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ABSTRACT

Stream Processing has become the de facto standard way of supporting real-time data
analytics. With the advent of new geographically dispersed computing platforms such as
Edge and Fog computing paradigms, where distribution and locality is the norm, revising
stream processing mechanisms towards decentralization appears necessary, as centralized
management is no longer an option.

Decentralization is the main axe around which this thesis revolves. In this dissertation,
we introduce three contributions targeting the decentralizing of the stream processing.
Firstly, we inject decentralization into scaling by presenting a new fully decentralized au-
toscaling algorithm for stream processing applications. Secondly, we give the foundations
to design and build a software prototype of a decentralized stream processing engine.
Throughout decentralized autoscaling decisions, nodes must always remain somewhat in
synchronisation with each others. In the first two contributions we made an ad-hoc so-
lution which is specific for our algorithm. However, in the third contribution, we revised
the group mutual exclusion problem which is an algorithm based on classical primitives
of distributed systems, so as to make it usable in our particular context of decentralized
stream processing.
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RÉSUMÉ EN FRANCAIS

Le Stream Processing est devenu un modèle standard pour prendre en charge le traite-
ment de données en temps réel. Avec l’avènement de nouvelles plates-formes informatiques
dispersées géographiquement telles que véhiculées par les Edge computing et Fog comput-
ing, où la distribution et la localité sont la norme, la révision des mécanismes de stream
processing vers la décentralisation apparaît nécessaire, la gestion centralisée n’étant plus
une option. La décentralisation est l’axe principal autour duquel s’articule cette thèse.
Nous introduisons trois contributions ciblant la décentralisation du gestionnaire de Strean
processing. Tout d’abord, nous présentons un nouvel algorithme de dimensionnement en-
tièrement décentralisé pour les applications de traitement de flux. Deuxièmement, nous
donnons les bases pour concevoir et construire un prototype logiciel d’un moteur de traite-
ment de flux décentralisé. Parce que décentralisé, le processus de dimensionnement voient
les nœuds faire face à des problèmes de concurrence. Nous avons d’abord pour ce problème
développé une solution de synchronisation ad-hoc qui est spécifique à notre algorithme.
Cependant, dans la troisième contribution, nous avons révisité le problème d’exclusion
mutuelle de groupe, une primitive classique des systèmes distribués, afin de le rendre
utilisable dans notre contexte particulier de traitement de flux décentralisé.

Problématiques

Vers le dimensionnement automatique...

L’un des principaux défis de nombreuses plates-formes informatiques distribuées ré-
centes est la capacité de réagir aux changements, une capacité connue sous le nom d’auto-
adaptation. Par exemple, une application de stream processing doit s’adapter aux varia-
tions de la vélocité du flux de données. Prenons l’exmple d’une application de surveillance
du traffic maritime: suivant l’heure de la journée, le niveau de traffic est différent. Aussi,
la quantité d’informations envoyées par les navires en début de journée augmente de sorte
que les ressources qui hébergent l’application de stream processing ne sont plus en mesure
de gérer la charge. Par conséquent, les résultats de l’application seront retardés. Dans un
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tel contexte, il est fortement recommandé voire obligatoire d’avoir les résultats en temps
opportun. L’application serait inutile si elle signalait trop tard un comportement anormal.
Par conséquent, la première problématique abordée dans cette thèse est l’adaptation des
applications de stream processing en ce qui concerne l’évolution de la vitesse de la charge
entrante. Ce cas particulier d’adaptation est aussi appelé élasticité, et la principale action
disponible pour s’adapter est le dimensionnement dynamique des ressources dédiées à
l’application.

... et sa décentralisation ...

L’élasticité dans le stream processing a récemment fait l’objet de plusieurs séries
de travaux. Pourtant, les solutions imaginées sont pour la plupart centralisées. Elles
s’appuient sur un sous-système de gestion externe étant chargé de surveiller, de pren-
dre les décisions de dimensionnement et de les faire appliquer. Cette solution est adaptée
et couramment utilisée dans les applications hébergées en Cloud computing. Cependant,
avec le déploiement d’applications sur des plates-formes informatiques plus dispersées géo-
graphiquement, l’élasticité ne peut pas être réalisée facilement de manière centralisée, car
garder une vue globale de la plate-forme et agir dessus à partir d’un seul processus devient
difficile. Ainsi, une originalité de nos travaux est d’apporter une solution décentralisée à
l’élasticité dans le traitement des flux. Alors que récemment, des solutions hiérarchiques
ont été proposées, nous allons plus loin dans la décentralisation: la procédure de mise à
l’échelle est prise de manière locale non coordonnée.

... Nécessitant de revisiter les solutions aux problèmes de syn-
chronisation.

Comme nous sommes dans le cadre d’une approche totalement décentralisée, la com-
munication avec les différentes parties du système de stream processing peut présen-
ter des problèmes de synchronisation. Prendre les décisions indépendantes mentionnées
précédemment et les appliquer de manière décentralisée, en particulier lorsqu’il s’agit de
répliquer des éléments de calcul qui forment ensemble l’application, peut conduire à des
incohérences dans l’application et à son comportement incorrect. Éviter cela nécessite
d’utiliser des primitives de synchronisation qui doivent être revisitées dans ce contexte
afin d’être optimisées.
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Contributions

Dans cette thèse, nous proposons différentes contributions en vue d’un stream pro-
cessing décentralisé. Nos contributions peuvent être résumées par trois axes. Le premier
est le dimensionnement automatique entièrement décentralisé pour les applications de
stream processing, le second est d’ouvrir la voie à des outils et architectures concrets pour
le traitement décentralisé de flux de donnnées. Enfin, le troisième est une revisite des
primitives de synchronisation classiques dans ce contexte particulier.

La première contribution de ce travail est un algorithme de dimensionnement automa-
tique entièrement décentralisé pour les applications de stream processing. Ici, le dimen-
sionnement automatique est la capacité de faire évoluer de manière élastique et autonome
une application de stream processing. On suppose que l’application prend la forme d’un
graphe de calcul dont les éléments peuvent être distribués et que chacun de ces éléments
peut communiquer avec ses voisins dans ce graphe. Nous proposons un algorithme per-
mettant à chaque élément de prendre ses propres décisions de mise à l’échelle sur la base
d’informations purement locales. Bien que chaque élément conserve une vue de ses voisins
dans le graphe de calcul, notre algorithme est capable de garantir qu’ils conservent une
vue cohérente pendant que ses voisins augmantent ou diminuent en termes de ressources
en réponse aux variations de la charge. Par cohérent, nous entendons que, sous des hy-
pothèses de fiabilité, les mises à jour simultanées dans le graphique n’entraînent pas de
perte de données. Notre protocole est présenté en détail et sa correction discutée. Ses
performances sont validées à la fois par des analyses et des expériences de simulation.

La deuxième contribution de cette thèse est la présentation de nos travaux de con-
struction d’un prototype logiciel de moteur de traitement de flux décentralisé, intégrant
notamment l’algorithme de dimensionnement évoqué précédemment. Nous décrivons ce
que pourrait être l’architecture d’un moteur de stream processing décentralisée et discu-
tons des choix technologiques effectués. Enfin, nous présentons quelques résultats expéri-
mentaux obtenus en déployant notre prototype sur un cluster de calcul.

La troisième contribution revient à la question de synchronisation soulevée par la
première contribution: le processus de dimensionnement distribué nécessite de mettre à
jour le graphe de traitement. Dans une vision entièrement décentralisée, chaque élément
de traitement du graphe est responsable de sa propre élasticité et le nombre de réplicas
pour un élément de traitement évolue indépendamment des autres. En particulier, les
éléments de calcul voisins doivent se coordonner pour éviter d’introduire des connexions
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incohérentes dans le graphe. Nous montrons que ce problème de synchronisation se réduit
à un problème d’exclusion mutuelle de groupe dans lequel un groupe comprend toutes
les répliques d’un élément du graphe et où les éléments voisins doivent éviter de se di-
mensionner en même temps. La spécificité de notre problème est que les groupes sont
fixes et que chaque groupe est en conflit avec un seul autre groupe à la fois. Sur la base
de ces contraintes, nous formulons un nouvel algorithme d’exclusion mutuelle de groupe
dont la complexité en nombre de messages est réduite par rapport aux algorithmes de
la littérature. Là encore, nous validons l’algorithme par des expériences menées sur une
plate-forme réelle.
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Chapter 1

INTRODUCTION

1.1 Context

The Big Data Phenomenon is Increasing

Every single second across the world, a huge amount of data is created, and the
generation rate is increasing. The origin of these data is diverse both in terms of devices
(sensors, mobile phones, laptops, datacenters) and of applications, which range from social
media to scientific applications.

2020 and the outbreak of COVID-19 have introduced a new era where technology
and data take a more significant role in our daily lives: governments are now encouraging
remote work. Teleworking is expected to develop in the upcoming years and it has become
desirable by employees [73]. With lockdowns and curfews, people spend also more time
relaxing at home, especially in front of their computers or smart TV. Therefore, they use
social networks and watch movies on platforms more often than before [109].

According to a data big picture created by DOMO, a Cloud software company based
in the United States specializing in business intelligence tools and data visualization [38],
every single minute in the US, there are 1,388,889 people making video calls, 41,666,667
what’s up messages shared, 208,333 participants in Zoom meetings, 52,083 users connect-
ing on Teams, and approximately one million dollars spent online. Finally, Still during
one minute, users stream 404,444 hours of video in Netflix and Twitter is gaining 319
users [39]. In other words, the Big Data phenomenon is increasing.

All these data generated must be stored and/or processed, later or instantly. In a
broader sense, the Big Data term is used to designate the platforms, methods and tech-
nologies to collect, organise, process and analyse large sets of data. Over the last two
decades, one of the most common paradigm to handle big data has been batch processing.
Batch processing generally consists in executing repetitive jobs on large volumes of data
that has been stored previously, so as to extract information and knowledge out of it.
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Famous batch processing applications include PageRank [10] and scanning at the New
York Times 1.

Another example of a batch processing application, more in the surveillance area, is
the production of reports on the maritime traffic in a specific area. This is particularly
useful in the detection of illegal activities or environmental threats in a country such as
France whose coastal area is important. As an example, consider the 3.4 millions of tons of
hydrocarbons, 5,57 millions of tons of gas and 5,01 millions of tons of coal going through
a single port such as Dunkerque. 2

Producing such reports require to collect and store data about the traffic before pro-
cessing them. However, in some areas and scenarios, detecting a problem has to be done
in quasi real time and vessels are constantly entering, leaving, and moving inside a zone:
detecting an abnormal behaviour (unauthorized fishing vessel, transshipment of illegal
material, etc.) amongst this amount of data quickly brings new challenges, which has
been in particular the subject of the SESAME project 3: SESAME, which was the initial
motivation for this work studied how Big Data and AI can help in this venture, so as
to develop the future platforms and tools able to automate such thread detection and
vizualisation [85].

One important aspect here is data arriving continuously, what is referred to as a data
stream and the need to process this stream timely. In this context, batch processing is no
longer relevant, as it is not able to react to recently produced information. Such a context
calls for mechanisms belonging to the area of stream processing.

Stream Processing at the Rescue

Stream Processing was recently introduced as a paradigm to easily develop and deploy
applications targeting the near real-time processing of data getting continuously produced.
Both the academic and industrial worlds got interested in this new paradigm as the need
of the latter became more and more present in our societies. The need to be able to process
streams of events such as money transactions, online shopping or buying and selling stocks
is quite obvious. But it was reinforced recently for instance with the rise of social media
which has been one of the major industry pushing for new stream processing software.

1. https://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
2. http://www.dunkerque-port.fr/fr/presentation/documentation-port-dunkerque/rapports-

activite.html
3. https://recherche.imt-atlantique.fr/sesame/
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One of the most mature and used toolbox, Storm was early acquired by and subsequently
developed at Twitter, to process all tweets in real time, infer the trends, etc. 4

While stream processing has been devised in the academic world for some time, the
early 2010’s saw the rise of the industrial era of stream processing, and many stream
frameworks and tools were proposed for answering the need for real time processing of
continuous, large streams of data in a distributed and scalable manner. Such toolboxes (or
Stream Processing Engines (SPEs)) — Storm [6], Flink [19] or Spark Streaming [125], are
today regarded as mature software platforms offering high-level programming abstraction
easing the development and deployment of stream processing applications.

One important aspect of stream processing and of these toolboxes is their ability to
scale, i.e, to get deployed easily over large scale platforms such as clusters and clouds.
With the recent advent of new computing platforms gathering smaller resources but at a
larger geographic scale, as for instance conveyed by the Edge or Fog paradigms, the need
for revising the runtime system of these SPEs has appeared: SPEs are not today equipped
to run over decentralized, geographically-distributed platforms.

Emerging Computing Platforms: From Cloud to Fog

In the early 2000s, cloud computing gained momentum as the realization of global
utility computing, i.e., the ability to provide computing power on an on-demand basis.
Yet, most cloud offers rely on big centralized datacenters. With the advance and popularity
of Internet of Things technologies, the need for locality and distribution in processing, to
perform computation where the data is produced – typically at the edge of the network –
has led to consider new ways to build platforms, as for instance conveyed by fog computing.
Let us review these different platforms.

Cloud computing is an abstraction based on the notion of pooling physical resources
and presenting them as virtual resources. It was introduced as a new model for provisioning
resources, for staging application, and for platform-independent user access to services.
As mentioned, cloud-based resources are virtualized, meaning that if an application needs
more resources, such as CPU or storage space, the resources can simply be added on
demand. The pricing model follows the same idea: we pay only for what we use. Another
added value of cloud computing is that the resource management is made fully transparent
to users. Hence, such an outsourcing of computing power allows users to free themselves

4. http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
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from management.
In the last decade, and especially since 2016, mobile network traffic generated mostly

by smartphones, became more important than the fixed traffic. 5 This new diversity of
traffic is due to the evolution of IoT in different domains and the diversity of its applica-
tions. Elderly care is a concrete example of an IoT application: The application provides
health care and assistance with activities of daily living for older adults, either at home
or in care facilities. Generally the application is connected with both sensors, such as
smart bracelets able to trigger an alert or call someone upon the detection of the person
falling [50], and surveillance cameras to monitor the elderly, generating a significant flow
of data.

This IoT growth has led to the fact that the IoT-generated traffic grows faster than the
Internet backbone capacity. Incidentally, most of these IoT applications are throughput-
oriented and so would benefit from local computing resources. Taking the previous exam-
ple of video surveillance, we will consider that these latter detect accidents such as the fall
of an elder. The algorithms used to solve such problems are both computational and data
intensive. So, the solution to improve the throughput is that computing resources used
should be located close to the IoT devices generating data. From this need has appeared
Edge computing.

Edge computing generally refers to the technologies enabling computation to be
performed at the edge of the network through small data centers that are placed close
to end-users [105]. In our example of elderly care, it can help process data locally so as
to trigger an alert quicker than if the data has to be processed in some distant Cloud.
However, computing resources deployed in edges generally provide low processing capacity.
They are not meant to fully replace Clouds. Combining Edge with Cloud resources allows
to combine the best of both worlds: the reduced network traffic of the Edge, and the
computing power of the Cloud [15, 32].

Fog computing can be seen as a fusion between cloud computing, the edge computing
and the end-user devices into a single execution platform. Fog computing guarantees the
locality of the traffic and thus a reduction of latency. In 2015, CISCO defined the Fog by
emphasizing the philosophy of hybrid platforms [40]:

"Fog computing is a highly virtualized platform that provides compute, stor-
age, and networking services between IoT devices and traditional cloud comput-
ing data centers, typically, but not exclusively located at the edge of network."

5. Fixed Internet traffic refers to traffic from residential and commercial subscribers to cable companies
and other service providers.
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In 2017, the OpenFog Consortium was established to standardize Fog architectures
and protocols to combine cloud computing services with IoT devices and an edge ecosys-
tem [28]. While different definitions of Fog may exist, the common characteristics agreed
on by researchers about fog computing are firstly, that fog computing provides com-
pute, network, and storage resources, and that secondly, fog nodes are geographically
distributed. Some of them are located at the edge and other resources are located in
traditional cloud data centers.

1.2 Problem Statement

Towards Self-adaptation...

One of the core challenges of many recent distributed computing platforms is the ability
to react to changes, an ability known as self-adaptation. For instance, a stream processing
application should adapt to variations of the velocity of the streams. Continuing with the
maritime traffic, imagine that suddenly the velocity of the load increases: for instance
when it is daytime in France, the amount of information sent by vessels starting their day
increase so that the resources that host the stream processing application are no longer
able to manage the load. Therefore the results of the application will be delayed. In such
a context, it is strongly recommended or even mandatory to have the results timely. The
application would be useless if it reports an abnormal behaviour too late. Hence, the
first problematic addressed in this dissertation is the adaptation of the stream processing
applications with regard to the changing velocity of the incoming load. This particular
case of adaptation is also referred to as elasticity, and the main available action to adapt
is scaling dynamically the resources dedicated to the application.

... and Decentralization ...

Elasticity in stream processing has been recently the subject of several series of works.
Yet, solutions devised are mostly centralized, an external, management subsystem being
in charge of monitoring, taking scaling decisions and enforcing them. This solution is
suitable and commonly used in applications hosted in cloud computing. However, with
the deployment of applications over more geographically dispersed computing platforms,
elasticity can not be performed easily in a centralized manner, as keeping a global view of
the platform and acting on it from a single process becomes difficult. So, one originality
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of the present work is to provide a decentralized solution to elasticity in stream process-
ing. While recently, hierarchical solutions have been proposed, we go a step further into
decentralization: the scaling procedure is taken in an uncoordinated, local fashion. In the
literature, this approach is not very well studied and it will be the core problem in this
thesis.

... Requiring to Revisit Synchronization Solutions.

As we are in the context of a fully decentralised approach, the communication with
the different parts of the stream processing system may have synchronization issues.
Taking these previously mentioned independent decisions and enforcing them in a fully-
decentrlized way, especially when it comes to replicate elements of computations that
together form the application, can lead to inconsistencies in this application graph and
to incorrect behavior of the appplication. Avoiding this requires to use synchronization
primitives that need to be revisited in this context so as to be optimized.

1.3 Contributions

In this thesis, we go through different steps towards decentralized stream processing.
Our contributions can be summarized into three dimensions. The first one is fully decen-
tralized autoscaling for stream processing applications, the second one is to pave the way
to concrete tools and architectures for decentralized stream processing. Finally, the third
one is a required revisit of classical synchronization primitives in this particular context.

The first contribution of this work is a fully decentralized autoscaling algorithm for
stream processing applications. Here, autoscaling means the ability to scale elastically and
autonomously a stream processing application. We assume that the application takes the
shape of a computation graph whose elements can be distributed and that each of these
elements can communicate with their neighbours in this graph. We provide an algorithm
letting each element take its own scaling decisions based on purely local information.
While each element maintains a view of its neighbours in the computation graph, our
algorithm is able to ensure that they keep a consistent view while these neighbours are
scaling in or out in terms of resources in response to load variations. By consistent, we
mean, that, under reliability assumptions, the concurrent updates in the graph does not
lead to data loss. Our protocol is presented in detail, and its correctness discussed. Its
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performance is captured through both analysis and simulation experiments.
The second contribution of this dissertation is the presentation of our work towards

building a software prototype of a decentralized stream processing engine, that in par-
ticular integrates the scaling algorithm mentioned before. We describe what can be the
architecture of a decentralized SPE and discuss the technological choices made. Finally,
some experimental results obtained by deploying it over a computing cluster are presenting
assessing in particular the performance of the scaling algorithm in practical settings.

The third contribution comes back to the synchronization issue raised by the first con-
tribution: the potentially problematic distributed and independently conducted scaling
process and subsequent distributed graph updates. As described before, in a fully decen-
tralized vision, each processing element of the graph is responsible for its own elasticity
and the amount of replicas for a processing element evolves independently from each
others. In particular, neighbouring computing elements need to coordinate each others
to avoid introducing inconsistent connections in the graph. We show that this synchro-
nization problem translates into a particular instance of the Group Mutual Exclusion
(GME) problem where a group comprises all replicas of a given processing elements and
where neighbouring elements should avoid scaling at the same time. The specificity of our
problem is that groups are fixed and that each group is in conflict with only one other
groups at a time. Based on these constraints, we formulate a new GME algorithm whose
message complexity is reduced when compared to algorithms of the literature. Here again,
practical insights into this reduced message complexity is given through the development
of an independent prototype and its deployment over a real platform.

