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Introduction Générale

Au cours des dernières décennies, les progrès rapides de la science et des sciences
et des technologies de l'information et de la communication ont rendu possible le
déploiement d'un grand nombre d'agents autonomes qui travaillent en coopération
pour assurer des missions civiles et militaires. Comparativement à un seul agent
complexe, cela peut améliorer considérablement l'e�cacité opérationnelle, réduire les
coûts et fournir des degrés supplémentaires de redondance. Le fait plusieurs agents
autonomes pour travailler ensemble e�cacement a�n d'obtenir des comportements
collectifs de groupe est généralement appelé contrôle coopératif des systèmes multi-
agents (MASs). Le contrôle coopératif des MASs a fait l'objet d'une attention
particulière de la part de diverses communautés scienti�ques, en particulier de la
communauté des systèmes et du contrôle.

Figure 1: Statistiques d'un certain nombre d'articles relatifs au

"consensus, coopérative, MASs" dans les revues entre 2005 � Juil-

let, 2020

A�n de con�rmer ce constat, nous avons analysé les données des articles publiés
dans certaines revues de qualité Q1 au cours de la période 2005 - juillet 2020 avec
les mots clés "consensus, cooperative, MASs", le résultat de ce travail est illustré
par la Fig.1, qui montre que le sujet du "contrôle coopératif" est de plus en plus
étudié. Par exemple, le nombre d'articles dans "Automatica" en 2015 augmente de
30 fois par rapport à 2005, tandis que les publications "IEEE Trans" augmentent
d'environ 10 fois. En outre, de plus en plus d'applications potentielles dans divers
domaines tels que le vol en formation, l'informatique distribuée, la robotique, la
surveillance, les systèmes de reconnaissance, les systèmes d'alimentation électrique,
l'attaque coopérative de plusieurs missiles et les systèmes de transport intelligents
sont analysées. En particulier, 31% des articles publiés dans Automatica représen-
tant une proportion importante (voir Fig.2). Ensuite, 23%, 18%, 15%, et 13% sont
respectivement le pourcentage d'articles publiés dans "International Journal Con-
trol", "IEEE Trans", "IET Control Theory & Applications", et "System Control &
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Letters". De plus, à partir des histogrammes, nous constatons qu'il y a beaucoup
de groupes de recherche qui se penchent sur ce sujet, ce qui entraîne une concur-
rence considérablement accrue entre les groupes et exige également des contributions
considérables en termes de théorie et d'applications dans les publications. Par con-
séquent, le contrôle coopératif est non seulement un sujet intéressant mais aussi un
sujet plus stimulant.

Figure 2: Statistiques du pourcentage d'articles liés textit "consen-

sus, coopérative, MASs" dans les revues au cours de 2005 � Juillet,

2020

Pour le problème du contrôle coopératif, la tâche principale est de concevoir des
protocoles de contrôle pertinents pour atteindre l'objectif de coordination souhaité.
Ce concept est né d'un article de Vicseck et al, 1995 dans Physical Review Let-
ters (voir Fig.3), où l'émergence d'un mouvement auto-ordonné dans les systèmes
biologiques de particules, appelé modèle de Vicseck, était étudiée par les règles du
plus proche voisin. Cependant, ce travail montre des résultats de simulation sans
explications théoriques claires. Ce problème a été résolu dans Jadbabaie and Morse,
2003, où, sur la base de la théorie des graphes, le modèle de Viceck a été représenté
comme un système linéaire commuté dont le signal de commutation prend des valeurs
dans l'ensemble des indices qui paramètrent la famille des graphes. En outre, en
raison du grand nombre d'agents, de la répartition spatiale des actionneurs, de la
capacité de détection limitée des capteurs et des courtes portées de communication
sans �l, il est considéré comme trop coûteux, voire impossible en pratique, de mettre
en ÷uvre des contrôleurs centralisés. Ainsi, le contrôle distribué (l'une des premières
mentions dans Olfati-Saber and Murray, 2004), dépendant uniquement des informa-
tions locales des agents et de leurs voisins, semble être un outil prometteur pour le
traitement des MASs. Dans Olfati-Saber and Murray, 2004, le problème du con-
sensus a été particulièrement analysé avec des topologies �xes et de commutation
qui ont été considérées comme des graphiques non orientés ou fortement connectés.
Les résultats ont été étendus dans Ren and Beard, 2005, où il a été démontré qu'il
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Figure 3: Chronologie du contrôle coopératif majeur de MAS

est su�sant d'avoir un graph de communication avec seulement un arbre de cou-
verture pour obtenir un consensus. Outre l'importance de la topologie du réseau,
la dynamique des MAS joue un rôle important dans l'étude et la conception des
algorithmes coopératifs, ainsi que dans les valeurs �nales de consensus. Les con-
ditions nécessaires et su�santes pour un consensus des MASs linéaires générales
sont données dans Ma and Zhang, 2010. Suivant cette ligne de recherche, il existe
une série de résultats axés sur l'analyse et la conception d'algorithmes coopératifs
avec des MASs homogènes et hétérogènes. En outre, le contrôle coopératif sous
des contraintes de temps, d'entrée, d'état, ainsi que la quanti�cation et le contrôle
coopératif déclenché par un événement sont également étudiés (voir dans le chapitre
1 pour plus de détails).

En raison du fait que les agents dans les MASs sont généralement limités en
ressources, comme les limies de communication sans �l (pour échanger des informa-
tions entre les agents), les capteurs (pour mesurer les informations relatives entre les
agents voisins) et les actionneurs (pour piloter les agents), ainsi que les contraintes
énergétiques liées aux interactions de longue durée, un ingénieur doit parfois di-
viser un grand réseau en grappes. Des exemples de ces réseaux, appelés réseaux
en grappes 1 comprennent à la fois les communications en ondes millimétriques 5G
dans le réseau sans �l2 (voir Fig.4), le consensus de l'avis dans les réseaux sociaux3

(voir Fig.5).
Certains résultats concernant le problème de consensus dans les réseaux d'agents

dynamiques de type intégrateur ont été présentés dans Bragagnolo et al., 2016, où
une stratégie de réinitialisation de l'état des leaders est conçue, ce qui permet de
parvenir à un consensus dans le réseau clusterisé. Cependant, plusieurs problèmes

1Dans cette thèse, nous utilisons "réseau en grappes" pour représenter le réseau, qui s'est
divisé/composé en/des grappes qui sont presque toujours isolées les unes des autres.

2Long Zhang, et al, A Survey on 5G millimeter Wave Communications for UAV-Assisted Wire-
less Networks, IEEE Access, July 2019

3https://softwarerecs.stackexchange.com
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Figure 4: Communications en ondes millimétriques 5G pour les

réseaux sans �l assistés par des drones2

Figure 5: Le réseau social 3

ouverts liés au contrôle coopératif dans le réseau de clusters restent à étudier. La
conception de contrôleurs distribués pour les MASs à dynamique complexe (ho-
mogène et hétérogène), ou d'algorithmes de contrôle de formation pour le réseau



5

groupé de multi-UAV sous état, les contraintes d'entrée sont quelques exemples de
problèmes ouverts intéressants et stimulants. Par conséquent, dans cette thèse, nous
étendons ces directions de recherche en suivant la motivation ci-dessus.

Contributions et Résumés

Figure 6: Aperçu général de la thèse et des principales contributions

Dans ce qui suit, nous présentons les grandes lignes et résumons les principales
contributions de la thèse. La structure de cette thèse est illustrée dans la Fig.6. Les
principales contributions de chaque chapitre sont les suivantes :

Le chapitre 1 présente une vue d'ensemble de l'état de la technique en matière de
contrôle coopératif. Nous étudions ce problème en nous basant sur quatre facteurs
principaux : la topologie du réseau, la dynamique des MASs, les contraintes des
MASs et les méthodologies. Nous montrons que la topologie du réseau et la dy-
namique des MASs sont deux éléments importants dans l'analyse et la conception
des algorithmes de contrôle coopératif. Nous poursuivons avec des contributions
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dans le domaine du contrôle coopératif sous contraintes, telles que les contraintes de
communication et les contraintes d'agent. Ensuite, nous présentons les méthodolo-
gies de la littérature en matière d'analyse et de résolution du contrôle coopératif
des MASs dans les réseaux. En�n, nous discutons de la littérature présentée et des
questions de recherche ouvertes.

Le chapitre 2 aborde le problème du consensus dans le réseau, où chaque n÷ud
du graphe du réseau représente un agent à dynamique linéaire. Le comportement
coopératif des MASs linéaires avec la dynamique générale du système dans le réseau
en clusters est dé�ni non seulement par les protocoles de contrôle dynamique concer-
nant les clusters isolés, mais aussi par les interactions discrètes entre les leaders. Cela
rend le problème de consensus dans le réseau en clusters avec des agents linéaires
beaucoup plus di�cile que celui du cas de l'intégrateur. Ainsi, un contrôle impul-
sif basé sur l'observation est proposé pour traiter le problème de consensus. Les
principales contributions de ce chapitre sont au nombre de trois.

� L'analyse et la caractérisation de la valeur du consensus dans le cadre considéré
est analysée. Nous montrons que la valeur du consensus global ne dépend que
de la dynamique de chaque agent, des graphiques des clusters, de l'interaction
entre les leaders et des conditions initiales.

� Un contrôle impulsif basé sur l'observation, qui utilise uniquement les infor-
mations de sortie relatives locales, et l'interaction discrète entre les groupes de
leaders, est conçu. Ensuite, nous montrons que la conception consensuelle des
réseaux en clusters peut être indirectement résolue en considérant la stabilité
d'un système équivalent. Pour étudier la stabilité de ce système équivalent,
nous proposons un algorithme permettant de choisir de manière appropriée les
matrices de rétroaction, gain des observateurs et les poids de couplage sous la
forme de certaines LMI.

� L'interaction de conception entre les grappes de leaders et le contrôleur impul-
sif basé sur l'observateur, assurant que les agents dans les réseaux en grappe
renferment une cible prescrite.

Le chapitre 3 nous étudions le problème de la formation dans les systèmes com-
posés d'agents linéaires qui sont soumis à des contraintes d'état. La structure de
communication en temps continu dans chaque grappe est représentée par un clus-
ters �xe et non orienté. Les principales contributions de ce chapitre sont résumées
comme suit :

� Un protocole de formation robuste, qui traite de la communication en temps
continu à l'intérieur des clusters et de l'échange d'informations en temps discret
entre les clusters, est introduit. Il est ensuite montré que le problème de
contrôle de la formation robuste considéré peut être indirectement résolu en
étudiant la stabilité robuste d'un système équivalent basé sur la théorie des
matrices et la théorie des graphes algébriques. De plus, il montre le rôle
important de la communication entre les leaders à certains moments discrets
spéci�ques, représentés par la matrice stochastique.
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� Une condition su�sante est obtenue en termes d'inégalités matricielles linéaires
(LMI) pour la formation distribuée robuste de réseaux composés d'agents
linéaires génériques sous contraintes d'état et de communications hybrides.
De plus, nous montrons que les LMI obtenues peuvent être solutionnées de
manière entièrement distribuée, c'est-à-dire que chaque agent peut calculer la
matrice de gain par lui-même et mettre en ÷uvre le protocole de formation
robuste en utilisant uniquement des informations locales (ses informations et
celles de ses voisins).

Le chapitre 4 examine le problème du consensus de sortie dans les réseaux com-
posés de MASs hétérogènes qui sont soumis à di�érentes perturbations. Chaque
cluster est représentée par un graphe �xe et dirigé. Un contrôle de consensus de
sortie est proposé pour gérer le consensus dans le réseau considéré. Les principales
contributions de ce chapitre peuvent être résumées comme suit.

� Investigation du problème du consensus dans un réseau de MASs en grappes
dirigées, où les agents ont une dynamique linéaire distincte et générique sous
di�érentes perturbations.

� Un modèle de référence interne dynamique pour chaque agent est introduit,
qui prend en compte les communications en temps continu entre les modèles
de référence internes dans les clusters virtuels et les échanges d'informations
discrètes entre ces clusters virtuels. Par conséquent, le consensus de sortie
des agents hétérogènes est indirectement résolu par le consensus des références
virtuelles. Pour y parvenir, un protocole de contrôle de consensus hybride est
proposé pour le réseau en grappe virtuel. Grâce aux résultats de la théorie
des matrices et de la théorie des graphes algébriques, le consensus du réseau
en grappes virtuel est résolu.

� Une condition su�sante et nécessaire est obtenue pour le consensus de sortie
des agents hétérogènes linéaires sous di�érentes perturbations dans le réseau
en grappe.

Finalement, le chapitre 5 présente un bref résumé des principaux résultats et
contributions de cette thèse, et indique quelques sujets/directions possibles pour la
recherche future.
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General Introduction
Over the past decades, rapid advances of science and technology in miniaturizing

of computing, communication, sensing, and actuation have made it feasible to deploy
a large number of autonomous agents to work cooperatively to ful�ll civilian and
military missions. This, compared to a single complex agent, can signi�cantly im-
prove the operational e�ectiveness, reduce the costs, and provide additional degrees
of redundancy. Having multiple autonomous agents to work together e�ciently to
achieve collective group behaviors is usually referred to as cooperative control of
multi-agent systems (MASs). Cooperative control of MASs has received compelling
attention from various scienti�c communities, especially the systems and control
community.

Figure 7: Statistics of a number of papers related "consensus, co-

operative, MASs" in Journals during 2005 � July, 2020

In order to demonstrate the above observation, we record the data of papers in
some top journals during 2005 � July 2020 with keywords "consensus, cooperative,
MASs", which is depicted in Fig.7. It shows that the topic "cooperative control" is
increasingly concerned, for example, a number of papers in "Automatica" in 2015
increase 30 times compared to those in 2005, while those of papers in "IEEE Trans"
move upward approximately 10 times. Moreover, more and more potential appli-
cations in various areas such as satellite formation �ying, distributed computing,
robotics, surveillance, reconnaissance systems, electric power systems, cooperative
attack of multiple missiles, and intelligent transportation systems are analyzed and
discovered in duration from 2005 to 2020. Especially, there are 31% papers published
in Automatica, which are a signi�cant proportion (see Fig.8). Next, 23%, 18%, 15%,
and 13% are respectively the percentage of published papers in "International Jour-
nal Control", "IEEE Trans", "IET Control Theory & Applications", and "System
Control & Letters". Furthermore, according to bar charts, we recognize that there is
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a lot of research groups considering this topic, which leads to signi�cantly increased
competition among groups and also demands considerable contributions in terms of
theory and applications in publications. Therefore, cooperative control is not only
an interesting topic but also a more challenging topic.

Figure 8: Statistics of percentage of papers related "consensus, co-

operative, MASs" in Journals during 2005 � July, 2020

For the cooperative control problem, the main task is to design relevant control
protocols to achieve the desired coordination objective. This concept started from
a paper of Vicseck et al, 1995 in Physical Review Letters (see Fig.9), where the
emergence of self-ordered motion in biological systems of particles, called Vicseck's
model, was investigated by the nearest neighbor rules. However, it was only sim-
ulation results that had not a clear theoretical explanation. This was overcome in
Jadbabaie and Morse, 2003, where based on graph theory, the Vicseck's model was
represented as an n-dimensional switched linear system whose switching signal takes
values in the set of indices which parameterize the family of graphs. Moreover, due
to a large number of agents, the spatial distribution of actuators, limited sensing
capability of sensors, and short wireless communication ranges, it is considered too
expensive or even infeasible in practice to implement centralized controllers. Thus,
distributed control (one of the �rst mentions in Olfati-Saber and Murray, 2004),
depending only on local information of the agents and their neighbors, appears to
be a promising tool for handling MASs. In Olfati-Saber and Murray, 2004, the
consensus problem was particularly analyzed with �xed and switching topologies
that were considered as undirected or strongly connected graphs. The results were
further extended in Ren and Beard, 2005, where it has been shown that it is su�-
cient to have a communication graph with only a spanning tree in order to achieve
consensus. Besides the importance of the network topology, the complex dynamics
of MASs play an important role in the investigation and design of the cooperative
algorithms, as well as the �nal consensus values. The necessary and su�cient con-
ditions for consensus of the general linear MASs are given in Ma and Zhang, 2010.
Following this line of research, there is a series of results-focused on the analysis
and design of cooperative algorithms with homogeneous and heterogeneous MASs.
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Figure 9: Timeline of the major cooperative control of MAS

Moreover, the cooperative control under time-delays, input, state constraints, as
well as quantization and event-triggered cooperative control are also studied (see in
Chapter 1 for more detail).

An arise from the fact that agents in MASs are usually resource-limited, such
as limited ranges of wireless communication (for exchanging information among
agents), sensors (for measuring relative information between neighboring agents) and
actuators (for driving the agents), as well as energy constraints related to long time
interactions, an engineer should sometimes partition a large network into clusters.
Examples of these networks, called clustered networks 4 include both of the 5G
Millimeter-wave communications in the wireless network5 (see Fig.10), the consensus
of the opinion in the social networks6 (see Fig.11).

Some results of consensus problem in cluster networks of integrator dynamic
agents was presented in Bragagnolo et al., 2016, where a reset strategy of the lead-
ers' state is designed, which allows to reach consensus in the clustered network.
However, several open problems related to cooperative control in the clustered net-
work continuously rise. Designing appropriately distributed consensus controllers
for MASs with complex dynamics (homogeneous and heterogeneous general linear
dynamics), or formation control algorithms for the clustered network of multi-UAVs
under state, input constraints are some examples of open interesting and challenging
problems. Therefore, in this thesis, we extend these research directions by following
the above motivation.

4In this thesis, we use "clustered network" to represent the network, which divided/composed
into/of clusters that are almost all the time isolated one from another.

5Long Zhang, et al, A Survey on 5G Millimeter Wave Communications for UAV-Assisted Wire-
less Networks, IEEE Access, July 2019

6https://softwarerecs.stackexchange.com
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Figure 10: 5G mmWave communications for UAV-assisted wireless

networks5

Figure 11: The social network6

Contributions and Outline

In this following, we present the outline and summarize the main contributions, of
the thesis. The structure of this thesis is illustrated in Fig.12. The main contribu-
tions of the individual chapter are as follows:
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Figure 12: General overview of the thesis and main contributions

Chapter 1 provides an overall view of the state of art in the cooperative con-
trol problem. We study this problem based on four main factors: network topology,
dynamics of MASs, constraints of MASs, and methodologies. We show that the net-
work topology and dynamics of MASs are two important elements in analyzing and
designing the cooperative control algorithms. We continue with contributions in the
�eld of cooperative control under constraints, such as communication constraints
and agent constraints. Afterward, we present the methodologies of the literature
in analyzing and solving the cooperative control of MASs in networks. Finally, we
discuss the presented literature and open research questions.
Chapter 2 addresses the problem of consensus in the clustered network, where each
node of the network graph represents an agent with linear dynamics. The coopera-
tive behavior of linear MASs with general system dynamics in the clustered network
is de�ned by not only the dynamical control protocols concerning the isolated clus-
ters but also the discrete interactions among the leaders. This makes a consensus
problem in the clustered network with general linear agents much more challenging
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than that of the integrator case. Thus, an impulsive observer-based control is pro-
posed to handle the consensus problem. The main contributions of this chapter are
threefold.

� The analysis and the charcterization of the global consensus value in the con-
sidered framework is analyzed. We show that the value of global consensus
depends on the dynamics of each agent, the graphs of clusters, the interaction
between leaders, and the initial conditions.

� An impulsive observer-based control, which uses only the local relative output
information, and discrete interaction between leaders' clusters, is designed.
Then, we show that the consensus design for clustered networks can be indi-
rectly solved by considering the stability of an equivalent system. To study
the stability of this equivalent system, we propose an algorithm to suitably
choose the feedback and observer gain matrices and coupling weights in the
form of some LMIs.

� The design interaction among leaders' clusters and impulsive observer-based
controller, ensuring agents in clustered networks enclose a prescribed target.

Chapter 3 studies the formation control problem in clustered network systems of
linear agents that are subjected to state constraints. The continuous-time commu-
nication structure in each cluster is represented by a �xed and undirected graph.
The main contributions of this chapter are summarised as follows:

� A robust formation protocol, which deals with the continuous-time communi-
cation inside clusters and discrete-time information exchange between clusters,
is introduced. It is then shown that the considered robust formation control
problem can be indirectly solved by studying the robust stability of an equiv-
alent system based on matrix theory and algebraic graph theory. Moreover, it
shows the important role of communication between leaders at some speci�c
discrete instants, represented by the stochastic matrix.

� A su�cient condition is derived in terms of linear matrix inequalities (LMIs) for
the robust distributed formation of clustered networks of generic linear agents
under state constraints and hybrid communications. Moreover, we show that
obtained LMIs can be saved in fully distributed fashion i.e., each agent can
compute the gain matrix by itself and implement the robust formation protocol
using only local information (its information and its neighbors' information).

Chapter 4 discusses the output consensus problem in the clustered networks com-
posed of heterogeneous MASs that are subjected to di�erent disturbances. Each
cluster is represented by a �xed and directed graph. An output consensus control is
proposed to handle the consensus in the considered network. The main contributions
of this chapter can be summarized as follows.

� Investigation of the consensus problem in a directed clustered network of
MASs, where agents have distinct and generic linear dynamics under di�erent
disturbances.
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� A dynamic internal reference model for each agent is introduced, which takes
into account the continuous-time communications among internal reference
models in virtual clusters and discrete information exchanges between those
virtual clusters. Therefore, the output consensus of heterogeneous agents is
indirectly solved through the consensus of the virtual references. To achieve
that, a hybrid consensus control protocol is proposed for the virtual clustered
network. Thanks to results from matrix theory and algebraic graph theory,
the consensus of the virtual clustered network is solved.

� A su�cient and necessary condition is derived for the output consensus of
linear heterogeneous agents under di�erent disturbances in the clustered net-
work.

Chapter 5 presents a short summary of the main results and contributions of this
thesis, and indicates some possible topics/directions for future research.

Finally, in Appendix A and B we provide few tools for understanding the main
results of the thesis such as the de�nitions of stochastic matrices, symmetric matri-
ces, and the concept of LMIs and graph theory.
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Résumé du Chapitre 1

Ce chapitre donne une vue d'ensemble de l'état de l'art en matière de contrôle
coopératif des MAS. Nous commençons le chapitre par une introduction au problème
des MAS et du contrôle coopératif (problème de consensus et de formation). Pour
étudier le contrôle coopératif des MAS, nous étudions ce problème en nous basant
sur quatre facteurs principaux : la topologie du réseau, la dynamique des MAS,
les contraintes des MAS et les méthodologies. Nous montrons que la topologie du
réseau et la dynamique des MAS sont deux éléments importants dans l'analyse et
la conception des algorithmes de contrôle coopératif. Nous poursuivons le chapitre
avec des contributions dans le domaine du contrôle coopératif sous contraintes, telles
que les contraintes de communication et les contraintes d'agent. Ensuite, nous
présentons les méthodologies de la littérature en matière d'analyse et de résolution
du contrôle coopératif des MAS dans les réseaux. Le chapitre se termine par une
discussion de la littérature présentée et des questions de recherche ouvertes.
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This chapter provides an overall view of the state of art in cooperative control
of MASs. We begin the chapter by providing an introduction to the MASs and
cooperative control problem (consensus and formation problem). To investigate the
cooperative control of MASs, we study this problem based on four main factors:
network topology, dynamics of MASs, constraints of MASs, and methodologies. We
show that the network topology and dynamics of MASs are two important elements
in analysing and designing the cooperative control algorithms. We continue the
chapter with contributions in the �eld of cooperative control under constraints,
such as communication constraints and agent constraints. Afterward, we present the
methodologies of the literature in analyzing and solving the cooperative control of
MASs in networks. The chapter ends with the discussion of the literature presented
and open research questions.

1.1 An Overview on Cooperative Control of MASs

The MASs is generally referred to as a system composed of a set of dynamical
agents that interact through a communication network to reach a coordinated be-
havior or operation. Especially, the cooperative control problems of MASs have been
extensively investigated in the past two decades because there are many practical
applications such as unmanned aerial vehicles (Dong et al., 2014), wireless sensor
networks (Halgamuge, Guru, and Jennings, 2003), autonomous underwater vehicles
(Nguyen, Messai, and Manamanni, 2017), transportation networks (Salvi, Santini,
and Valente, 2017), etc.

For the cooperative control problem, the main task is to design relevant control
protocols to achieve the desired coordination objective. There are two approaches in
the cooperative control design, namely, the centralized approach and the distributed
approach. The centralized approach assumes that at least a central (which lies on
one of the agents, called central agent) is available and has the capability to receive
information from and send control signals to all the other agents. The distributed
approach is based on local interactions only, i.e., each agent exchanges information
with its neighbors. Due to a large number of agents, the spatial distribution of
actuators, limited sensing capability of sensors, and short wireless communication
ranges, it is considered too costly or even infeasible in practice to implement cen-
tralized controllers. Thus, distributed control, depending only on local information
of the agents and their neighbors, appears to be a promising resolution for MASs.
Furthermore, there are two fundamental tasks in the study of the cooperative control
of MASs: consensus and formation control.

� Consensus/synchronization: Consensus refers to the group behavior that
all of the agents asymptotically reach a certain common agreement through a
locally distributed protocol. The idea behind consensus serves as a fundamen-
tal principle for the design of distributed multi-agent coordination algorithms.
Therefore, investigating consensus has been the main research direction in the
study of distributed multi-agent coordination. To bridge the gap between the



20 Chapter 1. An Overview and Open Research Questions

study of consensus algorithms and many physical properties inherited in prac-
tical systems, it is necessary and meaningful to study consensus by considering
many practical factors, such as control algorithm, communication, constraints,
and agent dynamics, which characterize some important features of practical
systems. This is the main motivation to study consensus (Cao et al., 2013).

� Formation control: Distributed formation refers to the group behavior that
all of the agents form a predesigned geometrical con�guration through local
interactions with or without a common reference. Compared with the consen-
sus problem where the �nal states of all agents typically reach a singleton, the
�nal states of all agents can be more diversi�ed under the formation control
scenario. Indeed, formation control is more desirable in many practical appli-
cations such as formation �ying, cooperative transportation, sensor networks,
and reconnaissance. For its broad applications and advantages, formation con-
trol has been a very active research subject in the control systems community,
where a certain geometric pattern is aimed to form with or without a group
reference. More precisely, the main objective of formation control is to coor-
dinate a group of agents such that they can achieve some desired formation
(Cao et al., 2013).

The research framework of cooperative control of MASs is depicted in Fig. 1.1.
The network topology is a signi�cant element to investigate the consensus, where
it is considered over many types, such as �xed, time-varying, switching, leader-
follower, and clustered network topology. Moreover, dynamics of MASs, including
homogeneous, heterogeneous, and nonlinear MASs, play an important in determin-
ing the �nal consensus state and in designing the corresponding consensus proto-
cols. Another direction on the cooperative control of MASs usually concerns with
constraints. To ful�ll the gap between studying cooperative algorithms and some
inherent properties or constraints in practical models, it is necessary to investigate
consensus problems with some practical factors, such as communication constraints
(time delays, samplings, hybrid communication), quantization, and input, state sat-
urations, which can be regarded as key constrained features in practical models.
Afterward, in order to deal with these cooperative problems under the above con-
siderations, three methods of analysis and design are widely used in the literature,
such as the Lyapunov approach, frequency domain, and matrix approach. Finally,
our research framework considering the dynamics of MASs (homogeneous and het-
erogeneous) with constraints (hybrid communication and state constraints) in the
clustered network is shown in Fig. 1.1 (violet color). Because of the mentioned
dynamics, constraints, and clustered network, the system performance might be
degraded. Even worse, the stability could be destroyed. Therefore, it is of great im-
portance and challenge to design controllers to guarantee the desired performance
under these above considerations. This is one of the motivations in this research
thesis.
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Figure 1.1: The research framework of cooperative control of MASs.

1.1.1 Dynamics of MASs

Since consensus and formation problems are concerned with the behavior of a group
of agents, it is natural to consider the system dynamics for practical agents in the
study of the cooperative problem. Although the study of cooperative control under
various system dynamics is due to the existence of complex dynamics in practical
systems, it is also interesting to observe that system dynamics play an important
role in determining the �nal consensus and formation state, and in designing various
types of consensus and formation algorithms. Generally, dynamics of MASs normally
refers to homogeneous (dynamics of MASs are same), heterogeneous (dynamics of
MASs are di�erent), and nonlinear, as depicted in Fig. 1.2. In the following, the
e�ect of dynamics of MASs on the cooperative control is investigated.

A. Homogeneous MASs
In the simplest, homogeneous case, a group of N identical agents is considered

in a continuous-time setup with agent having a special single-integrator form

ẋi(t) = ui(t),∀i = 1, 2, · · · , N. (1.1)
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Figure 1.2: The research framework of dynamics of MASs.

The controller typically takes the form

ui(t) =
N∑
i=1

aij(xj(t)− xi(t)) (1.2)

where xi ∈ R is state of agent i and aij is (i, j)− th entry of the corresponding adja-
cency matrix A, which describes the connection graph among the agents. According
to Section B.0.2, a Laplacian matrix L can be de�ned based on A such that

ẋ(t) = −Lx(t), x(t) = [x1(t), x2(t), · · · , xN(t)]T . (1.3)

As shown in Olfati-Saber and Murray, 2004, the motivation to use (1.2) is that each
agent converges towards the weighted average of the states of its neighbors, called
average-consensus problem. It shows that after reaching a consensus, the group
decision value is

x? =

∑N
i=1 rixi(0)∑N

i=1 ri
(1.4)

i.e., the decision value belongs to the convex hull of the initial values, where r =
[r1, r2, · · · , rN ]T is a left eigenvector of L (see in Section B.0.2). In particular, it
is not concerned with the performance evolution in the network dimension as the
length of the network dimension is �nite, denoted by N .

In the same time, agents with integrator form are also considered in case of
discrete-time. As shown in original papers (Jadbabaie and Morse, 2003; Olfati-Saber
and Murray, 2004; Ren and Beard, 2005), the discrete dynamics of the consensus
protocol has a strong relationship with the theory of Markov chains. Therefore, the
consensus protocol for discrete cases can be represented as a stochastic matrix P .
This means that the ijth entry of the matrix P , denoted Pij, is the probability of a
random variable x having a state i at time k, and state j at time k + 1. Therefore,
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the overall dynamics of the discrete network can de�ne as

x(k + 1) = Px(k), (1.5)

where P is a stochastic matrix, which can be de�ned as in Appendix A.
Consider the (1.3), we can discretize its continuous dynamics by assuming a

constant sampling interval δ. This leads to the following equation

x(k + 1) = e−Lδx(k), (1.6)

According to Proposition 3.18 of Mesbahi and Egerstedt, 2010, it shows that all
digraphs and sampling intervals δ > 0, one has e−Lδ1 = 1 and e−Lδ ≥ 0. That is,
for all digraphs and δ > 0, e−Lδ is a stochastic matrix. Therefore, thanks to this
Proposition, the connection between (1.3) and (1.5) is given.

Extensions of consensus algorithms to double-integrator dynamics were also in-
vestigated in Moreau, 2005; Wei Ren and Atkins, 2007 for instance. Moreover, the
consensus problem for agents with general linear dynamics, which has form in (1.7),
is also investigate.

