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Résumé

Cette thèse est le fruit d’une collaboration entre les laboratoires LIRIS et LARIS et l’entreprise
Carbon Bee, un acteur français des technologies numériques pour l’agriculture. Carbon Bee dé-
veloppe une caméra couplée à un algorithme d’apprentissage profond à des fins de pulvérisation
ciblée de produits phytosanitaires. Sont regroupés dans cette caméra plusieurs capteurs permettant
de réaliser des acquisitions dans différentes gammes de longueurs d’onde. Nous y trouvons en parti-
culier un capteur infrarouge ainsi qu’un capteur hyperspectral instantané peu étudié jusqu’alors : le
spectromètre imageur par tomographie (Computed Tomography Imaging Spectrometer en anglais,
ou CTIS). Ce capteur permet une acquisition rapide d’une information spectrale riche mais qu’il
est nécessaire de post-traiter par un algorithme de reconstruction pour la rendre interprétable par
l’œil humain. Dans ce travail, nous nous sommes intéressés à l’exploitation optimale des différents
capteurs de cette caméra, pour un cas d’étude à fort intérêt agronomique : la détection de la tavelure
du pommier.

Nous nous sommes tout d’abord concentrés sur l’exploitation du signal produit par le CTIS,
dans un cadre de classification d’images de feuilles saines et atteintes de lésions de tavelure.
Nous avons développé une approche qui permet de s’affranchir de l’étape de reconstruction en
conduisant un apprentissage directement dans l’espace brut des images CTIS, une démarche dite
d’apprentissage comprimé. La conception d’une nouvelle architecture neuronale a permis d’obtenir
des performances d’apprentissage supérieures à celles permises par la procédure classique, et ce
en réduisant substantiellement les temps de calcul associés. Ces recherches ont par ailleurs mené
au développement de plusieurs nouveaux simulateurs d’images permettant de pallier le manque
d’images réelles annotées, une difficulté prégnante dans le domaine de l’apprentissage profond, et
en particulier lors de l’étude de nouveaux systèmes d’imagerie.

Les travaux portant sur le CTIS ayant été menés à l’échelle de la feuille de pommier individuelle,
nous nous sommes par la suite focalisés sur un contexte plus exigeant, proche des situations
industrielles rencontrées par Carbon Bee. Nous avons cherché à optimiser des détections de lésions
de tavelure menées au niveau du pixel dans des images infrarouges représentant des canopées de
feuilles, et ce avec un nombre restreint de données annotées. À cette fin, nous avons développé
plusieurs simulateurs d’images inspirés des derniers développements dans la matière en sciences
végétales. Nous avons en particulier conçu un simulateur de canopées dont les images ont permis
de substantiellement réduire la quantité de données réelles annotées nécessaire pour mener à bien
une segmentation dans ce contexte.

Enfin, la présence au sein de la caméra de plusieurs capteurs aux résolutions spatiales et spec-
trales différentes ouvrait la voie à l’utilisation conjointe des informations qu’ils fournissaient, un
procédé connu sous le nom de fusion de données. Nous avons exploré plusieurs pistes de travail
dans ce cadre.

Mots-clés : apprentissage profond, vision par ordinateur, apprentissage comprimé, imagerie
hyperspectrale, spectromètre imageur par tomographie.
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Abstract

This thesis is the result of a collaboration between the LIRIS and LARIS laboratories and Carbon
Bee, a French company focused on developing digital technology for agriculture. Carbon Bee
develops a camera coupled with a deep learning algorithm in order to conduct spot spraying of crop
protection products. This camera contains several sensors which allow for acquisitions in different
wavelength ranges. It includes in particular an infrared sensor along with a snapshot hyperspectral
spectrometer seldom studied until now : the Computed Tomography Imaging Spectrometer (CTIS).
This sensor allows for a fast acquisition of rich spectral information. However, it is necessary to
post-process this information via a reconstruction algorithm to make it understandable to the
human eye. In this work, we have taken interest in the optimal use of these sensors for a case study
with a high agronomic impact : the detection of apple scab.

We focused at first on the analysis of the CTIS signal in the context of a binary classification
between images of healthy and diseased leaves. We developed a procedure which allowed to
bypass the reconstruction algorithm by training a neural network directly on raw CTIS images, an
approach known as compressed learning. Using a novel neural architecture allowed us to achieve
a classification performance higher than the one obtained following the classical reconstruction
pipeline, while substantially reducing the related training and inference times. This study led to the
development of several novel image simulators which allowed to compensate for the low number
of annotated images, an oft-encountered hurdle in deep learning studies, especially when working
with a new imaging system.

While the work we have conducted on the CTIS images was carried out at the leaf scale, we
afterward focused on a more demanding context, closer to the industrial challenges faced by Carbon
Bee. We strove to improve scab detection at a pixel level in infrared images of leaf canopies ; what
is more, with a limited quantity of annotated data. For this purpose, we developed several image
simulators inspired by the latest trends in the plant sciences domain. In particular, we designed a
canopy image simulator whose images enabled us to considerably reduce the number of annotated
images necessary to conduct a segmentation in this context.

Finally, the presence of several sensors in the camera paved the way to the combination of the
information that they gathered, a process known as data fusion. We have explored several pathways
within this framework.

Keywords : deep learning, computer vision, compressed learning, hyperspectral imaging, com-
puted tomography imaging spectrometer.
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Notations

Acronymes et sigles

Ce tableau présente les acronymes et sigles employés dans ce manuscrit. Leur signification est
par ailleurs systématiquement précisée lors de leur première utilisation dans le texte.

Si ce document est lu en version numérique via un logiciel de visualisation de PDF qui supporte
les hyperliens, alors cliquer sur les instances des acronymes dans le texte renverra à leur définition
dans ce tableau.

Acronyme Signification Traduction (si nécessaire)

CASSI Coded Aperture Snapshot Spectral Imager imageur spectral instantané à ouverture codée1

CCD Charge-Coupled Device dispositif à transfert de charge
CIE Commission Internationale de l’Éclairage
CNN Convolutional Neural Network réseau de neurones convolutif
CT Computed Tomopgrahy tomographie assistée par ordinateur
CTIS Computed Tomopgrahy Imaging Spectrometer spectromètre imageur par tomographie1

DCGAN Deep Convolutional Generative Adversarial Network réseau antagoniste génératif convolutif profond
DEL Diode Électro-Luminescente
ECC Enhanced Correlation Coefficient coefficient de corrélation amélioré
EM Expectation-Maximization espérance-maximisation
FBP Filtered Back-Projection rétro-projection filtrée
FC Fully Connected entièrement connecté(es)
FN, FP, VN, FP Faux Négatif, Faux Positif, Vrai Négatif, Vrai Positif
FSL Few-Shot Learning apprentissage en peu d’exemples1

GAN Generative Adversarial Network réseau antagoniste génératif
GAP Global Average Pooling regroupement par moyennage global1

IA Intelligence Artificielle
ILSVRC ImageNet Large Scale Visual Recognition Challenge défi de reconnaissance visuelle à grande échelle d’ImageNet1

IR InfraRouge
IRHS Institut de Recherche en Horticulture et Semences
MART Multiplicative Algreabric Reconstruction Technique technique de reconstruction algébrique multiplicative1

MCC Matthews Correlation Coefficient coefficient de corrélation de Matthews
MLP MultiLayer Perecptron perceptron multi-couches
NDVI Normalized Difference Vegetation Index indice de végétation de différence normalisée
ReLU Rectified Linear Unit unité linéaire rectifiée
RVB Rouge Vert Bleu
SIFT Scale-Invariant Feature Transform transformation de caractéristiques invariante à l’échelle
VGG Visual Geometry Group groupe de géométrie visuelle1

1. La traduction proposée est la nôtre car il n’existe pas de terme français « officiel ».
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Objets mathématiques

Ce tableau présente les notations que nous adoptons dans le manuscrit pour désigner les
différents objets mathématiques employés.

Notation Signification

hauteur × largeur Dimensions d’un objet bidimensionnel.
hauteur × largeur × profondeur Dimensions d’un objet tridimensionnel.
[valeur basse, valeur haute] Intervalle de valeurs.
{valeur 1, valeur 2} Ensemble de valeurs.
(coordonnée 1, coordonnée 2) Coordonnées d’un point dans un objet bidimensionnel.
objet[indice] Élément à la position « indice » d’un objet unidimensionnel.
objet[ :, :, indice] Tranche à la position « indice » d’un objet tridimensionnel.
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INTRODUCTION

Contexte général

L’augmentation rapide de la population mondiale fait de l’agriculture un domaine clé pour
l’humanité [Golhani et al., 2018]. La demande alimentaire ne cesse de croître, et les agriculteurs
doivent faire face aux défis menaçant les plantations. Les stress dits biotiques, c’est-à-dire ceux
liés aux attaques d’éléments vivants tels que les insectes ravageurs, mais aussi des maladies dé-
coulant d’infections par des parasites, virus et champignons, constituent la menace principale
de l’agriculture moderne [Strange and Scott, 2005]. Tous les types de culture sont affectés par des
maladies, y compris les plants consommés par les humains ou le bétail (céréales, légumineuses,
fruits, etc.) [Kaur et al., 2019]. Dans ce contexte, les études visant à réduire l’impact de ces maladies
sont nombreuses. Un grand nombre de moyens de lutte chimique ont été conçus au cours des
dernières décennies, en particulier lors de la « révolution verte » [Cooper and Dobson, 2007]. En
parallèle, une lutte génétique s’est développée par le biais de la culture de cultivars, c’est-à-dire des
plants sélectionnés pour leurs traits de résistance aux maladies. Que ce soit dans le cadre de l’appli-
cation de produits phytosanitaires en champ ou de culture de cultivars en serre, la détection des
symptômes de ces maladies est primordiale pour évaluer la performance des solutions déployées.

Historiquement, la détection de maladies était conduite par un contrôle visuel humain du
phénotype de la plante ou grâce à des tests destructifs et chronophages car réalisés en laboratoire,
tels que les tests enzymatiques [Golhani et al., 2018]. Les techniques de détection par imagerie
ont naturellement trouvé leur place dans ce domaine en tant que procédés rapides et non-invasifs
[Mahlein, 2016]. Ces méthodes consistent en l’acquisition d’images des plantes via des systèmes
optiques et des capteurs photographiques. Elles sont particulièrement pertinentes dans le cadre
de la détection de maladies végétales car les réactions d’une plante à une attaque se manifestent
la plupart du temps par des symptômes visuels. Ces méthodes d’acquisition faciles à mettre en
œuvre, bon marché et non-destructives ont mené à une quantité importante de données à traiter.
L’analyse de ces données est alors devenue le nouveau goulot d’étranglement de la série d’opéra-
tions (pipeline en anglais) de détection de symptômes [Singh et al., 2016]. En conséquence, des
méthodes d’apprentissage automatique (machine learning en anglais) ont été implémentées afin
d’accélérer l’analyse des images acquises en proposant une classification automatique de celles-ci
sans qu’une expertise humaine soit nécessaire. Dans les années 2000, un pipeline typique d’une
détection automatique de maladies végétales via un système d’imagerie se déroulait selon les
étapes suivantes [Kaur et al., 2019] :

1. acquisition de l’image de la scène via un capteur, en général en couleurs Rouge Vert Bleu
(RVB) ;

2. définition et extraction de caractéristiques (couleur, forme, etc.) ;

3. classification de l’image en se basant sur ces caractéristiques via un algorithme d’apprentis-
sage automatique.

Cependant, au cours de ces dernières années, deux développements matériels importants ont
ouvert de nouvelles perspectives pour les scientifiques et les industriels. Premièrement, le coût des
systèmes d’imagerie scientifique a fortement baissé [Mathews, 2008]. Ceci a mené à une adoption
forte de capteurs autres que RVB, en particulier des capteurs dits hyperspectraux, permettant d’ac-
quérir de l’information dans un grand nombre de longueurs d’onde, y compris hors du domaine
visible. Ces capteurs sont particulièrement utiles dans le champ des sciences végétales, puisqu’une
grande partie des activités internes d’une plante entraîne des symptômes visibles dans des gammes
de l’ultraviolet et de l’infrarouge (IR) [Li et al., 2014]. La figure I.1 illustre par exemple l’intérêt
manifeste de l’imagerie IR pour la détection de la tavelure du pommier sur des feuilles. Les taches
sombres visibles en IR indiquent les lésions dues à la tavelure. Ces lésions sont beaucoup plus
difficiles à distinguer, voire invisibles en imagerie RVB.

Deuxièmement, la capacité de calcul des ordinateurs a fortement progressé et l’utilisation
de cartes graphiques a permis le développement d’algorithmes d’apprentissage dits profonds
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INTRODUCTION

FIGURE I.1 – Illustration de l’intérêt de l’imagerie IR pour la détection de maladies. L’image est un montage
composé d’une acquisition RVB (haut) et d’une acquisition IR (bas) de feuilles de pommier atteintes de
la tavelure du pommier. Les feuilles avaient été inoculées avec le champignon responsable de la tavelure
quatorze jours auparavant. Source : acquisitions à l’IRHS avec la caméra Carbon Bee.

(deep learning en anglais) [Goodfellow et al., 2016]. Couplés à des jeux de données de très grande
taille, ces algorithmes ont révolutionné le champ de l’apprentissage automatique ainsi que celui
de la vision par ordinateur et constituent l’état de l’art pour la grande majorité des tâches de
classification d’images [Voulodimos et al., 2018]. Ces deux axes de progression technologique
permettent l’acquisition d’une information plus riche et un traitement plus complet et efficace de
cette information. Ils sont intégrés de manière croissante dans les pipelines actuels de détection de
maladies de plantes en tant que domaines d’innovation clés.

Contexte industriel : Carbon Bee

Cette thèse a été réalisée dans le cadre d’un dispositif de Convention Industrielle de Formation
par la REcherche (CIFRE) en partenariat avec l’entreprise Carbon Bee (CIFRE n°2017/0639). L’entre-
prise a été créée en 2015 à Saint-Marcel-Lès-Valence (26). Une filiale dédiée à l’agronomie nommée
Carbon Bee AgTech a été créée en 2017. Cette dernière propose des solutions pour l’entretien et
le soin des champs dans le cadre de l’agriculture de précision. Dans ce paradigme, le champ est
considéré comme l’échelle pertinente de travail [Zhang et al., 2002]. Il s’agit donc de tenir compte
des variabilités internes à ce champ plutôt que de le considérer comme un bloc monolithique
auquel on appliquerait des traitements phytosanitaires de manière uniforme. Carbon Bee AgTech
s’intéresse entre autres à la détection de maladies et propose leur localisation dans la parcelle
étudiée.

Pour réaliser cette détection, Carbon Bee se base sur l’imagerie et commercialise une caméra
dédiée à cette tâche. Cette caméra est associée à un algorithme d’apprentissage profond qui analyse
les images et repère la présence de la cible recherchée. Le but de cet algorithme est de procéder à
une segmentation, c’est-à-dire la détection de la cible à l’échelle du pixel (figure I.2).

Carbon Bee AgTech propose des solutions où les caméras sont montées sur des drones ou tenues
à la main, mais le cas d’usage le plus fréquent pour l’entreprise est le montage d’un ensemble
de caméras sur des « rampes » axiales portées par des tracteurs (figure I.3). Ces rampes sont des
structures métalliques déployées orthogonalement au sens de déplacement du tracteur, comme
les ailes d’un oiseau. Sur ces rampes sont positionnées, à espacement régulier, des contenants de
produits phytosanitaires, équipés de buses permettant de réguler leur débit d’épandage. Chaque

3







INTRODUCTION

— Enfin, la présence de multiples capteurs ouvre la voie à la fusion de données [Baltrušaitis
et al., 2018], c’est-à-dire la combinaison d’informations de plusieurs sources afin de mener à
bien une tâche. Combiner plusieurs images est un procédé implanté depuis longtemps dans
certains domaines de vision par ordinateur tels que la détection de silhouettes [Hwang et al.,
2015] et qui se popularise plus récemment dans le cadre des sciences végétales [Mahlein,
2016]. Cependant, plusieurs difficultés surviennent dans le cas du système Carbon Bee, liées
notamment à la nature différente des images acquises par les capteurs.

Il nous a paru pertinent de mener plusieurs études afin de tenter de lever ces verrous. Nous
avons conduit ces travaux dans le cadre d’une application agronomique au fort impact économique :
la détection de la tavelure du pommier. Il s’agit d’une maladie fongique affectant les pommiers,
première cause de perte de production de pommes au niveau mondial [Bowen et al., 2011].

La thèse a été menée sous la direction de deux laboratoires :

— le Laboratoire d’InfoRmatique en Image et Systèmes d’information (LIRIS), équipe Imagine, à
Lyon (69). Ce laboratoire possède une expertise dans les domaines de la vision par ordinateur
et de l’apprentissage automatique, appliquée en particulier aux sciences végétales.