1.4 Outline

The remainder of this thesis is organised as follows: Chapter 2 firstly gives the needed
background on Stream Processing, its programming and execution models, main features
and describes some of the toolboxes implementing it. Then, the same chapter presents the
state of the art of elasticity in stream processing, before giving some background on the
Group Mutual Exclusion problem. Chapter 3 describes our fully decentralized autoscaling
algorithm for stream processing applications, and details elements for its correctness, per-
formance evaluation through analysis and simulation. Chapter 4 describes our software
prototype of a decentralized stream processing engine, discusses its architecture and the
technological choices we made. Chapter 4 also shows some experimental results obtained
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by deploying it over a computing cluster. Chapter 5 describes a new message passing
group mutual exclusion algorithm to be used in conjunction with the distributed scaling
process in stream processing pipelines. Its implementation, deployment and comparison
with other algorithms of the literature are provided. Finally, in Chapter 6, we draw some
conclusions and provide insights into further improvements of this work and related re-
search directions.
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Chapter 2

STATE OF THE ART

In this chapter, we present the state of the art which serves as a background to our
work and cover the main aspects of programming and executing data processing at large
scale. Firstly, we will review the batch processing model, which remains the reference
model when all data are stored and ready initially to be executed. Secondly, we will
discuss the main aspects of stream processing engines, including their programming, exe-
cution and architectural models. Thirdly, we will focus on elasticity in stream processing
applications as it constitutes the heart of the subject of the present thesis. Finally, as
our work is intended for decentralized environments, this chapter discusses some aspects
of synchronization of distributed systems, namely mutual exclusion and group mutual
exclusion, which is the topic of Chapter 5.

The chapter is organised as follows: in Section 2.1, we discuss batch processing. In
Section 2.2, we discuss general aspects of stream processing, its main models and tools. In
Section 2.3, we discuss elasticity in stream processing systems. In Section 2.4, we discuss
synchronisation in distributed stream processing application.

2.1 Batch Processing

Many enterprise applications contain tasks that can be executed without user interac-
tion. These tasks are executed periodically or when resource usage is low, and they often
process large amounts of information such as log files, database records, or images. Ex-
amples include billing, report generation, data format conversion, and image processing.
These tasks are called batch jobs [87].

Batch processing generally consists in executing repetitive jobs on large volumes of
data. Batch processing typically takes place without the intervention of a human operator,
on data that has been previously prepared as batches, i.e., distinct blocks of data. Data
are typically processed one batch (one consistent data block) at a time. After one batch
is complete, the computing platform can start processing the next batch until no more
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data are available.
One of the programming models that emerged to support Batch processing is MapRe-

duce [33], which has the ability to execute parallelizable calculations on unstructured
data. This programming model was pushed by Google that took inspiration from the
map and reduce primitives commonly present in many functional and parallel languages
such as Message Passing Interface (MPI) [47] for parallel languages and Haskell [52] for
functional programming. This new tool, as industrialised by Google and followers, helps
solving classic problems such as Distributed Grep which aims at finding (log) messages
hidden within terabytes of log data. Many other programs can be solved through MapRe-
duce computations Inverted Indexes, Distributed Sorts and the well-know PageRank [10,
89].

Using the MapReduce model, solving a problem is mostly a combinations of map and
reduce phases. Then, the user expresses the body of the two functions map and reduce. The
map function typically takes as input a key/value pair to produce a set of intermediate
key/value pairs. These intermediate values are grouped together and associated with
their common intermediate key to be passed to the reduce function. The latter takes
as input the intermediate key and a set of values associated with that key. It typically
merges together these values to form a smaller set of values. Algorithm 1 exemplifies the
MapReduce paradigm by showing the pseudo-code of the program that counts the number
of occurrences of each word in a document. The map function emits for each word a pairs
containing the word and its associated count of occurrences. The reduce function sums
together all counts for a specific word.

Let us elaborate with some examples. In Distributed Grep, the map function emits
a line if it matches a supplied pattern and the reduce function is an identify function
that copies the supplied intermediate data to the output. When counting a URL Access
Frequency, the map function processes logs of a web page requests and emits a key/value
pair where the key identifies the page, and the value is set to 1 each time a URL access is
detected. The reduce function aggregates the values that have the same key. In Reverse
Web-Link Graph, the map function generates a target/source pair for each link to a target
URL found in a source page and the reduce function concatenates the list of all source
URLs linked with a given target URL to release a pair composed with the target and a
list of sources.

There are many software frameworks that allow the autonomous deployment of pro-
grams that use the MapReduce libraries over computing facilities. These frameworks offer
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Algorithm 1 Pseudo-code of map and reduce functions (adapted from [33]).
1: procedure map(String key, String value)

. key: document name

. value: document contents
2: for all word w in value do
3: EmitIntermediate(w, ”1”)
4: end for
5: end procedure
6: procedure reduce(String key, Iterator values)

. key: a word

. values: a list of counts
7: result← 0
8: for all v in values do
9: result← result + ParseInt(v)

10: end for
11: Emit(AsString(result))
12: end procedure

parallel executions, in which the map invocations are distributed over several machines by
automatically partitioning the input data into a set of splits, each split being processed in
parallel by a different machine. The reduce invocations are also distributed by partitioning
the data emitted by the map phase into another set of pieces.

Figure 2.1 presents an overview of the MapReduce execution model. The following
steps are listed according to the numbers in Figure 2.1.

1. The MapReduce program starts the process by splitting the input file into N pieces,
N being generally configurable by the user.

2. The execution model is based on the master/worker approach, where the master
chooses inactive workers and assigns to each of them a map task and/or a reduce
task.

3. Each worker assigned to a map task reads the data of its corresponding input
splits, processes them and outputs key/values pairs as in the example described
in Algorithm 1. These output data constitute the intermediate data and that are
stored in intermediate files (middle blocks in Figure. 2.1).

4. Periodically, data in the intermediate files are forwarded to the reduce workers
under the responsibility of the master.

5. After reading the intermediate data, the reducers sort the data by their keys so
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Figure 2.1: MapReduce execution overview. Adapted from [33].

that values for the same key are grouped together. Then, the reduce function, for
instance as described in Algorithm 1 is executed. The results of the reduce function
are appended to the final output file.

6. The program is finished when all map and reduce tasks are completed.

MapReduce has been implemented by different frameworks such as Hadoop [117] and
Spark [126]. Hadoop is an open source implementation of MapReduce. One of the main
features of Hadoop is the Hadoop Distributed File System (HDFS). HDFS is a distributed
file system able to store huge volumes of data in several machines. HDFS allows to perform
efficient parallel MapReduce operations by distributing the data and consequently the
operations.

As Hadoop, Spark is an open source framework for large data processing. The main
abstraction in Spark is the Resilient Distributed Dataset (RDD), which is a set of elements
partitioned across the machines in a cluster so that operations can be executed in parallel
on it. RDDs are stored in volatile memory in contrary to Hadoop which reads from
and writes to disk during the execution. Spark this way can significantly increase the
application’s throughput [48].
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Hadoop could be better on economical solution for processing huge amounts of data if
the speed of processing is not critical and especially if intermediate data are larger than
the available space in RAM. In the other hand, Spark may outperform Hadoop in case
fast data processing is needed.

We firstly discussed Batch processing, a model commonly used for several years to pro-
cess large volumes of data. However, what if data arrives continuously, under the shape of
a stream and that these streams need to be processed in real time? The Stream process-
ing paradigm has been developed to this purpose. Note that, even if they target different
contexts, Batch and Stream Processing share some similarities, related to both their pro-
gramming and execution models: both are programmed as combinations of operators, to
be applied with massive parallelism over a set of data.

2.2 Stream Processing

Both the academic and industrial worlds got interested in real-time data processing as
the need of the latter became more and more present in our societies. Hence, many stream
processing frameworks and tools have been proposed for answering the need for real time
processing of continuous, large streams of data in a distributed and scalable manner.

In this section, we discuss the key aspects of Stream Processing:
— how it takes part to a more global online data processing architecture;
— how it appeared and its key historical landmarks;
— how it is generally programmed and executed;
— how it can offer different guarantees in terms of end-to-end processing.

2.2.1 Architecture of Data Processing Platforms

The architectures for online data processing are generally layered systems that rely on
several loosely coupled components to achieve their goals. The general structure described
in Figure 2.2 may vary. However, all varieties have the same objectives: reliability, main-
tainability, scalability and availability. Figure 2.2 describes the components often found
in an online data processing architecture. The architecture described is divided into five
blocks, namely source, messaging systems, stream processing, delivery and storage. Later
on, in the following sections, we will focus on the stream processing component, but let
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Figure 2.2: Overview of an online data-processing architecture

review all of them briefly.

1. Source. The Source subsystem includes the needed software to access external
data that needs to be processed, typically IoT and mobile data or social media
feeds, websites or online advertising. All these data must be collected, organised
and formatted so as to be processed in an efficient way.

2. Messaging System. In such an architecture, different components are deployed,
related to processing, storage, or delivery, possibly in a distributed fashion. Con-
necting these different components together calls for a specific messaging middle-
ware. Framework such as Apache Kafka [42], ActiveMQ [108] and RabbitMQ [118]
can assure the communication between source and processing components or be-
tween processing and storage. These tools can even be used inside the stream
processing element (Element 3) to ensure the communication between the opera-
tors. As there are many data sources in different geographic locations that differs
in their type, we firstly need to collect all these data and secondly, we need to
format them to a standard format, for instance JSON.

3. Stream Processing. This component is the most important element in such an
architecture as it is the element related to the processing itself. It is commonly
referred to as the engine and is able to handle and perform one-pass processing
of unbounded streams of data. Stream Processing Engines (SPE), such as Apache
Flink or Apache Storm usually assign a Directed Acyclic Graph (DAG) where nodes
are operations to be applied on each data item, and edges represent the streams
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of data between operators. These engines are further described in Section 2.2. One
major specificity of the stream processing component that it should be elastic,
hence, able to adapt to workload changes. The elasticity problem is reviewed in
Section 2.3.

4. Data Storage. Storing data in stream processing applications is important. Be-
yond the mere persistency of output data, it serves for keeping some data for further
processing, for delivering data to other applications and for the backup in situa-
tions of failure. Many options for storing data in a stream processing architecture
are available. While traditional relational databases can be used in a real time ar-
chitecture, NoSQL databases are favoured compared to the relational database for
different reasons: NoSQL databases are further scalable and so can handle larger
volumes of data. In addition, NoSQL supports a variety of data model such as
document, graph, wide-column, and key-value.

5. Delivery. The produced data of the stream processing applications can be de-
livered to external components. In most cases, the delivery takes the shape of a
web-based RESTful API on top of which a dashboard can be built.

2.2.2 Stream Processing Systems: a Bit of History

The notion of streaming can be traced back to the apparition of streaming queries
introduced in 1992 in the context of the Tapestry system [112] for content-based filtering
over an append-only database of emails and bulletin board messages. The transformation
of databases to apply streaming queries when data arrives, marks the appearance of the
first generation of the stream processing engines. At first, this first generation of stream
processing engines provide standard functions as joins, aggregations, map and filtering.
Later on, in the early 2000s, streaming queries were followed by numerous researches
on stream processing and some software prototypes were developed and implemented to
meet specific application needs such as TelegraphCQ [24], NiagaraCQ [26], Aurora [1] and
Gigascope [30]. Most of the first generation stream processing engines were restricted to
a single machine and did not support execution distribution.

The second generation came with the distribution of the stream processing engines.
The researches were focused on data parallel processing engines. This generation bene-
fited from recent work on the industrialization of batch processing and came with many
advantages of distributed systems, but at the same time many new challenges appeared
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especially on fault tolerance, load balancing and resource management.
The third generation saw the appearance of industrial stream processing engines

developed between 2004 and 2010, such as IBM System S [45]. System S can be seen
as a transition from the second generation to the third one because one of the first to
allow to describe an application as a data-flow graph. Operators in the graph can be
algebra-like operations or user-defined and therefore became generic. This generation saw
again improvements regarding scalability, efficiency and reliability. In the following years,
many industrial engines were introduced such as Millwheel [5], Apache Storm [6], Spark
Streaming [125], and Apache Flink [19]. In other terms, industrialization, genericity and
ease of use are the keywords of the third generation.

With the advent of Fog computing, recent researches have witnessed the emergence
of works that will shape the fourth generation of stream processing engines. Stream
processing is becoming highly distributed and deployed over hybrid Edge-Cloud platforms
with a strong incentive to move processing to the edge where possible. New architectural
models and stream processing applications have been introduced over the last few years
such as SpanEdge [99], a new approach that merges stream processing across a geo-
distributed infrastructure, together with the central and the near the edge data centers.
Other similar architectural models are introduced in the literature [57, 123]. Such works
will be reviewed in more detailed in Section 2.3.3.

2.2.3 Stream Processing: Programming and Execution Models

Let us now go into the details of what constitute and characterize stream processing
engines: their programming model which gives the developer abstractions to code an
application, and their execution model which transforms the code into a running program
deployed over a possibly distributed platform.

Programming Model

Stream Processing typically implements data processing pipelines. Each data item
goes through a set of operators to be applied in a given order. More generally speaking, a
stream processing application can be represented by a DAG where nodes are operations to
be applied on each data item, and edges represent the streams of data between operators.
These operators execute either predefined operations such as map, filter and reduce or
customised functions developed by the user.
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Let us exemplify such a program, in the context of maritime traffic surveillance, as
studied by the SESAME project 1, the framework in which this work has been conducted.
Figure 2.3 shows a maritime application whose goal is to process AIS signals 2 sent by
vessels, so as to detect potential threat in real-time. The application is an example that
aims at counting the current number of fishing boats in a particular zone, typically the
Exclusive Economic Zone (EEZ) of a country.
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Figure 2.3: Pipeline of an maritime application

The application comes as a DAG composed of 6 operators. The first operator, parse,
fetches data from the source and decodes the AIS signal into a human-readable format.
This new stream is sent to Operators 2 and 3. The second operator, avg_speed calculates
the average speed of the ships. Yet, concurrently, filter EEZ zone filters out all the ships
that are not in the considered EEZ. Then, another filter is applied by Operator 4 which
keeps only fishing boats. The fifth operator counts the number of fishing ships. The last
operator is the sink, which stores the results in memory.

Operators differ in their selectivity and the type of their state. The selectivity of
an operator represents the number of output data it generates per input data, i.e. the
ratio between the amounts of output and input data. The selectivity can fall into three
categories. It is called selective when the ratio is less than one, one-to-one when the ratio
is equal to one and prolific when ratio is greater than one. Taking our previous example,
the first operator is prolific as it decomposes the input data into two outputs, respectively
sent to the next filter and the avg_speed operator. The counter operator is one-to-one

1. https://recherche.imt-atlantique.fr/sesame/
2. AIS (Automatic Identification System) is the format in which ships signal their position using

transceivers
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and both filters are naturally selective. Note that the selectivity can be dynamic. Filters
in particular can have a dynamic selectivity. In our example, the selectivity of the second
operator named filter EEZ zone will increase when it is daytime in France.

Regarding state, an operator is called stateless if it does not maintain any state between
processing two tuples. It is called partitioned stateful if it maintains a state that can be
partitioned, typically using a key. It is called stateful if it maintains a state without
a particular structure. The operators colored in gray such as filters in Figure 2.3 are
stateless. Each tuple can be processed independently from the previous tuples. However,
the counter operator, colored in blue is stateful, but cannot partitioned: there is a single
counter for all the boats reaching this operator. Finally, the avg_speed operator is stateful
but can be partitioned, as for instance we can maintain the amount of average speed of
boats per category. The type of the operator is important and has an influence on the
complexity of scaling and fault tolerance: it is more difficult to scale a purely stateful
operator, as different instances of the operator will be able to maintain only a subpart of
the state, subparts needing merging at some point.

While using DAGs as previously mentioned is the general programming model to de-
velop SP applications, we will now describe how specifically are DAGs implemented from
a programmer’s point of view and how then the program will be deployed and executed.
Putting Stream Processing into practice, Stream Processing Engines (SPEs) provide two
main features, namely, i) an API to define the operators and their dependencies (in other
words, specify the DAG), and ii) an automated deployment of the application over a dis-
tributed computing platform. Storm [6], Flink [19] and Spark Streaming [125] are examples
of these SPEs which are today regarded as mature Stream Processing frameworks that
can be used in multiple application domains. Yet, there are differences in the way SPEs
specify and exectued the DAGs. Let us describe two approaches by examples: Storm and
Spark Streaming.

Apache Storm

In Storm, the DAG is called a Topology. Each node in this topology, is either a Spout
or a Bolt. A spout is a source of data and can connect to an API and emits data to its
successors nodes, bolts. A bolt is a node that consumes data, does some processing (to be
defined by the developer) and emits new data. The topology defines thus how the data
should be passed around between bolts and spouts. In Storm, data are processed by-tuple
on-the-fly: Each time a new tuple is received, the processing logic of the bolt is applied.
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So in the case of Storm, streams are unbounded sequences of tuples processed one by one.
Storm uses a master-slave execution architecture where theMaster node runs a daemon

called Nimbus which is responsible for distributing the code over the worker nodes of the
cluster, assigning tasks to machines. The Nimbus monitors the workers for failures, each
worker running a daemon called the Supervisor ready to receive work from the Nimbus
and trigger one or more executors. An executor is a thread that executes the code of either
a bolt or a spout.

The coordination between Nimbus and the Supervisors is done through
Zookeeper [128]. Typically, zookeeper stores the states of the workers on local disk, so
the Nimbus can detect a node failure, and reassign the failed tasks to a another worker.

Spark Streaming

Spark Streaming is an extension of the core Spark API described in Section 2.1. Spark
Streaming uses a different model of stream processing, commonly referred to as micro-
batching. Instead of processing the streaming data tuple by tuple, it discretizes data
processing into micro-batches: Spark streaming proceeds by time windows, and triggers
periodically the processing of data received during the last period. The result of each
micro-batch is aggregated to the previous results.

From the programmer’s point of view, Spark Streaming comes up with a high-level
abstraction called Discretized Stream (DStream), which represents a continuous stream of
data. Internally, a DStream is represented as a sequence of an abstraction called Resilient
Distributed Datasets (RDDs). The RDD is the basic abstraction in Spark enabling to run
computations in memory in a fault-tolerant manner. It is an immutable and partitioned
collection of records that can be executed in parallel. Thus, from a programmer’s point
of view, Spark Streaming is very similar to Spark as they follows roughly the same pro-
gramming model. Spark Streaming allows to express easily most pipelines by chaining
operations in cascade. The difference comes that Spark Streaming executes micro-batches
periodically where Spark is triggered once for the whole set of data.

2.2.4 Processing Semantics and Fault-tolerance

In distributed stream processing engines, messages sent through the operators may
get lost due to a network or compute nodes failure. One of the characteristics of stream
processing engines is their ability to provide guarantees about data processing. Three

37



Chapter 2 – State of the Art

semantics are typically possible:

1. The at-least-once semantics guarantees that each data in the stream will be
processed at least once. However, there is a chance that one data record will be
processed several times.

2. The at-most-once semantics guarantees that each data record is either processed
once or not at all, typically lost in the case of a failure.

3. The exactly-once semantics guarantees that each data in the stream will be pro-
cessed exactly one time. In other words, data can neither be lost nor duplicated.

In many applications, it may be acceptable to process twice the same tuple without
modifying the correctness of the result. For instance, an application that maintains the
maximum value amongst the set of values received can afford the at-least-once semantics.
It is even recommended. For some other applications, it might be acceptable to lose some
tuples without significantly modifying the precision of its result, for instance when doing
statistics. The at-most-once semantics can be used in this case. However, some applications
cannot afford anything less than exactly-once like for instance when dealing with banking
transactions. It is not allowed to have duplicates or missing messages when depositing or
withdrawing money from a bank account.

The at-most-once semantics is the cheapest one and the one which gives the highest
performance. It can be achieved in a fire-and-forget fashion, i.e., without memorising tu-
ples once they have been locally processed. The at-least-once semantics, in contrast, needs
to replay messages that have been lost. To do so, each tuple can be saved at the producer
and removed only after the consumer explicitly acknowledges that it has processed it. The
last semantic the exactly-once, is the most expensive one and has the lowest performance
for the reason that in addition to the at-least-once semantics, it requires to keep tuples
also at the consumer in order to avoid duplicated processing by recognizing an already
processed tuple.