ẋi(t) = Ax(t) +Bui(t),

yi(t) = Cxi(t)
(1.7)

where A,B,C are constant matrices of appropriate dimension. A range of references
focused on consensus protocols such as

ui(t) = cK
N∑
j=1

aij(xj(t)− xi(t)), (1.8)

and the objective is to �nd feedback control laws K and coupling gain c such that
consensus can be achieved. Particularly, the controller gains were obtained using
LQR optimal control method (for example in Zhongkui Li et al., 2010; Zhang, Lewis,
and Das, 2011; Nguyen, 2017; Qian, Liu, and Feng, 2018a), robust consensus pro-
tocols with obtained controller gains by solving LMIs (for example in Hongyong
Yang and Zhang, 2011; Mo and Lin, 2018; Nguyen, Narikiyo, and Kawanishi, 2018),
�nite-time consensus protocols (for example in Li, Du, and Lin, 2011; Liu and Geng,
2015; Liu, Cao, and Xie, 2019; Liu et al., 2016), and event-trigger consensus controls
(for instance in Hu et al., 2016; Yi et al., 2019; Jiang et al., 2018).

B. Heterogeneous MASs
When considering heterogeneous MASs dynamics, it means that the dynamics

of MASs ith is described by the local state space representation Ai, Bi, and Ci
(instead of a general A,B, and C in (1.7)). This class of problem is usually referred
to as a "synchronization problem". In the literature, there are two basic research
approaches: cooperative output regulation problem and virtual exosystem approach,
which are shown below
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� Cooperative output regulation problem: The dynamics of MASs subjected to
exogenous signal v(t) is modeled as

ẋi(t) = Aixi(t) +Biui(t) + Eivi(t),

yi(t) = Cixi(t)
(1.9)

where vi(t) represents the reference input to be tracked and it is generated by
an exosystem v̇i(t) = Svi(t), wi(t) = Rvi(t) (Su and Huang, 2012; Huang and
Ye, 2014; Xiang, Li, and Hill, 2017; Adib Yaghmaie, Lewis, and Su, 2016). The
exosystem plays a role as the leader, which generates the reference signal to all
outputs of heterogeneous MASs. To do this, a subset of the N heterogeneous
MASs are able to access to the exogenous signal vi(t) by a feedback control.
Therefore, the objective is to design a distributed controller to guarantee the
local tracking error ei(t) = yi(t) − wi(t) approaches zero for all t → ∞. The
cooperative output regulation problem of linear multiagent system has been
studied using feedforward control in Su and Huang, 2012; Xiang, Li, and Hill,
2017. Extensions of this direction to heterogeneous MASs with uncertainties
were investigated in Huang and Ye, 2014, where the robust output regulation
was proposed. Moreover, a novel concept of output regulation region for het-
erogeneous MASs using state feedback was proposed in Adib Yaghmaie, Lewis,
and Su, 2016 such that selecting the controller coupling gain from this region
guarantees that the su�cient condition is always satis�ed.

� Virtual exosystem approach: The dynamics of heterogeneous MASs has form

ẋi(t) = Aixi(t) +Biui(t),

yi(t) = Cixi(t)
(1.10)

It was shown in references (Wieland, Sepulchre, and Allgöwer, 2011; Li et al.,
2015; Yang, Huang, and Wang, 2016; Hu, Liu, and Feng, 2017; Kiumarsi and
Lewis, 2017; Qian, Liu, and Feng, 2018b) that each agent has an internal ref-
erence model embedded in a controller, which is generated from a cyber com-
mand center. Those internal reference models have identical dynamics and can
be viewed as virtual systems that generate virtual reference inputs for agents.
They also interact through a network called virtual networks which have the
same structure as the physical network of heterogeneous agents. Therefore,
the distributed consensus control has a form

ui(t) = Kiξi(t) + Eivi(t)

ξ̇i(t) = Gixi(t) +Miyi(t) +Oivi(t),
(1.11)
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where vi(t) represents the reference input to be tracked and it is generated by
an exosystem

v̇i(t) = Svi(t) + Li

N∑
j=1

aij(wj(t)− wi(t))

wi(t) = Rvi(t)

(1.12)

The objective of (1.11) is to �nd a necessary or/and su�cient conditions,
which guarantee the synchronizability of the network. Moreover, the output
consensus problem of heterogeneous discrete-time MASs was studied in Li et
al., 2015; Kiumarsi and Lewis, 2017. Another direction proposes a distributed
even-triggered control protocol (Hu, Liu, and Feng, 2017; Qian, Liu, and Feng,
2018b). It is shown that all agents achieve asymptotically output consensus
with intermittent communication among agents in a network.

Up to now, the cooperative control problem of homogeneous and heterogeneous
MASs is still promised problem in the control community.

C. Nonlinear MASs
The synchronization/consensus problem studied for nonlinear MASs is di�erent

from that for homogeneous and heterogeneous MASs although there is no strict di-
vision. Speci�cally, the former is more concerned with control design methodologies.
For instance, it aims to seek a controller ui(t) for a MASs of time-varying nonlinear
dynamics

ẋi(t) = φi(xi(t), t) +Biui(t), (1.13)

A number of results has been studied under a class of globally Lipschitz condition

‖φi(xi1(t), t)− φi(xi2(t), t)‖ ≤ c‖xi1(t)− xi2(t)‖,∀xi1(t), xi2(t) (1.14)

It was shown in Yu et al., 2010 that a simple control for MASs with second-order
nonlinear dynamics, which relies only on information from direct neighbors, still
guarantees the consensus of MASs. The result also holds for general systems Li et al.,
2013; Wen et al., 2014a; Yu et al., 2018. Moreover, when the nonlinearity does not
have to satisfy the global Lipschitz-like condition which excludes some benchmark
nonlinear systems such as van der Pol systems, Du�ng systems, and so on. Then,
a distributed adaptive state feedback control law, which integrates the conventional
adaptive control technique with the adaptive distributed observer, was given in Liu
and Huang, 2017. The synchronization problem was also considered for the nonlinear
heterogeneous systems described by Euler-Lagrange equations. For example, Mei,
Ren, and Ma, 2011 developed suitable estimation and control strategies to track a
dynamic leader. The controllers proposed in Wang, 2013 guarantee synchronization
or �ocking of Euler-Lagrange systems with uncertain kinematics and dynamics or
uncertain parameters.
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1.1.2 Network Topology

In MASs, the network topology among all agents plays a crucial role in solving
cooperative issues. The objective here is to explicitly identify necessary and/or
su�cient conditions on the network topology such that cooperative issues can be
achieved under properly designed algorithms. Especially, the network topology is
considered such as �xed topology, time-varying topology, switching topology, leader-
follower, and clustered network depicted in Fig. 1.3.

Figure 1.3: The research framework of network topology of MASs.

A. Fixed topology
Many veri�able consensus algorithms have been developed based on �xed topol-

ogy in the past decade, where the close relations between the network connectivity
and consensus behavior of MASs are constructed, for example in Jadbabaie and
Morse, 2003; Olfati-Saber and Murray, 2004; Ren and Beard, 2005; Ren, 2007a; Wei
Ren and Atkins, 2007. It was shown in Jadbabaie and Morse, 2003 that, for an
undirected network of double-integrators, velocity consensus can be achieved if the
�xed graph is connected. In Olfati-Saber and Murray, 2004, the result about the
average consensus of continuous-time MASs with �xed topology was investigated,
which has shown that the strongly connected and balanced directed graphs play a
key role is solved average consensus problem. Moreover, the problem was also stud-
ied in Ren and Beard, 2005 with a �xed topology and constant weighting factors.
It is proved that the consensus can be achieved asymptotically if the union of the
directed interaction graphs contains a spanning tree frequently enough. The result
was extended to a directed network of second-order dynamics in Ren, 2007a; Wei
Ren and Atkins, 2007 and general dynamics in Hu et al., 2018; Pham et al., 2019;
Guo, Liang, and Lu, 2019, for example.

B. Switching topology
In a network of distributed agents, some of the existing communication links can

fail simply due to the existence of an obstacle between two agents, as well as the
creation of new links between nearby agents. This leads to non-�xed topologies. In
terms of the network topology, this means that a certain number of edges are added
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or removed from the graph. We note here that in the area of non-�xed topolo-
gies, the term �switching topologies� describes the case where the topology changes
over time but only switches between a �nite, known set of distinct communication
graphs. The paper Olfati-Saber and Murray, 2004 studied directed networks with
switching topologies. It shows that network of simple-integrators with switching
topologies taken from the collection of strongly connected and balanced digraphs
can asymptotically achieve average consensus for any switching signal. A weaker
condition was proposed in Ren and Beard, 2005 showing that consensus can be
achieved asymptotically if the union of the collection of interaction graphs across
some time intervals has a spanning tree frequently enough. The result was extended
to a network of double-integrators with an undirected graph in Ren, 2007b; Wen
et al., 2014b; Dong et al., 2016; Hua et al., 2019, as well as the nonlinear dynamics
Zhai and Yang, 2014, the general dynamics Wen et al., 2013; Zhu and Yuan, 2014.

In the case of randomly switching topologies, You, Li, and Xie, 2013 presented
the switching such as a time-homogeneous Markov process, whose state corresponds
to a possible interaction topology among agents. It is shown that the e�ect of switch-
ing topologies on consensus is determined by the union of topologies associated with
the positive recurrent states of the Markov process.

C. Time-varying topology
Di�erent from the "switching topologies", the �time-varying topologies� include

all networks where an in�nite set of arbitrary graph structures is considered. The
time-varying topologies are the so-called �nearest neighbor rule�. Each agent in-
teracts with all and only all agents within its limited communication radius. Such
networks always have an undirected neighborhood graph. In this sense, these results
were weaker than those for directed networks with switching topologies discussed
above. Jadbabaie and Morse, 2003 used a simple but compelling discrete-time model
of autonomous agents using nearest neighbor rule (called a Vicsek model). It is
shown that if there exists an in�nite sequence of continuous, nonempty, and bounded
time intervals such that the union of the collection of time-varying undirected graphs
across each time interval is connected (called joint connectivity condition), all agents
converge to a common steady-state provided the agents, which are all �linked to-
gether� via their neighbors with su�cient frequency as the system evolves. The
problem was further studied in Zhang, Zhai, and Chen, 2011 considering a weaker
joint connectivity condition. In Cao, Zheng, and Zhou, 2011, a necessary and suf-
�cient condition for achieving the average consensus of continuous-time agents in
undirected networks is investigated, where the joint connectivity condition de�ned
by the integral of adjacency matrix over a certain time interval. It is emphasized
that the in�nite integral connectivity is not equivalent to the piecewise joint connec-
tivity or the piecewise integral connectivity, but equivalent to the piecewise integral
K-connectivity. Other than the joint connectivity condition, it was also proved in
Hendrickx and Tsitsiklis, 2013 that convergence (not necessarily to consensus) can
be guaranteed if the time-varying topologies are cut-balanced (if a group of agents
in�uences the remaining ones, the former group is also in�uenced by the remaining
ones by at least a proportional amount). The results have further been extended for
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the time-varying nonlinear networks in some works such as Manfredi and Angeli,
2017; Manfredi and Angeli, 2018.

D. Clustered network
In cooperative control, for cooperative control strategies to be e�ective, agents

need to reach consensus on shared data. A group of agents must be able to respond to
unanticipated situations or any changes when a cooperative task is carried out. This
might result in that the agreements are di�erent from the changes in environments,
situations, cooperative tasks, or even time. To do this, a network is usually divided
into multiple sub-networks (called clusters), where information exchange exists not
only among agents in clusters but also di�erent clusters. This is more suitable
for complex practical applications, such as the energy optimization in the wireless
sensor network (Halgamuge, Guru, and Jennings, 2003; Chen and Wen, 2013), the
consensus of the opinion in the social networks (Morarescu, Martin, and Girard,
2014; Morarescu et al., 2016), and the problem of formation of multiple unmanned
aerial vehicles (Pham, Messai, and Manamanni, 2019a; Pham et al., 2019, Pham
et al., 2020b; Pham, Messai, and Manamanni, 2019b; Pham et al., 2020a; Pham,
Doan, and Nguyen, 2020). The consensus of this kind of network is called by cluster
consensus or group consensus problem.

One notes here that the di�erence between group consensus and cluster consensus
lies in their task. A cluster consensus is meant that for any initial states of the agents,
all the agents clustered network �nally reach complete consensus, while there may
or may not be a consensus within the clusters. If for any initial states of the nodes,
not only all the nodes within the same cluster reach complete consensus, but also
there is no consensus between any two di�erent clusters, then group consensus is
said to be achieved. Group consensus implies cluster consensus.

In Xiao and Wang, 2008a; Wu, Zhou, and Chen, 2009 authors shown that to
achieve the group consensus, the couplings among agents from di�erent clusters
which may be negatively weighted (which play a role are as an inhibitory mechanism
to desynchronize the motions of agents from di�erent clusters). Meanwhile, agents
within the same cluster have the positively weighted couplings, which are used for
synchronizing the agents in clusters. However, these negatively weighted couplings
may also cause some negative e�ects such as making the state trajectories of the
agents within the same cluster oscillating or even divergent. This can be considered
as one of the main reasons why positively weighted couplings among need to be
strong enough (see Yu and Wang, 2010; Xia and Cao, 2011). However, in some
realistic physical systems, the coupling strength among agents may be weak and
they are not allowed to be arbitrarily large. To handle this disadvantage, Qin and
Yu, 2013; Qin, Yu, and Anderson, 2016; Qin et al., 2017 indicated that a su�cient
condition to achieve group consensus is a directed acyclic interaction topology.

Di�erent from the group consensus problem considered above. The works in Bra-
gagnolo et al., 2014; Rejeb, Morarescu, and Daafouz, 2015; Bragagnolo et al., 2016;
Morarescu et al., 2016 considered the cluster consensus problem, where the interac-
tion among agents inside each cluster happens in continuous-time, and interaction
in inter-cluster is cooperative. In each cluster, there exists an agent called a leader
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who can exchange information outside of its cluster at some speci�c discrete-time.
The further results on cluster cosensus problem are investigated in Pham, Messai,
and Manamanni, 2019a; Pham, Messai, and Manamanni, 2019b; Pham et al., 2020c.

D. Leader-Follower topology
The leader-following scenario can be seen as a special case in the directed net-

works, which are discusssed above. In case there exists one agent in the network
without any incoming links, this agent can be regarded as the leader of the network
and is labeled by "0". In the cooperative control, due to the existence of a leader,
a distributed tracking control of MASs is proposed, where all agents from 1 to N
track to the reference trajectory, which is set by an active leader. The authors in Hu
and Hong, 2007 designed a suitable neighbor-based local controller together with a
neighbor-based state estimator to track an active leader whose velocity is unknown
to the agents. In Ni and Cheng, 2010, a local information is used to design and
analysis of the leader-following consensus is presented for both �xed and switching
interaction topologies. Other researchers proposed suitable distributed tracking con-
trol laws for networks of second-order nonlinear MASs (Haibo Du, Yingying Cheng
and Jia, 2015; Liu and Huang, 2016; Han et al., 2017b), high-order MASs ( Qin,
Yu, and Anderson, 2016; Wang and Song, 2018), and general dynamics MASs ( Li
and Jaimoukha, 2009; Yaghmaie, Lewis, and Su, 2016; Tan, Cao, and Li, 2018).

1.1.3 Constraints in MASs

As shown in Section 1.1.1, consensus always focuses on the behaviors of MASs.
Therefore, it is natural to understand that system dynamics of practical models
should be considered when studying the consensus problem in MASs. To fully �ll
the gap between studying consensus algorithms and some inherent properties or con-
straints in practical models, it is necessary to investigate consensus problems with
some practical factors, such as communication constraints (time delays, samplings,
hybrid communication), quantization, and input, state saturations, which can be
regarded as key constrained features in practical models (see Fig. 1.4).

A. Time delays
In general, time delay re�ects an important property, which is inherited in prac-

tical systems due to actuation, control, communication, and computation. Particu-
larly, it can be generated by several reasons, such as limited communication speed
when information transmission exists, the extra time required by the sensor to get
the measurement information, the computation time required for generating the
control inputs, and the execution time required for the inputs being acted. In the
literature, there are two types of time delays, which have been considered such as,
communication delay, and input delay. More precisely, if it takes time Tij for agent
i to receive information from agent j, then the cooperative control (1.1) becomes

ui(t) =
N∑
j=1

aij(xj(t− Tij)− xi(t)), (1.15)
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Figure 1.4: The research framework of contraints of MASs.

an interpretation of (1.15) is that at time t, agent i receives information from agent
j and uses data xj(t− Tij) instead of xj(t) due to the time delay. Moreover, if the
input delay for agent i is given by T pi , then the cooperative control (1.1) becomes
ui(t− T pi ). Then closed-loop form of system (1.1) is given by

ẋi =
N∑
j=1

aij(xj(t− T pi )− xi(t− T pi )), (1.16)

Because time delay might a�ect the system stability, it is necessary to study un-
der what conditions consensus can still be guaranteed even if time delay exists. In
other words, can one �nd conditions on the time delay such that consensus can be
achieved?. To do this, the e�ect of time delay on the consensuality of the network
was investigated. For example, a su�cient condition on the time delay to guarantee
consensus under a �xed undirected interaction graph is presented in Olfati-Saber
and Murray, 2004. Speci�cally, an upper bound for the time delay is derived under
which consensus can be achieved. Next, the robustness of consensus in discrete-
time single-integrator multi-agent systems to arbitrarily large delays was discussed
in Xiao and Wang, 2008b. It is shown that if there exists an arbitrary upper bound
and the union of graphs has a spanning tree, then consensus is achieved. In Münz,
Papachristodoulou, and Allgöwer, 2010; Münz, Papachristodoulou, and Allgower,
2011, linear MAS models with di�erent feedback delays, e.g., a�ecting only the
neighbor's output, or a�ecting both the agent's own and its neighbors' output has
been considered. The work in Wang, 2014 investigated the consensus problem of
networked uncertain mechanical systems subjected to nonuniform communication
delays, where interaction among agents is a directed graph containing a spanning
tree. Based on Lyapunov-like analysis and frequency-domain input-output analy-
sis, it is shown that the proposed uni�ed consensus control scheme ensures agents
achieving a scaled weighted average consensus. These results are extended for the
case of consensus of nonlinear multi-agent systems with self and communication time
delays (Ma et al., 2015), and group consensus in networked mechanical systems with
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communication delays (Yu et al., 2017a). And a stochastic consensus of MASs with
both time-delays and measurement noises is also studied in Zong, Li, and Zhang,
2019.

B. Input and state constraints
Other signi�cant and realistic issues have been encountered such as the con-

straints on the agent's inputs, states, or relative states because of the physical limi-
tations of agents. This includes, for example, the formation of vehicles with limited
speeds and limited working space, smart buildings energy control with constraints
on temperature and humidity in speci�c ranges and etc. Therefore, the cooper-
ative control for constrained MASs is not only theoretically challenging but also
practically important. When considering the constraint in cooperative control, can
the distributed algorithms reported before still be e�ective with the saturation con-
straint. This problem is pretty signi�cant since the answer to it determines whether
we should design new coordinated algorithms when the saturation constraint exists
in MASs. Motivated by these observations, the cooperative control in constrained
multi-agent coordination were widely studied. Recently, some studies have consid-
ered the cooperative control of MASs under the constraints on agent's inputs, and
states. In Nedi, Ozdaglar, and Parrilo, 2010, a constrained consensus algorithm and
distributed optimization problems were proposed, where agents state constraints are
investigated and they are required to lie in individual closed convex sets. In another
work, Wei, Xiang, and Li, 2011 studied a consensus problem of simple integrator
MASs under input constraints. Following this research line, a distributed consensus
of second-order MASs with nonconvex input constraints was addressed in Mo and
Lin, 2018. It is shown that the input constrained consensus is achieved if the graph
has a directed spanning tree. And the global consensus problem for discrete-time
MASs with input saturation constraints under �xed undirected topologies was stud-
ied in Yang et al., 2014. Another direction to deal with input and state constraints,
discarded consensus algorithms are employed (Zhou andWang, 2018). Next, in order
to achieve the global consensus in the presence of agents' inputs, states, or relative
state constraints (Nguyen, Narikiyo, and Kawanishi, 2017; Nguyen, Narikiyo, and
Kawanishi, 2018), the MASs is reformulated in form of a network of Lure systems.
Moreover, a distributed consensus of high-order continuous-time MASs with non-
convex input constraints, switching topologies, and delays was als studied in Wang
et al., 2019.

C. Hybrid communication
It has been noticed that interaction among agents in the Section 1.1.1 and Sec-

tion 1.1.2 is either continuous-time or discrete-time. Nevertheless, in several prac-
tical applications, e.g., cooperative intelligent transportation systems, robots �eet
cooperation, consensus control on a social network, etc, due to either energy con-
straints occurring in long-time interactions or communication constraints, agents
can only impulsively exchange information with their neighbors or be subjected to
abrupt changes at speci�c instants. This leads to a hybrid interaction that combines
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both continuous and discrete interactions among agents. In Guan, Wu, and Feng,
2012, a su�cient result has been derived for the impulsive consensus of �rst-order
MASs, where the graphs of continuous-time and impulsive-time topologies contain
a spanning tree. Following this research line, there are several types of research
Guan et al., 2012a; Hu et al., 2013, which have dealt with the consensus problem
of the second-order MASs under an impulsive control strategy. Moreover, inspired
by the results in Jadbabaie and Morse, 2003; Ren and Beard, 2005, the necessary
condition of consensus on graph connections among agents may require. This is
investigated in Liu, Zhang, and Xie, 2017, where the �rst-order MASs with hybrid
delay consensus protocols are described in the form of impulsive systems. However,
there still exist many challenges in investigating the cooperative problem of MASs
in hybrid communication. For example, analysis and design cooperative controls in
�xed/swithching network of agents with general dynamics system under time delays
is up to now still open questions.

D. Samplings
In MASs sampled data are often only sent to the neighbors periodically at dis-

crete time instances. A framework for studying the consensus problem of multi-agent
systems via sampled control was introduced in Xie et al., 2009b and Xie et al., 2009a
for a �xed topology and switching topologies, respectively. Two sampled data based
discrete-time coordination algorithms were studied in Polyakov, E�mov, and Perru-
quetti, 2015 and Cao and Ren, 2010 which gave necessary and su�cient conditions
on the interaction graph, the damping gain and the sampling period to guarantee
coordination. In Guan et al., 2012b, the distributed consensus problem for second-
order continuous-time multi-agent networks with sampled-data communication was
investigated. Necessary and su�cient conditions based on the stability theory of
impulsive systems and properties of the Laplacian matrix are obtained to ensure
the consensus of the controlled networks. Next, a novel distributed event-triggered
sampled-data transmission strategy, which allows the event-triggering condition to
be intermittently examined at constant sampling instants was studied in Guo, Ding,
and Han, 2014. Independent and asynchronous sampling times in a directed net-
work of continuous-time second-order agents were considered in Yu et al., 2013. In
the case of generally linear multiagent systems with aperiodic sampling intervals,
Zhang, Shi, and Yu, 2018 proposed a new consensus control subject to sampling
interval changing from a �nite set. By using the properties of Laplacian matrix and
the newly developed protocol, the containment control problem is transformed into
the stability problem of a discrete-time switched linear system.

E. Quantization
The data transferred in networks is usually rounded o� and represented with

�nite bits. Because of this, there exits a di�erence between the real data and trans-
mitted data, which may e�ect the system in terms of performance and stability.
Quantized control approach, as an e�ective control strategy, can deal with those
limitations in network systems, where uniform quantizer has been popular with re-
searchers. The authors of Kashyap, Ba³ar, and Srikant, 2007 proposed a quantized
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gossip algorithm, that forces the network to converge to a set of quantized consensus
distributions for an arbitrary initial vector and arbitrary connected graph. The term
gossip algorithm describes a control protocol where at each time instant exactly one
agent updates its state based on the information transmitted from only one of its
neighbors. Follow this research, the average consensus problem on a network of dig-
ital links based on pairwise "gossip" communications and updates was investigated
Carli et al., 2010. Moreover, uniform quantizer has been popular with researchers.
For example, Nedi¢ et al., 2009 adopted uniform quantizer to address the consen-
sus of single-integrator discrete-time MASs. The work in Yu and Antsaklis, 2012
�rst uses quantized absolute state measurements to design event-triggered consen-
sus algorithms for undirected networks with single integrator agent dynamics. The
authors prove that the quantized states of agents achieve consensus asymptotically.
In Garcia et al., 2013, the authors consider a uniform quantizer and prove that all
agents will converge to a certain ball whose radius is related to the quantization
error. Moreover, Li et al., 2014 discussed the quantized consensus problem for a
group of agents over directed networks with switching topologies. For general linear
systems, Yu et al., 2017b; Zhang et al., 2017 adopted the Lyapunov method to deal
with the quantized consensus of MASs with event-triggered strategy, where quan-
tized relative state measurements are considered. Next, the quantized control and
the event-triggered control of MASs with external disturbance on the basis of an
undirected graph was studied in Wu et al., 2018. It is shown that �Zeno behavior�
phenomenon can be excluded under the event-triggered quantized control mecha-
nisms, and the boundness of the relative state error can be adjusted by selecting the
di�erent parameters.

1.1.4 Methodologies

In order to analyze and design the consensus and formation in network topology (in-
vestigated in Section 1.1.2) of MASs with dynamics (investigated in Section 1.1.1)
with/without constraints (investigated in Section 1.1.3), the following methods, in-
cluding matrix theory approach, frequency-domain method, and Lyapunov theory
approach, are widely deployed (see Fig. 1.5).

A. Matrix theory approach
Due to the nature of MASs, matrix theory has been frequently used in the stabil-

ity analysis of their distributed coordination. When applying this kind of methods,
the state-transition matrices of MASs are usually transformed into stochastic ma-
trices ( see Jadbabaie and Morse, 2003; Ren and Beard, 2005). For example, given
T as a sampling period, the closed-loop form of system (1.1) is given by

xi(k + 1) =
1∑N

j=1 aij[k]Gij[k]

N∑
j=1

aij[k]Gij[k]xj(k), i = 1, 2. · · · , N. (1.17)

where k ∈ {1, 2, · · · } is the discrete-time index, aij[k] > 0 are positive constants,
and Gij[k] is 1 if information �ows from agent j to agent i, and 0 otherwise.
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Figure 1.5: The research framework of cooperative control of MASs.

Equation (1.17) can be written in matrix form as x(k + 1) = D[k]x(k), where
x = [x1, · · · , xN ]T , D = [dij] with dij = aij[k]Gij[k]/

∑N
j=1 aij[k]Gij[k], and D[k] is

called state-transition matrices. Based on the production convergence property on
an in�nite sequence of stochastic matrix, consensus can be ensured. In addition,
the continuous-time cosensus scheme was also proposed in Ren and Beard, 2005.
These resutls was extended for formation tracking with a time-varying reference in
Ren, 2007b; Ren, 2008. Moreovere, the matrix theory approach can also deal with
the consensus problem with hybrid communication in �xed and switching topologies
(Guan, Wu, and Feng, 2012; Liu, Zhang, and Xie, 2017).

B. Frequency domain method
Frequency domain methods are also powerful tool to solve the consensus prob-

lems and analyze the consensusability. By some proper transformations, consensus
problems can be bridged to the stabilization problems of error dynamics. And the
frequency domain methods like Nyquist criterion (Olfati-Saber and Murray, 2004;
Tian and Liu, 2008; Tian and Liu, 2009), stability margin optimization (Gu, Mari-
novici, and Lewis, 2012; Qi, Qiu, and Chen, 2013; Chen and Shi, 2020), and pole
analysis (You and Xie, 2011; Chen and Shi, 2017; Hengster-Movric and Lewis, 2013;
Wang, 2014; Ma et al., 2015), can be employed. More precisely, in Tian and Liu,
2008, the �rst-order multi-agent system with input and communication delays has
been studied based on the frequency-domain analysis. Based on the symmetry of
system structure allowing one to obtain much less conservative consensus condi-
tion. However, a very small perturbation may destroy the symmetry. Thus, the
robustness of multi-agent systems becomes a very important issue, which has been
addressed in Tian and Liu, 2009. In this paper, the robust leader-following consen-
sus algorithm for second-order multi-agent systems with diverse input delays was
investigated. Based on some early results for the congestion control system with
diverse communication delays, decentralized conditions with some preconditions are
obtained for the multi-agent system with symmetric coupling weights.

Moreover, some gain margins-based frequency domain consensus results are de-
veloped only considering undirected communication topologies. Qi, Qiu, and Chen,
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2013 further explored the case of systems with directed topologies based on the re-
sult in Gu, Marinovici, and Lewis, 2012 by considering the gain and phase margins
optimization problem. However, the problem of determining the stability margins
and regions, especially for directed communication topologies, still requires further
investigation. Therefore, by bridging the Laplacian spectra-based stability region to
gain and phase margins, a stability margin-based results for agents of single-input
dynamics was established (Chen and Shi, 2020). The result is further extended to a
condition directly depending on the unstable poles of the agents' dynamics, in which
the conservativeness is reduced by introducing an appropriate tuning parameter.

Considering the pole analysis, a new input-output property of the strictly proper
transfer function was introduced in Wang, 2014. Moreover, via a constructive ap-
proach in the frequency domain, the limit value of the proper transfer function
was obtained. Accordingly, thanks to Lyapunov-like analysis and frequency-domain
input-output analysis, it is shown that a uni�ed consensus control framework ensures
consensus of multiple mechanical systems with communication delays on directed
graphs containing a spanning tree. Following this research line, Ma et al., 2015
solved the consensus problem of nonlinear second-order MASs with parametric un-
certainties on a directed graph containing a spanning tree. Next, the agent with
general linear systems under time-varying delays in undirected and �xed topology
was studied in Chen and Shi, 2017. By analyzing the delay-dependent gains, and
in light of the small gain theorem, su�cient frequency domain consensus criteria for
both continuous and discrete-time systems are established.

C. Lyapunov theory approach
Although matrix theory is a relatively simple approach for stability analysis

of the formation and consensus problem, it is not applicable in many consensus
and formation producing scenarios, especially with general dynamics and nonlinear
systems. It is then natural to consider the Lyapunov function approach. The basic
idea of Lyapunov stability theory-based methods is to transform the original multi-
agent dynamics to associate error dynamics. Then the consensus condition can be
evaluated by the properly constructed Lyapunov function. More specially, with a
�nal consensus value (1.4) in Section 1.1.1 the disagreement vector δ,

δ = x− x?1, (1.18)

was employed to convert the consensus problem into stability systems (Olfati-Saber
and Murray, 2004). These results was also further extended for �nite-time consensus
(Wang and Xiao, 2010; Chen et al., 2011), event-trigger consensus control (Meng
and Chen, 2013; Yi et al., 2019). For general dynamics, Zhongkui Li et al., 2010
also used the disagreement vector, related to the left and right eigenvector of the
Laplacian matrix corresponding to the network graph. It is shown that the consensus
problem can be indirectly solved by considering the stability systems. This kind of
methods not only can be applied to LTI systems or linear systems but also can be
used to deal with time-varying systems (Dong et al., 2015; Dong et al., 2016; Dong
et al., 2018) or nonlinear systems (Ji and HaiBo, 2017; Yu et al., 2013; Huang and
Ye, 2015).
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In addition, Lyapunov stability theory-based methods are compatible to many
advanced control schemes, like adaptive control (Li, Chen, and Ding, 2016; Liu and
Huang, 2017; Mao, Akyol, and Zhang, 2017), event-triggered consensus (Almeida,
Silvestre, and Pascoal, 2017; Hu, Liu, and Feng, 2017; Qian, Liu, and Feng, 2018a).
Moreover, many researchers working in the �eld of consensus of multi-agent systems
with delays use sums of Lyapunov-Krasovskii functionals or Lyapunov-Razumikhin
functions. The former has been applied to investigate single integrator networks in
Hu and Hong, 2007; Qin, Gao, and Zheng, 2011; Di Bernardo, Salvi, and Santini,
2015; Han et al., 2017a. The main disadvantage of using Lyapunov-Krasovskii
functions is that the underlying graph needs to be undirected or weight-balanced.
Lyapunov- Razumikhin functions are used to obtain results for more general multi-
agent systems of single integrators and directed, uniformly quasi-strongly connected
graphs in Salvi, Santini, and Valente, 2017; Santini et al., 2017.