— le Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), équipe « Informa-
tion, Signal, Image et Sciences du Vivant », à Angers (49). Ce laboratoire possède une expertise
concernant les instrumentations d’imagerie pour les sciences végétales. Le laboratoire a en
outre à sa disposition plusieurs serres dans lesquelles diverses espèces de plantes et leurs
réactions aux maladies sont étudiées, via un partenariat avec l’Institut de Recherche en
Horticulture et Semences (IRHS).

Plan du manuscrit

Le manuscrit est organisé de la façon suivante :

— Le chapitre 1 présente les éléments théoriques et bibliographiques relatifs aux deux défis
actuels de la détection de maladies de plantes : l’imagerie hors du domaine du visible et
l’apprentissage profond.

— Les chapitres 2, 3 et 4 sont dédiés à une étude que nous avons menée concernant l’exploitation
optimale des images d’un capteur CTIS dans un cadre d’apprentissage automatique. Plus
précisément, nous nous sommes intéressés au cas d’une détection de lésions de tavelure
à l’échelle de la feuille. En conséquence de la relative jeunesse de ce capteur CTIS, nous
nous sommes tournés vers la simulation de données pour se donner les moyens d’analyser
ses capacités, un recours très utilisé lors d’études de capteurs innovants [Spoelder, 1999].
Le chapitre 2 détaille le fonctionnement du CTIS et le positionne par rapport aux autres
capteurs hyperspectraux existants. Le chapitre 3 présente les différents simulateurs que nous
avons développés pour générer des signaux produits par ce capteur. Le chapitre 4 contient
l’approche d’apprentissage que nous avons explorée pour exploiter les signaux du CTIS en
contournant certains inconvénients de ce spectromètre.

— Dans le chapitre 5, nous nous sommes tournés vers un contexte agronomique plus proche
des défis industriels de Carbon Bee, l’échelle de la canopée, et intéressés à la problématique
du manque d’images annotées. Nous avons développé en réponse plusieurs simulateurs
d’images IR inspirés des derniers développements dans la matière en sciences végétales.

— Enfin, le chapitre 6 présente plusieurs pistes de travail que nous avons explorées concernant
la fusion des images des différents capteurs de la caméra. Nous nous sommes intéressés en
particulier au cas de la combinaison d’images à l’information structurelle différente et aux
problématiques de recalage provenant du décalage physique entre les différents capteurs.

6



Chapitre 1

Les défis d’aujourd’hui pour la détection

de maladies de plantes

Dans ce chapitre, nous présentons les éléments théoriques et une bibliographie relative aux
deux défis technologiques actuels dans le domaine de la détection de maladies végétales. Première-
ment, nous nous intéressons à l’imagerie hors du domaine du visible qui permet l’obtention d’une
large gamme d’informations concernant la santé d’une plante. Nous introduisons les notions de
physique électromagnétique nécessaires avant de nous concentrer sur les apports de l’imagerie
IR et hyperspectrale dans le domaine des sciences végétales. Deuxièmement, nous présentons les
méthodes d’apprentissage profond qui ont révolutionné le champ de l’apprentissage automatique,
en particulier dans le domaine de la vision par ordinateur. Nous nous attardons en particulier sur
les difficultés spécifiques du domaine des sciences végétales. Enfin, nous présentons les travaux
déjà menés sur notre cas d’étude : la détection de la tavelure du pommier.
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1.1.3 L’imagerie invisible permet d’évaluer finement la santé d’une plante

Les premières analyses en imagerie invisible se concentraient sur certaines gammes de lon-
gueurs d’onde spécifiques de l’IR. Les études plus modernes discrétisent pour la plupart l’informa-
tion spectrale de façon plus fine.

Domaine infrarouge

Tout d’abord, des mesures dans l’IR-A été intégrées dans des calculs de valeurs appelées indices,
qui correspondaient à des combinaisons arithmétiques de valeurs de réflectance à des longueurs
d’onde différentes [Bannari et al., 1995]. Des capteurs IR ont ainsi été utilisés dans le domaine de
la télédétection spatiale pour la segmentation de couverts végétaux à la surface terrestre [Rouse
et al., 1974]. L’indice associé à ces études, nommé l’indice de végétation de différence normalisée
(Normalized Difference Vegetation Index en anglais ou NDVI), est un ratio de luminosité entre une
longueur d’onde de l’IR et une longueur d’onde du domaine visible proche du rouge. Le fort ratio
des plantes entre la lumière réfléchie dans l’IR et celle dans le visible (figure 1.2) permet d’isoler
la biosphère d’autres zones terrestres. Dans le cadre de la détection de maladies, une variation de
l’IR proche réfléchi peut être signe d’une destruction des structures internes de la plante [Mahlein,
2016], en particulier des pigments [Peñuelas and Filella, 1998] à cause d’attaques parasitaires.

L’imagerie par IR-B a servi à différentes analyses quantitatives concernant la composition chi-
mique fine des plantes. Plusieurs études se sont penchées sur la détermination de la quantité d’eau
dans les plantes dans des conditions de stress hydrique grâce aux informations de ces longueurs
d’onde [Buddenbaum et al., 2015; Kim et al., 2015]. D’autres se sont intéressées à la quantification
des taux de nutriments absorbés tels que l’azote [Camino et al., 2018] ou d’autres composants
d’intérêt des plantes tels que le tanin [Lehmann et al., 2015].

L’IR-C a aussi été beaucoup étudiée dans le cadre de la détection de maladies. La température
est une mesure qui fournit des informations précieuses concernant les réactions d’une plante à un
stress [Chaerle and Van Der Straeten, 2000]. La régulation de la température dans une plante s’ef-
fectue principalement par des pores, que l’on appelle des stomates, qui servent de voies d’échange
d’eau et de gaz avec l’atmosphère. Ces stomates s’ouvrent et se ferment afin conserver ou d’évacuer
l’eau afin de réguler la température de la plante [Kümmerlen et al., 1999]. En temps normal, cette
régulation s’effectue en fonction de la quantité d’eau disponible dans la plante. Des travaux ont
montré que certains parasites induisaient une fermeture de ces stomates similairement à l’effet
d’un stress hydrique [Chaerle et al., 1999], provoquant un échauffement local de la plante. Des
attaques parasitaires plus avancées peuvent mener à une percée des membranes cellulaires [Penna-
zio and Sapetti, 1982]. Le contenu aqueux des cellules est alors déversé, menant à une transpiration
stomatique excessive et donc à un refroidissement local [Chaerle et al., 2001]. Il a été montré que
l’imagerie thermique était adéquate pour détecter la présence de certaines attaques parasitaires, et
notamment que les zones de variation de température coïncidaient avec les zones où les parasites
s’implantaient [Chaerle et al., 2001]. Ces études montraient en particulier que la détection ther-
mique pouvait précéder parfois de plusieurs jours l’apparition visible des parasites en surface de la
plante, permettant ainsi un traitement plus anticipé des maladies.

Spectre complet

Les capteurs dits hyperspectraux, qui seront plus longuement détaillés au chapitre suivant, per-
mettent d’acquérir pour un spectre donné l’intensité de chacune d’un grand nombre des longueurs
d’onde qui le composent. En sciences végétales, la gamme spectrale ainsi étudiée couvre en général
le domaine visible et une partie de l’IR-A. Les informations du spectre complet peuvent être exploi-
tées pour des caractérisations plus fines que ne le permet l’information d’une réflectance IR ou
visible seule. En particulier, les applications suivantes ont été possibles grâce à l’utilisation de cap-
teurs hyperspectraux : la détection de stress hydriques ou d’attaques parasitaires significativement
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plus tôt qu’en détection IR [Behmann et al., 2014] ; la classification de diverses espèces végétales
[He et al., 2011], soit une analyse plus poussée que le classification binaire « plante/non plante »
rendue possible par le NDVI; la caractérisation biochimique d’espèces, telle que la composition
pigmentaire [Ustin et al., 2004], l’analyse de stress hydrique multi-niveaux [Kim et al., 2011] ; la
classification d’attaques parasitaires à un niveau fin, par exemple pour des maladies dont le spectre
diffère peu du spectre sain [Bravo et al., 2003], pour distinguer plusieurs types de maladies [Rumpf
et al., 2010] ou encore pour caractériser la date de la gravité de l’infection [Mahlein et al., 2012].

Méthodologiquement, les utilisations de l’information spectrale peuvent être séparées en deux
catégories. La première possibilité est d’opérer une sélection de quelques longueurs d’onde parmi
toutes celles offertes par l’imagerie hyperspectrale. Il est possible de sélectionner les longueurs
d’onde pour créer des indices végétaux basés sur des connaissances biologiques de mécanismes
spécifiques des plantes. Par exemple, les auteurs de [Rumpf et al., 2010] ont conduit une classi-
fication de maladies en choisissant comme caractéristiques de multiples indices très utilisés en
sciences végétales donnant des indications sur les contenus en chlorophylle, en caroténoïdes, sur
la biomasse en général. Il est aussi possible de procéder à la sélection automatique des longueurs
d’onde les plus pertinentes par un algorithme statistique [Benoit et al., 2016]. Toutes les longueurs
d’onde sont alors considérées dans un premier temps, et sont conservées uniquement celles qui
contribuent le plus à l’application selon un certain critère. Par exemple, les auteurs de [Bravo et al.,
2003] ont proposé une analyse de variance pour une sélection de longueurs d’onde « utiles » qu’ils
fournissent ensuite en entrée à un algorithme de classification, pour des maladies affectant le blé.
Les auteurs de [Delalieux et al., 2009b] ont testé exhaustivement tous les ratios de longueurs d’onde
sur une gamme donnée afin d’évaluer leur impact pour la détection de tavelure par régression
logistique.

La deuxième possibilité consiste à exploiter l’entièreté du spectre. Les spectres peuvent alors
être condensés via une analyse en composante principale [Golhani et al., 2018] ou bien servir
d’entrée tels quels à des algorithmes de classification de vecteurs à grande dimension. Les auteurs
de [Mahlein et al., 2012] ont utilisé un tel algorithme appelé le Spectral Angle Mapper [Yuhas et al.,
1992] pour la classification de plusieurs stades de maladies affectant la betterave sucrière. Les
auteurs de [Qin et al., 2009] ont comparé des spectres de citrons sains avec ceux atteints de chancre
afin de procéder à leur classification avec une variation de cet algorithme.

1.1.4 Positionnement

Le grand nombre d’études basées sur l’imagerie dans des domaines invisibles pour la détection
de maladies de plantes montre à quel point cet axe de recherche est prometteur. Il faut cependant
noter que ces recherches ont été conduites en grande majorité avec des capteurs qui ne concordent
pas avec des contraintes industrielles comme celles de Carbon Bee. Les caméras utilisées pour
l’imagerie thermique et l’imagerie hyperspectrale peuvent valoir jusqu’à plusieurs dizaines de
milliers d’euros et ont des temps d’acquisition de l’ordre de la seconde. Le CTIS proposé par Carbon
Bee est radicalement différent de ce type d’imagerie. Les particularités, promesses et difficultés du
CTIS sont détaillées plus abondamment dans le chapitre 2.

1.2 Apprentissage profond pour les images de plantes

Nous présentons maintenant les bases théoriques relatives à un autre domaine qui a considéra-
blement influencé les méthodes développées en détection de maladies végétales : l’apprentissage
profond. Il existe de nombreuses ressources qui décrivent méticuleusement l’histoire, les attri-
buts et les enjeux du champ de l’apprentissage profond. Nous nous limitons à décrire les blocs
nécessaires à la compréhension du manuscrit. Nous nous attardons par la suite sur les enjeux liés à
l’application de ces méthodes au domaine des sciences végétales.
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2. Détermination des caractéristiques : une caractéristique est une mesure que l’on fait sur
les objets contenus dans l’image relativement à leur forme, leur couleur, leur gradient, leur
longueur, etc. Dans l’application donnée en exemple, les caractéristiques retenues sont la
présence de la couleur rouge (qui pourrait être calculée via une recherche de pixels dont la
valeur est comprise dans une gamme représentant la couleur rouge) et de formes rondes
(qui pourrait être calculée via un algorithme de détection de forme tel que la transformée
de Hough [Duda and Hart, 1972]) dans l’image. Des caractéristiques plus élaborées ont été
développées au fil des années, telles que des caractéristiques de textures d’Haralick [Haralick
et al., 1973; Ramesh et al., 2018] ou les caractéristiques visuelles invariantes à l’échelle (Scale-

Invariant Feature Transform en anglais, ou SIFT) [Lowe, 2004; Lavania and Matey, 2014].

3. Calcul des vecteurs de caractéristiques : les caractéristiques sont calculées sur chaque image
du jeu d’entraînement, qui sont à l’issue de cette étape représentées chacune par un vecteur
de caractéristiques. Dans l’exemple de la figure 1.3, nous indiquons pour chaque caractéris-
tique sa présence ou son absence dans l’image par une valeur binaire. Nous pouvons alors
nous représenter visuellement les différentes images dans l’ « espace des caractéristiques ».
Dans cet espace au nombre de dimensions égal au nombre de caractéristiques calculées,
chaque image est représentée par un point dont la position est donnée par son vecteur de
caractéristiques.

4. Calcul de la frontière de décision : les vecteurs de caractéristiques des images du jeu d’entraî-
nement sont présentées à un algorithme d’apprentissage avec les étiquettes associées. Le but
attendu de cette étape est que le lien se fasse entre les valeurs des caractéristiques des images
et les étiquettes qui leur sont associées. Visuellement, le but de l’algorithme est de trouver
l’hyperplan qui sépare dans cet espace de caractéristiques les groupes d’objets avec la même
étiquette, que l’on appelle la frontière de décision (ligne pointillée rouge en bas à droite de
la figure 1.3). Si les caractéristiques sont bien choisies, que le jeu d’entraînement est assez
divers et que la capacité de l’algorithme, c’est-à-dire la complexité de l’hyperplan qu’il peut
définir, sont suffisants pour la classification considérée, alors l’algorithme convergera vers
cet hyperplan [Goodfellow et al., 2016].

Une fois l’algorithme entraîné, il peut être utilisé pour réaliser des prédictions, c’est-à-dire des
propositions d’étiquettes sur un jeu d’images qu’on ne lui a jamais présenté. Visuellement, cela
correspond à placer un point dans l’espace des caractéristiques et de lui attribuer une étiquette en
fonction de sa position par rapport à la frontière de décision.

L’exemple d’algorithme d’apprentissage automatique supervisé le plus simple est celui des
« k plus proches voisins » [Cover and Hart, 1967]. On présente d’abord à l’algorithme les vecteurs
de caractéristiques et les étiquettes du jeu d’entraînement. Puis, pour déterminer l’étiquette d’un
nouvel élément, on calcule les k plus proches éléments parmi ceux du jeu d’entraînement. Plusieurs
possibilités existent pour calculer cette distance, la plus populaire étant la distance euclidienne
entre les vecteurs de caractéristiques. L’étiquette la plus représentée parmi ces plus proches voisins
est attribuée à ce nouvel élément 3.

En pratique, lorsque l’on souhaite entraîner un algorithme de classification à partir d’un jeu
d’images, il est rare que l’on ait à disposition dans le même temps les images non étiquetées pour
lesquelles on souhaiterait que l’algorithme propose une prédiction. Pour évaluer les performances
de l’algorithme, la procédure est alors de séparer le jeu d’entraînement, dont on connait les éti-
quettes, en plusieurs sous-ensembles que l’on appelle des blocs (sets en anglais). On conserve
typiquement entre 60 et 80% des images comme bloc d’entraînement, et on utilise le reste comme
bloc dit de test. Ce bloc ne sert pas à entraîner l’algorithme, mais à évaluer les performances de ce

3. La frontière de décision est ici calculée de façon locale, élément par élément lors de la phase de prédiction, plutôt
que globalement comme dans la figure 1.3
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exemple. La connaissance de ces contributions permet de connaître la forme locale de la fonction
de coût en fonction des valeurs des poids, c’est-à-dire la valeur du gradient

∂h

∂wi
(1.3)

pour chaque poids wi . Une itération d’un algorithme d’optimisation, tel que la descente de gradient,
est alors appliquée pour modifier les valeurs des poids afin d’améliorer la performance du réseau sur
ce lot d’exemples. Un nouveau lot d’exemples est présenté et le cycle recommence. L’entraînement
se poursuit jusqu’à ce que la performance se stabilise ou selon d’autres critères d’arrêt. On dit alors
que le réseau a convergé ou bien est entraîné. Le réseau peut ensuite être utilisé en prédiction pour
produire des étiquettes sur des données qu’on ne lui a jamais présentées.