Performing At-least-once Semantics in Apache Storm

Apache storm has the ability to provide both at-least-once, and at-most-once. While
at-most-once does not bring any particupar difficulty, in this section, we will focus on the
techniques used by Storm to achieve at-least-once semantics. To do that, Storm uses an
augmented topology by adding an acker bolts for each Spout to track down the the tuples
emitted by a Spout. A tuple is fully processed when itself and the tuples resulting from its
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Figure 2.4: Augmented topology

processing have been processed. Figure 2.4 shows an example of an augmented topology
where the two red bolts acker1 and acker2 are added to track down tuples emitted by
spout1 and spout2.

For each new tuple emitted by a Spout, a randomly generated 64-bit id is attached
to it. As Bolts processing these input tuples can produce new tuples as output, random
64-bit ids are also generated to identify these new tuples. The list of the tuple ids is kept
in a provenance tree that links then with the initial tuple. The tuple ids in the same
tree (children of the same initial tuple) are XORed together by the assigned acker until
the value 0 is obtained. More precisely, the id of each tuple is XORed twice: when it is
emitted, and when it is acknowledged (after all its children tuple were emitted). When
the resulting checksum is 0, it means all tuples have been XORed twice, and consequently
that the initial tuple has been fully processed. (Let us denote the XOR operation by ⊕.
⊕ is both commutative and associative then a⊕ a⊕ b⊕ b = a⊕ b⊕ a⊕ b = 0.) If a failure
occur, the XOR checksum will never be equal to zero, and after a timeout, it is considered
as failed and replayed.

Let us illustrate the process on a concrete example illustrated by Figure 2.5. As there
is only one spout, then the augmented topology will have a single acker. In the first step,
the spout assigns the emitted tuple with an randomly generated id (In the example we will
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Figure 2.5: An example to guarantee at least-once semantic in Storm
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use a 4 bit id for simplicity). This 4 bit id, 1011 is sent to the acker that saves it. Second
step is when the first bolt receives the tuple with the id 1011 and produces two new tuples
identified 0111 and 1000 respectively (see Figure 2.5 [01]). Bolt 1 notifies the acker with
the new two ids. The acker XOR its currently id with the two new ids and thus updates
its stored checksum. In this case, 1011⊕ 0111⊕ 1000 = 0100. After Bolt1 completes the
processing of the tuple, it notifies the acker that tuple 1011 is acked. The acker again
updates the checksum with 0100⊕1011 = 1111. Same process goes with Bolts 2 and 3 (see
Figure 2.5 [02]). Finally, Bolt4 receives the tuples 1010 and 1111. Then it acks the two ids
to the acker which updates the checksum by XORing again: 0101⊕ 1010⊕ 1111 = 0000
(see Figure 2.5 [03]). At this point, the stored id in the acker is equal to 0 and the acker
considers the tuple as fully processed.

Apache storm in its basic abstractions does not provide exactly-once semantics. Gener-
ally, performing exactly-once semantics in the by-tuple execution model is complicated. To
achieve it, there is two popular mechanisms: using distributed snapshot/state checkpoint-
ing or using at-least-once semantics plus message deduplication. To provide the exactly-
once semantics in a lightweight manner though in the second model using micro-batchs,
Trident was introduced.

Performing Exactly-once Semantics with Trident

Trident was built on top of Storm to provide the developer with a high-level API to
easily include joins, aggregations or filters in SP programs. It is based on micro-batches and
supports stateful stream processing [114]. Trident has the ability to provide exactly-once
processing semantics. As mentioned, Trident uses small batches. Each batch of tuples is
assigned to a unique id named transaction id (txid). If the batch needs to get replayed, the
same transaction id is assigned to it, and batches are ordered with these ids. This allows
deduplication: the state updates for a given batch is applied only if the last successfully
processed batch is the previous one in the order of the ids [115].

2.3 Elasticity in Stream Processing Systems

Elasticity, for which we describe a decentralized mechanism in Section 3, is primarily
the ability of a system to adapt to workload changes by adding or removing resources
in an autonomic manner in order to optimize its throughput and resource usage at each
instant. This is also known under the term autoscaling. The need for autoscaling in stream
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processing has two main sources. Firstly, the incoming stream is subject to changes in its
velocity, which is hard to predict. Secondly, each operator has its own processing latency,
which is also hard to predict and which differs from one operator to another one. For
these reasons, autoscaling in stream processing is a complex topic which recently gained
attention from the research community [34, 58].

Yet, elasticity, in the broader sense that we adopt in the following, does not only con-
sist in adding or removing resources dynamically, but also in performing optimisations in
the application’s execution graph, modifying the degree of parallelism of operators and
adapting the placement of operators dynamically following possibly customized scheduling
policies. Thus, a strong aspect of elasticity in stream processing systems is reconfigura-
tion [69]: for instance modifying the placement of the operators dynamically to settle
optimally an application to existing resources conditions or provide fault-tolerance.

Basic elasticity mechanisms. Elasticity mechanisms in stream processing applica-
tions generally relies on four basic operations: fusion, fission, deletion and migration [59].
Fusing two contiguous operators that are hosted over two different hosts consists in mov-
ing one of them so they then run on the same host. This allows to reduce traffic between
operators at the cost of a possible loss in load balance. Fusion is not a scaling action per
se, and relates more to a consolidation of the placement of operators over the compute
nodes. Fission refers to an operator’s duplication. It scales it out by spawning a new
replica (or instance 3) of the operator, thus increasing its level of parallelism. The reverse
operation is deletion which decreases the level of parallelism. Migration, another action
which does not strictly relates to elasticity but more generally to dynamic adaptation,
refers to the modification of the placement of an operator.

Vertical vs horizontal elasticity. Elasticity mechanisms can generally be classified
into two categories: vertical and horizontal. To adapt to workload changes, one of these
mechanisms or both of them in some cases should be used. In its general form, vertical
elasticity consists in increasing the capacity of an existing hardware or software platform,
for instance by adding resources such as CPU, memory and network. An application
running in a cloud computing environment benefits from this type of elasticity for instance
by starting new processes or containers into the physical or virtual machines already
used and allocated by the application. In the case of stream processing, an application

3. Replica and instance are used interchangeably hereafter.
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benefits from this type of elasticity through the fusion of an operator, but without using
extra resources: these new instances will be hosted by resources already allocated to
the application. Vertical scaling is limited by the capacity of the machines running the
application. Horizontal elasticity reposes generally on adding processes (or containers) into
physical or virtual machines that were not in the pool of resources until now. In a stream
processing application, horizontal elasticity can consist in redeploying the operators of the
application after these new machines were added, for instance after the detection of some
bottleneck or load imbalance. Note that adding or removing resources at run time in a
stream processing application especially in a horizontal way is not trivial. For instance,
scaling out a partitioned stateful operator brings difficulties: the state has to be split
over its different replicas. When a new instance appears, part of this partition needs to
be migrated to the new node. Conversely, when some replica disappears, its partial state
needs to be dispatched over the remaining nodes. These mechanism are costly and take
time and thus add significant latency to the execution time. Very often, a stop-and-restart
phase is needed.

For these reasons, the initial operator placement during which processing elements
are deployed over available computing resources is important. A good initial operator
placement may reduce the amount of elasticity needed. While our work does not directly
focus on static techniques, we review them for the sake of completeness and also because
they share some similarities with dynamic techniques that are later detailed and which
includes our first contribution detailed in Section 3.

In other words, static and dynamic techniques complement each others. Firstly, static
techniques mostly consists in analysing and preprocessing the application graph so as
to improve task parallelism and operator placement, and also to optimise data trans-
fers between operators. We will discuss these techniques in Section 2.3.1. Secondly, as
described, dynamic, adaptation techniques consist in modifying the pool of available re-
sources and doing dynamic optimisations to adjust applications dynamically to utilise
newly resources at run time. We will discuss these techniques in Section 2.3.2. Then,
in Sections 2.3.3 and 2.3.4, we review how the emergence of Fog and Edge platforms
influenced these elasticity mechanisms and their decentralization.

2.3.1 Static Techniques

Static techniques generally consist in trying to analyse the application’s graph so as
to optimise its initial deployment [4, 91, 93, 127]. Static techniques are strongly related
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Figure 2.6: Parallel region formation example [102].

to the ability to detect the application’s potential internal parallelism [51], as operators
composing it will need to get scaled (horizontally or vertically). They consist in a prior-
to-execution analysis of the graph of operators in order to discover what portions of the
graph can be parallelized safely. Note that stateful portions of the graph are more difficult
to make parallel as their state needs to be maintained over a distributed set of nodes.
Such a static analysis is generally envisioned as a necessary first step towards scaling. It
does not dynamically adjust the number of replicas of an operator as the input stream
rate evolves. While this analysis is generally conducted by a centralized process, it can
also rely on decentralized techniques [93].

Schneider et al. [103] propose a heuristic-based traversal of the graph to group opera-
tors together in different parallel areas. Each area consists in a contiguous set of operators
that are not stateful, stateful operators being considered as not trivial to parallelize with-
out incurring an extra merging cost that may be higher than the gain of parallelism. This
heuristic is applied by a compiler used at submission time that automatically extracts
parallelism from the DAG submitted. To be considered as parallelizable, an operator must
be stateless or partitioned stateful, have a selectivity of at most one and it should have
at most one predecessor and successor. The two latter conditions are needed to ensure
to preserve tuples ordering when scaling is triggered. The conditions for forming parallel
regions, i.e. chains of parallelizable operators are that the stateful ones must have a non
empty intersection in the keys they manage and if two operators can be fused, then, they
have to belong to the same region.

The example stream graph in Figure 2.6 illustrates an example of a parallel region
greedy formation: Blue operators are stateless, green operators are partitioned stateful
(and their key is displayed), and red operators are stateful but cannot be partitioned. O1

and O2 forms the two first parallel regions, but cannot be expanded because O8 has two
predecessors, and O3 cannot be partitioned. At the end of the upper chain, O8 and O9

forms another parallel region of partitioned operators sharing one common key, but that
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cannot be expanded to O10 because it does not share a common key with O8. Finally,
O11, O12 and O13 constitute a chain of stateless operators.

Besides the detection of parallel regions, specific scheduling policies for stream pro-
cessing has been proposed. While most of them are dynamic, some papers focused on the
initial placement of operators on the platform. Aniello et al. [7] propose a static mech-
anism to initially place operators on the platform, through a simple linearization of the
DAG, and a greedy placement. Peng et al. [91], based on the same principle, goes a step
further by trying, during this placement, to maximize resource utilization while mini-
mizing network latency between distant operators. They translated the problem into a
specific version of the knapsack problem (namely the quadratic multiple 3-dimensional
knapsack problem), which is known to be NP-hardtic Their work, while generic and po-
tentially applied in the context of other stream processing engines was implemented as a
custom version of Apache Storm, which, in its basic version, lacked intelligent scheduling
mechanisms.

Zhou et al. [127], while focused on dynamically adjusting the placement, also tackle
initial operator placement problem trying to minimise the communication cost.

Ahmad and Çetintemel [4] also tackle the initial operator placement problem through a
traversal of the DAG (here specifically query trees are considered) again trying to minimise
the bandwidth utilized in the network. As a first decentralization step, choosing compute
nodes amongst available ones is done via a Distributed Hash Table (DHT). Two heuristics
are proposed, again greedily trying to save bandwidth by putting communicating operators
on the same node and choosing compute nodes adequately in regard to their pair-wise
latencies.

Pietzuch et al. [93] goes further in the decentralization of the initial placement. They
propose a stream-based overlay network called SBON, a logical network layer between a
stream processing engine and the physical network. SBON manages the operator place-
ment through two mechanisms: Firstly, it builds a cost space representing the network and
the operators and streams already deployed. Sharing some similarity with Vivaldi [31],
this cost space is built in a decentralized fashion, and is a multidimensional Euclidean
space where the logical distance between two nodes is an estimate of the cost of routing
data between those nodes. Based on the information of this space, an algorithm decides
where operators have to be placed using a spring relaxation inspired technique.

While this static analysis is a necessary first step when the graph of operators is
submitted, it is unable to maintain a continuous adequate level of parallelism able to adapt
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to the actual velocity of the incoming data stream to be processed. Unprecisely setting
this level may lead to either an overshoot, i.e., two much resources allocated compared
with the actual demand, leading to a waste of resources, or conversely to an insufficient
amount of allocated resources leading to a performance degradation.

2.3.2 Dynamic Techniques

Dynamic techniques, encompass different mechanisms related to adaptation and elas-
ticity. Their common aspect is that they are enforced while the application is running. It
can consist in modifying the pool of available resources by adding or removing resources
dynamically. It can also consist in scaling in and out the operators, and balancing the load
within it, either by optimising dynamically the utilisation of newly allocated resources or
by adapting the application after resource pool was reduced.

To be put into action, dynamic (or online) techniques in stream processing systems
typically rely on two elements [23, 44, 49, 121]. Firstly, a subsystem maintains up-to-
date information about the load of nodes and the available resources on the underlying
platofrm, so as to be able to take relevant decisions. Secondly, a scaling policy to decide
when and to what extent scaling is needed. Dynamic techniques are typically implemented
through a Monitoring, Analysis, Planning and Execution (MAPE) loop [66], a well known
pattern to design self-adaptive systems. This pattern has been in particular used a lot for
elasticity in cloud environments [77]. Let’s quickly review the phases.

The Monitoring phase collects data either on available compute resources (e.g. current
CPU usage, memory availability and network saturation) or through service-level metrics
(e.g. number of tuples processed over time, end-to-end tail latency [53], etc.), about either
the entire application or a single operator. The Analysis phase analyses the collected
information to determine whether a scaling operation is needed by trying for example
to identify bottleneck operators. The Planning phase intervenes if such an adaptation is
needed, and decides which precise set of actions (adding resources, removing resources,
rebalancing the operators over the existing resources, etc.) can be beneficial and how it
should be enforced, based on a specific scaling policy. Finally, the Execution phase enforces
the adaptation actions by updating the application deployment in the chosen direction.

Online techniques for scaling can be classified into two categories: centralized and
decentralized approaches. In centralized approaches, it exists a unique elastic manager
that will manage all the system. In other words, there is a unique process that takes care
of all MAPE loop phases. In decentralized approaches, in each node, it exists a local elastic
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manager that maintains only its local system view and locally controls the adaptation of a
single operator, possibly in collaboration with others. Although the centralized approach
can lead to more accurate and efficient results than the decentralized approach as it has a
global view of the system, the decentralized approach is more relevant in fog environments.
These latter environments are characterised by their geo-distribution and advocates for
bringing application closer the the data to reduce application’s latency. These aspects
make the centralized solutions unable to scale well.

In the following, we firstly discuss the centralized solutions in the literature for schedul-
ing, horizontal and vertical elasticity. Secondly, we discuss the exploitation of the edge
and fog computing for the stream processing applications in particular how it influences
their elasticity mechanisms. Finally, we will discuss the efforts to decentralize dynamic
adaption solutions and how can they be used in a fog environment.

Some seminal work such as the one of Sattler and Beier [100] devises generic patterns
and their implementation to ensure quality of service of dataflow graphs execution, act-
ing on elaticity, adaptation and fault-tolerance. In particular, they show how standard
mechanisms such as (active and passive) state machine replication, checkpointing, parti-
tionning and pipelining (cutting a complex operator into multiple chained operators) can
be applied in this context.

Online scheduling of dataflow graphs was addressed by multiple works [7, 121, 127]
in the recent context of stream processing, in particular focused on reducing the global
traffic induced. In particular, Jielong Xu et al. introduce T-Storm [121] which aims to
reduce inter-node communication by dynamically grouping operators efficiently. They use
hot-swapping [74]: a technique to dynamically change the scheduling policy’s parameters
on the fly. A similar approach is provided by Aniello et al [7] which propose an adaptive
Storm. After a first initial phase described earlier in Section 2.3.1, the scheduling is con-
tinuously improved through monitoring. These works are more scheduling-oriented and
do not provide scaling mechanism per se to adapt to the variation of the workload. In the
works presented below, the aspect of elasticity in terms of scaling mechanics is added to
the scheduling aspect (and also enhanced with other technique such as failure recovery).

More scaling-oriented, the work in [23] focuses on stateful operators that require spe-
cific state management mechanisms when scaling or restarting them after failure. They
build an externalized state management system which precisely maintains the set of tuples
that have been processed by an operator thus reflecting its state. They define an API on
top of it used by the stream processing system to access to operator’s state and so give
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the stream processing system the ability to dynamically partition operator state, scale,
checkpoint, backup and restore. In particular, based on this API, a scaling mechanism
is proposed, consisting in monitoring periodically the CPU utilization so as to detect
bottlenecks and trigger a scaling-out phase.

Heinze et al. [54] introduce FUGU, an elastic stream processing system. FUGU can
dynamically allocate and de-allocate resources for both stateless and stateful operators.
On top of FUGU, Heinze et al. [53] discuss mechanisms aiming to minimise the number of
latency violations. The proposed work introduce a model taking into account the overhead
of dynamic adaptations, by estimating the latency spikes in a query’s end-to-end latency
due to the set of operator movements across machines at adaptation time. To do so, au-
thors distinguish the mandatory movements, which are those needed to avoid an overload
of the system, and the optimal movements, which concerns the release of an unused host
during light load. The particularity of optimal movements is that they can be delayed
or even cancelled. The online operator movement technique used by FUGU is based on
Flux protocol [104]. With the operator placement, FUGU also propose algorithms for
autoscaling based on detecting when the summ of CPU utilizations of operators in a host
exceed a predefined threshold. In these overloaded hosts, an algorithm to decide what
operators remain and what operators move. The need for these potential movements are
then evaluated in regard to the latency spike they may introduce.

StreamCloud (SC) [49], a scalable and elastic stream processing engine built on top of
Borealis [2], provides, similarly to [103], a set of techniques to identify parallelizable zones
of operators called subqueries into which the whole operator graph is split. A subquery
starts with a stateful operator and ends with another one, called the sink and contains
all stateless operators in between. Yet, on top of this splitting mechanism, a dynamic
scheduling is introduced to balance the load of a stream produced by the sink of a sub-
query to the downstream subqueries. SC then introduces interesting techniques to ensure
the order of processing amongst parallelized stateful operators. StreamCloud also intro-
duces buckets that receive output tuples from a subcluster to guarantee effective tuple
distribution from one subcluster to the downstream one. To ensure the distribution of the
buckets across downstream instances, each subcluster uses a Bucket-Instance Map (BIM).
These latter are endorsed by Load Balancers (LBs), which is an operator placed on the
outgoing edge of each instance of a subcluster, that transmits tuples from a subquery to
downstream subqueries. In the other hand, Input Merger (IM) are placed on the ingoing
edge. These latter receive tuples from the upstream LBs and transmit received tuple to
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the local subquery. StreamCloud use a resource manager linked with a centralized elastic
manager to monitor CPU utilisation to scale (in/out) according to the latter if it is higher
than an upper thresholds or below than a lower thresholds. The resource manager coupled
with a dynamic load balancing assures the adjustment of the system by rebalancing the
load dynamically, provision resources or releasing resources.

Wu and Tan [120] introduce ChronoStream, a mechanism for latency-sensitive elastic
stream processing computations. The work provides techniques to scale stateful operators.
It uses both horizontal scaling which is addressed through transactional migration proto-
col, and vertical scaling addressed by increasing the number of cores used on a computing
device. ChronoStream integrates a number of new techniques to support these actions.
First, it divides the application-level state into a collection of slices that are aggressively
checkpointed. Second, upon scaling or reconfiguration, it is able to reconstruct the state
and migrate it where needed.

Xu et al. [122] propose Stela (STream processing ELAsticity), an elastic stream pro-
cessing. Scale-out and scale-in operations are requested by users to Stela which determines,
by analysing the current load experienced by the operators which one to give more re-
sources or which one must lose resources so as to globally optimize the throughput. Stela
also aims to minimise the interruption to computation while the scaling operation is be-
ing carried out. It does so by selecting which operators can be given more resources with
minimal intrusion. Stela relies on a specific metric, namely the Expected Throughput
Percentage (ETP), which is a per-operator performance metric aiming to detect opera-
tors that are either congested. Stela is implemented as an extension to Storm’s scheduler
and it shows better results by achieving a higher throughput and a smaller interruption
time compared to the classical Storm’s scheduler. Note however, that Stela considers only
stateless operators whose migration can be achieved easier without copying and storing
large amounts of states or data comparing to stateful operators.

Satzger et al. [101] introduce ESC (Elastic Stream Computing), another elastic dis-
tributed stream processing platform. Again, based on a MAPE loop, a global manager
takes adaptation decisions, using a threshold on the load experienced by operators. Each
operator can be scaled on several workers, and is equipped with a manager able to bal-
ance the load for this operator amongst the workers. Finally, their approach is able to
reconfigure so as to dynamically select the parameters of the scheduling policy.