1.2 Research Motivations

According to the four aspects discussed in this chapter, the research on cooperative
control of MASs is a broad area. In this thesis, our research framework foccus on the
dynamics of MASs (homogeneous and heterogeneous - presented in Section 1.1.1)
with constraints (hybrid communication and state constraints - presented in Section
1.1.3) in the clustered network (see in Section 1.1.2) shown in Fig. 1.1 (violet
color). Because of the mentioned dynamics, constraints, and clustered network,
the system performance might be degraded. Even worse, the stability could be
destroyed. Therefore, it is of great importance and challenge to design controllers
to guarantee the desired performance under these above considerations.

In the subsection, we introduce the clustered nerwork (i.e., networks divided into
subnetworks, also called clusters, where each node of the network graph represents
an agent with linear dynamics. Each subnetwork is represented by a directed graph.
Moreover, the agents in each cluster cannot communicate with agents from other
clusters, except one single agent of each subnetwork, which is called a leader. These
leaders interact at instant times via �xed and strongly connected directed graph).
Then, some open research questions are given.

1.2.1 Cluster networks and MAS

In the sequel, we consider that the network G is subdivided into m directed (undi-
rected) subnetworks Cτ ,∀τ ∈ {1, · · · ,m} represented by the graphs G1, · · · ,Gm
such that G1 = (V1, E1), · · · ,Gm = (Vm, Em), where V = V1 ∪ V2 ∪ . . . ∪ Vm and
Vτ ∩ Vg = � for all τ, g = 1, · · ·m, τ 6= g and E = E1 ∪ E2 · · · ∪ Em. The com-
munication graph of each subnetwork Gτ is represented by a Laplacian matrix
Lτ . Each cluster has a speci�c agent called the leader, and denoted in the fol-
lowing by lτ ∈ Vτ ,∀τ ∈ {1, · · · ,m}. The remaining agents are called followers
and are denoted by fh. The set of leaders will be denoted by I = {l1, · · · , lm}.
At particular time instant tk, k ∈ N, tk ≥ 0 of a time sequence {tk} that satis�es
t1 < t2 < · · · , limtk→∞tk =∞, the leaders interact following a prede�ned interaction
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Figure 1.6: The clustered network of 15 agents

map El ⊂ I × I. The leaders communication graph Gl = (I, El) is also supposed to
be a undirected graph. Finally, without loss of generality, each leader is considered
as the �rst agent of its cluster

Cτ = {lτ , fmτ−1+2, · · · , fmτ}, ∀τ ∈ {1, · · · ,m}, (1.19)

where m0 = 0,mm = N and the cardinality of Cτ is given by ‖Cτ‖ = nτ = mτ −
mτ−1,∀τ ≥ 1.

Moreover, Pl ∈ Rm×m is a row stochastic matrix associated to the graph Gl is
de�ned as 

Pl(i,j) = 0, if (i, j) /∈ El
Pl(i,j) > 0, if (i, j) ∈ El; i 6= j
m∑
j=1

Pl(i,j) = 1, ∀i = 1, · · · ,m
(1.20)

and L has the following block diagonal structure

L =

 L1 · · · 0
...

. . .
...

0 · · · Lm

 ,Lτ ∈ RNτ . (1.21)
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Example 2.2: To illustrate the notation (1.19), we consider a simple network of 15
agents partitioned in 3 clusters having 5 elements depicted in Fig. 1.6. Then

C1 = {l1, f1, f2, f3, f4}, C2 = {l2, f7, f8, f9, f10} and C3 = {l3, f11, f13, f14, f15}

and the set of leaders will be denoted by I = {l1, l2, l3}. The leaders interact
following a prede�ned interaction map El ⊂ I×I. Thus, the leaders communication
graph is de�ned by Gl = (I, El).

Moreover, Pl is a row stochastic matrix associated to the graph Gl is given by

Pl =

0.4 0.2 0.4
0.2 0.3 0.5
0.6 0.1 0.3

 ∈ R3×3 (1.22)

and L has the following block diagonal structure

L =

 L1 0 0
0 L1 0
0 0 L3

 ∈ R15×15, (1.23)

where L1 = Lc,L2 = Lb,L3 = Ld, are determined in Example B.1.

1.2.2 Open Research Questions

In the subsection, we would like to propose the following open research questions.

1) The �rst question for considering the analysis consensus in a clustered network
arises from problems that would bene�t from a division of a large network into
subnetworks (called clusters). They are almost all the time isolated one from
another, such as the energy optimization in the wireless sensor network (see
Halgamuge, Guru, and Jennings, 2003; Chen and Wen, 2013), or the consen-
sus of the opinion in the social networks (Jadbabaie and Morse, 2003). In
each cluster, there exists an agent called a leader who can exchange informa-
tion outside of its cluster at some speci�c discrete-time, while the interaction
among agents inside each cluster happens in continuous-time. The main dis-
tinctness of this question compared to the analysis consensus in Jadbabaie
and Morse, 2003; Olfati-Saber and Murray, 2004; Ren and Beard, 2005 lies
on two main aspects: 1) The communication among agents in the network
either continuous-time or discrete-time, meanwhile the communication in the
consideration network is hybrid (see Section 1.1.3); 2) The network is com-
posed/ divided of/into by several clusters (see Section 1.1.2). This leads to
the problem that although each cluster can achieve consensus, the consensus
of the overall network is not guaranteed. Thus, thanks to the results from the
matrix theory approach in Section 1.1.4 and algebraic graph theory, this thesis
provides a solution to this question.

2) In some literature on consensus, for instance in Olfati-Saber and Murray, 2004;
Wei Ren and Atkins, 2007; Zhongkui Li et al., 2010, one of the interesting
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research problems is a �nal consensus value of the network. It relates to the
dynamics of agents, the communication topology, and the initial conditions.
For the clustered network, due to the impulsive e�ects on the communication of
leaders as well as the change of structure of the Laplacian matrix corresponding
to the network, the �nal consensus value problem is more complex. Therefore,
the second question is to state what the global consensus value is ?. This thesis
provides a approach to address a such issue.

3) The cooperative behavior of linear MASs with general system dynamics, re-
lated Section 1.1.1, in the clustered network is de�ned by not only the dy-
namical control protocols concerning the isolated clusters but also the discrete
interactions among the leaders. This evidence makes a consensus problem in
the clustered network with general linear agents much more challenging than
that of the integrator case. Thus, the next question is to state under which
conditions the considered network of general linear agents can achieve and
maintain consensus behavior. Another challenge we face is how to rebuild the
full state information of each agent by using only the local relative output
information, and discrete interaction between leaders' clusters. Based on the
Lyapunov theory approach in Section 1.1.4, we provide a novel approach to
address such issues.

4) The signi�cant and realistic issues have been encountered such as the con-
straints on the agent's inputs or states because of the physical limitations of
agents (investigated in Section 1.1.3). Moreover, the formation problem is also
an active research subject in cooperative control. Thus, the next questions are
how to design a robust formation control and which conditions such that the
considered network of general linear agents under state constraints can reach
the desired formation. Thanks to results from the matrix theory and Lya-
punov theory approaches given in Section 1.1.4, these problem are addressed
in this thesis.

5) How to achieve synchronization in the clustered network of di�erent agents
dynamics (heterogeneous MASs mentioned in Section 1.1.1) under di�erent
disturbances using output is an open research question. This thesis provides
a novel approach to address such issues based on Lyapunov theory approach
(see Section 1.1.4).

In this thesis, our objective is to address the above identi�ed gaps in the literature.
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Résumé du Chapitre 2

Ce chapitre aborde le problème du consensus dans les réseaux divisés en sous-réseaux
(également appelés clusters), où chaque n÷ud du graphe de réseau représente un
agent à dynamique linéaire. Un protocole de contrôle basé sur l'observation impul-
sive est proposé (correspondant à la troisième question de la section 1.2). Sur la base
de ce protocole proposé, la dynamique collective des réseaux de MAS est décrite
sous le terme de systèmes hybrides. La caractérisation de la valeur consensuelle
globale de ce type de réseaux est analysée (correspondant à la deuxième question
de la section 1.2). Ensuite, nous montrons que le problème de consensus peut être
indirectement résolu en considérant la stabilité d'un système équivalent. Esnuite,
une condition su�sante pour la stabilité asymptotique de ce système équivalent est
proposée. Nous développons un algorithme qui calcule les paramètres d'interaction
entre, le gain de rétroaction, les matrices de gain des observateurs et les poids de
couplage. Des résultats de simulation sont donnés pour démontrer l'e�cacité des
résultats théoriques.



2.1. Related Work and Contributions 43

This chapter addresses the problem of consensus in networks divided into sub-
networks (also called clusters), where each node of the network graph represents an
agent with linear dynamics. An impulsive observer-based control protocol is pro-
posed (corresponding to the third question in Section 1.2). Based on this proposed
protocol, the collective network dynamics of MASs is described in the term of hybrid
systems. The characterization of the global consensus value of this kind of networks
is analyzed (corresponding to the second question in Section 1.2). Secondly, we
show that the problem of consensus design for clustered networks can be indirectly
solved by considering the stability of an equivalent system. Then, a su�cient con-
dition for the asymptotical stability of this equivalent system is proposed. Finally,
an algorithm properly selects the interaction network of the leaders, feedback gain,
observer gain matrices, and coupling weights. This allows agents in the clustered
network to enclose a prior �xed target. Simulation results are given to demonstrate
the e�ectiveness of the theoretical results.

2.1 Related Work and Contributions

In the last decade, the problem of consensus for networked MASs has attracted in-
creasing consideration in a variety of �elds such as engineering, biology, sociology
and so on (Nguyen, Messai, and Manamanni, 2017, Bragagnolo, Messai, and Man-
amanni, 2019 for example). The primary objective in the consensus problems is to
design relevant protocols and algorithms such that agents reach an agreement. For
instance, the consensus problem for �rst-order and second-order dynamics systems
based on continuous-time models, such as Olfati-Saber and Murray, 2004; Qin, Gao,
and Zheng, 2011; Wang et al., 2019, or discrete-time models, such as Ren and Beard,
2005; Jadbabaie and Morse, 2003; Zhou and Wang, 2009; Moreau, 2005, are dis-
cussed in di�erent frameworks: directed or undirected networks, �xed or switching
topology, as well as communication with delays. Moreover, the consensus problem
for agents with general linear dynamics is also investigated in Zhongkui Li et al.,
2010; Zhang, Lewis, and Das, 2011; Nguyen, 2017; Qian, Liu, and Feng, 2018a; Liu
and Yang, 2017; Su et al., 2019. In these works the distributed consensus protocols
Zhongkui Li et al., 2010; Zhang, Lewis, and Das, 2011 were designed by utiliz-
ing relative information of the �xed communication graph, and the controller gains
were obtained using LQR optimal control method. However, Zhongkui Li et al.,
2010; Zhang, Lewis, and Das, 2011 considered only a local LQR performance in-
dex. Thus, an approach using a global LQR performance index was introduced in
Nguyen, 2017. Next, the event-triggered control in Qian, Liu, and Feng, 2018a was
introduced to solve the problem of the energy resourse constraints in �xed network
of linear MASs with external disturbances. Alternatively, the consensus problem in
switching topologies was addressed in several works Liu and Yang, 2017; Su et al.,
2019. Accordingly, Su et al., 2019 studied the semi-global output consensus problem
for multiagent systems depicted by discrete-time dynamics subject to external dis-
turbances and input saturation. Among the aforementioned works, the exchanging
information among agents in the network is considered as continuous or discrete.
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In several practical applications of MASs, the communication network is parti-
tioned into several groups or clusters. This includes for example the tra�c control by
consensus on the speed, vehicles platooning in the intelligent transportation systems
(Jia and Ngoduy, 2016; Li et al., 2018), or the consensus control on �xed topology
social network (i.e., no new person leave or join a group) (Yaghmaie et al., 2017),
where individuals can change their opinions by interacting with individuals outside
of their community. Moreover, another issue could concern the communication con-
straints, where agents can be either subject to abrupt changes at speci�c instants
(Lu, Ho, and Cao, 2010; Guan, Wu, and Feng, 2012; Liu, Zhang, and Xie, 2017)
or can only exchange information in an impulsive way with their neighbors. For
those scenarios, the typical results of the works mentioned above cannot be applied
directly to achieve consensus.

Motivated by both theoretical and practical issues mentioned above, this research
focuses on clustered networks of agents with continuous intra-cluster and discrete
inter-cluster communications. Two basic questions can be raised: The �rst question
is to state under which conditions the network of agents can achieve and maintain
consensus behavior ?, and the second question is to state what the global consensus
value is ?. In order to �nd the answer to the �rst question, in Bragagnolo et al.,
2016, the authors proposed a quasi-periodically reset strategy and provide some LMI
conditions that guarantee the global uniform exponential stability of the consensus
of systems with subnetwork represented by directed and strongly connected graphs.
When the reset instants are event-triggered, i.e., de�ned by the occurrence of speci�c
events, the su�cient conditions for consensus were proposed in Morarescu et al.,
2016. The second question was investigated in Bragagnolo et al., 2016 for agents
with a simple integrator. However, the �nal global consensus value of agents with
general linear dynamics is still an open problem.

Moreover, most of the literature considers the consensus of cluster-divided MASs
only with integrator dynamics rather than general system dynamics. Therefore, in-
stead of investigating the consensus problem of the clusters-divided network for
agents with integrator dynamics, we focus on a more general model. Because there
are only interactions among clusters at the speci�c instants tk, the cooperative be-
havior of a linear multi-agent system in the clustered network is de�ned by not only
the dynamical control protocols concerning the isolated clusters but also the dis-
crete interactions among the leaders. This evidence makes a consensus problem in
the clustered network with general linear agents much more challenging than that
of the integrator case, which is also indicated in Pham, Messai, and Manamanni,
2019c; Pham et al., 2020b. Another challenge we face is how to rebuild the full
state information of each agent by using only the local relative output information,
and discrete interaction between leaders' clusters. Motivated by the observer design
approach for a single system (Zhongkui Li et al., 2010 and Li et al., 2011a; Wen
et al., 2017; Li et al., 2011b; Wan et al., 2017), an impulsive distributed observer,
which takes into account continuous intra-cluster and discrete inter-cluster commu-
nications, is designed for each agent. This impulsive observer online estimates its
full state information. Since the separation principle can not be satis�ed for con-
troller and observer design in this hybrid system, a Lyapunov function-based design
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approach is approved. Furthermore, the target enclosing problem (Zheng, Liu, and
Sun, 2015; Dong et al., 2018) is also considered by designing the interaction among
leaders' clusters.

The above-mentioned problems and limitations mainly motivate this work, whose
main contributions are threefold.

� The characterization of the global consensus value in the considered framework
is analyzed. We show that the value of global consensus depends only on the
dynamics of each agent, the graphs of clusters, the interaction between leaders,
and the initial conditions.

� An impulsive observer-based control, which uses only the local relative output
information, and discrete interaction between leaders' clusters, is designed.
Then, we show that the consensus design for clustered networks can be indi-
rectly solved by considering the stability of an equivalent system. To study
the stability of this equivalent system, we propose an algorithm to suitably
choose the feedback and observer gain matrices and coupling weights in the
form of some LMIs.

� The interaction among leaders' clusters, ensuring agents in clustered networks
enclose a prescribed target, is designed.

2.2 Problem Formulation

2.2.1 Impulsive Observer-based Control

Suppose that there is a group of N linear identical agents that interact inm clusters.
The dynamics of each agent i is described by

ẋi = Axi +Bui, yi = Cxi, (2.1)

where xi = [xi,1, · · · , xi,n]T ∈ Rn is the state, ui ∈ Rp is the control input, and
yi ∈ Rq is the measured output.

According to (1.19), we concede that each agent has a vector state denoted by
xlτ = [xlτ,1 , · · · , xlτ,n ]T ∈ Rn for the leaders lτ and xfh = [xfh,1 , · · · , xfh,n ]T ∈ Rn for
the followers fh,∀τ 6= h = 1, · · · , N .

As mentioned above, all agents in a cluster are connected, and the clusters in-
teract together via their leaders at some instant times tk. The design of controller
and observer will consider the information exchanged among agents. Di�ering from
Zhongkui Li et al., 2010; Li et al., 2011b; Li et al., 2011a, an impulsive observer,
which deals with continuous intra-cluster and discrete inter-cluster communications,
is introduced. This observer ensures not only consensus of states, but also conver-
gences of observation errors. The following impulsive observer for the ith agent is
constructed:

˙̂xi = Ax̂i +Bui +H(ŷi − yi) + qLξi, , t ∈ (tk−1, tk),

ŷi = Cx̂i, (2.2)
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and the interaction between the leader's states of the observer after the reset time
can be described by

x̂li(tk) =
m∑
j=1

(Pl(i,j) ⊗ In)x̂lj(t
−
k ), t = tk, (2.3)

where Pl ∈ Rm×m is a row stochastic matrix associated to the graph Gl, represented
in (1.20), and x̂i = [x̂i,1, · · · , x̂i,n]T ∈ Rn is the state of observer, H,L ∈ Rn×q denote
the observer gain matrices, and q > 0 is called a coupling gains. ξi is the relative
output estimation output of ith agent, and is de�ned as follows:

ξi =
N∑
j=1

aij[(ŷj − yj)− (ŷi − yi)], (2.4)

where aij are entries of the adjacency matrix. Moreover, due to ξi is based on
information exchanges from neighboring nodes, this impulsive observer (2.2)�(2.4)
is di�erent from the centralized architecture.

Next, an impulsive observer-based control protocol for a clustered network is
designed, where only the leaders of these clusters can communicate together at the
reset time tk,

xli(tk) =
m∑
j=1

(Pl(i,j) ⊗ In)xlj(t
−
k ), t = tk. (2.5)

The protocol herein designed considers that each agent has access to the relative
estimated state measurement of its neighbors, and is given by

ui = pK
N∑
j=1

aij(x̂j − x̂i), t ∈ (tk−1, tk), (2.6)

where aii = 0 and aij > 0 if agent i can receive information from agent j and 0
otherwise. p > 0 ∈ R is called a coupling gains or weights, which can be regarded as
a scaling factor on the communication graph G, and K ∈ Rp×n denote the feedback
gain matrices.

For the ith agent, the observation error vector is de�ned ei = xi − x̂i, thus it
follows

ėi = (A+HC)ei + qLC

N∑
j=1

aij(ej − ei), t ∈ (tk−1, tk),

eli(tk) =
m∑
j=1

(Pl(i,j) ⊗ In)elj(t
−
k ), t = tk. (2.7)
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Then, by using (2.6), system (2.1) can be rewritten as

ẋi = Axi+pBK

[
N∑
j=1

aij(xj − xi)−
N∑
j=1

aij(ej − ei)

]
, t ∈ (tk−1, tk). (2.8)

Finally, the hybrid dynamics of system (2.1) under the impulsive observer-based
control protocol (2.6) and the interaction between leaders (2.5) can be rewritten as

żi = Azi −
N∑
j=1

lijHzj, t ∈ (tk−1, tk),

zli(tk) =
m∑
j=1

(Pl(i,j) ⊗ I2n)zlj(t
−
k ), t = tk

(2.9)

where zi =

[
xi
ei

]
∈ R2n, A =

[
A 0
0 A+HC

]
∈ R2n×2n, and H =

[
pBK −pBK

0 qLC

]
∈

R2n×2n.
It can be seen that the evolution of the dynamic system described by (2.9) is

in�uenced by the events that happen at the reset moments. Thus, the evolution of
the whole system can be viewed as a hybrid system that evolves as follows: during
interval time (tk−1, tk), the interaction among nodes in each cluster Cτ is related
only to the graph Gτ . However, at each instant time tk, the leaders update their
states instantaneously according to the topology of Gl. The objective of the above
collaboration is to achieve a speci�c global objective namely consensus de�ned as
follows.

De�nition 2.2.1 The consensus of system (2.9), is said to be reached if there exists
an impulsive observer-based control protocol (2.6), such that

lim
t→∞
‖xi − xj‖ = 0, ∀i, j = 1, · · · , N (2.10)

lim
t→∞
‖xi − x̂i‖ = 0, ∀i, j = 1, · · · , N, (2.11)

for all initial conditions.

Assumption 2.2.1 Graph Gτ ,∀τ ∈ {1, · · · ,m} is strongly connected.

2.2.2 Useful Lemmas

In the sequel, the following lemma are considered.

Lemma 2.2.1 (Olfati-Saber, Fax, and Murray, 2007) Let Pl be a row stochastic
nonnegative matrix with left and right eigenvectors w and 1m respectively, satisfying
Pl1m = 1m, w

TPl = wT, and 1T
mw = 1.
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Lemma 2.2.2 (Yu et al., 2010) Suppose Assumption 2.2.1 holds. Then, there exists
a positive vector θτ = [θ1, · · · , θNτ ]T ∈ RNτ such that

ΘτLτ + LT
τ Θτ ≥ 0, ∀τ ∈ {1, · · · ,m}, (2.12)

where Θτ = diag{θ1, · · · , θNτ} ∈ RNτ×Nτ . Moreover, the general algebraic connec-
tivity is de�ned by

aτ (Lτ ) = min
θTτ x=0,x 6=0

xT(ΘτLτ + LT
τ Θτ )x

2xTΘτx
(2.13)

where θTτ Lτ = 01×Nτ ,
∑Nτ

i=1 θi = 1.

Remark 2.2.1 Assumption 2.2.1 is needed to guarantee that the Laplacian matrix
Lτ of Gτ , τ ∈ {1, · · · ,m} satis�es the following proprieties Lτ1Nτ = 0, rTτ Lτ = 0 and
rTτ 1Nτ = 1, where 1Nτ , and r

T
τ = 1

Nτ
1Nτ are the right and left eigenvectors of Lτ

associated with zero eigenvalue, respectively.

The reminder of this chapter will deal with the following problems: Consider a
group of N agents with their auxiliary systems de�ned in (2.9), and suppose that
Assumption 2.2.1 holds. We now are interested in the solution of the following
problems.

Problem 1 Characterization of the global consensus value z∗.

Problem 2 Design of an impulsive observer-based control protocol (2.6) such that
the hybrid systems (2.9) satis�es De�nition 2.2.1.

Problem 3 Design of a row stochastic matrix Pl ∈ Rm×m and an impulsive observer-
based control protocol (2.6) such that the agents of clustered networks enclose a pre-
scribed target z∗.

2.3 Agreement Behavior Analysis

This section will focus on Problem 1. We �rstly show that under the impulsive
observer-based control protocol (2.9) each cluster, has a local agreement, which
is piecewise constant. In the following, our consideration focuses on analyzing the
changing of the local agreement value at instant times tk. The global consensus value
z? is determined based on the set of local agreements of clusters and interaction
between the leaders of these clusters, respectively. Particularly, we show that it
depends on the system dynamics, the initial conditions and the interaction between
the leaders.

2.3.1 Local Agreement Behavior

If one considers the consensus problem of each cluster, without taking into account
the interaction between the clusters at the instant time tk, a su�cient condition
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that guarantees the local agreements (i.e., the consensus in each cluster) is given in
the following Lemma 2.3.1, which is formulated in the same way as in Zhongkui Li
et al., 2010.

Lemma 2.3.1 Consider the Cτ represented by a graph Gτ satisfying the Assumption
2.2.1, the protocol (2.9) solves the consensus problem for the cluster Cτ if and only
if the matrices A−λτ,ipBK and A+HC−λτ,iqLC are Hurwitz for all the non-zero
eigenvalues λτ,i of the Laplacian Lτ of Gτ . Moreover, the local consensus value of
the cluster Cτ is

z?τ (t) = (rTτ ⊗ eAt)zτ (0),∀τ ∈ {1, · · · ,m}. (2.14)

where rτ ∈ RNτ is such that rTτ Lτ = 01×Nτ and rTτ 1Nτ = 1.

Proof 2.3.1 We consider the local agreement of cluster Cτ , τ = 1, · · · ,m. Using the
Eq. (2.9) with i = 1, · · · , Nτ and the global model of cluster Cτ can be expressed as
the following

żτ = (INτ ⊗A− Lτ ⊗H)zτ (2.15)

the disagreement vector is also used ξτ = [(INτ − 1Nτ r
T
τ )⊗ In]zτ , (2.15) becomes

ξ̇τ = (INτ ⊗A− Lτ ⊗H)ξτ (2.16)

Since 1Nτ and rTτ are the right and left eigenvectors of Lτ , v = 1, · · · ,m associated
with the zero eigenvalue, respectively. Therefore, there exists a matrix Vτ ∈ RNτ×Nτ

such that V −1
τ LτVτ = Λτ is diagonal. Then we also introduce a new variable ψτ =

(V −1
τ ⊗ In)ξτ , the Eq. (2.16) is equivalent to

ψ̇τ = (V −1
τ ⊗ In)(INτ ⊗A)ξτ − (V −1

τ ⊗ In)(Lτ ⊗H)ξτ
= (INτ ⊗A)(V −1

τ ⊗ In)ξτ − (Λτ ⊗H)(V −1
τ ⊗ In)ξτ

= (INτ ⊗A− Λτ ⊗H)ψτ

(2.17)

Choosing Vτ = [1Nτ Yτ ];V
−1
τ =

[
rTτ
Wτ

]
, It is easy to recognize that ψv,1 = (rTτ ⊗

In)ξτ = 0 and the elements of the state matrix of (2.17) are block diagonal. Hence,
ψv,i; i = 2, · · · , Nτ converge asymptotically to zero if and only if the following
subsystems

ψ̇τ,i = (A− λτ,i ⊗H)ψτ,i

are asymptotically stable. By using H in (2.9), the matrices A− λτ,i ⊗H have the
following form [

A− pλτ,iBK pBK
0 A+HC − qλτ,iLC

]
; i = 2, · · · , Nτ

Therefore, the system (2.16) is asymptotically stable i� A−pλv,iBK and A+HC−
qλτ,iLC, i = 2, · · · , Nτ are Hurwitz. Then (2.15) will be reached consensus.
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Next, we show that the local agreement of cluster Cτ , the solution of Eq. (2.15)
can be obtained as

zτ (t) = e(INτ⊗A−Lτ⊗H)tzτ (0)

= [1Nτ ⊗ I2n Yτ ⊗ I2n]e(INτ⊗A−Λτ⊗H)t

[
rTτ ⊗ I2n

Wτ ⊗ I2n

]
zτ (0)

= [1Nτ ⊗ I2n Yτ ⊗ I2n]

[
eAt 0
0 e(INτ−1⊗A−ΛNτ−1⊗H)t

] [
rTτ ⊗ I2n

Wτ ⊗ I2n

]
zτ (0)

= (1Nτ r
T
τ )⊗ eAtzτ (0) + (Yτ ⊗ I2n)e(INτ−1⊗A−ΛNτ−1⊗H)t(Wτ ⊗ I2n)zτ (0)

(2.18)

Because A − pλτ,iBK and A + HC − qλτ,iLC; i = 2, · · · , Nτ are Hurwitz corre-
sponding to (INτ−1 ⊗ A − ΛNτ−1 ⊗ H) is Hurwitz, thus e(INτ−1⊗A−ΛNτ−1⊗H)t → ∞
when t→∞. Then, one has

zτ (t)→ (1Nτ r
T
τ )⊗ eAtz(0) as t→∞

Remark 2.3.1 According to the dynamics of system (2.9), if this system achieves
consensus and the corresponding local consensus value is z?, then z?1m belongs to
the same subspace. In addition, we see that even if a local agreement of the clusters
is achieved, the value of the local agreement will change at the reset time tk.

(rTτ ⊗ eAt)zτ (tk) 6= (rTτ ⊗ eAt)zτ (tk−1),∀τ ∈ {1, · · · ,m}.

Therefore, the global consensus can be achieved only if the local agreements converge.

2.3.2 Global Agreement Behavior

Before the characterization of the global consensus value, let us introduce the vectors
z? ∈ R2mn and w ∈ Rm as following

z? = [z?1 , z
?
2 , · · · , z?m]T ∈ R2mn,

w = [w1, w2, · · · , wm]T ∈ Rm,
(2.19)

where z?τ , τ ∈ {1, · · · ,m} represents local agreement of cluster Cτ and w is the left
eigenvector of Pl associated with the eigenvalue 1 such that wT1m = 1.

Let us also introduce a matrix corresponding to the left eigenvectors of the
clusters

Q =

 rT1 ⊗ eAt · · · 0
...

. . .
...

0 · · · rTm ⊗ eAt

 ∈ R2mn×2Nn . (2.20)

In addition, according to the expressed structure of (1.19), we assume that each
vector rτ , satisfying rTτ 1Nτ = 1, can be decomposed in its component rτ,l (rep-
resenting the leader of cluster Cτ ) and the remaining of its components grouped
in the vector rτ,f (representing the followers of cluster Cτ ). Particularly, rTτ =
[rTτ,l, r

T
τ,f ]; rTτ ⊗ eAt = [rTτ,l ⊗ eAt, rTτ,f ⊗ eAt].
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We also introduce the following vector

µT = φT ⊗ (eAt)−1 ∈ R2n×2mn, (2.21)

where φT = [φ1, · · · , φτ , · · · , φm] ∈ R1×m and φτ = wτ/rτ,l; ∀τ ∈ {1, · · · ,m}.
Based on the above de�nitions, we are now able to give our �rst result concerning

the global consensus value.

Theorem 2.3.1 Consider a network of clusters Cτ represented by the graphs Gτ ,∀τ ∈
{1, · · · ,m} satisfying Assumption 2.2.1. If the network represented by system (2.9)
achieves a consensus, then the global consensus value is:

z? =
eAtµTQz(0)∑m

τ=1 φτ
. (2.22)

Proof 2.3.2 Let us de�ne a permutation matrix M such that Q(M ⊗ I2n)T =
[Q1,Q2] where

Q1 = Q1 ⊗ eAt ∈ R2mn×2mn,Q2 = Q2 ⊗ eAt ∈ R2mn×(2Nn−2mn), (2.23)

and Q1 is a block diagonal matrix with respect to the leaders

Q1 =

 rT1,l · · · 0
...

. . .
...

0 · · · rTm,l

 ∈ Rm×m.

Q2 is a block diagonal matrix with respect to the followers

Q2 =

 rT1,f · · · 0
...

. . .
...

0 · · · rTm,f

 ∈ Rm×(N−m).