Avantages et inconvénients par rapport à l’apprentissage automatique traditionnel

Par rapport à d’autres structures algorithmiques, les réseaux de neurones ont deux grands
avantages. Premièrement, leur structure basée sur l’empilement de fonctions non-linéaires leur
octroie une énorme capacité. Il a été montré qu’un réseau avec deux couches seulement peut repré-
senter n’importe quelle fonction mathématique liant des entrées et une sortie [Hornik et al., 1989].
Pour des raisons d’entraînement et de capacité de calcul, les architectures modernes comprennent
toutefois un plus grand nombre de couches. Deuxièmement, les réseaux agissent à la fois comme
algorithmes de classification et comme extracteurs de caractéristiques. En effet, ce sont, dans la
grande majorité des cas, les données elles-mêmes (les valeurs des pixels dans le cas des images) qui
sont fournies en entrée à un réseau et non des caractéristiques pré-définies (comme dans l’exemple
de la figure 1.3). Les algorithmes de rétro-propagation et d’optimisation permettent d’exploiter la
grande capacité du réseau en guidant les changements des poids des réseaux vers un ensemble
des valeurs qui mène à une bonne performance de classification : en d’autres termes, les carac-
téristiques sont apprises spécifiquement pour la tâche considérée. Les caractéristiques extraites,
simples si nous les considérons dans les premières couches, se complexifient peu à peu au fil des
opérations faites par les couches. C’est cette dimension de couches empilées, qui permettent la
création de caractéristiques complexes, à laquelle on fait référence lorsqu’on parle d’apprentissage
« profond ». Cet empilement mène à des caractéristiques qui peuvent être extrêmement raffinées et
subtiles, bien plus que ce qu’un humain ou un algorithme de calcul de caractéristiques classique
peuvent réaliser.

La grande capacité des réseaux peut entraîner cependant un grand inconvénient : le surappren-

tissage (overfit en anglais) [Goodfellow et al., 2016]. Pour l’illustrer, plaçons-nous dans le cadre d’une
application d’apprentissage automatique simple : la régression non-linéaire (figure 1.6). Considé-
rons que nous avons n points d’entraînement qui sont des paires de nombres réels (xi , yi ) et que
nous souhaitons ajuster un polynôme de degré m à ces points, c’est-à-dire trouver les coefficients
qui permettent au polynôme de passer au plus près de ces points. Si m ≥ n, il existe forcément un
polynôme qui soit exactement ajusté à ces données : un tel modèle a assez de capacité pour repré-
senter complètement le jeu de données. L’optimisation des coefficients du polynôme mène donc à
une fonction qui passe exactement par tous les points d’entraînement. Cette situation, alléchante
sur le papier, est en fait souvent très fâcheuse. En effet, il faut se souvenir que, comme pour toute
procédure de statistique inférentielle, le bloc d’entraînement ne constitue qu’un échantillon de la
distribution que l’on cherche à ajuster. En conséquence, les points d’entraînement représentent la
fonction génératrice des données mais avec un certain bruit. En optant pour un polynôme de degré
élevé, l’ajustement se fera sur ce bruit plutôt que sur la véritable distribution. Par exemple, dans
la figure 1.6, les dix points semblent provenir d’une distribution qui pourrait être ajustée par un
polynôme de degré deux (courbe verte). L’utilisation d’un polynôme de degré dix (courbe marron)
mène à un ajustement plus précis des points d’entraînement, mais nous constatons aisément que la
capacité « excédentaire » du modèle a servi à ajuster le bruit. Une telle configuration d’entraînement
mène souvent en outre à un modèle ajusté très éloigné de la fonction génératrice dans les plages
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circonscrire strictement le cas d’étude [Ubbens et al., 2018]. De plus, le processus d’annotation doit
très souvent être confié à un·e expert·e agronome du domaine. En effet, les symptômes visuels de la
maladie recherchée sont souvent très proches de ceux d’autres maladies voire de ceux indiquant des
mécanismes physiologiques sains au sein de la plante [Daughtry et al., 2000]. En conséquence, les
jeux de données annotés disponibles sont restreints par rapport à ceux d’autres domaines comme
la conduite autonome [Saleem et al., 2019].

Une autre difficulté est que la variabilité des symptômes possibles même pour un système
plante-pathogène défini complique la tâche de classification. Les plantes et les agents pathogènes
sont des organismes vivants, et leur signature visuelle évolue donc dans le temps. Au sein d’un
même jeu voire d’une même image, plusieurs plantes peuvent être atteintes d’une même maladie
présente à différent stades, parfois avec des signatures visuelles très différentes. De plus, les acquisi-
tions des images sont très souvent réalisées à l’extérieur ou en serre : les conditions météorologiques
et d’illumination mènent à une grande variabilité dans les jeux disponibles. La figure 1.11 illustre
quelques-unes de ces variabilités.

Parmi les applications d’apprentissage profond, plus du tiers [Abade et al., 2020] des études
publiées aujourd’hui utilisent au moins partiellement le jeu annoté PlantVillage [Hughes et al.,
2015] pour mener à bien leur entraînement. Il s’agit d’un jeu libre d’environ 50 000 images RVB
de feuilles atteintes de maladies. La tâche de classification associée est de déterminer la maladie
dont sont atteintes les feuilles parmi les 38 présentes dans le jeu. L’importante proportion d’études
s’appuyant sur ce jeu souligne le problème de l’étroitesse des jeux qui handicape l’application de
techniques d’apprentissage profond au domaine.

(a) (b)

(c) (d)

FIGURE 1.11 – Quelques exemples d’une campagne d’acquisition d’images de vignes atteintes d’esca, ac-
quises par Carbon Bee AgTech. Les sous-figures (a) et (b) illustrent la différence de luminosité qui peut exister
entre des acquisitions en fonction de la position du soleil par rapport au capteur. Les sous-figures (c) et (d)
illustrent les différences de signature de la maladie (taches brunes dans le cas de l’esca) en fonction de son
stade de développement au moment de l’acquisition.
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Les tâches étudiées concernent souvent une classification en conditions contrôlées

Par ailleurs, il est nécessaire de souligner que, plus encore que dans d’autres domaines, les
jeux de données sont pour beaucoup en conditions dites contrôlées. Dans ces jeux, les acquisitions
concernent des feuilles isolées sur un fond uni prises en intérieur avec une illumination homogène.
Or les conditions réelles d’application de ces algorithmes, que ce soit en serre ou en champ, sont
bien différentes : nombreuses feuilles superposées à distance variable, positionnement avec des
angles arbitraires par rapport à la caméra, conditions lumineuses diverses et potentiellement variées
au sein d’une même feuille, etc. La figure 1.12 illustre la différence entre les deux types de conditions.

(a) Une image, en conditions contrôlées, du jeu
de données PlantVillage. Source : https://www.
kaggle.com/emmarex/plantdisease.

(b) Une image, en conditions réelles, du jeu de
données PlantDisease. Source : [Arsenovic et al.,
2019].

FIGURE 1.12 – Comparaison entre un jeu en conditions contrôlées et un jeu en conditions réelles.

Par conséquent, les apprentissages réalisés sur des jeux en conditions contrôlées masquent
une grande partie des difficultés du domaine lorsque le bloc de test est aussi acquis dans ces
conditions. Les performances obtenues surestiment la capacité des modèles à effectuer leur tâche
en conditions réelles [Ferentinos, 2018]. Les quelques études s’étant intéressées à cet écart de
performance rapportent une baisse d’environ 30% de leur métrique de performance lorsque ces
modèles sont utilisés en prédiction en conditions réelles [Mohanty et al., 2016]. PlantVillage est un
exemple de jeu en condition contrôlées, et plus largement il est estimé que les deux tiers des études
publiées à ce jour travaillent uniquement en conditions contrôlées [Abade et al., 2020]. Certain
·es chercheur ·euses, conscients de ces difficultés, cherchent à promouvoir l’utilisation de jeux
comprenant au moins une certaine proportion d’images en conditions réelles. C’est le cas du jeu de
données PlantDisease [Arsenovic et al., 2019], qui contient près de 80 000 images représentant 42
maladies, acquises en conditions réelles, pouvant notamment contenir plusieurs feuilles atteintes
dans la même image.

Les architectures des réseaux employés sont empruntées à d’autres domaines

Malgré ces limitations, de nombreuses études ont porté sur l’application d’algorithmes d’ap-
prentissage profond à des problèmes de détection de maladies [Singh et al., 2018]. Les plantes
les plus étudiées sont les céréales (riz, maïs, blé, etc.) et les maladies les plus étudiées sont celles
causées par des champignons [Abade et al., 2020]. Beaucoup de ces études consistaient simplement
à appliquer un réseau de neurones constituant l’état de l’art au moment de l’étude au problème
considéré [Kaur et al., 2019]. Par ailleurs, des réseaux dont l’architecture a été personnalisée pour
la tâche considérée ont aussi été développés, en modifiant notamment le nombre de couches ou
d’autres hyperparamètres architecturaux [Abade et al., 2020]. Certains réseaux ont des architectures
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plus spécifiques encore au domaine, à l’image de PlantDiseaseNet [Arsenovic et al., 2019]. Cette
architecture comprend un premier réseau servant à la détection d’instances de feuilles dans l’image
suivi d’un deuxième dédié à la détection de maladie sur feuille isolée. L’immense majorité des
études se cantonne au cas d’une classification binaire (présence ou absence de maladie) ou multiple
(identification de la maladie), alors que des tâches plus complexes comme la segmentation avaient
été explorées dans ce domaine par le biais de méthodes d’apprentissage classiques [Arivazhagan
et al., 2013]. Or, une connaissance des positions et des tailles des lésions via la segmentation per-
mettrait de proposer un diagnostic plus fin quant au stade d’évolution de la maladie. Conscients de
l’enjeu d’une telle information, de nombreux ·ses chercheur ·euses ont proposés des approches
pour extraire des résultats de segmentation à partir de réseaux destinés à la classification, telles
qu’une analyse de saillance ou une visualisation des cartes de caractéristiques du réseau [Saleem
et al., 2019].

1.2.3 Positionnement

Dans ce travail, nous avons implémenté des méthodes d’apprentissage profond pour mener à
bien des classifications liées à notre cas d’étude. Nous avons employé pour la plupart des travaux
présentés dans ce manuscrit une architecture existante, relativement simple et aux performances at-
testées dans le domaine de la vision par ordinateur ; mais nous avons aussi contribué aux méthodes
en elles-mêmes en proposant une nouvelle architecture dédiée aux images du CTIS (chapitre 4).
Nous nous démarquons significativement de l’état de l’art en ce qui concerne les jeux de données,
puisque nous nous concentrons sur des imageries hors du domaine du visible, largement moins
étudiées que les images RVB dans le cadre de la détection de maladies végétales. Nous menons par
ailleurs une étude en conditions réelles, proche des contraintes industrielles rencontrées dans le
domaine de l’agriculture de précision.

1.3 Tavelure du pommier

Enfin, nous présentons la maladie cas d’étude choisie ainsi que les différents travaux déjà menés
pour sa détection.

1.3.1 Une infection difficile à détecter et à soigner

La tavelure du pommier est une maladie fongique causée par le champignon Venturia inaequa-

lis affectant les arbres du genre Malus, qui regroupe les pommiers que nous pouvons trouver en
Europe. Le champignon cause l’apparition de taches brunâtres et de zones nécrosées sur les feuilles
et les fruits du pommier. Ces lésions ne compromettent pas directement la comestibilité du fruit
mais favorisent l’installation de parasites secondaires qui peuvent, eux, provoquer le pourrissement
du fruit. Même sans infection secondaire, les lésions sont suffisamment intrusives (déformations,
flétrissures, crevasses) pour que les fruits produits perdent toute valeur marchande. À ce titre, il
s’agit de la maladie affectant la pomme la plus grave en termes de coût économique au niveau
mondial [Bowen et al., 2011].

Le cycle de reproduction de V. inaequalis est annuel. Les feuilles infectées au printemps tombent
de l’arbre en automne, créant au pied de celui-ci un humus propice au développement du cham-
pignon. Au printemps suivant, des cellules reproductrices du champignon que l’on nomme asco-
spores sont relâchées dans l’air et infectent les feuilles à proximité. Cette étape intervient sous des
conditions d’humidité spécifiques, ce qui rend difficile la prédiction de cette période et donc la
bonne application d’un traitement phytosanitaire [Cuthbertson and Murchie, 2003]. L’attaque de la
feuille par le parasite est représentée figure 1.13.

L’ascospore pénètre dans la couche protectrice externe de la feuille, appelée cuticule. Cette
pénétration s’accompagne de signaux chimiques qui inhibent les mécanismes de défense de la
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tion de lésions de tavelure. Nous exploitons la connaissance de la littérature pour positionner la
performance de cette imagerie par rapport à celles déterminées comme optimales antérieurement.

1.4 Conclusion

L’imagerie invisible est utilisée depuis de nombreuses années à des fins de détection de maladies
végétales. Les possibilités d’acquisition qu’elle permet ont été étendues ces dernières années
via le développement de capteurs hyperspectraux. De plus, son déploiement a été accéléré par
l’avènement des algorithmes d’apprentissage profond qui ont permis d’exploiter efficacement ces
informations spectrales riches. Dans ce travail, nous nous inscrivons dans la continuité de ces deux
axes porteurs dans le domaine de la détection de maladies végétales par imagerie. Cependant,
contrairement aux paradigmes d’« expansion » que l’on retrouve à la fois dans le domaine de
l’imagerie hyperspectrale via le développement de spectromètres onéreux à forte résolution spatiale
comme spectrale, et dans le domaine de l’apprentissage automatique via le développement de
réseaux de neurones toujours plus profonds et difficiles à entraîner, nous explorons dans ce travail
la viabilité d’une approche à bas coût matériellement comme algorithmiquement. En particulier,
nous présentons dans les chapitres suivants une étude menée sur l’exploitation optimale du signal
d’un spectromètre à résolution spatio-spectrale réduite et à acquisition rapide : le CTIS.
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Chapitre 2

Le CTIS : un capteur hyperspectral

atypique à évaluer

L’innovation majeure de la caméra Carbon Bee est l’utilisation du capteur CTIS, encore mé-
connu dans la communauté d’imagerie hyperspectrale. Dans ce chapitre, nous commençons par
positionner ce spectromètre par rapport aux autres capteurs hyperspectraux, en décrivant les prin-
cipes de l’imagerie spectrale et les différents types de capteurs. Nous soulignons les particularités
du CTIS par rapport aux capteurs existants : une capacité d’acquisition instantanée, une acquisition
indirecte, et un coût réduit. Par la suite, nous décrivons en profondeur le CTIS en lui-même. Nous
nous attardons particulièrement sur le lien fort que ce spectromètre partage avec le champ de la
tomographie.
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important de bandes spectrales mesurées [Hagen and Kudenov, 2013] (figure 2.2, en bas à droite).
Chacune représente une gamme de longueurs d’onde très restreinte, et les bandes sont contigües. Il
est coutume de dire qu’un capteur hyperspectral acquiert un cube de données puisque la résolution
spectrale de l’information acquise, de plusieurs dizaines à plusieurs centaines de bandes, est du
même ordre de grandeur que sa résolution spatiale. Pour atteindre ce niveau de précision, les
technologies optiques employées pour l’imagerie multispectrale, c’est-à-dire une multitude de
filtres ou bien des filtres composites, ne sont pas viables pour un nombre de bandes beaucoup
plus élevé. Les capteurs hyperspectraux utilisent à la place des éléments optiques permettant la
décomposition spectrale de la lumière.

Les éléments dispersifs permettent de séparer finement l’information spectrale

Les éléments optiques dits dispersifs qui décomposent une lumière selon ses composantes
spectrales. L’élément dispersif le plus connu [Kress, 2017] est le prisme. Ce bloc de verre taillé
permet de décomposer spectralement la lumière puisque les rayons y empruntent un chemin
différent en fonction de leur longueur d’onde. Un tel élément que l’on placerait entre une source de
lumière et un CCD permettrait d’obtenir sur des détecteurs différents les intensités de différentes
longueurs d’onde. Le terme « dispersif » est utilisé en optique comme synonyme de « décomposant
spectralement ».

La majorité des capteurs hyperspectraux modernes incluent des éléments dispersifs que l’on ap-
pelle des réseaux de diffraction. Nous détaillons ici les réseaux de diffraction dits « à transmission »,
sachant qu’il en existe d’autres qui fonctionnent selon des principes similaires. Ces réseaux sont de
petits matériaux en forme de rectangles plats, percés de multiples fentes espacées régulièrement.
Les fentes sont de taille assez réduite pour causer le phénomène de diffraction, régi par la loi de
Huygens-Fresnel [Huygens, 1920]. Dans le cadre d’un réseau de diffraction, cette loi stipule qu’au
niveau des fentes, la lumière agit comme une source sphérique et se diffuse ainsi dans toutes les
directions. La structure d’un réseau de diffraction associée à cette loi permet la décomposition de
la lumière, comme l’illustre la figure 2.3.