Lohrmann et al. [76] propose a reactive strategy to enforce latency guarantees in data
flows running on stream processing engines, while minimizing resource consumption. The
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authors yet make several questionable assumptions: workers supporting a given operator
are homogeneous, the load for an operator is equally distributed amongst its workers,
and the operators can be safely scaled without having to manage their state (in other
words, operators are stateless). The elastic engine proposed, employs scaling policies that
use system performance metrics such as the rate of tuples processed per operator, CPU
load thresholds and end-to-end tail latency. Authors introduce a reactive strategy that
uses two techniques: Rebalance and ResolveBottlenecks. Rebalance adjusts the parallelism
of bottleneck operators and ResolveBottlenecks resolves bottlenecks by scaling out the
system.

Gedik et al. [43, 44, 111] propose several techniques for vertical scaling generally based
on operator and pipelined fission, implemented in the IBM Streams engine.

In [44], based on their static analysis of the graph detecting the parallel regions de-
scribed earlier [102], they propose a dynamic technique to adjust at run time the number
of instances of each operator in the graph so as to cope with the changing velocity of the
input stream. State migration to scale partitioned stateful operators is managed through
a key-value store and consistent hashing [64]. The originality of this work also stands in
the formalization of a set of rules ensuring that the system sticks to a behaviour respect-
ing the SASO properties: Settling time, Accuracy, Stability, Overshoot. In other words,
the requirement is to be able to allocate the right number of instances that will ensure
the performance of the system (accuracy), that this number is reached quickly (settling
time), that it does not oscillate artificially (stability) and that no useless extra resources
are used (overshoot).

In the same series of work, they propose a solution for the problem of pipelined fission
where the original sequential program is parallelized by taking advantage of both pipeline
parallelism and data parallelism simultaneously [43]. The solution supports either parti-
tioned stateful and dynamic selectivity operators. It is based on a technique that segments
a chain-like data flow graph into regions depending on the operators they contain if it
can be replicated or not. Compared to their previous work in [44], while they use similar
techniques, they are not limited to fission only and support pipelining.

Finally, Tang and Gedik [111] propose to deploy the DAG over a set of threads, each
thread being responsible of a source operator and its downstream operators. Depending
on the dependencies between operators, the load of an operator can be shared by several
threads. Based on the per-port utilization metric which determine the time a thread spends
taking care of an operator and its downstream operators, threads are added and removed
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dynamically.
Table 2.1 summarises the centralized solutions that aim to provide dynamic adaptation

for elastic stream processing systems. The table details the types of operators supported
(i.e. stateless, stateful, partitioned stateful), the metrics used to estimate the need for
elasticity actions, the type of elasticity (i.e. vertical or horizontal) and the elasticity actions
performed. Remind that stateful operators whose state can be partitioned can be scaled.
Other stateful operators can be supported by the works summarized in the table, but not
in the sense of scaling but in the sense of migration for instance.

Surveys on elasticity in Stream Processing can be found in the literature [34] and
inspired this section. Yet, we classified works in a different manner so as to focus on the
important notions that will be used in this dissertation.

2.3.3 Towards Exploiting Edge and Fog Computing

Recently, distributed data stream processing systems architecture models have turned
out for more distributed environments to exploit edge and fog computing. The main ob-
jective of doing that is to improve the end-to-end latency of the computation or discharge
part of it from the cloud and place it at the edge. Hence, recent works aim to place data
analysis tasks at the edge so that in particular the amount of transferred data from source
to the cloud is reduced and the latency is improved. Edge resources and cloud resources
today work hand in hand within hybrid geographically-distributed architectures, and both
middleware and scheduling/scaling policies must be revisited.

Towards Lightness

Trying to improve the recent works and to build elastic stream processing systems
for fog and edge computing, some researches lead to the development of light processing
stream processing middleware especially designed for the edge and its limited computing
power [8, 27, 41, 75, 94].

With a similar lightness in mind, different works studied the suitability of the con-
tainer technology to support Stream Processing at the edge [61, 90]. More specifically,
Pahl and Lee [90] studies the suitability of containers in regards to the key technical re-
quirements of edge and fog architectures to support elasticity. In the same context, Ismail
et al. [61] evaluate several criteria such as deployment and termination, resource and ser-
vice management, fault tolerance and caching. They advocate for the use of containers in
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Table 2.1: Centralized dynamic adaptation for elastic stream processing systems

Solution Stateful
Supported

Metrics for Elasticity Elasticity
Type

Elasticity Action

Sattler and
Beier [100]

No Resource use (CPU, inter-
node traffic)

N/A dynamic executor reassign-
ment and checkpointing

T-
Storm [121]

No Resource use (CPU, inter-
executor traffic load)

N/A executor reassignment,
topology rebalance

Adaptive
Storm [7]

No Resource use (CPU, inter-
node traffic)

N/A executor placement, dy-
namic executor reassign-
ment

Fernandez et
al. [23]

Yes Resource use (CPU) horizontal operator state check-
pointing, fission

FUGU [54] Yes Resource use (CPU, net-
work and memory con-
sumption)

horizontal operator migration, query
placement

StreamCloud
(SC) [49]

Yes Resource use (CPU) horizontal query splitting and place-
ment

ChronoStream
[120]

Yes Resource use (CPU) vertical and
horizontal

operator state check-
pointing, replication,
migration

Stela [122] No System metrics (impacted
throughput)

horizontal operator fission and migra-
tion

Esc [101] No Resource use (machine
load), system metrics
(queue lengths)

horizontal dynamic configuration of
the scheduling, operator fis-
sion

Nephele
SPE [76]

No System metrics (task and
channel latency)

vertical operator fission

Gedik et
al. [44]

Yes System metrics (conges-
tion, throughput)

vertical operator fission, state
check-pointing, operator
migration

Tang and
Gedik [111]

Yes System metrics (operator
load, per-port utilization)

vertical fission, migration,
adding/removing threads

Gedik et
al. [43]

Yes System metrics (congestion
index, throughput)

vertical pipelined fission, migration
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such an environment. Finally, the problem of building an IoT gateway, i.e., a system able
to establish the connection betweem IoT devices and the Cloud and facilitate migration
between these two worlds have been tackled in [82, 92].

Also middleware-oriented, Hochreiner et al. [60] propose the VIenna ecosystem for
elastic Stream Processing (VISP) which provides an architectural framework to deploy
new stream processing topologies over geographically-distributed computing platforms.
VISP exploits containers to deploy application on hybrid environments such as clouds and
edge resources. Within this framework, the elasticity is achieved by a classic mechanism:
monitoring three indicators related to performance of operator instances, the system load
on the message infrastructure, and introspection of the individual messages in message
queues, so as to add operator instances for a specific operator.

Towards Scheduling for Hybrid Platforms

Another series of works, more scheduling-oriented, investigate strategies to place oper-
ators composing applications over geographically distributed compute resources. Nardelli
et al. [84] and Cardellini et al. [22, 21] propose heuristics to solve the operator place-
ment problem in heterogeneous settings. Frontier [86] explores strategies to optimize the
performance and resilience of edge processing platforms for IoT, by dynamically routing
streams according to network conditions. Planner [95] automates the deployment over
hybrid platforms, taking decisions on what portion of an application should be deployed
at the edge, and what portion should stay in the Cloud, while minimizing the network
traffic cost. Similar objectives are pursued in [116] while focusing on specific yet very
common families of graphs found in data stream analytics, namely series parallel graphs.
These works focus on modelling the placement problem and propose strategies to optimize
certain metrics, statically or dynamically, they do require to modify the schedulers and
deployers at the core of existing stream processing engines. Ottenwälder et al. [88] pro-
pose techniques to support placement and migration in Stream Processing architectures.
The techniques rely on prediction techniques to plan operator-state migration in advance.
Again, they target hybrid architectures combining fog and cloud resources.

Towards Deployment Tools for Hybrid Platforms

Sajjad and Danniswara [99] propose SpanEdge, a stream processing solution in a geo-
distributed setting, that uses central and near-the-edge data centers aiming to reduce or
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eliminate the latency provoked by WAN links by distributing stream processing applica-
tions across the central and the near-the-edge data centers. SpanEdge architecture is based
on master-worker architecture with hub and spoke workers, where the hub worker is hosted
at a central data center and the spoke worker near-the-edge data centers. SpanEdge en-
ables users to group the operators of the stream processing applications into two groups,
depending whether they have to be near the data sources or not. SpanEdge provides
a scheduler to optimally dispatch the operators according to their group. Mehdipour et
al. [80] also propose a hierarchical architecture data stream processing using fog and cloud
resources aiming to minimise communication requirements between fog and cloud.

R-pulsar provides a user-level API for operator placement [46]. R-pulsar offers a pro-
gramming model similar to Storm, but where the user can choose what operator has to
be placed at the edge, and what operator has to be placed in the Cloud. Then, the frame-
work decides on what precise node to place the operator. Also, standardizing the way to
benchmark Fog-deployed data stream processing applications is explored in [106, 107].

Let us also mention E2CLab [98], a framework easing the deployment of SP appli-
cations over platforms interconnecting the whole range of possible computing resources,
from IoT devices to HPC clusters. E2CLab relies on a high-level description of the whole
deployment process, from the installation of the stacks to the execution of the jobs, thus
facilitating large scale experiments over such platforms.

Finally, SpecK [12] is a tool to automate the deployment and adaptation of pipelines
over a hybrid Cloud-Edge computing platform. It advocates for an alternative way to
program and run stream processing applications in the Fog, through composition: a single
application may run over several stream processing engines, each of them being hosted
by a geographically distant computing platform.

2.3.4 Towards Decentralized Stream Processing Management

Decentralizing the management of stream processing has been the subject of few more
or less recent works [93, 16, 60, 21, 20]. We review them in the following.

Let us first mention DEPAS (DEcentralized Probabilistic Algorithm for Auto-
Scaling) [16], which does not specifically target Stream Processing. It is a fully decentral-
ized and self organizing probabilistic auto-scaling algorithm targeting P2P architectures.
More concretely, it decentralizes scheduling decisions in a multi-cloud infrastructure over
local schedulers. On each node, the DEPAS auto-scaling algorithm consists in retrieving
periodically the load of its neighbouring nodes and to compare it with a minimum load
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threshold to possibly remove a node or with a maximum load threshold to possibly add a
new node. As nodes communicate only with their neighbours, DEPAS uses a probabilistic
auto-scaling algorithm to calculate the right number of nodes needed. The target number
of nodes at time t is calculated by using: the number of nodes in the system (assumed to
be known at each node), the average load at time t, a desired target load and an average
capacity that is constant whatever the number of nodes.

More specifically targeting stream processing, Pietzuch et al. [93] proposed SBON :
a Stream-Based Overlay Network, that allows to distribute stream processing operators
over the physical network. We already mentioned this work in Section 2.3.1 as a static
approach. Another important aspect of this work is that the placement of operators of a
newly submitted application is done using decentralized techniques: the candidate hosts
for the operators are selected through a Vivaldi-like protocol [31]. Besides decentraliza-
tion, another key aspect of SBON is reuse: newly deployed applications are deployed so
as to avoid deploying again its operators that are already running on a platform as part
of another application. Also decentralized and supporting reuse, Synergy, proposed by
Repantis et al. [96] is another distributed stream processing middleware. In Synergy, a
decentralized algorithm discovers streams and components at run-time and verifies if any
of the components or stream is able to handle the load and satisfy the new application’s
request. Not satisfied components are selected and composed dynamically to meet the
application resource and QoS requirements by deploying new components at strategic
locations. The approach used by Synergy is based on predicting the impact of the addi-
tional workload. The added value compared to SBON, is that Synergy evaluates if reuse of
available streams and processing components when instantiating new stream applications
will affect the already running applications or not.

Cardellini et al. [21, 20] partially decentralize auto-scaling in SP through a hierarchical
approach based on a MAPE loop combining a threshold-based local scaling decision with
a central coordination mechanism to decide what decisions will actually get enforced. The
central coordination mechanism is a MAPE-based Application Manager coordinates the
run-time adaptation of subordinated MAPE-based Operators Managers, where the latter
control the local scaling decision of the operators of the graph. First, locally, the local
scaling manager detects possible problems such as a bottlenecks or an overshoot, then
deduces a desirable action either to scale up or scale down. The various desirable actions
calculated locally are sent to the master scaling manager which is the centralized entity
that coordinates the adaptation of the overall system through a global MAPE loop, who,
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according to its knowledge of the availability of resources, will select which action will be
applied.

Mencagli [81] proposes a Game-Theoretic approach to decentralize the elasticity mech-
anisms of stream processing applications by modeling the problem as a non-cooperative
game in which agents pursue their self-interest (here, obtaining the right amount of re-
sources). Then, the author extends the non-cooperative formulation with a decentralized
incentive-based mechanism in order to promote cooperation by moving the agreement
point closer to the system optimum.

In [20], authors use machine learning techniques, precisely Reinforcement Learning
(RL) [110]. Through a collection of trial-and-error methods, agents can learn to make
good decisions through a sequence of interactions with a system or environment. Two
RL based algorithms are proposed. The first one is a model-free learning algorithm for
controlling elasticity based on a Q-learning algorithm and the second one is a model-based
approach that exploits what is known or can be estimated about the system dynamics to
make the learner’s task easier.

In this section, we first discussed the elasticity mechanisms for stream processing
applications. Then, we introduced how distributed architectures can be used for stream
processing and future directions in deploying such a system in an edge or fog environment.
In particular, we mentioned works on how the elasticity problem can be decentralized so
as to better cope with these platforms.

2.4 Synchronisation in Distributed Stream Process-
ing Application

2.4.1 The Need for Synchronization in Decentralized Scaling

As described in Section 2.3.2, decentralized elastic scaling, because performed concur-
rently on different operators, may lead to multiple changes made in the graph concurrently.
Consider two neighbouring operators in the graph. Consider further that one of these op-
erators is about to get duplicated to many copies, called the operator’s instances, and
that at the same time, the inverse operation, i.e., deletion, is triggered on its neighbour-
ing operator. In fully decentralized settings, it is also safe to assume that the state of the
graph is not known globally by some node but that each operator is hosted by a different
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Figure 2.7: Concurrent neighbouring scaling processes.

process, and that these processes maintain only the view on their neighbouring opera-
tors, i.e., those with which I have to communicate. Ensuring that every node maintains a
consistent view of its neighbours in this context is difficult and calls for synchronization
mechanisms.

Let us illustrate the problem more precisely, with our two neighbouring operators in a
data stream pipeline taking independent yet concomitant scaling decisions. The situation
is depicted in Figure 5.1. While a new instance of Operator i is being created, one instance
of Operator i+1 is being removed. Arrows show communication links that are necessary to
add and remove to implement these operations. Depending in what order the information
of deletion and creation is spread to the neighborhood, the new instance of Operator
i may, during some time, believe that the departing instance of Operator i + 1 is still
available, and send some data to it, that will be lost.

This problem shares some similarities with the fundamental result that it is impossible
to snapshot a distributed asynchronous system [67] due to unpredictable communication
delays: recording on-the-fly global states of distributed executions in an asynchronous
world is difficult due to the lack of both a globally shared memory and a global clock.

Back to our more specific problem, resolving such a synchronization issue can be
done through at least two strategies to inject some sequentiality in the process. The first
strategy is to implement an ad-hoc solution that does not prevent concurrency but will
ensure that during the modification process, waiting phases are introduced so as things
are settled down when new nodes actually restart sending data to each others. This is for
instance the strategy we adopt in a proposal to be presented in details in Chapter 3.

The second solution is to identify which processes when executed concurrently, may
lead to inconsistencies, and force their sequential execution. In other words, this calls for
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mutual exclusion mechanisms [35]. More precisely, in our context, since instances of the
same operator can scale (in or out) concurrently without problems, not all processes need
to mutually exclude each others. This actually translates into a Group Mutual Exclusion
(GME) problem [63]. Nodes running the same operator are considered as part of the
same group, but neighbouring groups need to enter the scaling process, which constitutes
a critical section in a sequential manner to avoid the previously mentioned potential
inconsistencies.

2.4.2 Mutual Exclusion

Mutual exclusion in distributed settings is mostly solved by two families of algo-
rithms: permission-based and token-based. In permission-based algorithms, such as Ricart-
Agrawala Algorithm [97], processes typically send a request to other processes when they
want to enter the critical section, and enter it only when they have received a positive
acknowledgement from all of them. The algorithm’s liveness relies on the maintenance
by each node, of a sequence number according to Lamport’s causality rule [71] which
prevents a request to be infinitely delayed.

When looked at as a resource allocation problem, mutual exclusion can be modeled as
a graph where processes are vertices and edges represent conflicts over resources. Chandy
and Misra proposes to make this graph continuously acyclic to ensure one process can
be distinguished in case of multiple concomitant demands, thus removing the need for
timestamps [25]. A special case of mutual exclusion is the well-known dining philosophers
problem where the graph is a ring: neighbours in the ring can not enter the critical section
at the same time. Different simple strategies were proposed to ensure liveness [36, 70] in
this case.

The set of process to ask the permission to can be reduced by the notion of quorums.
With quorums, in contrast with the initial Ricart-Agrawala algorithm, receiving the per-
mission of only a subset of all processes is enough to enter critical section, provided these
quorums and their intersections are well defined [78, 3].

In token-based protocols, the safety of mutual exclusion is ensured by having a token
travelling amongst the processes: the right to enter the critical section is materialized by
the possession of the token [72]. Two main strategies have been proposed for the token’s
movement: Either the token is perpetually moving and thus will reach any process in a
finite time, or it is asked. Such algorithms were proposed first on a ring [79], and then
generalized to any topology [55].
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A classical algorithm for token-based mutual exclusion is Naimi-Trehel’s one [83]. In
this algorithm, nodes are logically arranged as a rooted tree. The root of the tree is always
the last node that requested the critical section and the last one which will receive the
token amongst current requesting nodes. Based on this topology, the algorithm requires
only O(log(n)) messages on average for a request to reach the root of the tree and being
inserted at the end of the waiting queue, where n is the numbers of processes in the
network.

2.4.3 Group Mutual Exclusion

Group Mutual Exclusion is also referred to as the congenial talking philosophers
(CTP) problem [62, 65, 63]. Group Mutual Exclusion encompasses basic mutual exclu-
sion (if we consider groups of 1 process) and other classical concurrency problems such as
readers/writers [29]. Joung proposed two permission-based algorithms to solve the prob-
lem [63]. In this problem, philosophers are considered to share a room of limited capacity.
Each philosopher alternates between thinking and participating in a forum taking place
in the room. Each philosopher can choose dynamically what forum to attend, but only
one forum can take place at a time in the room. A philosopher can successfully enter a
forum when the room is empty or when another philosopher attending the same forum is
already in the room. The first algorithm proposed by Joung (RA1) is a direct adaptation
of the Ricart-Agrawala algorithm.

In RA1, if a node request the entry to the critical section (CS), it sends a request
messages to all other nodes and succeeds to enter to the CS only if it receives an ack
message from all other processes. As in the Ricart-Agrawala algorithm, to guarantee mu-
tual exclusion and lockout freedom, every process denoted pi keeps up a number denoted
SNi initialised to 0 that will be updated along the execution. SNi supports Lamport’s
causality rules. SNi is increased by 1 if process pi requests the CS and it is adjusted to
the max(SNi, snj) when the process pi receives a request message from Process pj.

In such a situation, when pi receives a message from pj, it replies with an ack message
either if it is interested in the same forum or it is interested in a different forum but its
priority is lower than pj. However, if process pi receives a request message from pj that
is interested in a different forum and has a lower priority, then the ack response to pj is
delayed until pi exits the CS. Note that, if a process pi exits the CS and enters a thinking
state, it resets its priority to a minimal value to allow other requesting processes to enter
the CS while pi is not requesting the CS.
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Algorithm RA1 suffers from a poor concurrent occupancy, which is an important metric
measuring the quality of an algorithm for GME. It represents the amount of processes
within a group able to enter the CS at the same time.

In RA1, as soon as a philosopher with a higher priority wants to attend a forum which
is not the current forum in the room, no more philosopher will be able to attend this
forum before it is closed, which severely limits the concurrent occupancy. Let’s take an
example of 3 processes pi, pj and pk, where pi and pj request the same forum, but pk

requests concurrently a different one, with respective priorities SNi, SNj and SNk, and
SNk in between SNi and SNj. Then, pi and pj may not enter the forum at the same time.