Moreover, according to Lemma 2.3.1, the local consensus values before the reset
instants can be written as:

z? = Qz(0) = Q(M⊗ I2n)T(zl(0), zf (0)). (2.24)

The states of the leader's agent are updated at the reset times tk, so that (2.24) can
be represented as:

z?(tk) = Q(M⊗ I2n)T(zl(tk), zf (tk)), (2.25)
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after, by considering the fact that zl(tk) = (Pl ⊗ I2n)zl(t
−
k ) and zf (tk) = zf (t

−
k ) at

each reset times tk, this yields

z?(tk)− z?(t−k ) = Q(M⊗ I2n)T(zl(tk)− zl(t−k ), zf (tk)− zf (t−k ))

= Q1(zl(tk)− zl(t−k )) +Q2(zf (tk)− zf (t−k ))

= Q1(zl(tk)− zl(t−k )) + 0

= Q1(Pl ⊗ I2n − I2mn)zl(t
−
k ). (2.26)

By multiplying both sides of (2.26) by µT, one has

µTz?(tk) =µTz?(t−k )+ (2.27)

+ (wTPl ⊗ I2n − (wT ⊗ I2n)I2mn)zl(t
−
k ).

where µTQ1 = [φT ⊗ (eAt)−1](Q1 ⊗ eAt) = wT ⊗ I2n.
Then, by using the property wTPl = wT of Lemma 1, we obtain

µTz?(tk) = µTz?(t−k ). (2.28)

When the hybrid dynamics of system (2.9) is considered, Lemma 2.3.1 implies
that the agents belonging to the same cluster try to approach a local agreement. It
means z remains a constant in the interval time t ∈ (tk−1 tk), and leads to

µTz? = µTz?(0). (2.29)

Finally, by considering that system (2.9) can achieve consensus, which means
that z? → z?1N as t→∞, Eq. (2.29) becomes

µTz?1N = µTQz(0). (2.30)

this equation leads to Eq. (2.22). �

Remark 2.3.2 According to Theorem 2.3.1, ones notes that:

(i) By considering the particular case of simple integrator ẋi = ui, the obtained
global consensus value is

x? =
φTQx(0)∑m

τ=1 φτ
, Q = diag{rT1 , rT2 · · · , rTm}.

(ii) The global consensus value x? and observation error e? can be deduced from
(2.22) such as

x? =
eAtµTQx(0)∑m

τ=1 φτ
, e? =

e(A+HC)tµTQe(0)∑m
τ=1 φτ

. (2.31)

(iii) There are four factors a�ecting the value of global consensus: the dynamics
of agents, the graph of each cluster, the interaction between leaders, and the
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initial conditions. Moreover, the global consensus value does not depend on
the reset sequence.

2.4 Impulsive Observer-Based Consensus Controller

In this next section, we will at �rst show that the problem of consensus design for
clustered networks can be indirectly solved by considering the stability of an equiv-
alent system. Then, Problem 2 will be solved by giving some su�cient conditions
in a LMI form. Moreover, based on the analysis given in Section 2.3, the obtained
LMIs are adapted to compute the reset matrix in order to solve Problem 3.

2.4.1 Design Equivalence

Let us also introduce vectors

x = [xTl1 , x
T
f2
, · · · , xTfm1

, · · · , xTlm · · · , x
T
fmm

= xTfN ]T ∈ RNn,

xl = [xTl1 , · · · , x
T
lm ]T ∈ Rmn,

containing states of the agents and leader's states, respectively. We are ready now
to de�ne variables

e = [eTl1 , e
T
f2
, · · · , eTfm1

, · · · , eTlm , · · · , e
T
fmm

= eTfN ]T ∈ RNn

el = [eTl1 , · · · , e
T
lm ]T ∈ Rmn,

which collect observation errors and leader's observation errors, respectively.
Then, system (2.9) can be written in the following system, which describes the

overall network dynamics{
ż = (IN ⊗A− L⊗H)z, t ∈ (tk−1, tk),
zl(tk) = (Pl ⊗ I2n)zl(t

−
k ), t = tk,

(2.32)

where z, zl are augmented vectors de�ned as

z = [zTl1 , z
T
f2
, · · · , zTfm1

, · · · , zTlm , · · · , z
T
fmm

]T ∈ R2Nn,

zl = [zTl1 , · · · , z
T
lm ]T ∈ R2mn,

zli = [xli eli ]
T ∈ R2n, zfi = [xfi efi]

T ∈ R2n, (2.33)

and L is Laplacian matrix associated to the graph G represented in (1.21).
Next, let us present some algebraic properties of L in the following Proposition.

Proposition 2.4.1 Let us consider a network of m clusters satisfying Assumption
2.2.1, with the Laplacian L ∈ RN×N , then rank(L) = N −m and L has m eigen-
values at zero and all the other N −m eigenvalues of the Laplacian L ∈ RN×N have
non-negative real parts.
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Proof 2.4.1 Based on the Assumption 2.2.1, rank(Lτ ) = Nτ − 1 and Lτ has a
simple eigenvalue at zero (Olfati-Saber and Murray, 2004), where Nτ is a number
of agents in cluster Cτ . Therefore, rank(L) = rank(L1) + · · · + rank(Lτ ) + · · · +
rank(Lm) =

∑m
τ=1Nτ −m = N −m. Moreover, taking into account the particular

form of L, it has m zero eigenvalues, all the other N − m eigenvalues have non-
negative real parts.

Now, let rTτ = [r1, · · · , rNτ ] ∈ R1×Nτ be the left eigenvector of Lτ associated with
zero eigenvalue, satisfying rTτ Lτ = 01×Nτ and rTτ 1Nτ = 1, ∀τ ∈ {1, · · · ,m}. Since
Proposition 2.4.1 and L1N = 0N , r

TL = 01×N , where rT = [rT1 , · · · , rTm] ∈ R1×N ,
vectors 1N and rT are respectively the right and left eigenvectors of the Laplacian
of G associates with m zero eigenvalues. Moreover, a straightforward calculation
shows that rT1N = m.

Let us also introduce the extended stochastic matrix Pe as follows:

Pe =MT

[
Pl 0
0 IN−m

]
M∈ RN×N , (2.34)

whereM is a permutation matrix used in the Section 2.3. Thus, the second equation
in (2.32) can be expressed by

z(tk) = (Pe ⊗ I2n)z(t−k ), t = tk.

Finally, let us introduce a new variable

ψ = z − 1

m
(1Nr

T ⊗ I2n)z, (2.35)

where rT = [rT1 , · · · , rTm] ∈ R1×N is the left eigenvector of L satisfying rT1N = m and
rTL = 01×N . According to the new variable (2.35), we are now ready to formulate
our statement.

Proposition 2.4.2 By considering the new variable (2.32), the overall network dy-
namics system (2.35) becomes{

ψ̇ = (IN ⊗A− L⊗H)ψ, t ∈ (tk−1, tk),
ψ(tk) = (Pψ ⊗ I2n)ψ(t−k ), t = tk,

(2.36)

where Pψ = MPe,M = IN − 1
m
1Nr

T.

Proof 2.4.2 By using the property L1N = 0N , one can show

(L ⊗H)z = (L ⊗H)[(IN −
1

m
1Nr

T)⊗ I2n]z

= (L ⊗H)ψ. (2.37)

Thus, the �rst equation in (2.32) is rewritten as

ż = (IN ⊗A)z − (L ⊗H)ψ. (2.38)
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Taking the derivative of both sides of Eq. (2.35), using (2.38) and the property
rTL = 01×N , this yields

ψ̇ =[(IN −
1

m
1Nr

T)⊗ I2n](IN ⊗A)z− (2.39)

− [(IN −
1

m
1Nr

T)⊗ I2n](L ⊗H)ψ (2.40)

=(IN ⊗A)[(IN −
1

m
1Nr

T)⊗ I2n]z − (L ⊗H)ψ.

According to Eq. (2.39), we can indicate that the �rst equation in (2.36) is
equivalent to the �rst equation in (2.32).

Moreover, Eq. (2.35) allows to

ψ(t−k ) = z(t−k )− (
1

m
1Nr

T ⊗ I2n)z(t−k ). (2.41)

It is noteworthy that Pe1N = 1N . Then, by multiplying both sides of Eq. (2.41) by
(Pe ⊗ I2n), one obtains

z(tk) = (Pe ⊗ I2n)ψ(t−k ) + (
1

m
1Nr

T ⊗ I2n)z(t−k ). (2.42)

Moreover, at each reset time tk, one has ψ(tk) = [(IN − 1
m
1Nr

T) ⊗ I2n]z(tk).
Then, using (2.42), one has

ψ(tk) = [(IN −
1

m
1Nr

T)⊗ I2n](Pe ⊗ I2n)ψ(t−k )+

+ [(IN −
1

m
1Nr

T)⊗ I2n](
1

m
1Nr

T ⊗ I2n)z(t−k )

= [(IN −
1

m
1Nr

T)⊗ I2n](Pe ⊗ I2n)ψ(t−k )+

+ (IN
1

m
1Nr

T − 1

m2
1Nr

T1Nr
T)⊗ I2nz(t−k ). (2.43)

Finally, the proof is completed by using the property rT1N = m, one shows that
the second equation in (2.36) corresponds to the second equation in (2.32). �

Remark 2.4.1 One remarks that consensus of system (2.32) is equivalent to the
stability of (2.36). In fact, (2.35) can be rewritten by ψ = (M ⊗ I2n)z, where

M =



1− r1
m

− r2
m

· · · − rNτ
m

· · · − rN
m

− r1
m

1− r2
m
· · · − rNτ

m
· · · − rN

m
...

...
. . .

...
. . .

...
− r1
m

− r2
m

· · · 1− rNτ
m
· · · − rN

m
...

...
. . .

...
. . .

...
− r1
m

− r2
m

· · · − rNτ
m

· · · 1− rN
m


.
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According to de�nition of rT, it is not di�cult to recognize that zero is a simple
eigenvalue of matrix M . Moreover, by taking agent i as an example, one has

ψi = zi −
1

m
(r1z1 + · · ·+ rNτ zNτ + · · ·+ rNzN).

It is easy to see that ψi = 0, i = 1, . . .N , if and only if z1 = · · · = zN . Therefore,
instead of ensuring the condition (2.10)�(2.11) in De�nition 2.2.1, we need only to
prove that system (2.36) is stable at the equilibrium point.

2.4.2 Impulsive Observer-Based Control Design

In next subsection, we deal with Problem 2. According to analysis above in Subsec-
tion 2.4.1, Problem 2 is indirectly solved by considering the stability of the equiva-
lent system (2.36) at the equilibrium point ψ = 0. Moreover, by using Lemma 2.2.2
and taking into account the particular form of L in (1.21), one has ΘNL+LTΘN > 0,
where

ΘN =

Θ1 · · · 0
...

. . .
...

0 · · · Θm

 ,ΘN = ΘT
N > 0, (2.44)

and the general algebraic connectivity of L is de�ned by

a(L) = min
τ=1,··· ,m

aτ (Lτ ). (2.45)

By considering the subgraphs Gτ , there exists a unique a positive left eigenvector rτ
of Lτ associated with the zero eigenvalue (Yu et al., 2010). Therefore, for the sake
of simplicity, we will refer to the θτ as the rτ .

Now, the objective of Problem 2 is to design the matrices K ∈ Rp×n, H, L ∈
Rn×q, and the coupling weights p, q > 0 such that the consensus of system (2.32)
can be achieved. The following algorithm is presented to select the corresponding
parameters.

Now, let us introduce the next result of this section.

Theorem 2.4.1 Consider that the network dynamics system (2.32) satis�es the
Assumption 2.2.1. If there exists solutions to LMIs (2.46)�(2.48). Then, Problem
2 is solvable by Algorithm 1. Speci�cally,

xi →
eAtµTQx(0)∑m

τ=1 φτ
, (2.49)

ei → 0, i = 1, · · ·N, as t→∞.

Proof 2.4.3 According to Remark 2.4.1, the consensus problem of system (2.32)
can be indirectly solved by considering the stability of system (2.36). Therefore, let
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Algorithm 1 Determing the control gain

1: procedure Calculate matrices K ∈ Rp×n, H, L ∈ Rn×q

2: Choose matrix H ∈ Rn×q such that A+HC is Hurwitz.
3: Choose c1, c2 and solve the following LMIs for variables P, γ1, γ2

P = PT > 0, γ1 > 0, γ2 > 0 (2.46)

AP1 + P1A
T − γ1BB

T + c1P1 < 0 (2.47)

AT
HP2 + P2AH − γ2C

TC + c2P2 < 0 (2.48)

4: Calculate matrices K = BTP−1
1 , L = P−1

2 CT

5: procedure Choose p
6: Calculate λmin which is real part of nonzero eigenvalues of ΘL+ LTΘ
7: Calcuate the θmax = max{ri}, i = 1, · · · , N
8: Choose any coupling gain p > γ1θmax

2a(L)
, q > θmaxγ2

2a(L)

us consider the candidate Lyapunov function

V =
[
ψT

1 ψT
2

] [ΘN ⊗ P−1
1 0

0 ΘN ⊗ P2

] [
ψ1

ψ2

]
(2.50)

=ψT
1 (ΘN ⊗ P−1

1 )ψ1︸ ︷︷ ︸
V1

+ψT
2 (ΘN ⊗ P2)ψ2︸ ︷︷ ︸

V2

For t ∈ (tk−1, tk), one has V̇ = V̇1 + V̇2, where

V̇1 =ψT
1 [ΘN ⊗ (ATP−1

1 + P−1
1 A)− p(ΘNL+ LTΘN)⊗ P−1

1 BK]ψ1+ (2.51)

+ pψT
1 [(ΘNL+ LTΘN)⊗ P−1

1 BK]ψ2.

then according to Lemma 2.2.2, one has

−ψT
1 (ΘNL+ LTΘN)ψ1 ≤ −2a(L)ψT

1 ΘNψ
T
1

≤ −2a(L)

θmax
ψT

1 ΘNψ1, (2.52)

by subtitute Eq. (2.52) into Eq. (2.51), we obtain

V̇1 ≤ψT
1 [ΘN ⊗ (ATP−1

1 + P−1
1 A− 2p

a(L)

θmax
P−1

1 BK)]ψ1+

+ pψT
1 [(ΘNL+ LTΘN)⊗ P−1

1 BK]ψ2. (2.53)

Then according to the LMI (2.47), we get

ATP−1
1 + P−1

1 A− γ1P
−1
1 BBTP−1

1 < −c1P
−1
1 ,
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and employing K = BTP−1
1 , p > γ1θmax

2a(L)
in Algorithm 1, Eq. (2.53) becomes

V̇1 ≤ −c1ψ
T
1 (ΘN ⊗ P−1

1 )ψ1 + pψT
1 [(ΘNL+ LTΘN)⊗ P−1

1 BK]ψ2. (2.54)

Moreover, there exists a constant c̄1, satisfying 0 < c̄1 � c1, such that

V̇1 ≤− (c̄1 + c1)ψT
1 (ΘN ⊗ P−1

1 )ψ1+

+ pψT
1 [(ΘNL+ LTΘN)⊗ P−1

1 BK]ψ2. (2.55)

Similarly, the derivative of V2 also is given as

V̇2 =ψT
2 [ΘN ⊗ (AT

HP2 + P2AH)−
−q(ΘNL+ LTΘN)⊗ P2LC]ψ2, (2.56)

by using (2.52), Eq. (2.56) becomes

V̇2 ≤ ψT
2 [ΘN ⊗ (AT

HP2 + P2AH − q
2a(L)

θmax
P2LC)]ψ2. (2.57)

Then according to the LMI (2.48), one gets

AT
HP2 + P2AH − γ2C

TC < −c2P2, (2.58)

and employing q > γ2θmax
2a(L)

, L = P−1
2 CT in Algorithm 1, Eq. (2.57) becomes

V̇2 ≤ −c2ψ
T
2 (ΘN ⊗ P2)ψ2 < 0. (2.59)

Moreover, there exists a constant c̄2 > 0, such that

V̇2 ≤ −(c2 + c̄2)ψT
2 (ΘN ⊗ P2)ψ2 < 0. (2.60)

Finally, the derivative of the Lyapunov function V is given by Eq. (2.55) and
Eq. (2.60)

V̇ ≤− c1ψ
T
1 (ΘN ⊗ P−1

1 )ψ1 − c2ψ
T
2 (ΘN ⊗ P2)ψ2−

− c̄1ψ
T
1 (ΘN ⊗ P−1

1 )ψ1 − c̄2ψ
T
2 (ΘN ⊗ P2)ψ2+ (2.61)

+ pψT
1 [(ΘNL+ LTΘN)⊗ P−1

1 BBTP−1
1 ]ψ2.

Eq. (2.61) is equivalent to

V ≤ −c(V1 + V2) +
[
ψT

1 ψT
2

]
Φ

[
ψ1

ψ2

]
, ∀t ∈ (tk−1 tk) (2.62)

where c = min{c1, c2}, and

Φ =

[
−c̄1(ΘN ⊗ P−1

1 ) ∗
pΘNL ⊗ P−1

1 BBTP−1
1 −c̄2(ΘN ⊗ P2)

]
.
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Since −c̄2(ΘN ⊗ P2) < 0, one has Φ < 0 if and only if c̄1 and c̄2 satisfy

c̄1(IN ⊗ P−1
1 )− p2ΦT

21[c̄2(IN ⊗ P2)]−1Φ21 > 0. (2.63)

where Φ21 = INL ⊗ P−1
1 BBTP−1

1 .
Therefore, one obtains

V̇ < −cV, ∀t ∈ (tk−1 tk). (2.64)

On the other hand, at the reset time t = tk, one has

V (ψ(tk)) = ψT(t−k )[(Pψ ⊗ I2n)TP(Pψ ⊗ I2n)]ψ(t−k ) (2.65)

= ψT(t−k )[(PT
ψ ΘNPψ − αΘN)⊗ P + α(ΘN ⊗ P )]ψ(t−k ),

where

P =

[
ΘN ⊗ P−1

1 0
0 ΘN ⊗ P2

]
= ΘN ⊗ P ∈ R2Nn×2Nn.

According to de�nition of Pψ in (2.36), we alway choose 0 < α < 1 such that
PT
ψ ΘNPψ − αΘN ≤ 0. Then, we get

V (tk)− αV (t−k ) ≤ 0. (2.66)

In general, one has

V̇ ≤αke−c(t−t
+
0 )V (t+0 ), t ∈ (tk−1, tk). (2.67)

Then, from Theorem 2.3.1 and step 2 of the Algorithm 1, one has

xi = xj →
eAtµTQx(0)∑m

τ=1 φτ
, ei = ej →

e(A+HC)tµTQe(0)∑m
τ=1 φτ

= 0, i,= 1, · · · , N. �

Remark 2.4.2 The condition (2.63) is satis�ed if and only if all eigenvalues of ma-
trix c̄1(ΘN ⊗P−1

1 )−p2ΦT
21[c̄2(ΘN ⊗P2)]−1Φ21 are greater than zero, where P−1

1 , P2, p
are the solutions of LMIs (2.46)-(2.48), and 0 < c̄1 � c1, c̄2 > 0.

Remark 2.4.3 One remarks form Theorem 2.4.1 that the convergence of proposed
algorithm depends on the choosen parameters c1 and c2 as well as the coupling weights
p, q that are directly propotional to the scalar γ1 and γ2. Thus, if one would like to
optimise these parameters, the second step of Algorithm 1 can be rewritten as

minimize βγ1 + (1− β)γ2

subject to γ1 > 0, γ2 > 0 and (2.46)− (2.48)

2.4.3 Target Enclosing Problem

We are now searching a reset matrix Pl ∈ Rm×m, as de�ned in (1.20), and the
parameters K ∈ Rp×n, H, L ∈ Rn×q and p, q > 0, that allow agents in the clustered
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network to enclose a prescribed �xed target. Note here that the position of the
target is not moving and the objective is to guarantee that the agents of the di�erent
clusters collaborate together in order to achieve and keep a formation that encloses
the known target.

By the way, an impulsive observer-based formation control protocol for the clus-
tered network, where only the leaders can communicate together at the reset time
tk, is given by

ui = pK
N∑
j=1

aij[(x̂j − rj)− (x̂i − ri), t ∈ (tk−1, tk), (2.68)

where ri ∈ Rn denotes formation of agent i. Let us denote δi = xi−ri ∈ Rn be state
formation of agent i. Then, the interaction among leaders is described by

δli(tk) =
m∑
j=1

(Pl(i,j) ⊗ In)δlj(t
−
k ), t = tk. (2.69)

Next, by using (2.69), system (2.8) can be rewritten as

δ̇i = Aδi + pBK

[
N∑
j=1

aij(δj − δi)−
N∑
j=1

aij(ej − ei)

]
+ Ari, t ∈ (tk−1, tk). (2.70)

Then, one obtains the hybrid system (2.9) by using zi = [δi ei]
T ∈ R2n and

Ari = 0. As mentioned above in Theorem 2.4.1 and Theorem 2.3.1, the agents in
the clustered network can achieve consensus, meaning

lim
t→∞
‖δi − δj‖ = 0, lim

t→∞
‖xi − x̂i‖ = 0.

It is equivalent to

lim
t→∞
‖xi − ri − δ?‖ = 0, ∀i = 1, · · · , N, (2.71)

and the global consensus value δ?, which deduce directly from Theorem 2.3.1, is
given by

δ? =
eAtµTQ∑m
τ=1 φτ

[x(0) +R], (2.76)

where R = [r1, · · · , ri, · · · , rN ] ∈ RNn is the desired state formation of N agents. If∑N
i=1 ri = 0, it can be obtained from (2.71) that

lim
t→∞

[∑N
i=1 xi
N

− δ?
]

= 0, ∀i = 1, · · · , N.
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Algorithm 2 Determing the control gain

1: procedure Calculate matrices K ∈ Rp×n, H, L ∈ Rn×q
and Pl ∈ Rm×m

2: Check the condition Ari = 0 and
∑N

i=1 ri = 0.
3: Choose matrix H ∈ Rn×q such that A+HC is Hurwitz.
4: Choose c1, c2 and solve the following LMIs for variables P, γ1, γ2

(2.46)− (2.48)

PT
ψ + Pψ −Θ−1

N −ΘN ≤ 0, (2.72)

0 <
m∑
j=1

Pl(i,j) − 1 ≤ ε, (2.73)

0 < wTPl − wT ≤ ε, (2.74)

where ε is a small enough positive constant, and

Pψ = (IN −
1

m
1Nr

T)MT

[
Pl 0
0 IN−m

]
M. (2.75)

5: Calculate matrices K = BTP−1
1 , L = P−1

2 CT

6: procedure Choose p
7: Calculate λmin which is real part of nonzero eigenvalues of ΘL+ LTΘ
8: Calcuate the θmax = max{ri}, i = 1, · · · , N
9: Choose any coupling gain p > γ1θmax

2a(L)
, q > θmaxγ2

2a(L)
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It means that the target enclosing problem (Zheng, Liu, and Sun, 2015; Dong et al.,
2018) is solved.

Moreover, it is worth noting that each cluster is considered �xed and known.
Under this consideration, the matrices Q ∈ R2mn×2Nn and A ∈ Rn×n in (2.76) are
�xed and given. Therefore, a value of target δ? is imposed by a certain choice of w
such that wT1m = 1, where wT is left eigenvector of Pl associated with the eigenvalue
1.

In order to �nd a reset matrix Pl ∈ R,×m, �rstly notice that

(PT
ψ ΘN − IN)Θ−1

N (ΘNPψ − IN) ≥ 0

leads to

PT
ψ ΘNPψ ≥ PT

ψ + Pψ −Θ−1
N . (2.77)

Thus, one solution to

V (ψ(tk))− V (ψ(t−k )) = ψT(t−k )[(PT
ψ ΘNPψ −ΘN)⊗ P ]ψ(t−k ) ≤ 0, (2.78)

⇔ PT
ψ ΘNPψ −ΘN ≤ 0,

It is equivalent to Eq. (2.64), and using (2.77), one obtains

PT
ψ + Pψ −Θ−1

N −ΘN ≤ 0.

Secondly, a row stochastic matrix must be satis�ed Eq. (1.20) and the constraint
wTPl = wT. However, to ensure the solvability of the LMIs, we modi�ed these above
conditions corresponding to LMIs (2.73) and (2.74), respectively.

Thus, the Algorithm 1 is modi�ed to select the reset matrix Pl ∈ Rm×m and
corresponding parameters in Problem 3.

2.5 Illustrative Examples

In this section, we will in a �rst time motivate our approach by an example in
which we show that the combination of classical consensus algorithms with discrete
resets between the leaders can not always guarantee the consensus of the clustered
networks. Then, we provide three simulations results to illustrate the contributions
of the chapter. In the �rst case, a numerical example is presented to describe the
characterization of the global consensus value, stated in Problem 1. The second
case calculates the parameters K ∈ Rp×n, H, L ∈ Rn×q and p, q > 0 mentioned in
Problem 2, which ensures the stability of the system. Finally, the target enclosing
problem of multiquadrotor unmanned aerial vehicle (UAV) is considered by using the
solution in Problem 3. Particularly, by considering that the position of a target is
known and corresponds to a global consensus value, vehicles in the clustered network
are controlled to protect this target.

In the following, let us consider a network of 10 agents partitioned into 3 clusters
as depicted in Fig. 2.1. The dynamics of each agent, mentioned in Yaghmaie et al.,
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Figure 2.1: The communication of the network.

2017, and the interaction between the leaders are characterised by

A =

 0 1 0
0 0 β
0 −λ −θ

 , C =
[

1 0 0
]
,

B =

 0
0
σ

 , Pl =

 0.3 0.3 0.4
0.5 0.4 0.1
0.3 0.5 0.2

 , (2.79)

and supposing that x(0) = [−16 − 12 − 13 − 13 − 12 − 14 − 12 − 13 − 12 − 16 −
11− 15 10 12 17 21 31 17 26 30 14 − 1− 2− 0.2− 1.3− .3− 3.4− 5− 9− 2]T, and
x̂(0) = 0.5 ∗ x(0).

In this example, we suppose that agents 3, 6 and 10 have more communication
capability than other agents. Thus, we choose them as leaders of clusters 1, 2 and
3, respectively.

In order to illustrate the advantage of the proposed approach, let us in the
�rst time choose β = 1, λ = 1, θ = 2, σ = 1. Moreover, in order to simplify the
presentation and without loss of generality let us consider that the controller is
calculated using Lemma 2.3.1 . This leads to:

K = [0.1 0.2 0.15], p1 > 5, p2 >
1

3
, p3 >

1

6
. (2.80)

Then, by choosing p1 = 6, p2 = 1.3, p3 = 1.2 the states of agents in each cluster are
depicted in Fig. 2.2 (left) for a value of the reset sequence ∆ = 1. Let us now carry
out other simulations by varying the interval of the reset of the leaders. Moreover,
de�ne the combinational error as

Ei =
N∑
j=1

|xi − xj|, i = 1, · · · , N. (2.81)
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Figure 2.2: a) The state of agents in each cluster; b) Combinational

error E8 with di�erent impulsive interval.

It is obvious that Ei → 0 if and only if the clustered network reaches consensus,
and otherwise. Fig. 2.2 (right) shows the combinational error E8, and it indicates
clearly that the consensus cannot be achieved for all the reset sequence ∆. This can
be explained by the fact that the reset of the agents will have more in�uence than
the consensus algorithm, which leads to a consensus between the leaders but not all
the agents. Thus, other approaches are needed to handle this problem, particularly
for small reset time.

After this motivation of our approach, the remainder of this section will illustrate
our contributions.

2.5.1 The Global Consensus Value

To determine the global consensus value in Theorem 2.3.1, the eigenvectors wT, rT1 , r
T
2 , r

T
3

are �rstly determined as:

wT = [0.3772 0.386 0.2368], rT1 = [0.25 0.25 0.25 0.25],

rT2 = [0.33 0.33 0.33], rT3 = [0.33 0.33 0.33].
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Then, according to (2.20) and (2.21), the matrices Q1, Q and µT are determined as:

Q1 =

 1
4

0 0
0 1

3
0

0 0 1
3

⊗ eAt ∈ R9×9,

Q =

 rT1 ⊗ eAt 0 0
0 rT2 ⊗ eAt 0
0 0 rT3 ⊗ eAt

 ∈ R9×30,

µT =
[

0.0943 0.1287 0.0789
]
⊗ [eAt]−1 ∈ R3×9.

Applying (2.22) of Theorem 2.3.1, the following global consensus value is calculated
as:

x̂? = x? =

 25998
8443
− 158613t−145328

42215
e−3t

52871t+30819
42215

e−3t

−158613t+39586
42215

e−3t

 =

 3.0792
0
0


when t→∞. (2.82)

Notice that the global consensus value x∗ depends on the topology of each cluster
Gτ , communication between leaders Gl, and the dynamics of agent. If matrix A has
eigenvalues with positive real parts, the �nal consensus value x∗ will tend to in�nity
exponentially. Moreover, if matrix A is Hurwitz, then the �nal consensus value is
zero.

2.5.2 Illustrative Example of Problem 2

In this scenario, we again show that the clustered network reaches consensus at
x∗ in (2.82), based on calculating parameters of consensus controller (2.6). By the
way, the coupling weights q, p, observer gain H,L ∈ Rn×q, and control input gain
K ∈ Rp×n are determined according to Algorithm 1.

Firstly, choosing H = [4 2 − 2]T, and setting c1 = 1, c2 = 1. Then, solving the
LMIs (2.46), (2.48) yields

P1 =

 12.2173 −8.0215 2.2299
−8.0215 8.1368 −5.5423
2.2299 −5.5423 6.8913

 ,
P2 =

 3.7886 −3.1834 1.5852
−3.1834 13.8289 6.8753
1.5852 6.8753 9.5114

 ,
and γ1 = 12.0702, γ2 = 24.8656. Therefore, one can select feedback matrices L and
K as

K = [1.0535 1.9967 1.4033], p > 30.1755,

L = [0.7098 0.3469 − 0.3690]T, q > 62.1640.
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and choosing p = 30.2, q = 62.2.
Convergence of the new varible ψ in (2.35) is depicted in Fig. 2.3, as well as

the Lyapunov function V is displayed in Fig. 2.7 with reset sequence ∆ = 1. It
can show that the hybrid system (2.9) is stable, and the state of agents xi, as well
as observation error ei in the clustered network reach consensus. This results are
shown in Fig. 2.4, Fig. 2.5 and Fig. 2.6, respectively.
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Moreover, it notices that by applying Algorithm 1, the clustered network can
achieve consensus and the global consensus value xi1 = 3.079, xi2 = xi3 = 0,∀i =
1, · · · , N as depicted in Fig. 2.3 and Fig. 2.4, which is the same results in (2.82) of
Subsection 2.5.1.

The in�uence of interval ∆ between two successive resets on the convergence of
system (2.9) will be illustrated in Fig.2.7 (right). Particularly, the combinational
error E8 as de�ned above is depicted in Fig. Fig.2.7 (right). It shows that the
consensus of clustered network can be reached by employing Algorithm 1.
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Figure 2.7: a) The Lyapunov function V in (2.54), b) Combinational

error E8 with di�erent ∆.

2.5.3 Application to Target Enclosing of UAVs

According to Dong et al., 2018, the dynamics of UAV is represented by

ṗi = vi,

v̇i = αppi + αvvi + ui, (2.83)

where pi ∈ Rn, vi ∈ Rn, and ui ∈ Rn represent the position, velocity, and control
input vectors, respectiely.

Letting xi = [piX viX piY viY ]T and ui = [uiX uiY ]T, the dynamics of agent is
depicted as (2.1), where

A =


0 1 0 0
αp αv 0 0
0 0 0 1
0 0 αp αv

 , CT =


1 0
0 0
0 1
0 0

 , B =


0 0
1 0
0 0
0 1

 .
Next, the network is depicted in Fig. 2.1, and the formation speci�ed by R is

given by

r1 = [0 4
√

3]T, r2 = [2 2
√

3]T, r3 = [4
√

3 2
√

3]T,

r4 = [2
√

3 0]T, r5 = [4 − 4
√

3]T, r6 = [0 − 4
√

3]T,

r7 = [−4 − 4
√

3]T, r8 = [−2
√

3 0]T, r9 = [−4
√

3 2
√

3]T,

r10 = [−2 2
√

3]T.

and R = [r1 r2 r3 r4 r5 r6 r7 r8 r9 r10]T ⊗ [1 0]T. Each cluster is color coded, where
the �rst cluster is red, second is blue and third is black.
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Figure 2.8: Formation of ten UAVs'positions encloses the target.

