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Abstract

Languages are dynamic systems, continuously evolving over time. These
changes are carried by the way people use words, and mirror the evolution of
various aspects of society such as its technological and cultural environment.
We study lexical semantic change: temporal variations in the use and meaning
of words, also called diachrony.

We explore, compare and evaluate methods to build time-varying embed-
dings from a corpus in order to analyse word evolution. Recent methods for
learning contextualised word embeddings using pre-trained language models
such as BERT give new perspectives on this problem. However, they involve
a completely new way of training, extracting and using word embeddings. In
this thesis, we focus on these tools to tackle the task of semantic change detec-
tion, in particular using the BERT model. We propose several approaches to
extract and aggregate the contextualised representations of words over time,
and quantify their level of semantic change. We focus on the scalability of our
approaches, with a view to applying them to large corpora or large vocabulary
lists, and on their interpretability, through disambiguating the different usages
of a word over time. We evaluate the efficiency of these methods qualitatively
and quantitatively, using several annotated corpora. We also apply them in
a exploratory fashion to a corpus of covid19-related newspaper articles and
provide interpretations of the detected semantic changes.

Finally, we extend the task of semantic change detection beyond the tem-
poral dimension. First, we adapt it to a bilingual setting: we study the joint
evolution of words in two corpora of different languages. Given a word and
its equivalent in another language, we propose an experimental framework to
characterise how these two words drift in relation to each other. We define a set
of bilingual drift scenarios and compare several bilingual diachronic word em-
beddings systems. Second, we prolong our semantic change detection methods
to the synchronic case: detecting semantic variations across different sources
or communities on top of time. We apply it to corpora from the financial do-
main, and compare the semantic shifts with time series of financial indicators.
We show that our methods allow to detect and interpret variations in the use
of a word across several dimensions, and that it can be linked with real-life
events and economic data.
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Résumé

Les langues sont des systèmes dynamiques, en constante évolution au cours
du temps. Leurs changements reflètent l’évolution de divers aspects de la so-
ciété tels que l’environnement technologique et culturel. Nous étudions les
changements lexico-sémantiques : les variations temporelles dans l’usage et
la signification des mots, également appelé diachronie.

Nous explorons et évaluons des méthodes de construction de plongements
lexicaux variant dans le temps afin d’analyser l’évolution des mots. Les mé-
thodes récentes d’apprentissage de plongements contextualisés à l’aide de mo-
dèles de langue pré-entraînés tels que BERT donnent de nouvelles perspectives
à ce problème. Cependant, elles impliquent une toute nouvelle façon de for-
mer, extraire et utiliser les plongements lexicaux. Dans cette thèse, nous nous
concentrons sur ces outils pour aborder la tâche de détection de changements
sémantiques, en particulier en utilisant le modèle BERT. Nous proposons plu-
sieurs approches pour extraire et agréger les représentations contextualisées
des mots dans le temps, et quantifier leur degré de changement sémantique.
Nous nous concentrons sur le passage à l’échelle de nos approches, en vue de les
appliquer à de grands corpus ou à de grands vocabulaire, et sur leur interpré-
tabilité, en désambiguïsant les différents usages d’un mot au cours du temps.
Nous évaluons l’efficacité de ces méthodes de manière qualitative et quanti-
tative, en utilisant plusieurs corpus annotés. Nous les appliquons également
de manière exploratoire à un corpus d’articles de journaux liés au covid19 et
interprétons les changements sémantiques détectés.

Enfin, nous étendons la tâche de détection de changements sémantiques
au-delà de la dimension temporelle. Premièrement, nous l’adaptons à un cadre
bilingue. Étant donné un mot et son équivalent dans une autre langue, nous
proposons un protocole expérimental pour caractériser la façon dont ces deux
mots dérivent l’un par rapport à l’autre. Nous définissons un ensemble de scé-
narios de dérives bilingues des mots et comparons plusieurs systèmes de plon-
gements lexicaux bilingues et diachroniques. Deuxièmement, nous étendons
nos méthodes de détection de changements sémantiques au cas synchronique :
la détection des variations sémantiques entre différentes sources ou commu-
nautés en plus du temps. Nous l’appliquons à des textes du domaine financier
et comparons les évolutions sémantiques détectées avec des séries temporelles
d’indicateurs financiers, montrant que ces variations peuvent être liées à des
événements de la vie réelle et à des données économiques.

v



vi



Remerciements

Je souhaite remercie mes encadrants Alexandre Allauzen et Jean-Baptiste
Janvier, qui se sont bien complétés tout au long de ma thèse. Ainsi que
Asanobu Kitamoto, qui m’a encadré lors de mon semestre à Tokyo. Je remercie
aussi les membres de mon jury de thèse pour leur bienveillance et leurs conseils
avisés.

Côté Société Générale, je remercie Sophie Lavaud, Mamikon Margaryan et
Vivien Brunel, sans qui ce projet n’aurait jamais vu le jour; et mes managers
Jean-Baptiste Janvier, Flavie Fabre-Azema ainsi que toute l’équipe modélisa-
tion.

Merci à toute l’équipe TLP du LISN (ex-LIMSI), en particulier mes co-
bureau Djidji, Shu et ma partenaire pour toute cette aventure, Aina.

Pour la rédaction de cette thèse, merci à Antoine Delplace (SG) et Étienne
Simon (LIP6); ainsi qu’à Matthieu Labeau et Lauriane Aufrant pour tous leurs
conseils et leur soutien.

Merci à mes co-auteurs et collaborateurs qui ont tant contribué à ma
thèse: Aina Gari-Soler, Étienne Simon, Corentin Masson, Elaine Zosa, Lidia
Pivovrova, Matej Martinc, et Vincent Gouteux.

Enfin, merci à mes colocataires, mes amis et ma famille.

vii



viii



Contents

List of Figures xv

List of Tables xix

Introduction 1

1 Diachronic word embeddings: from static to dynamic 7

1.1 Semantic change: introduction . . . . . . . . . . . . . . . . . . . 8

1.1.1 Definition and categorization . . . . . . . . . . . . . . . . 8

1.1.2 Tasks and methods . . . . . . . . . . . . . . . . . . . . . 10

1.2 Corpus linguistics and semantic change . . . . . . . . . . . . . . 11

1.3 Neural word embeddings and diachronic methods . . . . . . . . 14

1.3.1 Focus on Word2Vec embeddings . . . . . . . . . . . . . . 14

1.3.2 Classification of diachronic embeddings methods . . . . . 16

1.4 Independent methods . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Temporal Referencing . . . . . . . . . . . . . . . . . . . 19

1.4.3 Anchor methods . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Joint and incremental methods . . . . . . . . . . . . . . . . . . 21

1.5.1 Incremental fine-tuning . . . . . . . . . . . . . . . . . . . 21

1.5.2 Dynamic Word Embeddings (DWE) . . . . . . . . . . . 22

1.5.3 The Dynamic Bernouilli Embeddings Model (DBE) . . . 23

1.5.4 Other methods . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Detection measures and interpretation . . . . . . . . . . . . . . 26

1.7 Sense-disambiguating methods . . . . . . . . . . . . . . . . . . . 27

ix



CONTENTS

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Contextualised embeddings for semantic change 33

2.1 Introduction to contextualised embeddings . . . . . . . . . . . . 34

2.1.1 Pre-trained language models . . . . . . . . . . . . . . . . 34

2.1.2 Language models for semantic change detection: other
works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Contextualised embeddings for diachrony: aggregation methods 37

2.2.1 Extracting contextualised embeddings . . . . . . . . . . 37

2.2.2 Solution 1: no aggregation . . . . . . . . . . . . . . . . . 38

2.2.3 Solution 2: averaging . . . . . . . . . . . . . . . . . . . . 39

2.2.4 Solution 3: clustering . . . . . . . . . . . . . . . . . . . . 39

2.2.5 Solution 4: optimal transport . . . . . . . . . . . . . . . 42

2.3 Scalable extraction and aggregation . . . . . . . . . . . . . . . . 44

2.3.1 Scalability and interpretability limitations . . . . . . . . 44

2.3.2 Target words selection . . . . . . . . . . . . . . . . . . . 46

2.3.3 Scalable extraction of contextualised embeddings . . . . 48

2.3.4 Quantifying temporal shift . . . . . . . . . . . . . . . . . 49

2.4 Semantic shift detection and interpretation . . . . . . . . . . . . 50

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Evaluation and comparison 55

3.1 Literature: data and evaluation . . . . . . . . . . . . . . . . . . 56

3.1.1 Corpora for semantic change detection . . . . . . . . . . 57

3.1.2 Evaluation methods . . . . . . . . . . . . . . . . . . . . . 58

3.1.3 Generating synthetic semantic drift . . . . . . . . . . . . 62

3.2 Preliminary analysis: qualitative comparison of embeddings . . . 63

3.2.1 Models and experimental framework . . . . . . . . . . . 63

3.2.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Experiments on labeled corpora . . . . . . . . . . . . . . . . . . 71

3.3.1 Annotated data description . . . . . . . . . . . . . . . . 72

3.3.2 Experimental details . . . . . . . . . . . . . . . . . . . . 74

x



CONTENTS

3.3.3 Impact of fine-tuning . . . . . . . . . . . . . . . . . . . . 75

3.4 Detailed analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Standard VS scalable extraction . . . . . . . . . . . . . . 77

3.4.2 Optimal transport . . . . . . . . . . . . . . . . . . . . . 79

3.4.3 Clustering, filtering and merging . . . . . . . . . . . . . . 81

3.4.4 Global comparison . . . . . . . . . . . . . . . . . . . . . 82

3.4.5 Qualitative error analysis . . . . . . . . . . . . . . . . . . 84

3.5 Binary semantic change task . . . . . . . . . . . . . . . . . . . . 87

3.5.1 Thresholding using stopwords . . . . . . . . . . . . . . . 88

3.5.2 Identification of period-specific clusters . . . . . . . . . . 89

3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Use Case: Aylien covid-19 corpus . . . . . . . . . . . . . . . . . 91

3.6.1 Identification of the top drifting words . . . . . . . . . . 92

3.6.2 Interpretation of the usage change . . . . . . . . . . . . . 92

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Multilingual analysis 97

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Diachronic words embeddings . . . . . . . . . . . . . . . . . . . 100

4.2.1 Monolingual training . . . . . . . . . . . . . . . . . . . . 100

4.2.2 Bilingual alignment . . . . . . . . . . . . . . . . . . . . . 100

4.3 Contextualised embeddings . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Multilingual models . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Extracting word representations . . . . . . . . . . . . . . 103

4.4 Drift measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Synthetic drift generation . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Semantic change scenarios . . . . . . . . . . . . . . . . . 105

4.5.2 Building the synthetic corpus . . . . . . . . . . . . . . . 106

4.5.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . 108

4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . 108

xi



CONTENTS

4.6.2 Results on synthetic data . . . . . . . . . . . . . . . . . 109

4.6.3 Real data description and setup . . . . . . . . . . . . . . 110

4.6.4 Detection of bilingual drift . . . . . . . . . . . . . . . . . 111

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Word usage variation in the financial domain 115

5.1 NLP in the financial domain . . . . . . . . . . . . . . . . . . . . 116

5.1.1 Financial textual data . . . . . . . . . . . . . . . . . . . 116

5.1.2 Financial NLP tasks . . . . . . . . . . . . . . . . . . . . 118

5.1.3 Semantic change on financial data . . . . . . . . . . . . . 119

5.2 Detecting variation in word usage in financial data . . . . . . . . 120

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.3 Experiment on central banks statements . . . . . . . . . 123

5.2.4 Experiments on annual reports . . . . . . . . . . . . . . 126

5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Linking semantic change with numerical time series . . . . . . . 133

5.3.1 Experimental framework . . . . . . . . . . . . . . . . . . 134

5.3.2 Correlations analysis . . . . . . . . . . . . . . . . . . . . 135

5.3.3 Breakpoint detection . . . . . . . . . . . . . . . . . . . . 136

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Conclusion 139

List of publications 147

Appendices 149

A Résumé en français 151

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.2.1 Revue de littérature sur la détection des changements
sémantiques . . . . . . . . . . . . . . . . . . . . . . . . . 153

xii



CONTENTS

A.2.2 Méthodes d’extraction et d’agrégation utilisant des plonge-
ments contextualisés . . . . . . . . . . . . . . . . . . . . 154

A.2.3 Extension à plusieurs langues et dimensions . . . . . . . 156

A.2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B Additional experimental results 159

C Dynamic embeddings and data scarcity 163

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.2 Diachronic models . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.2.1 Diachronic word embeddings and data scarcity . . . . . . 165

C.2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 166

C.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . 167

C.3.2 Impact of initialisation on sparse data . . . . . . . . . . 167

C.3.3 Visualising word drifts . . . . . . . . . . . . . . . . . . . 169

C.3.4 Regularisation attempt . . . . . . . . . . . . . . . . . . . 170

C.4 Summary & discussion . . . . . . . . . . . . . . . . . . . . . . . 171

D Fraud detection: detecting omissions in financial reports 173

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

D.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D.2.1 Risk sentences extraction . . . . . . . . . . . . . . . . . . 176

D.2.2 Risk omission detection . . . . . . . . . . . . . . . . . . . 178

D.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

D.3.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . 181

D.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

D.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

References 187

xiii



CONTENTS

xiv



List of Figures

1.1 Comparison of model architecture for Skip-Gram and CBOW
(Figure derived from Rong (2014)). . . . . . . . . . . . . . . . . 15

1.2 Comparison of the two types of training methods on a corpus
ranging between the 1960s and the 1990s, divided into decades. 16

1.3 Two-dimensional visualization of semantic change in English us-
ing SGNS vectors (Hamilton, Leskovec, & Jurafsky, 2016). . . . 18

1.4 Scheme of DBE system for text data X(1), . . . X(T ) in T time
slices (Rudolph & Blei, 2018). . . . . . . . . . . . . . . . . . . . 23

1.5 One-dimensional projection of the embeddings of the word iraq
between 1858 and 2009 using pca, with nearest embeddings for
selected points (Rudolph & Blei, 2018). . . . . . . . . . . . . . . 23

1.6 Trajectories of brand names and people through time: apple,
amazon and obama (Yao, Sun, Ding, Rao, & Xiong, 2018). . . . 28

1.7 Distributions of topics for the words transport and bank over 20-
year intervals between 1700 and 2010, along with top 10 words
for each sense (Frermann & Lapata, 2016). . . . . . . . . . . . . 29

1.8 Timeline of the literature of different types of models for diachrony. 31

2.1 T-SNE plots of contextualized embeddings of bank with their
WordNet sense (Wiedemann, Remus, Chawla, & Biemann, 2019). 35

2.2 Overview of BERT architecture (on the right) and extraction
method for contextualised embeddings (on the left). . . . . . . . 38

2.3 Clustering methods for the word user in two periods, 1960 and
1990, using affinity propagation. . . . . . . . . . . . . . . . . . . 41

3.1 Histogram of drifts between the embeddings at t0 = 1987 and t
for various values of t with the DBE model. . . . . . . . . . . . 66

3.2 Histogram of word drift for each model on the NYT corpus. The
drifts are computed from t0 = 1987 to each successive time step. 68

xv



LIST OF FIGURES

3.3 Impact of BERT fine-tuning on the performance of two dis-
tinct aggregation methods, affinity propagation and k-means
with k = 5, for the GEMS dataset on the COHA corpus. . . . . 76

3.4 Number of clusters found by affinity propagation on standard
embeddings and frequency of words in the 1960s and 1990s in
COHA for all GEMS target words. . . . . . . . . . . . . . . . . 78

3.5 2D PCA visualization for the biggest clusters obtained for word
neutron with affinity propagation on standard embeddings from
the COHA corpus. . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Distribution of semantic change scores in the English corpus:
target words VS stopwords. . . . . . . . . . . . . . . . . . . . . 90

3.7 Cluster distributions per month for word diamond. . . . . . . . 93

3.8 Cluster distributions per month for word ski. . . . . . . . . . . . 94

5.1 Dominance series for ECB (blue line) and Fed (green) (Buechel,
Junker, Schlaak, Michelsen, & Hahn, 2019). Vertical dotted
lines indicate beginning of ECB presidency, shaded areas indi-
cate Euro area recession periods. . . . . . . . . . . . . . . . . . 120

5.2 Extract of ECB statement from June 6, 2019. . . . . . . . . . . 123

5.3 Distribution of clusters per year for the word “households” in
the Central Bank Statements corpus. . . . . . . . . . . . . . . . 126

5.4 Extract of Amazon 10-K filing Item 7 (“Management’s Discus-
sion and Analysis of Financial Condition and Results of Oper-
ations”) from January 30, 2020. . . . . . . . . . . . . . . . . . . 127

5.5 Distribution of clusters for word ecology, by sector (bottom) and
year (top). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Distribution of clusters per Office for the word client (bottom)
and per year for the word crisis (top) in the SEC-Edgar corpus. 132

5.7 Breakpoints for HSBC. . . . . . . . . . . . . . . . . . . . . . . . 138

5.8 Breakpoints for Blackrock. . . . . . . . . . . . . . . . . . . . . . 138

C.1 Log-likelihoods for the DSG model on three subsets of the cor-
pus, comparing the baseline (random initialisation) with the two
initialisation methods. . . . . . . . . . . . . . . . . . . . . . . . 168

C.2 Histogram of word drift for each model on two subsets of the
NYT corpus. The drifts are computed from t0 = 1987 to each
successive time step. . . . . . . . . . . . . . . . . . . . . . . . . 170

C.3 Histogram of word drift for the DBE and DSG regularised mod-
els on the 1 % subset. . . . . . . . . . . . . . . . . . . . . . . . . 172

xvi



LIST OF FIGURES

D.1 Risk Sentences Extraction architecture overview. . . . . . . . . . 176

D.2 Example of risk evocation. . . . . . . . . . . . . . . . . . . . . . 177

xvii



LIST OF FIGURES

xviii



List of Tables

3.1 Spearman Rank Correlation between system output rankings.
Grey values indicate non-significant correlation (p-value > 0.05). 69

3.2 Average Pearson correlation between the drift time series of all
words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 List of words with highest full drift (from first to last time slice)
for each DBE model on the NYT corpus. . . . . . . . . . . . . . 71

3.4 List of words with highest full drift (from first to last time slice)
for scalable BERT embeddings with different aggregation meth-
ods and semantic change measures, on the NYT corpus. . . . . . 72

3.5 Overview of the 6 manually annotated datasets. . . . . . . . . . 74

3.6 Spearman Rank Correlation with ground truth rankings, using
standard embeddings with affinity propagation clustering and
JSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Spearman Rank Correlation with ground truth rankings, using
standard and scalable embeddings. . . . . . . . . . . . . . . . . 77

3.8 Spearman Rank Correlation with ground truth rankings, using
OT methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Spearman Rank Correlation with ground truth rankings, using
scalable embeddings and clusters merging. . . . . . . . . . . . . 81

3.10 Spearman Rank Correlation with ground truth rankings, using
scalable embeddings, compared with methods from the literature. 82

3.11 NE Filtering results: Spearman correlation with the ground truth. 87

3.12 Number of stopwords used and average semantic change score
(JSD) for target words and stopwords. . . . . . . . . . . . . . . 89

3.13 Accuracy of binary classification on SemEval corpora. . . . . . . 91

3.14 Aylien corpus statistics. . . . . . . . . . . . . . . . . . . . . . . . 91

3.15 Top 10 most drifting words in the Aylien corpus according to
monthly-averaged JSD of k-means (k = 5) clusters distributions. 92

xix



LIST OF TABLES

3.16 Left: cluster keywords for word diamond. Right: JSD between
consecutive time slices. . . . . . . . . . . . . . . . . . . . . . . . 93

3.17 Left: cluster keywords for word ski. Right: JSD between con-
secutive time slices. . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Example of aligned sentences in English and French in the Eu-
roSense corpus, with annotated anchor and corresponding sense
in the BabelNet framework. . . . . . . . . . . . . . . . . . . . . 105

4.2 Accuracy measure of each system compared with gold standard
in each semantic change scenarios. . . . . . . . . . . . . . . . . . 109

4.3 Average accuracy for low and high-polysemy words. . . . . . . . 110

4.4 Proportion and example words for the different categories of
bilingual drift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Top 10 words with highest average pairwise variation measure
for the time dimension and the source dimension on the Central
Bank Statements corpus. . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Silhouette score and average JSD on the Central Bank State-
ments corpus for source and time dimension. . . . . . . . . . . . 125

5.3 Label and proportion of business line with SIC classification in
the SEC-Edgar corpus . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Top 5 words with largest JSD for the time and sector dimen-
sions, with affinity propagation clustering, in the CoFiF corpus. 129

5.5 List of clusters and interpretation for word ecology in the French
CoFiF corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 List of clusters and keyword examples for the word client in the
SEC-Edgar Corpus. . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 List of clusters and keyword examples for the word crisis in the
SEC-Edgar Corpus. . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8 Part of entities with significant Pearson correlation between em-
bedding drift and Stock or Count drift, and average of their
correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.9 Precision when detecting breakpoints for BERT and CBOW. . . 138

B.1 Spearman Rank Correlation between system output rankings
and ground truth rankings using standard embeddings. . . . . . 160

B.2 Spearman Rank Correlation between system output rankings
and ground truth rankings using scalable embeddings. . . . . . . 161

xx



LIST OF TABLES

B.3 Spearman Rank Correlation between system output rankings
and ground truth rankings on the GEMS dataset. . . . . . . . . 162

C.1 Log-likelihood on the 5% subset of the NYT corpus for each
model, with the three initialisation schemes. . . . . . . . . . . . 169

D.1 Performance measures for each active learning iteration. . . . . 183

D.2 Final results of both models after the final Active Learning it-
eration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

D.3 Intrinsic measures of topic modeling and sentence clustering
quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

D.4 Accuracy measures for the risk omission detection task on the
manually altered documents. . . . . . . . . . . . . . . . . . . . . 186

D.5 Translation of keywords examples using LDA with 25 topics,
and manually associated risk factor. . . . . . . . . . . . . . . . . 186

xxi



LIST OF TABLES

xxii



Introduction

This thesis explores and compare methods to build time-varying word rep-
resentations from a corpus to analyse their evolution. This is a CIFRE PhD,
built as a partnership between the LIMSI-CNRS, University Paris-Saclay, and
Société Générale. It is within this context that I chose this research topic,
anchoring it into concrete challenges and issues for the company.

Context

As stated by Ferdinand de Saussure : “Time changes all things: there is no
reason why language should escape this universal law.” Languages are dynamic
systems, continuously evolving over time. These changes are carried by the
way people use words. Most of the time, language users are not aware of this
evolution, or do not attempt to control it. These changes stem from various
causes; they often mirror evolution of the various aspects of society (Aitchison,
2001) such as the technological and cultural environment. Language contact,
through migration of communities or movements of individuals, is also an
important factor.

Among all the different aspects of language evolution, we focus on lexical
semantic change. Bloomfield (1933) defines it as “innovations which change the
lexical meaning rather than the grammatical function of a form.” An example
is the English word “villain”, or vilain in French. In the 13th century, in
both languages, a villain was a village peasant. With the disappearance of the
feudal system, the word slowly drifted towards it current meaning, a scoundrel
or criminal.

In linguistics, the temporal variations in the use and meaning of a word
is called diachrony. Detecting and understanding these changes is useful for
several sub-fields of linguistic research such as socio-linguistics and historical
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linguistics. Words can evolve both in a long-term and in a short-term fashion;
the causes and phenomena involved in the evolution differ depending on the
granularity. “Villain” was an example of long-term meaning change, spanning
several centuries. Short-term changes are most often the consequence of an
event that had a resonance in the daily life of the language speakers. Let us
take the example of the word “Ukrop” (укроп), meaning “dill” in Russian.
Originally a cooking-related word, it has gone through many changes during
the Russo-Ukrainian conflict that started in 2014 (Stewart, Arendt, Bell, &
Volkova, 2017). At the beginning, Russian people used it as an ethnic slur—a
pejorative term—to talk about Ukrainian soldiers. Then, Ukrainian people
started to use it to designate their own patriots, as a fusion of “Ukrainian”
and “patriot.” Thus, in their mouth, it lost its negative connotation. Fi-
nally, the political party “Ukrainian association of patriots,” abbreviated as
“Ukrop,” was created June 18th, 2015. Thus, in a few months, the usage
of this word went through major changes; moreover, its associated sentiment
differs depending on the nationality of the speaker.

This example showcases short-term lexical semantic change, triggered by
the war between two countries and fueled by the contact between the speakers
in these two countries. We observe synchronic variation on top of semantic
change over time: word usage differs between two communities simultaneously.
A more common example of word usage variation between communities is the
word “wicked”: whether it is spoken by an elderly person or a teenager, it will
be naturally interpreted as “evil” or “awesome.”

Motivation

An immediate motivation of computational methods for language change is
to support the work of lexicographers, by analysing large amounts of text with
little human power. Various other fields benefit from research in this domain;
As stated before, a change in the use of a word is linked with what happens in
society. Thus, detecting and analysing word usage evolution can help with the
understanding of the associated societal situation. The aforementioned word
ukrop is a good example, where analysis of word usage change leads to a better
understanding of the evolution of the conflict, or helps to track unexpected
changes during a crisis. More generally, the detection of semantic change can
be used directly for linguistic research or social analysis, by interpreting the
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Introduction

reason of these changes and linking it to real-world events, and by analysing
trends, topics and opinions evolution (Gillani & Levy, 2019).

Semantic change can also be used as a support tool for many tasks in
Natural Language Processing (NLP). A growing number of historical textual
data is digitised and made publicly available nowadays. It can be analysed in
parallel with contemporary documents, for tasks ranging from text classifica-
tion to information retrieval and named entity recognition (Jin, Wi, Kang, &
Kim, 2020). Such corpora would be studied with more precision by adding a
temporal component to its word representations. In the case of the evolution
of the word ukrop, without suitable tools and methods to detect the change
in its usage, we would not be able to conduct accurate analysis of the text.
For example, sentiment analysis performed on text of this period would lead
to spurious results if the variations of connotation of this word were not taken
into account.

Among other applications, this thesis focus on the financial domain. Finan-
cial application of semantic analysis includes all aspects of risk management.
Whether it is reputation risk, political risk or systemic risk, the variations of
word usage can provide valuable information for analysts.

In order to detect and analyse lexical semantic change, the first step is to
capture and represent the meaning of a word. Early work use relative word fre-
quencies and word co-occurrences (Sagi, Kaufmann, & Clark, 2009). Following
Bengio, Ducharme, Vincent, and Jauvin (2003) and later Mikolov, Sutskever,
Chen, Corrado, and Dean (2013), a line of work proposes to represent a word
by a real valued vector: its embedding. This kind of representation takes into
account the context in which the word occurs to infer its associated vector.
The different word usages observed across the whole corpus are averaged in
a unique vector. We also call it static embeddings. To study the evolution
of word meaning, we need time-varying word embeddings. They rely on the
following extension of the distributional hypothesis of Harris (1954): a change
in the context of a word mirrors a change in its meaning or usage. This hy-
pothesis leads to the emergence of diachronic word embeddings: word vectors
varying over time, following changes in the global context of the word.

More recently, pre-trained language models such as BERT (Devlin, Chang,
Lee, & Toutanova, 2019) produce contextualised embeddings: each occurrence
of a word is represented by a unique vector. This paves the way for new
semantic change detection methods that we investigate in this thesis.
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Contributions

In this thesis, we explore, compare and evaluate semantic change detection
methods in different settings. Literature on both word representation and se-
mantic change evolved very quickly during the preparation of this PhD. The
field of semantic change have seen a sudden acceleration since 2018, with the
emergence of dynamic embeddings models, the publication of several litera-
ture reviews, the holding of the first ACL Language Change workshop, and
the organisation of a SemEval shared task. In parallel, all domains of NLP
were shaken by the emergence of pre-trained language models. In the course
of this thesis, we went along with this evolution: it results into large dispari-
ties between our early and late work. Overall, we focus on embedding-based
methods, in particular contextualised embeddings extracted using pre-trained
language models.

First, we propose an overview of the literature of diachronic word repre-
sentations using non-contextual embeddings in Chapter 1. We compared and
extended some of these methods in Learning dynamic word embeddings
with drift regularisation, published at TALN 2019 (Montariol & Allauzen,
2019b).

In Chapter 2, we focus on contextualised embeddings extracted from pre-
trained language models. We propose several methods to aggregate these rep-
resentations at each time slice and to measure semantic change. Some of
these methods were published in the paper Capturing Evolution in Word
Usage: Just Add More Clusters? at the Temporal Web Workshop 2020
(Martinc, Montariol, Zosa, & Pivovarova, 2020a); and the paper Scalable and
Interpretable Semantic Change Detection at NAACL 2021 (Montariol,
Martinc, & Pivovarova, 2021). They were written in collaboration with Matej
Martinc, from the Jozen Stefan Institute (Ljubjana, Slovenia) and Elaine Zosa
and Lidia Pivovarova, from the University of Helsinki (Finland).

Chapter 3 provides quantitative and qualitative evaluation of the methods
introduced in Chapter 2. On top of the ones mentioned before, some results
from this chapter come from the paper Context-sensitive Embeddings not
Always Better Than Static for Semantic Change Detection (Martinc,
Montariol, Zosa, & Pivovarova, 2020b) at SemEval 2020 Task 1: Unsuper-
vised Lexical Semantic Change Detection. We also apply our method in an
exploratory fashion to a corpus of covid-related newspaper articles and inter-
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pret the detected semantic changes.

In Chapter 4, we extend the task of semantic change detection to a bilingual
setting: we define and motivate the task of bilingual semantic change detection,
extend the methods from Chapter 2 to tackle it, and propose an evaluation
method relying on the generation of a corpus of synthetic bilingual semantic
change. Part of this work was presented at the 2020 DGfS Workshop.

Finally, Chapter 5 focus on financial applications. We prolong our semantic
change detection methods to the synchronic case: detecting semantic variation
across different sources or communities on top of time. We apply it to cor-
pora from the financial domain, and compare the results with time series of
financial indicators. Parts of this work were published in Studying seman-
tic variations through several dimensions (Montariol and Allauzen, 2020,
TALN 2020) and Variations in Word Usage for the Financial Domain
(Montariol, Allauzen, and Kitamoto, 2020, Workshop on Financial Technology
and Natural Language Processing, FinNLP 2020), in collaboration with Pr.
Asanobu Kitamoto from the National Institute of Informatics (Tokyo, Japan).

In the appendices, we describe two of our papers that are related to this
work but could not quite fit inside the main body of the thesis.

Appendix C describes the work published under the title Empirical Study
of Diachronic Word Embeddings for Scarce Data at RANLP 2019 (Mon-
tariol & Allauzen, 2019a). It focuses on the problem of data scarcity for di-
achronic word embeddings, before the rise of contextualised embeddings. We
compare three models to learn diachronic word embeddings on scarce data,
study the performance of different initialisation schemes and propose a regu-
larisation of these models to better adapt to data scarcity.

Appendix D extends methods from Chapter 2 to fraud detection using
contextualised embeddings. We propose a new task of omissions detection in
financial reports, along with baselines and evaluation metrics. This work was
published at the Workshop on Financial Technology and Natural Language
Processing FinNLP 2020 under the title Detecting Omissions of Risk Fac-
tors in Company Annual Reports (Masson & Montariol, 2020). It was
done in collaboration with Corentin Masson from LIMSI.
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Chapter 1

Diachronic word embeddings:
from static to dynamic
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The evolution of word meaning across time has been studied by linguists
for a long time. This field evolved quickly with the rise of distributional se-
mantics, starting with corpus linguistic methods and mushrooming towards a
very diversified set of methods, from neural word embeddings to topic models.
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1.1 Semantic change: introduction

The first step of any semantic change detection method is to represent a word
at different periods in a vector space. In this chapter, we showcase a selection
of methods used in the literature to extract time-varying word representations
from textual data. These methods can have different focus, from identifying
the type of semantic change of a word to quantifying the speed of evolution of
its usage.

In Section 1.1, we define semantic change and introduce the different seman-
tic change phenomena tackled in the literature. Then, we present two types
of methods that associate a unique representation to a word in a time slice:
frequency-based representation methods (Section 1.2), and methods based on
neural word embeddings. Before presenting the latter in sections 1.4 and 1.5,
we give a short summary of the classical word embeddings methods (Section
1.3.1). In Section 1.6, we expose methods to detect semantic change and
interpret it using these diachronic embeddings. Finally, in contrast to the
other methods presented in this chapter, Section 1.7 summarises methods that
disambiguate the various senses of a word across time, before the rise of pre-
trained language model for contextualised embeddings extraction.

1.1 Semantic change: introduction

The evolution of word meaning across time is an old research topic in lin-
guistics (Bréal, 1899; Stern, 1931; Bloomfield, 1933). With the expansion of
this research field towards computational linguistics, its denomination is be-
coming more and more diverse. It can be called many different ways, depending
of the community tackling it or the period of the study: semantic change, lan-
guage change, diachronic shift, semantic drift, diachronic conceptual change,
and nearly all possible combinations of these words. In this thesis, we mainly
use the term “semantic change.”

1.1.1 Definition and categorization

As explained in the introduction, semantic change is the adjustment of word
meaning to the evolution of all aspects of the speaker’s environment (societal,
cultural, technological. . . ) (Blank & Koch, 1999). Lexical semantic change as
the evolution of word meaning can belong to various non-mutually-exclusive
categories. In practice, in the literature of computational semantic change
detection, the types of change that are investigated can be broadly defined as
follow (Tahmasebi, Borin, & Jatowt, 2018):

• Novel word: a new word with a new sense. For example, the word selfie
is the slang term for “self-portrait.” Its first known use is in an Australian
internet forum in 2002; then, it promptly spread to the whole word, and
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was even elected as the “Word of the Year” in 2013 by the Oxford English
Dictionary.

• Novel word sense: a novel word sense (related or not to an existing sense)
attached to an existing word. For example, the word apple, originally only
referring to the fruit, started a few decades ago to be associated with the
computer brand “Apple.” This evolution is illustrated in Figure 1.6.

• Broadening and Narrowing: a word sense becoming broader or narrower
in meaning. For example, the Old English word hund meant “dog,” while in
Modern English hound refers to a specific breed of dogs used in fox-hunting.

• Join and Split: two word senses that exist individually and then join, or
a word sense that splits into two individual senses. For example, the word
mantra could be associated with both an action—chanting and prayer—and
its effect—salutations, benedictions—at the beginning of the 20th century.
These two usages have merged into one today, where the word is used as
“blessings”or “spell.”

• Pejoration andAmelioration: the connotation of the word becomes more
negative or more positive. For example, the English word dude used to mean
“fastidious man” when it appeared at the end of the 19th century; today,
it only means “man” with a neutral connotation.

• Death: a word sense that is no longer used.
• Change: any significant change in sense that subsumes all previous cate-

gories.

Taking back the example of the Russian word ukrop, meaning “dill”: the
new sense of “Ukrainian soldier” is added with pejorative connotation, before
going through amelioration and broadening towards “Ukrainian patriot”
in the mouth of Ukrainian people, and finally gaining the new sense of the
political party in 2015.

However, the idea behind the sense of a word is itself a controversial subject.
Senses are defined from a lexicographic point of view, as listed in a dictionary.
Two situations can be distinguished:

• Polysemy refers to a word that can be used to express several different
meanings, no matter how big the difference between the meanings. For
example, in the two following sentences, the word newspaper refers both to
the object and the company:
(a) The newspaper got wet in the rain.
(b) The newspaper fired some of its editing staff.

• Homonymy refers to several words having the same spelling but unrelated
meanings. For example, in the sentences below, bank is spelled the same
but has completely unrelated senses:
(a) I sat on the river bank.
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(b) I opened a bank account.

In the two examples, the inclusion of the word in the polysemy or homonymy
category is obvious. However, often, the difference is not clear, as the actual
distinction between the two categories is gradual. Similarly, the difference be-
tween polysemy—several senses—and identity—a unique sense—is not always
obvious. For example, a sense of the word phone is “a system that uses wires
and radio signals to send people’s voices over long distances.” However, the
first phones from the 19th century have little in common with today’s devices,
in operation, appearance and in use. When should we consider the sense to be
different?

Kilgarriff (1997) argues that the concept of word sense cannot be “a work-
able basic unit of meaning,” as the discreteness behind this concept is greatly
limiting. The emergence of a new sense is progressive. The usage of a word
becomes more diversified over time, until it is decided that we face two dis-
tinct senses. For example, before the covid19 pandemic, sheltering referred to
seeking safety during a circumscribed event, usually bad weather. Nowadays,
it is used to refer to a prolonged period of social isolation: the meaning evolved
with the crisis situation.

Considering this ambiguity behind word senses, we study semantic change
as any variation of word usage revealed by a change in its context; even if it
does not involve a change in sense from the lexicographic point of view.

1.1.2 Tasks and methods

In this work, we consider the problem of semantic change detection on the
following basis: we have a corpus of documents, each associated with a date.
We divide it into several time periods, according to the chosen granularity. A
time slice can be of any order of magnitude, from days to centuries, depending
on the corpus and the phenomenon under study. This leads us to a set of
pairs (text, time period). For a given target word, we extract a signal from
all the contexts in which the word is used in each time period. This signal is
a representation of the semantic information of the word at each period. We
study semantic change as the evolution of this representation across time. All
models presented in the following chapters aim at extracting this signal.

Many tasks are involved in this problem. The main computational linguis-
tics tasks derived from this phenomenon are:

• Quantifying the degree of semantic change of each word in a corpus (ranking
task)

• Detecting whether words undergo semantic change or not in a corpus (bi-
nary task)

• Detecting when semantic change happens.
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• Interpreting the change undergone by a word.

Other tasks can involve studying semantic change in relationship with other
factors such as the frequency of words and their level of polysemy (Hamilton,
Leskovec, & Jurafsky, 2016). It can also deal with characterizing other aspects
of semantic change: change in the connotation of a word (Jatowt & Duh,
2014), or change restricted to a specific domain or community. For example,
Kutuzov, Velldal, and Øvrelid (2017) use diachronic embeddings to study the
evolution of semantic relations between pairs of words and apply it to predict-
ing insurgent armed groups based on geographical locations. In the psychology
domain, Vylomova, Murphy, and Haslam (2019) analyse semantic changes of
harm-related concepts such as “harassment” or “addiction” and highlight a
phenomenon of broadening of these concepts through time.

We give an overview of methods to build time-varying word representa-
tions. The systems presented here, as well as most computational linguistics
methods, rely on the distributional hypothesis (Harris, 1954). The heart of
this hypothesis can be summarised this way: semantically similar words tend
to appear in similar linguistic contexts. This has immediate application for
extracting semantic properties of a word using corpus statistics.

Historically, the first approaches to diachronic modeling were based on
relative word frequencies and distributional similarities (Hilpert, 2006). The
use of systems based on word embeddings is more recent and has undergone a
surge of interest these last three years with the publication of several articles
dedicated to a literature review of the field (Kutuzov, Øvrelid, Szymanski, &
Velldal, 2018; Tahmasebi et al., 2018; Tang, 2018).

In sections 1.2 to 1.5, we describe the methods that do not take the poly-
semy of words into account: they collapse all possible usages of a word during
a period into a single representation. All these methods divide a corpus into
time slices and extract word representations for each time slice. Section 1.7
describe methods that disambiguate the senses of the words in each time slice
to track their evolution.

1.2 Corpus linguistics and semantic change

The study of lexical semantic change is a traditional topic in linguistics,
involving a lot of manual work: analyses were usually done at a very small
scale. With the growing amount of digitised texts spanning a large historical
period, the fields of computational linguistics and computer sciences started
taking interests in diachrony during the last decade. Rather than actually
studying lexical semantic change, most papers in these fields propose methods
and models to detect it in an automatic and reliable way.

In this section, we compile a few semantic change detection methods relying
on word frequencies and word co-occurrences.

11



1.2 Corpus linguistics and semantic change

Word frequency. Originally, methods to study diachrony on temporal cor-
pora made use of the distributional statistics of the words over time. They start
with computing word frequencies for each time period. For example, Michel
et al. (2011) compute word frequencies on the Google Books corpus and anal-
yse their evolution as the reflection of the linguistic and cultural phenomena
that occurred between the 19th and the 21st centuries. This allows to observe
the evolution of grammar, the appearance and disappearance of trends, and
even to detect censorship. It can also be applied to semantic change detection;
indeed, it can be expected that if a word becomes more popular (thus having
its frequency increased), it might have either changed its meaning or gained a
new one. As a measure of semantic change, one can for example use the ratio
between frequency of word occurrence at two successive time slices (Gulordava
& Baroni, 2011).

Word co-occurrences. Word collocations are a valuable method to measure
and describe linguistic phenomena such as semantic relationship (Church &
Hanks, 1989; Daille, 1994). Thus, temporal analysis of word collocations can
be used as a tool to study semantic change.

Hilpert (2006) study the relationship between two words across several time
periods. To model this relationship, they compute the statistical dependency
between pairs of words at different time slices in a corpus, and compare them
in order to measure semantic change. More precisely, a pair of words is said
to be repealing or attracting over time, depending on the value of the bino-
mial p-value of the pair—to compute their expected co-occurrence frequency—
compared to their actual number of co-occurrences. Semantic change through
statistical dependency can be observed for example in the word apple: its re-
lationship with the word phone is very low is the 1980s and rises quickly in
the 2000s.

Sagi et al. (2009) represent words by applying Singular Value Decompo-
sition on a reduced version of the co-occurrences matrix extracted from a
temporal corpus, leading to 100-dimensional vector representations for each
word. From this, they create context vectors of each occurrence of a given tar-
get word by taking word representations of all surrounding words in a window
of size 15. The semantic density of the target word at a given time slice is
computed by taking the average pairwise cosine similarity of the set of context
vectors of this time slice. This measure allows the authors to identify changes
such as narrowing and broadening of senses over time, respectively indicated
by an increasing semantic density or a decreasing one. For example, they ap-
ply their method to a corpus of texts spanning the periods of Middle English
(1150–1500A.D.) and Early Modern English (1500–1710A.D.). They observe
the broadening of the set of senses of the word do during these periods, as
part of the process of grammaticalization1. Indeed, in Old English, do was

1When a content word becomes a function word. Content words usually have a smaller
diversity of contexts compared to function words.
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used as a verb with a causative and habitual sense (as in “Do you harm?”),
while in more modern English it took on a functional role as in “Do you want
tea?”). As a result, the authors observe a substantial diversification in con-
text between the two periods under study. However, this methods does not
discriminate between senses; it only allows to quantify the degree of semantic
change.

Similarly, the distributional semantics model of Gulordava and Baroni
(2011) uses co-occurrences matrices to compute Local Mutual Information
(LMI) scores. They quantify the similarity between two words by how fre-
quently they appear within the same context in a corpus, with the context
being defined as a window of n words around the target word. They choose a
window of 2 words, meaning that only 2-grams are considered to build the co-
occurrence matrix. Given two words w1 and w2, let us denote C(w1) the num-
ber of occurrences of the word w1 and C(w1, w2) the number of co-occurrences
of w1 and w2 in the same window. From this, the LMI between two words
that co-occur is computed as follow (N is the total number of 2-grams in the
corpus):

LMI(w1, w2) = C(w1, w2) log2
C(w1, w2)×N
C(w1)C(w2) (1.1)

Note that the LMI is derived from the more broadly used Pointwise Mutual
Information (PMI):

LMI(w1, w2) = PMI(w1, w2)C(w1, w2)

Defining the vector representation vi of the context of a word wi as the set of
LMI between wi and all the words in the vocabulary, the similarity between
two words w1 and w2 can be defined as the cosine similarity between their
context vectors: sim(w1, w2) = cos(v1,v2). By building a new co-occurrence
matrix at each time period, the authors can compute the similarity between
a word at one time period and the same word at another period. They apply
this methods to two decades of the large Google Ngrams Corpus (see Section
3.1.1 for more details), comparing word contexts between the 1960s and the
1990s. They identify two types of phenomena. First, semantic change in its
linguistic definition—one of the categories listed in Section 1.1, such as emer-
gence of a new sense—can be seen through examples such as disk that gained
a technological meaning. Second, they detect change in the main context in
which the word is used, without the word going through an actual semantic
change. For example, they capture the evolution of the usage of the word
parent, often appearing in collocation with the word single in the 1990s, which
was not the case in the 1960s.
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1.3 Neural word embeddings and diachronic methods

1.3 Neural word embeddings and diachronic
methods

Following Bengio et al. (2003), a line of work proposes to represent a word
and its usage by a learned real valued vector: its word embedding. This kind
of representation takes into account the word in its observed contexts to infer a
vector representation. It is the direct evolution of the distributional similarity
methods used in the previous section. Several methods to train word embed-
dings appeared successively. They all rely on the hypothesis that words with
similar meanings appear in similar contexts (Harris, 1954). First, Mikolov,
Chen, Corrado, and Dean (2013) proposed the Word2Vec framework with two
algorithms, Continuous Bag of Words (CBOW) and Skip-Gram. Levy and
Goldberg (2014) demonstrate that Word2Vec’s Skip-Gram implicitly factor-
izes a word-context PMI matrix. One year later, Pennington, Socher, and
Manning (2014) propose Glove, a system that relies on the factorisation of
word-context co-occurrence matrix to build embeddings. Instead of taking raw
co-occurrence probabilities to encode the meaning of words, they use the ratio
of the co-occurrence probabilities of three words. Then, Bojanowski, Grave,
Joulin, and Mikolov (2017) release FastText, an algorithm that overcomes the
issue of out-of-vocabulary words by taking subwords as smallest component to
build embeddings instead of full words.

To give a general idea of the principle of word embeddings and build on
it in the following sections, we focus on the most famous one, the Word2Vec
system described by Mikolov, Chen, et al. (2013). Then, we introduce the
possible strategies for a diachronic extension of neural word embeddings.

1.3.1 Focus on Word2Vec embeddings

The Word2Vec framework consists of two models, compared in Figure 1.1:
Continuous Bag of Words (CBOW) and Skip-Gram. Both are two-layer neural
networks aiming at learning linguistic contexts of words and reconstructing it
into a vector space. CBOW predicts which word is most likely to appear given
its context, while Skip-Gram uses the network to predict the context words
around a given target word. Thus, CBOW treats the full context of a word
as one observation; on the contrary, Skip-Gram considers each context-target
pair as a new observation. This makes in general Skip-Gram more appropriate
for large corpora and CBOW to small ones.