Notons d la distance entre les fentes du réseau. Considérons deux rayons de longueur d’onde
λ issus de deux fentes côte à côte, atteignant le même détecteur p (en bleu dans la figure 2.3).
Nous admettons que la distance entre le réseau et le CCD est suffisamment grande pour considérer
que ces rayons sont parallèles, formant un angle θ avec la normale du réseau. Les deux rayons
ne parcourent pas le même chemin optique pour atteindre p. Par trigonométrie, nous pouvons
calculer que leur différence de chemin D est égale à d sinθ (en jaune sur l’agrandissement de la
figure 2.3). Si cette différence de chemin est par ailleurs égale à mλ, m ∈N, alors les rayons sont en
interférence constructive : le détecteur p reçoit l’information lumineuse correspondant à cette lon-
gueur d’onde. Pour toute autre longueur d’onde λ′, la différence de chemin D 6= mλ′ est telle que les
interférences sont partiellement destructives. Leur information est donc perdue pour ce détecteur
p. Un détecteur donné reçoit donc l’information d’une longueur d’onde en particulier : la lumière
est décomposée spectralement. Puisque les angles θ sont petits, si nous faisons l’approximation
sin(θ) ≈ θ, nous pouvons remarquer de plus que les angles de dispersion maximale sont linéaires
par rapport à λ. Si une longueur d’onde λ1 est en interférence positive sur le détecteur p1 défini par
un angle θ1, alors une longueur d’onde deux fois supérieure sera acquise sur un détecteur p2 défini
par un angle θ2 approximativement deux fois plus grand que θ1.

Si nous considérons, plutôt qu’un détecteur fixe, une longueur d’onde λ donnée, alors nous
pouvons constate qu’il existe plusieurs angles de diffraction menant à une interférence construc-
tive : tous ceux qui mènent à une différence de chemin égale à un multiple de λ. L’information
correspondant à une longueur d’onde λ est donc acquise sur plusieurs détecteurs du CCD. Cette
configuration mène à un ensemble de décompositions spectrales de la lumière incidente que l’on
appelle des ordres de diffraction, (à droite de la figure 2.3). Par convention, ils sont numérotés selon
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Certains capteurs hyperspectraux sont accessibles à un coût très bas

Alors que de nombreuses sociétés produisent des capteurs hyperspectraux dont les prix com-
mencent à plusieurs dizaines de milliers d’euros, des études ont porté sur la possibilité de créer des
capteurs à bas coût. Les articles dédiés préconisent l’utilisation de matériaux bon marché, voire
à produire directement par des imprimantes 3D [Salazar-Vazquez and Mendez-Vazquez, 2020]
(figure 2.5). Certains de ces capteurs sont à balayage et sont destinés en particulier au montage sur
des drones [Uto et al., 2016; Sigernes et al., 2018], mais il existe aussi des recherches sur les capteurs
instantanés, mieux adaptés à des applications véritablement bas-coût telles que des acquisitions
à la main. Parmi ceux-ci, certaines solutions optent pour des conceptions originales, inspirés de
capteurs instantanés développés plusieurs décennies en arrière [Mathews, 2008; Gao et al., 2010].

FIGURE 2.5 – Un capteur hyperspectral imprimé en 3D. Source : [Salazar-Vazquez and Mendez-Vazquez,
2020].

2.2 Le CTIS : un capteur du domaine de l’imagerie computationnelle

Le CTIS est le premier des capteurs hyperspectraux instantanés exploitant les capacités de l’ima-
gerie computationnelle. Nous détaillons dans cette section le fonctionnement de ce spectromètre
et la façon dont l’imagerie computationnelle permet l’acquisition instantanée de la scène.

2.2.1 L’acquisition d’une image destinée à une reconstruction

L’acquisition réalisée n’est pas directement un cube hyperspectral mais une image bidimen-
sionnelle. Nous appelons cette image l’image CTIS et l’espace de ces images l’espace de mesures.
Des calculs sont par la suite conduits sur cette image afin d’en produire le cube hyperspectral de
la scène. On appelle ces calculs l’étape de reconstruction du cube. Ce pipeline général est illustré
figure 2.6.

Le banc optique du CTIS est présenté figure 2.7. La lumière de la scène traverse d’abord une
lentille d’objectif et un diaphragme de champ. Ces éléments ont pour conséquence une baisse de la
résolution spatiale de la lumière acquise. Cette baisse permet de dégager une partie du CCD pour
l’acquisition de l’information spectrale. Cette information est obtenue via le passage de la lumière
dans un réseau de diffraction bidimensionnel, qui décompose l’information spectrale selon deux
dimensions (figure 2.6, « Image CTIS »).

L’image acquise est ainsi partagée en plusieurs zones qui correspondent aux différents ordres
de diffraction, que l’on appelle des projections. L’ordre 0, au centre, est la somme du cube selon
la dimension spectrale. Il correspond à une acquisition que l’on obtiendrait via un capteur pan-
chromatique à faible résolution spatiale. Les ordres supérieurs sont composés des différentes
décompositions spectrales du cube. La figure 2.8 présente une image CTIS comprenant deux
ordres, l’ordre 0 et l’ordre 1.
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FIGURE 2.9 – Représentation des projections acquises (en bas) comme des projections mécaniques du cube
hyperspectral (en haut). Source : [Descour and Dereniak, 1995].

différents, connus d’avance. Ainsi, l’intensité reçue par un récepteur donné est indicatrice de la
composition des tissus que le rayon émis correspondant a traversé. Cependant, une mesure d’un
récepteur donné ne fournit qu’une information partielle quant à ce chemin. En effet, un récepteur
acquiert une seule valeur et permet donc uniquement de mesurer la quantité totale de l’énergie
absorbée au cours du trajet du rayon. En notant I0 l’intensité du rayon émis, I1 celle du rayon acquis,
et µ(x) le coefficient d’absorption à la position x du trajet du rayon, x ∈ [0,L] nous avons l’équation

I1 = I0

∫L

0
µ(x)dx. (2.1)

Ainsi, la valeur acquise ne permet pas d’expliciter les coefficients µ(x) individuels du trajet du rayon.
L’acquisition CT repose sur l’idée d’acquérir un grand nombre de rayons à l’information imparfaite
et de rassembler les informations obtenues pour reconstruire la tranche entière. Il s’agit donc une
technique d’imagerie computationnelle.

La disposition des émetteurs dans le scanner est illustrée figure 2.10. Un ensemble d’émetteurs
positionnés côte à côte émettent un rayon vers des émetteurs qui leur font face. L’ensemble des
mesures faites sur les récepteurs pour une position s’appelle une projection (figure 2.10, gauche).
Au cours de l’acquisition, le scanner pivote sur son axe, permettant de déplacer les émetteurs
et récepteurs. Les projections sont acquises régulièrement, permettant de couvrir une plage im-
portante d’angles d’acquisition, noté θ sur la figure 2.10. À la fin de l’acquisition, les projections
unidimensionnelles acquises sont parfois regroupées sous la forme d’une image bidimensionnelle
appelée un sinogramme (figure 2.10, droite).

Les algorithmes de reconstruction permettent de retrouver le signal original

L’ensemble de ces projections et les angles avec lesquelles elles ont été acquises permet dans
un deuxième temps la reconstruction de l’image. Un algorithme appelé la « rétro-projection filtrée »
(Filtered Back-Projection en anglais, ou FBP) est l’algorithme de reconstruction implémenté aujour-
d’hui dans de nombreux scanners commerciaux [Pan et al., 2009]. Il consiste en un « ré-étalement »
des projections dans le domaine spatial, où chaque projection est filtrée fréquentiellement afin
d’éviter une surreprésentation des fréquences basses. Il a été prouvé que cet algorithme correspond
mathématiquement à l’opération inverse de l’action du scanner, attendu des conditions idéales et
un nombre de projections infinies [Al Hussani and Al Hayani, 2014]. Cependant, si cet algorithme
est théoriquement parfait, il en va autrement dans la réalité. De nombreuses limitations expéri-
mentales nous éloignent de la situation idéale où le FBP est une solution exacte. Certaines de ces
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4. Reprendre à l’étape 2 jusqu’à un critère de convergence, par exemple une valeur seuil pour la
différence entre g et ĝ (i ).

Nous nous proposons d’expliciter l’équation 2.5. Premièrement, nous pouvons noter que la
mise à jour de l’image f se fait pixel par pixel : chaque élément f̂ (i+1)

n dépend uniquement de f̂ (i )
n

et pas d’autres éléments f̂ (i )
k

,k 6= n. Au cours d’une mise à jour, chaque élément f̂ (i+1)
n est calculé

comme la multiplication de cet élément à l’itération précédente f̂ (i )
n par un terme noté T. Notons

que T dépend uniquement de H et de g , qui ont des valeurs positives ou nulles : T est donc égale-
ment positif ou nul. Pour calculer T, nous comparons le sinogramme véritable g au sinogramme
calculé à l’itération courante ĝ (i ). Cette comparaison est simplement une somme des divisions
terme à terme des valeurs de g et ĝ (i ). Chaque division est en outre pondérée par la participation
de fn à la valeur que prennent les éléments de g et de ĝ (i ). Cette participation est la valeur Hmn

(terme bleu, « normalisé » par le terme marron). Ainsi, si pour une position m donnée, l’estimation
courante de ĝ (i )

m est loin de celle du véritable sinogramme gm , et que fn contribue fortement à
gm et à ĝ (i )

m , alors le terme Hmn
gm

ĝ (i )
m

influence fortement T. À l’inverse, par exemple dans un cas

où Hmn = 0, cette différence ne contribue pas du tout à T. Ainsi, si les valeurs de ĝ (i ) auxquelles
f̂ (i )

n contribue sont en moyenne (c’est-à-dire en sommant sur toutes les positions m) trop grandes
par rapport à g , alors T sera inférieur à 1 et f̂ (i+1)

n sera plus petit que f̂ (i )
n . Nous pouvons tirer les

conclusions inverses pour le cas où la contribution moyenne de f̂ (i )
n est trop faible par rapport

au g attendu. Comme d’autres méthodes de maximum de vraisemblance, cet algorithme permet
toujours de trouver un maximum local de vraisemblance, mais ne garantit pas la globalité de celui-
ci. Comme il n’y a pas de stochasticité dans cet algorithme, le choix de f̂ (0) a une grande importance.

Il existe aussi des méthodes plus modernes de reconstruction CT basées sur les réseaux de
neurones. Il est intéressant de constater que dans ces méthodes, les réseaux sont pensés de ma-
nière à reproduire les étapes d’algorithmes de reconstruction déjà existants, ou tout au moins les
différentes parties du réseau y sont-elles identifiées. Les travaux de [Würfl et al., 2016] par exemple,
cherchent à émuler l’algorithme de FBP. Ils identifient les couches convolutives de leur réseau au
filtrage fréquentiel, les couches FC à la rétro-projection en elle-même et la fonction d’activation à
la contrainte de positivité. Les travaux de [Hammernik et al., 2017] proposent deux réseaux, l’un
identifié à la FBP et l’autre comme un algorithme de réduction d’artefacts.

Le CTIS est une opération de CT basée sur la lumière

Le CTIS fonctionne selon le principe du CT appliqué à un cube de lumière. Les similarités
des deux procédés sont présentées dans le tableau 2.1. Notons que contrairement au CT , le CTIS
permet d’obtenir in fine une image tridimensionnelle à partir de projections bidimensionnelles.
Cependant, tous les concepts de la CT présentés dans la section précédente sont généralisables à
des dimensions supérieures.

CT CTIS

Objet à acquérir Tranche d’un patient (2D) Scène vue comme un cube hyperspectral (3D)
Onde pénétrante Rayons X Lumière de la scène
Moyen de génération de projections Émetteurs pivotant autour d’un axe Élement dispersif
Image acquise Sinogramme Image CTIS

TABLEAU 2.1 – Comparaison entre le procédé d’acquisition du CT médical et celui du CTIS.

2.2.4 La reconstruction du signal CTIS est épineuse et approximative

La reconstruction du signal CTIS présente quelques difficultés supplémentaires par rapport à
celle menée dans un cadre de CT médical. Premièrement, le nombre de projections est très limité
par rapport à celui permis par un scanner. Leur nombre dépend de la structure de l’élément disper-
sif et de la taille du CCD, mais même les CTIS les plus récents ne dépassent pas une cinquantaine
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de projections [Hagen et al., 2006], alors que les scanners en acquièrent des centaines. La figure 2.12
présente un exemple d’image CTIS à 25 projections.

FIGURE 2.12 – Une image CTIS à 25 projections acquise dans un cadre d’étude ophtalmologique. Source :
[Johnson et al., 2007].

Dans la plupart des systèmes CTIS, ce nombre est même encore plus réduit, en dessous de la
dizaine. De plus, contrairement au scanner qui pivote autour du patient, la scène n’est acquise ici
que d’un point de vue fixe. La diffraction permet de générer des projections dans des directions
différentes mais il n’en reste pas moins qu’une part importante des angles de projection est impos-
sible à acquérir : ceux qui définissent la demi-sphère qu’il serait possible d’acquérir si le capteur
était placé « de l’autre côté » de la scène. Il est possible de faire le lien entre le nombre et la position
des projections et la qualité attendue du signal reconstruit via le « théorème de la tranche centrale »
[Bracewell, 1956] (figure 2.13). Dans un cadre de CT, ce théorème stipule que, pour une image
bidimensionnelle donnée, les deux mesures suivantes sont équivalentes : (i) la transformée de
Fourier d’une projection faite à un angle θ, et (ii) la tranche de la transformée de Fourier de l’image,
à un angle θ et passant par le centre de l’image. Ainsi, le nombre de projections conditionne la
proportion de fréquences de la scène originale que nous retrouvons dans le signal reconstruit. Ce
théorème se généralise à plus haute dimension. Dans le cas du CTIS , la figure 2.14 illustre le faible
remplissage de l’espace fréquentiel dû aux nombre réduit de projections.

Une autre difficulté du CTIS est que le phénomène de diffraction, qui permet la décomposition
du cube et donc l’acquisition de projections, conduit à une division de l’intensité de la lumière inci-
dente entre les ordres (section 2.1.2). Ainsi, certaines projections sont plus lumineuses que d’autres,
et, sous des mauvaises conditions d’illumination, certains ordres peuvent ne pas apparaître.

Enfin, l’explicitation de la matrice H qui définit l’action du système peut être délicate. L’écrire a

priori nécessite une connaissance fine du système optique, des phénomènes de diffraction et des
aberrations optiques s’y déroulant. Il est alors recommandé de déterminer H de manière expérimen-
tale en utilisant des sources lumineuses dont le spectre est connu [Descour and Dereniak, 1995].
Notons au passage que dans le cas du CTIS, H définit uniquement l’action du réseau de diffraction,
c’est-à-dire la conversion entre le cube hyperspectral réduit au diaphragme de champ et l’image
acquise (figure 2.7). L’action de la lentille d’objectif et du diaphragme de champ mène à une baisse
de résolution spatiale qu’il est impossible de recréer à partir de l’algorithme de reconstruction.

Malgré ces difficultés, les études sur le CTIS reprennent pour réaliser la reconstruction les for-
malisations et algorithmes du domaine du CT. En particulier, l’algorithme EM est utilisé dès l’étude
de [Descour and Dereniak, 1995]. Les mêmes auteurs ont implémenté plus tard la « technique de
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la prédominance d’un certain type de bruit pouvait varier en fonction de la localisation dans l’image
acquise en fonction des conditions d’illumination. Cependant, cette initiative, comme d’autres
[Hagen et al., 2007; Vose and Horton, 2007] n’ont jamais été implémentées dans des études publiées
ultérieures. Il est aussi intéressant de noter que, bien que les algorithmes de reconstruction de CT
médical aient grandement évolué depuis l’utilisation de l’algorithme EM, (cf. dernier paragraphe
de la section 2.2.3) ces innovations n’ont jamais été portées au domaine du CTIS.