Moreover, initial conditions of three clusters are given as:

xT0 = [−16− 12− 16− 12− 10− 12− 10− 12− 12− 13

− 12− 13− 16− 17− 16− 17 10 12 10 12 18 15 18 15 12

13.5 12 13.5 11 12− 11− 12 13 13 − 13− 13 15 9− 15− 9]

Then, with a certain left eigenvector of Pl is w
T = [0.4 0.35 0.35], and αp = 0, αv =

−1.98, the position, velocity of target δ? = [piX , viX , piY , viY ]T are calculated by[
piX
viX

]
=

[
2.4134− 0.6108e−5.94t

1.2095e−5.94t

]
,[

piY
viY

]
=

[
−8.2939 + 2.6379e−5.94t

−5.223e−5.94t

]
.

After that, the reset matrix Pl ∈ Rm×m, K ∈ Rp×n, H, L ∈ Rn×q, and the
coupling weights p, q can be designed by Algorithm 2. Firstly, checking the condition
Ari = 0,

∑N
i=1 ri = 0, and choosing H = [1.0200− 0.0196]T, and setting c1 = 1, c2 =

1. Then, solving the LMIs (2.46)-(2.48), (2.72)-(2.74), yields

Pl =

 0.2232 0.3884 0.3884
0.4439 0.1678 0.3883
0.4439 0.3883 0.1678

 , L = I2 ⊗
[

0.2766
−0.0233

]
,

K = I2 ⊗
[

1.0520 1.0857
]
, p = 32.3934, q = 51.0816.

The simulation result is shown in Fig. 2.8. We can observer that agents in the
clustered network reach formation, while enclosing the target pY = −8.29, pX = 2.41.
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2.6 Chapter summary

In this chapter, a distributed observer-based control problem for consensus on com-
plex dynamical networks is studied. Networks of linear agents are partitioned in
several clusters and disconnected one of each other. On the other hand, we have an-
alyzed its stability, and we have given the consensus value in general case. In order
to reach a global consensus value, the interconnection network between the leaders
is designed. Methods of selecting the feedback gain matrices as well as the coupling
strengths for both controllers and observers are given with a designed algorithm.
Two academic examples illustrate the main results.
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Résumé du Chapitre 3

Ce chapitre étudie le problème du contrôle de la formation dans les systèmes de
réseaux composés d'agents linéaires qui sont soumis à des contraintes d'état (corre-
spondant à la première des quatre questions de la section 1.2). Un protocole de for-
mation robuste est proposé pour traiter la communication hybride décrite ci-dessus
et les contraintes d'état des agents. Il est ensuite montré que le concept hybride
de contrôle de formation robuste pour les réseaux multi-agents en cluster peut être
indirectement résolu par le concept de stabilisation robuste d'un système équivalent
obtenu par la théorie des matrices et la théorie des graphes algébriques. Ensuite,
un contrôleur robuste est conçu pour le système initial en termes d'inégalités ma-
tricielles linéaires. En�n, un problème de formation pour les véhicules aériens sans
pilote est simulé pour illustrer l'e�cacité de la méthode de conception de contrôle
de formation hybride proposée.
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This chapter studies the formation control problem in clustered network systems
of linear agents that are subjected to state constraints (corresponding to the �rst the
fourth questions in Section 1.2). A robust formation control protocol is proposed to
deal with the hybrid communication described above and the constraints on states of
agents. It is next shown that the hybrid robust formation control design for clustered
multi-agent networks can be indirectly solved through the robust stabilization design
of an equivalent system obtained by matrix theory and algebraic graph theory. Then,
a robust controller is designed for the initial clustered network system in terms of
linear matrix inequalities. Finally, a formation design for unmanned aerial vehicles
is carried out and simulated to illustrate the e�ectiveness of the proposed hybrid
formation control design method.

3.1 Related Work and Contributions

Currently, consensus-based control approaches are widely employed in solving the
formation problem of MASs. The continuous-time �rst-order MASs was studied in
Ren, 2008, where it was proved that they could achieve formation if the directed in-
teraction topology contains a directed spanning tree. Extensions of consensus-based
formation algorithms to second-order with linear or nonlinear dynamics under the
�xed or the time-varying interaction graphs were also investigated in Wei Ren and
Atkins, 2007. In Oh and Ahn, 2014, a formation control law based on local measure-
ment of relative-positions was proposed for �rst-order MASs. In another research
(Dong et al., 2015), based on consensus approaches, necessary and su�cient condi-
tions were derived to deal with the time-varying formations for second-order UAV
swarm systems. Another direction is to study the formation of second-order MASs
with time delays (Liu and Tian, 2009). Accordingly, the su�cient conditions were
proposed for MASs to achieve desired stationary and moving formations. Another
direction considers the formation tracking control problems (Han et al., 2017a),
which uses neighboring relative state, and position information for second-order
MASs with time-varying delays. Moreover, the formation tracking problems were
also investigated in Yang et al., 2018, where the agents' local coordinate systems are
applied such that the centroid of the controlled formation tracks a given trajectory.

Other signi�cant and realistic issues have been encountered such as the con-
straints on the agent's inputs, states, or relative states because of the physical
limitations of agents. This includes, for example, the formation of vehicles with
limited speeds and limited working space, smart buildings energy control with con-
straints on temperature and humidity in speci�c ranges and so on. Recently, some
studies have considered the cooperative control of MASs under the constraints on
agent's inputs, states, or relative states (Nedi, Ozdaglar, and Parrilo, 2010; Nguyen,
Narikiyo, and Kawanishi, 2017; Nguyen, Narikiyo, and Kawanishi, 2018; Zhou and
Wang, 2018; Mo and Lin, 2018; Wei, Xiang, and Li, 2011). In Nedi, Ozdaglar,
and Parrilo, 2010, a constrained consensus algorithm and distributed optimization
problems were proposed, where agents state constraints are investigated and they
are required to lie in individual closed convex sets. In another work, Wei, Xiang,
and Li, 2011 studied a consensus problem of simple integrator MASs under input
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constraints. Following this research line, a distributed consensus of second-order
MASs with nonconvex input constraints was addressed in Mo and Lin, 2018. It is
shown that the input constrained consensus achieved if the graph has a directed
spanning tree. Another direction to deal with input and state constraints, discarded
consensus algorithms are employed by Zhou and Wang, 2018. Moreover, in order
to achieve the global consensus in the presence of agents' inputs, states, or relative
state constraints (Nguyen, Narikiyo, and Kawanishi, 2017; Nguyen, Narikiyo, and
Kawanishi, 2018), the MASs is reformulated in form of a network of Lure systems.

On the other hand, it has been noticed that interaction among agents in the
aforementioned networks is either continuous-time or discrete-time. However, due
to either energy constraints occurring in long-time interactions or communication
constraints, agents can only impulsively exchange information with their neighbors
or be subjected to abrupt changes at speci�c instants (Guan, Wu, and Feng, 2012;
Guan et al., 2012a; Hu et al., 2013; Liu, Zhang, and Xie, 2017). This leads to a
hybrid interaction that combines both continuous and discrete interactions among
agents. In Guan, Wu, and Feng, 2012, a su�cient result has been derived for the
impulsive consensus of �rst-order MASs, where the graphs of continuous-time and
impulsive-time topologies contain a spanning tree. Following this research line,
there are several types of research (Guan et al., 2012a; Hu et al., 2013), which have
dealt with the consensus problem of the second-order MASs under an impulsive
control strategy. Moreover, inspired by the results in Jadbabaie and Morse, 2003;
Ren and Beard, 2005, the necessary condition of consensus on graph connections
among agents may require. This is investigated in Liu, Zhang, and Xie, 2017, where
the �rst-order MASs with hybrid delay consensus protocols are described in the
form of impulsive systems. In other directions on consensus problem under hybrid
communication, the network is partitioned into several groups or clusters, where
continuous intra-cluster and discrete inter-cluster communications (Bragagnolo et
al., 2014; Rejeb, Morarescu, and Daafouz, 2015; Bragagnolo et al., 2016; Morarescu
et al., 2016). The works in Bragagnolo et al., 2016 proposed a quasi-periodically
reset strategy and provided some LMI conditions to guarantee the globally uniformly
exponential consensus where intra-cluster communication structures are represented
by directed and strongly connected graphs. The researches in Morarescu et al.,
2016; Rejeb, Morarescu, and Daafouz, 2015 investigated the su�cient conditions
for event-triggered consensus. However, in most of the above studies on clustered
MASs, constraints on the states of agents are not considered, and the dynamics of
agents correspond to a simple integrator.

Motivated by both theoretical and practical issues mentioned above, this chapter
investigates the state formation control problem under state constraints in clustered
MASs where agents have generic linear dynamics. Our approach covers broader
systems and scenarios than those in the existing studies (Bragagnolo et al., 2016;
Morarescu et al., 2016). Next, a robust formation protocol, which deals with the
continuous-time communication inside clusters and discrete-time information ex-
change between clusters, is introduced. Compared with the previous results (Pham,
Messai, and Manamanni, 2019c; Pham et al., 2019), the protocol is more practical
and complicated. It is then shown that the considered robust formation control
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problem can be indirectly solved by studying the robust stability of an equivalent
system by matrix theory and algebraic graph theory. In comparison with the one
in Bragagnolo et al., 2016; Pham, Messai, and Manamanni, 2019c; Pham et al.,
2019, our approach shows the important role of communication between leaders at
some speci�c discrete instants, represented by the stochastic matrix. Accordingly,
a su�cient condition will be derived in terms of LMIs for the robust distributed
formation of clustered networks of generic linear agents under state constraints and
hybrid communications

3.2 Problem Formulation

3.2.1 Robust Formation Control

We consider a group of N linear identical agents that interact in m clusters. The
dynamics of each agent i is described by

ẋi = Axi +Bui, (3.1)

where xi = [xi,1, · · · , xi,n]T ∈ Rn is the state, ui ∈ Rp is the control input; A ∈
Rn×n, B ∈ Rn×p.

According to (1.19), we concede that each agent has a vector state denoted by
xlτ = [xlτ,1 , · · · , xlτ,n ]T ∈ Rn for the leaders lτ and xfh = [xfh,1 , · · · , xfh,n ]T ∈ Rn for
the followers fh, ∀τ 6= h = 1, · · · , N . Moreover, the formation of MASs refers to
a geometric shape that satis�es some prescribed inter-agent geometric constraints
achieved and preserved by a group of agents. The formation may represent a variety
of physical quantities of an agent, such as position, velocity and altitude (Dong et
al., 2014). The desired state formation is denoted by R = [r1, r2, · · · , rN ] ∈ RNn,
where ri ∈ Rn,∀i ∈ V is a formation variable of agent i. Therefore, the desired
state formation R is meaning that agents in a network need to achieve a reference
coordinate frame corresponding to their positions and velocities.

However, in practice, the measurement part may have bounded nonlinearities
or saturation constraints due to sensor limitations as well as physical limitations.
Moreover, di�erent agents inside each cluster may have di�erent interactive capa-
bilities. Therefore, the upper and lower bounds of saturation constraints may also
be di�erent. This leads to the heterogeneous asymmetric saturation levels.

Because only the leaders of these clusters can communicate together at some
reset times tk, a formation protocol for a clustered network with state constraints
based on local information is given by

ui = K
N∑
j=1

a(ij) (φj(zj(t))− φi(zi(t))) +Qri, t ∈ (tk, tk+1) (3.2)

where zi(t) = xi(t)− ri denote the state formation variables of agent i, and K,Q ∈
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Rp×n denote the protocol gain matrices, respectively. The general continous func-
tions φi(zi) : Rn → Rn, i = 1, · · · , N satisfying the following sector-bounded condi-
tions

(φi(zi(t))−Υ1zi(t)) ◦ (φi(zi(t))−Υ2zi(t)) ≤ 0 ∀zi(t) ∈ Rn, (3.3)

where

Υ1 = diag{υk,1}k=1,··· ,n ∈ Rn,

Υ2 = diag{υk,2}k=1,··· ,n ∈ Rn

are matrices composed of known sector slopes υk,1 < υk,2. An example of φi is the
saturation function si(•) de�ned by

si(zi(t)) ,


si : zi(t) ≤ si,
zi(t) : si < zi(t) < si,
si : zi(t) ≥ si

(3.4)

where si ≤ 0 ≤ si, si < si are known constants which are called saturation levels.
The exchanged information between leader's states at the reset time tk can be

described by

∆zli(tk) =
m∑
j=1

al(ij)(zlj(tk)− zli(tk)), t = tk, (3.5)

where ∆zli(tk) = zli(t
+
k )−zli(t−k ), where zli(t

+
k ) and zli(t

−
k ) represent the right and left

limit of zli at tk, respectively. Without loss of generality, we assume that zli(t
−
k ) =

zli(tk). Furthermore, al(i,j) is the (i, j)th entry of the weighted adjacent matrix
Al = [al(ij)], and m denotes the set of leaders in graph Gl. The Laplacian matrix
Ll = [Ll(ij)] ∈ Rm×m is de�ned as Ll(ii) =

∑m
j 6=i=1 al(ij);Ll(ij) = −al(ij).

Then the collective dynamics of system (3.1) under the consensus protocol (3.2)
and the interaction between leaders (3.5) can be rewritten as

żi(t) = Azi(t)−BK
N∑
j=1

L(ij)wj(t) + (A+BQ)ri, t ∈ (tk, tk+1),

∆zli(tk) = −
m∑
j=1

Ll(ij)zlj(tk), t = tk,

wi(t) = φi(zi(t)).

(3.6)

It can be seen that the evolution of the dynamic system described by (3.6) is in-
�uenced by the events that happen at the reset moments tk. The objective of the
above collaboration is to achieve a speci�c global objective namely state formation
de�ned as follows.
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Figure 3.1: The scheme of formation problem

De�nition 3.2.1 The multi-agent system (3.1) is said to be achieve state formation
anticipated by R if there is vector h(t) ∈ Rn such that

lim
t→∞

(xi(t)− ri − h(t)) = 0, (3.7)

for any given bounded initial condition.

For the sake of clarity, an example, as depicted in Fig. 3.1 is given to illustrate
this kind of problem. There are 6 agents divided into two clusters, red and black,
that have to realize a hexagon formation. Each agent receives only the state in-
formation of its neighbors in the same subnetwork (the same color). If there is no
communication between subnetworks (for example, agents 2 and 5 or agents 3 and
6 ), then the 6-agent network cannot achieve the desired formation. Therefore, in
order to ensure the task of 6 agents, at some discrete-time instants, a communication
between one red and one black agent (called leader 1 and leader 2, respectively) is
activated. Next, the following assumptions are utilized.

3.2.2 Useful Assumptions and Lemmas

Assumption 3.2.1 The graphs Gτ and Gl are undirected and connected.

Assumption 3.2.2 al(ij) > 0,
∑m

j 6=i=1 al(ij) < 1.

Assumption 3.2.3 The matrix pair (A,B) is stabilizable.

Remark 3.2.1 Assumption 3.2.1 is needed to guarantee that the Laplacian matrix
Lτ of Gτ , ∀τ ∈ {1, · · · ,m} satis�es the following proprieties Lτ1Nτ = 0, rTτ Lτ = 0
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Figure 3.2: State formation of six agents moving in the XY plane

and rTv 1Nτ = 1, where 1Nτ , and rTτ = 1
Nτ

1Nτ are the right and left eigenvectors
of Lτ associated with zero eigenvalue, respectively. Assumption 3.2.2 ensures the
matrix Pl = I−Ll is a stochastic matrix with positive diagonal elements. Moreover,
Assumption 3.2.3 is for the existence of a controller.

Lemma 3.2.1 (see Ren and Beard, 2005) Let Γ be a compact set consisting of
n × n SIA matrices with the property that for any nonnegative integer k and any
B1, · · · , Bk ∈ Γ, the matrix product

∏k
i=1 Bi is SIA. Then, for given any in�nite

sequence B1, B2, · · · , there exits a column vector cT such that limk→∞
∏k

i=1Bi = 1cT.

Lemma 3.2.2 (see Jadbabaie and Morse, 2003) If B = [bij]n×n is a stochastic ma-
trix with positive diagonal elements, and the graph associated with B has a spanning
tree, then B is SIA.

Lemma 3.2.3 (see Jadbabaie and Morse, 2003) Let m ≥ 2 be a positive integer and
let D1, · · · , Dm be nonnegative n× n matrices with positive diagonal elements, then

D1D2 · · ·Dm ≥ γ(D1 +D2 + · · ·+Dm),

where γ > 0 can be speci�ed from Di, i = 1, · · · ,m

Hereafter, the time index t is omitted in expressions of xi, h and other variables
just for conciseness of mathematical representations. Now, the considered problem
in the current research is stated as follows.
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3.3 Robust Distributed Formation Design

In this section, we propose a solution for the above hybrid robust formation control
problem with �xed topologies Gτ and Gl satisfying Assumption 3.2.1. The proposed
design is composed of two steps. First, by employing results from matrix theory
and algebraic graph theory, we show that the considered problem can be indirectly
solved by the robust stability of an equivalent system. Then, the robust stability
design of the equivalent system is derived in terms of LMIs.

3.3.1 Prerequisites

From the Geršgorin theorem (Olfati-Saber and Murray, 2004), we know that λm ≤
2dmax(Gl), where λm is the largest eigenvalue of the Lalapcian of the graph Gl, and
dmax(Gl) is the maximum out-degree of the nodes of Gl, where

degout(vli) =
m∑
i=1

al(ij)

Therefore, we can get 0 < λm < 2. Let us introduce
Pl(ij) = −Ll(ij) = al(ij) > 0

Pl(ii) = 1− Ll(ii) = 1−
m∑

j 6=i=1

al(ij) > 0,
(3.8)

then
∑m

j=1 Pl(ij) = 1, and Pl = I − Ll is a row stochastic matrix with positive
diagonal elements, and according to Assumptions 3.2.1 and 3.2.2, it has an eigenvalue
λ1 = 1 with algebraic multiplicity equal to one, and all the other eigenvalues satisfy
0 < |λi| < 1, i = 2, · · · ,m.

Moreover, as mentioned above the network is subdivided into m undirected sub-
networks. Then, L ∈ RN×N stands for the Laplacian matrix associated with the
graph G represented in (1.21).

Some algebraic properties of L are presented in the following Proposition.

Proposition 3.3.1 Let us consider a network of m clusters satisfying Assumption
3.2.1, with the Laplacian L ∈ RN×N , then rank(L) = N −m and L has m eigen-
values at zero and all the other N −m eigenvalues of the Laplacian L ∈ RN×N are
positive.

Next, it follows (3.8), the system (3.6) can be written in a form of the overall
network dynamics

ż = (IN ⊗ A)z − (L ⊗BK)w + (IN ⊗ A)R, t ∈ (tk, tk+1)

zl(t
+
k ) = (Pl ⊗ In)zl(tk), t = tk

w = Φ(z),

(3.9)
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where Pl = I − Ll,A = A+BQ,Φ(z) = [φT
1 (z1), · · · , φT

N(zN)]T and

z = [zTl1 , z
T
f2
, · · · , zTfm1

, · · · , zTlm , · · · , z
T
fmm

= zTfN ]T ∈ RNn,

zl = [zTl1 , · · · , z
T
lm ]T ∈ Rmn.

containing respectively the states of agents and leader's states.
Let us introduce the extended stochastic matrix Pe as follows

Pe =MT

[
Pl 0
0 IN−m

]
M∈ RN×N , (3.10)

whereM is a permutation matrix.
Then, the second equation in (3.9) can be expressed by

z(t+k ) = (Pe ⊗ In)z(tk), t = tk.

In the following, let U ∈ RN×N be an orthogonal matrix, and employing Propo-
sition 3.3.1, we obtain

U−1LU =

[
0m 0
0 Γ

]
= Λ ∈ R(N)×(N), (3.11)

Γ = diag{γm+1, · · · , γN} ∈ R(N−m)×(N−m).

Finally, let us also introduce the new variable

ψ = (U−1 ⊗ In)z. (3.12)

It follows the variable ψ in (3.12), we now formulate our statement as the fol-
lowing 

ψ̇ = (IN ⊗ A)ψ − (ΛU−1 ⊗BK)w +HR, t ∈ (tk, tk+1)

ψ(t+k ) = (Pψ ⊗ In)ψ(tk), t = tk,

z = (U ⊗ In)ψ,

w = Φ(z),

(3.13)

where Pψ = U−1PeU and H = (U−1 ⊗ A).
In the next part of this chapter, thanks to results from matrix theory and alge-

braic graph theory, we show that the robust formation control problem of MASs in
clustered network (3.6) is indirectly solved by considering the robust stability of the
system (3.13)
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3.3.2 Formation Analysis in Clustered Network

In order to simplify the presentation of the next results let us partition the matrices
U−1, U into

U−1 = [UT
3 UT

4 ]T , U = [U1 U2], (3.14)

where UT
3 ∈ Rm×N , UT

4 ∈ R(N−m)×N and U1 ∈ RN×m, U2 ∈ RN×(N−m).

U1 =

 1N1 · · · 0
...

. . .
...

0 · · · 1Nm

 , UT3 =

 rT1 · · · 0
...

. . .
...

0 · · · rTm

 , (3.15)

which satis�es LU1 = 0N×n, U
T
3 L = 0m×N . This allows to decompose (3.12) into

two parts :

ψ1 = (UT
3 ⊗ In)z, ψ2 = (UT

4 ⊗ In)z, (3.16)

where ψ1 ∈ Rmn and ψ2 ∈ RNn−mn. Now we are able to introduce the �rst main
results of this chapter.

Theorem 3.3.1 Consider the overall network dynamics system (3.21), satisfying
Assumptions 3.2.1�3.2.3, the hybrid robust formation control problem is solved if
the following formation feasibility condition holds

(A+BQ)(ri − rj) = 0, ∀i, j = 1, · · · , N. (3.17)

and

lim
t→∞

ψ2 → 0 (3.18)

for any given bounded initial conditions.

Proof 3.3.1 If the condition (3.17) holds, then one has that

[L ⊗ (A+BQ)]R = 0. (3.19)

Pre-multiplying both sides of (3.19) with (U−1 ⊗ In) yields

[ΛU−1 ⊗ (A+BQ)]R = 0. (3.20)

Then pre-multiplying both the sides of (3.20) with[
0m 0
0 Γ−1

]
⊗ In
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gives us [U−1 ⊗ (A + BQ)]R = 0, which is equivalent to HR = 0. Therefore, the
system (3.13) leads to the following system

ψ̇ = (IN ⊗ A)ψ − (ΛU−1 ⊗BK)w, t ∈ (tk, tk+1)

ψ(t+k ) = (Pψ ⊗ In)ψ(tk), t = tk, (3.21)

z = (U ⊗ In)ψ,

w = Φ(z).

The proof is given in two steps. First, we show that ψ1 reaches a constant value,
which depends on the dynamics of agents, the graph of each cluster, the interaction
between leaders, and the initial conditions. Second, based on the analysis of the
�rst step, the hybrid robust formation control problem, satisfying De�nition 3.2.1,
is solved.

First, by employing (3.21), (3.14) and (3.16), the dynamics of ψ1 can be repre-
sented as: {

ψ̇1 = (Im ⊗ A)ψ1,

ψ1(t+k ) = (UT
3 PeU1 ⊗ In)ψ1(tk) + (UT

3 PeU2 ⊗ In)ψ2(tk)
(3.22)

Then, the solution of (3.22) with initial condition ψ1(t0) = ψ10 can be obtained by

ψ1 = e(Im⊗A)(t−tk)ψ1(t+k ) = (Im ⊗ eA(t−tk))ψ1(t+k ), (3.23)

and if limt→∞ ψ2 → 0, then ψ1(t+k ) can be expressed as:

ψ1(t+k ) = lim
k→∞

k∏
i=1

(UT
3 PeU1 ⊗ In)e(Im⊗A)(ti−ti−1)ψ1(t0)

= lim
k→∞

(UT
3 PeU1)k ⊗ eA(tk−t0)ψ1(t0). (3.24)

In the following, by using results from Lemma 3.2.1 and Lemma 3.2.2, we prove
that matrix UT

3 PeU1 ∈ Rm×m is a row stochastic matrix with positive diagonal ele-
ments.

According to (3.8), the extended stochastic matrix Pe in (3.10) can be re-expressed
as follows

Pe =


Pl11 0 · · · Pl1m 0
0 IN1−1 · · · 0 0
...

...
. . .

...
...

Plm1 0 · · · Plmm 0
0 0 · · · 0 INm−1

 ∈ RN×N , (3.25)

where

Pl =

 Pl11 · · · Pl1m
...

...
...

Plm1 · · · Plmm

 =

 Pl1
...
Plm

 ∈ Rm×m, (3.26)



3.3. Robust Distributed Formation Design 83

and the matrix U1 ∈ RN×m and UT
3 ∈ Rm×N are given in (3.14). Now, the matrix

PeU1 is calculated as

PeU1 =


Pl11 · · · Pl1m
1N1−1 0(N1−1)×(N1−1)
...

...
Plm1 · · · Plmm
1Nm−1 0(Nm−1)×(Nm−1)

 =

 E1
...
Em

 , (3.27)

where ∀τ ∈ {1, · · · ,m}, and

Eτ =

[
Plτ1 · · · Plτm
1Nτ−1 0(Nτ−1)×(Nτ−1)

]
∈ RNτ×m. (3.28)

Then, the matrix UT
3 PeU1 is determined as follows

UT
3 PeU1 =

 rT1 · · · 0
...

. . .
...

0 · · · rTm


 E1

...
Em

 =

 rT1E1
...

rTmEm

 , (3.29)

where rTτ = [rτ1 , · · · , rτNτ ] ∈ R1×Nτ , ∀τ ∈ {1, · · · ,m}, and

rTτ Eτ = [rτ1Plτ1 + rτ2 + · · ·+ rτNτ , rτ1Plτ2 , · · · , rτ1Plτm ].

The sum of the row matrix rTτ Eτ is calculated by

Nτ∑
k=1

rTτ Eτ = rτ1Plτ1 +
Nτ∑
k=2

rτk + rτ1

Nτ∑
k=2

Plτk . (3.30)

According to Assumptions 3.2.1, 3.2.2 and (3.8), Plτ1 = 1−
∑m

k=2 Plτk , then

Nτ∑
k=1

rTτ Eτ =
Nτ∑
k=1

rτk = 1, (3.31)

and Plτk > 0, then

rτ1Plτ1 + rτ2 + · · ·+ rτNτ > 0,

rτ1Plτ2 > 0, · · · , (3.32)

rτ1Plτm > 0.

Subsequently, by employing (3.31) and (3.32), and according to De�nition A.0.1,
we see that the matrix UT

3 PeU1 ∈ Rm×m is a row stochastic matrix with positive
diagonal elements.
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Furthermore, by employing (3.8), and ∀i, τ ∈ {1, · · · ,m} Eq. (3.32) becomes

1 + rτ1(Plτ1 − 1) = 1− rτ1
m∑

i 6=j=1

al(ij),

rτ1Plτ2 = rτ1ali2 , (3.33)

· · ·
rτ1Plτm = rτ1alim .

then the (i, j)th entry of UT
3 PeU1 is rτ1al(ij), which implies that the graph Gl and the

graph of UT
3 PeU1 have the same edge set. Thus, the graph of the matrix UT

3 PeU1

is undirected and connected. It means that the graphs of UT
3 PeU1 has at least one

spanning tree.
Based on the above analysis, we showed that the matrix UT

3 PeU1 is a row stochas-
tic matrix with positive diagonal elements and its graph has at least one spanning
tree. Then, according to Lemma 3.2.1, the matrix UT

3 PeU1 is SIA.
Therefore, from Lemma 3.2.2, there exits a column vector cT such that

lim
k→∞

(UT
3 PeU1)k = 1mc

T. (3.34)

Then, by substituing (3.34) and (3.24) into (3.22), one has

ψ1 = 1mc
T ⊗ eA(t−t0)ψ10. (3.35)

Second, by introducing the variables

µ1 = (U ⊗ In)

[
ψ1

0

]
, µ2 = (U ⊗ In)

[
0
ψ2

]
, (3.36)

one has z = µ1 + µ2. Then, according to (3.14) the variable µ1 is written such as

µ1 = [U1 ⊗ In U2 ⊗ In]

[
ψ1

0

]
= (U1 ⊗ In)ψ1. (3.37)

It follows that µ2 = z − µ1, where µ2 = (U2 ⊗ In)ψ2. And, by using (3.15) and
(3.35), we obtain

µ1 = U11mc
T ⊗ eA(t−t0)ψ10,

= 1Nc
T ⊗ eA(t−t0)ψ10. (3.38)
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If it follows limt→∞ ψ2 → 0 and recalling that (U ⊗ In) is nonsingular, then follows
from (3.36) that limt→∞ µ2 → 0. Finally, it follows from z = µ1 + µ2 that

lim
t→∞

µ2 = lim
t→∞

(z − µ1)

= lim
t→∞

(x−R− 1N c
T ⊗ eA(t−t0)ψ10︸ ︷︷ ︸

h(t)

)→ 0,

= lim
t→∞

(xi − ri − cT ⊗ eA(t−t0)ψ10︸ ︷︷ ︸
h(t)

)→ 0, (3.39)

which implies that the system (3.6) can achieve state formation anticipated by R,
meaning the hybrid robust formation control problem was solved. This completes the
proof.

Remark 3.3.1 h(t) in (3.39) generally can be used to guide a group of agents to
achieve an anticipated formation speci�ed by R as shown in Fig.3.2 and it is con-
sidered as the formation position function. Moreover, the formation function h(t)
in considered clustered network is described as (3.39), which depend on agents' ini-
tial states and formation vector, agent's dynamics, communication networks' clus-
ter and leaders. In addition, according from De�nition 3.2.1, one see that when
ri = rj,∀i, j ∈ V, then limt→∞(xi(t) − xj(t)) = 0 or limt→∞(xi(t) − h(t)) = 0. In
this case, the formation centre function h(t) is equivalent to the global �nal consensus
as shown in Pham, Messai, and Manamanni, 2019c.

Remark 3.3.2 According to Thorem 3.3.1, one sees that to ensure the state for-
mation R, not only the communication topology is required to be connected and the
Laplacian matrix is a symmetric matrix, but also the formation vector should satisfy
the constraint (3.17). Therefore, Theorem 3.3.1 establishes the relationship between
the formability and the communication topology, the agents' dynamics and the for-
mation vector.

3.3.3 Robust Stabilization Controller Design

Based on the above analysis in Subsection 3.3.2, the objective now is to design the
matrixK ∈ Rp×n, such that the system (3.21) is robustly stable, i.e., limt→∞ ψ2 → 0.
The design of such robust stabilization controller gain K is given in the following
theorem.

Theorem 3.3.2 Consider the system (3.21) satisfying Assumptions 3.2.1�3.2.3 and
condition (3.17). It is robustly stable if there exist positive-de�nite and diagonal
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matrices P,Π, Z ∈ Rn×n and X ∈ Rp×n such that the following LMIs are feasible,[
Ξ1 γ2BX + (Υ1−Υ2)

2
Z

∗ −Z

]
≤ 0, (3.40)[

Ξ2 −γNBX + (Υ1−Υ2)
2

Z
∗ −Z

]
≤ 0, (3.41)[

Z P
P Π−1

]
≥ 0, (3.42)

where

Ξ1 = sym(AP + γ2BXΥ2) + αP, γ2 = min{Γ},
Ξ2 = sym(AP + γNBXΥ2) + αP, γN = max{Γ}.

Furthermore, K = XP−1.

Proof 3.3.2 Firstly, we de�ne

V = V (ψ) = ψT(Θ⊗ P−1)ψ, (3.43)

where

P = PT > 0,Θ =

[
0m 0
0 IN−m

]
.