Let us dive a bit deeper into the Skip-Gram model. We consider a corpus
written at a given period t. A word i is represented by its vectors u(t)

i and v(t)
i

at time t, with u(t)
i being the representation of the word i as a central word and

v
(t)
i its representation as a context word. The matrices U (t) and V (t) gather
the embedding vectors for the whole vocabulary at time t. We use notations
indexed by t to enable immediate adaptation for the notations of the following
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CBOW Skip-Gram

“ You shall know a word by the company it keeps”

shall

company

know know

company

word word

shall

Figure 1.1 – Comparison of model architecture for Skip-Gram and CBOW
(Figure derived from Rong (2014)).

sections.

The objective is to maximise the likelihood of the observed corpus, that
is the probability of each word j to occur in the context of the word i in the
dataset. The probability of a word i to appear in the context of a word j

is modeled by σ(u(t) ᵀ
i v

(t)
j ), where σ is the sigmoid function. The context is

made of a fixed number of surrounding words and each word in the context
are considered independent of each other given the target word.

The Skip-Gram model can be trained using hierarchical softmax or negative
sampling; the latter is the most frequent, leading to the use of the common ab-
breviation SGNS (Skip-Gram with Negative Sampling, Mikolov, Sutskever, et
al., 2013). It avoids to update the full vocabulary, sampling only a pre-defined
number of negative examples from a noise distribution. Given the indepen-
dence assumption, the negative sampling strategy associates to each positive
example—an observed word-context pair (i, j)—a set of negative examples,
which are words that do not appear in the context of the central word.

Let L be the size of the vocabulary and n+
ijt denote for the time period t

the total number of positive examples for the pair (i, j), n−ijt the number of
negative examples, and their sum n±t . The objective function can be defined
as the following log-likelihood:

log p(n±t |U (t), V (t)) = Lpos(U (t), V (t)) + Lneg(U (t), V (t)) (1.2)

=
L∑

i,j=1
(n+

ijt log σ(u(t) ᵀ
i v

(t)
j ) + n−ijt log σ(−u(t) ᵀ

i v
(t)
j )) (1.3)
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1960 1970 1980 1990

Model 1.0 Model 1.1 Model 1.2 Model 1.3

Model 1.0 Model 2.0 Model 3.0 Model 4.0

Independant
Training

Dependant
Training

Information shared

Information aligned

Figure 1.2 – Comparison of the two types of training methods on a corpus
ranging between the 1960s and the 1990s, divided into decades.

1.3.2 Classification of diachronic embeddings methods

Neural word embeddings average in one vector the different word’s usages
observed across the whole corpus. This static representation hypothesis turns
out to be limited in the case of temporal datasets. The diachronic counterpart
of this hypothesis is that a change in the context of a word mirrors a change in
its meaning or usage. Thus, one can train word embeddings that evolve across
time, following the changes of their usage in a corpus. Several methods exist to
train such embeddings. They can be broadly divided into independent learning
of embeddings for each time slice, and dependant learning strategies that use
information from the whole period under study. Figure 1.2 summarises the
two systems.

For independent methods, static embeddings are trained independently on
each time slice of the corpus. Then, they are compared using solutions like
alignment or anchoring (Section 1.4).

The second set of methods involve either incremental training or joint train-
ing (Section 1.5). For incremental training, we learn the embeddings in a
Markovian fashion: the models are fine-tuned from each time slice to the next
one by using the embeddings of the previous time slice as initialisation. A dy-
namic extension to this system is to add a regularisation term during training
in order to control the drift of the embeddings at each new time slice. Finally,
joint training allows to learn all the embeddings of a word for the different
time slices jointly on the full corpus.

The key difference between these two types of methods is how the time
information is being exploited: as a categorical nominal variable, in the inde-
pendent case, or as an ordinal or continuous variable, in the dependant case.
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Chapter 1. Diachronic word embeddings: from static to dynamic

1.4 Independent methods

Word embeddings are trained on each time slice of a temporal dataset inde-
pendently. Due to the stochastic aspect of word embeddings training processes,
the vector spaces for each time slice are different, making them not directly
comparable. Several methods can be implemented to tackle this issue.

This problem did not appear in earlier work. Indeed, the count-based
methods presented in the previous section rely on a co-occurrence matrix. Its
columns correspond to words that usually occur in most time slices; thus, the
intersection of the co-occurrence matrices of all time slices can be used for
comparison.

1.4.1 Alignment

Kulkarni, Al-Rfou, Perozzi, and Skiena (2015) align the embeddings spaces
of all time slices into a common vector space by learning a linear mapping
between the word representations of the nearest neighbours of a word at the
different time periods. Indeed, while training a model twice on the same data
leads to different vectors for a given word, its nearest neighboring words will be
the same. Thus, the authors define as knn(u(t1)

i ) the set of k-nearest neighbors
of the representation u

(t1)
i of word i at time t1. The goal is to find the best

linear transformation Wt1,t2 to map a word vector from the embedding space
of the source period to the one of the target period. In order to do so, they
solve the following optimization problem:

W (ui)t1,t2 = arg min
W

∑
u

(t1)
j ∈knn(u(t1)

i )

‖u(t1)
j W − u(t2)

j ‖2 (1.4)

Similarly, Hamilton et al. (2016) optimise a geometric transformation to
find the best alignment. More precisely, they use the orthogonal Procrustes
(Schönemann, 1966) to align embeddings trained using the Skip-Gram with
negative sampling model (SGNS, Mikolov, Sutskever, et al., 2013).

We note U (t) the word embedding matrix at time t. Before making the
alignment, the embedding matrices are often mean-centered and normalised
by the number of different words in the time slice. Following thorough ex-
periments, Schlechtweg, Hätty, Del Tredici, and Schulte im Walde (2019) un-
derlines that mean-centering as a preprocessing step for the embedding ma-
trices before alignment is crucial for the efficiency of the method. Orthogonal
Procrutes consists in finding the mapping Wt1,t2 between the two embedding
spaces U (t1) and U (t2) which minimizes the sum of squared Euclidean distances
between the image of the source embedding space U (t1)W and the target em-
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1.4 Independent methods

Figure 1.3 – Two-dimensional visualization of semantic change in English using
SGNS vectors (Hamilton, Leskovec, & Jurafsky, 2016).

bedding space U (t2):

Wt1,t2 = arg min
W ᵀW=I

∑
i

∑
j

‖U (t1)
i W − U (t2)

j ‖2 (1.5)

The target embedding space is usually chosen as the one from the last
time period, as the most recent time slices have usually the most data in
historical corpora. For this task, the authors use an orthogonality constraint
for W . Thus, equation 1.5 is equivalent to maximizing a dot product: the
optimal solution W can be written ABᵀ where AΣBᵀ is the Singular Value
Decomposition of U (t2) ᵀU (t1).

Figure 1.3 shows a few examples detected by Hamilton et al. (2016) using
alignment of SGNS vector spaces. The word gay shifted from the neighboring
of “cheerful” and “flaunting” in the 1900s to its current meaning homosexuality
(part a). The word broadcast originally meant “spreading seeds” during the
19th century; it drifted towards its current meaning “transmitting a signal”
with the rise of television and radio in the 20th century (part b). Finally, the
adjective awful drifted from the positive connotation “solemn” and “majestic”
towards the negative connotation “terrible” and “weird.” All these shifts are
validated by linguists in the diachrony literature.

Several variants of this method appear in the literature, even though the
orthogonal Procrustes used by Hamilton et al. (2016) remains the most popular
(Shoemark, Liza, Nguyen, Hale, & McGillivray, 2019).

First, Zhang, Jatowt, Bhowmick, and Tanaka (2015) use vector spaces
alignment to find temporal counterparts of words. For example, iPod today
is the temporal counterpart of walkman 20 years ago. For this purpose, they
use a set of temporal pairs of words as anchors for the alignment instead of
using the full vocabulary like Hamilton et al. (2016). Thus, the transformation
matrixWt1,t2 is obtained by minimizing the sum of squared Euclidean distances
between transformed anchor words and their equivalent at the previous time
slice. The temporal pairs to be used as anchors must have sufficient frequency
in the two time periods. They rely on the assumption that very frequent
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Chapter 1. Diachronic word embeddings: from static to dynamic

terms (e.g., woman, water, dog, see, three) are semantically stable across time,
especially across a short period of time. They also add a regularization term on
matrixW to equation 1.5 to overcome the problem of over-fitting. Azarbonyad
et al. (2017) also use the most frequent words to conduct the alignment. They
add a set of stopwords to the list of anchor words.

Similarly, Tsakalidis, Bazzi, Cucuringu, Basile, and McGillivray (2019) ar-
gue that aligning the vectors of the whole vocabulary is not appropriate for
semantic change detection, as it tends to lower the disparities between the dif-
ferent vector spaces. In order to find the most stable words, they first conduct
alignment on the full vocabulary; then, they measure the displacement error
of all words between the two time slices using cosine distance. The most sta-
bles words are selected as anchor. This setup leads to different sets of anchor
words being selected at each time step: thus, they average the displacement
error across all time slices to select stable words for the full corpus. Then, they
compute the transformation matrix for the alignment using only the selected
anchor words, and apply this transformation to the full vocabulary.

Finally, Lin, Wan, and Guo (2019) also use stable words to improve the
alignment of vector spaces between time slices; however, instead of training the
embeddings for each time slice separately before aligning, they do both steps
jointly during training. Concretely, they iteratively extract stable words from
the corpus and use them as anchors to build diachronic constraints for the
alignment. They argue that stable words can differ across time; for example,
the context of the word president is relatively stable between periods of election
and vary a lot right before and after.

1.4.2 Temporal Referencing

An alternative method to alignment for semantic shift detection with static
word embeddings is to treat the same words in different time periods as differ-
ent tokens in order to get time-specific word representations for each period.
Thus, only one embedding model needs to be trained and no aligning is needed.

For this purpose, Dubossarsky, Hengchen, Tahmasebi, and Schlechtweg
(2019) use Temporal Referencing (TR) with the SGNS model. This method is
inspired by Ferrari, Donati, and Gnesi (2017) who use it to compute similarity
between technical terms in different domains. Each word w of the list appearing
at time t is replaced in the corpus with its time-specific equivalent w_t before
training semantic representations on the full corpus. Thus, each time-specific
token has a different representation while the context words stay stable through
time. This is a common hypothesis in the literature of diachrony (Rudolph &
Blei, 2018). TR is more robust to noise and less computationally demanding
than the alignment methods, as it allows to analyse the evolution of a list of
target words in a corpus covering a long period without training embeddings
at each time slice. However, it can only be performed over a set of pre-defined
target words.
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Huang and Paul (2019) extend this method to FastText embeddings (Bo-
janowski et al., 2017). They consider all words of the vocabulary as targets
for the Temporal Referencing method, replacing them by their temporal coun-
terpart w_t in each time slice. As FastText embeddings are trained using a
sub-word sharing framework, the model learns time-independent representa-
tions of each word despite the temporal suffix added to all words. The authors
illustrate this idea with the word where. It is replaced by where1 in the first
time slice. FastText ecodes this word with 3-grams of characters the following
way:

< wh, whe, her, ere, re1, e1 >, < where1 >

Thus, the temporal identity of the word is retained while the same words at
different time slices will have similar representation, as they share the same
morphological forms.

1.4.3 Anchor methods

Azarbonyad et al. (2017) use a simple method to compare vectors in two
different representation spaces. They rely on graph theory, where the simi-
larity of two nodes can be computed using the similarity of their neighbors.
Considering each embedding space as a graph and each word as a node, they
compute the cosine similarity of a word embedding with the embeddings of its
neighbors. A word is considered stable if it has the same neighbors in both
embeddings spaces, and the level of stability can be computed in an iterative
way, by taking into account the closest neighbors of a word, the neighbors of
its neighbors. . . They show that this stability measure can be combined with
the drift measure obtained through the alignment method, to increase the
accuracy of semantic change detection.

Eger and Mehler (2016) and Yin, Sachidananda, and Prabhakar (2018)
compare similarity vectors: they create “second-order embeddings” by rep-
resenting each word by its similarity with all other words in the vocabulary.
This leads to high-dimensional embeddings that can be compared between
time slices without requiring any alignment. The anchors—words with which
the similarity is computed inside each representation space—can be selected
in a specific domain to reflect shifts along a specific direction instead of taking
the whole vocabulary as a basis. To measure the distance between two words,
Eger and Mehler (2016) use the cosine similarity while Yin et al. (2018) use
the inner product.

More recently, Gonen, Jawahar, Seddah, and Goldberg (2020) propose a
method relying on intersection of nearest neighbors, similar to Azarbonyad
et al. (2017). Given the hypothesis that words that undergo semantic change
see their nearest neighbors changing in the representation space, each word is
represented by the set of its top-k nearest neighbors according to inner product.
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Chapter 1. Diachronic word embeddings: from static to dynamic

The highest the size of the intersection of the nearest neighbors between two
vector spaces, the more stable the word is. To increase the stability of the
method, they choose a large number of 1000 neighbors per word.

1.5 Joint and incremental methods

The alignment, temporal referencing and anchoring methods presented in
the previous section treat all time slices independently. It means that they
do not explicitly model the ordering of time information in the corpus. The
methods presented in this section all consider time as ordinal information in-
stead of nominal. Time slices do not necessarily have to be of equal size, but
their order is taken into account when training; either incrementally (using the
previous time slice as information for the next one) or jointly (using all time
slices together).

1.5.1 Incremental fine-tuning

One of the first works that used word embeddings for semantic change
detection was conducted by Kim, Chiu, Hanaki, Hegde, and Petrov (2014),
who leverage the SGNS algorithm. They propose the incremental model fine-
tuning approach, where the weight of the model, trained on a given time
period, are used to initialize the weights of a model trained on the following
time period.

The SGNS model for a unique period was exposed in section 1.3.1. Con-
sidering a corpus divided into T time slices, the incremental version works as
follows:

1. For the first time slice, the embeddings matrices U (1) and V (1) are ini-
tialised using a Gaussian random noise N (0, 1) and trained according to
equation 1.2.

2. Each V (t), U (t) are initialised with values of the previous time slice
V (t−1), U (t−1) and trained incrementally.

This way, the word vectors of each time step are all in the same vector space
and directly comparable. The main idea behind this methods is that when a
word is used in similar contexts in two distinct time slices, its vector will be
updated only slightly during fine-tuning. If the context varies a lot, the update
of its vector would be more important.

Some improvements of the approach were later proposed by Peng, Li, Song,
and Liu (2017), who use hierarchical softmax instead of negative sampling, and
by Kaji and Kobayashi (2017), who improve the negative sampling estimation.
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1.5.2 Dynamic Word Embeddings (DWE)

This second method relies on the Bayesian extension of the SGNS model
described by Barkan (2017). Its goal is to control the drift of the embeddings in
order to enforce smoother trajectories than the classical incremental method
decribed above. The main idea is to share information from one time slice
to another, allowing the embeddings to drift under the control of a diffusion
process. A full description of this approach, denoted as the filtering model,
can be found in Bamler and Mandt (2017).

In this model, the vectors u(t)
i and v(t)

i are considered as latent probabilistic
vectors. Under a Gaussian assumption, they are represented by their means
(µ

u
(t)
i
, µ

v
(t)
i

) and covariance matrices (Σ
u

(t)
i
,Σ

v
(t)
i

). The covariance matrices are
restricted to be diagonal. They are initialised for the first time slice with
respectively a zero mean vector and an identity covariance matrix.

Similarly to the incremental updating method, as many copies of the bayesian
skip-gram model as time slices are successively trained. The temporal drift
from one time step to another follows a Gaussian diffusion process with zero
mean and variance D. This variance is called the diffusion constant and has to
be tuned along with the other hyperparameters. Moreover, at each time step a
second Gaussian process with zero mean and variance D0 is added to prevents
the embedding vectors from becoming too large. It results in the following
distributions over the embeddings matrices U (t):

U (1) ∼ N (0, D0) (1.6)
p(U (t)|U (t−1)) ∝ N (U (t−1), D) N (0, D0).

The same equations stand for V (t). Training this model requires to estimate
the posterior distributions over U (t) and V (t) given n±t . This (bayesian) in-
ference step is unfortunately intractable. In Bamler and Mandt (2017), the
authors propose to use variational inference (Jordan, Ghahramani, & et al.,
1999) in its online extension (Blei, Kucukelbir, & McAuliffe, 2017) to provide
an approximation of the posterior distributions. The principle of variational
inference is to approximate the posterior distribution with a simpler variational
distribution qλ(U, V ) where λ gathers all the parameters of q. This variational
posterior will be iteratively updated at each time step. To approximate it, we
have to minimise the Kullback-Leibler (KL) divergence from the posterior p to
the variational distribution q. This is equivalent to maximising the evidence
lower bound (ELBO, Kingma and Welling, 2014). The final objective to be
maximised can be written as follows:

Lt(λ) = Eqλ [log p(n±t |U (t), V (t))] (1.7)
+Eqλ [log p(U (t), V (t)|n±1:t−1)]
−Eqλ [log qλ(U (t), V (t))].
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Figure 1.4 – Scheme of
DBE system for text data
X(1), . . . X(T ) in T time
slices (Rudolph & Blei,
2018).

Figure 1.5 – One-dimensional projection of the
embeddings of the word iraq between 1858 and
2009 using pca, with nearest embeddings for
selected points (Rudolph & Blei, 2018).

This function is the sum of three terms: the log-likelihood (computed fol-
lowing equation 1.2), the log-prior (which enforces the smooth drift of em-
bedding vectors, sharing information with the previous time step), and the
entropy term (which can be computed analytically).

1.5.3 The Dynamic Bernouilli Embeddings Model (DBE)

The Dynamic Bernouilli Embeddings rely on a system similar to the Dy-
namic Word Embeddings from Bamler and Mandt (2017). The main difference
lies in the embedding model; instead of the Skip-Gram, they use the Expo-
nential Family Embeddings (EFE, Rudolph, Ruiz, Mandt, and Blei, 2016), a
probabilistic generalisation of the Continuous Bag-of-Words (CBOW) model
of Mikolov, Sutskever, et al. (2013). Moreover, the approximate learning crite-
rion relies on negative sampling instead of the bayesian inference of the DWE
model.

We give an overview of the EFE below before describing the dynamic ver-
sion called Dynamic Bernoulli Embeddings (DBE) proposed by Rudolph and
Blei (2018).

Bernoulli embeddings. Let us consider a vocabulary of size V . Each word
v at position i in the corpus is associated with a one-hot vector xi ∈ {0, 1}V
where only the v-th element is 1. Its associated context xci gathers the em-
beddings of all the words in the window ci of size C around i.

The model predicts the central word vector xi conditionally to its con-
text vectors xci following a Bernoulli distribution for each possible word:
xiv|xci ∼ Bern(piv). The natural parameter of the Bernoulli distribution piv
is computed using the embedding vector ρv and the context vectors αv′—
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equivalent to u and v in the Word2Vec framework—as follows:

piv = σ

ρᵀ
v

∑
j∈ci

∑
v′∈V

αv′xjv′

 . (1.8)

Here, the parameter simply results of the application of the sigmoid function
to the dot product between the word embedding ρv and the representation of
its context for occurrence i.

Dynamic extension. We consider a corpus split into T time slices indexed
by t. A word v has T different embedding vectors ρ(t)

v , one per time slice,
while the context vectors αv are assumed to be fixed. Figure 1.4 illustrates this
system for text data X(1), . . . X(T ). The embedding vector ρv drifts throughout
time following a Gaussian random walk:

ρ(0)
v ∼ N (0, λ−1

0 I), then ∀t ≥ 1: ρ(t)
v ∼ N (ρ(t−1)

v , λ−1I). (1.9)

The drift (precision) hyper-parameter λ controls the temporal evolution of
ρv, and is shared across all time steps.

Training. The training process, described more precisely by Rudolph and
Blei (2018), relies on a variant of the negative sampling strategy described
by Mikolov, Sutskever, et al. (2013). The goal is to maximise the following
objective:

L(ρ,α) = Lpos(ρ,α) + Lneg(ρ,α) + Lprior(ρ,α) (1.10)

The first term Lpos is the log-likelihood on positive examples, while Lneg
is the log-likelihood computed on a set of randomly selected negative samples.
Finally, the role of Lprior is twofold: it acts as a regularisation term on α and
ρ(0), and as a constraint on the drift of ρ, preventing ρ(t)

v from going too far
apart from ρ(t−1)

v :

Lprior(ρ,α) = −λ0

2
∑
v

‖αv‖2 − λ0

2
∑
v

‖ρ(0)
v ‖2 − λ

2
∑
v,t

‖ρ(t)
v − ρ(t−1)

v ‖2. (1.11)

The components of the log-prior depend on the type of regularisation that
is required for the model. It is possible to imagine other types of regularisation,
for example if one wants the embeddings at t to stay close to the ones at t0
instead of t− 1. We introduce several alternatives in chapter 3.

The authors apply their methods to a corpus of U.S. Senate speeches rang-
ing between 1858 and 2009. The word Iraq has largest drift in this corpus;
a one-dimensional representation of its evolution is shown in Figure 1.5 along
with the most similar words for several selected years. The figure shows the
smoothness of the trajectory of the embedding, which is enabled by the reg-
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ularisation on the prior. In 1858, Iraq appears in the same context as other
countries and regions such as Poland. In the 1950s, the closest words are mostly
Arab countries. In 1980, when Iraq invades Iran, most surrounding words be-
long to the lexical field of war (“troops”, “invasion”). Finally, in 2008, words
from the lexical field of terrorism appear in the embedding neighborhood of
the word.

This was further extended by Jawahar and Seddah (2019), using additional
extra-linguistic features — such as spatial, socioeconomic and topic features —
to contextualise Bernoulli embeddings and improve the precision of semantic
shift detection when dealing with short time periods.

1.5.4 Other methods

We mention here a few other methods that consider the sequential mod-
elling aspect of semantic change detection, by implementing time-sensitive
algorithms.

For each time slice t of a corpus, Yao, Sun, Ding, Rao, and Xiong (2018)
compute the positive pointwise mutual information matrix (PPMI(t)) matrix,
of dimension V × V with V the vocabulary size. Each element of this matrix
is computed this way:

PPMI(w1, w2)(t) = max{PMI(w1, w2)(t), 0} (1.12)

The PMI is computed according to equation 1.2. Then, they infer temporal
word embeddings U (t) such as U (t)U (t) ᵀ ≈ PPMI(t). U (t) is learned using a
joint optimization problem:

min
U(1),...,U(T )

1
2

T∑
t=1
‖PPMI(t)−U (t)U (t) ᵀ‖2 + λ

2

T∑
t=1
‖U (t)‖2 + τ

2

T∑
t=2
‖U (t−1)−U (t)‖2

(1.13)
The last term of this equation aims to enforce alignment, pushing each word
embedding u(t)

w as close as possible from u(t+1)
w . Note that it is very similar to

the regularisation of the prior of the DBE model (equation 1.11). The objec-
tive function is decomposed across time and solved iteratively using stochastic
gradient descent. Like the two previous methods (DBE and DWE), the au-
thors argue that sharing information across time slices is highly beneficial for
the quality of diachronic embeddings, especially in situations of data sparsity.
This methods is applied to a corpus of New York Times articles published
between 1990 and 2016, detecting drifts such as the ones illustrated in Figure
1.6.

Rosenfeld and Erk (2018) propose one of the few models that considers
time as a continuous variable. Their model includes three components. First,
a derivative of the SGNS algorithm produces a time-independent embedding
for each word of the vocabulary. Second, a time embedding components com-
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putes a continuous representation of time. Finally, the time embeddings and
the time-independent word embedding are combined to create diachronic em-
beddings. This setup allows to capture the gradual drift of a word with high
precision. Moreover, the authors argue that using time representation as a
common variable for all word representations allows the model to capture
semantic change in a more realistic manner, considering time as a single un-
derlying cause affecting all words similarly.

Finally, Tsakalidis and Liakata (2020) approach semantic change detection
as an anomaly identification task, track the evolution of word embeddings
through time in a sequential manner. They implement an architecture divided
into an autencoder, to learn word representations, and a decoder, to predict
the representations of the words at the next time slice. The neural architecture
allows to approximate a non-linear function of evolution of word embeddings;
when the word embedding predicted using this non-linear function differs from
the real one, it means that semantic change has occurred.

1.6 Detection measures and interpretation

The time-varying word representations have to be compared between time
slices to measure the level of semantic change of the word. Most of the time,
word representations are real-valued vectors; they can be compared using usual
distances measures such as Euclidean distance and cosine distance. In particu-
lar, the cosine distance (cos) between two embeddings vectors and its opposite,
the cosine similarity (1−cos) are widely used metrics in semantic change (Shoe-
mark et al., 2019; Schlechtweg et al., 2019). The cosine distance between the
embeddings of two words u1 and u2 from a same vector space is given by the
following equation, with n the dimension of the embeddings:

cos(u1, u2) = uᵀ1 · u2

||u1|| · ||u2||
=

n∑
i=1

(u1,i · u2,i)√
n∑
i=1
u2

1,i ·
√

n∑
i=1
u2

2,i

(1.14)

We define two ways of measuring the drift of a word: the incremental drift
computes the drift from each time slice to the next one, and the inceptive drift
computes the directed drift from the first time slice t0 = 1.

Incremental drift = cos(u(t),u(t+1)) ∀t ∈ [1, T − 1] (1.15)
Inceptive drift = cos(u(t),u(1)) ∀t ∈ [2, T ] (1.16)

We end up with vectors of drifts of size T − 1. We can use the sum of their
elements to get a unique value quantifying the amount of drift the word has
gone through during the whole period. A simpler way to measure it is to only
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compute the distance between the embeddings in the first and in the last time
slice:

Full drift = cos(u(T ),u(1)) (1.17)

However, using the full time series to compute the drift instead of com-
paring the first and the last time slice only has been shown to increase the
performance of semantic change detection (Shoemark et al., 2019).

On top of quantifying how much a word drifted, a common task is to
detect the time slice when a semantic change occurred. To this end, Kulkarni
et al. (2015) use a breakpoints detection method. First, they compute the
time series of inceptive drifts of the embedding of a word (Equation 1.16).
They normalize it, and detect breakpoints using the mean shift model (Taylor,
2000): the normalised series is modeled as the output of a stochastic process.
For each time period t, they compute the difference between the means of the
series before and after t. It leads to a mean shift series of size T − 1. The
breakpoints are the significant jumps in this mean shift series. To detect them,
they use Monte Carlo permutation tests to estimate the statistical significance
of mean-shift scores: the breakpoints occurs when the p-value is minimal.

After detecting the time of the change and quantifying it, it is possible
to conduct an interpretation of how words change; in what direction, from
which sense to which one. Most methods relying on word embeddings identify
the most similar terms of a word at each time slice; it allows to illustrate the
general meaning of the word in a period, and deduce how it changed when the
most similar terms are different. Figures 1.3 and 1.5 from previous sections
and Figure 1.6 illustrate this method. The latter shows the evolution of three
target words from 1990 to 2016 in the New York Times newspaper: apple,
amazon and obama. A 2-D t-SNE projection allows to highlight the path of
the target word in the representation space, and its localisation at a given
period can be interpreted using the nearest neighbors in the representation
space at that time. We focus on the shift of the word apple during the 27-years
period, moving from the lexical field of fruits and desserts towards the space of
technology. The gradual drift starts in early 2000s when Steve Jobs becomes
CEO, but the method identifies a spike in 1994 in the trajectory, related to
a notable even for the company Apple that had a large press resonance (the
replacement of the CEO and a collaboration with IBM).

1.7 Sense-disambiguating methods

Before the rise of pre-trained language models to encode contextual infor-
mation into word representations, several works made use of the context of a
word to disambiguate their sense in a sentence, improve their representation,
and detect semantic change. In this section, we give an overview of several
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1.7 Sense-disambiguating methods

Figure 1.6 – Trajectories of brand names and people through time: apple,
amazon and obama (Yao, Sun, Ding, Rao, & Xiong, 2018).

sense-disambiguation methods applied to semantic change detection.

Contextual entropy. Tang, Qu, and Chen (2016) consider the evolution
of the contextual entropy of a word across time. The goal is to detect the
broadening and narrowing of the set of meanings of a word, and the appearance
of a new meaning. They argue that nouns are the most crucial elements
for sense identification. Thus, they represent a word with only the strongest
associated noun in each context where it appears. The dimension of the co-
occurrence matrix is reduced to the list of most closely related nouns to each
word in all its contexts. They obtain the distribution over the nouns for each
word at each period, and use it as the set of senses associated with the period.
The distribution of senses s1, s2, . . . sn of word w at time t is written:

p(si|w) = countw(si)
count(w) . (1.18)

With countw(si) the number of times the noun si is strongly associated with w.
Then, they compute what they call the “Word Status”, which is the entropy
of this distribution of nouns:

Stw = −
n∑
i=1

p(si|w) log p(si|w) (1.19)

They observe variations of Word Status over time, which mirror changes in
the usage of the word, and deduce the type of change it went through.

Topic models. Lau, Cook, McCarthy, Newman, and Baldwin (2012) and
Cook, Lau, McCarthy, and Baldwin (2014) use topic modeling for word sense
induction. They associate it with a method to detect novel senses between two
periods. In short, the authors apply Hierarchical Dirichlet Process—a variant
of Latent Dirichlet Allocation (Blei, Ng, & Jordan, 2003) that automatically
selects the optimal number of clusters—to the different time slices indepen-
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Figure 1.7 – Distributions of topics for the words transport and bank over 20-
year intervals between 1700 and 2010, along with top 10 words for each sense
(Frermann & Lapata, 2016).

dently. Then, all topics are pooled and each occurrence of a target word is
assigned a topic; each topic being considered as a distinct word sense. They
compute a novelty scores to determine whether a topic is considered novel,
depending of its distribution in the different time slices normalized by a max-
imum likelihood estimate: a high score means a rare sense in old periods and
frequent in recent ones. Note that there is no alignment of senses over time.

Frermann and Lapata (2016) propose the SCAN model, relying on a dy-
namic topic model (Blei & Lafferty, 2006). The strength of dynamic topic
models is that both the distribution of topics in documents and the topics
themselves can evolve through time. Each topic is considered as a sense. They
are expressed as a distribution over all words of the vocabulary. The distribu-
tion of senses in the corpus evolves, and the senses themselves undergo more
subtle intrinsic change, visible through the evolution of the words associated
with them. The authors define logistic-normal priors for the multinomial sense
distributions and the word distribution of each sense. The parameters enforce
smooth and gradual changes in topics and words distributions. An additional
parameter over word distributions controls the extent of change, forcing the
topics to stay thematically consistent and enabling topic comparison across
time.

Figure 1.7 shows an example of the evolution of topics distribution over
time for two words, transport and bank. The former sees the emergence of
plane-related transportation (topics 2 and 3) and the death of the old sense
related to joy and happiness. The distribution of senses for the second word
bank is stable across time, but its different senses appear clearly in the keywords
of the topics (“river bank” versus “monetary institution”).

On top of tracking the distribution of senses, the intrinsic evolution of a
sense can be identified. One of the examples given by the authors is the word
mouse. The sense related to the animal stayed stable during the past decades,
while the computer-related sense undergone change, from being close to words
like cable, ball and mousepad towards words like optical, laser and usb.
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Word sense disambiguation methods. Word sense disambiguation pro-
vides precise information on the senses of a word. It can be applied to a limited
number of target words, but provides valuable information for semantic change
detection. The two following methods rely on clustering to extract word senses
and track their evolution over time.

Mitra et al. (2015) build a co-occurrence graph by keeping only the closest
related words from all bigrams of a corpus. Then, clustering is performed on
the graph at each period; each cluster is assumed to correspond to a particular
sense of the word. The clusters are aligned over time by building an intersection
matrix of words of the graph that appear in the clusters of two time slices. The
intersection matrix enables to compare the word overlap of clusters between
two periods and deduce the type of meaning drift, classified into categories
(birth, death, join or split) according to a set of rules.

Tahmasebi and Risse (2017a) identify word senses at different periods us-
ing an unsupervised word sense induction algorithm called curvature clustering
(Dorow, 2005). Then, they group all the senses into semantically coherent clus-
ters and track their evolution across time. To group them, they compare the
senses using a variant of the Jaccard similarity measure and a WordNet-based
similarity measure. In case of high similarity, senses from two consecutive pe-
riods are merged into a bigger cluster. This leads to a set of coherent senses
(units) for each word. Finally, these units are grouped into paths, by com-
paring each unit with all the units of later periods. The authors analyse the
evolution of the polysemous concepts through these paths.

1.8 Conclusion

We presented a list of methods to learn diachronic word representations.
They are summarised in a timeline in Figure 1.8. Shoemark et al. (2019)
an Schlechtweg et al. (2019) compare several of the most common methods
presented in this chapter on the task of semantic change detection, using real-
world annotated corpora as well as generated corpora with synthetic seman-
tic change. They conclude that methods based on neural word embeddings,
in particular the SGNS model, outperform methods relying on PPMI or co-
occurrences matrices. A recent evaluation campaign, “Semeval 2020 Task 1:
Unsupervised Lexical Semantic Change Detection” 2 shows that the best per-
forming method seems to be, in the case of corpora divided into two disjoint
time slices, the SGNS model trained independently on the two time slices
and aligned using Orthogonal Procruste, before comparing word vectors us-
ing Cosine Similarity (Schlechtweg, McGillivray, Hengchen, Dubossarsky, &
Tahmasebi, 2020).

However, diachronic word embeddings methods are not free from defects.
Alignment-based methods are source of noise and require a lot of data; incre-

2https://competitions.codalab.org/competitions/20948
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Figure 1.8 – Timeline of the literature of different types of models for diachrony.

mental methods involve a lot of training updates; and dynamic embeddings
that use all time slices jointly have the drawback of leaking data from the future
towards the past. All of them, overall, are strongly influenced by frequency
(Dubossarsky, Weinshall, & Grossman, 2017).

More importantly, most methods presented in this chapter use non-contextual
embeddings: each word is represented as a unique vector in a time slice, with-
out taking into account the possibility to have several distinct senses or usages
of the word in the corpus. This is clearly illustrated by the first two examples
of Figure 1.6. The lexical field of fruits disappears from the surroundings of
the word apple in the vector space from 2005 and onward. A similar situation
happens for the word amazon, whose usage as the biggest South America river
disappeared after 1998 according to the embeddings.

To solve this issue, one needs a different kind of representation, taking
into account the context of the word occurrence to create sense-disambiguated
embeddings. Word sense disambiguation methods can be performed to achieve
this on a limited set of words (Mitra et al., 2015; Tahmasebi & Risse, 2017a).
Recent methods to learn contextualised word embeddings using pre-trained
language models such as ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) gives new perspectives to this problem. However, it involves a completely
new way of training, extracting and using word embeddings. In the following
chapter, we propose methods for semantic change detection using pre-trained
language models.
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In this chapter, we propose a set of methods that use contextualised embed-
dings extracted using pre-trained language models to detect semantic change.
They are the continuation of the sense-disambiguating methods presented in
Section 1.7. Context-aware word embeddings can bring valuable information
for the task of semantic change detection. However, they cannot be used the
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same way as the non-contextual embeddings presented in the previous chap-
ter. They are extracted from a corpus using a language model, leading to
a large number of vectors for each word. Consequently, specific processing
steps and measures are necessary to enable comparison of word usage between
time slices. In return, contextualised embeddings can help with interpreting
semantic change, by identifying which sense appeared or disappeared during a
period.

In Section 2.1, we give a quick summary of BERT, the language model we
focus on in our experiments. Then, we summarize other works that use pre-
trained language models to detect semantic change (Section 2.1.2). Section 2.2
explains how we extract contextualised word embeddings from BERT, before
presenting several aggregation methods of contextualised embeddings and se-
mantic change measures. Section 2.3 outlines the limitations of these methods
in terms of scalability or interpretability and proposes an improvement of the
extraction and aggregation methods to deal with the scalability issue. Finally,
section 2.4 sums up the semantic change measures and proposes interpretation
methods.

Parts of this chapter were made in collaboration with Matej Martinc, from
the Jozen Stefan Institute (Ljubjana, Slovenia) and Elaine Zosa and Lidia
Pivovarova, from the University of Helsinki (Finland).

2.1 Introduction to contextualised embeddings

Recent years have seen the emergence of language models pre-trained on
large amounts of data. They allow to learn high-quality representation of
sentences, leading to improvement of the accuracy for numerous NLP tasks.
In particular, their ability to build word representations by exploiting context
leads to naturally disambiguated embeddings: the representation of a word
contains information about the whole sentence in which it appears.

2.1.1 Pre-trained language models

The new line of work relying on pre-trained language models outperforms
classical word embeddings by a significant margin in most NLP tasks. With
non-contextual word embedding models, each word from a predefined vocabu-
lary is represented as a unique vector. Contextualised embeddings generate a
separate vector for each word mention, i.e. for each context the word appears
in. Two widely used contextual embeddings models are ELMo (Embeddings
from Language Models, Peters et al., 2018) and BERT (Bidirectional Encoder
Representations from Transformers, Devlin et al., 2019).
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Figure 2.1 – T-SNE plots of contextualized embeddings of bank with their
WordNet sense, with the frequency of each sense in the SensEval-3 training
data, for 3 language models (Wiedemann, Remus, Chawla, & Biemann, 2019).

Presentation of BERT. As an example, we focus on the pre-trained lan-
guage model BERT (Devlin et al., 2019). Wiedemann, Remus, Chawla, and
Biemann (2019) showed its superiority in disambiguating word senses com-
pared to two other models, ELMo (Peters et al., 2018) and Flair NLP (Akbik,
Blythe, & Vollgraf, 2018) (see example in Figure 2.1, with the contextualised
embeddings of the word bank for these 3 models).

BERT is a method for pre-training language representations. Its architec-
ture is a multi-layer bidirectional Transformer encoder (Vaswani et al., 2017), a
recent and popular attention model, originally applied to machine translation
before being adapted for language modelling.

The key element to this architecture is the bidirectional training that dif-
fers from previous approaches, which relied on unidirectional (left to right)
or a combination of left-to-right and right-to-left training. It is enabled by a
new training strategy, Masked Language Model: 15% of the tokens in each
input sequence are selected as training targets, of which 80% are replaced with
a [MASK] token. The model is trained to predict the original value of the
training targets using the rest of the sequence. This allows BERT to leverage
both left and right context, meaning that a word wt in a sequence is not deter-
mined just from its left sequence w1:t-1 = [w1, . . . , wt−1]—as is the case in the
traditional causal language modelling task—but also from its right sequence
wt+1:n = [wt+1, . . . , wt+n]. A second training strategy is used, named Next
Sentence Prediction (NSP): pairs of sentences are generated for input, with
50% beings pairs of successive sentences extracted from a document, and 50%
being two random sentences from the corpus. The model is trained to predict
if the two sentences are consecutive or not1.

BERT is mostly used in the literature following the principle of transfer
learning proposed by Howard and Ruder (2018), where the network is pre-

1In practice, this second training strategy is not used anymore, as it was shown that it
does not really improve the quality of the model (Liu et al., 2019).

35



2.1 Introduction to contextualised embeddings

trained as a language model on large corpora in order to learn general con-
textualised word representations. This is usually followed by a task-specific
fine-tuning step such as text classification. Fine-tuning a language model this
way leads to significant improvements of the accuracy on many tasks com-
pared to previous state-of-the-art models (Devlin et al., 2019; Peters, Ruder,
& Smith, 2019). In our case, we perform domain adaptation by fine-tuning
BERT with the masked language model task on our corpus. We use BERT as
a feature extractor: applied to any text sequence, the features extracted for
language modeling by BERT can be used as contextualised representation of
the input tokens.

2.1.2 Language models for semantic change detection:
other works

Using contextualised embeddings for semantic shift detection is fairly novel;
we are only aware of few studies that employed them.

In Hu, Li, and Liang (2019), contextualised embeddings are applied in
a controlled way: for a set of polysemic target words, a representation for
each sense is extracted using a pre-trained BERT model applied to sense-
disambiguated sentences. This model is then applied to a diachronic corpus,
extracting contextualised embeddings, that are matched to the closest sense
embedding. Finally, the proportions for each sense are computed at each
successive time slice, revealing the evolution of the distribution of senses for
each target word. This method requires that the set of senses of each target
word is known beforehand.

Martinc, Novak, and Pollak (2020) propose to average all contextualised
embeddings of a word at each time slice in order to generate a time-specific
word representation. BERT embeddings are used in their study, with the cosine
distance to measure the distance between word representations in different time
periods.

Giulianelli, Del Tredici, and Fernández (2020) use k-means clustering on
BERT contextualised embeddings and compare several measures to quantify
changes between word usages in different time periods. In addition, the incre-
mental training approach proposed by Kim et al. (2014) was used for diachronic
fine-tuning of the model; however this yielded no performance improvements.

Finally, Kutuzov and Giulianelli (2020) and Rodina, Trofimova, Kutuzov,
and Artemova (2020) conduct similar experiments using the pre-trained lan-
guage model ELMo (Peters et al., 2018), which was one of the first model
to produce contextualised word embedding. It is outperformed by BERT on
most NLP tasks, but its lighter architecture—a two-layer Bidirectional LSTM
on top of a convolutional layer—and lower number of parameters enables faster
training and inference.
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2.2 Contextualised embeddings for diachrony:
aggregation methods

In this section, we start by explaining how we extract the contextualised
embeddings of a word from a corpus. In order to quantify the degree of se-
mantic change of this word, we want to compare its embeddings between the
different time slices. Thus, given a time slice, we must summarize the informa-
tion contained in all the contextual embeddings of a word, in such a manner
that it is comparable to other time slices. In this section, we present four
methods to achieve this goal.

2.2.1 Extracting contextualised embeddings

We assume that we have a BERT language model pre-trained on a large
amount of data, and a corpus divided into time slices. Using the Masked Lan-
guage Model task, we fine-tune the model on the corpus to get domain-specific
knowledge and to increase the quality of the contextualised representations.
Note that we do not conduct any diachronic fine-tuning of the model using
the incremental training approach described in Section 1.5. The hypothesis
is that this step is not necessary due to the contextual nature of embeddings
generated by the model, which by definition are dependent on the context that
we assume to be time-specific. We only fine-tune the model on the full corpus
for domain adaptation.

In order to acquire contextualised embeddings, the corpus documents are
first split into sentences. We apply the BERT tokenization which is based on
the WordPieces system (Wu et al., 2016), similar to byte-pair encodings. Each
sentence is limited to 512 tokens (the usual size limit for a sequence in BERT)
and fed into the BERT model. A sequence of embeddings is generated for
each of these sequences by summing the last four encoder output layers of the
model2, as semantic features are captured in higher layers of BERT (Devlin
et al., 2019; Jawahar, Sagot, & Seddah, 2019). An overview of this process can
be found in Figure 2.2. With L being the sequence length and H the dimension
of the embeddings (768 in the case of BERT), the output of size L×H is split
along the first dimension to get a separate contextualized embedding for each
token in the sequence.

The system of word-pieces raises an additional challenge: we get contex-
tualised representations of subwords as output, whereas we are interested in
contextualised representation of full words. To get a word vector from the
BERT output of its constituting subwords, various approaches are used. We
can concatenate the byte-pairs embeddings together, or take only the first one,
which often bears the largest part of the information. We choose to take the av-

2We refer the reader to the original description of the transformer in (Vaswani et al.,
2017) for a detailed overview of each component in the architecture.
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Figure 2.2 – Overview of BERT architecture (on the right) and extraction
method for contextualised embeddings (on the left).

erage of all the subwords embeddings as representation for the word (Martinc,
Novak, & Pollak, 2020).

2.2.2 Solution 1: no aggregation

A first distance measure can be computed without aggregating the contex-
tualised embeddings of each time slice: the Average Pairwise Distance (APD),
also used by Giulianelli et al. (2020). It involves computing the average pair-
wise distance between all contextualised embeddings of a word in two periods.
We note E(t)

w the embeddings matrix of word w at time t, with N (t) its dimen-
sion (the number of occurrences of the word in time slice t):

APD(E(t1)
w , E(t2)

w ) = 1
N (t1)N (t2)

∑
ui∈E

(t1)
w

uj∈E
(t2)
w

d(ui, uj) (2.1)

The distance d can be the cosine distance introduced in Section 1.6. We also
experiment with the Canberra distance (Lance & Williams, 1967), somewhat
similar to the Manhattan distance:

d(u, v) =
∑
i

|ui − vi|
|ui|+ |vi|

(2.2)
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2.2.3 Solution 2: averaging

Proposed by Martinc, Novak, and Pollak (2020), this method averages all
the contextualized embeddings of a word appearing at a given time period.
We end up with a set of time-specific vector representations of a word. They
can also be compared using the cosine distance, as described in Section 1.6.

Avg(E(t1)
w , E(t2)

w ) = d

∑ui∈E
(t1)
w

ui

N (t1) ,

∑
uj∈E

(t2)
w

uj

N (t2)

 (2.3)

2.2.4 Solution 3: clustering

This method groups the set of contextualised embeddings of a word into
types of usages. We apply a clustering algorithm to all the contextualised
embeddings of a word, on all the time periods jointly, experimenting with k-
means (Giulianelli et al., 2020) and affinity propagation (Martinc, Montariol,
et al., 2020a).

In the case of k-means, the user has to define the number of clusters himself.
When studying one word in particular, we use the silhouette score (Rousseeuw,
1987) to select the best number of clusters; in practice, it usually ranges be-
tween 4 and 7. The silhouette score measures the density of the clusters and
the distance between them, by averaging for all points a combination of its
mean intra-cluster distance and mean nearest-cluster distance. When doing
broader experiment on a large number of target words, we arbitrarily set the
number of clusters for all words.

On the contrary, affinity propagation automatically infers the number of
clusters during training. This is very convenient for our task, where the num-
ber of clusters—the number of different usages of the word—can vary a lot
depending on the word, and does not necessarily reflect the number of senses
of the word in a lexicographic point of view. Indeed, BERT does not only
retain semantic information for contextualised representations; for example, it
is heavily influenced by syntax (Reif et al., 2019). The clusters obtained from
the representations of a word do not naturally reflect the different senses of
the word; they only reflect the different ways it is used.