2.3 Conclusion

Le CTIS est un capteur hyperspectral, c’est-à-dire qu’il permet d’acquérir l’information d’un
grand nombre de longueurs d’onde distinctes d’une scène. De surcoît, il s’agit d’un capteur instan-
tané, une caractéristique utile pour les acquisitions en extérieur comme celles que mènent Carbon
Bee. En contrepartie, une étape de calcul, identique à celle conduite en CT, est nécessaire afin de
reconstruire l’information spectrale à partir du signal acquis par le spectromètre. Nous présentons
dans le chapitre 4 des travaux que nous avons mené afin d’exploiter le signal produit par le CTIS qui
permettent notamment de contourner les difficultés liées sa reconstruction. Nous avons conduit
cette étude sur des données simulées, dont la création est présentée dans le chapitre suivant.
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Chapitre 3

Des simulateurs pour évaluer le capteur

CTIS

Afin d’évaluer la performance du capteur CTIS dans le cadre d’une application d’apprentissage
automatique, nous avons procédé à une détection de tavelure à l’échelle de la feuille de pommier,
c’est-à-dire en nous basant sur des images de feuilles isolées en conditions contrôlées. La feuille est
parmi les organes d’une plante celle qui offre le plus d’indications visuelles quant à la santé de celle-
ci, et elle fut à ce titre massivement étudiée dans des applications de vision par ordinateur [Martinelli
et al., 2015; Khirade and Patil, 2015; Cerutti et al., 2013]. Aujourd’hui, les études portant sur des
feuilles isolées sont pour beaucoup destinées à démontrer la faisabilité de nouvelles méthodes
de détection [Belin et al., 2013] que celles-ci soient matérielles ou algorithmiques, et ce n’est que
lorsque ces technologies sont arrivées à une maturité plus importante qu’elles sont évaluées à des
échelles plus complexes (canopée, champ, etc.) [Wang et al., 2010]. Nous avons jugé que l’étude à
l’échelle de la feuille, en conditions contrôlées, était adaptée au niveau de maturité technologique
du capteur CTIS. Par ailleurs, comme cela est très courant pour des capteurs innovants, nous nous
sommes tournés vers la simulation de données pour mener à bien cette étude [Spoelder, 1999]. La
simulation permet en effet de générer un nombre illimité de données annotées à très faible coût.
Elle peut permettre en outre d’affiner les analyses, par exemple en générant des configurations qu’il
est rare de rencontrer dans le monde réel [Chawla et al., 2002]. Dans cette étude, nous avons exploité
la flexibilité du procédé de simulation pour mener une analyse fine des différents stades d’infection
de la tavelure. Ce chapitre présente la création de ces données simulées via le développement de
deux nouveaux simulateurs.

Sommaire

3.1 Simulateur de cubes hyperspectraux de feuilles tavelées . . . . . . . . . . . . . . . 44

3.1.1 Notions préliminaires de traitement d’images . . . . . . . . . . . . . . . . . . 44

3.1.2 Algorithme général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Collecte des images des feuilles saines . . . . . . . . . . . . . . . . . . . . . . 46

3.1.4 Distribution spatiale des lésions . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.5 Acquisition expérimentale des spectres . . . . . . . . . . . . . . . . . . . . . . 49

3.1.6 Exemple d’un cube simulé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Simulateur de CTIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Modèle discrétisé de l’action du réseau de diffraction . . . . . . . . . . . . . 53

3.2.2 Intégration d’aspects matériels . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Algorithme général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 Détermination de la matrice d’action du système . . . . . . . . . . . . . . . . 58

3.2.5 Simulateurs RVB et IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Création des jeux simulés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

43



CHAPITRE 3. DES SIMULATEURS POUR ÉVALUER LE CAPTEUR CTIS

Nous avons créé un jeu de données simulées d’images CTIS de feuilles tavelées en couplant
deux simulateurs distincts.

— D’une part, nous avons développé un simulateur « spectral » de cubes hyperspectraux de
feuilles tavelées acquises en conditions contrôlées.

— De l’autre, nous avons produit un simulateur « optique » de CTIS qui reproduisait le fonction-
nement de ce spectromètre.

Les cubes créés par le premier simulateur étaient fournis en entrée au deuxième, permettant
de générer des images CTIS de feuilles tavelées. Nous présentons à présent plus en détail ces
simulateurs. Tout le code nécessaire au travail présenté dans ce manuscrit relatif au traitement
d’images a été réalisé en Python 3.6 avec la librairie OpenCV 4.1.0.

3.1 Simulateur de cubes hyperspectraux de feuilles tavelées

3.1.1 Notions préliminaires de traitement d’images

Dans tout le travail de ce chapitre, nous avons manipulé des images selon des opérations
typiques du domaine du traitement d’images. Les images étant considérées pour un ordinateur
comme de simples tableaux de nombres, il était tout d’abord possible de procéder à des opérations
mathématiques standards telles que l’addition pixel à pixel et la multiplication de tous les pixels par
un nombre. Nous avons traité des images encodées sur 8 bits, ce qui signifiait que les pixels peuvent
prendre une valeur entière entre zéro (noir) et 255 (blanc). Dans le cas d’images RVB, chaque pixel
stockait trois valeurs en 8 bits correspondant aux trois canaux de couleurs.

Nous nous sommes appuyés pour nos simulateurs sur l’opération de seuillage, qui consiste à
mettre à 255 (blanc) les pixels d’une image si ceux-ci respectent un certain critère, et de mettre à
zéro (noir) les autres. Un cas classique du seuillage est le seuillage binaire, où le critère de sélection
des pixels est une comparaison de leur valeur avec une certaine valeur donnée. Les images (a) et (b)
de la figure 3.1 illustrent le principe d’un seuillage basé sur la conservation de la couleur verte.

L’image (b) de cette figure est un exemple de masque, c’est-à-dire une image binaire repré-
sentant typiquement la localisation d’un certain objet dans l’image. On dit que l’on procède au
masquage d’une image I par un masque M lorsqu’on conserve de I uniquement les pixels corres-
pondant aux pixels blancs de M, et que l’on fixe les autres pixels à zéro. Les images (a), (b) et (c) de
la figure 3.1 illustrent une telle opération de masquage.

(a) Image originale. (b) Masque obtenu par seuillage de
la couleur verte.

(c) Image (a) masquée par l’image
(b).

FIGURE 3.1 – Principes du seuillage et du masquage. Source de l’image originale : [Kumar et al., 2012].

3.1.2 Algorithme général

Nous décrivons à présent le procédé général du simulateur de cubes hyperspectraux de cubes
tavelés. Les cubes hyperspectraux sont des images tridimensionnelles dont deux dimensions repré-
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sentent l’information spatiale de la feuille représentée, et la troisième l’information spectrale. Un
tel cube peut être vu comme la concaténation selon l’axe des canaux d’images bidimensionnelles
représentant l’aspect de la feuille aux différentes longueurs d’onde. Nous avons appelé tranches

spectrales chacune de ces images.

Pour créer un cube donné, nous avons utilisé comme source une image de feuille saine. Nous
avons dupliqué cette image autant de fois que le nombre de tranches spectrales que nous sou-
haitions simuler dans le cube. Nous avons généré une distribution spatiale de lésions de tavelure,
c’est-à-dire un masque représentant les positions des lésions sur la feuille. Nous avons appliqué sur
les tranches un contraste entre les zones saines et les zones tavelées. Ce contraste dépendait de la
longueur d’onde, et était calculé selon des spectres mesurés expérimentalement. L’algorithme 3.1
présente cette procédure plus formellement. Cet algorithme est illustré figure 3.2 4. Les étapes
indiquées en bleu dans l’algorithme et encadrées en bleu dans la figure sont détaillées dans les
sections suivantes de ce chapitre. Notons que la sortie de cet algorithme était un cube, soit une
image en trois dimensions. Nous désignons chacun des éléments de ces cubes par le mot voxel.

Algorithme 3.1 : Créer un cube hyperspectral à partir d’une image de feuille.

Entrées : une image RVB d’une feuille saine I, les spectres expérimentaux de zones saines et
tavelées de feuilles RS et RT de longueur nλ, la dimension spatiale du cube à générer d .

Convertir I en niveau de gris.
Redimensionner I à la dimension d ×d pixels.
Créer par seuillage de la couleur verte un masque Mfeuille où les pixels blancs correspondent

aux pixels appartenant à la feuille dans I.

/* Distribution spatiale des lésions de tavelure. */

Générer une distribution spatiale de lésions Mlésions où les pixels blancs correspondent aux
emplacements des lésions simulées.

Générer un masque de lésions de tavelure Mtavelure en masquant Mlésions par Mfeuille.
Créer l’image Msain comme le résultat de l’opération Mfeuille - Mtavelure.
Créer l’image Itavelure contenant uniquement les pixels tavelés de la feuille en masquant I

par Mtavelure.
Procéder similairement pour obtenir Isain.

/* Création des tranches spectrales. */

pour λ ∈ [1,nλ] faire
Calculer la tranche spectrale du cube hyperspectral simulé à la longueur d’onde λ :

Iλ = Msain .RS[λ] + Mtavelure .RT[λ].

fin

/* Création du cube. */

Concaténer les images Iλ suivant l’axe des canaux pour former le cube C.

Sortie : le cube hyperspectral C de la feuille I, avec des lésions de tavelure simulées, de
dimension d ×d ×nλ voxels.

Nous détaillons à présent les étapes suivantes : collecte des images des feuilles saines, génération
des distributions spatiales des lésions, acquisition expérimentale des spectres.

4. La quasi-intégralité des algorithmes de ce manuscrit sont au moins partiellement illustrés afin de faciliter la
compréhension de ceux-ci. La figure correspondante sera indiquée entre parenthèses dans le texte après la première
mention de l’algorithme.
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« jeu Leafsnap ». La figure 3.1 (a) présente une des images de ce jeu.

3.1.4 Distribution spatiale des lésions

Nous avons généré pour chaque feuille un masque de tavelure où les pixels blancs représen-
taient les positions des lésions (Mtavelure dans la figure 3.2). En observant l’aspect des lésions sur
des images expérimentales de feuilles tavelées [Oerke et al., 2011; Benoit et al., 2016], nous avons
constaté que leurs formes pouvaient être approximées par des taches ovoïdes (figure 3.3). Ces
formes s’expliquaient par le mode de développement de V. inaequalis : la densité du parasite était
très forte à ses emplacements d’incursion sous le cuticule, mais son développement approximative-
ment isotrope à partir de ces foyers menait à ces lésions en forme d’auréole.

FIGURE 3.3 – Une acquisition IR d’une feuille tavelée à J14 après l’inoculation. Source : [Benoit et al., 2016].

Nous présentons maintenant le procédé de génération des lésions pour une feuille donnée.
Le pipeline que nous avons mis au point est décrit dans l’algorithme 3.2 (figure 3.4). Il est adapté
de travaux que nous avons mené pour une autre application en sciences végétales [Douarre et al.,
2018a].

Algorithme 3.2 : Créer un masque de taches ovoïdes.

Entrées : la dimension de l’image à créer d1 ×d2 pixels, le diamètre du cercle du masque
fréquentiel r , la valeur du seuillage binaire t .

Créer une image de dimension d1 ×d2 pixels dont les valeurs des pixels sont tirées
indépendamment et uniformément dans l’intervalle [0, 255].

Calculer la magnitude de la transformée de Fourier de cette image.
/* Conserver uniquement certaines fréquences de l’image. */

Masquer cette transformée de Fourier avec un masque noir à l’exception d’un cercle centré
de rayon r .

Calculer la transformée de Fourier inverse du résultat.
Appliquer à l’image obtenue un seuillage binaire avec un seuil t .

Sortie : un masque de taches ovoïdes de dimension d1 ×d2 pixels.

De plus, nous avons constaté que les tailles des lésions suivaient pour beaucoup de feuilles
une distribution multi-échelle. En effet, les lésions de tavelure s’étendaient avec le temps, et il était
courant que des lésions d’âges différents soient présentes sur une même feuille. En conséquence,
les lésions semblaient générées par un processus qui menait à différentes distributions de tailles, et
il nous a paru important de respecter cette caractéristique. Afin de simuler cet effet, nous avons
généré pour chaque feuille un masque composite « multi-échelle », somme de plusieurs masques de
lésions « mono-échelle » générés selon l’algorithme 3.2 avec des distributions de tailles différentes
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FIGURE 3.7 – La caméra HySpex du LARIS durant l’acquisition du cube hyperspectral d’une feuille. Source :
LARIS.

(a) Longueur d’onde : 560nm (couleur verte du
domaine visible).

(b) Image (a) normalisée à des fins illustratifs.

(c) Longueur d’onde : 956nm (IR-A). (d) Image (c) normalisée à des fins illustratifs.

FIGURE 3.8 – Deux tranches spectrales d’un cube hyperspectral acquis avec la caméra HySpex. La feuille
située en haut est tavelée, celle en bas est saine (pour comparaison).

A ce stade, nous possédions dix cubes hyperspectraux de feuilles tavelées. Nous avons ensuite
séparé les spectres correspondant aux zones saines et tavelées des feuilles. Pour une des tranches
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dynamique possible, c’est-à-dire qu’en moyenne sur le jeu d’images créé, les pixels de chaque ordre
soient compris dans une gamme le plus proche possible de [0,255]. Ce calcul automatique était
proche de ce qui était réalisé dans la réalité. La plupart des caméras, même grand public, implé-
mentent un gain automatique [Fowler, 2004] afin d’augmenter la gamme dynamique des images
acquises. Quant à un atténuateur automatique de l’ordre 0, il fallait imaginer une atténuation
numérique implémentée spécifiquement pour un capteur CTIS, où les positions des projections
auraient été connues par le système. Un tel système était proche d’implémentations réelles, dans
la mesure où certaines caméras hyperspectrales basées sur le CTIS faisaient intervenir l’utilisa-
teur dans la définition des zones des ordres [Salazar-Vazquez and Mendez-Vazquez, 2020]. Cette
normalisation automatique nous permettait en outre une grande souplesse quant aux opérations
de normalisation dans le reste du pipeline : possibilité de traiter des cubes dans n’importe quelle
dynamique, d’utilisation de spectres et de sensibilités spectrales non normalisés, etc.

3.2.3 Algorithme général

L’intégralité du modèle de CTIS prenant en compte les apports liés au matériel présentés à la
section précédente est décrit dans l’algorithme 3.3 (figure 3.18). Cet algorithme prenait en entrée
un cube hyperspectral de taille arbitraire, et simulait l’entièreté du banc optique CTIS (figure 2.7),
y compris la baisse de résolution spatiale causée par la lentille d’objectif et le diaphragme de champ.

Algorithme 3.3 : Création d’une image CTIS à partir d’un cube hyperspectral.

Entrées : un cube hyperspectral C de dimension d ×d ×nλ voxels, la gamme spectrale
acquise [λmin, λmax], la géométrie des projections, la taille de l’image CTIS en sortie d , la
résolution spatiale d0, la sensibilité spectrale du CCD ST, l’atténuation de l’ordre 0 a, le
gain g .

Créer une image noire ICTIS de dimension d ×d pixels.

/* Lentille d’objectif et diaphragme de champ : création d’un cube hyperspectral spatialement réduit. */

pour λ ∈ [1,nλ] faire

Cs[:, :,λ] = C[:, :,λ] redimensionné spatialement à d0 ×d0 pixels.
fin

/* Ordre 0. */

Calculer la somme des tranches spectrales I0 =
∑nλ

λ=1 Cs[:, :,λ]ST[λ].

Multiplier I0 par a.
Placer I0 au centre de ICTIS.

/* Ordre 1 : Pour chaque projection p de l’ordre 1, soient (xp0, yp0) les coordonnées du point de la projection le plus proche

du centre de ICTIS, et [xp1, yp1] les coordonnées du point le plus éloigné. Ces coordonnées sont définies par la géométrie des

projections ainsi que la gamme spectrale acquise. */

pour λ ∈ [1,nλ] faire

Calculer la tranche spectrale λ : Iλ = Cs[:, :,λ]ST[λ].
pour p ∈ Projections faire

Placer Iλ dans ICTIS à l’emplacement (xp0 +λ/nλ(xp1 −xp0), yp0 +λ/nλ(yp1 − yp0)).
fin

fin

/* Application du gain. */

Multiplier ICTIS par g .

Sortie : l’image CTIS ICTIS du cube C, de dimension d ×d pixels.
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[Benoit et al., 2016]. Les images IR étaient en outre, comme les images RVB, pondérées par une
valeur de gain qui permettait de les exprimer dans la plus grande dynamique possible.

3.3 Création des jeux simulés

Nous décrivons à présent la façon dont nous avons créé les jeux d’images simulées en couplant
le simulateur de cubes de feuilles tavelées et ceux des capteurs. Nous avons d’abord créé un jeu de
cubes hyperspectraux de feuilles tavelées à partir des 3000 images du jeu Leafsnap. Pour chaque
image, nous avons tiré une valeur binaire aléatoire. Dans la moitié des cas, nous avons généré des
cubes avec des lésions de tavelure, suivant l’algorithme 3.1. Pour l’autre moitié, nous n’avons pas
généré de tavelure. Concrètement, la procédure était la même que l’algorithme 3.1, à la différence
que l’image Mtavelure (figure 3.2) était fixée comme une image noire. Nous avons fixé la dimension
spatiale des cubes (d dans l’algorithme 3.1) à 512 pixels, une longueur proche de la taille moyenne
des images du jeu Leafsnap. Quant à la dimension spectrale de ces cubes (nλ dans l’algorithme 3.1),
nous avons discrétisé les spectres expérimentaux à 80 valeurs. Les cubes générés étaient donc de
dimension 512×512×80 voxels.