Obviously, V is positive semi-de�nite. If we can prove that between impulses tk
and tk+1, the function V is decreasing

V̇ < 0, ∀t ∈ (tk, tk+1), (3.44)

where

V̇ =ψT[Θ⊗ (ATP−1 + P−1A)]ψ − ψT[(ΘΛU−1 + UΛΘ)⊗ P−1BK]w. (3.45)

and at reset time tk
V (tk) ≥ V (t+k ). (3.46)

Then according to the Lasalle's invariance principle, ψ(t) globally exponentially con-
verges to the largest invariance set contained in {ψ ∈ RNn|V̇ (ψ) = 0} for any initial
conditions. It can be seen from (3.45) and de�nition of matrix Θ in (3.43) that
V̇ (ψ) = 0 if and only if limt→∞ ψ2 → 0, where ψ2 = [ψm+1, · · · , ψN ]T ∈ RNn−mn.

In the following, the condition (3.44) is equivalent to V̇ + αV ≤ 0, where α > 0.
Thus, Eq. (3.45) becomes

V̇ + αV =ψT[Θ⊗ (ATP−1 + P−1A+ αP−1)]ψ−
− ψT[(ΘΛU−1 + UΛΘ)⊗ P−1BK]w ≤ 0. (3.47)
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Then, using the S-procedure and the sector-bounded conditions (3.3), there exits a
diagonal matrix Π ∈ Rn×n,Π ≥ 0, such that

V̇ + αV −
N∑
j=1

(wj −Υ1zj)
TΠ(wj −Υ2zj) ≤ 0.

⇔V̇ + αV − wT(IN ⊗ Π)w − zT(IN ⊗ ΠΥ1Υ2)z+

+ wT[IN ⊗ Π(Υ1 + Υ2)]z ≤ 0.

(3.48)

Then, with z = (U ⊗ In)ψ,UT = U−1 (3.48) becomes

V̇ + αV − wT(IN ⊗ Π)w − ψT(IN ⊗ ΠΥ1Υ2)ψ + wT[U ⊗ Π(Υ1 + Υ2)]ψ ≤ 0.

⇔
[
ψ
w

]T [
Ψ1 Ψ2

Ψ3 Ψ4

] [
ψ
w

]
≤ 0.

⇔
[

Ψ1 Ψ2

Ψ3 Ψ4

]
≤ 0. (3.49)

where

Ψ1 = Θ⊗ (ATP−1 + P−1A+ αP−1)− IN ⊗ ΠΥ1Υ2,

Ψ2 = −ΘΛU−1 ⊗ P−1BK +
1

2
UT ⊗ Π(Υ1 + Υ2),

Ψ3 = −UΛΘ⊗KTBTP−1 +
1

2
U ⊗ Π(Υ1 + Υ2),

Ψ4 = −IN ⊗ Π.

Subsequently, taking the Schur complement to (3.49) results in Ψ1 −Ψ2Ψ−1
4 Ψ3 ≤ 0,

in which

−Ψ2Ψ−1
4 Ψ3 = ΘΛ2Θ⊗ P−1BKΠ−1KTBTP−1+

+
1

4
IN ⊗ Π(Υ1 + Υ2)2 +

1

2
ΛΘ⊗ (Υ1 + Υ2)KTBTP−1+

+
1

2
ΘΛ⊗ P−1BK(Υ1 + Υ2).

Next, by considering Ψ1−Ψ2Ψ−1
4 Ψ3 ≤ 0, and since Λ, and Γ in (3.11) are diagonal,

one obtains

(ATP−1 + P−1A+ αP−1)− ΠΥ1Υ2+

+ γ2
kP
−1BKΠ−1KTBTP−1 +

1

4
Π(Υ1 + Υ2)2+ (3.50)

+
1

2
γk(Υ1 + Υ2)KTBTP−1 +

1

2
γkP

−1BK(Υ1 + Υ2) ≤ 0,
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where γk, k = m+ 1, · · · , N . After, multiplying both sides (3.50) with P , we get

PAT + AP + αP +
1

4
PΠ(Υ1 −Υ2)2P+

+ γ2
kBKΠ−1KTBT +

1

2
γkP (Υ1 + Υ2)KTBT+ (3.51)

+
1

2
γkBK(Υ1 + Υ2)P ≤ 0.

Since P,Υ1,Υ2 are diagonal matrices, PΥ1 = Υ1P, PΥ2 = Υ2P , and (3.51) is
equivalent to

PAT + AP + αP + γkΥ2PK
TBT + γkBKPΥ2+

+
1

4
PΠ(Υ1 −Υ2)2P + γ2

kBKΠ−1KTBT+ (3.52)

+
1

2
γkP (Υ1 −Υ2)KTBT +

1

2
γkBK(Υ1 −Υ2)P ≤ 0.

It leads to

sym(AP + γkBKPΥ2) + αP+

+ [γkBKP +
1

2
(Υ1 −Υ2)ΠP 2]× (3.53)

× (ΠP 2)−1[γkBKP +
1

2
(Υ1 −Υ2)ΠP 2]T ≤ 0.

Taking Z � ΠP 2, Z � 0 and K = XP−1. Then, using the Schur complement
again with (3.53) leads to [

Ξ γkBX + (Υ1−Υ2)
2

Z
∗ −Z

]
≤ 0, (3.54)

where Ξ = sym(AP + γkBXΥ2) + αP and γk, k = m+ 1, · · · , N are eigenvalues of
Laplacian matrix L.

Since γ2 = min{Γ}, γN = max{Γ} and γ2 ≤ γm+1 ≤ · · · ≤ λN , we can represent
γp, p = m+2, · · · , N−1 as convex combination of γ2 and γN . Thus, we derive (3.40)
and (3.41). The LMI (3.42) is obtained straigthforward from Z � ΠP 2, Z � 0.

On the other hand, at the reset time t = tk one has

V (ψ(t+k ))− V (ψ(tk))

= ψ(tk)
T[(Pψ ⊗ In)T(Θ⊗ P−1(Pψ ⊗ In)− (Θ⊗ P−1)]ψ(tk).

Then, to guarantee the second condition (3.46), one needs

(Pψ ⊗ In)T(Θ⊗ P−1)(Pψ ⊗ In)− (Θ⊗ P−1) ≤ 0. (3.55)
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by multiplying both sides (3.55) by (IN ⊗ P ) > 0, we obtain

(Pψ ⊗ In)T(Θ⊗ P )(Pψ ⊗ In)− (Θ⊗ P ) ≤ 0. (3.56)

by employing Pψ = U−1PeU,U
−1 = UT and using (3.8), and (3.10), it is easy to ver-

ify that PT
e ΘPe −Θ ≤ 0. Thus, the condition (3.56) is always true. �

Remark 3.3.3 In case of homogeneous constraints, the upper and lower sectors and
bounds for state constraints of all agents are the same, then Υ1 and Υ2 are multiple
of identity matrices, i.e., Υ1 = υ1In and Υ2 = υ2In. Then, the variable P ∈ Rn×n

in Theorem 3.3.2 is not required to be diagonal. Thus, the associated LMI problem
is less conservative and its feasibility would be improved.

Remark 3.3.4 According to the LMIs (3.40)�(3.42), one sees that the dimension of
variables P ∈ Rn×n, X ∈ Rp×n are just equal to that of the matrix A ∈ Rn×n of each
agent. Thus, the complexity of those LMI problems is low. If γ2, γN are computed by
a given Laplacian matrix L with respect to graph G, then we can solve LMIs (3.40)�
(3.42) in fully distributed fashion i.e., each agent can compute the gain matrix K by
itself and implement the formation protocol (3.2) using only local information (its
information and its neighbors' information).

3.4 Application to Formation of UAVs

In this section, we consider a group of N UAV's motion in d−dimensional Euclidean
space, which is modeled as the second order dynamics in La�erriere et al., 2005;
Wang and Xin, 2013, where the state variable consists of the con�guration states
(position-pxi , p

y
i ) and their derivatives (velocity-vxi , vyi), the control input ui ∈ Rp

denotes the acceleration commands. Finally, the system matrices are given such as

A = Id ⊗
[

0 1
a1

21 a1
22

]
, B = Id ⊗

[
0
1

]
. (3.57)

In order to illustrate that the proposed approaches are implemented in the com-
plex network, we consider the following network which has ten UAVs, and the net-
work is divided into three clusters in Fig. 3.3

The dynamics of the agents and the Laplacian matrix of leader network Gl are
given by

A = I2 ⊗
[

0 1
0 −1

]
, B = I2 ⊗

[
0
1

]
.

Ll =

 0.9 −0.4 −0.5
−0.4 0.7 −0.3
−0.5 −0.3 0.8

⇒ Pl =

 0.1 0.4 0.5
0.4 0.3 0.3
0.5 0.3 0.2

 .
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Figure 3.3: The communication of the network

In this example, we suppose that agents 3, 6 and 10 have more communication
capability than other agents. Thus, we choose them as leaders of clusters 1, 2 and
3, respectively.

The formation considered this time is pentacle. Then, the formation speci�ed
by R(m) are given by

r1 = [0 4
√

3], r2 = [2 2
√

3], r3 = [4
√

3 2
√

3], r4 = [2
√

3 0],

r5 = [4 − 4
√

3], r6 = [0 − 2
√

3], r7 = [−4 − 4
√

3],

r8 = [−2
√

3 0], r9 = [−4
√

3 2
√

3], r10 = [−2 2
√

3].

and R = [r1 r2 r3 r4 r5 r6 r7 r8 r9 r10]T ⊗ [1 0]T. It is clear from R that[[
r1

0

]
, · · · ,

[
r10

0

]]T
=

[[
rx1 ry1
0 0

]
, · · · ,

[
rx10 ry10

0 0

]]T
.

It means that two scenarios related to UAV's positions and velocities are taken into
account: ten UAVs will be controlled to reach a regular pentacle formation in the
2D plane corresponding to their positions, and all of ten UAV's velocites will be
achieve a common value such as

lim
t→∞
‖(pj − pi)− (rj − ri)‖ = 0,

lim
t→∞
‖(vj − vi)‖ = 0.

Each cluster is color coded, where the �rst cluster is red, second is blue and third is
black.

3.4.1 Heterogeneous Constraints

Due to a limited range of sensor, and the limited velocity of each UAV, the states of
connected agents are bounded i.e., the state constraints are the saturation function
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Figure 3.4: Pentacle formation of ten UAVs'positions without com-

munication network of leaders.

(3.4) with heterogeneous constraints such as Table 3.1, and the initial conditions of
three clusters are randomized.

Table 3.1: The sate constraints of ten agents

1st state sj(m) sj 2nd state sj sj(m/s)
px1 , p

y
1 -5 15 vx1, vy1 -2 0

px2 , p
y
2 -10 0 vx2, vy2 -1 3

px3 , p
y
3 -19 15 vx3, vy3 -1.3 3.1

px4 , p
y
4 -12 5 vx4, vy4 -1.8 2

px5 , p
y
5 -17 12 vx5, vy5 0 3

px6 , p
y
6 -20 10 vx6, vy6 -4 5

px7 , p
y
7 -18 7 vx7, vy7 -3.7 1.2

px8 , p
y
8 -19 11 vx8, vy8 -4 3

px9 , p
y
9 -22 15 vx9, vy9 -1.5 1.3

px10, p
y
10 -10 15 vx10, vy10 -3 3

In t ∈ (tk, tk+1), the control protocol now is

ui =K
N∑
j=1

a(ij)

[
φj(z

px
j )− φi(zpxi ) φj(z

py
j )− φi(zpyi )

φj(v
x
j )− φi(vxi ) φj(v

y
j )− φi(v

y
i )

]
+Q

[
rxi ryi
0 0

]
, (3.58)
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where zpxi = pxi − rxi ; z
py
i = pyi − r

y
i . Then, employing (3.58), the dynamics of agent

i can be reformulated as[
ṗxi ṗyi
v̇xi v̇yi

]
=

[
vxi vyi
−vxi −v

y
i

]
+Q

[
rxi ryi
0 0

]
+

+BK

N∑
j=1

a(ij)

[
φj(z

px
j )− φi(zpxi ) φj(z

py
j )− φi(zpyi )

φj(v
x
j )− φi(vxi ) φj(v

y
j )− φi(v

y
i )

]
.

At t = tk, the interaction of leaders can expressed as

xl(t
+
k ) = (Pl ⊗ I2)xl(tk) + rl − (Pl ⊗ I2)rl,

where l = 3, 6, 10, and

xli =

[
pxli pyli
vxli vyli

]
, xl =

 xl1
xl2
xl3

 , xl1 = x3,
xl2 = x6,
xl3 = x10.

Choosing Q = [0 1] to satisfy Theorem 3.3.1, and α = 0.1,Υ1 = diag{0, 0.1},Υ2 =
diag{0.1, 0.2}. Then, solving LMIs in Theorem 3.3.2, one has the feedback matrix
K = [−5.6625 − 6.0109].

The interaction among leaders occurs at some instant times. These are de�ned
based on some events or particularly demand of systems, which is decided by an
operator. In our simulation, we assume that the reset time of the leader's commu-
nication is periodic and it happens at each second as depicted in Fig. 3.5 (upper).
The evolution of leaders' states is also depicted in Fig. 3.5. It is clear that leaders'
values are updated at the reset time tk through the communication graph Gl.
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Figure 3.5: A reset signal and leaders' states of UAVs
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Figure 3.6: Convergence of the variable ψ2 and the Lyapunov func-
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Figure 3.7: Ten-UAVs'positions (xi, yj) constraints (left) and ten-

UAVs'velocities (vxi , vyi) constraints (right).

Convergence of both the variable ψ2 in (3.16) and the Lyapunov function (3.43) is
depicted in Fig. 3.6. It again veri�es that the clustered network achieves formation
under robust formation control protocol (3.17) if limt→∞ ψ2 → 0, shown in Theorem
3.3.1, and the Lyapunov function satis�es the condtions (3.44) and (3.46). More-
over, according to the simulation results depicted respectively in Fig. 3.7, and Fig.
3.8, we see that all positions and velocities of UAVs in clustered network reach the
pentacle formation and consensus under the state constraints.

3.4.2 Homogeneous Constraints

Finally, in oder to investigate the in�uence of state constraints on the formation per-
formance, we have carried out two simulations. In the �rst simulation, we consider
constraints on positions that belong to [−15 15](m) and we suppose that the speed
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Figure 3.8: Pentacle formation of ten UAVs'positions (xi, yi) (lower)
and consensus of ten UAVs'velocities (vxi , vyi) under state constraints

(upper).

shoud be in the interval [−15 8](m/s). The second simuation suppose that the con-
straints on positions belong to [−3 3](m) and that speed should be in [−3 3](m/s).
The obtained simulation results are depicted in Fig. 3.9 and Fig. 3.10. In both of
cases, one can see that agents achieve and keep the desired formation and that the
values of state variables are in the de�ned region. Moreover, one can remark that
when the constraints on the speed are stricter (the second case) the achievement of
formation takes more time.
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Figure 3.9: Ten-UAVs' positions (xi, yj) under state constraints

belonging to [−15 15](m) (upper); Ten-UAVs' positions (xi, yj) under
state constraints belonging to [−3 3](m) (lower).
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Figure 3.10: Ten-UAVs' velocities (vxi , vyi) under state constraints
belonging to [−15 8](m/s) (upper); Ten-UAVs' velocities (vxi , vyi)

under state constraints belonging to [−3 3](m/s) (lower).
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3.5 Chapter summary

In this chapter, a novel approach has been proposed to design distributed robust
formation controllers for general linear MASs under state constraints with the fol-
lowing features. First, the considered networks are partitioned into clusters, where
the communication between agents inside each cluster is continuous, but the cluster
leaders interact at some reset times. Second, it is shown that the robust formation
design with state constraints can be indirectly solved by considering the stability
of an equivalent system. Third, su�cient conditions for the robust stability of this
equivalent system were derived from solutions of local convex LMI problems, which
can be solved in a distributed manner. A possible application of our proposed ap-
proaches to the UAVs formation �ying was illustrated.
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Résumé du Chapitre 4

Ce chapitre se concentre sur le problème du consensus de sortie dans les réseaux
divisés en grappes composées d'agents hétérogènes qui sont soumis à di�érentes
perturbations (correspondant à la cinquième question de la section 1.2). En intro-
duisant un modèle de référence interne pour chaque agent, qui prend en compte les
communications en temps continu entre les modèles de référence internes dans les
grappes virtuelles et les échanges d'informations discrètes entre les clusters virtuelles,
un protocole de contrôle par consensus distribué est proposé. Il est montré que le
problème du consensus de sortie peut être indirectement résolu par le consensus des
références virtuelles. Ensuite, en utilisant les résultats de la théorie des matrices et
de la théorie des graphes algébriques, une condition su�sante pour le consensus dans
des clusters virtuelles est proposée. En�n, une condition su�sante et nécessaire est
obtenue pour le consensus de sortie des agents hétérogènes linéaires sous di�érentes
perturbations dans le réseau en grappes considéré. En�n, un exemple illustratif est
donné pour montrer l'e�cacité des résultats théoriques proposés.
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This chapter focuses on the output consensus problem in networks divided into
clusters composed of heterogeneous agents that are subjected to di�erent distur-
bances (corresponding to the �fth question in Section 1.2). By introducing a dynamic
internal reference model for each agent, that it takes into account the continuous-
time communications among internal reference models in virtual clusters and dis-
crete information exchanges between virtual clusters, a distributed consensus control
protocol is proposed. It is shown that the output consensus problem is indirectly
solved through the consensus of the virtual references. Then, by using results from
matrix theory and algebraic graph theory, a su�cient condition for the consensus in
virtual clusters is proposed. Next, a su�cient and necessary condition is derived for
the output consensus of linear heterogeneous agents under di�erent disturbances in
the considered clustered network. Finally, an illustrative example is given to show
the e�ectiveness of the proposed theoretical results.

4.1 Related Work and Contributions

In many �elds of applications, the dynamics of agents could be di�erent, and state
consensus is no longer valid. Hence, output consensus should be studied instead
(Wieland, Sepulchre, and Allgöwer, 2011; Kim, Shim, and Seo, 2011; Huang and
Ye, 2014; Li et al., 2015; Adib Yaghmaie, Lewis, and Su, 2016; Hu, Liu, and Feng,
2017; Kiumarsi and Lewis, 2017; Qian, Liu, and Feng, 2018b). The output con-
sensus problem of heterogeneous linear MASs was studied in Wieland, Sepulchre,
and Allgöwer, 2011. It is shown that an internal model principle is necessary and
su�cient for the synchronizability of the network. Following this research line, a
cooperative output regulation problem of linear MASs subjected to disturbances
were investigated in Kim, Shim, and Seo, 2011; Huang and Ye, 2014. These works,
which represent a special case of output consensus of heterogeneous MASs are based
on the output regulation theory. The proposed approaches allow the output of het-
erogeneous MASs tracking an internal reference input while rejecting external dis-
turbances. In another work, Adib Yaghmaie, Lewis, and Su, 2016 addressed the
output regulation problem of linear heterogeneous MASs in directed and �xed com-
munication graph, where agents have an arbitrary number of inputs and outputs.
Moreover, the output consensus problem of heterogeneous discrete-time MASs was
studied in Li et al., 2015; Kiumarsi and Lewis, 2017. Another direction proposes a
distributed even-triggered control protocol (Hu, Liu, and Feng, 2017; Qian, Liu, and
Feng, 2018b). It is shown that all agents achieve asymptotically output consensus
with intermittent communication among agents in a network.

It has been noticed that interaction among agents in the aforementioned networks
is either continuous-time or discrete-time. Nevertheless, in several practical applica-
tions, e.g., cooperative intelligent transportation systems, robots �eet cooperation,
consensus control on a social network, etc, agents can be subject to abrupt changes
at speci�c instants. Also, because of some constraints related to the energy or the
range of communication, agents should impulsively exchange information with their
neighbors at some discrete times (Guan et al., 2012a; Hu et al., 2013; Liu, Zhang, and
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Xie, 2017). This leads to a hybrid communication that combines both continuous-
time and discrete-time interaction among agents. In Guan et al., 2012a, a su�cient
and necessary result has been derived for the impulsive consensus of second-order
MASs with sampled-data communication, where the graphs of continuous-time and
impulsive-time topologies contain a spanning tree. In another work, Hu et al., 2013
dealt with the time-delayed impulsive consensus problem of second-order MASs with
switching topologies. Following this research line, the necessary condition of impul-
sive consensus on graph connections among agents is investigated in Liu, Zhang, and
Xie, 2017. Moreover, sometimes the network should be divided into several groups
or clusters (Bragagnolo et al., 2014; Rejeb, Morarescu, and Daafouz, 2015; Bragag-
nolo et al., 2016; Morarescu et al., 2016; Pham, Messai, and Manamanni, 2019a;
Pham et al., 2019) with continuous intra-cluster and discrete inter-cluster commu-
nications. This is di�erent from the consensus problem considered in Xia and Cao,
2011; Qin and Yu, 2013; Qin, Yu, and Anderson, 2016, where agents within a clus-
ter are cooperative but are competitive with those in other clusters. The works in
Bragagnolo et al., 2016 proposed a quasi-periodically reset strategy and provided
some LMI conditions to guarantee the global uniform exponential consensus where
the communication structures in clusters are represented by directed and strongly
connected graphs. The research in Morarescu et al., 2016 investigated the su�cient
conditions for event-triggered consensus. In other works (see Pham, Messai, and
Manamanni, 2019a; Pham et al., 2019), the hybrid consensus control protocol was
proposed to deal with the consensus problem of homogeneous MASs in the clustered
network. Nevertheless, most of the above studies on clustered MASs consider the
homogeneous agent with simply the integrator and identical.

Motivated by both above-mentioned limitations and practical issues mentioned
above, this research focuses on clustered networks of MASs where each cluster is
represented by a �xed directed graph and in each cluster there exists an agent called
a leader who can instantly communicate with other leaders in other clusters. The
main contributions of this chapter can be summarized as follows.

This chapter investigates a general setting of the consensus problem in directed
clustered network of MASs, where agents have distinct and generic linear dynamics
under di�erent disturbances. A dynamic internal reference model for each agent is
introduced, which takes into account the continuous-time communications among
internal reference models in virtual clusters and discrete information exchanges be-
tween those virtual clusters. Therefore, the output consensus of heterogeneous
agents is indirectly solved through the consensus of the virtual references. To achieve
that, a hybrid consensus control protocol is proposed for the virtual clustered net-
work. Thanks to results from matrix theory and algebraic graph theory, the consen-
sus of the virtual clustered network are solved which forms the second contribution
of this work. A su�cient and necessary condition is derived for the output consensus
of linear heterogeneous agents under di�erent disturbances in the clustered network.
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4.2 Problem Formulation

4.2.1 Output Consensus Control

Consider N heterogeneous agents which interact in a network partitioned into m
clusters. Each agent has the following linear generic dynamics

ẋi(t) = Aixi(t) +Biui(t) + Edidi(t),

yi(t) = Cixi(t). (4.1)

where xi(t) ∈ Rni , ui(t) ∈ Rpi , and yi(t) ∈ Rq are respectively the state, input, and
output vector. di(t) ∈ Rhi is the immeasurable disturbance, which has the following
dynamics

ḋi(t) = Adidi(t). (4.2)

Then, system (4.1)-(4.2) can be rewritten by the following augmented form:[
ẋi(t)

ḋi(t)

]
=

[
Ai Edi
0 Adi

]
︸ ︷︷ ︸

Adi

[
xi(t)
di(t)

]
+

[
Bi

0

]
ui(t),

yi(t) =
[
Ci 0

]︸ ︷︷ ︸
Cdi

[
xi(t)
di(t)

]
. (4.3)

De�nition 4.2.1 (Output Consensus Problem) The MAS (4.1) is said to achieve
output consensus for all initial conditions if the following condition is satis�ed

lim
t→∞
‖yi(t)− yj(t)‖ = 0, ∀i, j = 1, . . . , N. (4.4)

In order to deal with the output consensus problem in the clustered network, we
propose that each agent has an internal reference model embedded in a controller,
which is generated from a cyber command centre (see Fig. 4.1). Those internal
reference models have identical dynamics and can be viewed as virtual exosystems
which generate virtual reference inputs for agents. They also interact through a
network called virtual clustered networks which have the same structure as the
physical clustered network of heterogeneous agents.
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Figure 4.1: The heterogeneous MASs are in the physical space while

internal reference models are generated from a cyber command center

through the virtual clustered network.

In the following, we propose a distributed consensus control law for the consid-
ering clustered network of heterogeneous MASs (4.1) and their virtual references,

ui(t) = K1ix̂i(t) +K2id̂i(t) +K3ivi(t), (4.5)[
˙̂xi(t)
˙̂
di(t)

]
=

[
Ai Edi
0 Adi

] [
x̂i(t)

d̂i(t)

]
+

[
Bi

0

]
ui +

[
F x
i

F d
i

]
︸ ︷︷ ︸
Fi

(Cix̂i(t)− yi(t)), (4.6)

v̇i(t) = Avvi(t) + cKv

N∑
j=1

a(ij)Cv(vj(t)− vi(t)), (4.7)

∀t ∈ (tk, tk+1), where x̂i(t) ∈ Rni is the observer state, d̂i(t) ∈ Rhi is the estimation
disturbance, vi(t) ∈ Rv is the internal reference model state, c ∈ R is an coupling
gain, and Kv ∈ Rv×q, K1i ∈ Rpi×ni , K2i ∈ Rpi×hi , K3i ∈ Rpi×v, F x

i ∈ Rq×ni , F d
i ∈

Rhi×ni , i = 1, · · · , N are determined later.
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Moreover, the discrete communication occurring between the leaders of clusters
of heterogeneous MASs needs to assume that their states have the same dimensions.
However, this assumption is challenging in some applications. Thus, to avoid this
limitation, this will be implemented on the leaders of virtual communication clusters.
Thus, exchange information among leader's states of virtual clusters at the reset time
tk can be described by

∆vli(tk) =
m∑
j=1

al(ij)(vlj(tk)− vli(tk)), t = tk. (4.8)

where ∆vli(tk) = vli(t
+
k ) − vli(t

−
k ), where vli(t

+
k ) and vli(t

−
k ) represent the right

and left limit of vli at tk, respectively. Without loss of generality, we assume that
vli(t

−
k ) = vli(tk). Moreover, al(i,j) is the (i, j)th entry of the weighted adjacent matrix

Al = [al(ij)], and m denotes the set of leader in graph Gl. The Laplacian matrix
Ll = [Ll(ij)] ∈ Rm×m is de�ned as Ll(ii) =

∑m
j 6=i=1 al(ij), Ll(ij) = −al(ij).

According to (4.7) and (4.8), the evolution of the whole system can be viewed as a
hybrid system that evolves as follows: during interval time (tk−1, tk), the interaction
among nodes in each cluster Cτ is related only to the graph Gτ . Moreover, at each
instant time tk, the leaders update their states instantaneously according to the
topology of Gl.

4.2.2 Useful Assumptions

Hereafter, the time index t is ommited in expressions of xi, x̂i, ui, yi, vi, di, d̂i, ui and
other variables just for conciseness of mathematical representations. Next, the fol-
lowing assumptions, de�ntion, and lemmas are used.

Assumption 4.2.1 The graphs Gτ has a spanning tree.

Assumption 4.2.2 al(ij) � 0,
∑m

j 6=i=1 al(ij) ≺ 1.

Assumption 4.2.3 Adi has no eigenvalues with negative real parts.

Assumption 4.2.4 Matrices pairs (Ai, Bi), and

([
Ci 0

]
,

[
Ai Edi
0 Adi

])
are control-

lable and detectable, respectively.

Lemma 4.2.1 (Roger A. Horn, 2013) For any positive-de�nite matrix Φ1 ∈ Rn×n

and symmetric matrix Φ2 ∈ Rn×n, it can be veri�ed that

xTΦ2x ≤ λmax(Φ
−1
1 Φ2)xTΦ1x.

Remark 4.2.1 Assumption 4.2.1 is needed to guarantee that the Laplacian matrix
Lτ of Gτ ,∀τ ∈ {1, · · · ,m} satis�es the following proprieties Lτ1Nτ = 0, rTτ Lτ = 0,
where 1Nτ , and r

T
τ = 1

Nτ
1Nτ are the right and left eigenvectors of Lτ associated with

zero eigenvalue, respectively. Assumption 4.2.2 ensures the matrix Pl = I − Ll is a
stochastic matrix with positive diagonal elements. Moreover, Assumptions 4.2.3 and
4.2.4 is for the existence of a controller and an observer.
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Remark 4.2.2 It is noticed that the internal reference models (4.7) are constructed
based on the relative output measurement, where Av is the state matrix with appro-
priate dimensions, and output matrix Cv determines the dimensions of transmitted
information between agents. The objective of internal reference models (4.7) gener-
ates the consensus trajectories of heterogeneous MASs (4.1).

According to above our approach, the proposed design composes of two steps.
The problem consensus of homogeneous MASs, described in (4.7)�(4.8), in virtual
clustered network will be �rst given. By the way, we �rst show that the problem
of consensus design for virtual clustered networks can be indirectly solved by con-
sidering the stability of an equivalent system. Then, the stability of this equivalent
system will be given by means of LMI condition. In the second step, a su�cient
and necessary condition is derived for the output consensus of linear heterogeneous
agents in the considered clustered network.

4.3 Consensus of the Virtual Reference Systems

4.3.1 Prerequisites

From the Gershgorin theorem (Olfati-Saber and Murray, 2004), we know that λm �
2dmax(Gl), where λm is the largest eigenvalue of the Laplacian of the graph Gl,
and dmax(Gl) is the maximum out-degree of the nodes of Gl, where degout(vli) =∑m

i=1 al(ij). Therefore, we can get 0 ≺ λm ≺ 2. Let us introduce
Pl(ij) = −Ll(ij) = al(ij) � 0,

Pl(ii) = 1− Ll(ii) = 1−
m∑

j 6=i=1

al(ij) � 0.
(4.9)

Then
∑m

j=1 Pl(ij) = 1, and Pl = I − Ll is a row stochastic matrix with positive
diagonal elements, and according to Assumption 4.2.2, it has an eigenvalue λ1 = 1
with algebraic multiplicity equal to one, and all the other eigenvalues satisfy 0 ≺
|λi| ≺ 1, i = 2, · · · ,m.

By employing (4.9), and denoting zi = eαtvi, α � 0, the internal reference models
(4.7)�(4.8) can be rewritten as

żi = (Av + αIv)zi + cKv

N∑
j=1

a(ij)Cv(zj − zi), t ∈ (tk, tk+1),

zli(t
+
k ) =

m∑
j=1

Pl(ij)zlj(tk), t = tk.

(4.10)
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Then, system (4.10) can be written in the following, which describes the overall
network dynamics{

ż = (IN ⊗ (Av + αIv)− cL ⊗KvCv)z, t ∈ (tk, tk+1)

zl(t
+
k ) = (Pl ⊗ In)zl(tk), t = tk,

(4.11)

where

z = [zTl1 , z
T
f2
, · · · , zTfm1

, · · · , zTlm , · · · , z
T
fmm

= zTfN ]T ∈ RNn,

zl = [zTl1 , · · · , z
T
lm ]T ∈ Rmn.

containing respectively the states of agents and leader's states, and Pl = I − Ll,
and L ∈ RN×N is the Laplacian matrix associated with the graph G represented in
(1.21).

Now, some algebraic properties of L are presented in the following Proposition.

Proposition 4.3.1 Let us consider a network of m clusters satisfying Assumption
4.2.1, with the Laplacian L ∈ RN×N , then rank(L) = N −m and L has m eigen-
values at zero and all the other N −m eigenvalues of the Laplacian L ∈ RN×N are
positive real parts.