Affinity propagation (Frey & Dueck, 2007) is an iterative graph-based clus-
tering algorithm. The main idea is that data points exchange messages until
a high-quality set of exemplars, i.e. members of the input set that are repre-
sentative of clusters, is obtained. The examplars are chosen according to the
criteria of responsibility r(i, k), which quantifies how well-suited element k
is to be an exemplar for element i, and availability a(i, k), which quantifies
how appropriate is it for i to choose k as its exemplar. Eventually, clusters
of similar points emerge. It has been extensively used in tasks similar to
ours, such as word sense induction (Alagić, Šnajder, & Padó, 2018; Kutuzov,
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Kuzmenko, & Pivovarova, 2017). The clustering is usually skewed: a limited
number of large clusters is accompanied by many clusters consisting of only
a couple of instances. It allows for a very precise distinction of the different
types of contexts the words appear in; however, it is much harder to provide
an interpretation of the meaning of all the different clusters, and of word usage
variation in general. On the contrary, k-means tends to produce more even
clusters; however, we can still see the appearance of small clusters containing
only few instances which do not represent a specific sense or usage of the word.

Merging clusters. We wish to overcome the drawbacks of the clustering
method: to decrease the number of clusters a posteriori, in order to focus on the
“main” usages of the words while limiting the loss of information. We propose a
solution to merge and filter clusters inspired by Amrami and Goldberg (2019).3
We refer to this method as cluster merging.

First, we consider a cluster to be a legitimate representation of the usage
of a word if it contains at least 10 instances. The threshold of 10 was derived
from the procedure of manual labelling employed in the SemEval 2020 Task
on unsupervised lexical semantic change detection (Schlechtweg et al., 2020),
where the authors enforce a constraint that each sense must be attested at
least 5 times in a time slice in order to be considered as a legitimate sense of a
word. In our case, we set the limit that a cluster should contain 10 instances
in all time periods, since most of our experiments are done on corpora with
two time periods.

For each cluster, we compute its representation by averaging all embeddings
inside the cluster. Then we measure the cosine distance with all other clusters.
If the smallest distance is lower than a threshold, the clusters are merged. The
threshold is defined as avgcd − 2 × stdcd, where avgcd is the average cosine
distance between legitimate clusters and stdcd is the standard deviation of
cosine distances between clusters. For all illegitimate clusters, if there is no
cluster that is close enough to be merged with, the cluster is removed. This
merging procedure is applied recursively until the minimum distance between
the two closest clusters is larger than the threshold. The procedure is also
stopped if only two clusters are left.

To sum up, we merge similar clusters together and we delete small clusters
if they are not close enough to another cluster to be merged with.

Comparing distributions. After the clustering, all the occurrences of a
word are distributed into clusters. We take the example of the word “user”
in two time periods, 1960 and 1990; its embeddings are distributed into 6
clusters (Figure 2.3.a). Each embedding is labelled by the time slice where

3Note that the procedure of Amrami and Goldberg (2019) is more complex: they first
find one or more representatives for each datapoint and then clustering is applied over
representatives, while in our work clustering is done over the instances themselves.
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it appears. Thus, we can compute the distributions of the clusters C for
each period T , that we note p(C|T ,W ). More precisely, for a given word, we
extract the number of embeddings in each cluster and for each period (Figure
2.3.b); we normalise it by the total number of occurrences of the word in the
corpus. We obtain the probability distributions of the usages of this word at
each time slice. Figure 2.3.c shows side-by-side the normalised distributions
p(C|T = 1960,W = user) and p(C|T = 1990,W = user).

(a) Clustering (PCA) (b) Cluster counts (c) Normalised distrib.

Figure 2.3 – Clustering methods for the word user in two periods, 1960 and
1990, using affinity propagation.

These distributions can be compared between two periods using the Jensen-
Shannon divergence (JSD, Lin, 1991), a measure of similarity between two
probability distributions. It is the symmetrization of the well-known Kullback-
Leibler (KL) divergence, and can be formally defined as follow:

JSD(d1, d2) = DKL(d1‖M) +DKL(d2‖M)
2 , (2.4)

with M = d1+d2
2 .

For example, to quantify how much the usage of the word w changed be-
tween the time slices t1 and t2, we can compute JSD(p(C|t1, w), p(C|t2, w)).

The generalisation of the JSD to n probability distributions d1, d2, . . . , dn
(Ré & Azad, 2014) can be used to compare more than 2 periods together.
With H being the Shannon entropy function, the generalised JSD is defined
as:

JSD(d1, d2, . . . , dn) = H
(∑n

i=1 di
n

)
−
∑n
i=1 H(di)
n

(2.5)

The JSD is high when the compared distributions assign different proba-
bilities to the same clusters.
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2.2.5 Solution 4: optimal transport

The averaging method retains the original dimension of BERT embeddings,
768. It allows very precise comparison of the average context of a word be-
tween two time slices. But it loses all information about the diversity of the
embeddings inside the time slices. On the contrary, the clustering method
sums up the variability of the context of a word in a time slice by breaking it
down into a distribution of very small dimension. However, it loses all of the
fine-grained semantic information learnt by the model and saved into the em-
beddings. To keep both types of information to compare word usage between
two time slices, we rely on the optimal transport framework.

2.2.5.1 Formulation

In order to catch the level of variability of the set of embeddings in a time
slice, we start by clustering it. We can either do a unique clustering, like in the
previous section, or perform as many clusterings as time slices independently.
Then, to reduce the amount of data without loosing too much information, we
average all the embeddings inside each cluster. Thus, in a situation with K
clusters and T time slices, we end up with a matrix of size T×K×768 for each
word. We have one additional information from the clustering: the number of
embeddings in each cluster is normalised into a distribution, as in the previous
section. This distribution can be specified by a T × K stochastic matrix.
Intuitively, we summed up all the information of the embedding cloud in each
time slice into K representatives weighted by the number of embeddings inside
the associated cluster, and we want to compare these representatives between
time slices.

This setup can be formulated the following way. We call µ(1), µ(2) ∈ RK×768

the sets of K representatives in the two periods, and c(1), c(2) ∈ ∆K−1 the
marginal distributions of the clusters. Using the notations from the previous
section, we have c(t)

i = p(C = i|T = t, w). We denote by ∆K−1 the standard
K − 1 simplex: c(1) and c(2) are positive vectors of dimension K and sum to
1. They represent the weights of each representative in the source and target
spaces (µ(1) and µ(2)).

We quantify the effort of moving one unit of mass from a representative
in µ(1) to a representative in µ(2) using a chosen cost function, here the cosine
distance. Then, we solve the problem by looking for the minimal effort required
to reconfigure c(1)’s mass distribution over µ(1) into that of c(2) over µ(2).

2.2.5.2 The Wasserstein distance

An optimisation problem dedicated to solve this is Optimal Transport, also
called the Monge–Kantorovich problem. It can be formulated and solved with
Linear Programming. Here, we give a short overview of the Optimal Transport
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framework and the Wasserstein distance; for more details, we refer the reader
to papers such as (Solomon, 2018).

The common example given when introducing Optimal Transport is the
pile of sand problem: to quantify the distance between two piles of sand, we
calculate the amount of work needed to move one pile into the other. This
metaphor gave birth to another name for the Wasserstein distance: Earth
mover’s distance (EMD). The Wasserstein distance W is nonnegative, sym-
metric, and satisfy the triangle inequality: all properties that make it a proper
distance. On our problem, it can be computed the following way (with cos the
cosine distance):

W (c(1), c(2)) = min
γ

∑
i,j

γij cos(µ(1)
i , µ

(2)
j )

with γ1 = c(1)

γᵀ1 = c(2)

γ ≥ 0

(2.6)

In other words, we want to minimize the total work (minγ) given that the
transported mass is non-negative (γ ≥ 0), and that we start from c(1) to go
to c(2). Solving this equation leads to a transport plan γ. It can be seen as a
probability mass function over K ×K whose marginals are c(1) and c(2), and
quantifies what proportion of the mass c(1)

i at µ(1)
i should be transferred to µ(2)

j

in order to place a mass of c(2)
j there, in the most efficient way. This matrix

can be summed to obtain the Wasserstein distance: the sum of all the work
needed to solve the problem.

We note that is problem is completely different from the setup from the
previous section solved with the Jensen-Shannon divergence; instead of com-
paring two distributions, we compare two weighted sets of points. That is why
we do not need aligned clusters from a unique clustering; two independent
clusterings, one per time slice, could allow a better fit for each set of points
without harming the computation of the distance.

2.2.5.3 Regularisation: the Sinkhorn algorithm

The Sinkhorn algorithm is an entropic-regularized method; it is the most
common regularization strategy for optimal transport (Cuturi, 2013). We use
the same notation as for Wasserstein distance, and add a regularization term
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weighted by λ > 0:

Sink(c(1), c(2)) = min
γ

∑
i,j

γij cos(µ(1)
i , µ

(2)
j )− 1

λ
H(γ)

with γ1 = c(1)

γᵀ1 = c(2)

γ ≥ 0

(2.7)

Here, H is the entropy function written the following way:

H(γ) =
∑
i,j

γij log(γij) (2.8)

Controlling the regularisation amounts to tuning the parameter λ > 0.
As λ grows bigger, the Sinkhorn formulation converges to the Wasserstein
distance. A large λ leads to less numerical stability, and a small value of λ
can out-perform the Wasserstein distance. In our experiments, we start with
λ = 10−3 and increases it ten-folds until λ = 10.

2.3 Scalable extraction and aggregation

The different solutions for quantifying semantic change presented in the
previous section all have their limitations. They involve to save in memory
all the contextualised embeddings of each time slices (solutions 1, 3 and 4),
to cluster a large number of embeddings (solutions 3 and 4), or to forego the
differenciations of the different senses provided by the clustering, thus loosing
important information for interpretation (solutions 1 and 2). In this section,
we further explain these different limitations and propose two methods to
overcome them.

2.3.1 Scalability and interpretability limitations

The main limitation of the clustering and Average Pairwise Distance meth-
ods is the scalability in terms of memory consumption and computational time,
since the clustering needs to be applied to each word in the corpus separately
and since all occurrences of a word need to be saved in memory. For large cor-
pora with large vocabularies, where some words can appear millions of times,
the usability of these methods is severely limited.
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2.3.1.1 Complexity and memory consumption of clustering

The scalability issues of the methods can be divided into two separate
problems.

Memory consumption. The token embeddings of each target word are ag-
gregated into lists, on which clustering or Average Pairwise Distance is applied.
This procedure becomes unfeasible for a large set of target words or if the em-
beddings are generated from a large corpus, since too many embeddings need
to be saved into memory for further processing. To give an example, a single-
precision floating-point requires 4 bytes of memory and each contextualised
embedding contains 768 floats (Devlin et al., 2019), meaning that each em-
bedding occupies 3072 bytes if we ignore the additional memory of a Python
container (e.g., a Numpy list or a Pytorch tensor) required for storing this
data. If we want to use the clustering method on corpora of large size such as
the Aylien Coronavirus News Dataset4 which contains about 250 million to-
kens, about 768 GB RAM would be necessary to store the embeddings for the
entire corpus. If we limit our vocabulary to the 10 000 most common words,
we need to generate contextualised embeddings for 230 million tokens, which
is still about 707 GB of RAM.

Complexity of clustering algorithms. For the complexity analyses, we
denote by d the dimension of the embedding, k the number of clusters if pre-
defined, and n the number of contextualised embeddings i.e. the number of
word usages in the corpus. The time complexity of the affinity propagation
algorithm is O(n2td), with t being the predefined maximum number of itera-
tions of the data point message exchange. The time complexity of the simpler
k-means algorithm5 can be stated as O(tknd), where t is the number of it-
erations of Lloyd’s algorithm (Lloyd, 1982) for finding uniformly spaced sets
of points in subsets of Euclidean spaces and partitions of these subsets into
evenly sized convex cells.

To give an example of what this means for clustering of contextualised em-
beddings of frequent words, we can look at a widely used corpus for semantic
change detection: Google Books. It includes about 4% of all books ever pub-
lished. The word rocker appears in this corpus about 1 million times. For
k-means with k = 5 and a maximal number of iterations set to 300 (which
is the default in sklearn), about 300 × 5 × 1 000 000 × 768 = 1.152 × 1012

operations need to be conducted for the clustering. With affinity propagation
with the maximum number of iterations set to 200 (the default value), clus-
tering of the word rocker would require 1 000 0002 × 200× 768 = 1.536× 1017

operations, which is impossible to conduct in a reasonable amount of time even
4https://blog.aylien.com/free-coronavirus-news-dataset/
5Here we are referring to the Scikit implementation of the algorithm employed in this

work: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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on a high-performance cluster. The computational power needed to study the
evolution of the word people, which appears almost 660 million times in this
corpus, would be even more unreasonable.

2.3.1.2 Motivation for scalability

To avoid the scalability issue, the methods based on clustering of contextu-
alised embeddings in the literature are only applied to a small set of manually
pre-selected words, usually around one hundred (Giulianelli et al., 2020; Mar-
tinc, Montariol, et al., 2020a). In practice, this limitation drastically reduces
the possible applications of the methods, such a:

• Detection of the most changed words: Identification of words that
undergo the biggest semantic change is limited to a small manually prede-
fined subset of words for which the change has been somewhat expected in
advance. It prevents from detecting unexpected semantic change and notice
associated social and cultural phenomena.

• Group comparison: Comparison of the rate of semantic change of dif-
ferent categories of words (e.g., semantic categories corresponding to news
topics, different word types. . . ) becomes problematic due to small sample
size, since a larger set of words would be required for successful generaliza-
tion.

• Measuring semantic change of frequent words: Words that appear
very often in the corpus—e.g., more than hundred thousand times—are
hard to cluster due to quadratic time complexity of some clustering algo-
rithms, such as affinity propagation (Frey & Dueck, 2007), and are therefore
discarded or need to be randomly down-sampled.

Alternatively, when using the averaging aggregation method, embeddings
for each word are not collected in a list but rather summed together in an
element-wise fashion before being divided by the number of occurrences of the
word. Only 768 floats and an integer counter need to be saved for each word
of a vocabulary, leading to only 30.72 MB of RAM being required to store the
embeddings for the 10 000 most common words in a vocabulary. The approach
also does not require any clustering step. However, these representations lose
a lot of their interpretability: all word usages are merged into a single averaged
representation, leading to the loss of a lot of information on the different usages
of the words. This makes the method inappropriate for some tasks such as
automatic labelling of word senses.

2.3.2 Target words selection

To begin with, we propose a simple solution to cope with the scalability
issue: a preliminary step that would be applied on the full vocabulary of a
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corpus, to identify the words that may have undergone semantic change. We
investigate several scalable metrics.

A first set of metrics relies on the averaging method presented in Section
2.2.3. All contextualised embeddings are averaged at each time slice. The
set of contextualised embeddings for word w at time t is noted E(t)

w and their
average is noted µ(t)

w . The cosine distance between average embeddings is used
as a measure of semantic drift between time slices. The total drift is the cosine
distance between the average of token representations of the first time slice (at
t0 = 1) and of the last time slice:

dw = cos(µ(1)
w , µ(T )

w )

It represents the amount of change a word has undergone from the first to
the last period, without taking into account the variations in between. The
average incremental drift computes the mean of the drifts from each time step
to the next one, in order to measure the successive changes of word usage:

Dw = 1
T

T−1∑
t=1

cos(µ(t)
w , µ

(t+1)
w )

The third metric relies on the computation of a variation measure, sim-
ilarly to Kutuzov (2020). The variation is the cosine distance between each
contextualised embedding and a centroid, i.e. the average token embedding for
a given word. The mean of these cosine distances is the variation coefficient of
a word. The intuition is that for words that have several different senses and
usages, the distance to the centroid would be higher than for words that are
monosemous. However, this method does not make the distinction between
words that gain or lose senses and polysemous words that stay stable across
time.

To measure the evolution of a word’s variation, we compute its variation
coefficient inside each time slice t, for the set of contextualised embeddings
E(t)
w of word w at time t:

v(t)
w = 1

|E(t)
w |

∑
u∈E(t)

w

cos(µ(t)
w , u)

Then we take the average difference between variations at consecutive time
slices. This measure aims at detecting words that undergo changes in their
level of polysemy. For example, in a corpus divided into T time slices, the
global variation coefficient is:

Vw = 1
T

T−1∑
t=1
|v(t)
w − v(t+1)

w |
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Finally, we can choose a threshold (as a fraction of the size of the full
vocabulary) to get a reduced list of target words, from the ranked list of all
words according to one of these measures. To compute these metrics, we only
need to loop over the dataset once or twice while storing one vector per word
in the vocabulary. Thus, they can be used to filter the vocabulary before
applying heavier and more accurate methods.

2.3.3 Scalable extraction of contextualised embeddings

In this section, we investigate a solution to the scalability problem: a
method to cluster contextualized word embeddings, which is a mixture of the
clustering-based and averaging-based approaches described in section 2.2. The
proposed method offers improved scalability while still generating interpretable
representations.

We follow the embeddings extraction method described in the previous
section: we feed all sentences containing a given target word into BERT and
extract the contextualised embeddings. The difference lies in the selection
of contextualised embeddings. At each occurrence, we decide whether the
embedding vector should be saved in the list of embeddings for the word or
merged with one of the previously obtained vectors stored in the list. To
improve the scalability of the method, we limit the number of contextualised
embeddings that should be kept in memory for each target word in each time
slice to a predefined threshold. The threshold of 200 was chosen empirically
from a set of threshold candidates (20, 50, 100, 200, 500) and offers a reasonable
compromise between scalability and performance. The new vector is merged
if it is similar enough to one of the saved vectors or if the list already contains
the predefined maximum number of vectors (200 in our case).

More formally, we add the new embedding enew to the list of word embed-
dings L = {e1, . . . , en} if:

|L| < 200 ∧ ∀ei ∈ L : cos(enew, ei) > ε

ε is the threshold for the cosine distance. In practice, we set it to 0.01.

If |L| ≥ 200 or if any vector in the list L is too similar to enew, we find the
element em in the list which is the most similar to enew (i.e., which minimize
the cosine distance):

em = arg max
ei∈L

cos(ei, enew)

This element em is then modified by summing it with enew: em ← em + enew.
Besides storing 200 word representations for each word in each time slice, for
each group of summed-up representations we also store the number of summed-
up elements. When adding an embedding to element em, simultaneously, the
counter associated with em is incremented: cm ← cm + 1. Once the model has
been fed with all the sequences in the time slice, we divide the final summed-up
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vector by cm. We obtain an averaged embedding for each of the 200 elements
in the list. Note that the cosine distance to a sum of vectors is the same as to
their averaging, thus there is no need to average after each step.

In short, we first collect 200 word vectors avoiding only near-duplicates
representations. Once we have obtained a maximum number of vectors, the
subsequent vectors are merged to the most similar ones among the 200 repre-
sentations already collected.

Note that by having only 200 merged word usage embeddings per word
per time slice, and by limiting the vocabulary of the corpus to 10 000 target
words, we require around 6.14 GB of space for each time slice, no matter
the size of the corpus. While this still uses 200 times more space than the
averaging method, the proposed method nevertheless keeps the bulk of the
interpretability compared with the standard clustering method.

2.3.4 Quantifying temporal shift

After collecting 200 vectors for each word in each time slice, we can perform
the same semantic shift detection methods as for the non-scalable embeddings.
First, we can compute the Average Pairwise Distance between the sets of 200
embeddings of a word in adjacent time slices. Second, we can perform cluster-
ing of the contextualised word embeddings of all time slices jointly, to derive a
unique cluster distribution for all occurrences of a word at different time slices.
The distributions can be compared using the Jensen-Shannon Divergence.

We can also use the Optimal Transport method, by computing the Wasser-
stein or Sinkhorn distance between the sets of representatives of each cluster
weighted by the cluster distribution. This can be performed with either a
unique clustering or one clustering per time slice. Moreover, the 200 em-
beddings per time slice extracted by the scalable method have an additional
information that can be valuable: the count of word occurrences cm that were
merged with each of the 200 embeddings em. This information can be used
as weights for the averaging of embeddings in each cluster and time slice, to
obtain the set of representatives. We call this method weighted OT.

Finally, we can use the Optimal Transport method on all pairs of 200
embeddings without performing clustering. The distributions used to weight
the cost matrix in the Wasserstein distance are the counts associated with all
embeddings. We call this method full OT, as it does not require any dimension
reduction through clustering and averaging.
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2.4 Semantic shift detection and interpreta-
tion

We use the information on word usage extracted from the different time
slices to deduce two pieces of information:

1. How much does the usage of a given word vary in the corpus?

2. What is the change about, which usages of the word are involved? How
to make an interpretation of this change?

Quantifying semantic change. We use the strategies defined in Section
1.6 to measure the drift of a word: the incremental drift, from each time slice
to the next one, the inceptive drift, from the beginning of the period to each
time slice, and the full drift, between t0 = 1 and the last time slice only.

The distance measure used depends on the type of information extracted
from the contextualised embeddings for a given target word. It can be aver-
aged embeddings u(t) at each time slice, distributions of clusters c(t), pairs of
average cluster embedding and cluster distribution (µ(t), c(t)) or raw matrices
of contextualised embeddings E(t).

We sum up the semantic shift detection measures introduced in this chap-
ter. Without preforming any aggregation method, the matrices of contextu-
alised embeddings can be compared using the average pairwise distance (APD).
For the averaging aggregation method, the averaged embeddings at each time
slice can be compared using the cosine distance (cos). For the clustering aggre-
gation method, the divergence between cluster distributions can be measured
with the JSD and its generalisation to n probability distributions. For the Op-
timal Transport method which involve consecutively clustering and averaging
embeddings, the difference is computed using either the Wasserstein Distance
or the Sinkhorn Divergence. All these measures can be computed with either
the standard or the scalable embeddings.

To put it in a more formal way, the drift between two time slices for a given
target word is to be evaluated in the following way:

d(t1, t2) =


APD(E(t1), E(t2)) when using no aggregation
cos(u(t1),u(t2)) when using averaging
JSD(c(t1), c(t2)) when using clustering
WD(µ(t1),µ(t2), c(t1), c(t2)) when using optimal transport.

(2.9)

The evaluation can be made using different methods depending on the
available annotations associated with the corpus. The words can be ranked
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according to how much they vary along two or more time slices; if a ground-
truth ranking exists, the ranking obtained can be evaluated using Spearman’s
rank correlation to compare with the true ranking. In an exploratory scenario,
the ranking is used to detect the most changing words and then investigate the
most unevenly distributed clusters over time for interpretation of the change.
Sometimes more detailed information is available; for example, if we use a
generated corpus with synthetic semantic drifts, the information used for the
generation of the drifts can be used as ground truth for evaluation. It might
be the distribution of senses of a target word at each time slice; in that case,
the vectors of drifts at all time slices can be computed and compared with the
incremental drift or the inceptive drift.

Interpretation. Once the most changing words are detected, the next step
is to understand how they change between two time slices by interpreting
their clusters. We want to identify a common usage to all the contextualised
embeddings in each cluster.

In order to capture the clusters involved in the variation, we identify the
ones that have an uneven distribution across the considered time frame, by
looking at p(C, T |w) . It allows for example to find the clusters that vary the
most, and the ones that appear or disappear through time.

However, a cluster may contain several hundred or thousands of word us-
ages contextualised in sentences. Interpreting the underlying sense behind each
cluster by manually looking at the sentences inside it would be time-consuming.
To reduce human work, we use two methods.

First, we identify the centroids of the clusters: the example (in our case,
the sentence) that is the closest to the centroid is assumed to be representative
of the context of the word occurrences inside the cluster. Thus, we observe
these central sentences to get a preliminary idea of the word usages in context.

Second, we set up a keyword detection method to characterise the different
clusters in relation to one another. We rely on the tf-idf (Term Frequency–
Inverse Document Frequency) method. Each cluster containing a set of sen-
tences, we consider them as documents and the set of clusters as a corpus.
The goal is to identify the most discriminant words for each cluster. The stop-
words and the words appearing in more than 50% of the clusters are excluded
from the analysis, to ensure that we select as keywords only the words that
are specific to one cluster. We compute the tf-idf score of each word in each
cluster. We obtain a ranked list of keywords for each cluster. The words with
the highest score in a cluster are the most important for the analysis of this
cluster: they are used as keywords to ease its interpretation.

Selection of the clustering algorithm. The keywords extracted for each
cluster will only provide meaningful interpretation if the quality of the cluster-
ing is high; otherwise, it would just lead to a spurious interpretation. However,
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it is hard to find the best clustering method to apply to the vocabulary since
their performance vary across datasets (see Chapter 3). It is even harder to
know which clustering method and what number of clusters produce the most
meaningful clustering for each specific word.

A preliminary evaluation of the clustering can be made using the silhouette
score (see Section 2.2.4). However, it only evaluates the adequacy of a token
to its cluster compared to the other clusters. As a complementary evaluation,
we propose to use two measures relying on the list of keywords characterising
each cluster. These measures come from the topic modelling literature, where
each topic is characterised by a distribution over the vocabulary.

First, the Normalized Point-wise Mutual Information (NPMI, Aletras and
Stevenson, 2013) measures the coherence between the top k words character-
izing each cluster, using word co-occurrences in the set of sentences. A high
NPMI measure indicates a coherent clustering, thus easier to interpret.

Secondly, we adopt a topic uniqueness measure (TU, Nan, Ding, Nallapati,
and Xiang, 2019). TU is computed using the top k keywords for a given cluster:

TU = 1
k

k∑
i=1

1
count(wi)

,

where count(wi) is the number of times the i-th word in the top list of this
cluster appears in the top list of any clusters. We compute the global TU
measure for the whole clustering as the mean of the TU of all clusters. The
higher the TU measure is (i.e. closer to 1), the higher the diversity of clusters.

We take k = 10 top keywords to compute the NPMI and k = 25 for TU.
We use these measures to select the best clustering method and the optimal
number of clusters.

2.5 Conclusion

In this chapter, we proposed two methods to extract contextualised embed-
dings from a pre-trained language model. We presented these methods for the
BERT model, but they can be applied to any pre-trained language model that
can produce contextualised word representations. The first extraction method,
the standard method, extracts and stores the embeddings of all occurrences
of a word. We showed the limitations of this method in terms of scalability,
for example for situations where we want to identify semantic change in a
large vocabulary. Thus, we proposed a scalable method to extract only 200
embeddings per word per time slice. It extracts contextualised embeddings in
a streaming fashion, and groups them simultaneously.

We also listed four types of methods to quantify semantic change of a word
across two periods, using the standard or scalable extracted embeddings: Av-
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erage Pairwise Distance, Averaging + Cosine Distance, Clustering + Jensen-
Shannon Divergence, and Optimal Transport with Wasserstein or Sinkhorn
distances. These different methods all have their advantages and drawbacks,
in terms of computing time, memory consumption and interpretability. More-
over, they all capture different information when processing the contextualised
embeddings: the contextual diversity, in the case of APD; the global drift av-
eraged over all possible contexts, in the case of averaging; the increase or
decrease of the relative proportion a word sense, in the case of clustering with
JSD. In the following chapter, we apply all methods to several corpora using
the language model BERT, to compare their behaviour and evaluate their abil-
ity to detect semantic change. We also propose a use case of semantic change
detection on a corpus of newspaper articles, to showcase the ability of these
methods to detect meaningful and interpretable semantic change.
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As noted by most authors in this field, evaluating lexical semantic change
detection methods on a large scale is notoriously challenging (Frermann &
Lapata, 2016; Tahmasebi et al., 2018). It is a difficult task to annotate, re-
sulting in few labeled corpora for evaluation. Many authors resolve themselves
to qualitative evaluation only, often through manual interpretation of the de-
tected semantic drifts. Another solution is to generate a corpus with synthetic
semantic drifts. At the time of writing, the recent creation of new manually
annotated corpora allows researchers to conduct more thorough evaluation.

In this chapter, we apply the different models introduced in Chapter 2 to
several corpora in order to compare them, to observe their behaviour and to
evaluate them on annotated data. Parts of the experiments in this chapter
were made in collaboration with Matej Martinc from the Jozen Stefan In-
stitute (Ljubjana, Slovenia), and Elaine Zosa and Lidia Pivovarova from the
University of Helsinki (Finland).

The first section of this chapter is dedicated to a review of the corpora and
the evaluation methods used in the literature. We divide evaluation meth-
ods into three categories: without manual annotation (including qualitative
evaluation), with manual annotations, and with synthetic data.

Then, in Section 3.2, we apply the methods introduced in Chapter 2 and
a selection of methods from Chapter 1 to a large corpus of news articles, the
New York Times Annotated Corpus. We analyse the drifts identified by the
various models and compare their behaviour, deducing their respective pros
and cons.

Sections 3.3 and 3.4 introduce 6 annotated datasets for evaluation of se-
mantic change detection. We provide a detailed comparison of all the methods
exposed in Chapter 2; we conclude with a comparison with other state of the
art approaches and an error analysis.

Section 3.5 exposes some methods and results on a complementary task:
instead of measuring semantic change, we attempt to detect whether a word’s
meaning changes or not in a binary fashion.

Finally, Section 3.6 leaves performance aside to focus on the practical ap-
plication of semantic change detection, in particular through interpretation.
We apply semantic change detection on a large corpus of covid-related news
articles and comment on the results.

3.1 Literature: data and evaluation

A crucial question when building annotations for any task is whether the
annotations should be done with respect to the corpus, or to the outside world
(Tahmasebi et al., 2018). In the first case, semantic change annotations need
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to be performed relatively to what is in the corpus. However, the scope of the
analysis is then limited to the extend to which the corpus is representative of
language in the outside world. In the second case, external resources such as
dictionaries can be used to get information on word senses across time. These
resources must be matched with a corpus to make the evaluation. However,
such resources can hardly give precise information on semantic change.

3.1.1 Corpora for semantic change detection

The datasets and the granularity we use depend on the kind of semantic
change that we wish to exhibit. We can either look for short-term changes—
when the corpus spans several months, for example in the case of news articles
or tweets—or long-term changes—when the corpus spans decades or centuries,
for example in the case of books and literature. The type of text, depending
on the source, is also an important factor: one will not look for the same kind
of lexical semantic drift in a corpus of business news and in a corpus of Reddit
comments, even though they have the same granularity. Here, we give a few
examples of the most common corpora for different granularities.

A low-granularity corpus is the Helsinki corpus.1 It includes documents
of multiple genres from Old, Middle and Early Modern English (from 850 to
1710), for a total of around 1.5 million words, to study the history of English
under the scope of morphology and syntax on top of semantics.

A very widely used corpus is Google Books Ngrams 2, released in December
2010. It consists of sub-corpora in several languages; on top of English, there
are for example Chinese, French, German, Hebrew corpora. . . Each corpus is
organized as n-gram counts per year, with n = 1 to 5, and is constructed
using all the books digitized in Google Books. The English n-grams corpus
cover about 5% of all books ever published. It was used in the literature of
computational linguistics to study semantic change, dividing it into yearly time
spans (Bamler & Mandt, 2017) or decades (Gulordava & Baroni, 2011; Mitra et
al., 2014). However, it is criticised for its limitation to 5-grams, preventing the
analysts to extract large contexts to study word usage. Moreover, the presence
of OCR errors decrease the quality of the corpus, and it is not genre-balanced
across time. For example, the proportion of scientific literature increases across
time and may lead to biased observations (Pechenick, Danforth, & Dodds,
2015).

A corpus designed for historical linguistics is the Corpus of Historical Amer-
ican English (COHA, Davies, 2012). It contains more than 400 million words
from 1810 to 2000. As a historical corpus, it is smaller than the Google books
corpus but it has the advantage that data from each decade are balanced by
genre—fiction, magazines, newspapers, and non-fiction texts, gathered from
various Web sources. Its contemporary counterpart, the Corpus of Contempo-

1http://korpus.uib.no/icame/manuals/HC/INDEX.HTM
2http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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rary American English (COCA, Davies, 2010) spans from 1990 to 2017. It is
also genre-balanced and contains more than 560 million words.

Also used for short-term semantic change analysis, the New York Times
Annotated Corpus (NYT3, Sandhaus, 2008) collects articles from the New York
Times from 1987 to 2006. It has been used a lot in the literature of diachronic
word embeddings. Szymanski (2017) and Zhang et al. (2015) rely on this
corpus to solve a task of temporal analogies, while Azarbonyad et al. (2017)
use it to analyse the references to terrorism and Islam before and after the
World Trade Center attacks. Yao et al. (2018) base their analysis on a New
York Times corpus similar to this one, but extracted from the newspaper’s
API over a longer period (27 years).

For very short-term diachrony, corpus of tweets have been used in the
literature (Kulkarni et al., 2015; Bamler & Mandt, 2017; Shoemark et al.,
2019; Jawahar & Seddah, 2019).

Finally, more domain-specific corpora have been studied: Amazon Movie
Reviews (Kulkarni et al., 2015), political corpora such as the State of the
Union addresses4 (Bamler & Mandt, 2017) or U.S. Senate speech (Rudolph &
Blei, 2018), or scientific corpora such as ACM abstracts and Machine Learning
papers from ArXiv (Rudolph & Blei, 2018).

In this section, we mostly described English corpora. More examples of
corpora, as well as corpora in other languages, can be found in Tahmasebi
et al. (2018).

3.1.2 Evaluation methods

The study of semantic change faces the issue of evaluation. Very few la-
beled corpora exist, as it is a task notoriously difficult to annotate. Evaluation
can be done using several types of resources: (i) indirect information, usu-
ally external resources such as dictionaries; (ii) direct (manual) annotation of
semantic change or semantic relatedness in a corpus; or (iii) by generating a
corpus with synthetic semantic drifts.

Regardless of the presence or absence of any type of annotation for the task
of semantic change detection, all corpora are annotated with the period when
each document was written.

3.1.2.1 Corpora without manual annotations

To evaluate semantic change detection methods without semantic change
annotations, one of the first things we can do is evaluating the primary tool

3https://catalog.ldc.upenn.edu/LDC2008T19
4Annual addresses of U.S. presidents since 1790, available at http://www.presidency.

ucsb.edu/sou.php
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of these methods: the diachronic word embeddings. Evaluating the quality of
word embeddings can be done in a synchronic way, using intrinsic measures.
For example, Hamilton et al. (2016) evaluate their word embeddings at the
different time periods on a word similarity task using a manually annotated
corpus.

In the literature, most authors observe the evolution of some selected words,
conducting a qualitative and subjective evaluation, relying on the intuition of
known past word meaning change. For example, Kim et al. (2014) observe
drifts of words that went through well-known semantic change, such as gay
and cell. They also give interpretations of semantic change, using neighbouring
words in the vector spaces of the two periods as well as examples of sentences
containing the target word, to check whether the less well-known drift detected
by the model makes sense (such as with the word actually).

We can also compute the held-out predictive likelihood of the diachronic
embeddings model and compare it with a model with embeddings that are
stable across time, to evaluate how the temporal aspect of the model improves
word representation (Rudolph & Blei, 2018; Bamler & Mandt, 2017; Frermann
& Lapata, 2016).

Another possibility is to evaluate diachronic models using a downstream
task: predicting the time slice where a word appears. This task is called word
epoch disambiguation. It was introduced by Mihalcea and Nastase (2012).
They split the Google books corpus into three epochs: 1800±25 years, 1900±25
and 2000±25. For a set of 165 target words, they classify all the occurrences of
these words into time slices, using their context and part-of-speech information.
Later, the SemEval-2015 Task 7: “Diachronic Text Evaluation” (DTE, Popescu
and Strapparava, 2015) took place. A corpus of newspapers published between
1700 and 2010 is divided into slices of 25 years. The task is to identify the time
interval when a piece of news was written, among the set of non-overlapping
consecutive time slices. Frermann and Lapata (2016) evaluate their model
on this task. Lin et al. (2019) use it to evaluate their diachronic approach,
classifying documents represented with diachronic embeddings methods. The
advantage of this task is that it does not require additional annotation.

It is possible to use external resources to obtain information on the evo-
lution of the senses of words. Dictionaries are a powerful tool, in particular
the ones that have published different editions over history. As they are build
by committees of lexicographers, they are a particularly reliable resource. The
Oxford English Dictionary, for example, is one of the largest dictionaries for
the English language. It has several editions, the first one published in 1928.
On top of lemma definitions, this dictionary includes the year of first appear-
ance of a sense. Tsakalidis et al. (2019) use it to create a list of 65 words that
have gained a new sense in English between the years 2001 and 2013, such
as “cloud” and “tablet”. A similar dataset is the Word Sense Change Test-
set (Tahmasebi & Risse, 2017b), a list of 23 words that went through usage or
meaning change during the past centuries, together with a list of 11 words that
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remained stable. The words were selected using Wikipedia, dictionary.com and
the Oxford English Dictionary.

Another possible resource are lexical databases such as WordNet (Fellbaum,
1998). Mitra et al. (2015), on top of using the New Oxford American Dictio-
nary as gold standard to identify senses, use WordNet to perform an automatic
evaluation of their semantic change detection method. WordNet is composed
of synsets: each synset is a set of lemmas that all have the same meaning,
this meaning being one of the senses of a specific word. The authors map
each disambiguated sense to senses of synsets in WordNet, using it to confirm
that a detected new sense is really distinct from the other senses of the word.
Frermann and Lapata (2016) use the same method to validate detected sense
births.

However, Tahmasebi et al. (2018) warn against the use of external resources
such as WordNet and Wikipedia. The fact that these resources usually lack
time information makes them unreliable. They might not cover all vocabulary
and word senses of the historical corpora under study; moreover, contrarily
to resources such as Oxford English Dictionary, WordNet has no information
about when a sense appeared.

3.1.2.2 Annotated corpora

To evaluate diachronic approaches, the type of information one would ex-
pect is a human-annotated list of words with a quantified degree of semantic
shift for a list of successive time periods. However, such information is very
complex to build. A change in word usage is often linked with a slow cultural
shift: it is usually very hard to identify the time when the change started,
or when a sense took over another one. Thus, all annotated datasets at the
time of this thesis only compare the usage of a word between two disjoint time
periods.

Until recently, few of such dataset could be found, because of the difficulty
of annotation. The first dataset that truly spread in the research community
and became a common evaluation tool consists of 100 manually annotated
words in English. It was build by Gulordava and Baroni (2011) and is some-
times called the “GEMS” dataset in the literature, following the name of the
GEMS Workshop where the associated paper was published in 2011. Recent
initiatives from the NLP community start to produce more annotated data,
such as the SemEval 2020 Task 1: Unsupervised Lexical Semantic Change
Detection (Schlechtweg et al., 2020) and its equivalent in Italy, DIACR-Ita
(Basile, Caputo, Caselli, Cassotti, & Varvara, 2020). We can also cite “Di-
achronic Usage Relatedness” (DURel) in German (Schlechtweg, Schulte im
Walde, & Eckmann, 2018). An example of domain-specific annotated dataset
is the Reddit corpus (Del Tredici, Fernández, & Boleda, 2019). The authors
build a corpus with two non-consecutive time bins, 2011–2013 and 2017, using
user-generated language from the r/LiverpoolFC subreddit. The members of
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the subreddit annotated 97 words in terms of semantic shift between the two
periods, including 34 words with identified semantic shift and the rest being
stable confounder words. Among these annotated datasets, we use GEMS, Se-
mEval and DURel for our experiments in this chapter. These three datatsets
are described in more details in Section 3.3.1.

The annotation can be made according to two main schemes. The simplest
one consists in asking annotators to provide information on each word of the
list, without seeing them in context. The second one involves showing words
used in sentences from different periods and asking the annotators to rate the
relatedness of the usages.

Annotated data for semantic change detection usually consists in lists of
words associated with information on their evolution. This information can be
of several types. It can be a ranking of the words from most changed to least
changed, usually accompanied by scores (as for GEMS, SemEval and DURel).
It can be binary information, stating whether each word has undergone se-
mantic change or not. Or it can be pairs of related words, associating a word
with an analogous one at a different time period. The latter is called temporal
analogy.

In this category, Szymanski (2017) proposes to determine the equivalents of
a word taken at a given period on other time slices. Such an equivalent exists
if it occupies a similar place in the word representation space, for a different
time slice. The detection of temporal analogies brings a complementary look
into the measurement of semantic change: instead of determining words whose
meaning has changed over time, we determine meanings whose associated word
has changed over time.

Some databases of temporal analogies are made available by Yao et al.
(2018) and Szymanski (2017). The former is constructed using articles ex-
tracted from the New York Times from January 1990 to July 2016. The latter
is constructed using the New York Times Annotated Corpus with the help of
encyclopedic sources. A database of temporal analogies consists in [period,
word] pairs, where the word is representative of its concept for the period in
question. Since the embeddings of each time slice are all located in the same
vector space, they can be directly compared. Thus, solving a temporal anal-
ogy of [period1, word1] for period2 consists in determining the vector closest
to the one of word1 at period1 among the embeddings of period2. The word
associated with this vector is considered analogous. For example, in the New
York Times Corpus, the word “Reagan” designates in 1987 the President of
the United States then in office. It is considered equivalent to the word “Bush”
in 1990, the name of the president that year.

A limitation of these corpora is the temporal range. Almost all classical
semantic change datasets that are human-annotated split the corpus into only
two time periods, not allowing us to consider the sequential nature of semantic
change. Temporal analogy use several periods, but only provide information
about pairs of words at given time slices, without sequential information either.
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A solution commonly used in this field to overcome these limitations is to
generate a corpus with synthetic semantic drifts.

3.1.3 Generating synthetic semantic drift

As argued by Schlechtweg and Schulte im Walde (2020), annotated test sets
for semantic change detection are too small to be able to generalize the results
obtained from experimenting on them. One of the main reasons for this small
size is the complexity of annotation for this task. It led the research commu-
nity to turn to the workaround of synthetic data generation. Large synthetic
corpora can be generated by creating synthetic drifts over several time slices,
overcoming the two-periods limitation of annotated data. Moreover, creating
synthetic data allows researchers to control precisely the semantic drifts and
all the other parameters involved in language change. Generating a corpus of
synthetic semantic change allows us to evaluate models on several points:

• Working on other tasks derived from measuring semantic change, such as
binary semantic change (i.e. detecting if a word gained or lost a sense or
not), detecting the time period when the change started, and at what speed
the change happened.

• Studying the impact of polysemy and frequency, two major variables in
semantic change, and how models handle noise in general.

• Distinguishing the category of semantic change undergone by words (did a
sense appear, disappear, change. . . ).

An increasing amount of papers rely on the creation of a corpus of synthetic
semantic change to tackle the issue of evaluation, with different strategies to
build the synthetic corpus. Kulkarni et al. (2015) duplicate a Wikipedia corpus
several times to create time slices. They introduce changes in the later time
slices by replacing some selected words by an unrelated word according to a
chosen probability, and test their models on the detection of the time when the
change occurred. The new word used to perturbate the corpus by replacing
the old one can be either of the same part-of-speech, or of a different one.

Rosenfeld and Erk (2018) and Shoemark et al. (2019) use pseudo-words:
they merge two words that do not share a common sense, creating a pseudo-
word, and generate synthetic change by controlling the proportion of sentences
using each of the two original words in the successive time slices of a corpus.
Dubossarsky et al. (2019) use a similar sense injection system, but with both
unrelated and related word pairs, to get better understanding on how much
the new sense should be different in order to be detected by semantic change
detection methods.

However, as advised by Schlechtweg and Schulte im Walde (2020), it is
preferable to use the natural polysemy of words for the synthetic drift to be as
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close as possible to reality. Indeed, in language change, the different senses of a
word evolve in a coherent way: when a new sense appears, it is usually related
to the existing senses of the word. Thus, instead of controlling the proportion
of sentences containing two unrelated words merged as a pseudo-word, they
advise to use sentences containing different senses of a unique word.

3.2 Preliminary analysis: qualitative compar-
ison of embeddings

In this section, we study in an unsupervised fashion the behaviour of the
different kinds of methods introduced in the previous chapters. We apply them
to the New York Times Annotated Corpus (NYT) introduced in Section 3.1.1,
a large corpus of newspaper articles spanning 2 decades. A similar experiment
is conducted in Appendix C on the same corpus, focusing on the ability of the
different diachronic embeddings models to handle data scarcity.

We study the different methods empirically, by looking at the distribution
of the drifts they detect, as well as by comparing them directly through:

1. The correlation between the rankings of the vocabulary by degree of
semantic change.

2. The average correlation between the series of drifts for all words.

3. The top drifting words on the full period.

3.2.1 Models and experimental framework

We analyse the behaviour of the different methods introduced in Chapter 2
using BERT contextualised embeddings. We compare them with methods us-
ing non-contextual embeddings from Chapter 1. In order to ease the compari-
son between different non-contextual embeddings methods, we use a common
model as a basis: the Dynamic Bernoulli Embeddings model (DBE, Rudolph
and Blei, 2018). We implement several variations of this model by changing
its regularisation.

3.2.1.1 Dynamic Bernoulli Embeddings and regularisation variants

We implement two variants of the DBE model. The goal is to reproduce
the behaviour of different models from the literature, keeping the DBE model
as a common basis to get optimal comparability of the results. This also aims
at studying more deeply the behaviour of dynamic embeddings and the most
useful features to detect semantic change. We rename the classical DBE model
as “DBE-Dynamic” to distinguish it from its variants.
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In the loss function used to train the DBE model, the last term is a regu-
larisation term on word vectors and on their drift (see Section 1.5.3 for more
details):

Lprior(ρ,α) = −λ0

2
∑
v

‖αv‖2 − λ0

2
∑
v

‖ρ(0)
v ‖2 − λ

2
∑
v,t

‖ρ(t)
v − ρ(t−1)

v ‖2. (3.1)

The regularisation of the classical DBE aims at preventing the vectors at
period t from going too far apart from those at t−1. We define a first variant,
which goes closer to the idea of incremental updating (Kim et al., 2014). We
remove the constrain on the temporal drift of the embeddings in the DBE
model. In that situation, the loss function (Equation 1.10) only includes the
first two terms of the log-prior (Equation 3.1) on top of Lpos and Lneg. We
name this variant DBE-Incremental.

The second variant consists in deleting the hypothesis of chronology in
the successive temporal word vectors. The last term of the log-prior Lprior is
replaced by ∑v,t ‖ρ(t)

v −ρ(0)
v ‖2. It forcefully prevents the vector ρ(t)

v to grow too
far from its original position ρ(0)

v , which is the prior of the representation of the
first time period ρ(1)

v . This idea is similar to the model of Han, Gill, Spirling,
and Cho (2018) or Hamilton et al. (2016) where the diachronic embeddings
are learned independently on each time slice. This variant is named DBE-
Independant.

3.2.1.2 Experimental framework

We apply these different methods to the New York Times Annotated Cor-
pus5 (NYT, Sandhaus, 2008). It collects around 1 855 000 articles from the
New York Times ranging from January 1st 1987 to June 19th 2007. We divide
the corpus into T = 20 yearly time steps (the incomplete last year is not used
in the analysis).