To counteract this problem inherited from Ricart-Agrawala, Joung proposed Algo-
rithm RA2 in which once a philosopher enters a forum, it becomes a captain for this
forum and can capture processes (i.e., make them enter the forum) that could not attend
it in RA1 because of philosophers with a higher priority.

In RA2 Algorithm, as in RA1, when a process pi receives all the acknowledgements for
other processes, it enters the CS but at this time the process becomes a captain, able to
send a Start message to other processes requesting the same forum. In that way, a process
receiving a Start message enters the CS immediately as a successor. We say that pi has
captured pj.

Now, when a process pj enters the CS as a successor and another pk with a priority
in between pi and pj requests a different forum, it may have received an ack from pj and
is waiting for another ack from pi. So the entry of pj as a successor should be noticed to
pk. For that, after pi exits the CS, and replies to pk by an ack, it should inform it of the
entry of pj to the CS. When pk receives the ack message from pi, there are two possible
cases. Either it should wait for another ack from pj until it exits the CS since the latter is
captured by pi and is in the CS. In this case, we say that the ack message is "out-of-date".
Or, pk can enter the CS as no one of pi or pj is in the CS. In this case, we say that the
ack message is up-to-date.

This new mechanism induces that the sequence number SNi alone does not allow to
distinguish if the information in pk are up-to-date to reply to a given process or not. To
resolve this problem, two variables replacing SNi were introduced.

The first one, called vector sequence number V SNi is a vector of natural numbers of
length n initialised to zeros where n is the number of processes. In each process pi, the
value V SNi[j] represents the number of times pj requests the CS that are known at pi.
The second variable, called V Fi is a vector of natural numbers of length n where V Fi[j]
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is the number of times pj entered the CS known at pi. Briefly, pi uses V SNi[i] to know
whether the ack message from pj is up-to-date for a newly received request. If it is not
the case, the ack message is out-of-date and should be rejected.

Some works went into applying the notion of quorums to the GME problem [124, 9].
Also some works dealt with GME but for specific communication topologies. For instance,
algorithms were proposed to deal with GME over tree networks [13], again trying to bound
the message complexity to enter the critical section while providing an unbounded level of
concurrent occupancy. Wu and Joung [119] proposed to solve the problem in the specific
case of a ring network. Similarly to the work in [63] which can be seen as its generalization,
the authors present two adaptations from permission-based mutual exclusion algorithms,
but constraining the communications to a ring. The notion of capture is also already
presented.

Also designed in the context of rings, but based on token circulation, Cantarell et
al [18] propose an algorithm relying on the presence of a leader for each session, i.e., the
opening of a forum. Whenever a session for a forum X is requested, a particular process
requesting X is selected and becomes the leader for session X. The role of the leader is
to close the current session when a new session is requested and initiate the opening of
the new session. Then, a new leader for the next session is selected. Note that, in case
many processes are trying to request different sessions, the requesting process nearest the
current leader is selected to initiate the next session and becomes the new leader. As the
number of processes are bounded, every node requesting the entering of the critical section
will be able to enter it in a finite time. In terms of concurrent occupancy, the algorithm
allows an up to n processes in the same session as while a process p is in the CS with
requesting the session X, any other process q requesting the same session X can enter the
CS.
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Chapter 3

A FULLY DECENTRALIZED

AUTOSCALING ALGORITHM FOR

STREAM PROCESSING APPLICATIONS

3.1 Introduction

As detailed in Chapter 2, stream processing engines such as Storm [6], Flink [19],
Spark Streaming [125] and Heron [68] are today’s inevitable tools for a scalable analysis
of continuously produced streams of data. While these software suites offer high level
programming models, facilitate the deployment of stream processing applications at large,
and offer strong reliability guarantees, a number of issues regarding their performance,
efficiency and scalability have been identified [59].

Amongst them, autoscaling has been recently studied. A survey of recent autoscal-
ing techniques for stream processing engines was given in Chapter 2, but to summarize
it briefly, these techniques generally rely on a subsystem running within these engines
dedicated to collecting the right metrics about the applications and compute resources
to dynamically adapt the amount of resources dedicated to the application which faces a
varying velocity of its input data stream.

In this chapter, we classically consider that a stream processing application consists in
a directed acyclic graph where vertices represent the operators through which each data
record in the input stream, (or tuple) must go, and edges the path followed by the tuples
from one operator to another. With this model, autoscaling means dynamically adapting
the number of instances of each operator so as to cope with the varying velocity of the input
stream. We assume each operator can have different processing latencies. Thus, different
delays can be introduced in different locations in the graph.

Deploying stream processing applications and autoscaling them in a Fog context brings
new challenges compared to a Cloud deployment: Each operator being hosted on a com-
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pute node potentially geographically distant from the compute node hosting its successor
operator in the graph, keeping a complete view of the graph and its state can become dif-
ficult. This aspect is again reinforced by the limited performance of resources constituting
the fog, typically loosely-coupled micro-datacenters. Then, each operator can only main-
tain a local, limited view of the graph. In these conditions, scaling locally while keeping
a globally consistent graph to ensure no data is sent to an outdated link is a challenge in
itself.

In this chapter, we consider graphs that are pipelines of stateless operators. We focus
on devising a decentralized autoscaling protocol in which each operator instance takes its
own decisions towards duplication or self-termination, based on the local knowledge of
the graph and locally experienced varying load. The autoscaling policy relies on proba-
bilistic decisions taken locally that globally lead to an accurate level of parallelism with
regards to the current global velocity. We show that our protocol is able, in spite of the
decentralization and maintaining only a partial view of the graph on each node, to en-
sure the global graph remains globally consistent. More precisely, we show that, while the
number of instances of each operator is modified concurrently by each of these instances
taking scaling decisions independently, the graph updates are propagated in a fashion
that prevents sending data to a stale connection. We present the protocol in detail, dis-
cuss its correctness facing concurrent independent duplication and deletion of operators’
instances, and help capturing the expected performance of such a mechanism through
simulation experiments.

The rest of the chapter is organized as follows. In Section 3.2, the system model used
to describe the application and the platform considered is detailed. Our decentralized
scaling protocol, including the scaling policy in both in and out cases, as well as a sketch
of proof regarding correctness facing concurrency is presented in Section 3.3. Simulation
results are detailed in Section 3.4. Section 3.5 positions this work more precisely against
related work. Section 3.6 concludes the presentation of this first contribution.

3.2 System Model

3.2.1 Platform Model

We consider a distributed system composed of a set of (geographically dispersed)
compute nodes. These nodes can be either physical or virtual nodes. The number of

64



3.2. System Model

nodes is not bounded. In other words, we assume that the amount of computing resources
available is not limited. Note that in this work, we do not attempt at optimizing resource
usage: our goal is to show that decentralized scaling is possible and we devise a solution
for enabling a decentralized scaling mechanisms using resources that can be allocated or
deallocated as needed by the scaling policy. Scheduling is here out of scope.

The allocation of a new (virtual) node is abstracted out by the createNode() method.
Compute nodes are homogeneous. Homogeneity brings two benefits. Firstly, it makes scal-
ing decisions easier. Secondly, it eases the allocation of Fog resources: all virtual machines
allocated have the same size. Also, compute nodes are reliable. Besides cases of dealloca-
tions, they do not become unavailable. In other words, we assume this is the duty of the
Fog provider to ensure this reliability. Similarly to the scheduling issue, the reliability is-
sue is here not the primary concern. These nodes communicate in an asynchronous model
using FIFO reliable channels, which means that:

1. A message reaches its destination in a finite (but not bounded) time with no
corruption

2. Two messages sent through the same channel are processed at the destination in
the same order they were sent.

We abstract the communications through the non-blocking send(type, ctnt, dest)
method where:

— type denotes the message type. It can take values such as duplication and dele-
tion_ack;

— ctnt is the content of the message. Its structure can vary from one message to
another;

— dest is the address of the destination node.

Finally, we use a higher-level communication primitive
multicast(type, succs, preds, ctnt) that sends the same content to multiple recipi-
ents. Its pseudo-code is given in Algorithm 2. As detailed in Section 5.2, it is used in
particular to inform surrounding nodes (in the sense of the graph) of their new neighbors
at duplication time.
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Figure 3.1: A 5-stage pipeline.

Algorithm 2 multicast(type, ctnt, dests)
Input: type: message type
Input: ctnt: content to be sent (differs from one type to another one)
Input: dests: set of destination nodes
for all dest in dests do

send(type, ctnt, dest)
end for

3.2.2 Application Model

We consider stream processing applications represented as directed pipelines in which
vertices represent operators to be applied on each record in the stream and edges represent
streams between these operators. For the sake of simplicity, we assume operators are
stateless. At starting time, each operator exists as one replica, i.e., as a process running
on one compute node. A replica is referred to in the following as an operator instance
(OI). Then, the scaling mechanism will add or remove replicas at run time. OIs running
the same operator are referred to as siblings. We assume the load of an operator is shared
equally between all of its instances. More formally, each operator Oi exists in one or several
instances denoted OIij where i is the id of the operator and j the id of the instance.

Figure 3.2 shows an example of a pipeline composed of five operators identified from
O0 to O4. After a period of time, the application has been through a set of scaling phases:
O2 has been replicated five times and O3 three times, and the communication graph has
evolved so as to take into account these duplications, as illustrated by Figure 3.2.

The application follows a decentralized maintenance scheme: due to the geographic
dispersion of nodes and for the sake of scalability, we assume the view of the graph on
each instance is limited to the instances of their successor and predecessor operators. For
example, in this configuration, the routing table of all instances of Operator O2 is given
in Table 3.1: they all independently maintain the addresses of the current instances of
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Figure 3.2: A scaled 5-stage pipeline.

Predecessor: O1
OI20 128.64.33.1

Successor: O3
OI30 129.21.32.91
OI31 129.21.32.93

Table 3.1: Routing table in operator instances OI2j.

Operators 1 and 3.

Periodically, each instance triggers the decision phase. During this phase, the current
load is checked to decide whether some scaling action is needed. It is assumed that the
incoming load of an operator is evenly shared amongst its instances, so instances are able
to reach a globally accurate number of instances to handle the load, in spite of taking
uncoordinated decisions. Once an OI decides to get duplicated or deleted, it actually
executes the action planned and ensures its neighbours are informed of it through the
maintenance protocol.
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3.3 Scaling Algorithm

The algorithm proposed enables each OI to decide locally and independently when
to get duplicated or deleted. The algorithm is run periodically by each OI (at possibly
different times, and with possibly different frequencies). The algorithm starts with the
decision phase. During this phase, the OI computes, based on information available locally,
how loaded it is. As we assume that OIs are homogeneous and that the load is fairly
distributed amongst the instances for a given operator, OIs are able to take uncoordinated
decisions that are globally relevant at the operator scale.

Once an OI decided to get duplicated or deleted, it starts the second phase of the
algorithm, responsible to actually trigger the duplication and inform the neighbouring
OIs pertained by this change in the graph (namely the successors and predecessors of the
duplicated/deleted operator).

In the following, we start with detailing the decision process in Section 3.3.1. Then,
in Section 3.3.2, we give the details of the protocol enabling the decentralized scaling and
graph maintenance.

3.3.1 Scaling Decision

Duplication Decision

As previously mentioned, each OI decides to get duplicated or deleted locally and
independently from other OIs. We assume each OI runs on a different compute node.

Let us consider one node, i.e., one instance OI of an operator O. Let C denote the
capacity of the (homogeneous) nodes, i.e., the number of records they can process per
time unit. Let lcurr the current load experienced by the instance, i.e, the number of records
received during the last time unit. Finally, r, with 0 < r ≤ 1 denotes the desired load
level of operators, typically a parameter set by the user. It represents the targeted ratio
between the load and the capacity of a node. The objective for an instance is to find the
replication factor to be applied to itself so all instances of this operator reach a load level
of r.

Each node contributes to the targeted replication factor equally by inferring a local
replication factor. The desired load for an OI is r×C, which means that this OI needs to
be scaled with a factor of | lt

r×C
|. Note that this factor will be independently calculated and

applied by each OI for this operator. This means that the OI will need to get duplicated
p = | lt

r×C
− 1| times, as the current OI counts for 1. p expresses the ratio between the
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local target and the local current situation. p is interpreted differently according to the
two possible cases.

1. If we are in the case where the load exceeds a given upper threshold, then, p is to
be interpreted as a replication factor or probability:

(a) If p < 1, p is interpreted as a replication probability: the node will get duplicated
with probability p.

(b) Otherwise, p is interpreted as a replication factor : the node will get duplicated
bpc times and then one final time with probability p− bpc.

2. If we are in the case of a load being below the lower threshold, p is interpreted as
a termination probability.

Termination Decision

The inverse decision, i.e., for a node to terminate itself, follows the same principle.
However, the factor calculated in this case has a value which is necessarily between 0
and 1 and represents a termination probability. The other difference is that this decision
is triggered not when the load is above a certain threshold, but below another, low,
threshold. In this case, the risk is that all OIs for a given operator take this decision
at the approximate same time, leading to a collective termination, ending up with no
instance for this operator. While a collective termination is acceptable as long as one
instance remains alive, we introduce a particular node (called the operator keeper) that
cannot terminate itself whatever its load. Yet, such a probabilistic distributed decision is
subject to the possibility of taking a bad decision, especially when there are only a small
number of instances. When the number of instances increases, the probability of reaching
a non-accurate global number of instances drops rapidly.
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Algorithm 3 Functions to get and apply the local replication/termination factor.
1: Input: C: Processing capacity
2: Input: r: Target load
3: Input: lt: current OI’s load ratio
4: float getReplicationFactor(C, r, lt):
5: return | lt

r×C
− 1|

6:

7: Input: 0 ≤ p ≤ 1: Calculated factor
8: int applyFactor(p):
9: return rand() < p ? 1 : 0

In the protocol, to be presented in Section 3.3.2, this procedure is materialized by
calls to the getReplicationFactor() and applyProba(p : real) functions described in Al-
gorithm 3). The latter transforms a probability into a boolean stating whether the dupli-
cation or termination should actually take place.

3.3.2 Scaling Protocol

Algorithm 4 presents the pseudo-code of the procedure triggered when the duplication
decision is taken. It manipulates the notions presented above plus the list of successors and
predecessors of the current operator. We omit the description of the already mentioned
parameters.

The first part of the algorithm consists in calculating the amount of duplication needed
to reach the targeted load ratio r (in Lines 4-6). From Lines 7 to Lines 10, new nodes
are started, up to the computed factor. The createNode() method actually triggers a
new OI for the operator. Note that these new nodes are not yet active: they are idle,
waiting for a message of the current node to initialize its neighbors — this will be done by
Algorithm 6 — and actually start processing incoming data. In the meantime, the current
node, in Lines 12-14, spreads the information of the new nodes to be taken into account
to its own neighbors. A counter of the expected responses is initialized: to validate the
duplication and actually initialize the new, currently idle, nodes, the OI needs to collect
the acknowledgement of all of its neighbors.
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Algorithm 4 Scale-out protocol: initialization.
1: Input: succs: list of successors
2: Input: preds: list of predecessors
3: procedure operatorScaleOut()
4: p← getReplicationFactor(C, r, lcurr)
5: newAddrs← List()
6: n← bpc+ applyProba(p)
7: if n > 1 then
8: for i← 1 to n do
9: newNode← createNode()

10: newAddrs.add(newNode)
11: end for
12: multicast(”duplication”, newAddrs, succs ∪ preds)
13: nbAck ← 0
14: nbAckExpected← |succs|+ |preds|
15: end if

The remainder of the duplication protocol is given by Algorithms 5, 6 and 7.

Algorithm 5 shows what is done on the successors and predecessors of the duplicating
OI on receipt of a message informing them of the duplication. In Lines 2-7, the case of
a duplication message coming from a successor is processed: the addresses received are
new predecessors for the current node, which are then added to the corresponding set.
There are still two cases to consider: if the node receiving the message is itself not yet
active, i.e., it is itself a new node waiting for its starting message (this can happen as we
will detail in Section 3.3.4), it will store the new neighbor in a particular succsToAdd set
which contains non-active neighbors: the node may start processing incoming data but
cannot yet send new data to its successors to avoid lost tuples. Then, in Lines 8-13, the
case of a duplication coming from a predecessor is processed similarly. Finally, the node
acknowledges the message to the duplicating node by sending a duplication_ack message.
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Algorithm 5 Scale-out protocol: receipts on succs and preds.
1: upon receipt of (”duplication”, addrs) from p

2: if p ∈ succs then
3: if isActive then
4: succs = succs ∪ addrs

5: else
6: succsToAdd = succsToAdd ∪ addrs

7: end if
8: else if p ∈ preds
9: if isActive then
10: preds = preds ∪ addrs

11: else
12: predsToAdd = predsToAdd ∪ addrs

13: end if
14: send(”duplication_ack”, p)

Algorithms 6 and 7 show the final step in this protocol: once all the acknowledgements
have been received by the duplicating OI from its neighbors, the new nodes can finally
become active and start processing records. To this end, in Line 5 of Algorithm 4, the
duplicating OI sends a start message to all its new siblings. On receipt, the new siblings
just need to initialize the sets of its neighbors by combining the sets sent by their initiator
(the duplicating OI) and the other information received in the meantime, and stored into
∗ToAdd and ∗ToDelete variables. Refer to Section 3.3.4) for more information. This is
done in Lines 2-3 of Algorithm 7.

Algorithm 6 Scale-out protocol: receipts of acks.
1: upon receipt of (”duplication_ack”)
2: nbAck + +
3: if nbAck = nbAckExpected then
4: for all newSibling in newAddrs do
5: send(”start”, succs, preds, newSibling)
6: end for
7: end if
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Algorithm 7 Scale-out protocol: receipt of the start signal.
1: upon receipt of (”start”, succs_, preds_) from p

2: succs = succs_ ∪ succsToAdd \ succsToDelete

3: preds = preds_ ∪ predsToAdd \ predsToDelete

4: isActive← true

5: activate()

Let us now review the protocol for a terminating node, detailed in Algorithms 8, 9
and 10. It is very similar to the protocol presented previously enabling the scale-out
case. Algorithm 8 shows the initialization of the protocol: the current OI, about to self-
terminate must ensure that every node pertained by the deletion (each neighbor) is aware
of it before actually terminating itself.

Algorithm 8 Scale-in protocol: initialization.
1: Input: succs: array of successors
2: Input: preds: array of predecessors
3: procedure operatorScaleIn()
4: p← getReplicationFactor(C, r, lcurr)
5: if applyProba(p) then
6: multicast(”deletion”, me, succs ∪ preds)
7: nbAck ← 0
8: nbAckExpected← |succs|+ |preds|
9: end if

On receipt of this upcoming termination information, we again have to consider two
cases, depending on whether the recipient is currently active or not: if it is the case, then
the node is simply removed from the list of its neighbors (either from pred or succ) and
an acknowledgement is sent back. Otherwise, the node is stored in a to be deleted set of
nodes, that will be taken into account at starting time.
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Algorithm 9 Scale-in protocol: receipts on succs and preds.
1: upon receipt of (”deletion”, addr) from p

2: if P ∈ succs then
3: if isActive then
4: succs← succs \ addr

5: else
6: succsToDelete← succsToDelete ∪ addr

7: end if
8: else if p ∈ preds
9: if isActive then
10: preds← preds \ addr

11: else
12: predsToDelete← predsToDelete ∪ addr

13: end if
14: send(”deletion_ack”, p)

The final step consists, on the node about to terminate, to count the number of
acknowledgements. As discussed later in Section 3.3.4, the terminating node must wait
for all the acknowledgements of the nodes it considers as neighbors. Once it is done, it
flushes its data queue and triggers its own termination.

Algorithm 10 Scale-in protocol: receipt of acks and termination.
1: upon receipt of (”deletion_ack”)
2: nbAck + +
3: if nbAck = nbAckExpected then
4: // wait current tuples to be processed
5: terminate()
6: end if

Algorithm 11 presents the global algorithm. It is triggered periodically by every node,
but potentially at different times. The threshold, user defined, are introduced. Notice that
to enter a deletion action, a node cannot be the keeper. This leader can for instance be the
initial instance of the operator at pipeline’s starting time. Without such an assumption,
some operators could definitely disappear, leading to the pipeline’s failure.
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Algorithm 11 Periodically triggered autoscaling mechanism.
1: Input: thres↑: high threshold
2: Input: thres↓: low threshold
3: procedure autoscale()
4: if lt ≥ thres↑ then
5: operatorScaleOut()
6: else
7: if lt ≤ thres↓ and !isKeeper then
8: operatorScaleIn()
9: end if

10: end if

3.3.3 Reducing the Risk of Delayed Records

Relying on probabilistic policies to scale might sometimes lead to decisions which
globally result into an approximate level of parallelism. In particular, when some operator
is not scaled enough, the incoming load may exceed the capacity, in which case some
data will get delayed, or even lost. In case an application cannot afford delays, different
mechanims can be introduced.