Tous les cubes étaient par la suite convertis en image CTIS en utilisant le simulateur éponyme.
Les paramètres du simulateur, choisis pour être aussi proches que possibles du capteur présent
dans la caméra Carbon Bee, sont précisés dans le tableau 3.1. Un exemple d’image CTIS simulée est
présentée figure 3.21.

Paramètre Valeur

d 512 pixels
d0 60 pixels
λmin 400 nm
λmax 1000 nm
Géométrie Rectangulaire, deux ordres

TABLEAU 3.1 – Paramètres fixés pour le simulateur CTIS.

FIGURE 3.21 – Un exemple d’image généré en couplant le simulateur de cubes hyperspectraux de feuilles
tavelées et le simulateur CTIS.

Conformément à l’action optique du CTIS, les tranches des cubes hyperspectraux subissaient
un redimensionnement à la dimension d0 ×d0 pixels avant que leurs tranches ne soient placées
dans l’image CTIS. Ce redimensionnement n’était pas sans conséquence pour la discriminabilité
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Chapitre 4

Apprentissage comprimé sur images CTIS

Ce chapitre présente les apprentissages menés sur les signaux produits par le CTIS. Les systèmes
d’imagerie computationnelle comme le CTIS permettent d’accroître les capacités des imageurs
en exploitant la puissance de calcul des ordinateurs pour former une image enrichie à partir de
mesures indirectes. Néanmoins, cette reconstruction du signal est souvent très chronophage et
imprécise [Arce et al., 2013]. Nous avons commencé par implémenter cette reconstruction ainsi
qu’une méthode d’apprentissage automatique travaillant sur les cubes reconstruits, en nous basant
sur une littérature dédiée aux méthodes d’apprentissage pour l’imagerie hyperspectrale. Cependant,
nous avons considéré qu’il existait aussi, grâce aux progrès récents des réseaux de neurones, une
possibilité de mener des apprentissages directement dans l’espace de mesures du CTIS, c’est-
à-dire en exploitant directement les images éponymes plutôt que les cubes reconstruits. Cette
approche non-standard s’inscrivait dans le jeune champ de l’apprentissage comprimé (compressed

learning en anglais). Nous avons ainsi mené dans ce chapitre plusieurs apprentissages de cette
manière, d’abord avec un réseau de neurones générique, puis avec une architecture développée
spécifiquement pour tirer parti des images CTIS de façon optimale. Nous avons comparé les
résultats obtenus avec ceux de la voie « classique » ainsi qu’avec d’autres types d’imagerie.
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4.1 Un cadre commun pour les expérimentations

Nous présentons dans ce chapitre de nombreux résultats d’apprentissages profonds menés
grâce à des réseaux de neurones. Afin que les résultats obtenus soient comparables entre les
expériences, nous avons fixé une méta-architecture de réseau standard sur laquelle toutes se sont
basées ainsi qu’un protocole d’apprentissage identique pour toutes.

4.1.1 Une architecture établie dans la communauté

L’architecture du réseau de neurones sur laquelle nous nous sommes basés est celle du réseau
VGG (Visual Geometry Group) [Simonyan and Zisserman, 2014b]. Nous avons choisi ce réseau d’une
part car c’était un des réseaux les plus performants au moment de sa création. Cette architecture
avait notamment remporté la catégorie « classification et localisation » du défi de reconnaissance
visuelle à grande échelle d’ImageNet (ImageNet Large Scale Visual Recognition Challenge en anglais,
ou ILSVRC) [Russakovsky et al., 2015], la tâche publique servant de point de comparaison entre les
architectures (benchmark en anglais) la plus populaire dans le domaine de la vision par ordinateur 8.
D’autre part, son architecture était simple, composée uniquement de blocs de couches convolutives
avec des activations ReLU, suivies de couches max-pool, ainsi qu’une série de couches FC. Bien
qu’il existait des architectures de CNN proposées depuis la sortie de VGG qui obtenaient des perfor-
mances supérieures sur les benchmarks les plus populaires [Szegedy et al., 2015; He et al., 2016; Tan
and Le, 2019], cette simplicité nous paraissait être un avantage pour deux raisons. Premièrement,
au moment des travaux présentés dans ce manuscrit, les couches qui composaient VGG avaient été
étudiées suffisamment en profondeur (voir par exemple pour les couches convolutives les travaux
de [Zeiler and Fergus, 2014], pour les activations ReLU les travaux de [He et al., 2015], pour les
couches FC les travaux de [Montufar et al., 2014]) pour que les principes de fonctionnement de
cette architecture nous semblent être solidement ancrés et validés par la communauté. Ces couches
sont d’ailleurs toujours les piliers des architectures des réseaux créés aujourd’hui. Deuxièmement,
cette architecture simple rendait les résultats que nous avons obtenu plus généralisables, car relati-
vement agnostiques à l’ossature de l’architecture et ne dépendant pas de la présence de couches
créées plus récemment et spécifiques à certaines architectures.

L’architecture de VGG 9 est présentée en figure 4.1. Tous les termes qui y sont employés ont été
présentés à la section 1.2.1. Cette architecture était sujette à plusieurs hyperparamètres. Pour en
fixer les valeurs optimales, nous avons effectué une recherche par grille (grid search en anglais),
c’est-à-dire que nous avons mené des entraînements avec toutes les combinaisons possibles d’hy-
perparamètres sur des gammes prédéfinies. La combinaison qui permettait la performance la plus
élevée sur les blocs de validation était retenue. Nous avons utilisé pour blocs de validation celui de
D1

CTIS et celui du jeu de cubes reconstruits D1
Cr (présenté à la section 4.2.1). Les hyperparamètres

optimaux étaient identiques pour les deux blocs. Le résultat de cette recherche en grille est présenté
dans le tableau 4.1.

Comme l’indique la liste des hyperparamètres étudiés (première colonne du tableau 4.1), la
recherche concernant certains d’entre eux n’a été que partielle. Nous n’avons pas fait varier le
nombre de couches au sein de chaque bloc convolutif, en conservant par défaut celui de VGG. Par
ailleurs, nous avons conservé le doublement du nombre de filtres à chaque bloc convolutif. Enfin,

8. http://image-net.org/challenges/LSVRC/2014/results.
9. Pour être précis, les auteurs de [Simonyan and Zisserman, 2014b] présentaient dans leurs travaux plusieurs

variations architecturales de VGG. Nous avons utilisé la configuration dénotée « D » dans cette étude, et connue par la
suite comme « VGG-16 », en référence au nombre de couches de poids qui composaient l’architecture. Cette configuration
était celle qui avait été retenue comme l’architecture « standard » de VGG par la communauté. En particulier, il s’agissait,
avec « VGG-19 », de celle que les auteurs avaient utilisé pour l’ILSVRC 2014 et qui était donc devenue de facto une
architecture à laquelle les réseaux créés par la suite tels que ResNet [He et al., 2016] se sont comparés. De plus, VGG-16
a servi de base à d’autres architectures neuronales, et en particulier SegNet [Badrinarayanan et al., 2017], que nous
présentons au chapitre 5. Dans tout ce manuscrit, nous avons écrit simplement « VGG » pour faire référence à VGG-16.
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corrélation de Matthews (Matthews Correlation Coefficient en anglais, ou MCC) [Matthews, 1975].
Dans un cas de classification binaire entre deux classes « A » et « B », en notant VP le nombre de vrais
positifs dans une prédiction, c’est-à-dire le nombre d’objets de la classe « A » prédits comme tels, et
que en définissant de façon analogue les valeurs FP, VN et FN, alors le MCC se calculait comme

VP.VN−FP.FN
p

(VP+FP)(VP+FN)(VN+FP)(VN+FN)
. (4.1)

Nous avons choisi cette métrique car elle produisait des résultats cohérents dans le cas où les
classes étaient déséquilibrées, un cas que nous avons rencontré dans l’étude présentée au chapitre 5.
Nous entendons en particulier par « cohérent » la qualité qu’avait cette métrique de ne pas prendre
des valeurs hautes lorsque les prédictions du réseau étaient absurdes à cause d’effets dûs aux
déséquilibres d’effectif entre les classes. La configuration la plus illustre pour laquelle des métriques
plus « classiques » pouvaient échouer de la sorte était la suivante : le cas d’une classification binaire
sur un jeu de données comprenant 99% d’images appartenant à une classe « A » et 1% à une classe
« B », où une prédiction attribuerait la classe « A » à tous les objets. Une métrique de performance
« simple », comme par exemple un ratio entre images bien classées et le nombre d’images total,
aurait pris une valeur de 99% pour une prédiction pourtant inutile. Des métriques telles que le score
F1 ont été développées pour pallier ces défauts. Le MCC pouvait être vu comme un prolongement
du score F1, qui corrigeait quelques cas pathologiques de ce dernier. Cette métrique prenait une
valeur dans [−1,1]. Une valeur de 1 indiquait une prédiction parfaite tandis qu’une valeur de 0 indi-
quait une prédiction aléatoire. Des valeurs négatives signalaient une prédiction « inverse » (images
de la classe « A » classées en majorité dans la classe « B »), mais nous n’avons observé cette gamme
de valeurs dans aucune de nos expériences. En réponse à la stochasticité liée à l’initialisation des
réseaux, tous les résultats présentés dans ce manuscrit sont les moyennes et écarts-types de dix
répétitions des expériences lancées avec les mêmes hyperparamètres (runs en anglais).

Toutes les architectures ont été implémentées en Python 3.6 avec la librairie PyTorch 1.5.1. Tous
les entraînements ont été menés sur une carte graphique Nvidia Titan RTX, avec les librairies CUDA
10.2 et cuDNN 7.6.

4.2 Une performance de référence : l’apprentissage sur cubes recons-

truits

Pour évaluer l’apport possible d’une classification basée sur le CTIS, nous avons tout d’abord
souhaité établir une performance de référence (baseline en anglais) par le biais d’un pipeline qui
représentait l’état de l’art des analyses de signaux produits par un CTIS. Dans tous les travaux
menés sur le CTIS, le cube hyperspectral est reconstruit à partir de l’image CTIS. Nous avons donc
commencé par implémenter cette étape pour les jeux de données DCTIS.

4.2.1 Une reconstruction réussie mais chronophage

Nous avons implémenté pour chacun des jeux DCTIS l’algorithme de reconstruction EM, (sec-
tion 2.2.4) en suivant les directives de l’étude de [Descour and Dereniak, 1995]. Les reconstructions
ont été réalisées sur un processeur Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz, commercialisé au
même trimestre que les carte graphiques dont nous nous sommes servis pour meenr les apprentis-
sages. Pour une reconstruction donnée, nous avons utilisé comme estimation initiale du cube un
cube spatialement identique à l’ordre 0 de l’image CTIS et spectralement uniforme. Nous avons
défini comme critère d’arrêt une différence inférieure à 1% entre deux itérations de reconstruction.
En notant Cr(i ) la reconstruction du cube à l’itération i et Crn le voxel n du cube, alors le critère
d’arrêt s’écrivait formellement

∑

n |Cr(i+1)
n −Cr(i )

n |
∑

n Cr(i )
n

≤ 0,01. (4.2)
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L’algorithme de reconstruction convergeait en six itérations par image en moyenne, chaque ité-
ration durant environ 200 millisecondes. Bien que ce procédé pouvait paraître rapide, il fallait
remettre en contexte ce temps avec le délai moyen de la prédiction d’un réseau, qui est de l’ordre
de quelques dizaines de millisecondes. Ainsi, dans le cadre d’un apprentissage sur cubes recons-
truits, le délai de prédiction d’un réseau sur une acquisition CTIS était dû en très grande partie à
l’opération de reconstruction du cube.

Nous avons noté DCr les jeux de données constitués des cubes reconstruits selon ce procédé
à partir des images des jeux DCTIS. Pour juger de la qualité de cette étape, nous avons comparé
chaque cube reconstruit Cr avec le « vrai » cube Cs associé, c’est-à-dire celui utilisé pour générer
l’image CTIS à partir de laquelle Cr avait été reconstruit. Nous avons choisi l’erreur quadratique
moyenne comme mesure d’erreur, conformément aux autres travaux qui évaluaient la qualité de la
reconstruction de cubes CTIS [Hagen et al., 2006]. En notant N le nombre total du voxels dans ces
cubes, alors l’erreur entre une paire de cubes Cr et Cs était calculée comme

erreur =

√

1

N

∑

n

(

Crn −Csn

Csn

)2

. (4.3)

L’erreur moyenne sur les cubes reconstruits à partir du jeu D1
CTIS était de 0,392 ± 0,137. Cette valeur

était cohérente avec les résultats de la littérature correspondant à la reconstruction d’objets spatia-
lement et spectralement complexes [Hagen and Dereniak, 2008]. Malgré l’écart-type relativement
élevé de cette mesure, les forces et faiblesses du procédé de reconstruction étaient très similaires
d’un cube à l’autre. Nous présentons les résultats pour une reconstruction typique dans la figure 4.3.

Nous pouvons voir dans cette figure que la reconstruction de l’information spatiale, c’est-à-dire
la forme et l’aspect des feuilles ainsi que la position des taches de tavelure au sein d’une tranche
donnée était très précise. Nous pouvons le constater en comparant les tranches de Cr et Cs deux à
deux pour plusieurs longueurs d’onde (figure 4.3 (b)). Nous expliquons ce succès par deux raisons :
d’abord parce qu’au sein d’un cube, la variation de l’information spatiale en fonction de la longueur
d’onde était très faible ; ensuite parce que l’algorithme de reconstruction était initialisé avec un
cube représentant spatialement l’ordre 0. Ainsi, avant même la première itération de l’algorithme,
l’essentiel de l’information spatiale était présent dans le cube reconstruit. Nous avions tenté lors
d’expériences préliminaires d’autres initialisations proposées dans la littérature, et en particulier
l’utilisation de cubes issus de l’application d’une approximation de l’algorithme de FBP appliqué
aux images CTIS [Descour and Dereniak, 1995]. Avec ces initialisations, l’information spatiale des
cubes initiaux était appauvrie et la qualité de la reconstruction s’en ressentait grandement.

La reconstruction de l’information spectrale, c’est-à-dire les spectres moyens des zones saines
et tavelées, était, elle, plus imprécise. Pour la mesurer, nous avons tracé pour le cube étudié les
intensités moyennées des zones saines et tavelées par tranche (figure 4.3 (a)). Les spectres re-
construits suivaient approximativement la forme générale des spectres originaux, et en particulier
représentaient fidèlement l’agrandissement de l’écart entre les deux spectres dans le domaine
IR. Cependant, une grande part de la complexité des spectres originaux était perdue : nous n’y
retrouvions ni la rapide croissance en réflectance au passage dans le domaine IR, ni l’incrément
correspondant à la lumière verte.

Enfin, nous pouvons remarquer sur ces reconstructions des artefacts locaux sur certaines
tranches. Ainsi, nous pouvons voir sur la tranche de Cr correspondant à la longueur d’onde 800 nm
dans la figure 4.3 (b) une zone sombre au centre de la feuille par comparaison avec la tranche de Cs.
Ces variations locales de luminosité étaient très fréquentes parmi les cubes reconstruits.
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La performance de reconstruction évoluait différemment en fonction de la sévérité selon
l’architecture employée. L’architecture VGGr permettait une prédiction parfaite à partir d’une
sévérité de 0,3 mais échouait pour les cas plus difficiles correspondant aux sévérités en dessous
de 0,22. Utiliser l’architecture VGGr-3D menait à des performances plus linéaires en fonction de
la sévérité, offrant des résultats meilleurs que VGGr pour des cas plus difficiles, mais en étant
moins compétitif pour des cas plus simples. Nous avons considéré ces deux résultats comme la
performance de référence, représentant les performances d’apprentissage « classique » sur les
cubes reconstruits. Nous avons par la suite exploré nouvelle approche distincte de ce pipeline

d’apprentissage.

4.3 L’apprentissage comprimé : une alternative viable pour le CTIS

L’approche que nous avons suivie s’inscrivait dans un courant développé cette dernière dé-
cennie au sein de la communauté de l’imagerie computationnelle : l’apprentissage comprimé.
Nous présentons à présent un bref historique de ce champ ainsi que l’extension que nous lui avons
proposé pour le CTIS.

4.3.1 Une tendance nouvelle en imagerie computationnelle

Dans le cas de nombreuses applications d’imagerie computationnelle, la reconstruction du
signal original n’est pas une fin en soi, mais une étape intermédiaire pour effectuer une tâche de clas-
sification de la scène. Des chercheur ·euses se sont penchés sur la possibilité d’effectuer ces tâches
directement dans l’espace de mesures, en s’affranchissant entièrement de l’étape de reconstruction.