For the DBE models, we remove stopwords and least frequent words. To
tune the hyperparameters, we use the log-likelihood of positive examples Lpos
measured on the validation set (10% of the full corpus). We train each model
for 100 epochs, with a learning rate of 0.1, using the Adam optimiser. We
choose an embedding dimension d = 100. The initial drift parameter λ0 is set
to λ

1000 as advised by Rudolph and Blei (2018), and λ is set to 1. Finally, we use
a context window of 4 words and a negative ratio of 10. The embeddings are
trained with 1000 mini-batches per time step. A static model is first trained on
the whole dataset. Its parameters can then be used to initialise the dynamic
model’s ρ and α.

We want to observe the global behaviour of the methods, thus requiring to
analyse a large vocabulary instead of a limited list of hand-picked target words.

5https://catalog.ldc.upenn.edu/LDC2008T19
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We select the top 10k most frequent words (excluding stop-words) to quantify
their semantic change over time. For the DBE models (DBE-dynamic, DBE-
incremental and DBE-independant), to measure semantic change of words, we
use the cosine distance.

For the BERT models, we extract the contextualised embeddings from the
corpus using the scalable method introduced in Section 2.3, leading to 200
embeddings per word for each of the 20 time slices. The scalable method is
necessary given the large number of words in the vocabulary and the size
of the corpus. We use the pre-trained bert-base-uncased model from the
transformers6 library. Then, we apply the different aggregation methods
introduced in Chapter 2: the Average Pairwise distance (APD); the averaging
method with cosine distance to compare average embeddings between time
slices (Avg); the clustering method (k-means with k = 5), comparing clusters
distributions with the Jensen-Shannon divergence (Clust-JSD) or comparing
average embeddings inside clusters with the Wasserstein distance (Clust-WD);
and the Wasserstein distance on all 200 embeddings (WD).

3.2.2 Comparison

We compare the distribution of drifts and the most drifting words according
to each method. We also compute the correlations between the rankings and
the drifts time series. It allows us to conclude on the respective limitations of
all methods.

3.2.2.1 Comparison of drifts distribution

In this section, we examine the distribution of word drifts outputted by
each model. We plot the superimposed histograms of successive inceptive drifts
from t0 = 1987 to each subsequent time step, for all studied models, for the 10k
words under study. On the histograms, the darkest colour curve represents the
drift between t0 = 1987 and t = 1988 and the lightest one, the drift between
t0 = 1987 and t = 2006. Figure 3.1 shows how the histograms are build in more
details. Note that the figures of this section require colours to be interpreted.

Figure 3.2 shows these drift histograms for each model under study. The
first 5 plots are BERT embeddings with the different aggregation methods and
distance measures. The last 3 plots are the variants of the DBE model with
drift computed using cosine distance.

Highlighting directed drifts. A first crucial property is the directed as-
pect of the drifts: when the word vectors progressively drift away from their
initial representation in a directed fashion. This behaviour can be identified
on the plots by the color gradient. The classical DBE model (DBE-dynamic)

6https://huggingface.co/transformers/
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Figure 3.1 – Histogram of drifts between the embeddings at t0 = 1987 and
t for various values of t with the DBE model. Two years are singled out to
expose how the full histogram is built, note that the abscissa scale differ. The
ordinate axis is logarithmic.

shows this behaviour well, with a very clear colour gradient. This means that
the model mainly captures drifts with a trend, rather than short changes in
embeddings followed by returns to normal. This is explained by the use of
the diffusion process which link the time steps in equation 1.9: it allows the
dynamic model to emphasise the directed nature of drifts and to ignore brief
variations. These brief variations are due to events that temporarily mod-
ify the context in which a word appears without having a long-term impact
on its meaning. They are captured by the DBE-independant version of the
model, whose histogram does not show a directed evolution of drift as a func-
tion of distance to t0, and therefore does not distinguish these “noises” from
the general trend in the evolution of words. Finally, despite the absence of
a regularisation term on drift, the DBE-incremental model naturally captures
a relatively directed drift over time although the histogram shows a greater
sensitivity to noise than the classical DBE model.

Among the methods using BERT embeddings, only APD does not show
directed drifts. It makes sense, as the main idea behind APD is to compare
all occurrences of a word in a period to all the ones of another period: there
is no process to smooth the outliers and the noise or to sum up the main
information. On the contrary, methods based on averaging or clustering of
BERT embeddings manage to highlight the directed nature of word usage
drift. Orevall, no color gradient is as “clean” as the one from the DBE-dynamic
model. However, word usage change is never perfectly directed; by enforcing
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this property to this extend through drift regularisation, the model can create
spurious directed drifts or hide important jumps.

Discriminating stable words. The second property to highlight is the ca-
pacity of the models to discriminate words that drift from words that stay
stable. From the human point of view, a majority of words has a stable mean-
ing (Gulordava & Baroni, 2011); especially on a dataset covering only two
decades like the NYT. On the histograms, this characteristic is revealed by
the distribution of the yellow curve (drift between the first time slice and the
last one): when it takes low values for a lot of words, it means that most
words are stable. The DBE-dynamic and DBE-incremental histograms have a
large number of words with very low drift. The BERT-averaging and BERT-
clustering histograms have a very similar shape. The DBE-independant model,
by introducing a regularisation with respect to the initial embeddings, strongly
enforces this property: a large part of the words are almost invariant over the
whole corpus, and only a selection of drifts stand out.

A system a bit different is BERT-WD, which takes the Wasserstein distance
between the full set of 200 embeddings per period. The amount of drifts that
the words go through is globally higher, with a peak further from zero than
for the other systems. Finally, the APD curve has a very different distribution
shape, with the peak being close to the middle of the distribution. It resemble
a normal distribution (plotted on a logarithmic axis), while one would expect
the drifts to have an exponential distribution with few words having a large
drift and many words having a low one.

3.2.2.2 Correlation between drifts

We compare the different systems together using correlation, to determine
whether they capture the same information.

First, we compare the word drift ranking outputted by each model. We
quantify the semantic change of each of the 10k target words by computing
the distance between the first and the last time slice (the full drift). Then, we
rank the words by distance and use the Spearman rank correlation to make the
comparison. The results can be found in Table 3.1. As expected, the models
using the same information have high correlation. In particular, the two clus-
tering methods, which compare distributions of clusters, are highly correlated.
The averaging, APD, and the two methods using the Wasserstein distance, all
compare BERT embedding vectors and are correlated. However, almost none
is correlated with the rankings of the DBE models, meaning that they do not
capture the same information. Similarly, the ranking from clustering with JSD
is completely uncorrelated with the APD ranking. To better understand this
behaviour, we study another kind of correlation.

The second experiment compares the sequential drifts of the words. We use
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Figure 3.2 – Histogram of word drift for each model on the NYT corpus.
The drifts are computed from t0 = 1987 to each successive time step, and
superposed on the histogram. The lightest colours indicate drifts calculated
until the most recent time steps. The number of words are on logarithmic
scale.
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BERT DBE

APD Clust_JSD Avg Clus_WD WD Indep Incr Dyn
APD 1.000
Clust_JSD 0.001 1.000
Avg 0.354 0.664 1.000
Clust_WD 0.607 0.667 0.776 1.000
WD 0.460 0.385 0.691 0.555 1.000
DBE_Indep 0.005 -0.041 -0.048 -0.025 -0.101 1.000
DBE_Incr -0.018 0.040 0.056 0.016 0.117 0.283 1.000
DBE_Dyn 0.001 0.005 0.014 0.006 0.001 0.342 0.754 1.000

Table 3.1 – Spearman Rank Correlation between system output rankings. Grey
values indicate non-significant correlation (p-value > 0.05).

the time series of drifts computed for the histograms: the distance between the
embeddings at the first time slice and at each successive time slice (inceptive
drift). Then, for each word, we compute the Pearson correlation between its
drift time series in each model. We average the correlations for all words.

The results can be found in Table 3.2. This time, the DBE models and
some BERT systems are correlated; in particular, the averaging method has
the highest correlations with the DBE models’ drifts. This is justified by the
behaviour of the averaging method, which outputs a unique embedding per
time slice exactly as the DBE models work. The APD drifts are much less cor-
related with the other models, except for the Wasserstein-based systems. This
is confirmed by the shapes of their respective histograms, which are relatively
similar.

BERT DBE

APD Clust_JSD Avg Clus_WD WD Indep Incr Dyn
APD 1.000
Clust_JSD 0.184 1.000
Avg 0.175 0.490 1.000
Clust_WD 0.335 0.769 0.576 1.000
WD 0.426 0.332 0.695 0.437 1.000
DBE_Indep -0.026 0.054 0.112 0.059 0.040 1.000
DBE_Incr -0.022 0.175 0.348 0.194 0.199 0.358 1.000
DBE_Dyn 0.031 0.278 0.507 0.303 0.352 0.250 0.600 1.000

Table 3.2 – Average Pearson correlation between the drift time series of all
words.

3.2.2.3 Comparing top drifting words

We compare the list of most drifting words of each model. The words that
differ between models reveal the specificities and limitations of these models.
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Tables 3.4 and 3.3 show the top 20 most drifting words for all models. Further-
more, among the top 100 words of all models, BERT and DBE all together,
we select the ones that are common to more than 4 models and highlight them
in blue in the tables. Thus, in the BERT table (Table 3.4), some highlighted
words are not necessarily in the top 100 of any DBE model. Conversely, all
highlighted words in the DBE table (Table 3.3) appear in the top 100 of at
least one BERT-based system.

In the top drifting words of all models, we find a lot of words in com-
mon. Among them, we mostly find name entities such as “Bloomberg” and
“Katrina.” Another word high in the ranking for all models is “web,” closely
followed by “net.” These words refer to events that had a large media coverage
and resonance (e.g hurricane Katrina), or technological trends that flourished
during the period under study. On top of this, we can highlight several differ-
ences between the rankings.

First, we can find in the top drifting words of all BERT models, examples
of words that have different possible part-of-speech. For example, “lead” and
“share” are respectively in the top 20 and 50 for all BERT models but below
1000th rank for DBE models. This is due to the language modeling of BERT
being sensitive to syntactic information, thus passing on syntactic variation
when computing distance measures.

Second, some words with very diversified context such as function words
showcase large drifts according to the methods that do not use a unique embed-
ding per time slice (all systems except DBE models and Averaging method).
This is especially visible with APD ranking, with words such as “base,” “cross”
or “stand”; all words that can have very diversified contexts. This reflects high
intra-period diversity more than actual semantic change. Overall, APD is the
system with the most different list of top drifting words compared to the other
BERT systems. For example, two of the words with the largest APD for the
full period are “cross” and “post,” respectively ranked 5 and 7. However, they
are ranked below 400 for Full-WD and even below 1000 for all other systems.

Among other BERT systems, the top words from the Clustering + JSD
method also diverge a bit compared to the other BERT methods. This might
be due to its distribution tail which is much heavier than the tail of the
other distributions, harming the ability to identify extreme drifts (see Fig-
ure 3.2). It can be explained by the low dimension of the representation (here,
k = 5 clusters) that limits the expressiveness of the distance function between
clusters distributions of two periods. An example of difference in ranking is
“Bloomberg,” which is ranked 18th by the Clust-JSD system but much lower
by other BERT systems. It has two distinct senses; first, it can refer to Michael
Rubens Bloomberg, American businessman and mayor of New York City from
2002 to 2013. Second, it corresponds to the media and financial company
Bloomberg L.P co-founded by him. The Clustering + JSD system probably
ranks it high thanks to the simplification of the information into small cluster
distributions, focusing on distinguishing the two senses rather than measuring
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the difference between the embeddings. Note that this word is ranked high by
the DBE systems.

DBE dynamic and incremental models show many top drifting words that
do not appear for the other methods, such as “Spitzer” and “Contras.” These
words correspond to entities or events with low long-term echo in the news,
especially visible through unbalanced frequency across the time slices. The
incremental aspect of the two models keeps the information across the subse-
quent periods, but it is not visible when computing the full drift (using only
the first and the last time periods) for the BERT models.

On the contrary, two types of words are ranked high on the lists of top
drifting words for all models. First, words that are associated with events
spanning a long period such as “Enron.” Second, events with long-term echo
such as “Katrina.” This is not always the case, or to a lesser extent, for the
method with APD measure; for example, the ranking of Katrina is only 209
and the ranking of Enron is 8355.

DBE_independant DBE_incremental DBE_dynamic

katrina katrina bloomberg
hurricane corzine katrina
rumsfeld esthetic contras
enron texaco nyt
lay bloomberg meese
corzine lieut rumsfeld
iran spitzer corzine
iraq nyt enron
uranium enron shultz
chad contras gorbachev
compensation qtr web
gossip muslims texaco
sudan otc dukakis
bonds outst lead
shiite rumsfeld ensure
leak hezbollah nicaraguan
immigrants shultz spitzer
orleans brantley soviet
duke euro reagan
number bork nicaragua

Table 3.3 – List of words with highest full drift (from first to last time slice)
for each DBE model on the NYT corpus. Highlighted cells have words that
are common to the 100 most drifting words for more than 4 models.

3.3 Experiments on labeled corpora

In this section, we describe the annotated data and the corpora used for
the evaluation. Then, we explain the experimental details, in particular the
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APD Clust_JSD Avg Clust_WD WD

laden treas laden laden laden
sec ers nhl nhl earns
lay nyse earns earns nhl
lengths nba web web web
cross katrina rev lead sec
lead earns homeland bin rev
post officiated katrina sec bin
bin condolences lead share net
doubles brantley bin homeland lead
web web net net homeland
stem amex inc katrina katrina
earns texaco nyse rev share
hip misidentified share shorter stem
pan nyt reports santa dell
passes nhl amex dell cent
bears gundy sec hip inc
wake lead amazon lay handicap
net bloomberg stem passes euro
base noriega revenue amazon amex
sets net euro doubles nee

Table 3.4 – List of words with highest full drift (from first to last time slice) for
scalable BERT embeddings with different aggregation methods and semantic
change measures, on the NYT corpus. Highlighted cells have words that are
common to the 100 most drifting words for more than 4 models.

pre-trained models used and the fine-tuning process. We develop a brief study
on the choice of the number of epochs for BERT fine-tuning.

3.3.1 Annotated data description

We evaluate the proposed semantic change detection methods using six
existing manually annotated datasets. An overview of these corpora can be
found in Table ??.

GEMS on COHA The first dataset is GEMS, built by Gulordava and Ba-
roni (2011). It consists of 100 words from various frequency ranges, labelled
by five annotators according to the level of semantic change between the 1960s
and the 1990s. They use a 4-points scale from “0: no change” to “3: signifi-
cant change”, the inter-rater agreement was 0.51 (p <0.01, average of pair-wise
Pearson correlations). The most significantly changed words from the dataset
are, for example, user and domain; on the other hand, words for which the
meaning remain intact are for example justice and chemistry. Gulordava and
Baroni (2011) describe the procedure used to build the dataset: the annota-
tors ranked words using their intuition, without looking at the context. This
procedure is not optimal, since an annotator may forget or not be aware of
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some senses of a word (especially its senses in the 1960s).

Still, this dataset is a valuable resource and has been used to evaluate
methods for measuring semantic change in previous research (Frermann &
Lapata, 2016; Giulianelli et al., 2020). Following previous work, we use the
average of the human annotations as semantic change score. For evaluation, we
compute Spearman rank correlations between this score and a model output.

To extract contextualised embeddings, we use the Corpus of Historical
American English (COHA) 7 introduced in Section 3.1.1. We focus our exper-
iments on the most recent data in this corpus, from the 1960s to the 1990s
(with 2.8 million words for the 1960s period and 3.3 million for the 1990s one),
to match the manually annotated data. The fine-tuning of the model is also
done only on this subset.

Semeval The recent SemEval-2020 Task 1 Unsupervised Lexical Semantic
Change Detection (Schlechtweg et al., 2020) involved the construction of 4 an-
notated datasets in different languages: German, English, Latin and Swedish.
All SemEval-2020 Task 1 corpora contain only two periods. The organizers
employed an approach to build the annotated corpora that differ from the
GEMS dataset. The annotators had to label the relatedness of word senses in
a pair of sentences drawn from the two time periods. This system does not
require the annotators to precisely identify a sense for each occurrence of a
word, a difficult task when dealing with the delicate problem of slight nuances
in words usage evolution. In total on the 4 languages, approximately 100k sen-
tence pairs were annotated, with an average inter-annotators agreement score
of 0.62. Then, the lexical semantic change score of a word is defined as the
Jensen-Shannon Divergence (Lin, 1991) between the sense distributions at the
two time periods.

We generate contextualised embeddings for all target words on the four
corpora provided by the organizers of the task, English (37 targets, about
13.4M words in the corpus), German (48 targets and 142M words), Swedish (40
targets and 182M words) and Latin (31 targets and 11.2M words). Note that
contrarily to COHA, the sentences in the corpora are shuffled and lemmatized.

The challenge defines two subtasks: Subtask 1 is binary classification, i.e.
to determine whether a word has changed or not; SubTask 2 aims at ranking a
set of target words according to their rate of semantic change. We evaluate our
methods on Subtask 2, but propose some solution for Subtask 1 in Section 3.5.

DuReL on DTA The DURel dataset (Schlechtweg et al., 2018) is com-
posed of 22 German words, ranked by semantic change by five annotators
between two time periods, 1750–1799 and 1850–1899. Similarly to SemEval,
the ranking was build by evaluating the relatedness of pairs of sentences from

7https://www.english-corpora.org/coha/

73



3.3 Experiments on labeled corpora

Dataset GEMS SemEval DURel

Language English English German Swedish Latin German
Corpus COHA CCOHA DTA+BZ+ND Kubhist LatinISE DTA
Nb of tokens 6.1M 13.4M 142.5M 182M 11.2M 63M
Period 1 1960–1969 1810–1860 1800–1899 1790–1830 −200–0 1750–1799
Period 2 1990–1999 1960–2010 1946–1990 1895–1903 0–2000 1850–1899
Nb of targets 100 37 48 40 31 22
Agreement 0.51 0.69 0.59 0.58 / 0.66

Table 3.5 – Overview of the 6 manually annotated datasets.

two periods, on a 4-points scale ranging from “identical” to “unrelated”. The
inter-annotator agreement is high, with an average pairwise correlation of 0.66.

We generate embeddings for the target words using the DTA corpus in
German (the 1750–1799 period has about 25M tokens and 1850–1899 about
38M)8. The sentences are shuffled, similarly to the SemEval corpora.

3.3.2 Experimental details

We compare the various approaches described in Chapter 2 to detect se-
mantic change. In our experiments we use pre-trained BERT models from the
transformers library9. They all have 12 attention layers and hidden layers
of size 768.

For the COHA corpus, we use the bert-base-uncased model, which was
pretrained on the BookCorpus (Zhu et al., 2015) — a dataset of books with
800M word — and English Wikipedia (2 500M words).

For the SemEval Task 1 evaluation set, we fine-tune the BERT models
and generate contextualised embeddings on the four corpora provided by the
organizers of the task. We use specific models for each language—for English:
bert-base-uncased model (same as for COHA), for Swedish: bert-base-swedish-
uncased (https://github.com/af-ai-center/SweBERT), for German: bert-base-
german-cased (https://deepset.ai/german-bert), for Latin: bert-base-multilingual-
uncased model. German is the only language for which we use a cased model
since most target words are nouns, which are capitalized in German. The only
model available for Latin is a multilingual BERT model trained on 104 lan-
guages, including Latin. The rationale behind this choice lies in the fact that
many words from some of these languages (e.g., Italian, Spanish, French, . . . )
have Latin origins.

For the DTA corpus, we generate embeddings using bert-base-german-
cased.

For each language, the model is fine-tuned for five epochs on the associated
8https://www.ims.uni-stuttgart.de/en/research/resources/experiment-data/durel/
9https://huggingface.co/transformers
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corpus for domain adaptation. This fine-tuning is unsupervised, i.e. a masked
language model objective is used in the fine-tuning step (Devlin et al., 2019)
in order to adapt each model to a specific corpus. The model is fed one sen-
tence at a time for SemEval and DTA corpora, since the sentences in these
corpora are shuffled. In the case of COHA, the corpus is divided into sets of
several sentences until a limit of 256 tokens. These sentences are tokenized
by using pretrained BERT tokenizers, which rely on a byte-pair encoding-like
scheme (Wu et al., 2016). If sentences are longer than 256 tokens, they are
truncated. No additional preprocessing is conducted. Note that the SemEval
corpora have already been lemmatized and all the punctuation have been re-
moved, which is a disadvantage for language models such as BERT pre-trained
on raw data.

The fine-tuned models are used to generate token embeddings. The corpus
for each language is split into two periods and the fine-tuned models are fed
with sentences containing one or more target words from the sub-corpus. The
sentences are split into tokens, and an embedding of dimension 768 is generated
for each token by summing the last four encoder output layers of BERT, as
described in Section 2.2.

Note that in some cases, the BERT tokenizer generates tokens that corre-
spond to sub-parts of words. To generate embedding representations for the
target words split into sub-parts, we average the embeddings of each subword
token constituting a word. For example, in the list of hundred target words
for evaluation in the COHA corpus, sulphate is divided into two subwords sul
and ##phate, where ## denotes the splitting of the word.

Finally, we store embeddings according to the standard method and the
scalable methods. In the first case, we obtain a contextual embedding repre-
sentation for each target-word usage, together with the time period it belongs
to. In the second case, we store only 200 embeddings per time slice, by clus-
tering and averaging them as a stream.

3.3.3 Impact of fine-tuning

Using the COHA corpus, we fine-tune the pre-trained bert-base-uncased
model for 1 to 10 epochs to study the impact of fine-tuning on the results.

Figure 3.3 shows the influence of fine-tuning for two clustering methods
(affinity propagation, and k-means with k = 5). A light fine-tuning (for one
epoch) decreases the performance of both methods (in terms of Spearman
correlation with ground truth ranking) in comparison to no fine-tuning at all
(zero epochs). After that, the number of fine-tuning epochs until up to 5 epochs
is linearly correlated with the performance increase. Fine-tuning the model for
five epochs appears optimal. With larger number of epochs, the performance
for both methods starts decreasing, most likely because of over-fitting due to
the reduced size of the fine-tuning dataset compared to the training data.
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Figure 3.3 – Impact of BERT fine-tuning on the performance of two distinct
aggregation methods, affinity propagation and k-means with k = 5, for the
GEMS dataset on the COHA corpus.

Table 3.6 shows Spearman correlations between gold standard and the
measured semantic change using affinity propagation clustering and JSD, on
embeddings extracted from pre-trained and fine-tuned BERT models. Fine-
tuning BERT improves the accuracy on average, and the impact is most ben-
eficial to English.

GEMS
SemEval

DURel AvgEnglish Latin German Swedish
Pre-trained BERT 0.486 0.216 0.481 0.488 -0.072 0.512 0.352
Fine-tuned BERT 0.510 0.313 0.467 0.436 -0.026 0.542 0.374

Table 3.6 – Spearman Rank Correlation between system output rankings and
ground truth rankings for all datasets. We use standard embeddings with
affinity propagation clustering and JSD to measure semantic change. Grey
values indicate non-significant correlation (p-value > 0.05).

3.4 Detailed analysis

In this section, we consider different experiments to deepen the analysis:

1. A comparison of the two extraction methods (standard and scalable em-
beddings) with different aggregation methods and distance measures.

2. A comparison of the different solutions relying on optimal transport:
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GEMS
SemEval

DURel AvgEnglish Latin German Swedish
Standard embeddings
Averaging 0.349 0.315 0.496 0.565 0.212 0.656 0.432
k-means 5 JSD 0.508 0.189 0.324 0.528 0.238 0.560 0.391
aff-prop JSD 0.510 0.313 0.467 0.436 -0.026 0.542 0.374
APD Cos 0.176 0.514 0.315 0.262 0.150 -0.035 0.230
APD Canb 0.314 0.486 0.397 0.163 0.290 -0.151 0.250
Scalable embeddings
k-means 5 JSD 0.430 0.316 0.358 0.508 0.073 0.658 0.390
aff-prop JSD 0.394 0.371 0.346 0.498 0.012 0.512 0.355
APD Cos 0.268 0.504 0.324 0.287 0.219 0.249 0.308
APD Canb 0.328 0.483 0.304 0.479 0.226 0.288 0.351

Table 3.7 – Spearman Rank Correlation between system output rankings and
ground truth rankings for all datasets. Grey values indicate non-significant
correlation (p-value > 0.05).

whether to do one or multiple clusterings, to use Sinkhorn regularisation
or not, to use weighted averaging of embeddings inside clusters or not.

3. An evaluation of the effect of the clusters merging method for scalable
embeddings.

4. A summary of the our methods, compared with other methods from the
literature.

5. An error analysis, to show examples of spurious drift detected by our
methods and explain them. In addition, we propose a method to tackle
some of the errors detected before, through filtering of the clusters.

3.4.1 Standard VS scalable extraction

We apply k-means and affinity propagation to the 6 evaluation corpora.
We make use of the Scikit-learn implementation for both algorithms10. For
k-means, we set the number of clusters k = 5 and use default parameters for
the rest. Similarly, for affinity propagation, we use the default parameters set
by the library.

We use the different methods introduced in Chapter 2 to measure semantic
change on embeddings extracted using the standard methods (one vector for
each occurrence of a target word) and the scalable method (only 200 vectors
for each target word at each period). The results can be found in Table 3.7.

10https://scikit-learn.org/stable/modules/clustering.html
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The best performing method differs for the different datasets. However, on
average, the averaging method works best. The methods that perform worse
are the ones using average pairwise distance. The APD results are better with
Canberra distance (APD Canb, see Section 2.2.2) compared to Cosine distance
(APD Cos) but the rankings it outputs fail to correlate with the gold truth
ranking for several test corpora.

K-means performs better than affinity propagation on average. The dif-
ference in performance between k-means and affinity propagation could be
partially explained by the different number of clusters in the two approaches.
Affinity propagation outputs a huge amount of clusters, 160 on average on the
GEMS dataset. The particular number of clusters found by affinity propa-
gation for a word correlates strongly with the frequency of that word in the
corpus with correlation coefficient r = 0.875, as is illustrated in Figure 3.4. For
instance, the word woman which occurred over 20k times in both time slices in
COHA has the most number of clusters, 972, while negligence, occurring just
76 times has the least amount of clusters, 10. Thus, determining the optimal
number of clusters for different words is not straightforward. Affinity prop-
agation usually produces a skewed clustering, with a large number of small
clusters containing only one or two data points.

Figure 3.4 – Number of clusters found by affinity propagation on standard
embeddings and frequency of words in the 1960s and 1990s in COHA for all
GEMS target words.

For the clustering methods, the scalable embeddings extraction performs
comparably for k-means and slightly worse for affinity propagation, compared
to the standard embeddings. But this hides high disparities between evaluation
corpora. As for the APD method, it performs better on scalable embeddings
compared to standard embedding. It makes sense, as a lot of the noise from
the standard embeddings is removed when applying the merging algorithm to
obtain only 200 embeddings. Moreover, the computation time is much shorter
with scalable embeddings. It is especially valuable for the APD and the affinity
propagation algorithm which can be very time-consuming with a large number
of points.
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3.4.2 Optimal transport

We use the different methods relying on optimal transport (OT) to com-
pute the distance between embeddings at two time periods, for both standard
and scalable embeddings. We compare it with the Jensen-Shannon divergence
(JSD) which measures the divergence between cluster distributions, and the
averaging method which led to the best performance in the previous section.

As a reminder, the OT methods involve computing the average embedding
inside each cluster in each period, and calculating the Wasserstein distance
(WD) between these average embeddings weighted by the clusters distribution
of each period. We can either do a unique clustering on the embeddings of
the two periods, or independent clustering at each time slice (denoted “2×”
in the results table). Moreover, in the case of the scalable embeddings, each
vector of the 200 embeddings is associated with the number of vectors which
were averaged to create it; this can be used as distribution to compute the WD
without performing clustering. These counts can also be used as weights when
computing the average inside each cluster; this is denoted “WD-weighted” in
the results table. Finally, a regularised version of the WD can be computed,
the Sinkhorn distance. The parameter λ controls this regularisation. We
compute the Sinkhorn distance with λ ∈ {10−2, 10−1, 1, 10}. More details on
the Wasserstein distance and Sinkhorn regularisation can be found in Section
2.2.5.

Table 3.8 shows a selection of results. The results from all systems combi-
nations can be found in appendix B, in tables B.2 and B.1.

The WD tends to give better results than JSD; it is especially the case
on corpora where averaging outperforms clustering. Indeed, the OT system
uses information coming from both the cluster distribution and the embed-
dings vectors. An extreme example is the Swedish SemEval dataset, where the
clustering with JSD performs particularly poorly: using the WD, which takes
into account the average embeddings on top of cluster distributions, greatly
increases the correlation with the gold standard. On the contrary, on COHA
where averaging performs poorly in comparison to clustering, WD is under-
performing.

Performing two independent clusterings does not improve the results com-
pared to a unique clustering, on average. Big gaps can be observed in both
directions for some test corpora. However, as the number of target word is
small, it could be explained by only a few words benefiting or suffering from
the additional degree of freedom given by the independent clusterings. In-
deed, on the biggest dataset GEMS (100 words), the performances of unique
and independent clusterings are comparable. We deduce that computing the
intra-cluster average per time period already gives enough information to com-
pare the embeddings between periods. Similarly, using vector counts as weights
when averaging the embeddings inside the clusters does not improve the accu-
racy.
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Clustering Measure GEMS
SemEval

DURel AvgEnglish German Swedish Latin
Standard embeddings

averaging CD 0.349 0.315 0.565 0.212 0.496 0.656 0.432
aff-prop JSD 0.510 0.313 0.436 -0.026 0.467 0.542 0.374
aff-prop WD 0.386 0.643 0.490 -0.100 0.246 0.456 0.354
2× aff-prop WD 0.392 0.419 0.377 0.233 0.327 0.379 0.355
2× aff-prop sinkhorn 0.01 0.404 0.435 0.376 0.250 0.296 0.307 0.345
k-means 5 JSD 0.508 0.189 0.528 0.238 0.324 0.560 0.391
k-means 5 WD 0.334 0.347 0.408 0.248 0.470 0.618 0.404
2× k-means 5 WD 0.337 0.409 0.432 0.290 0.457 0.514 0.407
Scalable embeddings

aff-prop JSD 0.394 0.371 0.498 0.012 0.346 0.512 0.355
aff-prop WD 0.369 0.456 0.421 0.264 0.397 0.484 0.399
2× aff-prop WD 0.380 0.412 0.457 0.190 0.426 0.530 0.399
2× aff-prop WD-weighted 0.358 0.419 0.463 0.214 0.395 0.551 0.400
k-means 5 JSD 0.430 0.316 0.508 0.073 0.358 0.658 0.390
k-means 5 WD 0.372 0.360 0.514 0.316 0.360 0.607 0.430
k-means 5 sinkhorn 10 0.218 0.532 0.432 0.265 0.465 0.468 0.397
2× k-means 5 WD 0.339 0.375 0.482 0.299 0.502 0.512 0.418
2× k-means 5 sinkhorn 0.1 0.331 0.445 0.484 0.257 0.484 0.549 0.425
2× k-means 5 WD-weighted 0.323 0.368 0.465 0.302 0.490 0.518 0.411
none WD 0.312 0.386 0.416 0.252 0.283 0.526 0.363
none sinkhorn 0.01 0.316 0.393 0.393 0.263 0.274 0.567 0.368

Table 3.8 – Spearman Rank Correlation between system output rankings and
ground truth rankings for all datasets. Grey values indicate non-significant
correlation (p-value > 0.05).

Comparing the full list of 200 embeddings without doing clustering leads to
slightly worse performance on average. This confirms the conclusions drawns
from the low performance of the APD method: aggregation is necessary to
avoid being too sensitive to noise. Furthermore, the OT methods on scalable
embeddings always lead to better performance on average compared to the
standard embeddings.

Finally, the Sinkhorn regularisation leads to balanced results. It can lead
to improvement compared to the Wasserstein distance, but only after careful
tuning of the regularisation parameter; otherwise, it can be very harmful. The
best regularisation constant differs for all models. However, for this task,
there is usually no validation set to tune this regularisation parameter. Thus,
we advise against using this regularisation, or any of the advanced strategies
compared in this section. To sum up, the best results with OT are obtained
with the Wasserstein distance on top of clustering of the scalable embeddings.
The k-means clustering leads to higher performance than affinity propagation
on average.
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GEMS
SemEval

DURel AvgEnglish Latin German Swedish
Averaging 0.349 0.315 0.496 0.565 0.212 0.656 0.432
Without filtering and merging of clusters
k-means 5 JSD 0.430 0.316 0.358 0.508 0.073 0.658 0.390
k-means 7 JSD 0.465 0.271 0.421 0.498 0.058 0.716 0.405
aff-prop JSD 0.394 0.371 0.346 0.498 0.012 0.512 0.355
k-means 5 WD 0.372 0.360 0.450 0.514 0.316 0.607 0.437
k-means 7 WD 0.375 0.384 0.446 0.503 0.270 0.535 0.419
aff-prop WD 0.369 0.456 0.397 0.421 0.264 0.484 0.399
With filtering and merging of clusters
k-means 5 JSD 0.448 0.318 0.374 0.519 0.073 0.649 0.397
k-means 7 JSD 0.464 0.267 0.432 0.490 0.053 0.723 0.405
aff-prop JSD 0.403 0.348 0.408 0.583 0.018 0.712 0.412
k-means 5 WD 0.382 0.375 0.466 0.520 0.332 0.628 0.451
k-means 7 WD 0.363 0.375 0.471 0.534 0.307 0.635 0.448
aff-prop WD 0.352 0.437 0.488 0.561 0.321 0.686 0.474

Table 3.9 – Spearman Rank Correlation between system output rankings and
ground truth rankings for all datasets, with scalable embeddings only. Grey
values indicate non-significant correlation (p-value > 0.05).

3.4.3 Clustering, filtering and merging

In this section, we observe the impact of our clusters merging and filtering
technique introduced in Section 2.2.4 on the scalable embeddings. After doing
the clustering, we select each cluster with less than 10 elements inside, and
we merge it with the closest cluster (according to cosine distance between the
average of the embeddings inside each cluster). If there is no cluster close
enough, the small cluster is considered as an outlier and deleted. The larger
clusters are also merged together if their distance is lower than a threshold.

We focus on scalable embeddings, which lead to the best correlation results
so far (obtained with WD). We apply our two clustering algorithms, k-means
and affinity propagation, and the two distance measures, JSD and WD.

The results can be found in Table 3.9. We add the result of the averaging
method for comparison purpose. The filtering method has a large effect on
affinity propagation clusters, almost always improving the accuracy. This is
explained by the number of clusters and their distribution. As we saw in section
3.4.1, for affinity propagation, the number of clusters can be very high and the
distribution of embeddings in these clusters is extremely unbalanced, with a
large number of clusters having very few word occurrences. While k-means is
the best method without filtering, filtered affinity propagation leads to the best
results on average. The effect of the filtering on k-means is positive on average
but the difference is thin, as the number of clusters is much lower. Finally,
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GEMS
SemEval

DURel AvgEnglish Latin German Swedish
Literature
SGNS + OP + CD 0.347 0.321 0.372 0.712 0.631 0.814 0.533
Nearest Neighbors 0.310 0.150 0.273 0.627 0.404 0.590 0.392
ELMo APD 0.323 0.605 -0.113 0.560 0.569 - 0.386*
ELMo averaging 0.323 0.254 0.360 0.740 0.252 - 0.386*
ELMo APD+averaging 0.360 0.546 0.036 0.537 0.546 - 0.433*
BERT scalable embeddings
Averaging 0.349 0.315 0.496 0.565 0.212 0.656 0.432
APD Canb 0.328 0.483 0.304 0.479 0.226 0.288 0.351
aff-prop JSD + merging 0.403 0.348 0.408 0.583 0.018 0.712 0.412
aff-prop WD + merging 0.352 0.437 0.488 0.561 0.321 0.686 0.474

Table 3.10 – Spearman Rank Correlation between system output rankings and
ground truth rankings for all datasets. Grey values indicate non-significant
correlation (p-value > 0.05). In the literature section, SGNS+OP+CD and
Nearest Neighbors were obtained by running the code from Gonen, Jawahar,
Seddah, and Goldberg (2020) on our data. Results on ELMo were taken from
Kutuzov (2020).

the filtering step has a larger (positive) impact when using the WD instead of
the JSD. On average, the best performing system is affinity propagation with
filtered clusters and Wasserstein distance.

3.4.4 Global comparison

In this section, we report the best results from the previous sections and
from the literature in Table 3.10. Our methods using scalable embeddings
perform better than the standard embeddings; among all aggregation methods,
affinity propagation with a merging and filtering step on top of it perform the
best. Finally, the best way to measure the distance after the clustering is to use
the Wasserstein distance. As a comparison, we report Averaging with cosine
distance (CD), APD with Canberra distance (Canb) and JSD in the table.

We add some results from the literature at the top of Table 3.10. SGNS
+ OP + CD (Schlechtweg et al., 2019) refers to the state-of-the-art semantic
change detection method employing non-contextual word embeddings: the
Skip-Gram with Negative Sampling (SGNS) model is trained on two periods
independently and aligned using Orthogonal Procrustes (OP). CD is used to
measure semantic change. The Nearest Neighbors method (Gonen et al., 2020)
also uses SGNS embeddings. For each period, a word is represented by its top
nearest neighbors (NN) according to CD. Semantic change is measured as the
size of the intersection between the NN lists of two periods. Finally, we add the
best results from Kutuzov (2020). In his work, he compares ELMo and BERT
embeddings with several semantic change detection methods: averaging, APD
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with cosine distance, clustering with JSD, and a measure of context diversity.
He obtains good but uneven results depending on the corpora using ELMo
with APD and averaging. He ensembles these two measures to obtain its best
results, by averaging them. In the table, we report his results using ELMo
fine-tuned on each corpus, with embeddings extracted from the top layer of
the network.

Our methods outperforms the Nearest Neighbors method but is outper-
formed by a large margin by SGNS+OP+CD which achieves a score of 0.533.
We hypothesise that this can be connected to the fact that the sentences in all
but one evaluation corpus (COHA) are shuffled. Consequently, BERT models
cannot leverage the sequence of 256 tokens as a context, but are limited to the
number of tokens in the sentence. The correlation between larger context and
better performance of the transformer-based models has been shown on some
NLP tasks before (Dai et al., 2019).

We do not have ELMo results on the DURel corpus, thus the average re-
sults of the three ELMo rows in the table are not comparable with the other
ones. For comparison, our best average results without DURel is 0.432 (aff-
prop WD + merging). The best performing method, SGNS+OP+CD, scores
0.476 without DURel, outperforming both contextualised embeddings meth-
ods. Our best method and the best ELMo method perform comparably, but
both use very different semantic change measures. Kutuzov (2020) reports
that with the same methods (averaging and APD), BERT embeddings lead to
worse performance than ELMo, even through ELMo has twice as few param-
eters. The difference can be related to how the models were trained; Kutuzov
(2020) trains ELMo models from scratch on lemmatized Wikipedia corpora,
while BERT models are pre-trained on raw text. Yet the SemEval corpora
are all lemmatized, leading to a potential advantage for ELMo embeddings.
Our experiments with APD on BERT embeddings led to relatively low perfor-
mances; however, we showed that using APD on scalable embeddings leads to
much higher performance compared to standard embeddings. Thus, applying
our salable extraction method on top of ELMo could lead to even better results
for the APD.

The best average result we report is the one from the last row, with affinity
propagation and Wasserstein distance on BERT scalable embeddings. How-
ever, it hides a lot of disparities depending on the tests sets. Averaging out-
performs clustering for SemEval Latin; APD performs surprisingly well on
SemEval English, outperforming everything else; JSD and WD outperform
each other alternatively on the different datasets. This disparity does not
seem to be linked to language as English (GEMS and SemEval) and German
(DURel and SemEval) have different best-performing method. An hypothesis
is that it is due to how each method distributes semantic change scores. In
Section 3.2, we saw that the different systems can lead to different distribu-
tions of semantic change over the vocabulary. For example, the distribution of
APD drifts looks like a normal distribution, while the drifts of the averaging
method have the shape of an exponential distribution. However, the distri-
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bution of semantic change in the gold data might be very different for the
various test sets, and also different from the distribution of semantic change in
reality. The distribution of gold scores differs a lot: SemEval Latin and Ger-
man and DURel have uniform gold scores while SemEval English and Swedish
and GEMS have skewed distributions towards the left (low scores). Kutuzov
(2020) makes similar remarks.

Other results from the literature, relying on word co-occurrences (Gulor-
dava & Baroni, 2011) and topic models (Frermann & Lapata, 2016) on the
GEMS dataset are reported in Appendix B. They are both out-performed by
our methods.

To evaluate the quality of these results, we can use the value of the inter-
annotator agreement as a human-level point of comparison. It is 0.51 on
the GEMS dataset, computed using the average of pair-wise Pearson corre-
lations (Gulordava & Baroni, 2011). DURel corpus had an average pairwise
correlation of 0.66 between annotators, and the one of SemEval is 0.62 on av-
erage. This highlights the difficulty of the task and puts the performance of
the best method into perspective.

3.4.5 Qualitative error analysis

We manually check a few examples from the English test sets (SemEval
English and GEMS on COHA) to better understand the situations in which
the models are mistaken about the true degree of semantic change compared
to the gold standard.

3.4.5.1 Examples

We identify several cases of spurious meaning change. One of the tricky
cases for our model on the GEMS dataset is the word neutron: according to
the manual annotation, it is ranked 81st out of 100 and has a stable meaning,
while our affinity propagation + JSD system considers it one of the most
changed words and ranked it 9th. We apply the affinity propagation algorithm
on all embeddings of neutron and visualize the biggest clusters using PCA
decomposition (Figure 3.5). In two dimensions, there are two clearly distinctive
clusters: cluster 36 in the bottom right corner, drawn with pink crosses, which
consists only of instances from the 1990s, and cluster 7 drawn with green
dots in the top right corner, which consists only of instances from the 1960s.
A manual check reveals that the former cluster consists of sentences which
mention neutron stars. Though neutron stars had already been discovered
in the 1960s, they were probably less known and are not represented in the
corpus. In any case, a difference in a collocation frequency does not mean a
semantic shift, since collocations often have a non-compositional meaning.

The latter distinctive cluster for neutron, consisting of word usages from
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Figure 3.5 – 2D PCA visualization for the biggest clusters obtained for word
neutron with affinity propagation on standard embeddings from the COHA
corpus.

the 1960s, contains many sentences that have a certain dramatic style and
elevated emotions, such as underlined in the examples below:

throughout the last several decades the dramatic revelation of this new
world of matter has been dominated by a most remarkable subatomic par-
ticle — the neutron .
the discovery of the neutron by sir james chadwick in 1939 marked a great
step forward in understanding the basic nature of matter .

The lack of such examples in 1990s might have a socio-cultural explanation,
or it could be only a corpus artefact. This demonstrates the ability of BERT
to capture other aspects of language, including syntax and pragmatics.

Another reason why word embeddings can spuriously undergo semantic
change are named entities. An example is the word vector in the GEMS
dataset. A company called “Vector Security International” appears only in the
1990s time slice, distorting our semantic calculations for this target word. We
face the same issue in the English SemEval corpus, with for example the target
word lane. We see it appearing in sentences such as: her daddy warn everyone
that rose lane be bring home a musician with long hair. In this sentence, the
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target word is used as the surname of a woman, but it can hardly be labelled
as a new meaning of lane.

Finally, we notice that some clusters contain sentences referring to specific
events. For example, one of the clusters for attack in the English SemEval
corpus contains sentences about terrorist attack in Israel and consists only
of sentences from the later time period, for obvious reasons. The sentences
in this cluster contain many named entities (NEs), e.g.: hezbollah leader
hassan fadlallah defend attack_nn on israeli civilian target civilian be a war
crime.

All these observations hint at the key role of named entities for this task; de-
tecting them in parallel of performing semantic change detection could improve
the results. On top of this, using a pre-trained model with cased vocabulary
could prevent many ambiguities for named entities.

3.4.5.2 Spurious semantic change

From observing the results, we identify some possible causes of misleading
semantic change compared to the ground truth.

One of the main reasons for a method to detect spurious semantic change
is corpus artefacts. These are situations where a word suddenly appears
in a very specific context in a given period. For example, this can be due to
the publication of a book that makes a very special use of the given word. In
practice, a corpus can never be perfectly balanced and perfectly representative
of language. We can observe the evolution of words in a corpus but extrap-
olating these observations to the real language has to be done with a lot of
precautions.

The examples from the previous sections where target words are used as
named entities, such as “Rose Lane” for the target lane in the SemEval English
dataset, are often cases of corpus artefact.

We can add these limitations to the one observed on the New York Times
corpus in Section 3.2; in particular, words which can appear with different
part-of-speech seem to have higher semantic change according to BERT mod-
els. Similarly, words with very diversified context such as function words can
sometimes have spuriously high drift, especially with the APD method.

However, we do not discuss on whether all these cases of doubtful drift
should be considered semantic change or not. Our goal is to highlight the
limitations of the methods, so that the users can make informed choices about
which method to use and what elements should be taken with a grain of salt.
In the end, it all depends on the application. For example, a lexicographer
might not want to see all the slight context variations in historical corpora
appearing as semantic change. On the contrary, a financial analyst observing
word usage change in a stream of business news looking for anomalies might
be interested.
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Post-Processing English German

- 0.313 0.436
Target NE 0.328 0.426
Radical NE 0.436 0.302

Table 3.11 – NE Filtering results: Spearman correlation with the ground truth.
The method is affinity propagation of embeddings extracted from fine-tuned
BERT on two SemEval corpora using the standard method.

3.4.5.3 Named entities cluster filtering

To tackle the issue related to named entities outlined in the examples of
the previous sections, we propose two filtering approaches as a post-processing
step after the clustering. The first one is the most simple: we identify sentences
in which a target word is used as a named entity (NE). We remove a cluster
if at least 80% of the target word mentions are NEs. We call it “target NE”.
In the second one, “radical NE”, we filter out clusters where the number of
proper nouns is 5 times larger than the number of sentences.