One first parameter on which to act to mitigate this risk, is r: the lower r, the higher
the calculated number of nodes needed to handle the load. But r being set by the user,
the system cannot act on it. Yet offering an extra guarantee to the user whatever r can
be done in the following way:

Let us notice that to perfectly handle all the messages without incurring any delay,
we need nth = Lcurr/C instances, where Lcurr denotes the current global load on the
operator considered. This means that each node, to reach this ideal state, needs to get
replicated pth = nth−ncurr

ncurr
times, where ncurr denotes the current number of instances for

this operator.
Yet, out of security, and to avoid any probabilistic effect, each node can take psecure =

ceil(pth) as its replication factor. Doing so reduces the risk of an insufficient calibration
and consequently the risk of delaying message processing. Adopting psecure as the local
replication factor leads to a global number of nodes nsecure = n× (psecure + 1), each node
having a load lsecure = Lcurr/nsecure, and a load ratio which is rsecure = lsecure/C. rsecure

can be seen as the ratio which will be obtained if we ensure that the capacity will not be
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exceeded by the load.
Then there are two cases when comparing rsecure with the manually set r:

1. If r ≤ rsecure, r can be used safely

2. Otherwise, the system can automatically decide to give r the value calculated for
rsecure which will bring an extra guarantee while not violating the constraint on r

given by the user.

Allowing the algorithm to switch to r = rsecure has been included in the algorithm, so
as to have an extra guarantee to avoid deleted messages. It is evaluated in the experimental
section of this chapter.

3.3.4 Sketch of Correctness Proof

The protocol’s correctness relies on several aspects. First, nodes do not crash and
messages reach their destination systematically and are processed in a finite time. Yet,
we adopted an asynchronous model: each node moves at its own pace, and the time for a
message to reach its destination is finite but not bounded. The final assumption is that
channels are FIFO: two messages sent in a given order are received and processed in the
same order.

Let us informally justify these choices. Firstly, let us mention that our ack messages
are necessary. When a node duplicates itself, it must wait for an acknowledgement from
all of its neighbors to actually start the new OI. Without such a precaution, the new node
could start emitting messages to some successors that may not consider the new OI as a
predecessor.

Secondly, without the FIFO assumption, our protocol may also lead to some incon-
sistencies. Let us consider the following case, illustrated by Figure 3.3. In this case, two
neighboring nodes in the graph, N2 being the successor of N1, triggers two antagonist
operations at the same time: N1 triggers a duplication while N2 triggers its own ter-
mination. Consequently, N1 sends a duplication message while N2 is sending a deletion
message. Let us assume that N2’s deletion message takes longer to reach N1 than N1’s
message to reach N2. Without the FIFO assumption, the duplication_ack message sent
back by N2 to N1 may be processed on N1 before the deletion message, resulting in N1
considering N2 as a neighbor of the to-get-started OI (N1′ on the figure) that will send
data records to N2, without being aware of its deletion.
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Figure 3.3: A case of potential synchronization issue.

Concurrent Duplication and Deletion

Introducing the FIFO assumptions for the channels solve this concurrency problem.
There are two distinct cases:

1. N2 sends the deletion message before processing N1 duplication message. In this
case, due to the FIFO assumption, N1 will first receive N2 deletion message and
remove N2 from its set of successors, so that, once N1 receives all of the duplica-
tion_ack from its neighbours (including N2), N1 will send the starting message to
N1′ with a set of successors that does not include N2, leading both N1 and N1′

to not consider N2 as a successor.

2. N2 processes the duplication message sent by N1 before sending its own deletion
message. In this case, N2 sends the duplication_ack message before the deletion
message. So they will arrive in this order on N1. On receipt of the first message,
N1 still considers N2 as a neighbour for the future OI and may send it to N1′ at
starting time. Yet it is not a problem, as N2 was thus aware of the creation of N1′

and sent its deletion message also to it. While not yet active, N1′ will receive the
deletion message and keep the information that N2 has to be removed from its
successors at starting time, as enforced by Line 6 in Algorithm 5.
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Concurrent Duplications

The case of two concurrent duplications is even simpler. Yet this case can be treated
similarly to the previous one, by distinguishing two cases. Either the two duplications are
not really concurrent, and the later duplication message received will be sent after the
first duplication message is processed, or they are really concurrent, and each duplication
messages arrives before the other one is processed. In this case, each node will learn its
new neighbor independently and start their new OI with the information of that new
neighbors’ OI.

Concurrent Deletions

When two neighbouring nodes trigger their termination at the same time, they both
send a deletion message to the other node. There is no particular risk in this scenario,
both nodes will first remove their neighbor from the list and send back a deletion_ack
message, which, on receipt, will trigger the actual termination.

3.3.5 Sketch of Liveness Proof

The only waiting phase in the algorithm that could prevent liveness is the fact that
we wait for acknowledgements. We must show that all required acknowledgements reach
their destination in a finite time. First note that all messages reach their destination in
a finite time: Following the same principle as for the correctness proof, no node can get
deleted without receiving the acknowledgements of all their neighbours, which in turn
means that no message is sent to a terminated node. Also, the processing of deletion or
duplication messages, as per Algorithms 5 and 9, necessarily leads to the sending back of
ack messages. Altogether, all acknowledgements are received.

3.4 Simulations

In this section, we evaluate our algorithm, regarding accuracy, rapidity of scaling, and
the extra guarantee regarding delayed messages.
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3.4.1 Simulation Set-up

To evaluate our protocol, we developed a discrete-time simulator in Java. Each time
step t sees the following operations: a subset of the nodes start testing the conditions
for triggering a scaling operation, would it be duplication or deletion. If a condition is
satisfied and the protocol is actually initiated, the first message (duplication or deletion)
is sent by node and received by the neighbors of the initiating node. The subsequent steps
respect the following rule: messages sent at step t are processed at step t + 1 and the
messages generated in this process are sent. These new messages will be processed at time
t + 2, and so on.

Having this in mind, let us remark that a scale-out operation takes three steps:

1. a node takes the scale-out decision and sends duplication messages. These messages
are processed and resulting duplication_ack messages are sent;

2. The initiating node receives all the acks and sends a start message to its new
siblings to activate them;

3. the new siblings receive the start message and start processing data records.

In contrast, scale-in takes only 2 steps:

1. A node decides to terminate itself, so it sends a deletion message to its successors
and predecessors which process the message and send the deletion_ack message;

2. The node receives the acks and terminates itself.

The variation of the workload is modelled by a stochastic process, inspired by the
Browning motion. Using Browning motion allows us to evaluate our algorithm with a
quick yet swift variation of the workload and give it a more realistic aspect. The graph
tested is a pipeline composed of 5 operators, each operator having a workload evolving
independently. Initially, each operator is duplicated on 14 OIs. Compute nodes hosting
OIs have a processing capacity of 500 (tuples per time step). The other parameters of our
simulation are listed below:

— Ideal load ratio r = 0.7
— top_threshold thres↓ = 0.8
— down_threshold thres↑ = 0.6
— Nodes try to start the scaling protocol every 5 steps
— Simulation runs for 200 steps.
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3.4.2 Simulation Results

Decentralized Approach vs Centralized Approach

We start evaluating our algorithm’s ability to quickly adapt to load’s variation and
reach a number of instances maximizing the throughput. For the sake of comparison,
we show how a per-operator centralized approach where a single leader takes all scaling
decisions alone would perform. The following results are given for one operator, and the
leader-based approach is referred to as the centralized one even if it is not fully centralized,
but per-operator centralized.

Figure 3.4(a) plots the number of OIs with the decentralized approach (blue curve)
compared to the number of OIs with the centralized approach (green curve) and the ideal
number of OIs (orange curve) which is obtained by simply dividing at each time step the
load by the capacity of nodes, the whole multiplied by the ideal load ratio r.

We observe that the number of nodes of both approaches is adapted quickly: The delay
between a load variation and the adaptation can be quite reduced. This also shows that
nodes are able, without coordination, and only based on decisions using local information,
to add or remove nodes in a batch fashion. It means that if X more nodes are needed,
X nodes will be added over a short period of time, the burden of starting these X nodes
being shared by the existing nodes. To compare more deeply our approach with the
centralized one, we present two other measurements. The first one, in Figure 3.4(b)(c) is
the percentage of maximum throughput.

100% here means that the currently deployed OIs succeed in handling the workload.
The second measurement, in Figure 3.4(d)(e) is the accuracy, which is calculated as the
ratio between the current number of instances and the ideal one. An accuracy of 1 means
that the actual number of nodes is the ideal one. An accuracy higher than 1 means that the
operator is being overshot, i.e., it has more instances than necessary. Finally, an accuracy
of less than 1 means that we would need more instances if r is to be satisfied. An accuracy
below 1 may delay tuples, but not necessarily as having r < 1 injects some safety in this
regard.

Figure 3.4(b)(c) shows that in time-window [0..50] and [100..150], the centralized ap-
proach outperforms the decentralized one but this is reversed in time window [50..100]:
Even if the centralized method is more precise, global and deterministic, it is triggered
only every 5 steps by the leader, where in the decentralized approach, replicas start scaling
at different iterations. At each iteration potentially, a subset of the replicas start scaling.
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The same pattern can be seen which shows for each approach the ratio between the actual
number of nodes and the ideal one. (See Figure 3.4(d)(e)).
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Figure 3.4: Decentralized approach vs centralized approach

Mitigating Probability Errors

To estimate the added-value of the mechanism aiming at reducing the risk of delayed
tuple introduced in Section 3.3.3, we used a different, less drastically changing workload,
more precisely, sinusoid-based. The distance to the ideal number of nodes for one operator
has been simulated both with and without the guarantee. Results are given in Figure 3.5.
We can see that the guarantee mechanism is triggered notably in iterations 97-100 and
147-150, mitigating each time the amount of delayed tuples.
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Figure 3.5: Mitigating probability errors.

Network Traffic

Finally, we estimated the network traffic generated by the protocol. Let us first consider
the traffic generated by a single duplication of one operator. Let us assume that according
to the last variation in the load, k new nodes are needed, and that the current number
of OI for the operator considered is n. Let us finally denote succ and pred the set of suc-
cessors and predecessors for this operator, respectively. In the case of a single duplication
conducted by one instance, the number of messages generated is 2(|succs|+ |preds|) + 1:
as detailed in Section 5.2, the current instance sends a duplication message to all its suc-
cessors and predecessors, waits for their acks, and finally sends a start message to the
new sibling. When k new siblings are to be created by the n current instances, there are
two cases. If k < n, it means k instances trigger their duplication. If k > n, then all the
instances trigger their duplication. Then the number of messages is then :

2min(k, n)(|succs|+ |preds|) + k
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.
Globally for the graph, the total traffic becomes quadratic in the number of nodes, as

the previous result needs to be summed over all the levels, and the number of successors
and predecessors appears then twice as a factor.

We conducted simulations to see the impact of overhead messages when the workload
is artificially increased monotonically. Results are shown in Fig. 3.6.
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Figure 3.6: Traffic when facing a monotonically increasing load.

The figure confirms an evolution of the amount of messages which is quadratic in the
number of nodes (at iterations during which actual duplications are done), the number of
nodes being, as already established, proportional to the workload. As stream processing
applications can process hundreds of thousands data per second, the overhead messages
sent on the network due to our protocol are in practice significantly lower than the work-
load of the data stream itself.

3.5 Positioning Against Related Works

To our knowledge, fully decentralizing autoscaling for stream processing applications is
an open problem. While we can find works giving clues to fully decentralize auto-scaling,
in particular the DEPAS aproach [16], these works are not specifically targeted at stream
processing, and focus on a distributed multi-cloud infrastructures with local schedulers

83



Chapter 3 – A Fully Decentralized Autoscaling Algorithm for Stream Processing Applications

taking decisions independently. The similarity between DEPAS and the present work
stands in the fact that autonomous instances take scaling decisions based on a probabilistic
policy. Still, DEPAS instances are local schedulers while our instances are instances of
operators in a stream processing graph. While DEPAS focus on the probabilistic policies,
the present work focuses on devising an autoscaling decentralized protocol maintaining
the global consistency of the graph while it evolves. More specifically targeting stream
processing, Pietzuch et al. [93] and Repantis et al. [96] propose decentralized techniques,
but they are static techniques generally used to allow the distribution of stream processing
operators over the physical network. Cardellini et al. [21, 20] propose to decentralize
autoscaling. While their work is also based on a MAPE loop with a threshold-based scaling
decision, their level of decentralization is limited because decisions and their enforcement
follow a hierarchical approach.

3.6 Conclusion

In this chapter, we presented an autoscaling algorithm for stream processing appli-
cations to be deployed over a geographically-dispersed set of resources. In such a Fog
context, maintaining a centralized subsystem responsible of the scaling of the whole plat-
form becomes complicated.

Our algorithm relies on independent, local autoscaling decisions taken by operators
having only a partial view of the experienced load and the graph. Maintaining a globally
consistent graph in these conditions is a challenge in itself. We discussed the mechanisms
ensuring the liveness of the protocol and the continuous consistency of the graph when
multiple scaling operations are conducted at the same time. The results of simulation
experiments show that local probabilistic decision can lead to a global accurate level of
parallelism in regard to the globally experienced load.

So as to validate this approach in a more real context, the next chapter paves the way to
a decentralized stream processing system in particular including this scaling mechanism.
The prototype described is deployed over a geographically distributed platform.
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Chapter 4

TOWARD A DECENTRALIZED STREAM

PROCESSING ENGINE

4.1 Introduction

In the previous, Chapter 3, we presented an autoscaling algorithm for stream process-
ing applications to be deployed over a geographically-dispersed set of resource such as
a Fog platform. This algorithm, and more generally, the performance of a decentralized
scaling mechanism for stream processing, were evaluated through simulation. Yet, we now
need to put this mechanism into real settings. More generally, a software prototype of an
SPE where management is done in a decentralized fashion is needed. We thus started the
development of a software prototype of a decentralized Stream Processing Engine, that,
in particular, includes the scaling mechanism described in the previous Chapter 3.

Thus, the main target of this chapter is to provide a discussion for a reference archi-
tecture of a decentralized Stream Processing Engine (SPE), and the technological choices
allowing its easy and flexible implementation. Experimentally speaking, this chapter gives
the first hints into how this decentralized SPE can be evaluated. In particular, we provide
an experimental study of the algorithm presented in Chapter 3, obtained on the Grid’5000
platform [11].

The chapter is organized as follow. In Section 4.2, we start by reviewing the architec-
tural aspects of the prototype, and the reasons behind some technological choices made.
The experimental results obtained are detailed in Section 4.3. Section 4.4 concludes.

4.2 Decentralized SPE Architecture

In the following, we keep the same vocabulary introduced in Chapter 3: each operator
in the pipeline can be scaled in or out, and exists in one or several operator instances.
When it comes to implementation, each instance becomes a simple process communicating
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with other processes / operator instances. Before entering the details of architecture, we
will present the main technological choices made for the prototype and their reasons.

4.2.1 Choice for the Underlying SPE

As already discussed in Chapter 2, the different stream processing engines software
solutions present different characteristics in terms of programming and execution models.
They also provide different management capabilities and levels of lightness, which are
somewhat contradictory metrics: the more management capabilities a framework includes,
the heavier and the less easy to modify and extend it will be.

This is what appears to be the blatant difference between Storm and Kafka Stream [42]
for instance. Storm is a full-fledged SP management toolbox which in particular manages
your cluster for you: starting a Storm program automatically includes a Master broker,
called the Nimbus which is responsible to deploy the functional part of your program (or
topology) onto the workers, that should be initialized beforehand. The Nimbus relies on a
Zookeeper cluster then to keep track of all the workers and rebalance the work and restart
failed jobs as needed, respectively. This is a a package, it is not possible to run a Storm
executor without setting up the whole management machinery. In these conditions, having
control over the different parts of the topology and adding the support for a coordinated
scaling protocol appears difficult and cumbersome, as it requires to separate elements
that are tightly coupled within the Storm execution. In other words, Storm includes
many built-in mechanisms, which can be seen as a strength. Yet, this does not allow the
user to easily implement its own scaling mechanism, especially in a decentralized setting.

This is where a lighter approach, such as the one provided by Kafka Streams is in-
teresting. Kafka Streams is a simple library that any Java process can use and which is
supposed to be used in conjunction with the Kafka message brokering solution: A kafka
Job typically reads data from a Kafka message queues (also called topics) and dumps its
result into another one. When a kafka Job gets started, it is a standalone process that does
not require other management JVMs to run. This in turn facilitates extra distributed co-
ordination to be added between these jobs. This appears to be a promising solution in our
case: each operator instance will become a Kafka Stream process, each of these processes
including its part of the decentralized management, in particular for scaling purposes.
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4.2.2 Architecture of an Operator’s Instance

Let us review our proposal for an operator’s instance implementation, that will be the
building block of a decentralized SPE. It is pictured in Figure 4.1. Within an operator,
there are two major parts required: the Data Stream Processing Job module, i.e., the
data processing itself related to the application, and some management module which
includes any extra functionalities such as monitoring, scheduling. In our case, and as a
first prototype, this will only include scaling.

Scaling 
Topic

Data 
Topic

Operator 

Data Stream 
Processing 

Job

Scaling

Message 
Broker Scaling Module 

scaling trigger

scaling protocol 
management

metric collector

Data 
Topic

Scaling 
Topic

Figure 4.1: Architecture of an operator’s instance.

As illustrated in Figure 4.1, the Scaling module is composed of 3 sub-components,
namely the scaling trigger, the scaling protocol management and the metric collector :
When an operator instance gets started (as a process), three threads gets spawned: one
is in charge of collecting metrics about the running operator, so as to be able to detect
when a scaling action is needed. Then, one is in charge, based on the information collected
by the previous one, to trigger the scaling phase. Finally, the last one is responsible of
managing the message exchanges needed for the scaling protocol.

Then, to communicate, an operator instance needs message queues, made persistent
by the message broker. There are two types of topics: data topics and scaling topics.
For a standard operator, we need two instances for each type. One data topic is needed
to receive the stream to work on, and another one to emit the data produced towards
downstream operator. Note that, if Kafka is to be used, a data single topic can be shared
by the instances of the same operator, which translates in the communication links in
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Figure 4.2. The only thing to ensure is that all instances of a given operator are part
of the same Kafka consumer group: the topic’s data items are automatically dispatched
amongst the members of the group.
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Figure 4.2: Architecture of a pipeline of operator’s instance (Part I).

There are also two scaling topics a standard operator manipulates: one for control
message exchanges with its succesors, and another one with its predecessors, but those
are not shared by the instances of an operator, as an operator’s instances manage their
own scaling phases independently from each others, as described by Figure 4.3. The figure
shows the same pipeline but with the scaling topics and message exchanges resulting from
the scaling protocol.

Kafka: Balancing the Load Between Instances

The choice for Kafka encourages to use its features. In particular, using a single data
topic for the group of instances running a given operator is convenient, as Kafka includes a
bult-in load balancing between these instances, provided they are configured to be part of
a common Kafka consumer group. This relieves the programmer to write a load balancing
policy and enactment. The only needed action from the programmer is to adequately set
the number of partitions of the topic, as illustrated in Figure 4.4: to ensure a parallel data
fetching from the topic, the number of partitions should be at least equal to the number
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Figure 4.3: Architecture of a pipeline of operator’s instance (Part II).

of processes.
Note that different policies are included in Kafka, such as the classical round-robin,

which is the natural choice when the processes are homogeneous (which we have assumed
in the algorithm presented in Chapter 3). Programmers yet have the possibility to develop
their own scheduling policy to assign data items to members of the consumer group.

Kafka: A Lack of Decentralization?

While the algorithm we designed in Chapter 3 is fully-decentralized and we are here
considering implementing a decentralized SPE prototype, the choice for Kafka induces
some kind of centralization. Firstly, at the scale of one operator, the mere fact of having
one single topic can be seen as a first degree of decentralization, even if limited. Yet, we
could imagine a more decentralized architecture, as illustrated in Figure 4.5.