Let us introduce the extended stochastic matrix Pe as follows

Pe =MT

[
Pl 0
0 IN−m

]
M∈ RN×N , (4.12)

whereM is a permutation matrix.
Then, the second equation in (4.11) can be expressed by

z(t+k ) = (Pe ⊗ In)z(tk), t = tk. (4.13)

In the following, let U ∈ RN×N be an invertible matrix, and employing Proposi-
tion 4.3.1, we obtain

U−1LU =

[
0m 0
0 Γ

]
= Λ ∈ R(N)×(N), (4.14)

Γ = diag{γm+1, · · · , γN} ∈ R(N−m)×(N−m).

Next, let us also introduce the new variable

ψ = (U−1 ⊗ In)z. (4.15)

According to the variable ψ, we are now ready to formulate our statement as the
following {

ψ̇ = (IN ⊗ (Av + αIv)− cΛ⊗BK)ψ, t ∈ (tk, tk+1),

ψ(t+k ) = (Pψ ⊗ In)ψ(tk), t = tk,
(4.16)
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where Pψ = U−1PeU .
Finally, in order to simplify the presentation of the next results let us partition

the matrices U−1, U into

U−1 = [UT
3 UT

4 ]T, U = [U1 U2], (4.17)

where U3 ∈ Rm×N , U4 ∈ R(N−m)×N and U1 ∈ RN×m, U2 ∈ RN×(N−m).

U1 =

1N1 · · · 0
...

. . .
...

0 · · · 1Nm

 , U3 =

r
T
1 · · · 0
...

. . .
...

0 · · · rTm

 , (4.18)

where LU1 = 0N×m, U
T
3 L = 0m×N . Then, (4.15) becomes

ψ1 = (U3 ⊗ In)z, ψ2 = (U4 ⊗ In)z, (4.19)

where ψ1 ∈ Rmn and ψ2 ∈ RNn−mn.

4.3.2 Consensus Analysis in Clustered Network

According to results from Lemma 3.2.1 and Lemma 3.2.2, the consensus of homoge-
neous virtual reference systems (4.7)�(4.8) is analyzed and shown that it is indirectly
solved by considering the stability of the system (4.17). The result is shown in the
following theorem.

Theorem 4.3.1 Consider the overall network dynamics system (4.17), and suppose
that assumptions 4.2.1�4.2.2, the consensus problem is solved if limt→∞ ψ2 → 0 for
any given bounded initial conditions.

Proof 4.3.1 The proof is given in two steps. First, we show that ψ1 reaches a
constant value, which depends on the dynamics of agents, the graph of each cluster,
the interaction between leaders, and the initial conditions. Second, based on the
analysis of the �rst step, the hybrid rconsensus control problem is solved.

Firstly, according to (4.14), (4.17) and (4.19), the dynamics of ψ1 can be repre-
sented as the following{

ψ̇1 = (Im ⊗ (Av + αIv))ψ1,

ψ1(t+k ) = (U3PeU1 ⊗ In)ψ1(tk) + (U3PeU2 ⊗ In)ψ2(tk)
(4.20)

Then, the solution of (4.20) with initial condition ψ1(t0) = ψ10 can be obtained
by

ψ1 = e(Im⊗(Av+αIv))(t−tk)ψ1(t+k )

= (Im ⊗ e(Av+αIv)(t−tk))ψ1(t+k ), (4.21)
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and if limt→∞ ψ2 → 0, then ψ1(t+k ) can be expressed as

ψ1(t+k ) = lim
k→∞

k∏
i=1

(U3PeU1 ⊗ In)e(Im⊗Aαv )(ti−ti−1)ψ1(t0)

= lim
k→∞

(U3PeU1)k ⊗ eAαv (tk−t0)ψ1(t0). (4.22)

where Aαv = Av + αIv.
In the following, by using results from Lemma 3.2.1 and Lemma 3.2.2, we prove

that matrix U3PeU1 ∈ Rm×m is a row stochastic matrix with positive diagonal ele-
ments.

The extended stochastic matrix Pe in (4.12) can be expressed as follows

Pe =


Pl11 0 · · · Pl1m 0
0 IN1−1 · · · 0 0
...

...
. . .

...
...

Plm1 0 · · · Plmm 0
0 0 · · · 0 INm−1

 ∈ RN×N , (4.23)

where

Pl =

Pl11 · · · Pl1m
...

...
...

Plm1 · · · Plmm

 =

Pl1...
Plm

 ∈ Rm×m, (4.24)

and the matrix U1 ∈ RN×m and U3 ∈ Rm×N are in (4.18). Now, the matrix PeU1 is
calculated as

PeU1 =


Pl11 · · · Pl1m
1N1−1 0(N1−1)×(N1−1)
...

...
Plm1 · · · Plmm
1Nm−1 0(Nm−1)×(Nm−1)

 =

E1
...
Em

 , (4.25)

where ∀τ ∈ {1, · · · ,m}, and

Eτ =

[
Plτ1 · · · Plτm
1Nτ−1 0(Nτ−1)×(Nτ−1)

]
∈ RNτ×m. (4.26)

Then, the matrix U3PeU1 is determined as follows

U3PeU1 =

r
T
1 · · · 0
...

. . .
...

0 · · · rTm


E1

...
Em

 =

 r
T
1E1
...

rTmEm

 , (4.27)

where rTτ = [rτ1 , · · · , rτNτ ] ∈ R1×Nτ , ∀τ ∈ {1, · · · ,m}, and

rTτ Eτ = [rτ1Plτ1 + rτ2 + · · ·+ rτNτ , rτ1Plτ2 , · · · , rτ1Plτm ].
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The sum of the row matrix rTτ Eτ is calculated by

Nτ∑
k=1

rTτ Eτ = rτ1Plτ1 +
Nτ∑
k=2

rτk + rτ1

m∑
k=2

Plτk . (4.28)

According to Assumptions 4.2.1 and 4.2.2 , Plτ1 = 1−
∑m

k=2 Plτk , then

Nτ∑
k=1

rTτ Eτ =
Nτ∑
k=1

rτk = 1, (4.29)

and Plτk > 0, then

rτ1Plτ1 + rτ2 + · · ·+ rτNτ � 0,

rτ1Plτ2 � 0, (4.30)

...

rτ1Plτm � 0.

Subsequently, by employing (4.29) and (4.30), and according to De�nition A.0.1,
we see that the matrix U3PeU1 ∈ Rm×m is a row stochastic matrix with postive
diagonal elements.

Furthermore, by employing (4.9), and ∀i, τ ∈ {1, · · · ,m} Eq. (4.30) becomes

1 + rτ1(Plτ1 − 1) = 1− rτ1
m∑

i 6=j=1

al(ij),

rτ1Plτ2 = rτ1ali2 , (4.31)

...

rτ1Plτm = rτ1alim .

then the (i, j)th entry of UT
3 PeU1 is rτ1al(ij), which implies that the graph Gl and the

graph of UT
3 PeU1 have same the edge set. Thus, the graph of the matrix UT

3 PeU1 has
a spanning tree.

Based on the above analysis, we showed that the matrix U3PeU1 is a row stochastic
matrix with positive diagonal elements and the graph of it has a spanning tree. Then,
according to Lemma 3.2.2, the matrix U3PeU1 is SIA.

Therefore, from Lemma 3.2.1, there exits a column vector cT such that

lim
k→∞

(U3PeU1)k = 1mc
T. (4.32)

Then, by subtitute (4.32) and (4.22) into (4.21), one has

ψ1 = 1mc
T ⊗ eAαv (t−t0)ψ10. (4.33)
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Secondly, by introducing the variables

µ1 = (U ⊗ In)

[
ψ1

0

]
, µ2 = (U ⊗ In)

[
0
ψ2

]
, (4.34)

one has z = µ1 + µ2. Then, according to (4.34) the variable µ1 is written such as

µ1 = [U1 ⊗ In U2 ⊗ In]

[
ψ1

0

]
= (U1 ⊗ In)ψ1. (4.35)

It follows that µ2 = z− µ1, where µ2 = (U2⊗ In)ψ2. And, by using (4.35), it obtain

µ1 = U11mc
T ⊗ eAαv (t−t0)ψ10,

= 1Nc
T ⊗ eAαv (t−t0)ψ10. (4.36)

Then, if limt→∞ ψ2 → 0 and recalling that (U ⊗ In) is nonsingular, we obtain

lim
t→∞

µ2 = lim
t→∞

(z − µ1) = 0. (4.37)

Finally, according to (4.37) and (4.36), one has

lim
t→∞

(z − 1Nc
T ⊗ eAαv (t−t0)ψ10)→ 0. (4.38)

which implies that the system (4.11) can achieve consensus, meaning: zi = zj =
1Nc

T ⊗ eAαv (t−t0)ψ10),∀i, j = 1, · · ·N.

4.3.3 Stabilization Controller Design

Based on the above analysis, the objective now is to design the matrix Kv ∈ Rv×q,
such that the system (4.16) is stable, i.e., limt→∞ ψ2 → 0. The design of such
stabilization controller gain Kv and c are given in the following theorem.

Theorem 4.3.2 Consider the homogeneous virtual reference systems (4.16) with
Assumptions 4.2.1�4.2.2. If there exists a positive constant β � 0 and symmetric,
positive de�nite matrix P ∈ Rv×v such that the following LMI is feasible,

AT
vP + PAv − βCT

v Cv + 2αP ≺ 0. (4.39)

Then, limt→∞ ψ2 → 0. Moreover, the stabilization control gain Kv and coupling gain
c are given by Kv = P−1CT

v , c �
β

2 max γi
,∀i = m+ 1, · · · , N .

Proof 4.3.2 We consider the stability of the system (4.16) by introducing the Lya-
punov function such as

V =
N∑

i=m+1

ψT
i P
−1ψi = ψT

[0m 0
0 IN−m

]
︸ ︷︷ ︸

Φ

⊗P−1

ψ. (4.40)
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Then, V is positive semide�nite, and it is su�cient to prove that between impulses
tk and tk+1 the function V is a decreasing

V̇ � 0, ∀t ∈ (tk, tk+1) (4.41)

and with µ > 0 at reset time tk

V (t+k ) � µV (tk) (4.42)

For t ∈ (tk, tk+1), the derivative of V with respect to (4.16) is

V̇ =ψT[Φ⊗ (AT
vP
−1 + P−1Av + 2αP−1)−

− c((ΦΛ + ΛTΦ)⊗KvCvP
−1)]ψ

=
N∑

i=m+1

ψT
i (AT

vP
−1 + P−1Av + 2αP−1 − 2cγiKvCvP

−1)ψi. (4.43)

By choosing c such that c � β
2 max γi

, ∀i = m+ 1, · · · , N

AT
vP
−1 + P−1Av + 2αP−1 − 2cγiKvCvP

−1

� AT
vP
−1 + P−1Av + 2αP−1 − βKvCvP

−1 ≺ 0 (4.44)

Therefore, V̇ ≤ 0, and the LMI (4.39) is obatained by multiplying two sides of (4.44)
by P , and letting Kv = P−1CT

v .
On the other hand, at the reset time t = tk one has

V (ψ(t+k ))− µV (ψ(tk))

= ψT(tk)[(Pψ ⊗ In)T(Φ⊗ P−1)(Pψ ⊗ In)−
− µ(Φ⊗ P−1)]ψ(tk)

= ψT(tk)[(P
T
ψ ΦPψ − µΦ)⊗ P−1]ψ(tk) (4.45)

by employing Pψ = U−1PeU , (4.17) and (4.40), one has

PT
ψ ΦPψ =

[
(U4PeU1)T(U4PeU1) (U4PeU1)T(U4PeU2)
(U4PeU2)T(U4PeU1) (U4PeU2)T(U4PeU2)

]
then, by using (4.33), we obtain

(U4PeU1 ⊗ P−1)ψ1(tk) = U4PeU11mc
T ⊗ eAαv (t−t0)ψ10

= U4Pe1Nc
T ⊗ eAαv (t−t0)ψ10.
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Moreover, according to (4.17) and (4.18), one has U4U1 = 0(N−m)×m, where

U4 =

U
T
41 · · · 0
...

. . .
...

0 · · · UT
4m

 , U1 =

1N1 · · · 0
...

. . .
...

0 · · · 1Nm


Now, since Pe in (4.16) is the stochastic matrix, one has Pe1N = 1N . It becomes
obvious that

(U4PeU1 ⊗ P−1)ψ1(tk) = 0(N−m)×m.

and [
ψT

1 (tk)
ψT

2 (tk)

]T
PT
ψ ΦPψ

[
ψ1(tk)
ψ2(tk)

]
= ψT

2 (tk)P
T
ψ1
Pψ1ψ2(tk).

where Pψ1 = U4PeU2. Then, from (4.45), one has

V (ψ(t+k ))− µV (ψ(tk)) = ψT
2 (tk)[(P

T
ψ1
Pψ1 − µIN−m)⊗ P−1]ψ2(tk) (4.46)

Then, according to Lemma 4.2.1, with PT
ψ Pψ is a symmetric matrix and λmax(P

T
ψ Pψ) >

0, we can conclude from (4.46) that

V (ψ(t+k ))− µV (ψ(tk)) ≤ 0 , µ = λmax(P
T
ψ Pψ). (4.47)

Thus, according to the Lasalle's invariance principle, ψ globally exponentially con-
verges to the largest invariance set contained in {ψ ∈ RNn|V̇ (ψ) = 0} for any initial
conditions. It can be seen from (4.43) and de�nition of matrix Φ that V̇ (ψ) = 0 if
and only if limt→∞ ψ2 → 0, where ψ2 = [ψm+1, · · · , ψN ]T ∈ RNn−mn.

Remark 4.3.1 By using Theorem 4.3.2, one can conclude that limt→∞ z → 0. On
the other hand, since zi = eαtvi, it becomes that limt→∞(vi − vj) → 0 exponentially
converges, that is, state consensus can be exponentially achieved for all agents with
rate of e−αt.

4.4 Output Consensus of the Heterogeneous Agents

Having the consensus of internal reference models (4.7)�(4.8), the output consensus
of heterogeneous clustered MASs under the distributed controller (4.5) can now be
solved. The result is shown in the following theorem.

Theorem 4.4.1 Suppose that Assumptions 4.2.1� 4.2.4 hold. Moreover, the LMI
(4.39) is satis�ed and matrices Kv ∈ Rv×q is designed as in Theorem ??. For each
agent i, let [K2i K3i] = Mi − K1iNi and choose the matrices K1i ∈ Rpi×ni and
Fi ∈ R(q+hi)×ni such that Ai + BiK1i and Adi + FiCi are Hurwitz. Then, under
the distributed consensus control law (4.5)�(4.8), the heterogeneous clustered MASs
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(4.1) achieve asymptotically the output consensus, if and only if the following linear
matrix equations

NiA
d
v = AiNi +BiMi + Ei, (4.48)

R0
v = CiNi. (4.49)

have solutions Ni ∈ Rni×(hi+v) and Mi ∈ Rpi×(v+hi), where

Adv =

[
Adi 0
0 Av

]
, Ei =

[
Edi 0

]
, R0

v =
[
0 Rv

]
.

Proof 4.4.1 Let xc = [xTc1, x
T
c2, · · · , xTcN ]T ∈ Rµ, with xci = [xTi , x̂

T
i , d̂

T
i , v

T
i ]T and

µ =
∑N

i=1(2ni + hi + v). By employing (4.3)�(4.8), the closed-loop system can be
rewritten as

ẋc = Acxc +Bcv
d
c , t ∈ (tk, tk+1), (4.50)

y = Ccxc, t ∈ (tk, tk+1), (4.51)

xc(t
+
k ) = Pcxc(tk), t = tk. (4.52)

where

ed = [ed1, · · · , edN ]T, edi = di − d̂i,∀i = 1, · · · , N,
vdc = [eTd v

T
c ]T, vc = (L ⊗ Iv)v,

y = [yT1 , · · · , yTN ]T, Ac = diag{Ac1, · · · , AcN},
Bc = diag{Bc1, · · · , BcN}, Cc = diag{Cc1, · · · , CcN},

Pc =


In 0 0 0
0 In 0 0
0 0 Ih 0
0 0 0 Pe ⊗ Iv

 , n =
N∑
i=1

ni, h =
N∑
i=1

hi.

It can be shown that the ith diagonal elements of Ac, Bc and Cc have the following
forms, respectively

Aci =


Ai BiK1i BiK2i + Edi BiK3i

−F x
i Ci Ai + F x

i Ci +BiK1i BiK2i + Edi BiK3i

−F d
i Ci F d

i Ci Adi 0
0 0 0 Av

 ,
Bci =

[
Edi 0 0 0
0 0 0 KvCv

]T
, (4.53)

Cci =
[
Ci 0 0 0

]
. (4.54)
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Su�ciency

Denote ei = xi −Ni

[
di
vi

]
, exi = xi − x̂i, edi = di − d̂i the disagreement vector, state

observation error of agent i, and disturbance estimation error, respectively. Then,
by (4.3), (4.5)�(4.8), and (4.48), where [K2i K3i] = Mi−K1iNi, the error dynamics
can be rewritten as [

ėxi
ėdi

]
= (Adi + FiC

d
i )

[
exi
edi

]
, (4.55)

and

ėi =Aixi +BiK1ix̂i +Bi[K2i K3i]

[
di
vi

]
−BiK2iedi+

+ [Edi 0]

[
di
vi

]
−Ni

[
Adi 0
0 Av

] [
di
vi

]
−

−Ni

[
0

KvCv
∑N

j=1 a(ij)(vi − vj)

]
(4.56)

ėi =Aixi +BiK1ixi −BiK1iNi

[
di
vi

]
−BiK1iexi+

+

(
BiMi −Ni

[
Adi 0
0 Av

]
+ [Edi 0]

)
︸ ︷︷ ︸

−AiNi

[
di
vi

]
−

−BiK2iedi −Ni

[
0

KvCv
∑N

j=1 a(ij)(vi − vj)

]
(4.57)

ėi =(Ai +BiK1i)ei −BiK1iexi −BiK2iedi −Ni

[
0

KvCv
∑N

j=1 a(ij)(vi − vj)

]
. (4.58)

According to Theorem ??, one has limt→∞(vi−vj) = 0. Moreover, under Asumptions
4.2.3 and 4.2.4, we can choose a proper Fi, K1i such that Adi +FiC

d
i , Ai +BiK1i, i =

1, . . . , N are Hurwitz. It follows from (4.55) that limt→∞ exi = 0 and limt→∞ edi = 0.
Therefore, we can concluded from equation (4.58) that limt→∞ ei = 0, which leads to

lim
t→∞

xi = lim
t→∞

(
ei +Ni

[
di
vi

])
= lim

t→∞
Ni

[
di
vi

]
. (4.59)

Then, by employing (4.49) and (4.59), one has

lim
t→∞

(yi − yj) = lim
t→∞

([
0 Rv

] [di − dj
vi − vj

])
= lim

t→∞
Rv(vi − vj) = 0. (4.60)
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that is, the output consensus problem of heterogeneous multi-agent system (4.1) in
clustered network is solved.

Necessity

According to Theorem ??, one further has vc = (Lc⊗Iv)v → 0 as t→∞. Moreover,
the closed-loop system (4.50)�(4.52) has yi = yj and vi = vj for i, j = 1, · · · , N .
Therefore, it can be rewritten by

ẋc = Acxc, t ∈ (tk, tk+1) (4.61)

y = Ccxc, t ∈ (tk, tk+1), (4.62)

xc(t
+
k ) = Pcxc(tk), t = tk (4.63)

Since Aci ∈ R(2ni+hi+v)×(2ni+hi+v) and Ac ∈ Rµ×µ, there exits an invertible matrix V
such that

V−1AcV =

[
S 0
0 ?

]
. (4.64)

for a matrix S ∈ R(v+hi)×(v+hi), and the notation "?" stands for a matrix irrelevant
to the problem. Let V = [Υ Ξ], then

[Υ Ξ]−1Ac[Υ Ξ] =

[
S 0
0 ?

]
⇒ AcΥ = ΥS, (4.65)

Cc[Υ Ξ] = [Ψ ?]. (4.66)

Note that yi = yj 6= 0, so limt→∞(L ⊗ Iq)Ccxc = 0. It means that the kernel of the
Laplacian matrix is span{1}. Thus, there exits an R0

v = [0 Rv] ∈ Rp×m such that
Ψ = 1N ⊗R0, Rv 6= 0, and limt→∞(L ⊗ Iq)(1N ⊗R0

v) = 0. It leads to

CcΥ = 1N ⊗R0
v. (4.67)

Partition Υ = [ΥT
1 , · · · ,ΥT

N ]T,Υi ∈ R(2ni+hi+v)×(hi+v). It follows from (4.65) and
(4.67) that

AciΥi = ΥiS, (4.68)

CciΥi = R0
v. (4.69)

and Υi can be rewritten as Υi = [NT
i QT

i Y T
1i Y

T
2i ]

T, where Ni ∈ Rni×(hi+v), Qi ∈
Rni×(hi+v), Y1i ∈ Rhi×(hi+v), Y1i ∈ Rv×(hi+v).
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It follows from (4.68), and (4.53) that

AiNi +BiK1iQi + (Edi +BiK2i)Y1i +BiK3iY2i = NiS, (4.70)

− F x
i CiNi + (Ai + F x

i Ci +BiK1i)Qi + (Edi +BiK2i)Y1i +BiK3iY2i = QiS, (4.71)

− F d
i CiNi + F d

i CiQi + AdiY1i = Y1iS, (4.72)

AvY2i = Y2iS. (4.73)

It is equivalent to

Bi

(
K1iQi +

[
K2i K3i

] [Y1i

Y2i

])
+
[
Edi 0

] [Y1i

Y2i

]
+ AiNi = NiS, (4.74)

Bi

(
K1iQi +

[
K2i K3i

] [Y1i

Y2i

])
+
[
Edi 0

] [Y1i

Y2i

]
+

+ F x
i Ci(Qi −Ni) + AiQi = QiS, (4.75)[

F d
i Ci(Qi −Ni)

0

]
+

[
Adi 0
0 Av

] [
Y1i

Y2i

]
=

[
Y1i

Y2i

]
S. (4.76)

the solution of (4.74)�(4.76) is Qi = Ni,

[
Y1i

Y2i

]
= I, S =

[
Adi 0
0 Av

]
, and (??) is

obtained with Mi = K1iNi +
[
K2i K3i

]
.

Finally, (4.49) can be obtained directly from (4.69).

Remark 4.4.1 The solvability of the output consensus of heterogeneous clustered
MASs depends on the solvability of the linear matrix equation (4.48)�(4.49), which
can be checked by the following condition

rank

[
Ai − λlIni Bi

Ci 0

]
= ni + q ∀i ∈ N, (4.77)

for each λl, l = 1, · · · , v, which is an eigenvalue of Av.

Remark 4.4.2 The control gains of each heterogeneous agent is designed indepen-
dently based on the linear matrix equation (4.48)�(4.49). Morever, the proposed
output consensus protocol (4.5)�(4.8) in considered clustered network is only only
dependent on the local information of agents. It means that this protocol is dis-
tributed.

4.5 Illustrative example

Let's us consider a network of 7 agents respectively partitioned into 2 clusters hav-
ing 4 and 3 elements as depicted in Fig. 4.1. The dynamics of each agent i is
characterized by
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� Agent 1 and 5

Ai =

0 1 0
0 0 ai
0 −bi ci

 , Bi =

 0
0
di

 , Ci =
[
1 0 0

]
,

Edi =

1 0
0 1
0 0

 , Adi =

[
0 wi
−wi 0

]
.

The parameters {ai, bi, ci, di, wi}, i = 1, 5 are set as {2, 3, 4 , 1, 1.4} and
{1, 4, 2, 1, 1.2}, respectively.

� Agent 2 and 6

Ai =

[
0 1
0 −ai

]
, Bi =

[
0
bi

]
, Ci =

[
1 0

]
,

Edi =

[
1 0
0 1

]
, Adi =

[
0 wi
−wi 0

]
.

The parameters {ai, bi}, i = 2, 6 are set as {2, 1, 1.6}, and {0.5, 0.5, 1.7},
respectively.

� Agent 3, 4 and 7

Ai =

[
1 ai
0 1

]
, Bi =

[
a2
i

ai

]
, Ci =

[
1 0

]
,

Edi =

[
1 0
0 1

]
, Adi =

[
0 wi
−wi 0

]
.

The parameters {ai, wi}, i = 3, 4, 7 are set as {4, 1.9}, {2, 1.5} and {6, 1.1},
respectively.

Moreover, suppose that agent 3 in cluster 1 and agent 5 in cluster 2 are the
leaders of those clusters, respectively. We consider the internal reference models,
where

Av =

[
0 1
−1 0

]
, Cv =

[
1 0

]
.

and the Lalacian matrix of leader network Gl is given by

Ll =

[
0.6 −0.6
−0.5 0.5

]
⇒ Pl =

[
0.4 0.6
0.5 0.5

]
By choosing the parameter α = 0.4 and Rv = [1 0], consensus matrix gains for

the virtual references are determined by solving the LMIs (4.39) in Theorem ?? as

Kv =
[
0.2038 0.0598

]T
, c = 6.3.
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Next, the solution of (4.48) and (4.49) with respect to each agent i is

Ni=2,6 =

[
0 0 1 0
−1 0 0 1

]
,Mi =

[
ai
bi
− 1
bi
− 1
bi

ai
bi

]
,

Ni=1,5 =

 0 0 1 0
−1 0 0 1
−0 − 2

ai
− 1
ai

0

 ,Mi =
[

2wi−aibi
aidi

2ci
aidi

ci
aidi

aibi−1
aidi

]
,

Ni=3,4,7 =

[
0 0 1 0
1
wi

1
aiwi

1
ai

1
ai

]
,Mi =

[
−ai+wi

a2iwi
− 1
a2iwi

− 2
a2i

0
]
,

and the other consensus gainsK1i, K2i, K3i and Fi can be obtained based on Theorem
4.4.1

K11 = −
[
70 38.5 20

]
, K21 = −

[
40 16

]
, K31 =

[
62 41

]
,

F1 =
[
−19 −168.2961 −365.8197 15.2561 15.7831

]T
K12 =

[
−14 −7

]
, K22 =

[
−5 −1

]
, K32 =

[
13 9

]
,

F2 =
[
−12 −14.139 −30.3 −22.138

]T
,

K13 =
[
−1.5 3.25

]
, K23 =

[
−1.9046 −0.4605

]
,

K33 =
[
0.5625 −0.8125

]
, K34 =

[
0.25 −0.3611

]
,

F3 =
[
−16.0000 −18.6473 −7.8009 −18.8578

]T
,

K14 =
[
−0.6667 2.1667

]
, K24 =

[
−2.1490 −0.3535

]
,

F4 =
[
−16.0000 −15.3200 7.1298 −18.3000

]T
K15 = −

[
24 22 11

]
, K25 = −

[
23.6 18

]
, K35 =

[
15 25

]
,

F5 =
[
−17 −133.596 −452.981 20.036 41.118

]T
,

K16 =
[
−28 −17

]
, K26 =

[
−16 −2

]
, K36 =

[
26 18

]
,

F6 =
[
−13.5000 −37.6456 −23.7144 −37.6603

]T
,

K17 =
[
−6 6.5

]
, K27 = −

[
4.92 2.33

]
, K37 =

[
2.25 −3.25

]
,

F7 =
[
−16.0000 −43.4434 3.1368 −34.1038

]T
.

The initial conditions xi(0), x̂i(0), d̂i(0) are randomly chosen within [−10 10]. Then,
the states of internal reference models and variable states ψ2 are indicated in Fig.
4.2 It is clear that the variables ψ2 comes to zero, which means that vi reaches
consensus. Moreover, the states of leader 1 and 2 are updated based on the leader's
communication Gl, which are shown in Fig.2 (red and blue color).

Then, α is varied in [0.04, 0.4] and the LMIs (4.39) is solved corresponding to
those values of α. Afterward, it observes that the consensus of internal references
is also achieved in this circumstance. Particularly, Fig. 4.3 indicated the consensus
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Figure 4.2: The states of internal reference models vi, the new

variable ψ2.

responses with di�erent values of α, as well as the evolution of E = ψT2 ψ2 with
di�erent α is depicted in Fig. 4.4. It shows that the consensus depends on α, i.e.,
it is faster as α is bigger.
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Figure 4.3: The states of of internal reference model vi1 with dif-

ferent α.
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Figure 4.4: E = ψT2 ψ2 with di�erent α.

The estimation of disturbances d̂1 and estimated states of agents x̂2 in (4.6)
are displayed in Fig. 4.6. Moreover, estimation disturbance errors edi, observation
errors exi, i = 1, 2, · · · , N are also depicted in Fig. 4.5. This clearly shows that by
choosing appropriate gains K1i ∈ Rpi×ni and Fi ∈ R(q+hi)×ni such that Ai + BiK1i

and Adi + FiCi are Hurwitz, the disturbances and states of agents can be estimated
well. Furthermore, Fig. 4.6 illustrates that all agents achieve output consensus and
track the internal reference states vi (corresponding to disagreement vector ei goes to
zeros), which demonstrates the e�ectiveness of the proposed control law for output
consensus.

4.6 Chapter summary

In this chapter, a distributed control consensus protocol, based on internal reference
models, for heterogeneous MASs with di�erent disturbances on complex networks
with �xed and directed topology has been proposed. We indicated that the con-
sensus of internal reference models in virtual clustered network can be indirectly
solved by considering the stability of an equivalent system. Then, a su�cient and
necessary condition were derived for the output consensus of linear heterogeneous
MASs. Finally, an illustrative example was given to show the e�ectiveness of the
proposed theoretical results.
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mated disturbance error edi, and observation error exi.
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Conclusions

Nous avons étudié le contrôle et l'analyse des réseaux en grappes. Nous pouvons
résumer cette thèse dans les points suivants :

� L'état de l'art relatif aux problèmes de contrôle coopératif a été présenté au
chapitre 1. Nous avons présenté les résultats de la littérature sur le contrôle
coopératif des MASs en nous basant sur quatre facteurs: la topologie du réseau,
la dynamique des MASS, les contraintes et les méthodologies. Nous avons
également présenté nos motivations et les questions de recherche ouvertes pour
les sujets de recherche.

� Le chapitre 2 aborde le problème du consensus dans le réseau en grappe, où
chaque n÷ud du graphe de réseau représente un agent à dynamique linéaire.
Le comportement coopératif des MASs linéaires avec la dynamique générale du
système dans le réseau en grappe est dé�ni non seulement par les protocoles de
contrôle dynamique concernant les grappes isolées, mais aussi par les interac-
tions discrètes entre les leaders. Cette évidence rend le problème du consensus
dans le réseau en grappe avec des agents linéaires généraux beaucoup plus
di�cile que celui du cas de l'intégrateur. En outre, un autre dé� auquel nous
sommes confrontés est de savoir comment reconstruire l'ensemble des informa-
tions sur l'état de chaque agent en utilisant uniquement les informations de
sortie relatives locales et les interactions discrètes entre les grappes de leaders.
Par conséquent, un contrôle impulsif basé sur l'observation est proposé pour
traiter le problème du consensus. Ensuite, nous avons fourni un moyen de cal-
culer la valeur du consensus en ne tenant compte que des conditions initiales
du système et de la topologie du réseau.

� Le chapitre 3 étudie le problème du contrôle de la formation dans les systèmes
de réseaux en grappes composés d'agents linéaires qui sont soumis à des con-
traintes d'état. La structure de communication en temps continu dans chaque
grappe est représentée par un graphe �xe et non dirigé. Un protocole de for-
mation robuste, qui traite de la communication en temps continu à l'intérieur
des grappes et de l'échange d'informations en temps discret entre les grappes,
est introduit. Il est ensuite montré que le problème de contrôle de la forma-
tion robuste considéré peut être indirectement résolu en étudiant la stabilité
robuste d'un système équivalent basé sur la théorie des matrices et la théorie
des graphes algébriques. La stabilité du système est également démontrée.