In a real-world application, NE recognition should be done on documents
with preserved capitalization, preferably using a model trained specifically on
historical documents. Here, we rely on out-of-the-box NLP pipelines.11 Most
of the tools are unable to recognize names in lowercased lemmatized text but
POS-taggers are more reliable: e.g., the SpaCy NE recognition model was
unable to recognize lower-cased names even if the SpaCy POS-tagger labeled
the corresponding tokens as proper nouns.

Results are presented in Table 3.11. The radical NE filtering has a signifi-
cant impact on English and German results, though in the opposite directions:
it improves the performance on the English corpus but reduces it on the Ger-
man corpus. The effect is the same for the target NE filtering, but to a lower
extent. As such, filtering slightly reduces the average performance. The NER
systems used for Latin did not perform well and could not recognise entities,
while none of the clustering methods led to significant correlation with ground
truth for Swedish. That is why we only report results on English and German.

3.5 Binary semantic change task

We open a parenthesis to study the first sub-task of the SemEval 2020
Task 1 challenge: binary semantic change detection. While quantifying the
degree of semantic change is a key task that most semantic change detection
methods aim at solving, binary semantic change brings complementary infor-

11We used SpaCy for English and German (https://spacy.io/), Polyglot for Swedish (https:
//pypi.org/project/polyglot/) and CLTK for Latin (http://cltk.org/).
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mation that may be important for applications such as historical linguistics
and lexicography (Schlechtweg et al., 2020). We propose methods to tackle it
and present our results.

In order to determine whether a target word has changed or not, we imple-
ment two methods. The first one consists in selecting a threshold for the drift
measures of all the target words, beyond which we consider that the word is
stable or not (thresholding using stopwords). The second one uses the clusters
to detect a change in the usage of each word, by detecting the appearance or
disappearance if a cluster (identification of period-specific clusters).

3.5.1 Thresholding using stopwords

We want to find the best threshold in the ranked list of target words by
relying on the assumption that stopwords—words that are very frequent in a
language and play primarily auxiliary roles—undergo little semantic change.

Though stopwords are more stable than most words of the dictionary, they
can still change their meaning due to the grammaticalisation process, i.e. when
a previously meaningful word looses most of its functions except the auxiliary
ones. For example, the English stopword hence used to have a concrete de-
ictic meaning “from here” (e.g. “hence we go”) but nowadays it is used only
to connect two propositions. Since not all stopwords are stable, finding an
appropriate threshold is not straightforward.

It should be noted that stopwords have extremely context-specific repre-
sentations (Ethayarajh, 2019). However, high polysemy and highly variable
context do not necessarily induce more semantic change (Martinc, Montariol,
et al., 2020a). We check the difference of average semantic change between a
set of stopwords and the list of target words for all languages.

First, to compute semantic change scores for a list of stopwords, we use the
same procedure that was used for the target words. For all languages except
Latin, we create a list of stopwords by taking the words at the intersection of
the nltk and Spacy stopword lists. For Latin, we use an external resource.12

We keep only stopwords with more than 30 occurrences in each period; the
number of stopwords per language is shown in Table 3.12. When the number
of occurrences of a word is too high, we sample 5000 sentences per period for
this word. As can be seen in Table 3.12, the mean JSD for the stopwords is
sensibly lower than the one for target words.

Then, we compare stopword and target word score distributions in order to
define a threshold below which a target word should be classified as unchanged.

We first divide the stopwords’ semantic change score distribution into 10
bins to derive a frequency distribution in a histogram with 10 columns, as
exemplified for English in Figure 3.6. We take the threshold as the local

12List of Latin stopwords: https://github.com/aurelberra/stopwords
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English Latin Swedish German

Number of stopwords 109 334 78 142

Mean JSD stopwords 0.181 0.210 0.355 0.328
targets 0.239 0.264 0.460 0.384

Table 3.12 – Number of stopwords used and average semantic change score
(JSD) for target words and stopwords.

maximum score of the bin containing a number of stopwords lower than a
maximum frequency epsilon ε. We exclude the first bin, which is composed of
very stable words and can sometimes have a size smaller than ε. The maximum
frequency ε used to select the threshold depends on the number of stopwords
for each language: ε = 1/10 × number-of-stopwords. We compute two sets of
thresholds: the infimum (lower bound) and the supremum (upper bound) of
the bin, as shown in the Figure 3.6. The higher threshold is more conservative,
meaning that fewer words will be classified as changed.

3.5.2 Identification of period-specific clusters

The second method looks for concrete indications of semantic change, such
as the appearance or disappearance of a specific word sense. All target word
occurrences are clustered into a number of distinct clusters; these clusters
should to some extent resemble different word senses, allowing identification
of target words that obtained or lost a meaning. If one of the clusters for a
target word contains word occurrences from one time period and but less or
equal than 2 word occurrences from another time period, we assume that this
word has lost or gained a specific meaning.

Since clustering methods sometimes produce small-sized clusters, we con-
sider only the clusters bigger than a threshold, in order to focus on the “main”
usages of a word. Thus, for k-means we enforce a constraint that a cluster
should contain at least 10 word occurrences to be considered in the analy-
sis. For affinity propagation, we implement a dynamic threshold strategy: the
threshold beyond which we consider a cluster is computed for each target word
as twice its average cluster size.

The idea of determining whether a word meaning has changed or not by
identifying time period specific clusters closely resembles the tactic used by
the organizers of the SemEval-2020 Task 1 for deriving manual annotations
for Subtask 1 (Schlechtweg et al., 2020).
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Figure 3.6 – Distribution of semantic change scores in the English corpus:
target words VS stopwords.

3.5.3 Results

The results for the binary classification task are shown in Table 3.13. We
use only the SemEval corpora since they are the only ones for which we have
binary semantic change annotations. We use BERT fine-tuned on the SemEval
corpora with the standard extraction method for all results.

The best result was achieved by applying the stopword thresholding method
to rankings obtained by ensembling averaging + CD scores and affinity prop-
agation + JSD scores. The ensembling is done by multiplying the semantic
change scores produced by the different methods for each target word. We
choose multiplication rather than the arithmetic average since the underlying
distributions of the semantic shift measures are unknown, even though they
produce numbers within the same range. If, for example, the numerical values
of a particular measure are generally larger than values of another measure,
the former measure would contribute more to the average and thus dominate
the ensemble. Multiplication does not have this side effect.

The method of identifying period-specific clusters worked competitively
when performing on k-means clusters but performed worse with affinity prop-
agation, since the latter method usually produces a large number of clusters.
Reducing the number of clusters by merging the closest clusters together in-
creased the performance of the method.

Looking at the average accuracy, the stopwords-thresholding method per-
forms better than the period-specific clusters method. However, we face high
discrepancies between languages. Comparing the results for the same model,
i.e. BERT with affinity propagation clustering, the latter method worked best
for Latin and worse than the stopwords method for all the other languages.

One would have expected that methods relying on word sense disambigua-
tion, such as our time-specific-clusters methods, would be the most competitive
to solve this task. However, among the other systems submitted to SemEval
to solve it, the best performing ones all rely on choosing a threshold to dis-
criminate changed words from stable ones, based on a distribution of change
scores (same as our stopword-based thresholding method).
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Model Binary method AVG English German Latin Swedish

k-means 5 time-specific clusters 0.600 0.649 0.542 0.500 0.710
aff-prop time-specific clusters 0.496 0.568 0.458 0.700 0.258
aff-prop + merging time-specific clusters 0.545 0.514 0.542 0.575 0.548
aff-prop stopwords, high threshold 0.573 0.622 0.604 0.550 0.516
aff-prop stopwords, low threshold 0.552 0.703 0.667 0.450 0.387
averaging + aff-prop stopwords, low threshold 0.621 0.568 0.688 0.550 0.677

Table 3.13 – Accuracy of binary classification on SemEval corpora.

3.6 Use Case: Aylien covid-19 corpus

In the previous sections, we focused on accurately ranking lists of words
by semantic change and determining whether a word was undergoing meaning
change or not. However, we did not take into account the practical aspect of the
task and the potential applications. Concretely, when studying a large corpus
in an exploratory fashion, many of the proposed methods are not applicable,
requiring either too much memory or too much computational resources (see
Section 2.3). Moreover, to understand how the meaning of words evolve on top
of quantifying it, the sense-differentiating methods—in particular clustering—
are more suitable. In Chapter 2, we proposed the scalable extraction algorithm
and an interpretation method with the aim of solving these real-life applica-
tions.

The combination of scalable clustering with the interpretation pipeline
opens new opportunities for diachronic corpus exploration: in the following
section, we demonstrate how it could be used to explore the Aylien Coron-
avirus News Dataset13. This corpus contains about 500k news articles related
to covid-19 from January to April 202014. We split it into four monthly
chunks and apply the scalable semantic change detection method to explore
the temporal word usage differences across months. Table 3.14 shows some
statistics of the corpus.

Month Num. articles Num. tokens
January 21,102 10,069,362
February 72,057 41,129,710
March 356,983 160,896,860
April 78,690 35,100,352

Table 3.14 – Aylien corpus statistics.

13https://blog.aylien.com/free-coronavirus-news-dataset/
14We used an old version of the corpus. Currently the data from May is also available.
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3.6.1 Identification of the top drifting words

We select a vocabulary of 10k most frequent words. The scalable method
allows to perform the token embeddings extraction and k-means clustering for
all words of the vocabulary. We extract the top words with the highest average
JSD between the successive months to conduct a deeper analysis. We exclude
words that appear less than 30 times in each month. It allows us to avoid
spurious drifts due to words having too few occurrences in a time slice, such
as kardashian, and drifts linked to corpus artefacts such as feb (diminutive
for February) which appear every time a date is given, which is quite often
in a journalistic corpus. However, some drifts due to corpus artefacts remain,
in particular numbers such as 2019-20. Consequently, we also remove words
containing numbers.15

Table 3.15 shows the top 10 most drifting words, which were extracted using
k-means with k = 5 and ranked according to the averaged JSD across the four
months. Among them, the words diamond and princess are related to the
cruise ship “Diamond Princess”, which suffered from an outbreak of covid-19
and was quarantined for several weeks. The target word tiger, which is the
second most changing word, is related first, to the Singaporean flight company
Tiger Airways which suffered a lot from the pandemic as it was extensively
discussed in February 2020; second, to the Netflix show “Tiger King” which
was released in March; and third, to the tigers who contracted covid-19 in
a zoo in the US in April. Thus, the primary context for this word changed
several times, which is reflected in our results.

1 diamond 6 bloomberg
2 tiger 7 king
3 costa 8 francis
4 davis 9 ski
5 princess 10 towns

Table 3.15 – Top 10 most drifting words in the Aylien corpus according to
monthly-averaged JSD of k-means (k = 5) clusters distributions.

3.6.2 Interpretation of the usage change

The interpretation pipeline, described in Chapter 2, is illustrated in Figures
3.7 and 3.8. For example, focusing on the word diamond which is the top
drifting words in our vocabulary, we cluster its vector representations from the
Aylien corpus using affinity propagation and k-means with several values of

15This is a rather arbitrary procedure: one can imagine that a domain expert would prefer
a different frequency threshold or focus more on a certain month. The most time-consuming
part is the embedding extraction. Once this is done, clustering and keyword extraction
could be rerun several times in a practical setting according to the needs of the user.
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k. Then, using tf-idf, we extract a set of keywords for each cluster from each
algorithm and compute the NPMI and TU measures relying on these keywords.
Affinity propagation leads to a slightly higher cluster coherence but much
lower cluster uniqueness, due to the large amount of clusters, which are often
overlapping. Therefore, we use k-means for the interpretation. Lemmatizing
the sentences before extracting the keywords leads to more coherent sets of
keywords (higher NPMI), and overall better interpretability.

Figure 3.7 – Cluster distributions per month for word diamond.

Cluster Keywords

1
princess, cruise, ship, passenger, quarantine,
japan, yokohama, case, board, test, confirm,
virus, crew, positive, aboard

2
kong, hong, china, surat, petra, nasdaq, price,
sale, low, anglo, face, demand, 000, jewellery,
carat

3
south, korea, north, korean, mountain, jubilee,
capital, tear, facility, hill, 2012, resort, address,
seoul, file

4
sweet, neil, caroline, trump, song, version,
house, subscribe, password, nowth, knowthis,
jeremy, briefing, play, hand

Slice JSD
Jan–Feb 0.628
Feb–Mar 0.101
Mar–Apr 0.060

Table 3.16 – Left: cluster keywords for word diamond. Right: JSD between
consecutive time slices.

A clear temporal tendency is visible from the cluster distribution in Fig-
ure 3.7: a new sense appears in February, corresponding to the event of the
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Figure 3.8 – Cluster distributions per month for word ski.

quarantined cruise ship (cluster 1); this association is revealed by the key-
words extracted from this cluster, listed in Table 3.16. Moreover, the JSD
between January and February, when the outbreak happened, is much higher
than between the following months when the situation around the cruise ship
gradually normalized (Table 3.16, right part). This event, however, had a long
echo in the news, as shown by the fact that the cluster 1 is progressively disap-
pearing in March and April. The other clusters deal with other contexts where
the word diamond appears in the news, in particular related to the struggles
of the diamond industry (Petra Diamond company, cluster 2). The cluster 4,
that appears in March, is related to Neil Diamond’s coronavirus parody of the
song “Sweet Caroline” which was shared mid-March on social media platforms
and received a lot of attention in the US.

Another example is the word ski (Figure 3.8), undergoing important usage
change from January to March. This word was used a lot in the news about
covid-19 since ski resorts were major hubs for the virus transmission. The
most unevenly distributed clusters correspond to specific events, and their
distribution reveals the evolution of their impact on the newspapers over time.
The keywords allow us to identify these events, they are listed in Table 3.17.
For example, the cluster 0 corresponds to the event of two schools being closed
near a French ski resort because of diagnosed cases of coronavirus in a group
of UK tourists; it happened at the very beginning of the month of February,
and is revealed through the keywords associated with this cluster. Similarly,
the cluster 4 corresponds to UK students and staff from several schools being
quarantined after returning from ski trips in northern Italy. The cluster 1 is
more evenly distributed and is related to the ski season.
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Cluster Keywords

0
resort, french, chalet, singapore, british, virus,
briton, stay, case, man, alp, montjoie, con-
tamine, swiss, walsh

1
slope, spa, attraction, entice, resort, economy,
boost, restaurant, indoor, idaho, build, shut,
school, north, facility

2
resort, area, county, season, loveland, colorado,
snow, source, summit, early, mountain, week,
vail, 15, virus

3
cup, fis, world, federation, cancel, alpine, race,
yanqe, international, yanqing, committee, man,
association, 15, olympic

4
trip, school, return, pupil, staff, home, north-
ern, student, flu, newquay, catholic, send, uk,
case, fear

Slice JSD
Jan–Feb 0.282
Feb–Mar 0.312
Mar–Apr 0.038

Table 3.17 – Left: cluster keywords for word ski. Right: JSD between consec-
utive time slices.

3.7 Conclusion

In this chapter, we focused on comparing and evaluating semantic change
detection methods. After listing some corpora and evaluation methods from
the literature, we conducted two successive analyses, comparing the models
introduced in Chapter 2.

The first analysis, which is qualitative, observes the sequential aspects of
the models on a corpus of 20 time periods. The second analysis, which is
quantitative, relies on annotated data from corpora having only two time pe-
riods. These two studies are complementary; annotating a corpus on semantic
change sequentially would require a very different method from the ones used
for corpora of two periods, and it would be much more complex. The main al-
ternative used by researchers is to generate a synthetic corpus and controlling
drifts on a large number of time periods.

From the evaluation on annotated data, we concluded that our best method,
which uses the Wasserstein distance on affinity propagation clusters of BERT
embeddings, performs worse on average than methods using non-contextual
embeddings (Skip-Gram with Orthogonal Procrustes alignment). Despite achiev-
ing lower performance, the clustering-based method offers a more fine-grained
interpretation than methods based on static embeddings, since it accounts for
the fact that words can have multiple meanings. The clustering-based tech-
nique returns a degree of change and a set of sentence clusters for each word
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in the corpus, roughly corresponding to word senses or particular usages. For
this reason, the approach can be used for detecting new word usages, tracing
how these usages disappear, and interpreting them; as we have shown with our
third analysis on the Aylien corpus of covid-related news. Word usages and
their distributions over time could be linked with real-word events by labeling
sentence clusters with a set of cluster-specific keywords. Our analysis on the
covid-19 news corpus allows us to highlight the impact of specific events and
their echo across time.

In these experiments, we followed the general approach in semantic shift
detection literature and applied our analysis on the raw text. However, our
results demonstrate that at least news monitoring applications would benefit
from the application of the traditional text processing pipeline, in particular
the extraction of multi-word expressions such as named entities and dates.
This is confirmed by the error analysis performed after the evaluation on the
manually annotated corpora. On top of this, we highlighted some other limita-
tions of the semantic change detection methods relying on BERT embeddings;
in particular, the sensitivity to variations of part-of-speech and to intra-period
context variability.
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The goal of this chapter is to extend the analysis of lexical semantic change
across two languages. In the previous chapters, we rely on the hypothesis that
changes in the context of a word reveal the evolution of the concepts, conno-
tation and concerns associated with this word (Harris, 1954). However, these
elements are highly variable depending on the author—his geographical situa-
tion, beliefs, the society he belongs to. Thus, the usage of a word can undergo
divergences that are meaningful with respect to the divergence between the
societies and the people themselves, especially between two languages.
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After motivating our work (Section 4.1), we describe the methods we use
to learn word representations that are comparable across both time and lan-
guages. We use non-contextual word embeddings in Section 4.2 and contex-
tual embeddings from pre-trained multilingual language models in Section 4.3.
Then, we suggest a metric to measure divergence of word usage between two
languages, that we call bilingual drift. We experiment on a synthetic bilin-
gual corpus with controlled semantic change (Section 4.5), before applying our
methods to real-word corpora in Section 4.6.3.

4.1 Motivation

All languages do not evolve identically: the impact of an event, the influence
of a trend or thinking, can differ between communities. Let us take back two
examples from the introduction.

The English word “villain” and is French equivalent “vilain” used to refer
to village peasants around the 13th century, naturally associated with a lack
of good manners and refinement. As time went by, the feudal system disap-
peared in France and the UK; the original meaning of the word met the same
fate. Only the connotation remained, worsening over time towards its current
meaning, synonymous with scoundrel and criminal. In this example, the so-
cial situation undergoing similar evolution in both countries, the word usage
evolved similarly as well.

The second example is the Russian word “ukrop.” Under the influence of
the Russian-Ukrainian conflict, it gained a new meaning in both Russian and
Ukrainian languages. However, its usage is pejorative and satyric in the mouth
of Russian people, while it is positive in Ukrainian language and later gained
a political connotation. This is an example of divergence of word usage in two
languages.

This topic is actively researched in the linguistic and sociology research
communities (Boberg, 2012), as the scope of language drift offers valuable in-
formation for sociological and historical analysis. In the NLP literature, this
problem is fairly new. Several authors applied diachronic embeddings models
to more than one language (Hamilton et al., 2016; Eger &Mehler, 2016; Rodina
et al., 2019). A Semeval shared task took place on this topic, to work on seman-
tic change detection in English, German, Latin, and Swedish (Schlechtweg et
al., 2020). However, prior work comparing the evolution of word usage across
languages is very limited. Some work study variations between languages or
dialects, without looking into the temporal dimension (Hovy & Purschke, 2018;
Beinborn & Choenni, 2019). To the best of our knowledge, only Martinc, No-
vak, and Pollak (2020) conducted bilingual experiments on semantic change,
studying the evolution of 4 word pairs in an English-Slovenian corpus of news-
paper articles related to immigration: “crime,” “economy” “integration” and
“politics.” They use a BERT model trained on multilingual data, and compute
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the cosine similarity of each target word with the word “immigration” over 4
years. The stability of the similarity leads them to conclude that the discourse
about immigration is similar in both countries.

More recently, Frossard, Coustaty, Doucet, Jatowt, and Hengchen (2020)
propose a resource for analysing the similarities in the evolution of English and
French. It is a list of cognates—words that have the same etymological origin
and similar meaning—in the two languages: 492 pairs of nouns, adjectives
and adverbs. They propose a preliminary analysis relying on this resource,
focusing on the differences in word frequency over time. They use 1-grams
from the Google Books n-grams Corpus, from 1800 to 2008. For each element
of the set of cognates pairs, they extract the time series of yearly frequency
normalised by the total number of words during the year. They compute the
Pearson correlation between the frequency time series of each target word and
its cognate counterpart, to compare the patterns of evolution in the intensity
of their usage. They also compute the ratio between their maximal and mean
frequencies over the full periods, to compare the overall level of word use. They
conclude that the cognate words tend to be correlated in terms of frequency
over time and have in general a similar level of use in the two languages.

In this chapter, we propose an experimental framework to detect and quan-
tify semantic change in a bilingual setting. We compare (i) diachronic and
(ii) contextualised embeddings, relying on a pre-trained multilingual language
model such as m-BERT (Devlin et al., 2019) or XLM-R (Conneau et al., 2020).
We also propose an anchored-alignment strategy to tackle the bilingual setting
for non-contextual embeddings. Given the absence of dataset annotated with
bilingual semantic change, we generate a corpus of synthetic semantic drift
across two languages by relying on EuroSense (Delli Bovi, Camacho-Collados,
Raganato, & Navigli, 2017), a sense-disambiguated and aligned bilingual cor-
pus. To do so, we define a set of monolingual and bilingual semantic change
scenarios and evaluate our different approaches on them. Which allows us to
compare the different systems on each scenario, and emphasize the trade-off
between their scalability and accuracy.

Finally, we apply our systems to newspaper corpora in two languages, En-
glish and French, covering the same time period, from 1987 to 2006. The New
York Times Annotated Corpus (NYT, Sandhaus, 2008), also used in Chapter
3, collects articles from the New York Times from 1987 to 2006. A corpus
of French newspaper articles is constructed ranging over the same time span,
from the journal Le Monde. We use these corpora to identify words undergoing
several kinds of bilingual semantic change that match the bilingual scenarios
defined for the synthetic drift generation.
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4.2 Diachronic words embeddings

We build two systems based on the continuous bag of words (CBOW)
architecture of Word2Vec (Mikolov, Sutskever, et al., 2013) to train bilingual
diachronic word embeddings.

4.2.1 Monolingual training

In this section, we consider an hypothetical monolingual corpus divided
into T time slices. Each document of the corpus is labeled with its creation
date. To train diachronic word embeddings, we rely on a fine-tuning method,
as introduced in Section 1.5. We choose not to use an alignment-based method,
where a new model would be trained from scratch at each time step (Hamilton
et al., 2016). Indeed, when we work on corpora in several languages, an align-
ment is already needed to map the embedding spaces of the different languages
together; it would not be desirable to multiply this type of transformation, as
each alignment introduces uncertainty in the system.

To begin with, as advised by Rudolph and Blei (2018), we pre-train our
CBOW models on a shuffled version of the full corpus for each language. Then,
we build two variants of the system. The first one is incremental training (Kim
et al., 2014), described in Section 1.5: we incrementally fine-tune the model
on each time slice by initialising the embeddings with the ones of the previous
time slice. The second variant is independent training, where the model is fine-
tuned on each time slice independently by initialising it with the pre-trained
embeddings. Compared to the incremental method, this one does not take
into account the chronology of the corpus and can lead to less directed drifts.
However, the fact that the embeddings do not go through a large amount of
successive training updates, contrarily to the incremental method, prevents
the embeddings from undergoing too extreme drift (Shoemark et al., 2019).

4.2.2 Bilingual alignment

Problem. We now consider an hypothetical bilingual corpus, and embed-
dings trained separately on each language. We use a bilingual dictionary to
create a matching between the vocabularies in the two languages: an injective
function mapping words in the first language to words in the second language.
However, the vector representations of a given target word and its translation
in the other language are not immediately comparable, as they are not in the
same vector space.

In order to compare the evolution of a word and its translation jointly,
there are two possibilities. The incidental way consists in comparing words
inside their vector space: by selecting pairs of words, we can compute their
similarity inside each vector space separately. Then, the measures of pairwise
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similarity can be compared among languages (Yin et al., 2018). The second
approach uses alignments of the two vector spaces, allowing direct comparison
of word vectors between the languages. We follow the latter approach and
propose the following pipeline for two languages.

Anchoring. The alignment of vector spaces can be unsupervised (for exam-
ple by automatically inferring a seed bilingual dictionary or using adversarial
methods (Conneau, Lample, Ranzato, Denoyer, & Jégou, 2018)) or supervised
(using a bilingual dictionary or parallel data). The supervision signal is key to
the performance of the overall system, even more than the model architecture
itself (Ruder, Vulić, & Søgaard, 2019). In the absence of bilingual dictionary,
the signal can come from transparent words in the two vector spaces: words
that are the same in both languages, for example named entities. Relying on
a bilingual dictionary can raise an issue for our task. Tsakalidis et al. (2019)
argue that aligning the vectors of the whole vocabulary is not appropriate for
semantic change detection, as it tends to lower the disparities between the dif-
ferent vector spaces. In our case, the alignment forces the embeddings of the
word pairs from the supervision dictionary to be the same in the two languages.
This might hide some behavior such as a high disparity at the beginning of
the full period and a convergence of meanings over time. Consequently, we use
a seed dictionary with only the words that we assume are stable during the
period. A first set of “stable” words are stopwords (Azarbonyad et al., 2017);
however, by definition they do not carry much meaning. Relying only on them
for the supervision might result in a poor alignment. We build a complemen-
tary set of seed words extracted from a bilingual dictionary, keeping only word
pairs that have the same relative frequency in the corpora of each language;
with this frequency being in the top 10% of the full corpus, to ensure robust
representation. The bilingual dictionary we use for alignment comes from the
MUSE tool1. It includes 5000 pairs and handles word polysemy.

Alignment. First, we train monolingual CBOW embeddings on each lan-
guage independently, without dividing the corpora into time slices. To pre-
pare for the alignment, we apply mean-centering to the embeddings of each
language, as Schlechtweg et al. (2019) showed the positive impact of this pre-
processing step for vector space alignment. For the alignment, we use the
system of Conneau et al. (2018) relying on Orthogonal Procrustes (Schöne-
mann, 1966). Orthogonal Procrustes consists in finding an orthogonal map W
between two embedding spaces E1 and E2, and is presented in more details
in Section 1.4. The embedding space of the lower-resource language (source)
is mapped to the higher-resource one (target), relying on the bilingual dictio-
nary. The target embeddings stay unchanged, while the map W is applied to
the source embeddings, such that all vectors end up in the same space. These
aligned embedding vectors are used to initialise the diachronic embeddings,

1https://github.com/facebookresearch/MUSE
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which can then be trained on all the time slices in both languages, incremen-
tally or independently.

4.3 Contextualised embeddings

On top of CBOW embeddings, we use two pre-trained language models:
XLM-R and m-BERT. We summarize how they operate and the key differ-
ences between them, before explaining the method to extract multilingual and
temporal word representations from them.

4.3.1 Multilingual models

We use two multilingual language models:

• M-BERT, the multilingual version of BERT introduced by Google research;

• XLM-R, a multilingual pre-trained model from Facebook (Conneau et al.,
2020).

They are respectively covering 104 and 100 languages, but they also differ on
other points.

M-BERT is simply the BERT model trained on multilingual text, without
any additional multilingual mechanism nor language identifier. The training
corpus is Wikipedia content on 104 languages. Low-resource languages are
over-sampled and high-resource languages are under-sampled to deal with the
dataset imbalance. The WordPiece vocabulary of 110k tokens is shared across
all languages.

XLM-R has the same architecture as RoBERTa (Liu et al., 2019): a Trans-
former model trained only with the masked language model (MLM) objective.
Its input is tokenized with SentencePiece using the unigram language model.
It samples streams of text from each language using the same multinomial
distribution, to train the model on the MLM task. The main difference with
RoBERTa is the scale: it has 550 million parameters—RoBERTa has 355M
and m-BERT 110M—and is trained on the publicly available 2.5TB Com-
monCrawl Corpus, after a cleaning and filtering step. Moreover, they tune the
parameters to generate a huge shared vocabulary of 250k tokens.

XLM-R is claimed to be the first multilingual model to outperform mono-
lingual pre-trained language models. It outperforms monolingual BERT mod-
els on many tasks, calling into question the relevance of training monolingual
models on low-resource languages. On multilingual tasks such as cross-lingual
understanding, it also achieves better performances that m-BERT.
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To sum up, two key differences between XLM-R and m-BERT are their
size (in number of parameters or in size of the training corpus) and the to-
kenization system. M-BERT relies on a shared vocabulary of 110k tokens
extracted by WordPiece while XLM-R has a 250k tokens vocabulary extracted
by SentencePiece.

4.3.2 Extracting word representations

Applying a pre-trained multilingual model on a bilingual temporal corpus
allows immediate comparison without requiring any alignment. Each sequence
is labelled with the time it was written and its language.

We use the feature-based approach described in Section 2.2, extracting
contextualised representations for each token in a sequence. All explanations
given in Chapter 2 for the BERT model are identically applicable to the XLM-
R model. To sum up all the information about a word from the set of con-
textual embeddings of all its occurrences in a time slice, we apply two of the
aggregation techniques described in Section 2.2:

• Averaging of all contextualised embeddings of a word inside each time slice
and for each language, leading to a vector u(t)

l ∈ Rn with n the dimension
of the embeddings.

• Clustering of the contextualised embedding of the word in the full corpus,
all language and periods combined. Then, deducing the distribution of
clusters at each time slice and for each language c(t)

l ∈ RK with K the
number of clusters.

4.4 Drift measures

After applying all these systems to a bilingual corpus divided into T time
slices, for a given target word in a given language l, we obtain several types
of information: a sequence of T embeddings u(t)

l in each language (for CBOW
and m-BERT / XLM-R with averaging), a vector of sense distributions c(t)

l of
length T (for m-BERT and XLM-R with clustering) or T different matrices
of token embeddings E(t)

l , which are the raw embeddings extracted for each
occurrence of a target word (for m-BERT and XLM-R).

We compute the distance between usages as explained in Section 2.4: the
APD between matrices of contextualised embeddings, the cosine distance be-
tween non-contextual embedding of two time slices, and the JSD between
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distributions of clusters.

d(t1, t2, l1, l2) =


cos(u(t1)

l1 ,u
(t2)
l2 )

when using averaging
or non-contextual embeddings

JSD(c(t1)
l1 , c

(t2)
l2 ) when using clustering

APD(E(t1)
l1 , E

(t2)
l2 ) when using no aggregation

(4.1)

As to not overload the notations, we remove some obvious parameters such
as the word which is being considered, and the method used for embedding
extraction. From now on, in order to abstract all these details away, we use
the function d as a generic distance between different realisations of an implicit
word (in the given languages, at the given time slices).

First, as in the monolingual setting, we use the methods defined in Section
1.6 to measure the drifts of a word in each language: the incremental drift,
from each time slice to the next one, and the inceptive drift, from the beginning
of the period to each time slice. We use the full time series to measure the
drift instead of only comparing the first and last time slices, as it offers a more
fine-grained evaluation. As explained in Section 2.4, we obtain drift vectors in
RT−1 for each word in each language, by computing d(t1, t2, l, l).

Then, bilingual measures can be computed for each word pair (one word
and its translation). First, we compute the distance inside each word pair at
each time step. It measures the difference between the usage of a word and its
translation at a given time. We call it the bilingual distance s(t)

B = d(t, t, l1, l2)
for t = 1, 2, . . . , T .

Second, the temporal drift of this distance is measured similarly to the
monolingual drift, either incrementally or inceptively. The distance is the
norm between the bilingual distance s(t)

B at two time steps. It allows to detect
the convergence or divergence of the usage of a word and its translation. This
measure is called the bilingual drift. For example, the incremental bilingual
drift is computed as follow:

Dincr
B =


|s(0)
B − s

(1)
B |

|s(1)
B − s

(2)
B |

...
|s(T−1)
B − s(T )

B |

 (4.2)

To sum up, the monolingual drifts are series of length T − 1 measuring
how much the embedding of a word evolves through time in one language.
The bilingual drifts are also series of length T − 1, measuring how much the
distance between a word and its translation evolves through time.
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4.5 Synthetic drift generation

We introduced the idea of generating synthetic semantic drift in Section
3.1.3. Using synthetic datasets to tackle the issue of evaluation is common for
the semantic change detection task, despite the existence of several annotated
corpora. No corpus is available for bilingual analysis. Consequently, we gen-
erate a corpus of bilingual synthetic semantic change. It allows us to control
exactly the shape and amount of semantic change in the corpus and thus gain
a deeper understanding of the impact of each modeling decision. We define a
set of bilingual semantic change scenarios and describe the method to build
the synthetic corpus.

As explained in Section 3.1.3, we use the natural polysemy of words to
generate synthetic drifts as close as possible to reality. To this end, we need
a bilingual sense-annotated corpus with consistent annotations between lan-
guages (Pasini & Camacho-Collados, 2020). The EuroSense corpus2 (Delli Bovi
et al., 2017) is derived from the Europarl corpus, a large and public corpus of
proceedings of the European Parliament. The framework BabelNet (Navigli &
Ponzetto, 2012) is used for annotation. The EuroSense corpus has a full and
a refined version. We use the latter to build our synthetic corpus; it is half
the size of the first one but more reliable. EuroSense contains parallel text
in 21 European languages. We focus on the two languages with the highest
amount of annotations in the refined corpus: English and French. An example
of aligned sentences in these languages can be found in Table 4.1.

English French

Sentence

The best tools for this are liber-
alisation and freer competition
, which causes train companies
to take a greater interest in the
wishes of customers .

Les meilleurs moyens d’y par-
venir sont la libéralisation et
une concurrence plus libre , qui
incite les compagnies ferrovi-
aires à se soucier davantage des
souhaits de leurs clients .

Lemma customer client
Sense bn:00019763n bn:00019763n

Table 4.1 – Example of aligned sentences in English and French in the Eu-
roSense corpus, with annotated anchor and corresponding sense in the Babel-
Net framework.

4.5.1 Semantic change scenarios

In order to generate and capture variations of distributions of word senses
through time and across two languages, we define several scenarios of word

2http://lcl.uniroma1.it/eurosense/
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usage variations. Then, we simulate each of them using sentences extracted
from the EuroSense corpus. We apply the different systems described in the
previous section to evaluate and compare their ability to capture bilingual
semantic change.

First, we choose two monolingual scenarios of semantic change (labeled
“M”) and generate them using sentences extracted from the EuroSense corpus.
Assuming we have a target word with at least two senses, the scenarios are:

• M0: all senses are fully stable.
• M1: one sense gradually appears / disappears, the others stay stable.

Then, we define several scenarios of semantic drift across two languages
(bilingual scenarios, labeled “B”) derived from the monolingual scenarios. As-
suming we have a target words w1 and its translation w2 with at least two
senses in common:

• B0: w1 and w2 are M0 (stable).
• B1: w1 is M0, w2 is M1 (one stable, the other drifts).
• B2: w1 and w2 are the same M1 (they gain/lose the same sense).
• B3: w1 and w2 are different M1 (one gains/loses one sense, the other

gains/loses another sense, while the other common senses are stable: the
two words diverge).

4.5.2 Building the synthetic corpus

Step 1: selection of target lemma pairs.

For all the sense-annotated lemmas in English and French in EuroSense,
we extract their sets of senses. We only keep the senses with enough occur-
rences (more than 200 occurrences per language). We associate English and
French lemmas together if they have at least two senses in common, creating a
bilingual dictionary. From these lemma pairs, we extract the set of sentences
annotated with one of the senses in common to build the pool of sentences for
the next step.

Even though the sentences are parallel, this step is not straightforward:
in many cases, the annotated word is not the same in the two languages.
Sometimes, the annotated word is the same but the sense is different. These
situations are due to the annotations in EuroSense being automatic. Some
cleaning is necessary; to avoid having to discard all the sentences in this sit-
uation, we identify the word and its translation in the other language and we
assume that if they appear in parallel sentences, then they carry the same
sense.

At the end of this step, we have a sense-annotated parallel corpus with
all the sentences containing a sense-annotated target lemma. We divide the
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target lemma pairs into low polysemy lemmas (number of senses = 2) and high
polysemy lemmas (more than 2 senses). This distinction allows us to evaluate
the various systems according to the degree of polysemy of the target lemmas.
For example, a low-polysemy lemma pair (English, French) is (project, projet)
and a high-polysemy one is (measure, mesure).

In total, we have 115 English-French lemma pairs, of which 66 have 2 senses
and 49 have between 3 and 5 senses.

Step 2: creation of sense distributions.

For each monolingual scenario, we create probability distributions of senses
at each time slice. Let’s denote by p(S | T ,W, L) the probability that the
lemma W conveys sense S at time T in language L. We choose to generate
T = 10 time slices and apply each scenario to all the target lemmas pairs. Since
our variables are discrete, for a given lemma w in language l, the probability
distribution of a set of 2 senses {s1, s2} over time can be characterised by a
2× T left stochastic matrix3:(

p(s1 | T = 1, w, l) p(s1 | T = 2, w, l) · · · p(s1 | T = T,w, l)
p(s2 | T = 1, w, l) p(s2 | T = 2, w, l) · · · p(s2 | T = T,w, l)

)
.

More generally, when a word carries m ≥ 2 senses, their distribution can be
specified by a m× T matrix.

To be more precise, for a given target lemma: for the M0 scenario, we
randomly draw an initial distribution over the set of senses and repeat it at
each time slice: p(S | T = t, w, l) = p(S | T = 1, w, l) for t = 2, 3, . . . , T .
For the M1 scenario, we randomly draw a starting time, a shape of evolution
(linear or logarithmic) and a trend (increasing or decreasing). We select one
of the senses of the lemma and gradually increase or decreases its probability
of appearance through time after the starting point. The other senses have
stable distribution across time.

Step 3: creation of the synthetic corpus.

For each monolingual scenario, we build the synthetic corpus time slice
after time slice, using the set of target lemmas, the pool of sense-annotated
sentences and the distributions of senses.

For each target lemma, at each time step, we sample 200 sentences for each
of its senses. Then, we add each sampled sentence to the corpus for the current
time step, with the probability specified in the corresponding distribution of
senses of the scenario. To avoid the synthetic sense distribution for a target
lemma to be disturbed by noise from its appearance as a context word in other
sentences, when adding a sentence to the synthetic corpus, we attach the suffix
“_l” to its target lemma.

All the bilingual scenarios are built from the monolingual ones. Generating

3Meaning that its columns sum to 1.
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them simply reduces to using the right monolingual scenarios for each word
and its translation. For example in the B3 scenario, we generate a corpus using
the M1 scenario for both the target lemma and its translation, but select a
different sense to appear or disappear in order to induce a divergence.

The obtained corpora, for each scenario and each language, have around
7.5M words distributed into the 10 time slices.

4.5.3 Evaluation method

At each time t, a word w in a language l is characterised by its sense
distribution in the synthetic corpus p(S | t, w, l). This information is similar to
the cluster distributions extracted when applying clustering to contextualised
embeddings; we can compute the drift measure defined in Section 4.4, using
the JSD to compare the sense distributions. The drifts obtained from these
measures can then be used as gold standard for the evaluation of our systems.

For each system described in the previous sections and for each target
lemma pair, we output the monolingual drifts computed on the monolingual
scenario synthetic corpora and the bilingual drifts computed for the bilingual
scenarios (see Section 4.4). We wish to evaluate whether these series have the
same trend as the gold standard.

For this, we use the Mann-Kendall (MK) Trend Test (Kendall, 1975; Sen,
1968). It is a non-parametric statistical test used to detect trends of variables.
It is particularly suited to monotonic trends, which is how we designed the
semantic drift in our data. The null hypothesis of the test is the absence of
monotonic trend. If the detected trend in our data is the same as the one
from the gold standard drift (no monotonic trend, upward trend, or downward
trend), we consider the semantic change for the target lemma has been cor-
rectly identified. We then compute the accuracy (both for monolingual drift
and bilingual drift) as the proportion of correctly identified trends in the full
list of target lemmas.

4.6 Experimental results

We apply our systems to the synthetic corpus and to real data (newspaper
articles) to evaluate them and analyse their behaviour.

4.6.1 Experimental setup

As we rely on stopwords (on top of frequent words) for the alignment, we
do not discard them during preprocessing. We count the word frequencies
in both languages to build the dictionary for the alignment, relying on the
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external bilingual dictionary.

CBOW processing: The context size is set to 5 words, and the dimension
of word embeddings to 50. Preliminary experiments with larger embeddings
dimension exhibited no significant improvement. We posit this is due to the
small size of the dataset, so we decided to keep the dimension of the embeddings
low. We train all models using 10 epochs.

For each language, a static model is first trained on the set of all sentences
containing the target lemmas. Then, we proceed with the training of the
different systems.

BERT and XLM-R processing: We use the pre-trained bert-base-
multilingual-uncased and XLM-roberta-base models from the transformers
library. We extract the contextualised embeddings from the corpus and apply
the different aggregation methods. We remove the “_l” suffix of the target
lemmas before extracting their embeddings. Note that the clustering step has
to be done on both languages jointly, as the distribution of clusters needs to
be comparable between the two languages.

4.6.2 Results on synthetic data

Stable Drift Both stable Stable&drift Same drift Diverge
Model Diachrony M0 M1 B0 B1 B2 B3

CBOW incremental 0.65 - 0.16 0.54 - 0.96 0.87 - 0.82 0.66 - 0.46 0.76 - 0.68 0.63 - 0.47
independent 0.84 - 0.83 0.63 - 0.86 0.83 - 0.89 0.70 - 0.45 0.80 - 0.66 0.67 - 0.50

BERT averaging 0.86 - 0.87 0.34 - 0.55 0.84 - 0.90 0.79 - 0.4 0.71 - 0.69 0.63 - 0.47
k-means 5 0.85 - 0.86 0.61 - 0.19 0.86 - 0.97 0.78 - 0.41 0.77 - 0.91 0.66 - 0.40
APD 0.88 - 0.87 0.54 - 0.26 0.82 - 0.89 0.78 - 0.33 0.65 - 0.73 0.67 - 0.44

XLM-R averaging 0.86 - 0.85 0.35 - 0.56 0.84 - 0.96 0.76 - 0.43 0.68 - 0.76 0.74 - 0.54
k-means 5 0.85 - 0.89 0.61 -0.18 0.86 - 0.96 0.74 - 0.38 0.76 - 0.89 0.75 - 0.54
APD 0.77 - 0.87 0.52 - 0.26 0.80 - 0.93 0.74 - 0.34 0.67 - 0.81 0.70 - 0.53

Table 4.2 – Description (embedding type, diachrony solution) and accuracy
measure of each system compared with gold standard in each semantic change
scenarios. The numbers of the left are incremental drift while the ones on the
right are inceptive drift.

Table 4.2 summarises the accuracies measured using the Mann-Kendall
trend test (Hussain & Mahmud, 2019), as described in section 4.5.3. It com-
pares the drift of all systems with the gold standard drift, for each monolin-
gual and bilingual scenario. We choose k = 5 clusters for k-means, as it is the
maximum number of senses that can be found in our list of target lemmas.
Experiments with higher values of k did not improve the accuracy.

We have three scenarios with stable monolingual or bilingual drift (M0 and
B0, with all the words being stable; and B2, with words in both languages
drifting in the same direction) and three drifting scenarios (M1 and B1, where
one sense drifts; and B3, where words in both languages drift in different
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directions). The results show that stable scenarios are generally easier to
detect accurately compared to the changing ones, especially in the monolingual
analysis.

The best results are obtained with BERT using k-means clustering. All the
information is summarised into a vector of size K (here 5), representing the
different uses of the word; it might provide a better focus on the meaningful
changes in word usage. XLM-R leads to slightly lower results for most scenar-
ios. In the case of CBOW, independent training lead to better performances
than incremental training. This is in line with the findings of Shoemark et al.
(2019): the large amount of training updates, especially in such a small corpus,
is harmful for the quality of the representation.

Overall, the inceptive drift measure lead to better accuracy for stable sce-
narios, while the incremental drift is more suited to scenarios where the sense
distributions evolve or diverge.

Finally, we compare the ability of the various systems to handle highly
polysemous words. We divide the set of target lemma pairs into low (2 senses)
and high-polysemy lemmas (more than 2 senses) and compute the correlation
of the drift from each system for the two groups of lemmas, with the gold stan-
dard. The average accuracies across all scenarios are in table 4.3, respectively
labeled “LP” and “HP.” The accuracy on high-polysemy lemmas is significantly
higher than low-polysemy ones for the methods relying on pre-trained language
models. Methods relying on CBOW embeddings have a much smaller disparity
between low and high-polysemy words, even out-performing the other methods
except for the BERT k-means model.

Model Diachrony HP LP

CBOW incremental 0.64 - 0.61 0.53 - 0.58
independent 0.65 - 0.62 0.60 - 0.60

BERT averaging 0.57 - 0.53 0.52 - 0.53
k-means 5 0.71 - 0.52 0.60 - 0.47
APD 0.66 - 0.50 0.55 - 0.47

XLM-R averaging 0.65 - 0.56 0.53 - 0.56
k-means 5 0.68 - 0.51 0.58 - 0.46
APD 0.65 - 0.51 0.54 - 0.47

Table 4.3 – Average accuracy for low and high-polysemy words (LP and HP).
The numbers on the left are incremental drift, the ones on the right are incep-
tive drift.

4.6.3 Real data description and setup

We analyse the drift in a bilingual corpus of news articles, using the CBOW
embeddings with incremental training. Indeed, even though using BERT with
token embeddings clustering lead to better results overall, the extraction of

110



Chapter 4. Multilingual analysis

each token embeddings and the clustering step are computationally heavy: it
is more suited for a fine-grained analysis of the senses of a limited set of target
words rather than a global analysis on the full vocabulary.

The New York Times Annotated Corpus (Sandhaus, 2008), introduced in
more details in Section 3.1.1, gathers around 1 855 000 articles from January
1987 to June 2007. We scrape Le Monde, one of the most read daily newspapers
in France, on the same time period. We divide both corpora into T = 20 yearly
time steps and select a vocabulary containing the V = 40 000 most frequent
words for each corpora. The average number of words is around 3.5M for one
time step in the French corpus and 9M in the English one. The experimental
setup is the same as the one used on the synthetic corpus; the volume of data
being higher, we increase the capacity of our model by setting the dimension
of CBOW embeddings to 100.