Les premiers travaux dans ce sens ont eu lieu dans le domaine de l’acquisition comprimée
(compressed sensing en anglais) [Candes et al., 2006]. Ce champ de l’imagerie computationnelle
s’intéresse à la possibilité d’obtenir un signal (par exemple, une image) en l’acquérant avec un faible
taux d’échantillonnage (autrement dit, avec un nombre réduit de mesures) puis de reconstruire au
mieux le signal théorique que l’on aurait acquis avec un taux d’échantillonnage plus élevé. L’ac-
quisition comprimée peut être considérée comme une extension des objectifs de la compression
d’image. Dans ce dernier champ, les images sont acquises avec un taux d’échantillonnage élevé
puis converties vers un autre domaine de représentation où l’essentiel de l’information qu’elles
portent est contenu dans un nombre réduit de coefficients. Les autres coefficients portant le peu
de l’information restante peuvent alors être éliminés sans dégrader significativement la qualité de
l’image. Dans le champ de l’acquisition comprimée, l’objectif est de ne pas acquérir de mesures
inutiles — celles que les algorithmes de compression écartent par la suite — en premier lieu. Les
auteurs de [Candes et al., 2006] ont montré que sous certains conditions, ce procédé était pos-
sible, et ont développé le formalisme mathématique adéquat. L’acquisition comprimée se base sur
l’acquisition d’un signal intermédiaire de taille restreinte qui sert à une reconstruction du signal
original, et en ce sens s’inscrit pleinement dans le cadre de l’imagerie computationnelle. Plusieurs
imageurs ont été développés suivant les principes de l’acquisition comprimée comme les caméras
mono-pixel [Takhar et al., 2006], ou, dans l’imagerie hyperspectrale, l’imageur spectral instantané
à ouverture codée (Coded Aperture Snapshot Spectral Imager en anglais, ou CASSI) [Wagadarikar
et al., 2008].

Le champ de l’apprentissage comprimé est né lorsque les auteurs de [Calderbank et al., 2009]
ont montré que dans un cadre d’acquisition comprimée, un algorithme d’apprentissage pouvait,
sous certaines conditions, théoriquement obtenir une performance de classification aussi élevée
lorsqu’appliqué directement dans l’espace de mesures que lorsqu’appliqué sur le signal reconstruit.
Ce résultat était surprenant voire contre-intuitif car les images de l’espace de mesures des capteurs
à acquisition comprimée n’étaient pas interprétables par des humains. L’apprentissage comprimé
mettait en lumière l’existence d’une information dissimulée aux yeux des humains, mais exploitable
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Nous avons cependant considéré cette fusion comme utile pour plusieurs raisons. Première-
ment, la modalité optimale pour mener un apprentissage sur un jeu de données pouvait varier
d’un jeu à l’autre, sans qu’il ne soit nécessairement possible de la connaître a priori. Nous avons
pu constater cet effet en faisant varier le paramètre « sévérité » des jeux (figure 4.18) mais nous
avons aussi imaginé des cas où la modalité optimale pouvait varier en fonction du type de ma-
ladie à détecter. Nous nous attendions par exemple à ce que la fusion soit utile dans un cas de
détection de multiples maladies ou bien un cas où de multiples stades de la même maladie étaient
rassemblés dans un même jeu de données. Deuxièmement, nous supposions qu’il existait des cas
où les informations spatiale et spectrale dans l’image CTIS étaient plus indépendantes que dans
notre cas d’étude. Nous avons exploré dans l’annexe A un apprentissage où l’architecture CTIS-Net
permettait véritablement de tirer parti de la fusion des deux ordres.

4.5 Les performances subsistent malgré l’ajout de bruit

Bien que nous ayons émulé avec soin les propriétés optiques du CTIS dans notre simulateur
éponyme, les images que celui-ci permettait de produire et que nous avons exploitées dans ce
chapitre manquent de caractéristiques distinctives d’images réelles, comme discuté à la section 3.4.
Nous présentons dans cette section un premier travail destiné à améliorer le réalisme des images de
DCTIS via l’ajout de bruit. Similairement à l’étude par ablation portant sur l’ordre 1 (section 4.4.3),
nous avons limité cette analyse au jeu D0,4

CTIS.

Comme discuté à la fin de la section 2.2.4, il existe des études qui ont modélisé mathémati-
quement des distributions de bruits thermique et de grenaille sur des images à faible intensité
lumineuse comme celles acquises par le CTIS. Une telle modélisation requérait cependant d’identi-
fier et de séparer les deux sources principales de bruit dans les images. Devant la difficulté de cette
opération pour les images CTIS réelles que nous avions à disposition, et après avoir constaté que le
bruit présent dans ces images suivait une distribution de niveaux de gris proche d’une gaussienne,
nous avons préféré suivre une approche dite « procédurale » [Dong et al., 2019]. Une telle approche
consistait à créer une distribution de niveaux de gris et à en ajuster les caractéristiques par rapport
à celles mesurées sur une distribution réelle, dites « caractéristiques modèle ». Pour évaluer ces
caractéristiques dans le cas du bruit des images CTIS réelles, nous avons conduit des mesures dans
des zones périphériques de ces images, à faible intensité lumineuse, où nous estimions que les
deux sources de bruit susmentionnées étaient présentes.

Concernant le choix des caractéristiques à ajuster, nous nous sommes basés sur des travaux
que nous avions mené auparavant pour une autre application en sciences végétales [Douarre et al.,
2018a]. Nous avons d’abord mesuré deux caractéristiques liées à la distribution des niveaux de gris :
les deux moments d’ordre 1 et 2, c’est-à-dire la moyenne et l’écart type du bruit. Nous avons noté
µbruit réel et σbruit réel ces mesures. Nous avons également calculé une caractéristique spatiale liée à
la texture de ce bruit. Il existait de nombreuses manières de définir et de mesurer ce que l’on appelle
la « texture » d’une image [Haralick et al., 1973; Howarth and Rüger, 2004]. Nous nous sommes basés
sur la fonction d’autocorrélation [Jain et al., 1995] qui mesurait la concordance spatiale de pixels
d’intensité similaire entre une image et cette même image décalée spatialement. Cette mesure
donnait ainsi des indications sur la présence de structures répétées dans l’image et la taille typique
de celles-ci. Plus formellement, l’autocorrélation A d’une image I de dimension d ×d pixels prenait
la forme d’une image de même taille et se mesurait comme suit :

A[d x,d y] =
∑d

x=0
∑d

y=0 I[x, y].I[x +d x, y +d y]
∑d

x=0
∑d

y=0 I2[x, y]
. (4.4)

Nous avons noté Abruit réel la mesure que nous avons ainsi effectué.
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classiques utilisés « à l’aveugle » pourraient être dans ces cas beaucoup moins pertinents.

4.7 Une influence forte des paramètres optiques

Pour terminer l’étude de la valeur de l’apprentissage comprimé sur images CTIS, nous rap-
pelons que la géométrie des images CTIS dépendait d’un certain nombre de paramètres liés aux
choix du matériel optique (section 3.2.1). Nous avons intégré dans le simulateur CTIS nombre de
ces paramètres, permettant d’obtenir théoriquement une grande variété d’images CTIS (figure 3.15).

La résolution spatiale d0 était un des paramètres les plus importants du modèle. Ce paramètre
était directement lié à la résolution spatiale du CTIS mais conditionnait également la qualité des
projections spectrales (cf. section 3.2.1). Dans les cas limites du montage optique, une valeur de
d0 de 1 pixel menait à un ordre 0 inexistant et à un ordre 1 sans recouvrement spatial : en d’autres
termes, à une résolution spatiale minimale et une résolution spectrale maximale. À l’inverse, une
valeur de d0 égale à la taille de l’image CTIS d maximisait la résolution spatiale mais ne permettait
pas de décomposition spectrale. Des valeurs intermédiaires permettaient de faire varier le cur-
seur entre résolutions spatiale et spectrale. En guise d’ouverture, nous présentons les principaux
résultats obtenus dans ce chapitre en étudiant des images CTIS ayant un ordre 0 différent de 60
pixels. Pour fixer une nouvelle valeur, nous nous sommes basés sur une idée de « taille spatiale
minimale » des lésions de tavelure. Pour le cas d0 = 60 pixels, toute tache de tavelure ayant une aire
inférieure à 15% de celle de la feuille sur laquelle nous la simulions n’était pas « discriminable » dans
l’ordre 0 de l’image CTIS associée. Nous entendons par ce terme que l’aire de la tache était alors
en deçà du pixel carré, et donc que le contraste causé par la lésion était nécessairement atténué
car l’information lumineuse était moyennée avec celles des zones saines environnantes. Nous
avons étudié le cas d0 = 80 pixels qui permettait de diviser à peu près par deux cette taille spatiale
minimale des lésions. La figure 4.22 présente l’aspect des images pour les deux valeurs de d0. Nous
pouvons y constater une taille plus grande de l’ordre 0, et donc une discriminabilité des lésions
facilitée dans cet ordre, mais en contrepartie un recouvrement plus important des tranches au sein
des projections de l’ordre 1.

(a) Une image CTIS avec d0 = 60 pixels. (b) Une image CTIS avec d0 = 80 pixels.

FIGURE 4.22 – Comparaison visuelle de l’impact du paramètre d0, pour les valeurs 60 et 80 pixels.

Les résultats d’apprentissage pour les images créées avec d0 = 80 pixels (figure 4.23) montraient
tout d’abord que la valeur de d0 avait un fort impact sur la qualité de la reconstruction : les ap-
prentissages sur les cubes reconstruits par VGGr à partir d’images CTIS créées avec d0 = 80 pixels
étaient beaucoup plus performants que dans le cas d0 = 60 pixels pour les sévérités les plus basses.
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un réseau générique, et proches de ceux obtenus lors de l’approche classique, ce qui appuyait la
possibilité de s’affranchir de l’étape chronophage de reconstruction pour analyser un signal CTIS.
Le succès de l’apprentissage comprimé pouvait paraitre contre-intuitif a priori tant l’information
spatiale de la scène semblait dégradée et son information spectrale brouillée dans une image CTIS.
Ces résultats mettaient en évidence les différences d’interprétation entre le cerveau humain et les
réseaux de neurones informatiques, et rappelaient que l’anthropomorphisme que nous attribuons
parfois à ces algorithmes est bien souvent plus limité qu’on ne le croit.

Nous estimons que quelques améliorations auraient pu être apportées aux protocoles d’entraî-
nement que nous avons établis (section 4.1.2). Il aurait en particulier été bénéfique d’inclure à la
recherche par grille quelques hyperparamètres fixés arbitrairement tels que celui de l’optimiseur
et celui des couches concernées par le pré-entraînement sur l’ILSVRC. De plus, nous considérons
que les conditions sous lesquelles nous avons conduit les apprentissages sur les cubes reconstruits
étaient légèrement moins favorables que celles relatives à l’apprentissage comprimé. En effet, la
recherche par grille que nous avons menée pour fixer la dimension de profondeur des noyaux
convolutifs VGG-3D était incomplète, puisque nous avons effectué une recherche par grille spé-
cifique à ce paramètre (section 4.2.2) au lieu de réaliser une nouvelle recherche concernant tous
les hyperparamètres de l’architecture en incluant ce dernier. Nous pensons cependant que cette
approximation n’affaiblit pas significativement les conclusions que nous avons formulées dans ce
chapitre.

Les conditions contrôlées des expérimentations de ce chapitre étaient pertinentes pour l’étude
d’un système d’imagerie relativement nouveau. Cependant, dans le cadre d’applications indus-
trielles telles que celles que mènent Carbon Bee, l’échelle pertinente pour la détection de maladies
de plantes est bien souvent plus grande que celle de la feuille isolée. Les algorithmes destinés à une
intégration dans un produit commercialisé sont appliqués à l’échelle d’un ensemble de plantes
[Abdelghafour et al., 2020], voire du champ tout entier [Kerkech et al., 2020], et ce en conditions
réelles. Ces algorithmes se basent sur des systèmes imageurs dont la pertinence est reconnue par
la communauté des chercheur ·euses en sciences végétales, tels que les imageurs IR [Jones, 2004;
Mahlein, 2016]. Dans le chapitre suivant, nous nous intéressons aux défis rencontrés dans le cadre
d’une détection de tavelure sous ces conditions difficiles.
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Chapitre 5

Simulation d’images pour alléger la

charge d’annotation d’images réelles

Dans ce chapitre, nous nous sommes intéressés à la détection de lésions de tavelure en condi-
tions industrielles. Nous avons pour cela acquis un jeu d’images représentant un ensemble de
pommiers tavelés, en lumière IR. Nous avons associé à ce jeu une tâche de segmentation, qui est
une opération alignée avec les objectifs industriels de l’agriculture de précision. Si la précision
requise par cette tâche rendait la détection en elle-même plus ardue, il était par ailleurs particuliè-
rement difficile d’annoter les données pour constituer un jeu d’entraînement en premier lieu. Nous
nous sommes penchés sur ce défi qui nous a paru particulièrement impérieux. Nous croyions à la
valeur des données simulées pour réduire cette charge d’annotation, et nous les avons employé
ici en complément d’entraînements menés sur des données réelles et destinés à des prédictions
également sur données réelles. Nous présentons dans ce chapitre des simulations innovantes spéci-
fiques à notre application, basées sur les tendances les plus récentes en sciences végétales. Nous
avons exploré par ailleurs les différentes façons d’intégrer ces données simulées aux entraînements
conduits sur données réelles.
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5.1 Une annotation chronophage à réduire

5.1.1 Un jeu difficile en conditions réelles

Nous avons créé un jeu de données pour réaliser une détection de tavelure en acquérant des
images de plants de Malus pumilla dans les serres de l’IRHS. Ces plants avaient été inoculés avec
V. inaequalis quatorze jours avant l’acquisition. Les plants étaient placés proches les uns des
autres, les feuilles formant une canopée. Cette structure était typique à la fois des environnements
de recherche en sciences végétales et des plantations en champ. L’acquisition s’est déroulée en
avril, à midi, sous conditions ensoleillées. Elle fut réalisée avec le capteur IR de la caméra Carbon
Bee, portée manuellement environ un mètre au-dessus des plants, pointée vers le sol. Le gain de
la caméra était réglé de façon automatique. Sept images de dimension 1944×2592 pixels furent
acquises de cette manière, couvrant l’intégralité des plants disponibles, sans recouvrement entre
les images. Nous avons appelé Doriginal ce jeu de données. Nous avons tiré au hasard cinq de ces
images pour constituer le bloc d’entraînement, une pour le bloc de validation et une pour le bloc
de test de Doriginal.

Nous avons associé à ce jeu une tâche de segmentation des lésions de tavelure. Pour ce faire,
nous avons procédé à une annotation en assignant à chaque pixel des images une étiquette « ta-
velure » ou « non tavelure ». Ainsi, bien que le nombre d’images du jeu pouvait paraître faible,
chacun des pixels de ces images constituait en réalité une unité d’entraînement pour un algorithme
d’apprentissage. Une image de Doriginal et son annotation sont présentées figure 5.1.

(a) Image. (b) Annotation.

FIGURE 5.1 – (a) Une image du bloc d’entraînement de Doriginal. (b) L’annotation au niveau du pixel que nous
avons réalisée pour cette image. Les pixels orange correspondent aux pixels étiquetés « tavelure », les autres
à ceux étiquetés « non tavelure ». Dans tout ce chapitre, le contraste et la luminosité des images (réelles et
simulées) présentant des canopées de feuilles ont été augmentés pour faciliter la visualisation.

En plus des difficultés communes aux jeux de données en condition réelles (illumination non
homogène, feuilles orientées selon des angles variés, etc.), plusieurs caractéristiques de Doriginal

rendaient particulièrement ardue la tâche de segmentation qui lui était associée. Premièrement,
le positionnement resserré des plants entraînait de nombreux recouvrements partiels entre les
feuilles. Ensuite, l’échelonnage des feuilles selon leur position sur les tiges des plants entraînait
des conditions d’illumination différentes pour les feuilles en fonction de leur distance à la source
de lumière et des jeux d’ombres causés par les feuilles situées sur les couches supérieures. De
plus, les différences d’illumination étaient accentuées par un effet dit de vignettage du capteur,
c’est-à-dire que la zone centrale de l’image était plus lumineuse que sa périphérie [Zheng et al.,
2008]. Concernant les lésions de tavelure, bien que leur localisation pouvait paraître aisée à l’œil
nu, certains facteurs compliquaient cette détection. Les lésions étaient des structures de tailles
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variables en fonction de la proximité de la feuille concernée au capteur, mais globalement de faible
dimension. De plus, la frontière entre les lésions et les zones saines était souvent difficile à localiser.
En effet, le procédé de prolifération du parasite (section 1.3.1) menait à une concentration variable
d’agent en fonction de la proximité de la distance au point d’attaque originel. Ce comportement se
manifestait visuellement par un contraste fort au centre de la lésion mais qui décroissait à mesure
que l’on s’en éloignait. Enfin, certaines structures telles que les nervures des feuilles produisaient
un contraste avec le reste de la feuille proche de celui créé par les lésions de tavelure.