� Le chapitre 4 traite du problème du consensus de sortie dans les réseaux
groupés composés de MASs hétérogènes qui sont soumis à di�érentes pertur-
bations. Un contrôle de consensus de sortie est proposé pour gérer le consensus
dans le réseau considéré. Nous proposons que chaque agent dispose d'un mod-
èle de référence interne intégré dans un contrôleur, qui est généré à partir
d'un centre de commande cybernétique. Ces modèles de référence internes ont
une dynamique identique et peuvent être considérés comme des écosystèmes
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virtuels qui génèrent des entrées de référence virtuelles pour les agents. Ils in-
teragissent également par le biais d'un réseau appelé réseau virtuel en grappe
qui a la même structure que le réseau physique en grappe d'agents hétérogènes.

Contributions

Les contributions de la thèse sont les suivantes.

� Le regroupement en réseaux est souvent considéré uniquement par les agents
ayant un seul type de dynamique intégratrice (soit continue, soit discrète). Un
consensus hybride a été étudié, mais selon une approche très di�érente de celle
proposée ici. L'ajout d'une connexion en dehors des clusters qui réinitialise
la valeur d'un seul agent permet de diminuer la taille d'un réseau tout en le
maintenant connecté. On peut voir cela appliqué aux réseaux qui sou�rent de
communications longue distance ou de transmissions défectueuses.

� La caractérisation de la valeur du consensus global dans le cadre considéré est
analysée. Nous montrons que la valeur du consensus global ne dépend que de
la dynamique de chaque agent, des graphiques des clusters, de l'interaction
entre les leaders, et des conditions initiales. En outre, un contrôle impulsif
basé sur l'observation, qui n'utilise que les informations de sortie relatives
locales et l'interaction discrète entre les groupes de leaders, est conçu. Ensuite,
nous montrons que la conception consensuelle des réseaux en grappes peut
être indirectement résolue en considérant la stabilité d'un système équivalent.
Pour étudier la stabilité de ce système équivalent, nous proposons l'algorithme
1 pour choisir de manière appropriée les matrices de rétroaction et de gain des
observateurs et les poids de couplage sous la forme de quelques LMIs. Nous
avons également conçu l'interaction entre les grappes de leaders, en veillant à
ce que les agents des réseaux en grappes renferment une cible prescrite (voir
l'algorithme 2).

� Nous avons proposé le problème du contrôle de la formation des états sous
contraintes d'état dans les MASs en grappes où les agents ont une dynamique
linéaire générique. Notre approche couvre des systèmes et des scénarios plus
larges que ceux des études existantes d'un réseau groupé. Ensuite, un proto-
cole de formation robuste, qui traite de la communication en temps continu à
l'intérieur des grappes et de l'échange d'informations en temps discret entre
les grappes, est introduit. Par rapport aux résultats précédents du réseau en
grappes, le protocole est plus pratique et plus compliqué. Il est alors montré
que le problème de contrôle de formation robuste considéré peut être indi-
rectement résolu en étudiant la stabilité robuste d'un système équivalent par
la théorie des matrices et la théorie des graphes algébriques. En comparai-
son avec celle du réseau en grappe, notre approche montre le rôle important
de la communication entre les leaders à certains instants discrets spéci�ques,
représentés par la matrice stochastique. En conséquence, une condition su�-
isante sera dérivée en termes LMIs pour la formation distribuée robuste de
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réseaux groupés d'agents linéaires génériques sous contraintes d'état et de
communications hybrides.

� Nous avons étudié un cadre général du problème de consensus dans les réseaux
groupés dirigés de MASs, où les agents ont des dynamiques linéaires distinctes
et génériques sous di�érentes perturbations. Un modèle de référence interne
dynamique pour chaque agent a été introduit, qui prend en compte les com-
munications en temps continu entre les modèles de référence internes dans les
grappes virtuelles et les échanges d'informations discrètes entre ces grappes
virtuelles. Nous avons fourni une condition su�sante et nécessaire dérivée
pour le consensus de sortie des agents linéaires hétérogènes sous di�érentes
perturbations dans le réseau en grappe.
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5.1 Conclusions

We have investigated the control and analysis of cluster-patterned networks. We
can summarize this dissertation in the following points:

� The state of the art related to cooperative control problems was presented
in Chapter 1. We presented the results of the literature for cooperative con-
trol of MASs based on four factors: network topology, dynamics of MASs,
constraints, and methodologies. We also presented our motivation and open
research questions for the research topics.

� Chapter 2 addresses the problem of consensus in the clustered network, where
each node of the network graph represents an agent with linear dynamics.
The cooperative behavior of linear MASs with general system dynamics in
the clustered network is de�ned by not only the dynamical control protocols
concerning the isolated clusters but also the discrete interactions among the
leaders. This evidence makes a consensus problem in the clustered network
with general linear agents much more challenging than that of the integrator
case. Moreover, another challenge we face is how to rebuild the full state in-
formation of each agent by using only the local relative output information,
and discrete interaction between leaders' clusters. Therefore, an impulsive
observer-based control is proposed to handle the consensus problem. After-
ward, we provided a way to compute the consensus value given only the initial
conditions of the system and the topology of the network.

� Chapter 3 studies the formation control problem in clustered network sys-
tems composing of linear agents that are subjected to state constraints. The
continuous-time communication structure in each cluster is represented by a
�xed and undirected graph. A robust formation protocol, which deals with the
continuous-time communication inside clusters and discrete-time information
exchange between clusters, is introduced. It is then shown that the considered
robust formation control problem can be indirectly solved by studying the ro-
bust stability of an equivalent system based on matrix theory and algebraic
graph theory. The stability of the system is also proven.

� Chapter 4 discusses the output consensus problem in the clustered networks
composed of heterogeneous MASs that are subjected to di�erent disturbances.
An output consensus control is proposed to handle the consensus in the con-
sidered network. We propose that each agent has an internal reference model
embedded in a controller, which is generated from a cyber command center.
Those internal reference models have identical dynamics and can be viewed
as virtual ecosystems that generate virtual reference inputs for agents. They
also interact through a network called virtual clustered networks which have
the same structure as the physical clustered network of heterogeneous agents.
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5.2 Contributions

The contributions of the thesis are the following.

� Clustering in networks is often considered solely by agents with one type only of
integrator dynamics (either continuous or discrete). Hybrid consensus has been
studied but in a very di�erent approach than the approach herein proposed.
Adding a connection outside of clusters that resets the value of only one agent
allows to diminish the size of a network while keeping it connected. We can
see this applied to networks that su�er from long distance communications or
faulty transmissions.

� The characterization of the global consensus value in the considered framework
is analyzed. We show that the value of global consensus depends only on the
dynamics of each agent, the graphs of clusters, the interaction between leaders,
and the initial conditions. In addition, an impulsive observer-based control,
which uses only the local relative output information, and discrete interaction
between leaders' clusters, is designed. Then, we show that the consensus design
for clustered networks can be indirectly solved by considering the stability
of an equivalent system. To study the stability of this equivalent system,
we propose Algorithm 1 to suitably choose the feedback and observer gain
matrices and coupling weights in the form of some LMIs. We also designed
the interaction among leaders' clusters, ensuring agents in clustered networks
enclose a prescribed target (see Algorithm 2).

� We proposed the state formation control problem under state constraints in
clustered MASs where agents have generic linear dynamics. Our approach
covers broader systems and scenarios than those in the existing studies of a
clustered network. Next, a robust formation protocol, which deals with the
continuous-time communication inside clusters and discrete-time information
exchange between clusters, is introduced. Compared with the previous results
of the clustered network, the protocol is more practical and complicated. It
is then shown that the considered robust formation control problem can be
indirectly solved by studying the robust stability of an equivalent system by
matrix theory and algebraic graph theory. In comparison with the one in the
clustered network, our approach shows the important role of communication
between leaders at some speci�c discrete instants, represented by the stochastic
matrix. Accordingly, a su�cient condition will be derived in terms of LMIs for
the robust distributed formation of clustered networks of generic linear agents
under state constraints and hybrid communications.

� We investigated a general setting of the consensus problem in directed clustered
network of MASs, where agents have distinct and generic linear dynamics un-
der di�erent disturbances. A dynamic internal reference model for each agent
was introduced, which takes into account the continuous-time communications
among internal reference models in virtual clusters and discrete information
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exchanges between those virtual clusters. We provided a su�cient and neces-
sary condition derived for the output consensus of linear heterogeneous agents
under di�erent disturbances in the clustered network.

5.3 Suggested Future Research

We think that the obtained results in this thesis can be further extended in several
directions. We suggest some of these directions below.

� As shown in Chapter 2, the reset sequence ∆ e�ects on the convergence rate
of the system. Moreover, the former is a speci�ed value. However, when
the clustered network reaches consensus, the exchanging information between
leaders is not necessary. The latter even leads to redundancy of information at
the moment. In order to overcome this problem, we will use the event-trigger
communication technique, which is �rst introduced to MASs in Dimarogonas
and Johansson, 2009.

� In Chapter 3, according to the LMIs (3.40)�(3.42), one sees that the dimen-
sion of variables P ∈ Rn×n, X ∈ Rp×n are just equal to that of the matrix
A ∈ Rn×n of each agent. Thus, we can solve LMIs (3.40)�(3.42) in fully
distributed fashion i.e., each agent can compute the gain matrix K by itself
and implement the formation protocol (3.2) using only local information (its
information and its neighbors' information). However, to obtain LMIs (3.40)�
(3.42), the Laplacian matrix is required as a symmetric matrix (i.e., the graph
of clusters is undirected and connected). The latter is a quite strong assump-
tion. Therefore, based on the gain scheduling techniques, we will investigate
the robust formation in the clustered network with a spanning tree topology
in each cluster.

� Considering the output consensus of heterogeneous MASs in Chapter 4, de-
signing output controller gains K1i, K2i and K3i in Theorem 4.4.1 are obtained
by solving the linear matrix equations (4.48)-(4.49). However, the general so-
lution to this kind of linear matrix equations is not easy to �nd. It depends
on not only the dynamics of each agent Ai, Bi, but also the dynamics of the
internal reference model Av. Thus, to overcome this disadvantage, we suggest
to apply reinforcement learning (such as in Modares, Lewis, and Jiang, 2015)
in order to determine controller gains because the method does not require
knowledge of the system dynamics.

� The input and communication delay existing in the MASs leads to extra inte-
gral terms in the transformed systems, and the analysis of the integral terms
makes the derived conditions more conservative. We suggest that a problem
worth investigating in the consensus of clustered network with input and com-
munication delay is to characterize the consensus value, with synchronous and
asynchronous resets.
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� Most existing works assume that every agent is autonomous. The coupling
among agents is only introduced with the designed cooperative control. How-
ever, in many real scenarios, direct physical coupling exists among agents. In a
power network, each bus is coupled to neighboring buses through the so-called
tie lines. Therefore, the group behavior is in�uenced by both the physical cou-
pling and the designed cooperative connection. In the literature, the research
on physical coupling of MASs is rare. The research on this topic is closely
related to that on large-scale systems, but the research may have more focuses
on network behaviors.
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Appendix A

Mathematical Preliminaries

we present some de�nitions of certain kinds of matrices such as stochastic matrix,
positive de�nite and negative de�nite matrices and so on.

A.0.1 Stochastic matrix

A stochastic matrix (also named Markov matrix) is a matrix used to describe the
transitions of probabilities, with each of its entries as a nonnegative real number.

De�nition A.0.1 (Jadbabaie and Morse, 2003) Let Fp a nonnegative and square
matrix whose row sums are all equal 1 (i.e., Fp1 = 1). Then, matrix Fp is called
row stochastic.

A.0.2 Positive de�nite and negative de�nite matrices

A positive de�nite matrix is a special case of symmetric matrix1.

De�nition A.0.2 (Bernstein, 2009) A symmetric n×n real matrix A is said to be
positive (semi)de�nite if zTAz is positive (non-negative) for every non-zero column
vector of n real numbers. Similarly, a negative de�nite matrix is de�ned by the same
expression, but in this case zTAz must be always negative.

A.0.3 Irreducible matrix

De�nition A.0.3 (Roger A. Horn, 2013) Let A be non-negative n× n. Then A is
irreducible if and only if (I + A)n−1 > 0.

In a special case related to graph theory, by replacing non-zero entries in the matrix
by one, and viewing the matrix as the adjacency matrix of a directed graph, the
matrix is irreducible if and only if such directed graph is strongly connected.

A.0.4 SIA matrix

De�nition A.0.4 (Seneta, 1981) A matrix P is said to be a SIA matrix (i.e.,
stochastic, irreducible, and aperiodic) if it is stochastic and Q = limn→∞ P

n exits
and all rows of Q are the same.

1A symmetric matrix is a square matrix that is equal to its transpose. In other words, consid-
ering a matrix A, A is symmetric if A = AT
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A.0.5 Kronecker product

De�nition A.0.5 (Bernstein, 2009) The Knonecker product of matrices A ∈ Rm×n

and B ∈ Rp×q with aij = [A]ij and bij = [B]ij, and B ∈ Rp×q is the mp× nq matrix
de�ned as

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB


which satis�es the following properties:

(A⊗B) (C ⊗D) = (AC)⊗ (BD)

(A⊗B)T = AT ⊗BT

A⊗B + A⊗ C = A⊗ (B + C)

(A+B)⊗ C = A⊗ C +B ⊗ C
(A+ µB)⊗ C = A⊗ C + µB ⊗ C
(A⊗B)−1 = A−1 ⊗B−1

A.0.6 Gershgorin circle theorem

De�nition A.0.6 (Roger A. Horn, 2013) Let A be a complex n × n matrix, with
entries aij. For i ∈ {1, 2, · · · , n} let Ri =

∑
i 6=j |aij| be the sum of the absolute values

of the non-diagonal entries in the ith row. Let D(aii, Ri) be the closed disc centered
at aii with radius Ri. Such a disc is called a Gershgorin disc.

A.0.7 Linear Matrix Inequality (LMI)

A LMI has the following form (see Boyd et al., 1994):

F (x) , F0 +
m∑
i=1

xiFi > 0, (A.1)

where x ∈ Rm is the variable symmetric matrices Fi = F T
i ∈ Rn×n, i = 0, . . . ,m are

given. We also encounter the nonstrict form of (A.1) as:

F (x) ≥ 0 (A.2)

The strict LMI (A.1) and the nonstrict LMI (A.2) are closely related.
The Schur complement converts a class of convex nonlinear inequalities that

appears regularly in control problems to an LMI. The convex nonlinear inequlities
are {

R(x) > 0

Q(x)− S(x)R(x)−1S(x)T > 0
(A.3)
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where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depend a�nely2 on x. The Schur
complememtÿ converts this set of convex nonlinear inequalities into the equivalent
LMI [

Q(x) S(x)
S(x)T R(x)

]
> 0, (A.4)

A.0.8 Sector nonlinearities and S-procedure

Stability analysis and design for systems with saturation nonlinearities has received
tremendous attention in recent years. To easily be used for controller synthesis, the
conditions can be expressed as LMIs in terms of all the varying parameters. One of
useful tools is S-procedure, which is frequently used in system theory (Han, 2005).

Sector nonlinearities

A function φ : R → R is said to be in sector [l, u] if for all q ∈ R, p = φ(q) lies
between lq and uq,

Figure A.1: Sector nonlinearities

which is alo can be expressed as quadratic inequality

(p− uq)(p− lq) ≤ 0 ∀q, p = φ(q) (A.5)

There are some equivalent statements related to sector [l, u]

� φ is in sector [l, u] if and only if for all q,∣∣∣∣φ(q)− u+ l

2
q

∣∣∣∣ ≤ u− l
2
|q| (A.6)

� φ is in sector [l, u] if and only if for each q there is θ(q) ∈ [l, u] with φ(q) = θ(q)q.

2We say a function f : Rm → Rn is a�ne if there is a linear function l : Rm → Rn and a vector
b in Rn such that f(x) = l(x) + b for all x in Rm.
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Note that a very common type of sector nonlinearity is the standard saturation
function p = sat(q) and saturation like functions such as p = tan−1(q), which is
used to represents the states constraints in Chapter 3.

S-procedure

The following S-procedure is used for controller synthesis in Chapter 3. Let α0, · · · , αm
be quadratic scalar functions of x ∈ Rn

αi(x) = xTTix+ 2uTi x+ βi, i = 0, · · · ,m;Ti = T Ti (A.7)

The existence of τi ≥ 0, · · · , τm ≥ 0 such that

α0(x)−
m∑
i=1

τiαi(x) ≥ 0,∀x, (A.8)

implies that

α0(x) ≥ 0, ∀x such that αi(x) ≥ 0, i = 1, · · · ,m (A.9)

Note that (A.8) is equivalent to[
T0 u0

uT0 β0

]
−

m∑
i=1

τi

[
Ti ui
uTi βi

]
≥ 0 (A.10)
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Appendix B

Basic Algebraic Graph Theory

B.0.1 Basic concept

In the MASs, a team of agents interacts with each other via communication or
sensing networks to achieve collective objectives. It is convenient to model the
information exchanges by using graph theory. Thus, some de�nition and notation
related to both directed or undirected graphs (Mesbahi and Egerstedt, 2010) are
given in this section

De�nition B.0.1 A directed graph G is a pair (V , E), where V = {v1, v2, · · · , vN}
is a nonempty �nite node set and E ⊆ V×V is an edge set of ordered pairs of nodes,
called edges.

Note here that the edge (vi, vj) in the edge set E denotes that agent vj can obtain
information from agent vi, but not necessarily vice versa. For an edge (vi, vj), node
vi is called the parent node, vj is the child node, and vi is a neighbor of vj. The
in-degree of vi is the number of edges having vi as a head. The out-degree of a node
vi is the number of edges having vi as a tail. The set of neighbors of node vi is
denoted as Ni, whose cardinality is called the in-degree of node vi.

De�nition B.0.2 A graph is said to be undirected if aij = aji,∀i, j that is, if it is
bidirectional 1 and the weights of edges (vi, vj) and (vj, vi) are the same.

If the in-degree equals the out-degree for all nodes vi ∈ V the graph is said to be
balanced. Associated with each edge (vi, vj) ∈ E is a weight aij. We assume in this
chapter that the nonzero weights are strictly positive. Moreover, a directed path
from node vi1 to node vil is a sequence of ordered edges of the form (vik, vik+1), k =
1, · · · , l − 1.

De�nition B.0.3 A directed graph is strongly connected if there is a directed path
from every node to every other node.

A (rooted) directed tree is a directed graph in which every node has exactly one
parent except for one node, called the root, which has no parent and has directed
paths to all other nodes.

De�nition B.0.4 A directed tree is de�ned as spanning when it connects all the
nodes in the graph.

Therefore, a strongly connected graph contains at least one directed spanning.

1If (vi, vj) ∈ E ,∀i, j the graph is said to be bidirectional
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B.0.2 Graph-related matrices

As we have seen before, graphs are constructed to represent a relation between
a �nite number of agents. Graphs not only admit a graphical representation but
can also be associated to certain matrices. In this subsection we will present some
important matrices related to graphs (Mesbahi and Egerstedt, 2010).

Adjacency matrix

The adjacency matrix is de�ned as A = [a(ij)] associated with the directed graph G.
It is de�ned such that a(ij) > 0 if (vj, vi) ∈ E , and aij = 0 otherwise. The adjacency
matrix A of an undirected graph is symmetric, A = AT .

De�ne the weighted in-degree of node vi as the i
th row sum of A

dini =
N∑
i=1

aij (B.1)

and the weighted out-degree of node vias the i
th column sum of A

doi =
N∑
i=1

aji (B.2)

The in-degree and out-degree are local properties of the graph. A graph is said to
be weight balanced if the weighted in-degree equals the weighted out-degree for all
i. If all the nonzero edge weights are equal to 1, this is the same as the de�nition
of balanced graph. An undirected graph is weight balanced, since if A = AT then
the ith row sum equals the ith column sum. The adjacency matrix of an undirected
graph is de�ned analogously except that aij = aji for all i 6= j.

Laplacian matrix

The Laplacian matrix L = [Lij] ∈ RN×N is de�ned as
Lij = 0, if (i, j) /∈ E ,
Lij = −aij < 0, if (i, j) ∈ E ,
Lii =

∑
j 6=i aij,∀i = 1, · · · , N

(B.3)

Lii =
∑

j 6=i aij;Lij = −aij. The Laplacian matrix can be written into a compact
form as L = D−A, where D = diag{d1, d2, · · · , dN} is the degree matrix with di as
the in-degree of the ith node.
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Figure B.1: Di�erent types of graphs of �ve nodes: a) an undirected

connected graph, b) a strongly connected graph, c) a balanced and

strongly connected graph, d) a directed spanning tree.

Example B.1: For the graphs depicted in Fig B.1, we compute the correspond-
ing Laplacian matrices as

La =


2 −1 0 0 −1
−1 3 −1 0 −1
0 −1 2 −1 0
0 0 −1 2 −1
−1 −1 0 −1 3

 ,Lb =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
−1 −1 0 0 2

 ,

Lc =


2 0 0 −1 −1
−1 2 −1 0 0
0 −1 2 −1 0
−1 0 −1 2 0
−1 −1 0 0 2

 ,Ld =


1 0 0 0 −1
0 0 0 0 0
0 −1 1 0 0
0 0 −1 1 0
−1 0 0 0 1

 ,

For an undirected graph, it is known that L ≥ 0, i.e., yTLy ≥ 0,∀y ∈ RN . In
this case, it is not di�cult to verify that L satis�es the following sum-of-squares
(SOS) property:

yTLy =
1

2

N∑
i=1

N∑
j=1

aij(yi − yj)2, (B.4)
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where yi denotes the i
th item of y. For strongly connected and balanced directed

graphs, yTLy ≥ 0,∀y ∈ RN , still holds, due to the property that 1
2
(L+LT ) represents

the Laplacian matrix of the undirected graph obtained from the original directed
graph by replacing the directed edges with undirected ones (Olfati-Saber, Fax, and
Murray, 2007). However, for general directed graphs which are not balanced, the
Laplacian matrix L is not symmetric and yTLy can be sign-inde�nite.

The Laplacian matrix is very useful in the study of consensus of continuous time
MASs, which is shown in the following Lemmas.

Lemma B.0.1 (Zhongkui Li et al., 2010) The Laplacian matrix L of a directed
graph G has at least one zero eigenvalue with 1 as a corresponding right eigenvector
and all nonzero eigenvalues have positive real parts. Furthermore, zero is a simple
eigenvalue of L if and only if G has a directed spanning tree. In addition, there exists
a nonnegative left eigenvector r of L associated with the zero eigenvalue, satisfying
rTL = 0 and rT1 = 1. Moreover, r is unique if G has a directed spanning tree.

Lemma B.0.2 (Olfati-Saber and Murray, 2004) For an undirected graph, zero is a
simple eigenvalue of L if and only if the graph is connected. The smallest nonzero
eigenvalue λ2 of L satis�es λ2 = minx 6=0,1T x=0

xTLx
xT x

Lemma B.0.3 (Olfati-Saber and Murray, 2004) Suppose that x = [x1, x2, · · · , xN ]T

with xi ∈ R. Let A,L ∈ RN×N be, respectively, the adjacency matrix and the
Laplacian matrix associated with the directed graph G. Then, consensus is reached
in the sense of limt→∞ ‖xi(t) − xj(t)‖ = 0,∀i, j = 1, 2, · · · , N , for the closed-loop

system ẋ = −Lz or equivalently ẋi = −
∑N

j=1 aij(xi − xj), where aij denotes the

(i, j)th entry of A, if and only if G has a directed spanning tree. Furthermore, the
�nal consensus value is given by rTx(0), where r is the normalized left eigenvector
of L associated with the zero eigenvalue.

B.0.3 Eigenstructure of Laplacian matrix

We shall see that the eigenstructure of the graph Laplacian matrix L plays a key
role in the analysis of dynamical systems on Graphs (Lewis et al., 2014). De�ne the
Jordan normal form of the Laplacian matrix by

L = UJU−1 (B.5)

with the Jordan form matrix and transformation matrix given as

J =


λ1

λ2

. . .

λN

 , U =
[
p1, p2, · · · , pN

]
(B.6)

where the eigenvalues λi and right eigenvectors ui satisfy

(λiI − L)pi = 0 (B.7)
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with I being the identity matrix. In general, the λi in (B.6) are not scalars but are
Jordan blocks of the form 

λi 1

λi
. . .
. . . 1

λN

 (B.8)

The inverse of the transformation matrix U is given as

U−1 =
[
wT1 wT2 · · · wTN

]
(B.9)

where the left eigenvectors wi satisfy

wTi (λiI − L) = 0 (B.10)

and are normalized so that wTi pi = 1.
We assume the eigenvalues are ordered so that |λ1| ≤ |λ1| ≤ · · · ≤ |λN |. Any

undirected graph has L = LT so all its eigenvalues are real and one can order them
as λ1 ≤ λ1 ≤ · · · ≤ λN . Since L has all row sums zero, one has

L1c = 0 (B.11)

and λ1 = 0 is an eigenvalue with a right eigenvector of 1c. That is, 1c ∈ N(L) the
null-space of L. If the dimension of the null-space of L is equal to one, i.e., the rank
of L is N − 1, then λ1 = 0 is nonrepeated and 1c is the only vector in N(L).

B.0.4 Ger²gorin circle criterion

All eigenvalues of matrix E = [eij] ∈ RN×N are located within the union of N disks.

N⋃
i=1

{
z ∈ C : |z − eij| ≤

∑
i 6=j

|eij|

}
(B.12)

The ith disk in the Ger²gorin circle criterion (Olfati-Saber and Murray, 2004) is
drawn with a center at the diagonal element eii and with a radius equal to the ith

absolute row sum with the diagonal element deleted,
∑

i 6=j |eij|. Thus, the Ger²gorin
disks for the graph Laplacian matrix L = D − A are centered at the in-degrees di
and have radius equal to di. Let dmax be the maximum in-degree of G. Then, the
largest Ger²gorin disk of the Laplacian matrix L is given by a circle centered at dmax
and having radius of dmax. This circle contains all the eigenvalues of L (see Fig.
B.2).
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Figure B.2: Ger²gorin disks of L in the complex plane
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Contrôle coopératif des systèmes multi-agents dans un réseau en cluster 

Le résumé Le fait d'avoir plusieurs agents autonomes pour travailler ensemble efficacement afin d'obtenir des comportements collectifs de 
groupe est généralement appelé contrôle coopératif des systèmes multi-agents (MAS). En raison du fait que les agents des SMA sont 
généralement limités en termes de ressources, telles que la portée limitée des communications sans fil (pour échanger des informations entre 
les agents), des capteurs (pour mesurer les informations relatives entre agents voisins) et des actionneurs (pour piloter les agents), ainsi que des 
contraintes énergétiques liées aux interactions de longue durée, un ingénieur doit parfois diviser un grand réseau en grappes. Nous abordons 
d'abord le problème du consensus dans le réseau en grappes, où chaque nœud du graphe du réseau représente un agent à dynamique linéaire. 
Le comportement coopératif des MAS linéaires avec la dynamique générale du système dans le réseau en grappe est défini non seulement par 
les protocoles de contrôle dynamique concernant les grappes isolées, mais aussi par les interactions discrètes entre les leaders. Cela rend un 
problème de consensus dans le réseau en grappe avec des agents linéaires généraux beaucoup plus difficile que celui du cas de l'intégrateur. 
Ainsi, un contrôle impulsif basé sur l'observation est proposé pour traiter le problème de consensus. Ensuite, nous étudions le problème du 
contrôle de la formation dans les systèmes de réseaux groupés d'agents linéaires qui sont soumis à des contraintes d'état. La structure de 
communication en temps continu dans chaque grappe est représentée par un graphique fixe et non dirigé. Pour ce faire, un protocole de 
formation robuste, qui traite de la communication en temps continu à l'intérieur des grappes et de l'échange d'informations en temps discret 
entre les grappes, est introduit. Il est ensuite montré que le problème de contrôle de la formation robuste considéré peut être indirectement 
résolu en étudiant la stabilité robuste d'un système équivalent basé sur la théorie des matrices et la théorie des graphes algébriques. De plus, il 
montre le rôle important de la communication entre les leaders à certains moments discrets spécifiques, représentés par la matrice stochastique. 
Enfin, nous discutons du problème du consensus de sortie dans les réseaux groupés composés de MAS hétérogènes qui sont soumis à différentes 
perturbations. Chaque grappe est représentée par un graphique fixe et dirigé. Un modèle de référence interne dynamique pour chaque agent 
est introduit, qui prend en compte les communications en temps continu entre les modèles de référence internes dans les grappes virtuelles et 
les échanges d'informations discrètes entre ces grappes virtuelles. Par conséquent, le consensus de sortie des agents hétérogènes est 
indirectement résolu par le consensus des références virtuelles. Pour y parvenir, un protocole de contrôle de consensus hybride est proposé 
pour le réseau en grappe virtuel. Grâce aux résultats de la théorie des matrices et de la théorie des graphes algébriques, le consensus du réseau 
en grappes virtuel est résolu. Une condition suffisante et nécessaire est dérivée pour le consensus de sortie des agents hétérogènes linéaires 
sous différentes perturbations dans le réseau en grappe. 

Estimation coopérative, systèmes multirobots, réseau en cluster 

Cooperative Control of Multi-Agent Systems in the Clustered Network 

Having multiple autonomous agents to work together efficiently to achieve collective group behaviors is usually referred to as cooperative 
control of multi-agent systems (MASs). An arise from the fact that agents in MASs are usually resource-limited, such as limited ranges of wireless 
communication (for exchanging information among agents), sensors (for measuring relative information between neighboring agents) and 
actuators (for driving the agents), as well as energy constraints related to long time interactions, an engineer should sometimes partition a large 
network into clusters. We first address the problem of consensus in the clustered network, where each node of the network graph represents 
an agent with linear dynamics. The cooperative behavior of linear MASs with general system dynamics in the clustered network is defined by 
not only the dynamical control protocols concerning the isolated clusters but also the discrete interactions among the leaders. This makes a 
consensus problem in the clustered network with general linear agents much more challenging than that of the integrator case. Thus, an 
impulsive observer-based control is proposed to handle the consensus problem. Next, we study the formation control problem in clustered 
network systems of linear agents that are subjected to state constraints. The continuous-time communication structure in each cluster is 
represented by a fixed and undirected graph. To do this, a robust formation protocol, which deals with the continuous-time communication 
inside clusters and discrete-time information exchange between clusters, is introduced. It is then shown that the considered robust formation 
control problem can be indirectly solved by studying the robust stability of an equivalent system based on matrix theory and algebraic graph 
theory. Moreover, it shows the important role of communication between leaders at some specific discrete instants, represented by the 
stochastic matrix. Finally, we discuss the output consensus problem in the clustered networks composed of heterogeneous MASs that are 
subjected to different disturbances. Each cluster is represented by a fixed and directed graph. A dynamic internal reference model for each agent 
is introduced, which takes into account the continuous-time communications among internal reference models in virtual clusters and discrete 
information exchanges between those virtual clusters. Therefore, the output consensus of heterogeneous agents is indirectly solved through 
the consensus of the virtual references. To achieve that, a hybrid consensus control protocol is proposed for the virtual clustered network. 
Thanks to results from matrix theory and algebraic graph theory, the consensus of the virtual clustered network is solved. A sufficient and 
necessary condition is derived for the output consensus of linear heterogeneous agents under different disturbances in the clustered network. 

Cooperative control, multi-robot systems, clustered network 
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