4.6.4 Detection of bilingual drift

First, a bilingual lexicon is built using the intersection of the MUSE bilin-
gual dictionary with the French and English vocabularies from our corpora.
We manually update the bilingual lexicon with domain-specific vocabulary
such as named entities, in order to improve the coverage on the corpora. The
final bilingual dictionary has 27 351 words.

We pre-train the CBOW model on both corpora and normalise the em-
beddings to prepare for the alignment. The French corpus being the smallest,
its embeddings are mapped to the English embedding space. Then, we in-
crementally update the aligned embeddings on both corpora. For each word
of the bilingual vocabulary, we compute its monolingual inceptive drift and
its bilingual drift as defined in section 4.4. It allows us to identify the words
belonging to each of the bilingual scenarios that we defined, using the average
drift in each language and the average bilingual drift as thresholds. The pro-
portion of each scenario as well as some example words are in Table 4.4. The
words that are stable in both languages (B0) are mostly daily life words (e.g.
mayonnaise). The words that drift in the same direction in both languages
(B2) are concepts related to technology and society that are common to the
English and French culture (e.g. renewable); while the words that diverge be-
tween the two languages (B1-fr (English stable, French drifting), B1-en and
B3) belong to more culture-specific concepts (e.g. francs) or controversial top-
ics (e.g. terrorist). For example, francs drifts in French, while it is stable in
English. This is probably due to the large change of currency in France in
2002 that had much lower media coverage in the US. Similarly, terrorist drifts
in both languages but in different directions. The two countries went through
many terrorist attacks during the period under study, but from very different
groups, leading to different contexts for this word.

We applied the systems using BERT with the different aggregation meth-
ods to the 20 word pairs with the most extreme measures for each scenario
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(highest values of monolingual drift and bilingual drift, except for scenario B0:
lowest values). The classification of the word pairs into bilingual drift scenario
is sensibly the same between the methods relying on BERT and the results
described in Table 4.4, except for scenario B2 (words that drift in the same
direction on both languages). Instead of B2, the BERT systems classify these
words as B1 or B3, disagreeing with CBOW embeddings on the stability of
the bilingual distance.

B0 B1-fr B1-en B2 B3
58.2% 15.5% 16.2% 4.9% 5.2%

dinosaurs reforms bush genomics steroid
pottery delinquency horrific renewable rockets

anniversaries francs maid condom gay
mayonnaise feminine hostages cinemas katrina

joke provincial dealers robotic terrorist

Table 4.4 – Proportion and example words for the different categories of bilin-
gual drift.

4.7 Discussion

In this chapter, we studied the joint evolution of words in two corpora of
different languages, by defining an experimental framework to characterise the
drift of the distance of a word and its translation, relying on several bilingual
drift scenarios. We compared several systems using static and contextualised
embeddings.

The use of BERT contextualised embeddings, coupled with a clustering step
to aggregate the information from all the contextualised embeddings of a word,
leads to the best performance. The performance of the CBOW embeddings,
especially with independent training, is nevertheless very competitive. Non-
contextual embeddings are often shown to perform well in diachronic tasks
(see Section 3.4).

Overall, there is still a large margin for improvement; be it in terms of qual-
ity of bilingual representation, metric to measure bilingual semantic change,
or evaluation measures. In particular, the underlying bilingual representation
learning approach is key for the detection of drifts. The transformations and
methods used to create a cross-lingual word embedding space might result in
information loss or generation of spurious drifts in the embeddings. Future
work could focus on finding methods to better represent bilingual embeddings
with the purpose of detecting bilingual semantic change. The anchored align-
ment method presented here is not the only option; Temporal Referencing
(Schlechtweg et al., 2019), the Global Anchor method (Yin et al., 2018), or
any other method for alignment, could be good candidates.
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A limitation of our work is that it does not take into account the inter-
actions between languages, which are an important component on bilingual
semantic change. Modeling this interaction could be beneficial for this task.
Another limitation is the use of an injection to define word pairs. In his general
linguistics course, De Saussure (1916) states there is no bijective relationship
between words in different languages. First, the different meanings and uses
of a word in a language cannot have a perfectly identical equivalent in another
language. And second, as noted by Frossard et al. (2020), a word can have one
or more synonyms in one language while the word bearing the same meaning
in another language has none; in that case, the usage of the word in the first
language is divided into all its synonyms.

Finally, a crucial aspect of this task is evaluation. We use synthetic data to
generate semantic drifts in the two languages. Synthetic evaluation is common
in monolingual semantic change analysis, even though there is no guarantee
that the generated phenomenon is similar to real-world data. It has several
limitations; in our case, as we build all bilingual scenarios from combinations of
two monolingual scenarios, the flaws of the monolingual scenarios are inherited
by the bilingual scenarios. It can potentially multiply the noise by propagation
of uncertainty. We wished to overcome the limitations of synthetic evaluation
with the application on real corpora, but more thorough interpretation would
be necessary for a qualitative evaluation. To perform quantitative evaluation,
an annotated dataset similar to the ones for monolingual semantic change of
Section 3.4 would be necessary. However, the annotation task would be even
more complex than for monolingual data. An easier entrance point towards
annotating data for this task could be borrowed words (words adopted by
the speakers of one language from a different language). Overall, this is a
challenging task and we hope to attract more people to work on it in the
future.
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This PhD was funded by a bank, Société Générale, in the context of a
CIFRE contract. As is the case in all other areas, the banking domain faces
domain-specific data associated with domain-specific tasks.

In this chapter, we underline the specificity of financial data, with a focus
on annual financial reports of companies. We provide examples of associated
tasks, along with a literature review on the topic of semantic change for finan-
cial data (Section 5.1).

A key NLP task is the search for early warning signals: pieces of informa-
tion extracted from text, that may have ambiguous implication but provide
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valuable information for the understanding of present events and the prediction
of future ones, if interpreted correctly. Financial analysts look for this kind of
indicators by monitoring newspapers and statements or reports from financial
actors. In Section 5.2, we propose to use semantic information through word
usage change as a signal. We apply our semantic change detection methods
to financial data—two corpora of annual activity reports from companies, and
a corpus on central banks statements—to study the kind of information that
can be extracted and interpreted.

In particular, we extend our semantic change detection pipeline to other
dimensions than time. We saw in the previous chapters that the methods
relying on contextualised embeddings do not use time as an ordinal variable:
each time slice can be considered as a category independent from the other
time slices. Consequently, we can apply our methods to any dimension on
top of time: for example, in a corpus of company reports, we observe how
words vary depending on the activity sector of the company. Each sector is
considered as a category, exactly as we deal with time slices. It allows us to
observe how word usage vary across different financial actors, business lines, or
any other dimension; and to interpret this evolution. Parts of this section were
made in collaboration with Pr. Asanobu Kitamoto from the National Institute
of Informatics (NII, Tokyo).

Finally, in Section 5.3, we observe the link between semantic change infor-
mation and classical financial indicators used by domain experts. We focus on
companies stock prices, and compare it with time series of semantic drift of
company names.

5.1 NLP in the financial domain

Traditionally, financial experts and economists have used quantitative in-
formation for financial analysis and decision making. However, in the financial
domain, textual data is plentiful and carry a lot of potentially useful informa-
tion. This major resource is usually analysed manually by experts. However,
the volume of textual data increased tremendously in the past decades with
the progressive dematerialisation and the growing capacity to share and store
data (Lewis & Young, 2019). This data was often overlooked and left with-
out large-scale analysis. Recently, the “FinTech” industry started to thrive.
Its goal is to improve financial activity with technology, and it often involves
Natural Language Processing methods.

5.1.1 Financial textual data

Textual data in the financial domain are from diversified sources and can
take different shapes. A large amount of textual data comes from financial
newspapers. A lot of information can also be extracted from social media
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posts made by financial actors such as corporate insiders, investors, customers,
suppliers, pressure groups and politicians. The financial data released by com-
panies gather all elements of their periodic reporting package, such as their
periodic activity reports, their financial statements, and their regulatory fil-
ings. It also include their press releases and social media posts. Another
valuable source of information are speeches, statements and reports by poli-
cymakers, regulators and politicians. All the aforementioned documents are
public data; however, companies and organisations also have many internal
textual documents such as reports from financial analysts.

Among all these data sources, periodic corporate reporting receive a partic-
ularly large attention from the research community, with an already plentiful
literature in the financial domain and a growing one in NLP. The reports have
to be made publicly available periodically by all companies above a certain size
and market value threshold, defined by regulatory authorities of each country.
Their content is also controlled by the regulators.

One of most widely studied type of company report are 10-K filings (Dyer,
Lang, & Stice-Lawrence, 2017). They are annual reports required by the U.S.
Securities and Exchange Commission (SEC). They include information about
the activity of the company throughout the year and a description of its finan-
cial performance, as well as more generic information such as the structure and
the history of the firm. Quarterly reports (10-Q) as well as 8-K reports, only
published for reporting events which might be of importance to shareholders—
such as a change in the board members or bankruptcy—are also required by
regulators. All SEC filings can be found online on the EDGAR database.1

10-K filings are so diligently studied thanks to their format, which is highly
standardised and controlled by the SEC. Outside the US, companies periodic
reporting is less standardized and more shareholder-oriented. It is the case in
France, where companies only publish their reports on their websites, with no
aggregation by a regulatory authority. Nevertheless, public corpora of French
companies annual report were constructed by researchers: the CoFiF Corpus
(Daudert & Ahmadi, 2019) includes financial reports of the 60 largest French
companies from 1995 to 2018, while the DoRe Corpus (Masson & Paroubek,
2020) contains reports from 336 French and Belgian companies from 2009 to
2019. In this chapter, we conduct analyses on the CoFiF corpus as well as on
a corpus of 10-K filings. We perform analyses in the DoRe corpus in Appendix
D.

Lewis and Young (2019) report significant increase in the size and complex-
ity of UK annual report narratives: their median number of words more than
doubled between 2003 and 20162 while the median number of items in the table
of contents also doubled in the same period. Similar behavior is observed in
10-K filings in the US (Dyer et al., 2017). This phenomenon observed in finan-

1https://www.sec.gov/edgar/searchedgar/companysearch.html
2For a sample of 19,426 PDF annual reports published by 3252 firms listed on the London

Stock Exchange.
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cial reporting from companies leads to a contradiction: the huge increase in
volume leads to more and more need of solutions from the NLP community for
analysing this unstructured data automatically. However, more reporting from
more companies leads to more diversity in the shape of the documents; this
lack of standardization and structure makes the analysis tougher and requires
more complex methods (Lewis & Young, 2019).

5.1.2 Financial NLP tasks

Computational methods for financial text processing allow analysts to pro-
cess large amounts of data, and more specifically to extract information and
detect patterns and latent features that would be tricky to identify otherwise.
With the growing interest of financial companies and organisations towards
such computational methods for finance, several workshops were organised in
the recent years: among others, we can cite Economics and Natural Language
Processing (ECONLP) and Financial Narrative Processing (FNP) in 2018, and
Financial Technology and Natural Language Processing (FinNLP) in 2019.

In association with these workshops, several shared task were proposed to
encourage researchers to work on these topics. These tasks showcase problems
which are crucial for the financial domain but remain tricky to tackle. For
example, the following shared tasks were all organised in the year 2020 alone:
FinSBD-2 (Sentence Boundary Detection in PDF Noisy Text in the Finan-
cial Domain), FinSim (Learning Semantic Representations for the Financial
Domain), FNS (Financial Narrative Summarisation), and FinTOC (Financial
Document Structure Extraction). We can cite other common financial tasks:

• Stock price prediction and market trend analysis, using newspapers or
tweets (low-granularity data), often associated with sentence classification
and sentiment analysis.

• Tasks associated to risk management (e.g. credit risk, operational risk).
Common tasks for this field are document classification, relation extraction
and anomaly detection.

• Asset management, Know Your Customer (KYC), compliance, fraud detec-
tion. . .

In the domain of fraud detection, we conducted some experiments on the
French corpus of financial reports CoFiF (Daudert & Ahmadi, 2019) mentioned
in the previous section. We proposed an extension of the sense clustering and
interpretation method from Chapter 2 to detect omissions of risk factors in
companies annual reports. This work can be found in appendix D and in our
paper (Masson & Montariol, 2020).

For all these tasks, one must take into account the specificity of financial
data and of the financial domain. Financial data are characterized by domain-
specific terminology: words that have a fixed meaning in general settings but
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may appear in a different context in a specific domain. For example, the word
“liability” has a negative connotation in general; however, it is a common
financial term that does not carry any connotation in a financial text. To
deal with this issue, strategies range from domain-specific vocabulary lists to
transfer learning. A common step is to fine-tune language models on domain-
specific data. For example, Desola, Hanna, and Nonis (2019) fine-tuned BERT
separately on two corpora of SEC-EDGAR filings (from years 1998–1999 and
years 2017–2019) to create the model FinBERT.

As in many other domain-specific application such as justice or health,
most analyses in the financial domain face the crucial need of transparency,
explainability and fairness. A common example is machine learning-driven
credit risk assessment in banks: the goal is to use automatic methods to help
analysts deciding whether to approve or deny a loan. It is crucial to ensure
the fairness of the algorithm and the explainability of loan approval or refusal,
as required by regulators.

5.1.3 Semantic change on financial data

From a diachronic point of view, we are only aware of Purver, Valentin-
cic, Pahor, and Pollak (2018), who study 20 years of financial reports of 30
Dow Jones Industrial Average (DJIA) companies, from 1996 to 2015. They
manually select a set of 12 financial terms and investigate changes in lexical
associations, by looking at the evolution of the similarity between pairs of two
terms. More recently, Desola et al. (2019) studies two corpora of SEC-EDGAR
filings (from years 1998–1999 and years 2017–2019). For three selected words
(cloud, taxes and rates), they compare the embeddings from the two periods
using cosine similarity. Neither of these works are fully unsupervised nor allow
a fine-grained analysis of the word usage variations.

A less sense-oriented application is the work of Buechel, Junker, Schlaak,
Michelsen, and Hahn (2019): they study a two-decades corpus of public state-
ments from two central banks, the European Central Bank (ECB) and the
US Federal Reserve Bank (Fed). They use emotion analysis to show how the
emotions identified in the statements evolve with the economic situation across
time. They consider the emotional dimensions of Valence, Arousal and Dom-
inance (VAD model). Figure 5.1 shows the dominance series for both central
banks in the full period, allowing to compare the behaviour of the two actors
and juxtapose it with key events such as change in presidency or economic
crisis.
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Figure 5.1 – Dominance series for ECB (blue line) and Fed (green) (Buechel,
Junker, Schlaak, Michelsen, & Hahn, 2019). Vertical dotted lines indicate be-
ginning of ECB presidency, shaded areas indicate Euro area recession periods.

5.2 Detecting variation in word usage in finan-
cial data

In this section, we leverage the capacity of the semantic change detection
methods based on contextualised embeddings to analyse financial texts along
different axes of variation. Indeed, financial texts are characterised by many
domain-specific terms and entities whose usage is subject to high variations,
reflecting the disparity and evolution of the opinion and situation of financial
actors. Starting from a corpus of central bank statements and two corpora
of annual company reports spanning 20 years, we explore the ability of our
semantic change detection methods to identify and interpret variations in word
usage in the financial domain.

5.2.1 Motivation

As stated in the introduction, variation in word usage is not limited to
temporal evolution. The usage of a word can vary depending on the person
that uses it: several dimensions (geographical, cultural) can lead communities
to use words in a different way depending on the local interests and concerns.
These two kinds of variations can be denoted as diachronic (through time) and
synchronic (across any other dimension than time: the country, the source, the
author. . . ).

In the literature, the analysis of synchronic variation is mostly done through
domain-specific word sense disambiguation (WSD). Some approaches use sim-
ilarity measures between non-contextual word embeddings to analyse the vari-
ations in word usage among several communities (Tredici & Fernández, 2017;
Ferrari et al., 2017). More recently, Schlechtweg et al. (2019) analyses both
diachronic and synchronic drifts using non-contextual word embeddings with
vector space alignment. Using one corpus spanning different periods (texts
from the 16th to the 20th century) and one corpus spanning different domains
(cooking-related texts from several categories), they demonstrate that the di-
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achronic models and evaluation can be successfully applied to the synchronic
detection or word usage variation.

In the financial domain, detecting the variations in word usage through
time can lead to better understanding of the stakes and concerns of different
periods (Purver et al., 2018). In a synchronic way, many dimensions can be
observed: how the words are used depending on the business line, the country
of origin, the company or organisation that produces the document. . . This
way, the opinions, behaviours and preoccupations of the writer can transpire
through its specific usage of words.

This semantic variation information can be useful to financial analysts. It
can help to better understand the variations of concerns and viewpoints of
financial actors, for example by analysing text from regulatory authorities. It
can also help to identify the impact of an event on different actors through time,
using high temporal granularity data sources, such as business news articles
or tweets. Additionally, it can provide information to analyse the evolution
of a crisis, by tracking the evolution of the usages of financial keywords and
detecting new drifting words.

In other words, we look for weak signals through the scope of word usage
change. A weak signal is an element observed from data that has ambiguous
interpretation and implication, but may be of importance in the understanding
and prediction of events (present or future). In the financial domain, any
change in strategy, emerging concern or unusual event linked to a financial
actor can be a weak signal; identifying relevant weak signals and interpreting
them is an extremely challenging task.

In this section, we study word usage change as a potential signal of evolution
in the situation and opinion of a financial actor. When an analyst reads a set of
financial documents, the diachronic and synchronic variations in word usage
are not immediately visible. But they might reveal valuable information, if
they can be detected and interpreted. For example, it can be shown that
the connotation of the vocabulary used by central banks in their reports and
statements is strongly influenced by the economic situation (Buechel et al.,
2019), despite the fact that they attempt to be as neutral as possible due to
their position as regulatory authorities; to avoid worrying the investors, among
other reasons.

We use the detection and interpretation pipeline described in chapter 2 to
determine in a fine-grained way the different kinds of use of a word and the
distribution of these uses in a financial corpus. Our goal is to analyse financial
texts in a diachronic and synchronic way, as a preliminary investigation to
address the following questions:

1. In a synchronic way, what do word usages reveal about the opinion and
behaviour of different financial actors?

2. In a diachronic way, what does it says about their evolution? Can it
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improve our understanding of past and ongoing events through the scope
of word usage change?

3. Is word usage change related to financial indicators? How complementary
are these information? (This last item is tackled in Section 5.3).

5.2.2 Pipeline

For all the words of the vocabulary that undergo word usage variation, we
want to answer the following questions:
• For each dimension under study, how much does the usage of the word vary?
• At what time does a usage drift happen (for the diachronic dimension) or
which actor has a significantly different usage distribution?
• What is the change about?

We rely on the pipeline described in Section 2.2, using clustering of contex-
tualised embeddings to distribute all the occurrences of a word into clusters
of usage. We use the clustering to interpret the different usages of a word
and how they vary across a dimension, using centroid sentences and detecting
keywords for each cluster (see the interpretation methods in Section 2.4).

However, this clustering method can only be performed on a limited set of
target words due to scalability issues (complexity and memory consumption,
see details in Section 2.3.1). Thus, a preliminary step selects the set of tar-
get words—words that have highly variable usage—before the clustering and
interpretation steps.

1. Preliminary step: target words selection. For all words in the vo-
cabulary, we compute a variation metric for each of its dimensions of variation.
It is an extension of the averaging by time slice metric Dw from Section 2.3.2
to any dimension: we take the average pairwise distances between the average
embeddings of each class of the dimension under study. For example, if we
wish to study the influence of the source of the documents for a given target
word, we compute the average word embedding for each different source. We
compute the average pairwise distance between these average embeddings, and
select only the subset of the vocabulary with the highest distance—the highest
variation of context in the dimension—for the clustering step.

2. Clustering. We apply two clustering methods, k-means and affinity prop-
agation. Each occurrence of a target word is labelled according to the dimen-
sion under study (the time slice where the token appears, the category of the
document. . . ). We construct the probability distributions over the clusters of
usages of a target word for each class of the dimension, as exposed in section
2.2 for the diachronic case.
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3. Quantification and interpretation. We use the Jensen-Shannon di-
vergence (JSD) and its generalisation to n probability distributions, applicable
in both synchronic and diachronic cases. We compare each distribution with
the average distribution of the full dimension to detect the classes with the
highest variations.

In order to capture the clusters involved in the variation, we identify the
ones that have an uneven distribution across all the elements of the dimension.
It allows us to extract information such as which cluster is specific to a given
actor or which clusters vary the most. Finally, we can get an interpretation of
the usages associated with the clusters using the methods from section 2.4.

5.2.3 Experiment on central banks statements

Corpus description. This corpus assembles all the official statements of
two central banks, the European Central Bank (ECB) and the US Federal
Reserve Bank (Fed) from June 1998 to June 2019.3 These statements report
the economic situation and expose the policy decisions of the central banks.
This corpus was Web-scraped and studied through emotion analysis by Buechel
et al. (2019). It is composed of 230 documents from the ECB and 181 from the
Fed, and contain a total of 14 604 sentences; it is heavily unbalanced towards
the ECB (more than 75% of sentences), as the Fed statements are usually
shorter. An example of the style of these documents can be found in Figure
5.2.

Compared with the March 2019 ECB staff macroeconomic pro-
jections, the outlook for real GDP growth has been revised up
by 0.1 percentage points for 2019 and has been revised down
by 0.2 percentage points for 2020 and by 0.1 percentage points
for 2021. The risks surrounding the euro area growth outlook
remain tilted to the downside, on account of the prolonged pres-
ence of uncertainties, related to geopolitical factors, the rising
threat of protectionism and vulnerabilities in emerging markets.

Figure 5.2 – Extract of ECB statement from June 6, 2019.

Selection of target words. We divide the corpus into yearly time steps, and
build the vocabulary from all words having at least 100 occurrences, excluding
stopwords.

We conduct a preliminary step on the full vocabulary to identify the most
changing words. To speed up the process, we sample at most 3 000 sentences for
each word. We extract the embeddings of the target words using the English
pre-trained bert-base-uncased model from the transformers library. Then, we

3We thank Sven Buechel from Jena University Language & Information Engineering
(JULIE) Lab for sharing the corpus with us.
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Time Source

1 households measures
2 labor committee
3 holdings rate
4 securities employment
5 accomodative developments
6 sectors support
7 monetary pressures
8 housing price
9 sales stability
10 loan market

Table 5.1 – Top 10 words with highest average pairwise variation measure for
the time dimension and the source dimension on the Central Bank Statements
corpus.

compute the average pairwise variation measure by year and by source. The
words with highest variation for the two dimensions are listed in Table 5.1.
For the source dimension, we keep only the words with a threshold of presence
of at least 50 occurrences per source. The comparison is hampered by the fact
that some words such as labor are absent from the FED statements because
of orthographic divergence between British English and American English; in
that case, we can only study their variation across the temporal dimension.
For each dimension, we select the 10% words with highest variation measure
as target words for the clustering step.

Comparison of the clustering algorithms. We apply both k-means and
affinity propagation on the set of contextualised embeddings of each target
word. In the case of k-means, we try different values of the number of clusters
k ranging in J2, 10K. To evaluate the quality of a clustering, we compute its
silhouette score. Then, we extract the distributions of the clusters across each
dimension (for example the distribution of the clusters inside each time slice
for the time dimension). Finally, we apply the generalised Jensen-Shannon
Divergence (JSD) on the set of probability distributions to measure the level
of usage variation of the word. The average values of silhouette score, JSD
by source and JSD by year for all target words of this corpus for different
algorithms are summarised in Table 5.2.

As a reminder, the silhouette score measures the density of the clusters and
the distance between them. It falls between −1 and 1 and must be maximised,
with a score of 0 indicating overlapping clusters. Additionally, while the JSD
between two distributions takes values between 0 and 1, the generalised version
to n distributions is bounded by log2(n). For the temporal dimension in the
Central Bank Statements corpus, the 20-years period leads to an upper bound
being equal to log2(20) ≈ 4.32.
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Method S-score JSD-synchronic JSD-diachronic
Aff-prop 0.267 0.829 2.519
KMeans 3 0.213 0.342 0.523
KMeans 5 0.215 0.467 0.856
KMeans 7 0.218 0.537 1.088

Table 5.2 – Clustering quality (Silhouette score) and average JSD on the Cen-
tral Bank Statements corpus for source and time dimension, for all target
words. We use affinity propagation and k-means with different k.

According to Table 5.2, the average silhouette score is the highest for the
affinity propagation algorithm. The average JSD for both dimensions increases
with the number of clusters for the k-means algorithm, as a higher number of
clusters naturally leads to larger entropy values. We also inspect the number
of clusters for the affinity propagation algorithm: it ranges from 4 to 450, with
an average number of 61 clusters.

The word households in the Central Bank Statements corpus has the highest
temporal variation according to the preliminary measures (average pairwise
variation, Table 5.1) and indeed, we find that it also has a high JSD on the
temporal dimension. We compute affinity propagation clustering, as it leads to
the highest silhouette score. However, the number of clusters outputted by this
algorithm is too high to allow for a clear interpretation of the clusters. Thus,
we apply a merging strategy similar to the one described in section 2.2.4.
Using a threshold of 10 embeddings inside clusters, we merge the minority
usages (illegitimate clusters) with the closest big ones until no small cluster is
left. We end up with 13 large clusters of usage. We plot the distribution of
the merged clusters on Figure 5.3. The normalisation of word count inside the
clusters allows an easier comparison of the proportions but hides the disparities
in frequency; that is why, in this figure, we show the un-normalised counts to
also highlight the evolution of the global trend of the target word.

The cluster number 13 is mostly appearing in the years 2009 and 2010.
Its centroid sentence is “we expect price stability to be maintained over the
medium term, thereby supporting the purchasing power of euro area house-
holds.” The other sentences of the cluster also have positive connotation. This
cluster is composed in majority by sentences from the ECB statements. The
phenomenon might be linked with a need from the European Central Bank to
be reassuring during that period of recession after the financial crisis of 2009
that struck the European countries.

On the other hand, cluster number 12 is mostly present from 2017. Its cen-
troid sentence is “the annual growth rate of loans to non-financial corporations
increased to 2.9% in October 2017, after 2.4% in September, while the annual
growth rate of loans to households remained stable at 2.7%.” Other sentences
of the cluster also talk about loans; This cluster emerges after 2017 following
new guidelines from the European Central Bank in this domain.
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Figure 5.3 – Distribution of clusters per year for the word “households” in the
Central Bank Statements corpus.

5.2.4 Experiments on annual reports

We continue our experiments with two corpora of companies annual re-
ports, in English and French. Compared to the central banks corpus, they
have more diversity in the synchronic dimension, covering a large number of
companies from diverse business lines and stock exchanges. It allows us to dive
deeper into synchronic analysis; we apply the word usage variation detection
pipeline across several dimensions in addition to time. For French data, we
use FlauBERT (Le et al., 2020), a variation of the language models BERT and
RoBERTa (Liu et al., 2019). Its pre-trained version FlauBERT-base-uncased
is trained on French data from a wide variety of sources, from encyclopedic
data to newspaper articles.

5.2.4.1 Data: US and France annual reports

The English corpus comprises annual financial reports (10-K) of US com-
panies extracted from the Securities Exchange Commission Edgar database.4
We collect5 the 10-K reports from the 500 biggest companies in the US, be-
tween 1998 and 2018. Similarly to Purver et al. (2018), we extract the Part I
and the Items 7 and 7A from the Part II of the reports. These sections mainly

4https://www.sec.gov/edgar.shtml
5Using https://github.com/alions7000/SEC-EDGAR-text
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describe the activity of the company and its operations and management. We
end up with 8 676 documents spanning two decades, amounting to a total of
7.3 million sentences. Figure 5.4 illustrates the style of these documents.

On average, our high inventory velocity means we generally col-
lect from consumers before our payments to suppliers come due.
We expect variability in inventory turnover over time since it
is affected by numerous factors, including our product mix, the
mix of sales by us and by third-party sellers, our continuing
focus on in-stock inventory availability and selection of prod-
uct offerings, our investment in new geographies and product
lines, and the extent to which we choose to utilize third-party
fulfillment providers.

Figure 5.4 – Extract of Amazon 10-K filing Item 7 (“Management’s Discussion
and Analysis of Financial Condition and Results of Operations”) from January
30, 2020.

Each document is written by one company, and for each company, we
extract additional data: its stock exchange (NYSE, NASDAQ, OTC) and
its Standard Industrial Classification6 (SIC) code. The latter indicates the
business line of the company; the classification is divided into 7 Offices and
sub-divided into 444 industries. All the offices are listed in Table 5.3. Thus,
we can detect drifts across several dimensions, from the most to the least
fine-grained: by company, by industry, by office, and by stock exchange.

Label Description %

0 Office of Energy & Transportation 15.1
1 Office of Finance 12.5
2 Office of Life Sciences 14.7
3 Office of Manufacturing 19.7
4 Office of Real Estate & Construction 8.2
5 Office of Technology 13.1
6 Office of Trade & Services 16.7

Table 5.3 – Label and proportion of business line with SIC classification in the
SEC-Edgar corpus

The French corpus is taken from the CoFiF financial corpus7 (Daudert &
Ahmadi, 2019). It is composed of the financial reports of the 60 largest French
companies belonging to the CAC40 and CAC Next 20 stock market indices
and contains more than 5 million sentences in 2 655 reports of different types
(quarterly, half-yearly, annual and reference document reports), from 1995 to

6Described in https://www.sec.gov/info/edgar/siccodes.htm
7https://github.com/CoFiF/Corpus
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2018. The year is not included in the corpus metadata, and is not consistently
mentioned in the title of each document. We therefore automatically extract
all the years mentioned in the title and in the first lines of each document, and
deduce the year of publication of the report from the intersection of these two
lists. We exclude the years 1995 to 1998 for the analysis, because of too low
volume. A particularity of this corpus is the presence of raw data tables in the
text. In order to exclude these elements from the analysis, when dividing the
corpus into sentences, we exclude sentences composed of less than 70% letters
(more than 30% numbers, symbols and spaces). Finally, we focus on reference
documents (RDs) only, which make up almost 85% of the data volume. They
are published annually by companies and summarize their financial situation
and prospects.

We end up with a corpus of about 2.7 million sentences. Each of these
sentences is associated with the metadata of the document from which it is
extracted: the name of the company, and the year of publication of the re-
port. The synchronic axis is expanded by collecting information about the
companies: their sector (luxury, transport, chemicals. . . ) and their domain of
activity (secondary or tertiary).

5.2.4.2 Results on usage distribution and interpretation

We conduct a preliminary step on the full vocabulary to identify the most
changing words, as we did for the central banks corpus. In both corpora, some
words appear with very high frequency; for example, the word million appears
1.4 million times in the SEC-Edgar corpus. To speed up the extraction process,
we sample 3000 sentences for each word. We extract the embeddings of the
target words using BERT or FlauBERT. Then, we compute the average pair-
wise variation measure for all dimensions under study: by year, by industry,
by office, and by stock exchange for the SEC-Edgar corpus, and by year, field
of activity and sector in the CoFiF corpus. We do not compute the variation
by company, as the granularity is too high; the volume of data (only one report
per year) leads to a term frequency too low to distinguish drifting words from
non-drifting words.

We perform the same analysis as for the central bank statements corpus,
selecting target words, extracting the probability distributions of clusters in
a dimension, and computing the generalized JSD to measure the semantic
variation. For both corpora, we present examples for the diachronic dimension
and for the synchronic dimension in order to show the different possibilities in
terms of interpretation.

Example on the CoFiF corpus: the word ecology. The affinity propa-
gation algorithm leads to the highest average silhouette score; we use it to rank
the variations of the target words. The 5 target words with the highest JSD
along the time and sector dimensions in the CoFiF corpus are listed in Table
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5.4. Note that the 3 most variable words per year are all part of the climate
lexical field. Moreover, the word ecology varies strongly in both dimensions;
we further analyze and interpret its variation.

By year By sector
1 écologie ecology magasin shop
2 climat climate écologie ecology
3 biodiversité biodiversity luxe luxury
4 syndicats union syndicats union
5 gouvernement government publicité advertising

Table 5.4 – Top 5 words with largest JSD for the time and sector dimensions,
with affinity propagation clustering, in the CoFiF corpus.

For this word, the highest silhouette score is obtained from the k-means
algorithm with k = 7. The normalized distributions of clusters resulting from
this clustering for the sector and time dimensions are shown in Figure 5.5. By
comparing the distributions of the clusters in each period or sector with the
mean distribution on the corpus for the dimension, we identify the periods and
sectors that stand out. Then, we quantify the variation of each cluster within
a dimension. This leads us to the last step: cluster interpretation. We extract
the central sentence of each cluster (the one closest to the centroid). Finally,
using the keyword extraction method described in Section 2.4, we associate a
theme to each cluster in Table 5.5.

For example, Cluster 6 has a strong temporal variation, with an increasing
proportion since 2007; it is associated with financing and cost issues (Fig-
ure 5.5). Cluster 2 is specific to only a few sectors and focuses on business
ideas specific to ecology; it appears quite late in the period. Conversely, Clus-
ters 1 and 5, respectively specific transportation and land development for
one, and energy for the other, are common to most sectors. Cluster 1 is well
summarized by its central sentence, “these obligations are mainly related to
ecology, landscape planning, and archaeology for the associated development
sites.” Cluster 3, associated with the concept of territory from the resources
point of view, is present across the full period but is specific to only a few
sectors such as oil and chemistry. Finally, Cluster 4 contains the lexical field
of risk and danger. It appears once at the beginning of the period and is more
and more frequent at the end of the period. The appearance of this cluster in
2001 is probably due to noise, as the 2001 slice has only two occurrences of
the target word. This cluster remains in the minority even at the end of the
period, probably due to the fact that financial analysts avoid using negative
terms when writing financial reports so as not to worry investors.

Examples on the SEC-EDGAR corpus. For the synchronic dimension,
we study the distribution of usages of the word client by office (business line).
It is one of the words with the highest JSD for this dimension. The silhouette
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Figure 5.5 – Distribution of clusters for word ecology, by sector (bottom) and
year (top).

score is the highest using k-means algorithm with k = 4. All the offices are
listed in Table 5.3; The normalised distributions of clusters for each of them are
in the upper part of Figure 5.6. Using the keyword extraction method, we select
the most representative words for each cluster an report them in Table 5.6.
Cluster 1 is the most unevenly distributed, and appears mostly in documents
belonging to the Real Estate & Construction Office. The keywords associated
with this cluster involve the idea of paying (cost, fees) and negativity (risk,
loss). On the contrary, Clusters 2 and 3 are relatively similarly allocated in the
different offices. Their keywords correspond to very classical vocabulary from
financial reports. Finally, Cluster 0 is characterised by vocabulary from the
semantic field of digital technologies (server, applications. . . ): the clustering
algorithm was able to identify this specific meaning of the target word.
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Title Example of keywords

0-practical éco, concept, logement, économique, raisonné, préservant, préfabrication
eco, concept, housing, economical, reasoned, preserving, prefabrication

1-transportation directeur, énergie, impacts, transports, aviation, initiatives, territoire, aménagement
director, energy, impacts, transportation, aviation, initiatives, territory, planning

2-job apprendre, structure, métiers, collaborateurs, réseau, professionnels, management
learning, structure, jobs, collaborators, network, professionals, management

3-territory industrielle, sites, flux, déchets, échanges, territoriale, eaux, circulaire, ressources
industrial, sites, flows, waste, exchanges, territorial, water, circular, resources

4-danger groupe, fondation, prix, intégrer, péril, polluante, excessive, concernés
group, foundation, price, integrate, peril, polluting, excessive, concerned

5-energy émissions, énergie, fessenheim, industrielle, biodiversité, slovénie, co2, nucléaire
emissions, energy, fessenheim, industrial, biodiversity, slovenia, co2, nuclear

6-cost énergie, arrêté, coût, mer, prix, stockage, économiques, milliards, aménagement
energy, stopped, cost, sea, price, storage, economic, billions, development

Table 5.5 – List of clusters and interpretation for word ecology in the French
CoFiF corpus.

For the diachronic dimension, we study the distribution of usages of the
word crisis by year (Figure 5.6, bottom). The highest silhouette score corre-
sponds to the k-means algorithm with k = 5. The keywords for these 5 clusters
can be found in Table 5.7. We can identify clear temporal tendencies in the
figure. The proportions of Clusters 0 and 4 are decreasing through time, while
Clusters 1 and 2 are growing. The extraction of keywords allows to differenti-
ate the 5 usages of the word crisis. For example, Cluster 1 is associated with
vocabulary of the domain of marketing and media. It is almost non-existent
before the year 2004, and is rapidly growing. Cluster 2 is related to the crisis of
the debt of the European countries; it appears and grows after 2008. Cluster 3
can be found across all the period; it is associated with slightly negative words
(accident and loss), similarly to Cluster 4 (associated with debt and recession)
whose proportion decreases after 2010.

However, one has to be wary of the selection of the number of clusters
using the silhouette score. Sometimes, it leads to choose a low amount of
clusters that may hide some valuable information. For example, for the target
word insurance, the silhouette score is maximum for k-means with k = 2.
However, using k > 5, a cluster appears that belong mostly to sector 4 (Office
of Real Estate & Construction); it is associated with the keywords property
and investment, showing a new aspect of the concept of insurance specific to
this sector.

5.2.5 Discussion

We showed that using contextualised embeddings associated with clustering
allows to automatically detect variations in the use of a word across several
dimension.
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Figure 5.6 – Distribution of clusters per Office for the word client (bottom)
and per year for the word crisis (top) in the SEC-Edgar corpus. The Offices
are described in Table 5.3.

Overall, the distinctiveness and consistency of vocabulary and connotation
inside each cluster is encouraging. The clustering allows us to identify vari-
ations in meaning as well as usage. In particular, the ability to detect clear
temporal tendencies in the cluster distributions could allow a financial analyst
to link these clusters with real-world events, and have a deeper understanding
of the phenomena behind them. The presence of cluster that seem to be char-
acterised by a common sentiment opens the track for further sentiment-specific
analysis.

However, even though the keyword extraction method allows us to gain in-
sight on the interpretation of the clusters, it still requires some domain-specific
knowledge. The next step is to link the detected word usage variations with
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Cluster Keyword examples for the word client

0 server, products, data, applications, services, systems
1 revenue, contract, risk, costs, loss, business, fees
2 assets, funds, cash, interest, balances, investment
3 services, business, revenue, growth, management, products

Table 5.6 – List of clusters and keyword examples for the word client in the
SEC-Edgar Corpus.

Cluster Keyword examples for the word crisis

0 liquidity, funding, contingency, cash, collateral, outflows
1 marketing, business, management, design, advertising, media
2 european, debt, credit, sovereign, countries, eurozone, banks
3 financial, accident, capital, regulatory, loss, liquidity, funding
4 credit, financial, global, markets, debt, european, recession

Table 5.7 – List of clusters and keyword examples for the word crisis in the
SEC-Edgar Corpus.

numerical indicators. First, it could offer a better understanding of the impli-
cations of the variations of word usage and complement their interpretations.
Second, it would help to build an evaluation framework for our methods. For
example, we can observe jointly the cluster distributions of the token embed-
dings of the word unemployment by office in the SEC-Edgar reports, and the
actual unemployment time series by office.

We propose in the next section a preliminary analysis to compare word
usage change and financial indicators. Instead of company annual reports,
we use daily newspaper articles which offer longer time series, allowing a more
robust analysis. We compare embeddings of company names in the newspapers
with the stock prices of these companies.

5.3 Linking semantic change with numerical
time series

The goal of this section is to quantify and analyse the relationship between
semantic information from text and financial indicators. We use the same cor-
pus as in Section 3.6: covid19-related news articles. The health crisis has
a huge financial and economical impact on society, in particular on industry.
This is visible on the evolution of stock market values of publicly traded com-
panies. We link it with the usage evolution of the name of these companies.
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5.3.1 Experimental framework

Data. We use the last version of the Aylien corpus8 introduced in Section
3.6. It contains 1.6M of Coronavirus-related news articles from November
2019 to July 2020, in English, from 440 sources which are mostly business
newspapers. The amount of news for the first two months being low, we
consider only news from January to July. We divide the corpus into 1-day
time slices. Named entity recognition has been performed to detect entities
in each sentence. Focusing on companies, we select the 100 most frequent
companies in the corpus traded on a stock market. We use the names of
these companies as targets for our analysis, and extract daily embeddings for
them. Examples of selected companies include Microsoft, Airbus, JPMorgan,
Nintendo, Ford, Walmart. . .

We use Yahoo Finance to extract the stock value time series for all 100
companies during the period under study. We keep only the closing price
of each day, which is the value at the time the stock exchange closes every
evening. As it is also closed on weekends and holidays, we have no value for
these days. To align the time series of stock price with the daily embeddings
series, we interpolate values for weekends and holidays, setting them to the
average of the stock values of the preceding and following day.

Models. We apply the usual preprocessing steps such as removing stopwords
and train a CBOW model on the whole corpus. Then, we use the incremental
method described in Section 1.5 to fine-tune the model on each time slice and
extract daily embeddings.

We also experiment with Temporal Referencing (see Section 1.4). We re-
place every entity e by its temporal counterpart e_t with the suffix t being
the day when the entity appears. We then train a unique CBOW model on
the whole corpus.

Finally, we use BERT with the standard extraction method, obtaining
one embeddings for each occurrence of the name of a company. We apply
two aggregation methods, averaging and clustering (see Section 2.2). For the
averaging method, we compute the average embeddings of the entity at each
time slice. For the clustering, we apply k-means on all embeddings of an entity,
and deduce the distribution over the clusters at each time slice. We arbitrarily
set the number of clusters to 7.

We can compare the embeddings at two different time slices with cosine dis-
tance (for CBOW embeddings and BERT with averaging) or Jensen-Shannon
Divergence (for BERT with clustering). We compute time series of temporal
drifts of embeddings using these distance measures. As in the previous chap-
ters, we compute two types of drifts: the incremental drift, comparing each t
with t−1, and the reference drift, comparing each t with a reference point ref.

8https://blog.aylien.com/free-coronavirus-news-dataset/
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5.3.2 Correlations analysis

We compute the correlation between the time series of stock prices drifts,
and two pieces of information extracted from the corpus: the time series of
drifts of BERT and CBOW embeddings, and the time series of drift of the
number of occurrences of the entities. All time series have around 200 points.
ref is taken as the embedding trained on the full period (CBOW), the cluster
distribution of the full period (BERT Clustering) or the average embedding on
the whole period (BERT Averaging). Arguably, it would be more adequate to
use an initial value at t0 for comparison. However, this is a very domain-specific
corpus; the data is too sparse at the beginning of the corpus to train robust
embeddings on the first time slice, and embeddings pre-trained on another
corpus would not be adequate. Thus, even though it leaks data from the future
towards the past, we use the embeddings from the full corpus as reference. To
match this choice of reference point for the embeddings, we use the average of
the stock price time series and of the count time series over the full period as
reference point.

Model Comparison ti/ref Mean correlation ti+1/ti Mean correlation
- Stock / Count 0.23 0.489 0.36 0.34
CBOW Stock 0.57 0.596 0.29 0.339
CBOW Count 0.01 0.33 0.98 0.839
TR Stock 0.24 0.434 0.18 0.334
TR Count 0.30 0.406 0.37 0.372
BERT Avg Stock 0.21 0.411 0.64 0.506
BERT Clust Stock 0.22 0.439 0.21 0.439

Table 5.8 – Part of entities with significant Pearson correlation between em-
bedding drift and Stock or Count drift, and average of their correlation.

Table 5.8 shows, for each pair of drift time series, the part of companies
with significant Pearson correlation (p-value < 0.05) between the two series.
We also provide the mean correlation. This is computed for the two types of
drift: incremental and reference.

The movements of CBOW embeddings are highly correlated with the move-
ment of the number of news from one day to the next one (incremental). This is
coherent since, if the company is not mentioned in the news on a given day, its
embeddings cannot drift. However, few entities have a significant correlation
between their stock price movement and their count movement.

For CBOW, more than half entities have a significant correlation between
their embeddings drift series and stock drift series (57%) from the reference
point. The correlation is much lower using the incremental drift, as the day-
to-day comparison is much noisier than the comparison with a reference point.

BERT embeddings suffer less from this noise, as the model does dot use
the data of the period for fine-tuning like CBOW and TR. Thus, for the aver-
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aging method, the incremental drifts of stock prices and embeddings are quite
correlated (64 %). The clustering does not capture the same information, and
fails to recognise a correlation with stock value drift. This might be due to
the low context variability of entities, making the clustering struggle to find
meaningful clusters of usage.

The Temporal Referencing method does not lead to correlated embeddings
drift series; the amount of data at each time slice might be too low to capture
high-quality representations for the entities.

5.3.3 Breakpoint detection

We observe a correlation between the reference drift of CBOW embeddings
and stock prices, and between the incremental drift of BERT averaged embed-
dings and stock prices. But the correlation provides only limited information
on the similarity of trend between the time series. When comparing time se-
ries, a common feature to observe are breakpoints. Breakpoint detection is
a particularly important task in the financial domain, for application such as
anomaly detection for fraud or market risk management. For every company,
we compare the breakpoints of the time series of embeddings drifts with the
breakpoints of the time series of stock prices drifts.

Given a signal, a breakpoint can be defined as a point where the signal
changes his behaviour brutally. An overview of the literature on breakpoints
detection is proposed by Truong, Oudre, and Vayatis (2020). To identify theK
breakpoints in a signal y, we look for the optimal segmentation S of the signal
intoK+1 sub-signals by minimizing a criterion function V (S, y). This function
is the sum of costs of all the sub-signals that make up the segmentation of the
signal:

V (S, y) =
K∑
k=0

c(ytk:tk+1) (5.1)

Where ytk:tk+1 is the sub-signal between breakpoints k and k + 1 and c(·) is
the cost function. It captures the intra-sub-signal variability, by computing
the distance between each point of the sub-signal and its empirical mean, for
example using the L2 norm. To successively detect the breakpoints, we use
binary segmentation (Fryzlewicz, 2014). We first select the optimal breakpoint
in the full signal and split the time series around this point. We repeat this
method for each sub-signal until we reached the desired number of breakpoints.

We compare the detected breakpoints in the two series, by computing the
proportion of “matching” breakpoints. We consider that breakpoints from two
series are matching if they occur at the same time plus or minus a margin M .
The justification behind this margin lies in the goal of the breakpoint detection.
We assume that when an event happens in real life, it has an impact on the
news and on the stock prices, but this might not be immediate. That is why
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we allow this margin during the detection process, choosing M = 2 days.