In this alternate architecture, each instance is equipped with its own data topic and
responsible for dispatching its output data fairly amongst the instances of its downstream
operator. This of course requires to be able to duplicate or delete data topics adequately
upon scaling phases, which might lead to difficulties, especially regarding synchronisation
and data loss avoidance. Because Kafka already supports a dynamically changing set of
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Figure 4.4: Topic’s partitioning and consumer group.

consumers for a given topic, sticking to the architecture of Figure 4.2 appears to be the
most reasonable approach.

Yet, this facility has a cost: it relies on a centralized message broker (the Kafka bro-
kering process, in our case). To sum it up, while each process takes scaling decisions
and enforce them in a decentralized fashion, it relies for that on a centralized underlying
message brokering service. As mentioned, we think this centralization simplifies the ar-
chitecture and its synchronization. Yet, it is worth noting that Kafka can be internally
distributed through what is called a Kafka cluster, i.e., a set of coordinated Kafka servers.
In such a configuration, the partitions of a topic are distributed amongst the nodes of the
Kafka cluster. While each partition exists in several replicas, there is a leader for each
partition to which data for this partition are sent. In case of failure, Kafka includes dis-
tributed mechanisms to elect a new leader. At any time, producers and consumers are
informed of what Kafka node is the leaders of partitions so they can send the data directly
to the right Kafka node. To summarize, while Kafka is a broker-based messaging system,
which can theoretically speaking, constitute a bottleneck, the Kafka service offers in prac-
tice some degree of decentralization in its implementation, which makes it appealing for
our implementation.
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Figure 4.5: Architecture of a pipeline with one data topic per instance
.

Finally, let us mention the other family of messaging middleware, following the bro-
kerless approach. In this approach, there is conceptually no central third-party process
between the producer and the consumer of data. Such an approach intends to remove
the need for a centralized broker taking care of the coordination between data producers
and consumers. This is for instance the approach followed by the Qpid dispatch router 1,
which makes it possible to exchanges messages directly through a mesh of routers until
reaching the destination, following the traditional philosophy for instance conveyed by
the IP protocol, instead of relying on a broker.

4.3 Experimentation

Experimenting such a prototype of a decentralized SPE requires different steps, espe-
cially with regard to the scaling algorithm. Firstly, as detailed in Chapter 3, one parameter
of the algorithm is the capacity of one node: to take decisions, a node needs to know the
maximum input stream velocity supported by a node which will not incur delays in the
processing. This will constitute our first set of experiments, detailed in Section 4.3.1 Fi-
nally, as reported in Section 4.3.2 and based on a realistic application using a real-life data
set, we experimented the scaling algorithm itself and its ability to dynamically adjust to
the right number of operators’ instances as the velocity of the input stream evolves.

1. https://qpid.apache.org/components/dispatch-router/index.html
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4.3.1 Estimating the Node’s Capacity

A preliminary study was conducted to find a node’s capacity, in the particular case of
the platform we considered. It is in particular needed for the scaling algorithm, and has
to be done each time the platform used is changed or even when the conditions within
one platform evolved. It can also change with the application or the operator within the
application: a node’s capacity is specific to a particular workload.

The meaning a node’s capacity has to be refined. In the following, an instance will run
as a process over the node. We consider as the capacity of the node, the amount of tuples
that can be processed without incurring delays. Then, the node’s parallelism can be taken
into account through thread. In our first experiment, we assessed the capacity of a node
by deploying a single process over it but increasing its number of concurrent threads,
each of them running some dummy compute-intensive processing over each tuple. This
will give us the top throughput a process can have when deployed over the considered
hardware. These experiences used the Grid’5000 platform [11], more specifically, a single
machine of the Parasilo cluster 2, characterized by a 2 x Intel Xeon E5-2630 v3 CPU with
16 cores in total and 128 RAM communicating through a 2x10 Gbps network.

Figure 4.6: Calculate the throughput while fixing the number of processes and varying
the number of threads.

The results are shown in Figure 4.6. The results show that if we use a single thread,
we get an average throughput equals to 1.7 messages sent per second. If we increase the
number of threads to 8, we get an average throughput equals to 12.7 and for 16 threads we

2. https://www.grid5000.fr/w/Rennes:Hardwareparasilo
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reach a throughput equals to 17.5. Hence, we notice that the throughput increases linearly
as a function of the number of threads until the number of threads becomes equal to 16.
This result is expected since the machine used has 16 computing cores. We also notice that
by using more threads than the number of cores, the throughput goes slightly down. This
slight drop in flow can be explained by the fact that scheduling becomes more complicated
without bringing any extra speed-up considering the number of cores. To summarize, the
capacity of a node (or more accurately, of a process on this particular hardware) is 22
messages per second, provided the machine is dedicated to that. Potentially, over other
real-life examples, the capacity could be reduced because the computing power can be
shared with other processes.

In general, estimating the capacity of a node should be done in the conditions of
the deployment, and can be obtained by increasing the input rate until the output rate
experienced is lower. At that point, this throughput becomes the capacity C, used in
Algorithm 3 of Chapter 3.

4.3.2 Experimenting the Scaling Protocol

For the following experiments, we kept the same characteristics of the machines used
for the previous experiments where they are characterized by a 2 x Intel Xeon E5-2630 v3
with 16 cores in total and 128 RAM interconnected by 2x10 Gbps network. The capacity
C here was calculated using the approach described in Section 4.3.1. Every machine hosts
a single instance and each instance is a Java process. Each instance here will be one
process which contains 8 threads. Here, we chose 8 threads to leave some cores to extra
computing activities such as database operations.

Application

To assess our prototype, we got inspired by the DEBS 2015 Grand Challenge [113],
which intended to apply stream processing to extract information from the classic New
York City Taxi dataset. 3 This dataset gathers messages sent by Taxis in New York City
over a period of twenty days (constituting roughly 2 million events). Each record contains
the information of a taxi’s trip (pick up time, drop off time, coordinates, duration). The
application developed, illustrated in Figure 4.7, filters trips which departs or stops in a
specific subarea. The first operator acts as a data producer injecting the records into the

3. https://chriswhong.com/open-data/foil_nyc_taxi/
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Figure 4.7: Pipeline of the application.

pipeline. The second operator filters out invalid data (for instance visibly corrupted data
concerning the times or the coordinates).

The third operator, called the inZone operator, keeps only trips falling within a specific
area. The final operator is a simple sink counting the filtered trips. For the sake of stressing
our prototype, the data stream was considerably accelerated compared to the actual
frequency of messages in the original datazset: we actually accelerated the load to it
varies between 100 and 500 messages per second. The parameters of the experience were
as follows: thres↑ = 0.8, thres↓ = 0.6, r = 0.7 and the period between two scaling
operation was 10 sec and for the inZone operator, the capacity C was here determined
to be 60.

Results

The results are shown in Figure 4.8. Note that in this part, for the scaling, we only focus
on the inZone operator. The middle (blue) curve shows the input rate and its variations
in time: the input velocity was initially set to 200 messages received per second. After
300 seconds, it was shifted to 500, before being reduced drastically after 600 seconds.
The bottom curve shows the evolution of the number of running instances of the inZone
operator. The top curve shows, for each replica started – note that processes appears
and disappears with scaling operations –, its own send-rate, i.e., the number of records it
processed.

The curves give a bit more confidence in the protocol’s usability: the red curve mim-
ics the blue one: even taken independently, scaling decisions allow to reach the required
parallelism. Yet, the send-rate is not uniform amongst replicas, and also varies within
one replica. In this experiment, we set the number of partitions for a Kafka topic to
be 16. These 16 partitions are assigned over the replicas. Such a distribution may not
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Figure 4.8: Experimental results.

be absolutely uniform, as the number of instances is generally not a multiple of the
number of replicas. This explains the differences in the send-rate of replicas. If the
number_partitions%number_processes = 0 then the load is distributed equally over
the processes such in the first and the third part of the Figure 4.8. Otherwise, it will be
unequal such in the second part of the same Figure. Sometimes the send-rate drops sud-
denly to 0. These drops happen when scaling operations are triggered: when new instances
appear in one Kafka consumer group, Kafka triggers a rebalancing phase to adapt the load
balance of the partitions amongst the updated set of replicas, affecting the throughput
temporarily before a quick compensation. (Here, nodes are not fully-utilized as r = 0.7).
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4.4 Conclusion

This chapter described few steps towards a decentralized stream processing engine,
which appears a necessary step towards stream processing over geographically-distributed
computing platforms such as the Fog. We discussed the technological choices that we made
and described what are the needed compenents of a process implementing an operator
instance. The fully-decentralized scaling mechanism described and evaluated through sim-
ulations in Chapter 3 was here implemented within the software prototype, which was
deployed and evaluated over a real utility computing platform. This prototype consti-
tutes an early stage of development paving the way for more complete frameworks for
decentralized stream processing.
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Chapter 5

GROUP MUTUAL EXCLUSION FOR

DECENTRALIZED SCALING IN STREAM

PROCESSING PIPELINES

5.1 Introduction

The decentralized scaling solution devised in Chapter 3 had to include an ad-hoc
solution to a concurrency issue: the graph needs to remain consistent enough so as to
avoid message loss during graph concurrent graph econfigurations subsequent to local
uncoordinated scaling phases.

Let us review again the example of two neighbouring groups of instances taking in-
dependent yet concomitant scaling decisions, as depicted in Figure 5.1: a third instance
is spawned for Operator i while one of the two instances of Operator i + 1 is stopped
and removed. In the fully decentralized vision we adopted, each node needs to maintain
its set of successors, at the same time, this set of successors is actually evolving. If not
handled properly, this may lead to incorrect local views of the graph and ultimately to
sending data to stopped instances. For instance, the new node may believe that the node
being removed is still alive. This calls for synchronisation mechanisms: two neighbouring
groups of instances cannot scale concurrently without facing potential inconsistencies in
their routing tables which in turn can lead to abnormal communications and data loss.

While the solution of Chapter 3 proposed to solve the issue with an ad-hoc synchroni-
sation protocol including acknowledgements [14], a more generic solution is needed. This
more generic solution would be to avoid the concurrent scaling of neighbouring operators
in the pipeline. In other words, when an operator scales, the scaling of neighbouring op-
erators have to be postponed. Recall that, as we place this work in a fully-decentralized
context, all instances of a given operator may (and are even encouraged to) start duplicat-
ing or terminating itself at the same time. This translates into a Group Mutual Exclusion
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Figure 5.1: Concurrent neighbouring scaling processes.

(GME) problem [63]: The critical resource is here the scaling operation, and it can be
requested by any node at any time. Nodes running the same operator are considered as
one group. Within one group, all nodes can scale at the same time without any risk and
are even encouraged to do so, but two groups hosting neighbouring operators need to
enter the scaling process / critical section in a sequential manner.

The problem also shows some similarity with the local mutual exclusion problem: the
pipeline encodes the conflicts: only neighbouring nodes (or groups) are conflicting. In this
sense, put aside the groups, this problem is similar to the dining philosopher’s problem [37],
or the more generic local resource allocation problem [17]. Because we assume there is
no cycle in the pipeline (thus reducing the risk of deadlocks), the problem appears to be
simpler. Altogether, our problem translates into a local GME problem, where a group is in
conflict with only two other groups: its predecessor and successor groups in the pipeline.
A simple distributed test can ensure that a group wishing to enter the critical section (the
scaling process) can solve the conflict with its two neighbours sequentially. For instance,
a group can first secure the access to the scaling with its predecessor group, and once it
is secured, can start requesting the access to the scaling with its successor group. If done
sequentially over the two other groups in conflict, the core problem to be solved is a GME
problem where only two groups are in conflict.

One difficulty however lies in the fact that scaling in and out dynamically adds and
removes processes in groups, new processes being able in their turn to start another local
scaling round. In this paper, we assume a set of stable nodes within each group which
are responsible for the scaling. In other words, the process of ensuring mutual exclusion
between groups of neighbours is fully decentralized but groups are fixed. In other words,
while new nodes can appear dynamically, we assume that the process of coordination
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between groups is delegated to a set of core nodes responsible for it. These nodes cannot
disappear and form the core group.

In this chapter, we propose an algorithm for the GME problem, which has been built
having the specific constraints of its applications to decentralized scaling in stream pro-
cessing applications. Assuming that only two fixed groups are in conflict, our algorithm
benefits from the fact that processes do not need to communicate with every other process
but only with those which are in the other group. In other words, when compared with
other GME algorithms, our algorithm generates less messages than other algorithms made
for situations where nodes can move from one group to another one, while exhibiting a
similar concurrent occupancy level (the number of nodes from the same group concurrently
in the critical section).

Section 5.2 presents the algorithm and gives a proof of its safety and liveness. Sec-
tion 5.3 shows a validation of the algorithm, in particular when compared with other
algorithms from the literature. Section 5.4 concludes.

5.2 A Mutual Exclusion Protocol for Two Fixed
Groups

5.2.1 System Model

Nodes (instances of operators) communicate through reliable and FIFO asynchronous
message passing (a message reaches its destination in a finite time, and two messages sent
through the same channel are processed in the same order they were sent). The nodes
cannot crash or leave during the algorithm’s execution. Each node belongs to a fixed group
(the operator it instantiates), and the group composition can not change.

5.2.2 The 2-FGME Algorithm

Our algorithm, named 2-FGME for Two Fixed Groups Mutual Exclusion is given by
the pseudo-code in Algorithms 12, 13, 14 and 15. 2-FGME, as Joung’s RA2 algorithm,
relies on the basic principle promoted by the Ricart-Agrawala algorithm for standard
mutual exclusion and extended for GME in Joung’s RA1 algorithm: when a node wants
to enter the critical section, it sends a request message to all of its competitors. Yet in our
case, to reduce the traffic, competitors are limited to the set of nodes in the other group.
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Nodes maintain a Lamport’s clock included in the requests to represent the priority of a
request and globally ordering the queries so as to ensure some fairness.

The second important aspect is that, consequently, the notion of captains, promoted
by Joung, cannot be used, as it requires nodes within the same group to communicate
together. Thus, we rely on another idea to ensure concurrent occupancy: When Node ni

receives a request from Node nj, it acknowledges it either because it comes from a higher
priority node, or because it already authorized a node within its own competitors, even if
nj has a lower priority than ni. A node stops acknowledging requests from its competitors
when one of them either leaves the critical section or postpones its own request. Doing
so, the algorithm prevents the two groups from authorizing each others or having one
infinitely acknowledging requests from the other group.

Initialisation and Locally Maintained Sets

Initially, as represented by the initialisation procedure (see Line 1), a node is in
the idle state, its Lamport clock LC is 0, and the other group is considered as not
authorized, through the competitors_authorized boolean variable). Notice the three sets
of nodes maintained by each node:

— waiting_reqs contains the nodes for which a request has been received but was not
acknowledged yet.

— reqs_to_send contains the nodes to which a request has to be sent: when a node
has its competitors authorized, it postpones the sending of its own request until
the competitors are not authorized anymore

— acks_to_ignore contains the references of the nodes for which an acknowledgement
is to be ignored. This comes from the fact that, when a node a posteriori authorizes
nodes in the other groups, the potential acknowledgements coming from those
nodes are not valid anymore.

Messages

The algorithm relies on three message types.
— The Req(ni, LCi) message is the message sent to its competitors when a node

wants to enter the critical section. It contains two parameters: i) ni, the unique id

of the sending node, and ii) its Lamport clock LCi.
— The Ack(ni, renew, end) message represents an acknowledgement from Node ni.

It has two extra boolean parameters. If renew is set, it means that in spite of ni
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acknowledging a demand, the recipient needs to remind that ni is still requesting
the critical section too. renew is typically set when a requesting node authorizes
a posteriori a node with a lower priority but in the other (authorized) group. If
end is set, it expresses the fact that the node acknowledges the demand because it
leaves the critical section.

— The End(ni, LCi) message expresses a status similar to the Ack(end) message but
is sent to nodes for which no acknowledgement is needed (typically because no
request is pending for these nodes).

Requesting the Critical Section

When Node ni requests the critical section, it applies the algorithm in Lines 8-17.
There are two cases:

1. The other group is not currently authorized, in which case, Req is sent to the ni’s
competitors.

2. The other group is authorized (because ni typically acknowledged at least one
demand prior to its own demand). In this case, the request is postponed (until the
other group is not authorized anymore): ni reminds that it needs to send its own
request by adding its competitors in the reqs_to_send set.

Receiving a Request

Upon receiving a demand (a Req message) from ni′ on ni, there are two cases when to
acknowledge the request:

1. n′i has a higher priority than ni. In this case, ni applies the pseudo-code in Lines 20-
40. First, due to the higher priority of the demand, ni sends a simple Ack message
(without setting the renew or end flags). The rest of this case consists in reflecting
in the state that the other group is now authorized. After setting the competi-
tors_authorized variable, ni a posteriori authorizes nodes amongst competitors
that previously sent their queries but where initially not authorized (typically be-
cause of their lower priority compared to that of ni’s demand). This is materialized
in Line 28 by sending an Ack message to all the nodes in waiting_reqs. Also, an
End message is sent to the competitors for which no requests were received to
withdraw ni demand (on Line 40). Recall that this is a temporary withdrawing: ni

still wants to enter the critical section. ni holds its demand until the other group
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is not authorized anymore: ni add the competitors in reqs_to_send. Finally, the
last thing to do is to either consider already received acknowledgements for ni’s
demand as invalid (since its demand is on hold) (done in Line 34) or to remember
to ignore it when it comes (done in Line 36).

2. n′i’s demand has a lower priority but the competitors are authorized. In this case,
ni applies the pseudo-code in Lines 42-52. Note that in this case, ni necessarily has
an on-going request, otherwise it would have applied Lines 20-40. If ni already sent
its request to ni′ (and thus ni′ is not in reqs_to_send), ni withdraw temporarily its
demand and, as before, acts to ignore or remove acknowledgement from ni′ . Then,
an ACK(renew) is sent to n′i.

If the situation falls in neither of the above cases, it means that ni has a higher priority
and that the other group is not authorized. In this case, the acknowledgement is postponed
by adding ni′ in waiting_reqs (in Line 54).

Algorithm 12 2-FGME algorithm (part 1).
1: procedure initialisation
2: req_id←< ni,∞ >; state← idle; LCi ← 0
3: waiting_reqs← ∅
4: reqs_to_send← ∅
5: acks_to_ign← ∅
6: competitors_authorized← false
7: end procedure

8: procedure request critical section
9: state← requesting
10: LCi + +; req_id← <ni, LCi>
11: if ¬competitors_authorized then
12: multicast Req(ni, req_id) to competitors
13: else
14: reqs_to_send← competitors
15: end if
16: acks_rcvd← ∅
17: end procedure

Receiving an Acknowledgement

Upon the reception of an acknowledgement, Node ni applies the pseudo-code in
Lines 58-76. ni first tests whether one of the flags are set. If this is the case, it sig-
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Algorithm 13 2-FGME algorithm (part 2).
18: procedure receive <Req(ni′ , LCi′)>
19: LCi ← max(LCi, LCi′)
20: if req_id �< ni′ , LCi′ > and state 6= in_cs then
21: send Ack(ni) to ni′

22: if ¬competitors_authorized then
23: competitors_authorized← true
24: if req_id 6=< ni,∞ > then
25: for all nj|j 6=i′ ∈ competitors do
26: if nj ∈ waiting_reqs then
27: waiting_reqs← waiting_reqs \ {nj}
28: send <Ack(ni), renew> to nj

29: else
30: send <End(ni, LCi)> to nj

31: end if
32: reqs_to_send← reqs_to_send ∪ {nj}
33: if nj ∈ acks_rcvd then
34: acks_rcvd← acks_rcvd \ {nj}
35: else
36: acks_to_ign← acks_to_ign ∪ {nj}
37: end if
38: end for
39: end if
40: end if
41: else
42: if competitors_authorized and state 6= in_cs then
43: if ni′ /∈ reqs_to_send then
44: send <End(ni, LCi)> to ni′

45: reqs_to_send← reqs_to_send ∪ {ni′}
46: if ni′ ∈ acks_rcvd then
47: acks_rcvd← acks_rcvd \ {ni′}
48: else
49: acks_to_ign← acks_to_ign ∪ {ni′}
50: end if
51: end if
52: send <Ack(ni), renew> to ni′

53: else
54: waiting_reqs← waiting_reqs ∪ {ni′}
55: end if
56: end if
57: end procedure
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nals the end of the authorization of the other group: an end flag means that one node in
the other group (nj) left the critical section, and a renew flag means that nj is authorizing
ni’s group to enter the critical section. In the particular case of end (see Lines 61-66), as
the other group starts leaving the critical section, it is time for ni to resume requesting
the critical section: ni multicasts its request to nodes in reqs_to_send. The Ack received
is added to the list of acknowledgements received (except if it has to be ignored). Finally,
if this Ack was the last to be received, ni enters the critical section in Line 73.

