode SILD + WCNN, nous faisons quelques expériences sur la base de données LEW.
En termes d’évaluation, la vérification automatique de la parenté faciale (FKV) proposée
est comparée a celles existantes pour montrer son efficacité, en utilisant deux bases de

données de parenté difficiles. Les résultats expérimentaux ont montré la supériorité de
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notre FKV par rapport a ceux existants pour I'appariement bi-sujet sur KinFaceW-II et
TSKinFace. De plus, les résultats expérimentaux ont montré la supériorité de notre FKV
sur la base de données TSKinFace disponible pour Pere-Mere-Fils et Pere-Mere-Fille.

Dans le Chapitre 5 (notre troisiéme contribution), nous développons un nouveau critere,
appelé Analyse Discriminante Exponentielle Pondérée basée sur les informations secondaires
(SIWEDA), basé sur la méthode classique SIEDA. Nous reformulons et généralisons la
fonction de critere de Fisher classique afin de la maximiser, avec la propriété de rapprocher
le plus possible les échantillons intra-classes (échantillons intra-classes), et de repousser
et repousser le plus loin possible les échantillons inter-classes (échantillons inter-classes).
Ainsi, SIWEDA sélectionne les valeurs propres de haute signification et élimine celles
avec des informations moins discriminantes. Pour réduire la dimensionnalité du vecteur
de caractéristiques et alléger l'intra-variabilité de classe, nous utilisons SIWEDA et la
normalisation de covariance intra-classe (WCCN) en utilisant les caractéristiques d’image
binarisées statistiques proposées (StatBIF). De plus, nous utilisons la stratégie de fusion
des scores pour extraire la complémentarité des différentes échelles de pondération de notre
descripteur StatBIF. Nous avons mené des expériences pour évaluer les performances de la
méthode proposée dans un environnement sans contrainte, en utilisant cing ensembles de
données a savoir LFW, YTF, Cornell KinFace, UB KinFace et TSKinFace, dans le contexte
de la correspondance des visages et de la vérification de la parenté dans des conditions
sauvages. Les expériences ont montré que ’approche proposée surpasse 1'état actuel de la
technique. Tres intéressant, notre approche a montré des performances supérieures par
rapport aux méthodes basées sur I’apprentissage métrique profond

Dans le Chapitre 6 (notre quatriéme contribution), nous présentons une nouvelle méthode
d’analyse discriminante quadratique Tensor Cross-view (TXQDA) basée sur la méthode
XQDA pour la vérification de la parenté dans la nature. De nombreux chercheurs ont
utilisé des méthodes d’apprentissage métrique et ont obtenu des performances raisonnable-
ment bonnes dans la vérification de la parenté, aucune de ces méthodes ne considere la
vérification de la parenté comme un probleme de correspondance croisée. Pour résoudre ce
probléme, nous proposons une méthode de vue croisée des tenseurs pour former des données
multilinéaires a I'aide d’histogrammes locaux de descripteurs de caractéristiques locales.
Par conséquent, nous apprenons une transformation tensorielle hiérarchique pour projeter
chaque paire d’images de visage dans le méme espace de caractéristiques implicite, dans
lequel la distance de chaque paire positive est minimisée et celle de chaque paire négative
est maximisée. De plus, TXQDA a été proposé de séparer la structure multifactorielle des
images de visage (c’est-a-dire la parenté, I'dge, le sexe, 'expression, l'illumination et la
pose) des différentes dimensions du tenseur. Ainsi, notre TXQDA obtient de meilleurs
résultats de classification en découvrant un sous-espace tenseur de faible dimension qui
agrandit la marge de différentes classes de relations de parenté. L’évaluation expérimentale

de cinq bases de données complexes, a savoir Cornell KinFace, UB KinFace, TSKinFace,

20



1 Résumé

KinFaceW-II et FIW, montre que le TXQDA proposé surpasse considérablement 1’état
actuel de la technique. De plus, notre méthode TXQDA fonctionne bien sur les classes de
données d’entrainement les plus petites ou les plus limitées et sur les classes de données
d’entrainement les plus grandes ou a grande échelle.

Dans le Chapitre 7, nous concluons cette these en résumant les principaux points de
nos contributions et nous mentionnons quelques perspectives intéressantes a explorer a la

suite de nos travaux.
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