The precision is the percentage of common breakpoints between the drifts
series of stocks and embeddings. A precision of 1 means a perfect match
between the two sets of breakpoints and a precision of 0 means no common
breakpoints. The number of breakpoints has to be defined in advance. Too
many breakpoints would artificially increase the precision; we choose K = 7
breakpoints (8 sub-signals), which gives the best trade-off between not being
too sensitive to the stochasticity of the process and capturing a meaningful
metric.

Precision : RK × RK → [0, 1]

(Bkpsemb,BkpsStock) 7→ |C|
K

with C = {bi ∈ BkpsEmb s.t. ∃bj ∈ BkpsStock s.t. |bi − bj| < M}

Table 5.9 summarizes the results for two models (BERT with averaging and
CBOW with incremental fine-tuning) and the two drift measures, incremental
and reference. For each combination, we compute the average precision for
all entities, and the proportion of entities with a precision strictly higher than
2/7, corresponding to at least 3 matching breakpoints. To provide a point
of comparison, we also compute the accuracy of a random baseline where
breakpoints are uniformly sampled over the time steps.

The non-contextual embeddings CBOW detect slightly more stock price
breakpoints, for a higher number of entities, compared to averaged BERT
embeddings. Surprisingly, the breakpoint detection algorithm does not seem
to suffer too much from the noise generated when computing the incremental
drift: nearly half of the companies have at least 3 common breakpoints between
their embedding drift time series and stock price drift time series.

Figures 5.7 and 5.8 show two examples of breakpoint detection with very
high number of common breakpoints between the CBOW embeddings drift
(bottom part of the figures) and stock price drift (top parts). The time se-
ries were computed using the incremental drift for two companies, HSBC and
Blackrock. HSBC has a high significant Pearson correlation between the em-
beddings and stock drifts (0.5), while the correlation for Blackrock is not sig-
nificant (0.07 with p-value > 0.05).

5.4 Conclusion

In this chapter, through two analyses, we showed how semantic variation
can be linked with real-word events. First, interpreting word usage variation
across time and between business sectors in companies annual reports allowed
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Model Measure Average precision Entities with precision > 2/7

CBOW Reference 0.263 0.47
CBOW Incremental 0.277 0.49
BERT Reference 0.251 0.40
BERT Incremental 0.276 0.32
random - 0.155 0.08

Table 5.9 – Precision when detecting breakpoints for BERT and CBOW.

Figure 5.7 – Breakpoints for HSBC. Figure 5.8 – Breakpoints for Black-
rock.

us to understand the disparities in opinion and preoccupations between busi-
ness sectors, and the evolution of these elements across time.

Second, the series of drifts of usage of company names in news articles could
be linked with the evolution of the stock price of these companies. In particular,
we could correlate these series for most companies. We showed that even for
companies without correlation between embeddings and stock drifts, we could
detect common breakpoints between these two series. However, additional
experiments on time series prediction using LSTMs showed that using the
time series of embeddings drifts as feature does not improve the accuracy of
stock price prediction.
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In this thesis, I explored methods to build time-varying word representa-
tions from a corpus in order to analyse their evolution. Many elements were
written in collaboration with invaluable co-authors: Matej Martinc, from the
Jozen Stefan Institute (Ljubjana, Slovenia), Elaine Zosa and Lidia Pivovarova,
from the University of Helsinki (Finland), and Corentin Masson from LIMSI
and University Paris-Saclay (France). Over the course of the PhD, I also
collaborated with Aina Gari Soler, from LIMSI and University Paris-Saclay,
and with Étienne Simon, from LIP6 and Sorbonne Université (France). I also
spent a 5-months internship in the National Institute of Informatics in Tokyo
(Japan) under the supervision of Pr. Asanobu Kitamoto. Finally, as part of
my CIFRE contract with Société Générale, I contributed to the organisation
of seminars and other NLP-related events in the company.

The main task I tackled is semantic change detection, defined as follows.
A corpus of documents is first divided into time periods, leading to a set
of pairs (text, time period). For a given target word, we extract a signal
from all the contexts in which the word is used in each time period. This
signal is a representation of the semantic information about the word at each
period. Semantic change detection is done by characterizing the evolution
of this representation across time. I focused on embedding-based methods,
in particular contextualised embeddings extracted using pre-trained language
models.

Summary of Contributions

There is a large body of existing work for semantic change detection. How-
ever, as in many domains, the models used in NLP have drastically changed
in the last few years. Contextualized embeddings have become the standard
for state of the art approaches. Starting my PhD in 2018, the literature asso-
ciated with my research topic substantially evolved; this evolution can be seen
through the experimental tools and contributions developed throughout this
thesis.
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Literature review on semantic change detection. The literature review
proposed in Chapter 1 focuses on diachronic word representations using non-
contextual embeddings. Most of the propositions can be classified in two broad
types.

• Methods that consider time as a categorical variable: they learn word em-
beddings independently on each time slice and align them, or use methods
such as Temporal Referencing or Anchoring to compare word representa-
tions from two separate time slices.

• Methods that consider time as an ordinal variable during training: “incre-
mental” methods, relying on successive initialisation, and “joint” methods—
also called “dynamic”—that use the information of all time slices simulta-
neously during training. We propose a set of experiments in Appendix C
focusing on the ability of these methods to detect semantic change on scarce
data.

Both types have their own limitations and drawbacks. For instance, alignment-
based methods are source of noise and require a lot of data; incremental meth-
ods involve a lot of training updates for the embeddings; dynamic embeddings
leak data from the future towards the past. More importantly, all these meth-
ods represent words as unique vectors in a time slice, without taking into
account the possibility to have several distinct senses or usages. Some meth-
ods use word sense disambiguation or topic models to tackle word polysemy,
but they can hardly be applied to a large vocabulary.

New perspectives can be found in the recent methods that learn contex-
tualised word embeddings using pre-trained language models such as ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019). A short literature review
on contextualised embeddings for diachrony is provided in the beginning of
Chapter 2.

Finally, common corpora and evaluation methods used in the literature
are listed in Chapter 3. Evaluation can be made in a qualitative fashion, by
observing the evolution of some selected words with prior knowledge of their
past meaning change. In a quantitative way, it is common to use indirect
information, such as lexical databases and dictionaries, and downstream task
such as word epoch disambiguation. It is also possible to use direct annotation
of semantic change or semantic relatedness of words across time, but there are
few of such datasets and they only cover small lists of words. Finally, to
have a precise control of the drifts and the size of the evaluation corpus, many
authors generate corpora with synthetic semantic drifts. These three strategies
are used for evaluation in this thesis.

Extraction and aggregation methods using contextualised embed-
dings. In Chapter 2, we propose several methods to extract and aggre-
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gate contextualised embeddings from pre-trained language models for semantic
change detection.

First, we propose two methods to extract contextualised embeddings from
BERT. The first one, the standard method, extracts and stores the embeddings
of all occurrences of a word. We show the limitations of this method in terms
of scalability, for example for situations where we want to identify semantic
change in a large vocabulary. We propose a scalable method to extract only 200
embeddings per word per time slice, aggregating them as they are processed.

We also list four types of methods to quantify semantic change of a word
across two periods, using standard or scalable extracted embeddings: Average
Pairwise Distance, Averaging + Cosine Distance, Clustering + Jensen-Shannon
Divergence, and Optimal Transport with Wasserstein or Sinkhorn divergence.

We apply them to several corpora in Chapter 3, comparing their behaviour
and their ability to detect semantic change through two different evaluations:
qualitative on a corpus of 20 time periods, and quantitative on annotated data
from corpora with two time periods. We deduce the limitations of our different
methods; among them, the one leading to the best accuracy on the annotated
datasets relies on the Wasserstein distance to compare affinity propagation
clusters of scalable BERT embeddings. Although it performs worse than a
non-contextual embeddings method (Skip-Gram with Orthogonal Procrustes
alignment), the clustering method offers a more fine-grained interpretation. It
returns a distribution over a set of sentence clusters for each word in the cor-
pus, that can be matched with word senses or usages. We apply this method
to a corpus of COVID-related news articles, and link the distribution of word
usages over time with real-word events. We show that clustering BERT em-
beddings and interpreting the clusters can enable analysts to highlight the
impact of specific events and their echo across time.

Extension to several languages and dimensions. We extend the task of
semantic change detection beyond the temporal dimension. First, in Chapter
4, we broaden the task of semantic change detection to a bilingual setting: we
define and motivate the task of bilingual semantic change detection, as the
study of the joint evolution of words in two corpora of different languages.
We propose an experimental framework to characterise the relative drift of
a word and its translation in another language, by defining several bilingual
drift scenarios and generating a corpus of synthetic bilingual semantic change.
We extend the diachronic methods using non-contextual and contextualised
embeddings to build bilingual temporal word embeddings. The use of contex-
tualised embeddings, coupled with a clustering step to aggregate the informa-
tion from all the token embeddings of a word, leads to the best performance.
The performance of the non-contextual embeddings, especially with indepen-
dent training, is nevertheless competitive, which is coherent with the results
of Chapter 3.

Then, Chapter 5 prolongs our semantic change detection methods to the
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synchronic case. The detection of semantic variations can be performed across
different sources or communities on top of time. We apply it to reports from
companies in different business lines, highlighting how the usage of a word can
vary across time and between various industries.

Applications. This thesis includes several examples of application of seman-
tic change detection. In Chapter 3, we apply our scalable BERT embeddings
extraction method to the Aylien corpus of COVID-related news. It allows us
to rank all the words of a large vocabulary in terms of semantic change. Then,
we apply clustering to the embeddings of the words to interpret the different
senses and usages that they gained or lost over time. Thus, we demonstrate
the large potential of contextual embeddings for the interpretable tracking of
short-term changes in word usage, which has a practical application for crisis-
related news monitoring.

Chapter 5 focuses on financial applications. Through the analysis of reports
and statements from companies and regulatory authorities, we show that our
semantic change detection and interpretation method can reveal the variations
in preoccupations and opinions of different actors or sources. In particular, the
ability to detect clear temporal tendencies in the distributions of word usage
could allow a financial analyst to link these variations with real-world events,
and have a deeper understanding of the phenomena behind them. Then, we
compare the time series of usage variation of company names in news arti-
cles with the time series of their market value. We show that not only are
they correlated, but we can also detect common breakpoints in these series,
opening the way to joint analysis of financial indicators and semantic change
information for many tasks in the financial domain.

Finally, in appendix D, we introduce the new task of detection of missing
information in companies’ financial reports. We propose to tackle it with an
extension of our clustering and interpretation pipeline to this fraud detection
task.

Future work

Limitations of the methods and evaluation. From our experiments in
Chapter 3, we conclude that there is no such thing as a “best” semantic change
detection approach. Different types of models are apt to tackle different as-
pects of the task; some models focus on the sequential aspects (non-contextual
dynamic and incremental embedding models), others focus on context vari-
ation (contextualised embeddings with APD) or word sense disambiguation
(clustering of contextualised embeddings). Moreover, the results show that
contextualised embeddings are not necessarily the answer to everything, often
being out-performed by non-contextual embeddings aligned across time peri-
ods. More importantly, when we rank the different semantic change detection
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methods by accuracy, we observe that the best method differs depending on
the evaluation corpus. This high variability can partly be explained through
careful error analysis and by observing the models’ behaviour; however, a much
more thorough comparison is necessary to understand how these methods differ
and which method is more fitting to what situation.

To this end, a precise control over evaluation is necessary. In particu-
lar, we would like to evaluate the different methods on various sub-tasks of
semantic change. Which includes, among other tasks: detecting binary se-
mantic change, measuring the speed of semantic change, detecting when a
change happens, and identifying the type of semantic change (birth, death,
broadening, narrowing. . . ). Studying the impact of polysemy and frequency,
and sensitivity to noise in general, is also crucial. All these elements can be
controlled through the generation of synthetic semantic change. In line with
Shoemark et al. (2019), a key future work is to build an extended evaluation
framework for different aspects of semantic change detection. We would define
and generate different types of scenarios to cover all the aforementioned sit-
uations and evaluate the different semantic change detection methods on the
synthetic corpora.

Sequential aspect of semantic change. Due to the difficulty to annotate
semantic change on corpora of more than two time slices, a large part of the
related works evaluate their methods on corpora consisting of only two disjoint
time periods: time is considered as a categorical nominal variable instead of
ordinal. Few works treat time as ordinal, and even fewer consider it as a
continuous variable (Rosenfeld & Erk, 2018).

Incremental and joint models, presented in Section 1.5, take the sequen-
tial information into account; independent models—including contextualised
embeddings systems introduced in Chapter 2—deal with the different time
periods of a corpus independently. In Section 3.2, we saw that these two
categories of models do not always capture the same semantic shifts. Con-
textualised embeddings capture word polysemy and contextual variability in
general; incremental or dynamic embeddings rely on word usage from the past
to build embeddings for the present, highlighting smooth and directed drifts
of word usages.

An important future work is to merge these two approaches, in order to
include sequential information in contextualised embeddings. This can be
done at different steps of the contextualised representation extraction. Here is
a non-exhaustive list of possible strategies:

1. Instilling temporal information in the non-contextual word embeddings
used by the pre-trained language model. Extracting contextualised word
embeddings usually starts by associating non-contextual embeddings to
the input tokens. This non-contextual representation can include ex-
ternal information. We could embed a temporal component, using any
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non-contextualised diachronic embedding model from the literature. Us-
ing a dynamic model such as the one from Bamler and Mandt (2017)
would provide some control over the drift of the word vectors.

2. Inserting this information inside the language model during training. For
example, Peters, Neumann, Logan, et al. (2019) enhance BERT embed-
dings using information from a knowledge base.

3. Merging temporal information with the sequence embeddings at the out-
put of the language model, as an additional layer. For example, Rosenfeld
and Erk (2018) represent time through a time embedding and combine
it with time-independent word embeddings to create diachronic embed-
dings.

4. Fine-tuning the language model incrementally in the successive time pe-
riods. This is also called “diachronic fine-tuning”. Giulianelli, Fernandez,
and Del Tredici (2019) and Kutuzov (2020) experiment with this strat-
egy. Kutuzov (2020) incrementally fine-tunes ELMo models on 5 COHA
decades, using the checkpoint of the model at the previous time slice
to initialise the training on the next one. All decades were trimmed
to the size of the smallest one to decrease the potential impact of fre-
quency variation. He observes that this incremental fine-tuning leads
to a spurious increase in lexical ambiguity at each time slice: as the
model is further trained with new data, the diversity of contextualised
embeddings increase. Moreover, they notice a higher correlation of word
frequency with semantic change scores when using contextualised em-
beddings from incrementally fine-tuned language models. Finally, an
evaluation on annotated data shows that the diachronically fine-tuned
model under-performs the classical pre-trained model on semantic change
detection. To sum up, this process has to be used with caution, as it is
hard to differentiate real word usage variation from variation caused by
the diachronic fine-tuning.

5. Learning temporal information through a downstream task, such as word
epoch disambiguation, in addition to the language model objective. This
can be done with a classification layer to predict the period of the se-
quence on top of a masked language model architecture.

Besides including temporal information in the contextualised embeddings,
we wish to improve the way this information is modeled. A common method
to model the time component in word embeddings is to use Gaussian processes
(Bamler & Mandt, 2017; Rudolph & Blei, 2018). However, we could use differ-
ent processes to model different possible behaviours of the word embeddings.
In particular, in a short-term setting, we observe many breakpoints with sud-
den and sharp changes in word usage. For example, the word diamond that
we study in Chapter 3 went through a sudden jump in its usage when the
Diamond Princess cruise ship was quarantined in February 2020. To model
this type of behaviour, we could use a jump process instead of a Gaussian
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one. We could also use both types of process together, through the so-called
jump-diffusion processes, as a prior on embeddings drifts. Common jump pro-
cesses are Poisson processes. However, we would rather turn towards Hawkes
processes, that are already extensively used in NLP for modelling information
diffusion in social media (Mei & Eisner, 2017).

Applications. Automatic semantic shift detection has been used for text
stream monitoring tasks, such as event detection (Kutuzov, Velldal, & Øvrelid,
2017) viewpoint analysis (Azarbonyad et al., 2017) or monitoring of rapid
discourse changes during crisis events (Stewart et al., 2017). We believe that
one of the key applications of short-term semantic change detection is news
monitoring, and more specifically weak signal detection. A weak signal is a
small piece of information that has ambiguous interpretation and implication,
but may be of importance in the understanding of present events and in the
prediction of future ones. Many anomaly detection tools are used on news
and tweet streams to detect such information. However, few of them use word
usage change as a weak signal.

Clustering of contextualised embeddings, as presented in the Chapter 3
use case, allows us to distinguish different types of word usage and track their
distribution over time. To fully leverage the ability of this pipeline to de-
tect and interpret word usage variations, our method can straightforwardly
be extended in a streaming way. Any new document can be included in the
analysis, be it a new central bank statement, company report, or in a classical
streaming data situation such as daily financial news or tweets. Contextualised
embeddings are extracted from the new document, and the clustering is up-
dated using incremental clustering methods. For example, several incremental
affinity propagation algorithms, designed for streaming data, are proposed in
the literature (Ajithkumar & Wilson, 2017; Sun & Guo, 2014). Each new
word embedding modifies the cluster distribution, either by being added to an
existing cluster or by creating a new one.
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Appendix A

Résumé en français

A.1 Introduction

Une langue est un système dynamique, en constante évolution dans le
temps. Cette évolution est portée par la façon dont les gens utilisent les mots,
et reflète l’évolution de divers aspects de la société tels que l’environnement
technologique et culturel. Nous étudions les changements lexico-sémantiques:
la variations temporelle dans l’usage et la signification des mots, également
appelée diachronie en linguistique. Cette thèse explore et compare différentes
méthodes permettant de construire des représentations de mots variant dans
le temps à partir d’un corpus, pour analyser leur évolution.

Une motivation immédiate des méthodes de détection automatique du
changement sémantique est de soutenir le travail des lexicographes, en analysant
de grandes quantités de texte avec peu de moyens humains. Plus généralement,
la détection des changements sémantiques peut être utilisée directement pour
la recherche linguistique, sociologique et historique ; par l’interprétation des
causes de ces changements, en les reliant à des événements réels, et en analysant
l’évolution des tendances et des opinions au cours du temps (Gillani & Levy,
2019). Le changement sémantique peut également être utilisé comme outil
pour de nombreuses tâches dans le traitement du langage naturel (TAL). De
nos jours, un nombre croissant de données textuelles historiques sont numérisées
et mises à la disposition du public. Elles peuvent être analysées en parallèle
avec des documents contemporains, pour des tâches allant de la classification
de textes à la recherche d’informations et la reconnaissance d’entités nommées
(Jin et al., 2020).

Entre autres applications, cette thèse se concentre sur l’analyse de docu-
ments issus du domaine financier. En effet, il s’agit d’une thèse CIFRE, dans
le cadre d’un partenariat entre le LISN-CNRS (ex-LIMSI), l’Université Paris-
Saclay, et la Société Générale. Ce contexte ancre le thème de recherche dans
des problématiques et enjeux concrets auxquels fait face l’entreprise. L’analyse
de l’évolution sémantique dans le domaine financier s’inscrit en particulier dans
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la gestion des risques. Qu’il s’agisse du risque de réputation, du risque politique
ou du risque systémique, les variations de l’usage des mots peuvent fournir des
informations précieuses aux analystes financiers.

Afin de détecter et d’analyser les changements lexico-sémantiques, la pre-
mière étape consiste à extraire et à représenter la signification et l’usage d’un
mot, à travers le contexte dans lequel il apparaît dans un corpus. Historique-
ment, les premiers travaux utilisent les fréquences relatives et les co-occurrences
des mots (Sagi et al., 2009). Puis, les travaux de Bengio et al. (2003) et
Mikolov, Sutskever, et al. (2013) proposent de représenter un mot pas un
vecteur de réels : son plongement. Ce type de représentation prend en compte
le contexte dans lequel le mot se trouve dans un corpus pour en déduire le
vecteur qui lui est associé. Les différents usages du mot observés sur l’ensemble
du corpus sont moyennés dans un vecteur unique. Pour étudier l’évolution de
la signification des mots, nous avons besoin de plongements de mots variant
dans le temps. Ils reposent sur l’extension suivante de l’hypothèse de distri-
bution de Harris (1954) : un changement dans le contexte d’un mot reflète
un changement dans sa signification ou son usage. Cette hypothèse conduit à
l’émergence de plongements diachroniques de mots : les vecteurs de mots vari-
ent dans le temps, suivant l’apparition du mot dans des contextes différents.

Plus récemment, des modèles de langue pré-entraînés tels que BERT (De-
vlin et al., 2019) génèrent des plongements contextualisés : chaque occurrence
d’un mot est représentée par un vecteur unique. Cela ouvre la voie à de nou-
velles méthodes de détection de changement sémantique.

A.2 Contributions

Dans cette thèse, nous explorons, comparons et évaluons des méthodes de
détection de changements sémantiques dans différents contextes.

La tâche principale abordée est la quantification du degré de changement
sémantique, définie comme suit. Nous partons d’un corpus de documents,
chacun associé à une date. Nous le divisons en plusieurs strates temporelles,
selon la granularité choisie. Une strate peut être de n’importe quel ordre de
grandeur, de quelques jours à plusieurs siècles, selon le corpus et le phénomène
étudié. Nous obtenons ainsi un ensemble de paires (texte, période). Pour un
mot cible donné, nous extrayons un signal de tous les contextes dans lesquels
ce mot est utilisé dans chaque strate temporelle. Ce signal est une représen-
tation de l’information sémantique du mot dans la strate. Nous étudions le
changement sémantique comme l’évolution de cette représentation à travers le
temps. Les méthodes que nous proposons visent à extraire ce signal.

La littérature sur la représentation des mots et le changement sémantique
a évolué très rapidement pendant la préparation de cette thèse de doctorat. Le
domaine du changement sémantique a connu une accélération soudaine depuis
2018, avec successivement l’émergence de modèles de plongements dynamiques;
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la publication de plusieurs revues de littérature du domaine (Tahmasebi et al.,
2018; Kutuzov et al., 2018); la tenue du premier workshop sur le changement
sémantique (LChange19); et l’organisation d’une tâche d’évaluation (SemEval
2020 Task 1, Schlechtweg et al., 2020). En parallèle, tous les domaines du
TAL ont été ébranlés par l’émergence des modèles de langue pré-entraînés tels
que ELMo et BERT. Au cours de cette thèse, nous avons suivi cette évolution
: elle se traduit par de grandes disparités entre nos premiers travaux et les
plus récents. Dans l’ensemble, dans ce manuscrit nous nous concentrons sur
les méthodes basées sur les plongements contextualisés extraits à l’aide de
modèles de langue pré-entraînés.

A.2.1 Revue de littérature sur la détection des change-
ments sémantiques

Avant l’émergence des plongements lexicaux, les premiers travaux de détec-
tion du changement sémantique se basaient sur le comptage des co-occurrences
de mots. La revue de la littérature proposée dans le chapitre 1 se concentre
sur les représentations diachroniques de mots utilisant des plongements non
contextuels. La plupart des méthodes peuvent être classées dans deux caté-
gories.

• Les méthodes qui considèrent le temps comme une variable catégorielle :
elles entraînent les matrices de plongements de mots indépendamment sur
chaque strate temporelle d’un corpus, puis les alignent — par exemple via
une rotation dans l’espace vectoriel — ou utilisent des méthodes telles que
Temporal Referencing ou Anchoring pour comparer les représentations des
mots de deux périodes différentes (Kulkarni et al., 2015; Hamilton et al.,
2016; Yin et al., 2018; Schlechtweg et al., 2019).

• Les méthodes qui considèrent le temps comme une variable ordinale pendant
l’entraînement : cela inclut les méthodes dites “incrémentales”, reposant sur
une initialisation successive des modèles de plongements lexicaux avec les
plongements de la période précédente; et les méthodes “jointes” — égale-
ment appelées “dynamiques” — qui utilisent les informations de toutes les
périodes simultanément pendant l’entraînement (Kim et al., 2014; Rudolph
& Blei, 2018; Yao et al., 2018; Bamler & Mandt, 2017). Nous proposons
un ensemble d’expériences dans l’annexe C qui se concentre sur la capacité
de ces dernières méthodes à détecter les changements sémantiques sur des
données en faible quantité.

Ces deux catégories de méthodes ont leurs propres limites et inconvénients. Par
exemple, les méthodes basées sur l’alignement des espaces de représentation
sont source de bruit et nécessitent beaucoup de données; les méthodes incré-
mentales impliquent de nombreuses mises à jour successives d’une matrice de
plongements, induisant parfois des dérives fallacieuses dans les plongements;
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enfin, les méthodes dynamiques utilisent les données de l’ensemble du cor-
pus lors de l’apprentissage, prenant en compte des données des strates futures
dans les plongements des strates passées. Plus important encore, toutes ces
méthodes représentent chaque mot par un unique vecteur dans chaque strate
temporelle, sans tenir compte de la possibilité d’avoir plusieurs sens ou usages
distincts au sein d’une même période. Certaines méthodes utilisent la désam-
biguïsation du sens des mots ou des topic models pour aborder la polysémie des
mots, mais elles peuvent difficilement être appliquées à un vocabulaire étendu
(Mitra et al., 2015; Tahmasebi & Risse, 2017a; Frermann & Lapata, 2016).

De nouvelles perspectives peuvent être trouvées dans les méthodes récentes
qui génèrent des plongements contextuels de mots en utilisant des modèles de
langue pré-entraînés tels que ELMo (Peters et al., 2018) et BERT (Devlin et
al., 2019). Des travaux récents, décrits au début du chapitre 2, montrent que
les plongements contextuels peuvent être utilisés pour la détection des change-
ments sémantiques en agrégeant les informations de l’ensemble des plonge-
ments d’un mot selon différentes méthodes (Martinc, Novak, & Pollak, 2020;
Giulianelli et al., 2020; Kutuzov, 2020).

Enfin, les corpus communs et les méthodes d’évaluation utilisés dans la
littérature sont énumérés dans le chapitre 3. L’évaluation peut être faite de
manière qualitative, en observant l’évolution de certains mots pour lesquels on
dispose de connaissances a priori sur leurs changements de sens au cours du
temps. Pour l’évaluation d’un point de vue quantitatif, il est courant d’utiliser
des informations indirectes, telles que des bases de données lexicales et des
dictionnaires, et des tâches auxiliaires comme la classification de phrase dans
différentes périodes. Il est également possible d’utiliser des corpus annotés en
changement sémantique; mais de tels corpus sont peu nombreux et ne cou-
vrent que des listes très réduites de mots (100 mots maximum). Pour finir,
afin d’avoir un contrôle précis des dérives sémantiques et de la taille du cor-
pus d’évaluation, de nombreux auteurs génèrent des corpus avec des dérives
sémantiques synthétiques. Ces trois stratégies sont utilisées pour l’évaluation
dans cette thèse.

A.2.2 Méthodes d’extraction et d’agrégation utilisant
des plongements contextualisés

Les méthodes récentes d’apprentissage de plongements de mots contextu-
alisés à l’aide de modèles de langue pré-entraînés comme BERT donnent de
nouvelles perspectives au problème de la tâche de détection du changement
sémantique. Cependant, elles impliquent une toute nouvelle façon d’entraîner,
d’extraire et d’utiliser les plongements de mots.

Dans le chapitre 2, nous proposons plusieurs approches pour extraire et
agréger les représentations contextualisées dans le temps, et quantifier le degré
de changement sémantique des mots. Nous nous concentrons sur le passage à
l’échelle de nos approches, en vue de les appliquer à de grands corpus ou à de
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grandes listes de vocabulaire, et sur leur interprétabilité, en désambiguïsant
les différents usages d’un mot au fil du temps. Nous évaluons l’efficacité de ces
méthodes de manière qualitative et quantitative, en utilisant plusieurs corpus
annotés. Nous les appliquons également de manière exploratoire à un corpus
d’articles de journaux liés au covid19 et proposons des interprétations des
changements sémantiques détectés.

Tout d’abord, nous proposons deux méthodes pour extraire les plonge-
ments contextualisés de BERT. La première, la méthode standard, extrait et
stocke les plongements de la totalité les occurrences d’un mot dans un cor-
pus. Cette méthode est limitée en termes de passage à l’échelle, par exemple
pour les situations où nous voulons quantifier le changement sémantique de
tous les mots d’un large vocabulaire, ou pour quantifier le changement séman-
tique d’un mot très fréquent; en effet, le stockage et le calcul de la variation
sémantique deviennent ardus pour de larges volumes de données. Nous pro-
posons une méthode scalable pour extraire seulement 200 plongements par mot
et par strate temporelle, en les agrégeant au fur et à mesure de leur extrac-
tion. Nous montrons qu’en plus de résoudre le problème de passage à l’échelle,
cette méthode d’extraction permet de réduire le bruit dans le nuage de plonge-
ments, menant à une amélioration de la précision dans la tâche de détection
de changement sémantique.

Nous listons ensuite quatre méthodes permettant de quantifier le change-
ment sémantique d’un mot entre deux périodes, en utilisant les plongements
extraits de façon standard ou scalable : distance moyenne par paire, distance
entre les moyennes intra-période, clustering + divergence de Jensen-Shannon
entre les distributions des clusters dans chaque période, et transport optimal
avec divergence de Wasserstein et régularisation de Sinkhorn associés à un
clustering.

Nous appliquons ces méthodes à plusieurs corpus dans le chapitre 3, en
comparant leur comportement et leur capacité à détecter les changements sé-
mantiques à travers deux évaluations différentes : qualitative sur un corpus
de 20 strates temporelles, et quantitative sur des corpus annotés divisés en
deux périodes. Nous en déduisons les limites de nos différentes méthodes. La
méthode qui conduit à la meilleure précision sur les données annotées s’appuie
sur la distance de Wasserstein pour comparer les clusters de plongements ex-
traits de BERT avec la méthode scalable. Bien qu’elle soit moins performante
qu’une méthode de plongements non contextuels (Skip-Gram avec alignement
et distance cosinus), la méthode de clustering offre une interprétation plus
fine. En effet, pour un mot donné, elle renvoie une distribution sur un en-
semble de clusters de phrases. Ces clusters peuvent être mis en correspon-
dance avec les différents sens et usages du mot; nous proposons une méthode
d’interprétation basée sur l’extraction de mot-clés dans les clusters de phrases.
Nous appliquons ce système à un corpus d’articles de presse liés au COVID19,
et relions l’évolution de la distribution des usages des mots dans le temps avec
des événements réels. Nous montrons que le partitionnement des plongements
de BERT et l’interprétation des clusters peuvent permettre aux analystes de
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mettre en évidence l’impact d’événements spécifiques sur l’usage des mots, et
leur écho dans le temps.

A.2.3 Extension à plusieurs langues et dimensions

Nous étendons la tâche de détection des changements sémantiques au-delà
de la dimension temporelle. Premièrement, dans le chapitre 4, nous élargis-
sons la tâche de détection du changement sémantique à un cadre bilingue :
nous définissons et motivons la tâche de détection du changement sémantique
bilingue, comme l’étude de l’évolution conjointe d’un mot et de son équivalent
dans deux corpus de langues différentes. Nous proposons un cadre expéri-
mental pour caractériser la dérive relative d’un mot et de sa traduction dans
une autre langue, en définissant plusieurs scénarios de dérive bilingue et en
générant des corpus synthétiques où nous contrôlons le changement sémantique
bilingue. Nous étendons les méthodes diachroniques utilisant des plongements
non contextuels et contextualisés pour construire des plongements de mots à
la fois bilingues et diachroniques. L’utilisation de plongements contextualisés,
couplée à une étape de clustering pour agréger les informations provenant de
tous les plongements d’un mot, permet d’obtenir les meilleures performances.
La performance des plongements non contextuels, en particulier avec un en-
traînement indépendant sur les différentes strates temporelles, est néanmoins
compétitive, ce qui est cohérent avec les résultats du chapitre 3.

Ensuite, le chapitre 5 prolonge nos méthodes de détection de change-
ments sémantiques au cas synchronique. La détection des variations séman-
tiques peut être appliquée pour comparer des textes provenant de différentes
sources ou communautés, en plus de leur répartition dans différentes périodes.
Nous l’appliquons à des rapports financiers d’entreprises de différents secteurs
d’activité, en soulignant comment l’usage d’un mot peut varier dans le temps
et entre différents secteurs. Nous montrons ainsi que nos méthodes permettent
de détecter et d’interpréter les variations dans l’utilisation d’un mot à travers
plusieurs dimensions, et que ces variations peuvent être liées à des événements
réels.

A.2.4 Applications

La détection automatique de variation sémantique a été utilisée pour des
tâches de surveillance de flux de texte, telles que la détection d’événements (Ku-
tuzov, Velldal, & Øvrelid, 2017) l’analyse de points de vue (Azarbonyad et al.,
2017) ou la détection de changements rapides de discours lors de crises (Stew-
art et al., 2017). Nous pensons que l’une des principales applications de la
détection des changements sémantiques sur de courtes périodes est la surveil-
lance des actualités, et plus particulièrement la détection de signaux faibles
dans les données journalistiques ou issues de réseaux sociaux. Un signal
faible est une information dont l’interprétation et les implications sont am-
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biguës, mais qui peut être importante pour la compréhension des événements
présents et la prévision des événements futurs. De nombreux outils de détec-
tion d’anomalies sont utilisés sur les flux d’actualités et de tweets pour détecter
ce type d’information. Cependant, peu d’entre eux utilisent le changement
d’usage des mots comme potentiel signal faible.

Cette thèse comprend plusieurs exemples d’application de la détection de
changement sémantique. Dans le chapitre 3, nous appliquons notre méth-
ode d’extraction scalable des embeddings générés par BERT au corpus Aylien
d’articles de journaux liés au COVID19. Cela nous permet de classer tous
les mots d’un vaste vocabulaire en terme de changement sémantique. Ensuite,
nous appliquons un clustering aux plongements des mots contextualisés, afin
de distinguer différents types d’utilisation des mots, de suivre l’évolution de
leur distribution dans le corpus, et de là, d’interpréter les différents sens et
usages que ces mots ont acquis ou perdu au fil du temps. Ainsi, nous démon-
trons le grand potentiel des plongements contextuels pour le suivi interprétable
des changements à court terme dans l’utilisation des mots, et son application
pratique pour la surveillance des actualités liées aux crises.

Le chapitre 5 porte sur les applications financières. Par l’analyse de rap-
ports d’entreprises et de déclarations d’autorités de régulation, nous montrons
que notre méthode de détection et d’interprétation des changements séman-
tiques peut révéler les variations dans les préoccupations et les opinions des
différents acteurs financiers. En particulier, la capacité à détecter des ten-
dances temporelles claires dans les distributions des usages de mots pourrait
permettre à un analyste financier de relier ces variations à des événements réels
et d’avoir une compréhension plus approfondie des phénomènes sous-jacents.
Ensuite, dans un corpus journalistique, nous comparons les séries temporelles
des plongements diachroniques de noms d’entreprises avec les séries temporelles
de leur valeur de marché. Nous montrons une corrélation entre ces séries, ainsi
que la présence de points de rupture communs. Cela ouvre la voie à une analyse
conjointe des indicateurs financiers et des informations issues du changements
sémantiques pour de nombreuses tâches dans le domaine financier.

Enfin, dans l’annexe D, nous introduisons la nouvelle tâche de détection
d’informations manquantes dans des rapports annuels financiers d’entreprises,
dans le cadre de la détection de fraude. Nous proposons d’aborder cette tâche
avec une extension de notre système de détection et d’interprétation des vari-
ations sémantiques.

A.3 Conclusion

D’après nos expériences au chapitre 3, nous concluons qu’il n’existe pas de
“meilleure” approche de détection des changements sémantiques. Différents
types de modèles sont aptes à aborder différents aspects de la tâche ; certains
modèles se concentrent sur les aspects séquentiels (modèles de plongements
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dynamiques et modèles incrémentaux non contextuels), d’autres se concentrent
sur la variation du contexte (plongements contextuels avec distance par paire
moyenne) ou la désambiguïsation du sens des mots (clustering de plongements
contextuels). En outre, les résultats montrent que les plongements contextuels
ne sont pas nécessairement la réponse à tout, étant souvent surpassés par les
plongements non contextuels alignées entre deux périodes successives.

Plus important encore, lorsque nous classons les différentes méthodes de
détection de changements sémantiques en fonction de leur précision, nous con-
statons que la meilleure méthode diffère selon le corpus d’évaluation. Cette
grande variabilité peut en partie s’expliquer par une analyse minutieuse des
erreurs et par l’observation du comportement des modèles ; toutefois, une com-
paraison beaucoup plus approfondie est nécessaire pour comprendre en quoi
ces méthodes diffèrent et quelle méthode est la plus adaptée à chaque situation.

À cette fin, un contrôle précis de l’évaluation est nécessaire. En particulier,
nous souhaitons évaluer les différentes méthodes sur diverses sous-tâches du
changement sémantique. Cela comprend, entre autres, les tâches suivantes :
détecter le changement sémantique binaire, mesurer la vitesse du changement
sémantique, détecter quand un changement se produit et identifier le type de
changement sémantique (apparition ou disparition d’un sens, élargissement,
rétrécissement...). L’étude de l’impact de la polysémie et de la fréquence des
mots, et de la sensibilité au bruit en général, est également cruciale. Tous ces
éléments peuvent être contrôlés par la génération de changements sémantiques
synthétiques dans un corpus. De façon similaire à Shoemark et al. (2019) et à
nos expériences du chapitre 4, un travail futur essentiel consiste à construire
un cadre d’évaluation étendu pour les différents aspects de la détection du
changement sémantique. Nous définirions et générerions différents types de
scénarios pour couvrir toutes les situations mentionnées ci-dessus et évaluerions
les différentes méthodes de détection du changement sémantique sur les corpus
synthétiques.
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Additional experimental results

Tables B.2 and B.1 show the Spearman correlation between ground truth
word rankings and rankings outputted by the various approaches relying on
Optimal Transport. We use the different methods to compute the distance
between embeddings at two time periods, for both standard and scalable em-
beddings. A selection of these results, analysed in details, can be found in
Section 3.4.2.
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Clustering Measure GEMS
SemEval

DURel AvgEnglish German Swedish Latin

Standard embeddings

aff-prop JSD 0.510 0.313 0.436 -0.026 0.467 0.542 0.374
aff-prop WD 0.386 0.643 0.490 -0.100 0.246 0.456 0.354
aff-prop Sinkhorn 10 0.178 0.485 0.270 -0.204 0.337 0.133 0.200
aff-prop Sinkhorn 1 0.190 0.518 0.283 -0.179 0.362 0.084 0.210
aff-prop Sinkhorn 0.1 -0.151 -0.450 -0.112 0.190 -0.487 -0.168 -0.196
aff-prop Sinkhorn 0.01 -0.307 -0.513 -0.219 0.172 -0.438 0.114 -0.199
2× aff-prop WD 0.392 0.419 0.377 0.233 0.327 0.379 0.355
2× aff-prop Sinkhorn 10 0.126 0.308 0.315 0.187 0.230 -0.035 0.188
2× aff-prop Sinkhorn 1 0.137 0.318 0.318 0.187 0.230 -0.023 0.195
2× aff-prop Sinkhorn 0.1 0.255 0.362 0.328 0.207 0.241 -0.009 0.231
2× aff-prop Sinkhorn 0.01 0.404 0.435 0.376 0.250 0.296 0.307 0.345
k-means 5 JSD 0.508 0.189 0.528 0.238 0.324 0.560 0.391
k-means 5 WD 0.334 0.347 0.408 0.248 0.470 0.618 0.404
k-means 5 Sinkhorn 10 0.089 0.559 0.350 0.280 0.426 0.286 0.332
k-means 5 Sinkhorn 1 0.098 0.544 0.350 0.272 0.432 0.286 0.330
k-means 5 Sinkhorn 0.1 0.186 0.365 0.356 0.126 0.432 0.109 0.262
k-means 5 Sinkhorn 0.01 0.243 0.259 0.404 0.094 0.476 0.440 0.319
2× k-means 5 WD 0.337 0.409 0.432 0.290 0.457 0.514 0.407
2× k-means 5 Sinkhorn 10 0.106 0.450 0.382 0.268 0.453 0.205 0.311
2× k-means 5 Sinkhorn 1 0.117 0.467 0.382 0.271 0.461 0.205 0.317
2× k-means 5 Sinkhorn 0.1 0.306 0.445 0.377 0.272 0.433 0.289 0.354
2× k-means 5 Sinkhorn 0.01 0.345 0.424 0.408 0.281 0.462 0.516 0.406
none apd-cos 0.176 0.514 0.262 0.150 0.315 -0.035 0.230
none apd-canb 0.314 0.486 0.397 0.163 0.290 -0.151 0.250
none cos-avg 0.398 0.315 0.437 0.206 0.486 0.656 0.417

Table B.1 – Spearman Rank Correlation between system output rankings and
ground truth rankings using standard embeddings.
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Clustering Measure GEMS
SemEval

DURel AvgEnglish German Swedish Latin

Scalable embeddings

aff-prop JSD 0.394 0.371 0.498 0.012 0.346 0.512 0.355
aff-prop WD 0.369 0.456 0.421 0.264 0.397 0.484 0.399
aff-prop Sinkhorn 10 0.131 0.234 0.316 0.086 0.188 0.212 0.195
aff-prop Sinkhorn 1 0.120 0.236 0.340 0.086 0.220 0.209 0.202
aff-prop Sinkhorn 0.1 -0.136 -0.254 -0.240 -0.086 -0.126 -0.196 -0.173
aff-prop Sinkhorn 0.01 -0.185 -0.420 -0.362 -0.058 -0.053 -0.089 -0.195
2× aff-prop WD 0.380 0.412 0.457 0.190 0.426 0.530 0.399
2× aff-prop Sinkhorn 10 0.202 0.497 0.411 0.179 0.453 0.391 0.356
2× aff-prop Sinkhorn 1 0.214 0.497 0.408 0.173 0.458 0.391 0.357
2× aff-prop Sinkhorn 0.1 0.335 0.451 0.418 0.174 0.443 0.474 0.383
2× aff-prop Sinkhorn 0.01 0.385 0.401 0.459 0.199 0.414 0.514 0.395
2× aff-prop WD -weighted 0.358 0.419 0.463 0.214 0.395 0.551 0.400
2× aff-prop Sinkhorn 10-weighted 0.195 0.492 0.403 0.170 0.418 0.454 0.355
2× aff-prop Sinkhorn 1-weighted 0.202 0.490 0.406 0.163 0.425 0.458 0.357
2× aff-prop Sinkhorn 0.1-weighted 0.332 0.438 0.417 0.183 0.430 0.472 0.379
2× aff-prop Sinkhorn 0.01-weighted 0.356 0.417 0.452 0.204 0.394 0.528 0.392
k-means 5 JSD 0.430 0.316 0.508 0.073 0.358 0.658 0.390
k-means 5 WD 0.372 0.360 0.514 0.316 0.360 0.607 0.430
k-means 5 Sinkhorn 10 0.218 0.532 0.432 0.265 0.465 0.468 0.397
k-means 5 Sinkhorn 1 0.228 0.521 0.434 0.265 0.459 0.468 0.396
k-means 5 Sinkhorn 0.1 0.303 0.340 0.455 0.083 0.473 0.547 0.367
k-means 5 Sinkhorn 0.01 0.321 0.245 0.485 0.112 0.455 0.539 0.360
2× k-means 5 WD 0.339 0.375 0.482 0.299 0.502 0.512 0.418
2× k-means 5 Sinkhorn 10 0.199 0.462 0.486 0.256 0.477 0.532 0.402
2× k-means 5 Sinkhorn 1 0.212 0.456 0.486 0.261 0.475 0.532 0.404
2× k-means 5 Sinkhorn 0.1 0.331 0.445 0.484 0.257 0.484 0.549 0.425
2× k-means 5 Sinkhorn 0.01 0.341 0.380 0.503 0.300 0.491 0.518 0.422
2× k-means 5 WD -weighted 0.323 0.368 0.465 0.302 0.490 0.518 0.411
2× k-means 5 Sinkhorn 10-weighted 0.172 0.462 0.466 0.248 0.454 0.516 0.386
2× k-means 5 Sinkhorn 1-weighted 0.180 0.461 0.466 0.248 0.454 0.516 0.387
2× k-means 5 Sinkhorn 0.1-weighted 0.309 0.447 0.477 0.257 0.452 0.516 0.410
2× k-means 5 Sinkhorn 0.01-weighted 0.324 0.366 0.495 0.283 0.497 0.500 0.411
none apd-cos 0.268 0.504 0.287 0.219 0.324 0.249 0.308
none apd-canb 0.328 0.483 0.479 0.226 0.304 0.288 0.351
none cos-avg 0.403 0.319 0.554 0.193 0.481 0.598 0.425
none WD 0.312 0.386 0.416 0.252 0.283 0.526 0.363
none Sinkhorn 10 0.193 0.406 0.307 0.264 0.300 0.486 0.326
none Sinkhorn 1 0.204 0.399 0.306 0.261 0.294 0.486 0.325
none Sinkhorn 0.1 0.285 0.369 0.312 0.234 0.275 0.509 0.331
none Sinkhorn 0.01 0.316 0.393 0.393 0.263 0.274 0.567 0.368

Table B.2 – Spearman Rank Correlation between system output rankings and
ground truth rankings using scalable embeddings.
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At the top of Table B.3 we overview previous work on the GEMS test
set. To train the models, Gulordava and Baroni (2011) used GoogleBooks
Ngrams, Frermann and Lapata (2016) used an extended COHA corpus, and
Giulianelli et al. (2020) used a subcorpus of COHA, identical to the one used
in our experiments. Table B.3 shows the Pearson and Spearman correlations
between the models’ outputs and the human-annotated drifts.

Method Pearson Spearman

Related work
Gulordava and Baroni (2011) 0.386 -
Frermann and Lapata (2016) - 0.377
Giulianelli, Del Tredici, and Fernández (2020) - 0.276
Fine-tuned BERT, Standard embeddings

Averaging 0.317 0.349
k-means, k = 5 0.539 0.508
Affinity propagation 0.560 0.510

Table B.3 – Spearman Rank Correlation between system output rankings and
ground truth rankings on the GEMS dataset.
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In this thesis, we saw how semantic change can be inferred from drifts
of time-varying word embeddings. Detecting semantic change has numerous
application, from supporting socio-linguistics analysis to improving accuracy
of NLP tasks on temporal corpora. However, from time to time, temporal
data may be too sparse to build robust word embeddings and to discrimi-
nate significant drifts from noise. In this work, we compare three models to
learn diachronic word embeddings on scarce data: incremental updating of a
Skip-Gram from Kim et al. (2014), dynamic filtering from Bamler and Mandt
(2017), and dynamic Bernoulli embeddings from Rudolph and Blei (2018). All
these methods were introduced in Chapter 1. In particular, we study the per-
formance of different initialisation schemes and emphasise which characteristics
of each model are more suited to data scarcity, relying on the distribution of
detected drifts. Finally, we regularise the loss of these models to better adapt
to scarce data.
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C.1 Introduction

This appendix is an adaptation of the work published under the title “Em-
pirical Study of Diachronic Word Embeddings for Scarce Data” at RANLP
2019 (Montariol & Allauzen, 2019a).