Receiving a Withdrawing/Leaving Notification

The End message is sent to notify that a node leaves the critical section or withdraw
its demand to nodes that are not currently requesting it. Upon receiving such a message,
a node applies Lines 77-86. The first thing to do is to no longer authorize the other group
since one of its members withdraws its demand / leaves the critical section. Then, if a
request from ni′ was pending, it needs to be removed. Finally, as for the reception of a
Ack(end) message, ni resumes its requesting phase.

Exiting the Critical Section

Upon exiting the critical section, Node ni applies Lines 87-98. It first reinitializes its
state. Then, if requests were pending, it is time for ni to send an acknowledgement to the
nodes that issued them. For the other nodes, an End is sent.

5.3 Experimental Validation

In this section, we present a set of results obtained through experimental validation
conducted over a real deployment. We have evaluated the algorithm against three dimen-
sions:

1. concurrent occupancy, the amount of nodes within a group able to enter the
critical section at the same time;

2. Network traffic, the amount of messages generated by the protocol upon multiple
simultaneous attempts at entering the critical section;

3. latency, the time taken by a node to manage to enter the critical section once it
changed its state to requesting.
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Algorithm 14 2-FGME algorithm (part 3).
58: procedure receive <Ack(ni′), renew, end>
59: if end or renew then
60: competitors_authorized← False
61: if end then
62: acks_to_ign← acks_to_ign \ {ni′}
63: multicast <Req(ni, req_id)> to reqs_to_send
64: reqs_to_send← ∅
65: acks_to_ign← acks_to_ign \ reqs_to_send
66: end if
67: end if
68: if ni′ ∈ acks_to_ign then
69: acks_to_ign← acks_to_ign \ {ni′}
70: else
71: acks_rcvd← acks_rcvd ∪ {ni′}
72: if acks_rcvd = competitors then
73: state← in_cs
74: end if
75: end if
76: end procedure

77: procedure receive <End(ni′ , LCi′)>
78: LCi ← max(LCi, LCi′)
79: competitors_authorized← false
80: if ni′ ∈ waiting_reqs then
81: waiting_reqs← waiting_reqs \ {ni′}
82: end if
83: multicast <Req(ni, req_id)> to reqs_to_send
84: reqs_to_send← ∅
85: acks_to_ign← acks_to_ign \ reqs_to_send
86: end procedure

105



Chapter 5 – Group Mutual Exclusion for Decentralized Scaling in Stream Processing Pipelines

Algorithm 15 2-FGME algorithm (part 4).
87: procedure exit critical section
88: state← idle
89: req_id←< ni,∞ >
90: if waiting_reqs 6= ∅ then
91: competitors_authorized← true
92: multicast <Ack(ni), end> to waiting_reqs
93: end if
94: others← competitors \ waiting_reqs
95: multicast <End(ni, LCi)> to others
96: waiting_reqs← ∅
97: acks_to_ign← ∅
98: end procedure

For the sake of comparison, we also evaluated the two algorithms proposed by Joung
in [63], namely RA1, the simple extension Ricart-Agrawala algorithm to the case of Group
Mutual Exclusion and RA2, enhanced with the notion of captains capturing nodes from
the same group into critical section. These algorithms were presented in more details in
Chapter 3.

The software prototype used for the evaluations was developed in Java and relies
again on Kafka [42] for message exchanges between nodes. Kafka is a high-level dis-
tributed publish-subscribe messaging middleware, allowing to simplify the management
of exchanging messages between the nodes, as detailed in Chapter 4. Note that then, the
following performance estimates partly depend on the performance delivered by Kafka.
Note also that here the prototype developed is not a full-fledged Stream Processing En-
gine, as for instance targeted in Chapter 4, as our focus was the validation of the scaling
algorithm. In particular, the scaling procedure itself, as well as the support for actual data
stream processing were not implemented.

The experiments were conducted over nodes of Grid’5000 [11], the French national
experimental computing platform. Each experiment was conducted on up to 4 nodes. A
node include 2 Intel Xeon E5-2630 v3 with 8 cores each and 128 RAM interconnected by
2x10 Gbps network. For all of the following experiments, nodes are equally dispatched in
the two groups.
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5.3.1 Concurrent Occupancy

In this section, we show the efficiency of 2-FGME in terms of concurrent occupancy
and then compare it with the two algorithms RA1 and RA2. Recall that by concurrent
occupancy, we mean how many nodes of a given group succeed in entering the critical
section when all nodes request it in a short time window.

For these experiments, we set up a system of 12 nodes divided into 2 groups (6 nodes
each). Let us denote P , the time between two requests emitted by a given node. In the
philosophers’ problem vocabulary, P is the time a philosopher, after leaving the eating
state, stays in the thinking state, before entering the requesting state. Let us denote inCS,
the time a node stays in the critical section (or in the eating state.) For these experiments,
these two parameters were fixed to 300 ms.

Figure 5.2, Figure 5.3, and Figure 5.4 display the concurrent occupancy level obtained
by 2-FGME, RA2, and RA1, respectively. RA2 was placed before as it is our main com-
petitor. In this section and, for the rest of the experiments, comparing with RA1 was
performed for the sake of validation of our prototype and to confirm experimentally the
better concurrent occupancy of both 2-FGME and RA2 compared to RA1.
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Figure 5.2: 2-FGME concurrency : number of nodes requesting the CS compared to the
number of nodes in the CS for both groups (inCS = P = 300ms).

Figures 5.2, 5.3, and 5.4 show the variation of the amount of nodes requesting and
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Figure 5.3: RA2 concurrency : number of nodes requesting the CS compared to the number
of nodes in the CS for both groups (inCS = P = 300ms).

inside the critical section, respectively, for the two groups over time. For the sake of
readability, each group was displayed on a different side of the Y-axis: They show on the
positive side of the Y-axis, the total number of nodes either requesting or in the critical
section (green curve) and the number of nodes within them that are actually in the critical
section (red curve) for the first group of nodes. Similarly, on the negative side of the Y-
axis, figures show the same variables, but for the second group of nodes: The blue curve
is for requesting nodes (or in CS nodes) and the purple curve shows nodes actually in
critical section.

Starting with the 2-FGME and RA2 algorithms (Figures 5.2 and 5.3), we observe that
the concurrency offered by both algorithms is high as it reaches the highest performance
possible where all nodes of the same group requested the CS reach it in a short time, and
systematically, except for the first round. It shows that, in terms of concurrent occupancy,
2-FGME and RA2 offer a very similar level of performance.

On the other hand, Algorithm RA1’s results, displayed in Figure 5.4, shows its limited
concurrent occupancy, as during the experiment, only 3 nodes of the first group enter the
CS over 6 and for the second group, 4 nodes over 6. This is to be expected, as already
mentioned, as RA1 offers no mechanism to bypass the total order of the nodes established
by Lamport’s clocks.
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Figure 5.4: RA1 concurrency : number of nodes requesting the CS compared to the number
of nodes in the CS for both groups (inCS = P = 300ms).

It is to be noted that in the experiment whose results are given by Figure 5.2, nodes
of the first group start requesting and entering the CS in the first part of the experiment,
in the period of time ∈ [0ms, 500ms] and remain requesting for the second part in the
period of time ∈ [500ms, 1000ms] but in that period, nodes of the second group take
over the entrance of the CS while nodes of the first group keep requesting the CS. From
this point on, a sort of alternating scheme appears where each group fully enters critical
section one after the other.

We can conclude that 2-FGME provides an optimized occupancy, very similar to the
one provided by RA2. In particular, as RA2, it easily outperforms RA1. In the next
section, we analyse the generated network traffic, namely, the number of messages sent
between nodes in the network.

5.3.2 Traffic

In this section, we focus on the number of messages sent between nodes in the network
for the three algorithms. First, we start with an experiment where we set the number of
nodes to 12 with values P = inCS = 1s.

Figure 5.5 plots the number of messages generated by each protocol, when the number
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Figure 5.5: Traffic generated when increasing the number of entries in the critical section
(12 nodes, P = inCS = 1s).

of times a node enters the critical section increases. The red curve shows the results when
using RA2, the blue curve when using RA1 and the green curve when using 2-FGME,
averaged over 3 runs. The first thing to notice is that all protocols generate a traffic which
is clearly linear in the number of entries in the critical section. This is to be expected.
The second and most important takeaway of Figure 5.5 is that it shows that the traffic
generated by 2-FGME is lower than the one generated by both RA1 and RA2. Let us
have a closer look: taking the example of the experiment with 18 entries, the amount of
generated messages with RA2 is 5176, and only 3748 with 2-FGME, which constitutes a
reduction by 27.58%. With 50 CS entries, the average number of generated messages by
RA2 is 15843 but only 10327 messages for 2-FGME, which represents a gain of 34.81%.
This is an important result, as it shows that, for 2 groups, 2-FGME allows a very similar
concurrency level while significantly decreasing the traffic.

For the following experiments, we fix now the entries frequency in the critical section
to 10 and we vary the number of nodes from 6 to 24. And we keep the same parameters
like before P = inCS = 1s.

Figure 5.6 plots the number of messages of 2-FGME (green curve), RA1 (blue curve)
and RA2 (red curve) generated when increasing the total number of nodes in the groups
(remind that nodes are equally dispatched amongst groups).
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Figure 5.6: Traffic generated when increasing the number of nodes (10 entries in critical
section, inCS = 1s).

Similarly to what has been observed before in Figure 5.5, we see that 2-FGME gen-
erates less messages than both RA1 and RA2. As an example, the average of messages
sent with 12 nodes (6 nodes per group) of 2-FGME is 2065 while RA2 and RA1 generate
3445 and 2640 messages respectively. With 24 nodes (12 nodes per group), the 2-FGME
generates 8071 messages while RA2 generate 13395. In other words, a 40% reduction in
the traffic is obtained by using 2-FGME for the case of two groups.

Notice that the curves in Figure 5.6 are the expression of a quadratic behavior. Let us
take the simple example of RA1. We can easily model its traffic cost. Let us denote n as
the total number of nodes and x the number of entries in critical section. Let us assume
that the number of entries is the same for all nodes in the end of the experiment and the
nodes are dispatched equally into groups. In this case, the number of messages follow the
function f(n, x) = 2× x× (n2 − 1). Even if the complexity of the algorithms of 2-FGME
and RA2 differs from RA1, their curves follow a similar global behavior, and 2-FGME
offers a significant reduction factor.

To conclude, 2-FGME is less greedy in terms of network traffic and this aspect is
important especially in the context of stream processing where any delay can affect the
global performance of the system.

In the next section, we conclude this experimental study with an analysis of the latency

111



Chapter 5 – Group Mutual Exclusion for Decentralized Scaling in Stream Processing Pipelines

experimented by nodes when they start requesting the critical section.

5.3.3 Latency

In this section, we analyse the average delay for a node to enter the critical section
since it first sent its request. For the following experiments, we used 12 nodes and each
of them enters the critical section 25 times. To calculate each point in the curve, we only
kept the latencies for the last 20 CS entries (to get rid of any initialization effect, that
could come for instance from the underlying Kafka broker), and averaged them. Each
experiment being repeated 3 times, each point is an average obtained over 60 values.
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Figure 5.7: 2-FGME latency, 25 entries in critical section.

Figure 5.7, Figure 5.8 and Figure5.9 plot the latency as a function of P , inCS being
fixed. The graph is composed of three curves: the yellow curve is for inCS = 5sec, the
green curve is for inCS = 2sec, and the red curve is for inCS = 1sec.

Let us first focus on the results of Figure 5.7 in which we analyse the latency of 2-
FGME. For each curve, we notice two parts: the first part, where P < inCS and the
second one, where P > inCS. During the first part, we can see that the curve is falling
linearly from P = 0 to P = inCS. This reflects the fact that in this configuration, the
latency experienced by a node is mostly composed of the time it takes for the nodes in
the other group to leave the critical section.
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Figure 5.8: RA2 latency, 25 entries in critical section.

In the second part of the curves where P ≥ inCS, we observe a very low and stable
latency (in average ≈ 13ms). This shows that globally, the extra time brought about by
the contention of the algorithm is negligible compared to the time taken by nodes to leave
the critical section (a delay that can not be reduced.)

Figure 5.8 allows a similar observation for RA2. This is to be expected in the sense
that, even if permissions to enter the critical section are granted by different nodes (all
nodes for RA2, but only the nodes of the competitor group for 2-FGME), they lead to
globally the same kind of behaviours.

Finally, Figure 5.9 shows that RA1 gives slightly different results. The values are glob-
ally higher in this case. This can be explained by the fact that the concurrent occupancy
of RA1 being lower than 2-FGME and RA2 (as presented before in Figure 5.4). Therefore,
nodes of a group requesting an entry to the critical section may not enter in critical section
as quickly as for RA2 and 2-FGME, as shown previously in Figure 5.4 where all nodes of
the two groups request the critical section: Nodes of the first group may not enter the CS
while other nodes of the same group succeed, in which case, the former nodes will have to
wait for nodes in their own group to leave the critical section, and then wait again that
nodes of the other groups leave on their turn before being able to enter critical section
themselves. This also explains the higher variability of latency to enter the critical section,
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Figure 5.9: RA1 latency, 25 entries in critical section.

as illustrated by the standard variation included in this last series of curve.

5.4 Conclusion

This chapter described a new algorithm to solve the problem of Group Mutual Ex-
clusion, with specific constraints inherited from the context of scaling stream processing
pipelines. This algorithm, called 2-FGME, focus on the particular case of having two
concurrent groups of nodes wishing to enter in their critical section. In the particular
context of decentralized stream processing, mutual exclusion is a solution to avoid two
neighbouring groups of operators scaling at the same time, that could lead to hazardous
decentralized graph updates.

Because focused on two groups only, our algorithm is able to exhibit a reduced message
complexity compared to the similar algorithms found in literature while offering a very
similar level of concurrent occupancy. These results were obtained through real experi-
mentation of our 2-FGME algorithm and its comparison with two of the most classically
used algorithm for group mutual exclusion.

What is missing in this work is mostly a formal proof of the approach, and its extension
to the general case of an unlimited number of groups. Also, it would be interesting to com-
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pare our approach with other possible schemes for mutual exclusion based on hierarchical
and quorum-based algorithms, in terms of the overhead they generate.
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Chapter 6

CONCLUSION AND FUTURE WORK

Stream Processing has been developed as an answer to the need for real time processing
of continuous, large streams of data. Stream Processing is becoming a ubiquitous paradigm
in various areas, ranging from smart cities to social media. Stream Processing is typically
used to implement data processing pipelines composed of multiple operations. The visible
aspect of the rise of stream processing in the IT industry is the celebrated maturity and
large use of stream processing toolboxes such as Apache Storm, Kafka Streaming and
Apache Flink.

These toolboxes appeared in a context where the dominant platform style was Cloud
computing, and therefore where the management of applications is centralized. With
the advent of more geographically dispersed computing platforms as described in Edge
or Fog computing paradigms where data streams are to be handled closer to the user,
Stream Processing Engines need to support a decentralized deployment of applications.
Over this new kind of platforms, operators will typically get spread over the platform.
This decentralization also applies to management as keeping a consistent view of the
global platform in the absence of a centralized stable infrastructure, taking decisions and
enforcing them can become intractable.

Decentralization is the main axe around which this thesis revolves. Our contribution
towards decentralizing stream processing is threefold. Firstly, we injected decentralization
into scaling by presenting a new fully decentralized autoscaling algorithm for stream
processing applications. Secondly, we gave the foundations to design and build a software
prototype of a decentralized stream processing engine. Thirdly, we revised the group
mutual exclusion problem so as to make it usable in our particular context of decentralized
stream processing.
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Findings

In this thesis we demonstrated that fully decentralizing the scaling of stream processing
applications is feasible. In particular, we found that nodes can make their own scaling de-
cision independently from each others without preventing the system to converge towards
a generally satisfactory situation in terms of allocation size.

Yet, decentralization can lead to difficulties. Throughout decentralized autoscaling de-
cisions, nodes must always remain somewhat in synchronisation with each others: local
updates have to be propagated fast enough to ensure the system’s consistency. Another
finding is that this difficulty can be solved by more or less expensive coordination mecha-
nisms. We actually addressed the coordination problem through two proposals: an ad-hoc
solution, specific for the needs of our algorithm and another one, based on classical prim-
itives of distributed systems, namely, group mutual exclusion. This led us to develop a
new mutual group exclusion algorithm that is less generic than its competitors in the
literature, but more efficient in our particular context.

Practically speaking, decentralization in stream processing is still in its early stage: If
the architectures of centralized stream processing applications are now mature and tend
towards standardization, it appears necessary to pave the way for their decentralized
couterparts. In our case, we took a step in this direction and went as far as experimenting
it, which shows the feasibility of such a concept.

Future Directions

Let us first mention few possible extensions and improvements of this work.
Regarding the scaling mechanism, to make it more realistic in a Fog environment,

heterogeneity and dynamic evolution of the capacity of the nodes composing the platform
should be taken into account. With this kind of improvement, we could scale in and out
in spite of a dynamically evolving capacity of nodes. This could require to change the
placement of operators over nodes while taking the scaling decision, e.g. a node executing
a specific operator, can be reconfigured to execute another operator of the stream pro-
cessing application. Another improvement would be to scale pipelines containing stateful
operators. This brings the need for extra mechanisms such as setting up a state migration
protocol. Note that one way to migrate in a decentralized manner is to rely over consistent
hashing to distribute the state over the replicas of a stateful operator.
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Until now, the prototype built lacks genericity: a nice feature would be the easy de-
ployment of any user application in a decentralized manner, provided the code for the
processing part is already coded. For that, wrapping our prototype into a well defined
API would be a first step. Another way to improve the prototype and its portability over
multiple platforms would be to containerize it. One of the tools one could consider is
Kubernetes [56], which helps scaling and orchestrating the operators. Yet, this would be
at the cost of recentralizing some intelligence.

Regarding mutual exclusion, our algorithm suffers from a lock of of a formal proof.
Also, while it was restricted on purpose to only two groups, extending it to the general
case of an unlimited number of groups could be interesting. Yet the more groups, the
less performance gain will be achieved, as the cost savings in terms of traffic is only
done on the group of the node requesting the critical section. So the more groups there
are, the smaller the proporition of nodes within one particular given will be. Another
work could consist in a comparison between our approach and other possible schemes for
group mutual exclusion based for instance on hierarchical approaches and quorum-based
algorithms, notably in terms of the overhead they generate.

We argued in this thesis that it is time to decentralize stream processing, and proposed
several contributions in this direction. Yet, beyond the decentralization of the algorithms
and software, another question should be raised: what will look like a concrete Stream
Processing platform on top of a Fog architecture? One possible answer is that it will
combine multiple, geographically distributed stream processing engines.

To go further, let us consider such a futuristic yet realistic platform, combining different
heterogeneous stream processing engines, i.e. an Apache Storm installed and running in
Paris, a Spark Streaming instance running in Brest, a Flink instance ready to receive jobs
in Lyon, etc.. While these datacenters are operated by distinct teams and organizations,
it would be interesting to combine their abilities and computing power transparently. The
goal would be to be able to compose existing stream processing jobs into an application
to be deployed over those sites. The user would just need to describe the pipeline and
where he or she wants each job composing to be deployed and an underlying middleware
would actually deploy it. For instance, an application could combine a Flink job running
on Site A, and whose output would be sent to a subsequent Strom Job running on site
B, and so on.

Challenges in building such a stream processing platform will be, firstly, the devel-
opment of a broker able to communicate with all Stream Processing Engines (typically
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using their respective APIs) in order to deploy all the jobs composing the stream process-
ing application. Secondly, these jobs deployed at different places and on different Stream
Processing Engines must communicate with each other. This will require the presence
of a message-oriented middleware such as Apache Kafka or Apache ActiveMQ acting
as bridges between the jobs. Finally, another challenge is to enhance such a platform
with dynamic adaptation to deal with local fluctuations in performance. One element of
this dynamic adaptation woulbe for instance migration mechanisms: jobs might migrate,
provided a similar SPE is available on another computing site.

Assuming such migration mechanisms are decentralized, jobs will need to communicate
together so as to ensure a correct migration. Again, synchronization mechanisms similar
to those presented in Chapter 5 will be required, since multiple jobs migrating at the same
time would lead to a potential risk for the integrity of the pipeline.
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