C.1 Introduction

While many authors proposed diachronic embedding models these last
years; word vectors varying through time, following the changes in the global
context of the word. These methods usually need large amounts of data to en-
sure robustness. However, temporal datasets often face the problem of scarcity;
beyond the usual scarcity problem of domain-specific corpora or low-resource
languages, a temporal dataset can have too few data compared to the length
of the period it covers. Moreover, the amount of digitised and publicly avail-
able historical texts is limited for many languages, particularly for oldest time
periods.

This work addresses the following question: in case of scarce data, how to
efficiently learn time-varying word embeddings? For this purpose, we compare
three diachronic methods on corpora of different sizes. The first method is
incremental updating (Section 1.5.1, Kim et al., 2014), where word vectors
of one time step are initialised using the vectors of the previous time step.
The second one is the dynamic filtering algorithm (Section 1.5.2, Bamler and
Mandt, 2017) where the evolution of the embeddings from one time step to
another is controlled using a Gaussian diffusion process. Finally, we experiment
with dynamic Bernoulli embeddings (Section 1.5.3, Rudolph and Blei, 2018)
where the vectors are jointly trained on all time slices.

The hyper-parameters of these models are specifically tuned towards effi-
ciency on small datasets. Then, we explore the impact of different initialisation
schemes and compare the behaviour of word drifts exhibited by the models.
Finally, we experiment regularising the models in order to tackle the faults
detected in the previous analysis. The experiment are made on the New York
Times Annotated Corpus (NYT, Sandhaus, 2008).

C.2 Diachronic models

The problem of data scarcity for training word embeddings is not new.
However, it has seldom been tackled from the point of view of diachrony before.
We give a short overview of the literature of diachronic embeddings in the data
scarcity setting before presenting the three models we chose for our analysis.
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C.2.1 Diachronic word embeddings and data scarcity

In Chapter 1, we presented many methods to extract time-varying word
representations from a corpus. Here, we focus on neural word embeddings
methods such as Word2Vec. The two most common methods to train di-
achronic word embeddings are alignment of vector space between two time
slices (Hamilton et al., 2016) and incremental fine-tuning of embeddings from
one time slice to the next one (Kim et al., 2014).

The alignment method requires to train word embeddings from scratch at
each period. It necessitates large amounts of data for each time step to prevent
overfitting. Moreover, in the case of sparse data, these methods are sensitive
to random noise, which is difficult to dissociate from legitimate semantic drifts.
Indeed, Tahmasebi (2018) shows that low-frequency words have a much lower
temporal stability than high-frequency ones.

In Tahmasebi et al. (2018), the authors explain that usual methods for
diachronic embeddings training such as the two previously mentioned are inef-
fective for dealing with low-frequency words and hypothesise that a new set of
methods, pooled under the name of dynamic models, may be more adapted.
These methods use probabilistic models to learn time-varying word embeddings
while controlling the drift of the word vectors using a Gaussian diffusion pro-
cess. Bamler and Mandt (2017) uses Bayesian word embeddings, which makes
the algorithm more robust when dealing with sparse data; while Rudolph and
Blei (2018) relies on Bernoulli distributions to learn the dynamic embeddings
jointly across all time slices, taking advantage of the full dataset.

Outside of the framework of diachrony, several attempts aim at improving
or adapting word embeddings to low-volume corpora in the literature. It can
involve morphological information (Luong, Socher, & Manning, 2013) derived
from the character level (Santos & Zadrozny, 2014; Labeau, Löser, & Allauzen,
2015), and often make use of external resources: semantic lexicon (Faruqui et
al., 2015), and pre-trained embeddings from larger corpora (Komiya & Shin-
nou, 2018). Without external resources, Herbelot and Baroni (2017) show that
simple word embeddings such as Word2Vec can be used to learn representa-
tions even for very rare words, through the use of tailored hyperparameters.
It notably involves a higher learning rate combined with a greedy training
process. However, to our knowledge, no work has attempted to apply similar
solutions to the problem of sparse data in temporal corpora, even thought this
situation has been faced by many authors, often suffering from short time steps
for social media data (Stewart et al., 2017; Bamler & Mandt, 2017; Kulkarni
et al., 2015).

C.2.2 Models

This section briefly reminds the characteristics of the three models under
study: the Skip-Gram incremental updating algorithm from Kim et al. (2014),
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the dynamic filtering algorithm of Bamler and Mandt (2017), and the dy-
namic Bernoulli embeddings model from Rudolph and Blei (2018). They are
presented with more details in Chapter 1. We consider a corpus divided into
T time slices indiced by t. For each time step t, every word i is associated with
two vectors u(t)

i (word vector) and v(t)
i (context vector).

Incremental Skip-Gram (ISG, Section 1.5.1). This algorithm relies
on the skip-gram model estimated with negative sampling (SGNS, Mikolov,
Sutskever, et al., 2013). For the first time slice, the matrices of word embed-
dings U (1) and V (1) are initialised using a Gaussian random noise N (0, 1)
before being trained according to equation 1.2. Then, for each successive time
slice, the embeddings are initialised with values of the previous time slice fol-
lowing the methodology of Kim et al. (2014). This way, the word vectors of
each time step are all in the same vector space and directly comparable.

Dynamic Filtering of Skip-Gram (DSG, Section 1.5.2). This method
relies on the Bayesian extension of the SGNS model described by Barkan
(2017). Its goal is to control the drifts of the embeddings in order to enforce
smoother trajectories. The main idea is to share information from one time
step to another, allowing the embeddings to drift under the control of a dif-
fusion process. A full description of this approach, denoted as the filtering
model, can be found in Bamler and Mandt (2017).

Dynamic Bernoulli Embeddings (DBE, Section 1.5.3). The DBEmod-
els extends the Exponential Family Embeddings (EFE, Rudolph et al., 2016), a
probabilistic generalisation of the Continuous Bag-of-Words (CBOW) model
of Mikolov, Sutskever, et al. (2013). The main idea is that the model predicts
the central word vector conditioned on its context vector following a Bernoulli
distribution. The drift of the word vectors across time is controlled by a Gaus-
sian process. A detailed description of the model can be found in Rudolph and
Blei (2018).

C.3 Experimental results

The goal of this study is to compare the behaviour of these three algorithms
on low-volume corpora. We evaluate their predictive power on different vol-
umes of data to compare the impact of two initialisation methods, and analyse
the behaviour of the drift of the embeddings.
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C.3.1 Experimental setup

As stated before, in the case of temporal corpora, the volume of data per
time step can be low for several reasons: the time steps are very short, or the
corpus itself is small, for example with domain-specific corpora, low-resource
languages, or old and low-resource periods.

We use the New York Times Annotated Corpus introduced in Section 3.1.1.
It contains around 1 855 000 articles ranging from January 1st 1987 to June
19th 2007. We divide the corpus into T = 20 yearly time steps (the incomplete
last year is not used in the analysis) and held out 10% of each time step for
validation and testing. Then, we sample several subsets of the corpus: 50%,
10%, 5% and 1% of the training set. This way, we can compare the models on
each subset to evaluate their ability to learn diachronic word embeddings with
little data.

We remove stopwords and choose a vocabulary of the V = 10k most fre-
quent words. Indeed, a small vocabulary is more adequate for sparse data in a
temporal analysis in order to avoid having too many words missing from time
steps. The total number of words in the corpus after preprocessing is around
38.5 million. It amounts to around 200k words per time step in the 10% subset
of the corpus, thus only 20k in the 1% subset.

To tune the hyperparameters, we use the log-likelihood of positive examples
Lpos measured on the validation set. We train each model for 100 epochs, with
a learning rate of 0.1, using the Adam optimiser. For the DSG model, we use
a diffusion constant D = 1 and a prior variance D0 = 0.1 for both corpora.
For the DBE model, we use λ = 1 and λ0 = 0.01.

We choose an embedding dimension d = 100, as experiments show that
a small embedding dimension, as Stewart et al. (2017) do, leads to smoother
word drifts and makes the model less sensitive to noise when the data is scarce.

We use a context window of 4 words and a negative ratio of 1; we observed
that having a higher number of negative samples artificially increased the held-
out likelihood, but equalised the drifts of all the words in the corpus. Thus,
in extreme scarcity situations, each negative sample has a high weight during
training: the number of negative samples has to be very carefully selected
depending on the amount of data.

C.3.2 Impact of initialisation on sparse data

The embedding vectors of the ISG and DBE models are initialised using a
Gaussian white noise, while the means and variances of DSG are initialised with
null vectors and identity matrices respectively. However, a good initialisation
can greatly improve the quality of embeddings, particularly in the case of scarce
data. We evaluate the impact of two types of initialisation on the log-likelihood
of positive examples on the test set.
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Figure C.1 – Log-likelihoods for the DSG model on three subsets of the cor-
pus, comparing the baseline (random initialisation) with the two initialisation
methods: internal is the initialisation from the full dataset while external-
backward is the initialisation with the Wikipedia vectors, with training from
most recent to oldest time step.

Internal initialisation: We train each model in a static way on the full
dataset. Then, we use the resulting vectors as initialisation for the first time
step of the diachronic models. This methods is especially suited to domain-
specific corpora where no external comparable data is available.

Backward external initialisation: We use a set of embeddings pre-trained
on a much larger corpus for initialisation: the Wikipedia corpus (dump of
August 2013, Li et al., 2017) with vectors of size 100. These embeddings are
representative of the use of words in 2013; and in general, large corpora exist
almost exclusively for recent periods. Thus, we choose to use the pre-trained
embeddings as initialisation for the last time step (the most recent). Then,
we update the embeddings incrementally from new to old (reverse incremental
updating). This method would be particularly suitable for corpora with low
volume in older time slices, as it is the case for most historical datasets. For
the DSG model, the pre-trained vectors are used as the mean parameter for
each word. The variance parameter is fixed at 0.1. Experiments with a prior
variance of 0.01 and 1 had a lowest log-likelihood on the validation set.

The log-likelihood curves in figure C.1 show that the internal initialisation
has a better impact on the likelihood at the beginning of the period, as it is
closer to the data than the external initialisation. The positive impact of the
backward external initialisation increases with the volume of data.

Overall, the mean log-likelihoods across all time steps (Table C.1) are
higher using the internal initialisation. We conjecture that internal initiali-
sation is more profitable to the model when the period is short (here, two
decades) with low variance. The backward external initialisation has very close
scores to the internal one, and is more suitable for higher volume datasets on
a longer period, as it improves the likelihood especially on bigger subsets.
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Initialisation / Random Internal Backward
Model external
ISG -3.17 -2.589 -2.686
DSG -0.749 -0.686 -0.695
DBE -2.935 -2.236 -2.459

Table C.1 – Log-likelihood on the 5% subset of the NYT corpus for each model,
with the three initialisation schemes.

C.3.3 Visualising word drifts

A high log-likelihood performance does not necessarily imply that the drifts
detected by the models are meaningful. In this section, we examine the distri-
bution of word drifts outputted by each model with the internal initialisation.
The computed drift is the L2-norm of the difference between the embeddings
at t0 and the embeddings at each t:

drift(Ui, t) =
 d∑
j=1

(u(t)
ij − u

(t0)
ij )2

1/2

. (C.1)

This is similar to the inceptive drift introduced in Section 1.6. In the case of
the DSG model were the words are represented as Gaussian distributions, we
compute the difference of the mean vectors.

We repeat the experiment of Section 3.2.2.1 and plot the superimposed
histograms of successive drifts (Figure C.2) from t0 = 1987 to each successive
time step, for all studied models. For example, on the histograms, the lightest
colour curve represents the drift between t0 = 1987 and t = 2006 and the
darkest one is the drift between t0 = 1987 and t = 1988.

A first crucial property is the directed aspect of the drifts: when the words
progressively drift away from their initial representation in a directed fashion.
On 10% of the dataset, the DBE model shows well this behaviour, with a
very clear colour gradient. It is also the case for the other models on this
subset. With 1% of the dataset on the contrary, the ISG model is unable to
display a directed behaviour (no colour gradient), while the two other models
do. This is justified by the use of the diffusion process to link the time steps
in equations 1.6 and 1.10: it allows the DSG and DBE models to emphasise
the directed fashion of drifts even when trained on scarce data.

The second property to highlight is the capacity of the models to discrim-
inate words that drift from words that stay stable. From the human point of
view, a majority of words has a stable meaning (Gulordava & Baroni, 2011);
especially on a dataset covering only two decades like the NYT. The DBE
model has a regularisation term (equation 1.11) to enforce this property, and
a majority of words have a very low drift on the histogram. However, on 1%
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Figure C.2 – Histogram of word drift for each model on two subsets of the
NYT corpus. The drifts are computed from t0 = 1987 to each successive time
step, and superposed on the histogram. The lightest colours indicate drifts
calculated with the most recent time steps. The numbers of words are on a
logarithmic scale.

of the dataset, this model cannot discriminate very high drifts from the rest.
The ISG and DSG models have a different distribution shape, with the peak
having a drift superior to zero.

To conclude, both the DBE and DSG models are able to detect directed
drifts even in the 1% subset of the NYT corpus, while the ISG cannot. How-
ever, the drift distributions of the DBE and DSG models have a much shorter
tail on the 1% subset than on the 10% subset: they are not able to discriminate
very high drifts from the rest of the words in extreme scarcity situation.

C.3.4 Regularisation attempt

To tackle the weakness of the DBE and DSG models on the smallest subset,
we attempt to regularise their loss in order to control the weights of the highest
and lowest drifts. Our goal is to allow the model to:

• better discriminate very high drifts;

• be less sensitive to noise, giving lower weight to very low embedding drifts.

We test several possible regularisation terms to be added to the loss. The
best result is obtained with the Hardshrink activation function, which is defined
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this way:

Hardshrink(x) =


x when x > β

−x when x < −β
0 otherwise

(C.2)

For the DSG and DBE models, we add to the loss the following regularisation
term, amounting to a thresholding function applied to the drift:

regβ = α× Hardshrink
 V∑
i=1

T∑
t=t0

drift(Ui, t), β
 (C.3)

Where α is the regularisation constant to be tuned, β is the threshold of the
hardshrink function, and the drift is computed according to equation C.1.
This regularisation term is to be minimised. The activation function acts as a
threshold to limit the amount of words having an large drift. We choose β as
the mean drift for both models.

The drift histogram of the regularised embeddings can be found in Fig-
ure C.3. For both DSG and DBE, the right tail of the distribution of the drifts
with regularisation is much longer than in the original model (Figure C.2).
Moreover, in the case of the DSG model, more words have a drift very close
to zero.

To conclude, the regularised DSG model considers more words as tempo-
rally stable. Furthermore, regularising the loss of the dynamic models allows
them to better discriminate extreme word embedding drifts for very small
corpora.

C.4 Summary & discussion

To summarise, we reviewed three algorithms for time-varying word embed-
dings: the incremental updating of a skip-gram with negative sampling (SGNS)
from Kim et al. (2014) (ISG), the dynamic filtering applied to a Bayesian
SGNS from Bamler and Mandt (2017) (DSG), and the dynamic Bernoulli em-
beddings model from Rudolph and Blei (2018) (DSG), a probabilistic version
of the CBOW.

We proposed two initialisation schemes: the internal initialisation, more
suited for low volume of data, and the backward external initialisation, more
suited for higher volumes and long periods of temporal study. Then, we com-
pared the distributions of the drifts of the models. We conclude that even in
extreme scarcity situations, the DBE and DSG models can highlight directed
drifts while the ISG model is too sensitive to noise. Moreover, the DBE model
is best at keeping a majority of the words stable. This property, as well as the
ability to detect directed drift, are two important properties of a diachronic
model. However, both have low ability to discriminate the highest drifts on

171



C.4 Summary & discussion

Figure C.3 – Histogram of word drift for the DBE and DSG regularised models
on the 1 % subset.

a very small dataset. Thus, we added a regularisation term to their loss us-
ing the Hardshrink activation function, successfully getting longer distribution
tails for the drifts.

To sum up, many tricks can be used to adapt non-contextual embeddings
to scarce data situations; however, it might be out-performed by contextu-
alised embeddings. Nowadays, pre-trained language models allow to extract
contextualised word embeddings from a corpus whatever its size, as it does
not require to be trained on it. Thus, it is well-suited for data scarcity sit-
uations. Even in the case of low-resource languages, multilingual language
models achieve high-quality word representations for monolingual tasks (Con-
neau et al., 2020). Moreover, the aggregation of contextualised embeddings
can be done at the level of the full corpus. For example, the clustering is done
on the embeddings of all periods jointly, exploiting all available information;
this is similar to the way dynamic embedding methods are trained on all time
slices jointly.
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This work was done in collaboration with Corentin Masson from LIMSI and
University Paris-Saclay, and published in Masson and Montariol (2020). We
propose an extension of the sense clustering and interpretation method from
Chapter 2 to a completely different setting. In the domain of fraud detection,
we focus on detecting omissions of risk factors in companies annual reports.
We extract sentences talking about risks and cluster their representations, and
compute the distribution of these risk clusters for several dimensions (the year,
the size of the company and the business line) to obtain a cartography of risks
as a function of these dimensions.

D.1 Introduction

Risk analysis is a popular task in Business and Management research.
While usually approached through expert knowledge and quantitative inputs
(Kaplan & Garrick, 1981), it can benefit from the use of unstructured data
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such as legal and regulatory documents. One of the associated tasks is the
automatic extraction of risk sentences.

Theoretically, a risk can be defined as a hazard with a potential for damage
to an entity. Its meaning differs from the notion of uncertainty; in the former,
one is able to quantify precisely the probability of occurrence and its potential
impacts (Altham, 1983). Therefore, a risk can be defined as a triplet composed
of the potential event characterized as a risk, its quantitative counterparts
such as the probability of occurrence, and its possible consequences (Kaplan
& Garrick, 1981). Thus, risk evocations can be identified by a topic-oriented
summarization system able to detect occurrences of these triplets from natural
language written documents such as Annual Reports (ARs).

Listed companies are regulated by the Financial Market in which their value
is most traded in, often inducing the obligation to regularly publish information
documents. ARs are supposed to exhaustively describe a company’s current
well-being, perspectives and the risks it is facing. In France, nearly 190 ARs
are released each year from CAC40, CAC60 and CAC90 indexes (the principal
French stock indexes from Euronext.).

The literature on corporate annual reports analysis is plentiful in the finan-
cial research community. However, from the NLP perspective, research is more
scarce and much more recent, while offering a wide range of applications from
stock markets volatility prediction (Kogan, Levin, Routledge, Sagi, & Smith,
2009) to fraud detection. More details on ARs and literature on this topic can
be found in Section 5.1.

To the best of our knowledge, few authors tackle risk sentences extraction
from non-HTML indexed ARs (Liu, Liu, Wang, & Tsai, 2018); they often
rely on XBRL -indexed 10-K filings to identify risk factors markers (Huang
& Li, 2011). However, automatic analysis of such raw long documents can be
beneficial for the Financial and Regulatory sectors. These documents represent
the vast majority of ARs disclosed worldwide and are composed of an average
of 3500 sentences with various sections and topics. As for now, little has been
done on extracting specific sections from Annual Reports or indexing them.
In this work, we focus on extracting and analysing the risk factors from these
ARs.

In France, the financial market is regulated by the Financial Market Au-
thority (AMF). In particular, disclosure of ARs depends on the “Code Moné-
taire et Financier” and on the “Doctrine.”1 Companies must release every year
a report containing all the requested information. If an element that might be
important for a potential investor is missing from an AR, the company runs
the risk of being accused of voluntarily omitting information, which is a fraud
under French law.

From the extracted risk sentences, it is therefore possible to identify the
possible omission of a risk in an AR by comparing its risk distribution to

1AMF guidance for righteous behavior on the market.
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other ARs from the same sector and year. Therefore, in this work, (1) we
propose a new task for omitted risk factors detection from the DoRe Corpus
(Masson & Paroubek, 2020), composed of European Companies ARs; and
(2) we present a resolution method based on Neural Risk Sentences Extraction
and Unsupervised Risk Factors Clustering. We hope to gather enough interest
to further advance research on this domain.2

For investors and regulators, risk sections are important parts of ARs, as
they contain information about the risks faced by the companies and how
they handle it. Mandi, Chakrabarti, Patodia, Bhattacharya, and Mitra (2018)
extract risk sentences from legal documents using Naive Bayes and Support
Vector Machine on section embeddings. Dasgupta, Dey, Dey, and Saha (2016)
explore project management reports from companies to extract and map risk
sentences between causes and consequences, using hand-crafted features and
multiple machine learning methods. Ekmekci, Hagerman, and Howald (2019)
performed a multi-document extractive summarization on a news corpus for
a risk mining task. As it has not yet been done, we experiment extractive
summarization on risk extraction task in ARs.

Automatic text summarization is the task of producing a concise and flu-
ent summary while preserving key information and overall meaning. In re-
cent years, approaches to tackle this difficult and well-known NLP problem
make use of increasingly complex algorithms ranging from dictionary-based ap-
proaches to Deep Learning techniques (Xiao & Carenini, 2019). The current
research trend deviates from general summarization to topic-oriented sum-
marization (Krishna & Srinivasan, 2018), targeting a specific subject in the
document such as risks in ARs in our case.

Focusing on detecting risk factors in ARs, sentence clustering and topic
modeling have been extensively used for this task in the literature (Zhu, Yang,
& Moazeni, 2016; Chen, Rabbani, Gupta, & Zaki, 2017). The evaluation is
mostly done using intrinsic measures and by looking at the clusters or topics
manually. Only Huang and Li (2011) manually define 25 risk factor categories,
relying on ARs from the Securities Exchange Commission.

D.2 Pipeline

We propose a pipeline for risk factors omission detection in ARs of CAC40
listed companies. Each PDF document is converted into textual format, di-
vided into sentences and processed sequentially in the original document order
to extract the ones talking about risk. Then, two approaches are implemented
to identify classes of risks in risk-oriented summaries. Outputs are then used
to compute divergence between ARs from the same sector or from the same
year, and therefore identify the companies more likely to omit a risk.

2Please contact corentin.masson@limsi.fr for access to the corpus.
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Figure D.1 – Risk Sentences Extraction architecture overview.

D.2.1 Risk sentences extraction

As presented in Figure D.1, each sentence in the document is processed
sequentially using Flaubert (Le et al., 2020), a fine-tuned French version of
BERT (Devlin et al., 2019). The goal is to compute the probability for each
sentence to be a risk sentence using three modules: a Sentence Encoder, a
Document Encoder and a Sentence Classifier.

D.2.1.1 Data description

ARs are often disclosed in PDF format, which requires a lot of pre-processing
(a notable exception are 10-K filings, see Kogan et al., 2009). ARs are ex-
tremely long documents: they contain an average of 3500 sentences and 27
different sub-sections. Due to the large size of each document, completely la-
beling a set of reports would take a considerable amount of time. To handle
this, we propose to split the document into a set of disjoint sub-documents
and label by hand a randomly selected subset of these sub-documents.

D.2.1.2 Model architecture

The first module is a Sentence Encoder; its goal is to embed each sentence
into a k-dimensional space without the information from the surrounding sen-
tences. Due to the limited amount of labeled data, we use a FlauBERT pre-
trained Language Model and fine-tune it for the extraction task, allowing it
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to get a good approximation of basic syntax and semantic features in higher
layers (Jawahar et al., 2019).
With ND being the number of sentences in a document D = (S1, S2, . . . , SND)
and Mi being the length of the sentence Si = (w1, w2, . . . , wMi

), SentEnci is
the sum of the token embeddings computed by the fine-tuned FlauBert:

SentEnci =
Mi∑
j=1

BERTTokenEmbj(Si)

We also experiment with a version where the sentence embeddings SentEnci
are computed using the [CLS] token from the FlauBert model. In both cases,
each sentence is mapped into a v dimensional vector.

Risk evocations are often split into multiple sentences. For example, in
Figure D.2, the first sentence displays the risk factor while the second depicts
the uncertainty with “if” and “might” along with the potential impact (“affect
its market share in a near future”).

The sector is driven by innovation from newcomers. If the Group does not
keep with the process, it might affect its market share in a near future.

Figure D.2 – Example of risk evocation.

We want our model to be able to extract all parts of the risk evocation.
In order to extract sentence embedding taking into account the surrounding
sentences (context sentences), we apply a forward LSTM layer at the document
level, each sentence being considered as a token whose embedding comes from
the Sentence Encoder. We take the hidden state of each sentence as the context
sentence embedding.

DocEnci = LSTM(SentEnc1, SentEnc2, . . . , SentEncMi
)

As decoder, we add one linear layer with dropout for regularization. Its
input comes directly from the contextualized sentence embeddings computed
through the Document Encoder module, followed by a softmax layer to com-
pute probabilities.

P (yi = 1) = Softmax(Linear(DocEnc1, . . . ,DocEncND))
For training, our loss function is a L2-penalized binary cross-entropy loss.

L = −
N∑
d=1

Nd∑
i=1

(yi log(pi) + (1− yi) log(1− pi)) + λ

2‖w‖
2
2
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D.2.1.3 Active learning

To our knowledge, there is no freely available dataset for risk sentences
extraction in French nor in English, leaving us with a considerable labeling
task. Randomly selecting sub-documents to label would be biased toward non-
risk sentences and therefore would make the dataset asymmetric. Thus, we
implement a Pool-Based Query-By-Committee (Settles, 2010) Active Learning
approach using dropout masks for committee models generation and compute
stochastic predictions for each sentence (Tsymbalov, Panov, & Shapeev, 2018).
It allows to select the most informative sub-documents to label and increase
the accuracy of the model for these sentences which are near the segmentation
frontier.

With L = {DL
1 , D

L
2 , . . . , D

L
NL
} the set of labeled sub-documents and U =

{DU
1 , D

U
2 , . . . , D

U
NU
} the set of unlabeled sub-documents, the framework – or

Learner, as called in the Active Literature – looks for x∗, the most informative
sentence with the selected query strategy. Our committeeH = {h1, h2, . . . , hT}
is composed of T models. At each Active Learning iteration, a model is trained
on the already labeled data. Then, T different dropout masks are applied on
the classification layer of the Sentence Classifier module in order to generate
T different model. They are used to compute stochastic predictions for each
sentence in each sub-document.

Using the predictions for each sentence, we can compute the uncertainty
score. As the Least Confidence, Sample Margin and Entropy measures are
equivalent in the binary case, we compute the approximated Least Confidence
measure using votes from the committee H for probability estimation pi for
each sentence. The uncertainty measure of a given sub-document is the average
uncertainty score of all its sentences.

LS(D) = 1
NU
D

NU
D∑

i=1
|pi − 0.5|

where pi = P (yi = 1|Xi)

The learner ranks sub-documents by decreasing uncertainty measure and
queries the M most informative sentences to the Oracle following : x∗ =
arg maxDU LS(DU). The process is then iterated until a stop criterion is met,
such as an insufficient increase of accuracy between two iterations.

D.2.2 Risk omission detection

We use the set of risk sentences extracted from the ARs to detect if a risk
factor was omitted in a document.
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D.2.2.1 Motivation & pipeline

All companies describe different types of risks in their ARs, often through
a “risk factors” section. To detect if an AR is missing a risk factor that
should have been reported, we would need to define a list of risks factors for
all the companies. However, the regulators do not enforce any normalisation
nor provide a list of risks to report. Thus, the number and the type or risks
reported vary a lot in the different documents. Consequently, we have to use
unsupervised methods to capture them.

From the sets of risk sentences, we create a mapping of the risks depending
on the sector and the year of the ARs. The distribution of risks per year can
also allow to identify emerging risks, while the distribution per sector allows
to identify the risks that are specific to a sector. We can either work on the
data at the sentence level using sentence clustering or at the document level by
doing topic modeling. We present the two approaches in the following section.

D.2.2.2 Sentences clustering

This method is an extension of the one described in Section 2.2.4, but
with clustering sentence representations instead of word representations. We
cluster the risk sentences of all documents together to identify the types of
risks across the full corpus. We use the sentence representations from the risk
sentence extraction step using FlauBERT.

Moreover, we can assume that successive sentences, or sentences that are
close in the document, have a high probability to deal with the same risk factor.
Thus, the surrounding sentences as well as their distance to the target sentence
can add valuable information to the clustering. We use the representation of
the surrounding sentences as features for the clustering, by doing element-wise
sum with the representation of the main sentence, weighted by a factor of
their distance to the main sentence. The distance is computed according to
the number of sentences: two successive sentences have a distance d = 1, etc.
Then, the weight of each sentence is computed as the inverse of its distance to
the main sentence augmented by one: w = 1

d+1 .

For the clustering, we use the k-means algorithm. The number of clusters
k is chosen according to the literature on risk factors in ARs. To ease the
interpretation of the different clusters of risk sentences, we use the method to
detect keywords in the clusters described in Section 2.4.

D.2.2.3 Topic model on documents

We challenge the previous method using a popular topic modeling algo-
rithm: the Latent Dirichlet Allocation (LDA, Blei et al., 2003). Each docu-
ment is characterised by a probability distribution over a set of topics, while
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each topic is characterised by a probability distribution over all the words
of the vocabulary. Therefore, the top words per topic are used as a set of
keywords to describe it. The number of topics is the same as the number of
clusters for the sentence clustering with k-means.

D.2.2.4 Intrinsic evaluation measures

We compute several measures, all relying on a list of keywords character-
ising each topic or cluster.

First, the Normalized Point-wise Mutual Information (NPMI, Aletras and
Stevenson, 2013) measures the topic coherence. It is introduced in Section
2.4. We also use external knowledge—pre-trained Word2Vec3 embeddings
(Mikolov, Sutskever, et al., 2013)—to evaluate topic coherence. Similarly to
Ding, Nallapati, and Xiang (2018), we compute the pairwise cosine similarity
between the vectors of the top k words characterizing each topic, and average
it for all topics. We call this second topic coherence measure TC-W2V. For the
two measures, we use a relatively low k (k = 10). A high NPMI or TC-W2V
measure indicates an interpretable model.

These two measures are completed by a topic uniqueness (TU) measure
(Nan et al., 2019) for the top k keywords, representing the diversity of the
topics (see Section 2.4).

D.2.2.5 Risk omission detection task

The extrinsic evaluation is done using the detection of omissions as down-
stream task. We want to detect if a company omitted or under-reported a risk
in one of its reports, by observing the risks reported in the document, and
comparing it with the ones reported in other documents of the same year and
the same sector.

First, we generate synthetic risk omissions in our corpus. We randomly
sample a small set of ARs, manually select a section of each document describ-
ing one type of risk, and remove it. Our goal is double: to detect that a risk
factor is missing in the altered document, and to identify the risk associated
with the removed section.

To tackle this problem, we compute a measure relying on a binarized version
of the topic distribution of a document. Indeed, both the topic model and
the sentence clustering methods output a distribution of risks (respectively
topics or cluster) for each document. We consider that a document includes a
topic (or a cluster) if the proportion of the topic (or the number of sentences
belonging to the cluster) is higher than a threshold ε. Below this threshold,
we consider that the document does not report the risk characterised by that

3We use pre-trained French word embeddings on the Wikipedia Corpus: http://
fauconnier.github.io
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topic. Then, for each sector and for each year, we extract the set of “typical”
topics: the ones that are present in most documents for that sector or year,
and therefore are expected to appear in all documents of the same sector and
year.

First, we count the number of documents mentioning each risk. Then, we
binarize it: if the number of documents mentioning the risk is lower than half
of the total number of documents in the sector/year, then the risk is considered
as not important for the sector/year and we do not select it. We compare this
list of “expected” topics with the list of topics reported in each document. It
allows to identify the documents where a risk is absent but should have been
reported, because it is a risk common to most documents for that sector or
year.

For the second step, we check whether the missing topic detected by our
method is the same as the one removed from the selected document. We use
the fitted LDA and the fitted k-means algorithm to predict the topics (the
clusters) which can be found in the set of sentences that were removed from
the selected documents. If there is at least one topic in common between
the set of “missing” topics in the document, and the set of topics predicted
from the removed sections, we consider that the omission has been correctly
detected.

In order to evaluate the ability of our methods to tackle the task, we de-
fine the accuracy measure as the proportion of correctly detected omissions
among the 20 altered documents. This measure can be computed by using the
documents of the same sector or of the same year as comparison; we name it
Binary-sector and Binary-year accuracy. We also compute a joint measure,
taking into account both the expected topics from the year and the ones from
the sector: Binary-all.

D.3 Experiment

We use the pipeline described previously to extract the risk sentences with
several iterations of labelling using active learning, and apply the aggregation
methods to identify distinct risks factors. We use it to create a cartography of
risks and deduce missing risk factors from artificially shortened documents.

D.3.1 Data preparation

D.3.1.1 Preparation for risk extraction

For labeling, we selected a random subset of 50 ARs from the whole DoRe
Corpus containing French and Belgian companies with large, mid and small
capitalization from various sectors. These documents are converted from PDF
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to TXT format using MuPDF, 4 some were unusable and excluded after con-
version, such as the 2018 AR from AIR LIQUIDE. We then extracted start
and end offset of sentences from these documents using Stanza5 from Stan-
fordNLP team; we chose it for its accuracy and relative speed. All of these
pre-processing steps induce errors; that is why we add some custom rules to
filter out unusable sentences based on number of letters / sentence length ra-
tios and counts of line-breaks in a sentence. To handle the cold start of our
Active Learning approach, we label up to 1000 sentences in successive groups
of 5 from the 4 first documents in the random sample. The labeling rule is to
label a sentence as Risk sentence if it includes the notion of uncertainty, and
if at least one other element from the Risk triplet is present. We take into
account the surrounding sentences to check whether the missing element from
the triplet is present in a sentence around the current one; if it is the case, we
also label this second one as risk.

The initial set of 200 sub-documents is composed of groups of 5 successive
sentences. We apply zero-padding to those with less than 5 sentences. We
are unable to label a set of risk sentences representative of all potential risk
topics from different sectors due to the size of the corpus; to evaluate the
ability of the algorithm to detect risks even outside the sectors it has seen
previously, we split the dataset into two parts and put sub-documents from
two of the four first labeled ARs into the test set. This test set containing 70
sub-documents is used to follow the evolution of the performance metrics at
each Active Learning iteration. It also allows the metrics during the Active
Learning to be less sensitive to randomness of the split due to the low amount
of data.

D.3.1.2 Active learning

From these selected data, we train the first model in our Active Learn-
ing pipeline. The parameters for our Query-By-Committee approach are the
dropout probability of classification layers weights set to p = 0.5 and the num-
ber of models in the committee H set to T = 15 for computation feasibility.

We iterate 6 times and have 39% of risk sentences in the labeled sample. We
can see in Table D.1 that the metrics globally increase during iterations while
it is still subject to instability due to the lack of data. A solution to stabilize
the results could be to add a cross-validation step, but it is computationally
expensive.

D.3.1.3 Preprocessing for risk clustering

We focus on the CAC40 companies. We have 388 annual reports from 40
companies, spanning 12 sectors and 12 years (from 2008 to 2019). From the

4https://mupdf.com/
5https://stanfordnlp.github.io/stanza/
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Accuracy F1 Recall
Iteration 1 0.8412 0.7373 0.7236
Iteration 2 0.8002 0.6403 0.6863
Iteration 3 0.8331 0.7483 0.6771
Iteration 4 0.8721 0.7767 0.8034
Iteration 5 0.8845 0.8158 0.7723
Iteration 6 0.8969 0.8269 0.8216

Table D.1 – Performance measures for each active learning iteration.

risk sentences extraction step, we have for each document, a set of risk-related
sentences and their position in the document. On average, the extracted risk-
related sentences correspond to 3.6% of the full document (minimum propor-
tion = 1.3%, maximum = 14.1%). Each document is associated with a year
and a company, which belongs to one of the 12 sectors. For both the topic
modeling and the sentence clustering methods, the number of topics can be
chosen by relying on the literature. Following Huang and Li (2011), we use
k = 25 topics.

We apply a heavy processing step to all the risk sentences, in order to get
a document as clean as possible to extract the most important keywords for
each topic more efficiently. From the set of risk sentences, we first clean all
errors resulting from the transition from pdf to text (divided words, merged
characters. . . ). Then, we exclude the sentences that have less than 60% of
letters (too many symbols, spaces or digits in a sentence usually means that a
portion of a data table was extracted). We delete numbers and symbols from
the remaining sentences. We also remove French stopwords, words of less than
2 characters, words found in less than 15 documents and words found in more
than 80% of the documents. Finally, we lemmatize all the words. 6

D.3.2 Results

D.3.2.1 Risk sentence classification

We train two models for risk sentences classification, differing in the method
to compute non-contextualized sentence embeddings. The first one (BERT
Sum) is computed from the sum of the hidden-states of the last attention layer
from the fine-tuned FlauBert model. The second model (BERT CLS) uses
the CLS token, even though the extractive summarization literature tends to
conclude that the second attempt is less accurate (Xiao & Carenini, 2019). Re-
garding the architecture, we set the Document Encoder LSTM hidden-states
to 256, the Classifier Linear layer dropout probability to 0.5, the L2 penal-
ization parameter of the loss function to 0.01 and the learning rate to 1.ê-5.

6For lemmatization, we use the LefffLemmatizer() from Spacy: https://pypi.org/
project/spacy-lefff/
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Accuracy F1 Precision Recall
BERT CLS 0.8398 0.7679 0.8968 0.6715
BERT Sum 0.8969 0.8269 0.8323 0.7723

Table D.2 – Final results of both models after the final Active Learning itera-
tion.

The model is optimized by Adam-Optimizer for 150 epochs with batch size of
16. We keep as best model the one having the best validation accuracy, and
test it on the previously created test set (not used during Active Learning nor
training).

Table D.2 presents the final results of both models after the last Active
Learning iteration. Even if the (BERT CLS) Precision is better (0.8968), the
increase in the recall (+0.1008) for (BERT Sum) makes it the best model for
the task with the current amount of data. Table D.1 shows the results of the
Active Learning step, increasing the F1 score by 0.0785 (10% increase in only
5 iterations). We believe that with a greater amount of data, the model can
still increase its performance and gain a better capacity to identify unknown
risk factors.

For each document, the risk sentences extracted by the model from each
sub-document are concatenated to create the topic-oriented summary.

D.3.2.2 Risk clustering

In order to identify the different risk factors from the topic-oriented sum-
mary, we use the two unsupervised methods described before: sentence clus-
tering and topic modeling.

On the one hand, we apply Online LDA (Hoffman, Bach, & Blei, 2010) to
the set of risk sentences after preprocessing. On the other hand, we apply k-
means to the set of sentence embeddings extracted from the Sentence Encoder.
We experiment with k-means of sentences embeddings (KM), Augmented k-
means using weighted embeddings of surrounding sentences with window = 2
(KM2), and Augmented k-means with window = 4 (KM4). As a preliminary
measure of quality, we compute the silhouette score of the k-means cluster-
ings. The score is the highest for the Augmented k-means with a window of 4
sentence (score = 0.178), slightly lower with a window of 2 sentences (score =
0.162), and even lower for the standard k-means (score = 0.147).

From the LDA, we have a set of keywords describing each topic. Some
topic examples along with an interpretation of the associated risk factor are
presented in Table D.5. To be able to compare it with the sentence clustering,
we extract keywords from the sentence clusters from the k-means algorithm,
using the tf-idf method (Section 2.4). Then, we compute the three intrinsic
measures for both LDA and k-means to evaluate the quality of the topic model
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NPMI (k=10) TC-W2V (k=10) TU (k=25)
LDA -0.153 0.175 0.691
KM -0.240 0.186 0.652

Table D.3 – Intrinsic measures of topic modeling and sentence clustering qual-
ity.

and the clustering (Table D.3). The measures for the Augmented k-means are
almost the same as for the standard k-means.

The measures show that the sentence clustering method leads to a higher
extrinsic topic coherence (TC-W2V) than the topic model, but lower intrinsic
topic coherence (NPMI). Moreover, the TU measure is lower for k-means,
meaning that the clusters are less diversified.

D.3.2.3 Risk omission detection

We use the same models for the risk omission detection task. In order to
generate synthetic omissions in ARs, we randomly sample and alter 20 ARs
of the CAC40 companies, by manually removing a section describing one risk
factor; and we add these altered documents to our corpus. We choose risk
sections of different sizes, describing different types of risks; for example, we
remove the System security and cyber attack section in the 2018 AR from
ATOS, and the Risk of delay and error in product deployment section in the
2017 report from DASSAULT SYSTEMES.

After fitting the LDA and the k-means on the corpus, we obtain the dis-
tribution of risks in the altered documents and the average distribution of
risks for each sector and year. According to the method described in Section
D.2.2.5, we binarize these vector and compare them in order to identify the
list of missing topics in the altered documents. Then, using the topic model
and clustering fitted on the full corpus, we predict the distribution of risks in
the sections that were removed from the selected documents. Finally, we can
compute the accuracy measures described in Section D.2.2.5 using the LDA,
the standard k-means and the Augmented k-means with windows of size 2 and
4 (Table D.4).

Augmenting the k-means algorithm by using the surrounding sentences,
even though it improved the silhouette score, does not lead to a clear improve-
ment for this task. However, the LDA leads to much lower accuracy compared
to the k-means algorithm. It might be linked with the low extrinsic topic
coherence of the LDA compared to k-means.
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LDA KM KM2 KM4
Binary - sector 0.2 0.7 0.8 0.8
Binary - year 0.2 0.55 0.4 0.4
Binary - all 0.4 0.75 0.8 0.8

Table D.4 – Accuracy measures for the risk omission detection task on the
manually altered documents.

Risk factor Example of keywords
reputation agency, advertiser, publicity, affect, negatively
patent property, intellectual, licence, brand, software
energy oil, exploration, hydrocarbon, well, damage

Table D.5 – Translation of keywords examples using LDA with 25 topics, and
manually associated risk factor.

D.4 Conclusion

In this work, we introduced the task of risk omission detection and proposed
a pipeline to tackle it, relying on some methods introduced in Chapter 2. First,
we extract risk sentences from company annual reports using an Encoder-
Classifier architecture on top of contextualised embeddings from the BERT
model. Then, we use unsupervised methods to extract the risk distribution of
each annual report and interpret them.

We generate synthetic risk factor omissions in a sample of ARs in a straight-
forward way, propose a method to detect them, and a metric to evaluate the
method. We conclude that a sentence-level analysis, by clustering sentence
representation extracted with BERT, is more adapted than LDA to address
the task. Augmenting the sentence clustering by using a weighted sum of
the representations of the surroundings of a sentence can further increase its
quality. The low performance of the LDA might be overcame using more ad-
vanced topic modelling methods (Nan et al., 2019), possibly relying on word
embeddings.

However, the risk sentence extraction step could be improved with more
Active Learning iterations, for the model to learn more about the notions of
uncertainty and the impacts than about the risk factors that has already been
observed during training. It could also be improved by increasing the num-
ber of sentences in each sub-document and transferring information between
consecutive sub-documents in an AR.
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Résumé:
Dans cette thèse, nous étudions les changements
lexico-sémantiques : les variations temporelles dans
l’usage et la signification des mots, également appelé
diachronie. Ces changements reflètent l’évolution de
divers aspects de la société tels que l’environnement
technologique et culturel. Nous explorons et évaluons
des méthodes de construction de plongements lexicaux
variant dans le temps afin d’analyser l’évolution du lan-
gage. Nous utilisont notamment des plongements con-
textualisés à partir de modèles de langue pré-entraînés
tels que BERT. Nous proposons plusieurs approches
pour extraire et agréger les représentations contextu-
alisées des mots dans le temps, et quantifier leur degré
de changement sémantique. En particulier, nous abor-
dons l’aspect pratique de ces systèmes: le passage à
l’échelle de nos approches, en vue de les appliquer à de

grands corpus ou de larges vocabulaire; leur interpréta-
bilité, en désambiguïsant les différents usages d’un mot
au cours du temps; et leur applicabilité à des probléma-
tiques concrètes, pour des documents liés au covid19
et des corpus du domaine financier. Nous évaluons
l’efficacité de ces méthodes de manière quantitative, en
utilisant plusieurs corpus annotés, et de manière quali-
tative, en liant les variations détectées dans des corpus
avec des événements de la vie réelle et des données
numériques. Enfin, nous étendons la tâche de détec-
tion de changements sémantiques au-delà de la dimen-
sion temporelle. Nous l’adaptons à un cadre bilingue,
pour étudier l’évolution conjointe d’un mot et sa tra-
duction dans deux corpus de langues différentes; et à
un cadre synchronique, pour détecter des variations sé-
mantiques entre différentes sources ou communautés
en plus de la variation temporelle.
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Abstract: In this thesis, we study lexical semantic
change: temporal variations in the use and meaning of
words, also called diachrony. These changes are carried
by the way people use words, and mirror the evolution
of various aspects of society such as its technologi-
cal and cultural environment. We explore, compare
and evaluate methods to build time-varying embed-
dings from a corpus in order to analyse language evo-
lution. We focus on contextualised word embeddings
using pre-trained language models such as BERT. We
propose several approaches to extract and aggregate
the contextualised representations of words over time,
and quantify their level of semantic change. In partic-
ular, we address the practical aspect of these systems:
the scalability of our approaches, with a view to apply-

ing them to large corpora or large vocabularies; their
interpretability, by disambiguating the different uses of
a word over time; and their applicability to concrete
issues, for documents related to covid19 and corpora
of the financial domain. We evaluate the efficiency of
these methods quantitatively using several annotated
corpora, and qualitatively by linking the detected se-
mantic variations with real-life events and numerical
data. Finally, we extend the task of semantic change
detection beyond the temporal dimension. We adapt it
to a bilingual setting, to study the joint evolution of a
word and its translation in two corpora of different lan-
guages; and to a synchronic frame, to detect semantic
variations across different sources or communities on
top of the temporal variation.
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