Le jeu présentait par ailleurs une difficulté supplémentaire du point de vue de l’apprentissage en
lui-même. Parmi les images de Doriginal, seuls 2% des pixels étaient étiquetés comme « tavelure ». De
tels déséquilibres étaient néfastes pour les apprentissages : il était nécessaire pour une classification
efficace que toutes les classes d’un jeu soient représentées de façon suffisante [Chawla, 2009]. Si une
classe était excessivement sous-représentée, il y avait un fort risque que l’algorithme d’optimisation
des poids du réseau mène à une frontière de décision qui « ignore » cette classe, car la prédiction
erronée d’un faible nombre d’exemples n’était pas suffisamment pénalisante pour que d’autres
configurations de poids soient explorées. Bien qu’il existe des méthodes pour modérer les problèmes
engendrés par les jeux déséquilibrés [Yap et al., 2014], il est de bon aloi de mener des apprentissages
sur des jeux les plus équilibrés possibles en premier lieu. Afin de réduire le déséquilibre des classes
dans Doriginal, nous avons implémenté un type de sous-échantillonnage [Chawla, 2009] via un
tuilage sélectif. Nous avons divisé les images de Doriginal en imagettes, ou tuiles, de dimension
64×64 pixels, sans recouvrement 13. Parmi les 6150 tuiles du bloc d’entraînement de Doriginal, nous
avons conservé uniquement les 535 tuiles qui contenaient au moins un pixel étiqueté comme
« tavelure ». Après ce tuilage, 10% des pixels du bloc étaient étiquetés comme tels. Nous appelons
Dtuilé le jeu constitué de ce bloc d’entraînement tuilé sous-échantillonné et des blocs tuilés complets
de validation et de test.

5.1.2 L’apport potentiel des données simulées

Nous soulignons que le processus d’annotation de Doriginal fut une entreprise particulièrement
chronophage. D’une manière générale, l’annotation de données représente un coût considérable
pour les entreprises qui implémentent des algorithmes d’apprentissage profond. Une technicienne
était employée à plein temps à cette fin par Carbon Bee AgTech, et les ingénieur ·es agronomes de
l’entreprise y consacraient aussi une partie de leur temps. Il était de plus nécessaire d’ajouter à ces
coûts celui du processus d’acquisition des données brutes en premier lieu.

De nombreuses études se sont penchées sur la possibilité de réduire la charge d’annotation
de données pour l’entraînement d’algorithmes d’apprentissage, que ce soit par le biais de méta-
algorithmes tel que l’apprentissage actif [Settles, 2009; Nagasubramanian et al., 2020] ou bien via
l’amélioration des moyens techniques d’annotation [Papadopoulos et al., 2014; Samiei et al., 2020].
Nous avons considéré pour notre part que la simulation de données pouvait ici aussi avoir un rôle
à jouer. Bien que dans le champ de l’apprentissage automatique, certains apprentissages soient
réalisés sur un bloc d’entraînement constitué uniquement de données simulées [Nikolenko, 2019],
les performances de classification chutent la plupart du temps lorsque le réseau est utilisé en
prédiction sur des images réelles [Tobin et al., 2017]. Cet écroulement de la performance est dû à
« l’écart de la réalité » [Tremblay et al., 2018] entre les caractéristiques des images d’entraînement et
celles de prédiction qui peuvent persistent malgré le soin amené à rendre les images simulées le
plus réalistes possibles. Aussi dans de nombreuses études les données simulées sont-elles utilisées

13. Il est à noter que l’information d’une image pouvait être partiellement détruite au cours d’un tuilage. En particulier,
le positionnement relatif d’objets dans l’image était perdu lorsque ceux-ci étaient répartis dans différentes tuiles.
Cependant, la structure des images de Doriginal limitait cet effet délétère. En effet, les images du jeu représentaient une
multitude de plants inoculés séparément, dont le positionnement relatif n’amenait que peu information quant à la
présence de tavelure. Nous avons donc considéré que le tuilage était une opération peu destructrice pour Doriginal au vu
de l’absence de structure globale dans les images du jeu.
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en complément plutôt qu’en remplacement de données réelles pour mener à bien les entraîne-
ments. Dans ce cadre, les données simulées sont considérées comme des outils de régularisation
[Goodfellow et al., 2016] et permettent d’augmenter la variabilité des caractéristiques présentes
dans un bloc d’entraînement, en particulier dans le cas de classes déséquilibrées [Chawla et al.,
2002].

Nous nous sommes alors posé la question suivante : des données simulées pouvaient-elles
permettre de réduire la charge d’annotation tout en maintenant des performances proches de
celles du jeu complet? Pour répondre à cette question, nous avons d’abord évalué la performance
de segmentation sur Dtuilé ainsi que sur des versions de ce jeu aux blocs d’entraînement réduits.
Nous présentons maintenant l’architecture du réseau employé et le protocole d’apprentissage que
nous avons suivi pour mener à bien les segmentations.

5.1.3 Une architecture spécifique pour effectuer une segmentation

Les réseaux de neurones destinés à la classification, tel VGG que nous avons utilisé au chapitre 4,
n’étaient pas adéquats pour réaliser une segmentation, car il s’agissait d’architectures conçues
pour proposer un étiquetage unique pour l’intégralité de l’image qu’on leur fournissait en entrée.
Nous nous sommes par conséquent tournés vers une autre catégorie d’architectures : les réseaux de
segmentation. Nous présentons à présent un bref historique de ces réseaux ainsi que l’architecture
retenue pour notre travail.

Les réseaux de classification ne permettaient pas de mener à bien des tâches de segmentation
car ils compressaient l’information spatiale des caractéristiques par l’action des couches de max-

pool et la détruisaient via les couches FC. Dans le cas d’une classification, cette perte d’information
spatiale est sans conséquence puisque la réponse que l’on attend du réseau in fine est une valeur
unique, mais pour réaliser une segmentation, cette information spatiale doit être conservée, ou
plutôt reconstruite.

Le « réseau entièrement convolutif » [Long et al., 2015] fut le premier réseau de neurones destiné
à la segmentation d’images. Ce réseau se basait sur l’architecture d’un réseau de classification
mais, comme son nom l’indiquait, se passait de couches FC. Ces dernières étaient remplacées
par une opération de redimensionnement afin de ramener les dimensions spatiales des cartes de
caractéristiques à celles de l’image d’entrée. Ainsi, pour une image donnée en entrée de dimension
d1 ×d2 pixels, la sortie de ce réseau était une carte de segmentation de dimension d1 ×d2 ×n

éléments avec n le nombre de classes différentes dans le bloc d’entraînement. Chaque pixel de la
sortie représentait alors la probabilité d’appartenance aux classes de chacun des pixels de l’image
d’entrée. La fonction de coût de l’entraînement était calculée en sommant les différences entre
chacun des pixels de cette sortie et ceux de l’image annotée.

Les auteurs de ces travaux avaient implémenté le redimensionnement par une série de simples
interpolations bilinéaires, mais aussi par des opérations paramétrisables, apprises par le réseau
au cours de l’entraînement. Il s’agissait de couches convolutives dites « transposées » [Dumoulin
and Visin, 2016] avec un pas (stride en anglais) supérieur à un, ce qui permettait de générer des
sorties aux dimensions spatiales plus grandes que les entrées. Les auteurs de [Noh et al., 2015]
ont implémenté cette idée de redimensionnement paramétrisable en utilisant un ensemble de
couches convolutives classiques entrecoupées de couches de « dégroupement » (unpool en anglais).
À l’inverse des couches de max-pool, les couches d’unpool augmentaient la taille des cartes de
caractéristiques qu’on leur fournissait. L’architecture proposée, DeconvNet, était composée pour
moitié d’un ensemble de blocs convolutifs identique à celui de VGG, et pour moitié du même
nombre de blocs dits « déconvolutifs » constitués de couches convolutives et de couches d’unpool.
Dans la première moitié du réseau, les caractéristiques de l’image étaient extraites et réduites
spatialement jusqu’à une compression maximale au centre du réseau que l’on appelait l’espace
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et le discriminateur ne sait pas distinguer les images vraies des fausses. Le gradient, qui résulte de
l’erreur que le discriminateur commet, est propagé dans ce dernier. L’astuce des GANs est que ce
gradient est aussi propagé dans le générateur, dont la fonction de coût est définie comme l’opposée
de celle du discriminateur. En d’autres termes, le générateur est entraîné à « tromper » le discrimi-
nateur, et génère par conséquent des images de plus en plus proches des images du jeu de données.
On emploie souvent pour décrire le fonctionnement d’un GAN l’analogie de l’association d’un
faussaire qui peint des faux tableaux et d’un policier chargé de les repérer, tous deux s’améliorant à
leur tâche au fil du temps [Goodfellow et al., 2014].

Lorsqu’un GAN a convergé, les images créées par le générateur sont en théorie indiscernables
des images du jeu de données du point de vue du discriminateur. Il faut cependant noter que
l’entraînement de deux réseaux en opposition est beaucoup plus instable que l’entraînement d’un
seul réseau associé à une fonction de coût unique. Les GANs comptent parmi les architectures les
plus difficiles à faire converger et des études entières ont été menées pour améliorer leur stabilité
[Salimans et al., 2016; Arjovsky and Bottou, 2017]. En effet, pour qu’un GAN converge, il faut que
les deux réseaux antagonistes progressent à la même vitesse. Il survient souvent le déséquilibre
suivant : à un instant donné de l’entraînement, le discriminateur est bien meilleur à détecter les
vraies images des fausses que le générateur ne l’est pour créer des fausses images. Si ce déséquilibre
devient extrême, l’erreur du discriminateur est de zéro, et aucun gradient n’est fourni au générateur,
qui cesse alors de progresser : le GAN est en « échec » [Arjovsky et al., 2017].

Lorsque les GANs ont convergé convenablement, ils sont exploités dans de nombreuses applica-
tions, y compris à des fins d’augmentation de données, afin de produire des images proches du bloc
d’entraînement, mais qui pourraient compléter les manquements de celui-ci [Nikolenko, 2019]. Les
versions initiales des architectures de GANs menaient cependant à une reproduction trop fidèle du
bloc d’entraînement et n’apportaient pas un gain significatif à l’apprentissage [Arjovsky et al., 2017].
Une architecture développée en parallèle, le GAN conditionnel [Mirza and Osindero, 2014], permet-
tait de produire des images en fonction d’une étiquette fournie par l’utilisateur. Cette architecture a
été un pas significatif dans la génération d’images véritablement différentes du jeu de données. En
parallèle, les travaux de [Gatys et al., 2016] ont montré qu’un réseau de classification pouvait être
entraîné à séparer le contenu d’une image de son « style », c’est-à-dire des informations d’apparence
multi-échelle sans notion de spatialité. Le « transfert de style neuronal » désigne l’application du
style d’une image au contenu d’une autre. Cette idée a été intégrée dans des GANs [Isola et al.,
2017] à des fins d’augmentation de données. L’architecture la plus utilisée aujourd’hui [Yi et al.,
2019] dans cette veine est le CycleGAN [Zhu et al., 2017] qui permet d’appliquer le style des images
d’un domaine aux images d’un autre, sans avoir eu besoin au cours de l’entraînement d’images
appariées de chaque domaine. Dans le champ des sciences végétales, des GANs conditionnels
simples ont montré des bons résultats, en particulier à des fins de phénotypage [Valerio Giuffrida
et al., 2017; Zhu et al., 2020]. Récemment, des architectures basées sur le StyleGAN [Arsenovic et al.,
2019] et le CycleGAN [Tian et al., 2019; Nazki et al., 2020] ont été employées à des fins de génération
d’images de plantes malades.

5.2.2 Génération d’images à partir de modèles

À la différence des méthodes d’augmentation de données, une autre famille de simulateurs vise
à créer des données à partir de sources externes au jeu de données concerné. Beaucoup d’entre eux
ont été développés spécifiquement pour une tâche de reconnaissance d’un objet donné. Parmi les
applications les plus étudiées, on retrouve des simulateurs de texte [Gupta et al., 2016], de visages
[Richardson et al., 2016] et de silhouettes [Ragheb et al., 2008]. Les principes de fonctionnement
de ces simulateurs sont très variés car ils reposent sur des pipelines personnalisés, adaptés au
domaine d’application concerné. Par exemple, les auteurs de [Gupta et al., 2016] proposent une
incrustation de textes dans des images déjà existantes, tandis que les auteurs de [Richardson et al.,
2016] travaillent sur des modèles de visages déformables. Certains simulateurs sont volontairement
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plus polyvalents, permettant la génération de multiples objets différents [Chang et al., 2015]. Dans
le domaine des plantes, la génération d’objets synthétiques individuels a été facilitée par la présence
de modèles de plantes antérieurs à l’ère de l’apprentissage profond [Prusinkiewicz and Runions,
2012]. Ces modèles existaient à des échelles variées, des cellules jusqu’aux écosystèmes [Pradal
et al., 2008; Ubbens et al., 2018]. Ils étaient utilisés pour une grande variété d’analyses : étude de
la croissance des plantes, de la distribution du poids des feuilles, des transferts d’eau, des études
génotypiques, etc. [Prusinkiewicz, 2004]. En particulier, les L-systèmes [Lindenmayer, 1968] ont été
une avancée mathématique majeure pour les modélisations à l’échelle de la plante. Il s’agit d’une
grammaire itérative proposée pour modéliser le développement de plantes ramifiées. Des exten-
sions multi-échelle de cette grammaire ont été proposées par la suite [Godin and Caraglio, 1998].
Des plantes ainsi simulées ont pu être employées pour améliorer les performances d’algorithmes
d’apprentissage [Benoit et al., 2014; Isokane et al., 2018; Ubbens et al., 2018].

Pour d’autres domaines d’application, des simulateurs ont été développés dans le but de créer
des environnements synthétiques, c’est-à-dire de véritables mondes virtuels tridimensionnels où
des caméras virtuelles pouvaient acquérir des images à partir de points de vue variés. On trouve ce
type de simulateurs principalement dans des applications de conduite autonome [Ros et al., 2016],
de déplacement de robots [Handa et al., 2016] et de comptage de foules [Wang et al., 2019]. Ces
simulateurs se basaient souvent sur des moteurs graphiques utilisés dans les jeux vidéo, par exemple
celui de Grand Theft Auto [Wang et al., 2019] ou celui d’Unreal [Dosovitskiy et al., 2017]. Dans le
domaine des sciences végétales, certaines études se sont penchées sur la génération de scènes
tridimensionnelles de plantations accompagnées d’une caméra afin d’améliorer la performance de
tâches de segmentation [Di Cicco et al., 2017; Barth et al., 2018].

5.3 Simulateurs implémentés pour notre cas d’étude

Nous avons pour notre cas d’étude exploré les différentes catégories de simulateurs de données
qui constituaient l’état de l’art à l’époque des travaux, en les adaptant pour la problématique
étudiée. Ainsi avons-nous implémenté des déformations de données spécifiques aux modalités
d’acquisition des images de canopée. Nous avons par ailleurs adapté le fonctionnement d’un GAN
afin que celui-ci puisse produire des images utiles dans le cadre d’une segmentation. Ces deux
simulateurs augmentaient directement les images des jeux Dp

tuilé. Enfin, nous avons développé un
simulateur « modèle » dédié qui permettait une génération de feuilles tavelées réparties en canopée,
imitant ainsi les images de Doriginal. Cette section présente les détails de ces trois simulateurs.

5.3.1 Déformation de données

Afin d’adapter la déformation de données à notre tâche, nous avons repris des transformations
employées très régulièrement dans les protocoles d’apprentissage profond. Nous avons basé notre
sélection des transformations à appliquer en partie sur la littérature du domaine des sciences
végétales [Pawara et al., 2017] mais surtout par rapport aux conditions d’acquisition des images du
jeu de données. Nous avons choisi ces déformations car elles représentaient des transformations
qui pouvaient relier deux images données du jeu. Les déformations de données servaient ainsi à
introduire une variabilité que l’on supposait potentiellement présente dans le bloc de test (et pour
le champ d’application véritable du modèle entraîné si celui-ci était déployé industriellement) mais
pas nécessairement dans le bloc d’entraînement. En d’autres termes, les déformations implémen-
tées n’étaient pas choisies aveuglément mais correspondaient à des connaissances a priori sur la
structure des scènes acquises 15.

15. Il est intéressant de noter qu’il existe un paradigme plus récent de déformations de données, la randomisation
de domaine [Tobin et al., 2017], dont le but n’est pas de représenter des transformations réalistes. Dans ce domaine,
de nombreuses déformations irréalistes du point de vue des données d’entraînement sont appliquées afin d’aiguiller
le réseau à se concentrer sur l’ « essentiel » des données. Le but de ces déformations est que lors de la prédiction, les
différences entre les images simulées et les images réelles soient identifiées comme simplement une autre variation
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nous nous sommes simplement basés sur une évaluation subjective de la proximité visuelle entre
les images générées et les images de Dp

tuilé
18. Plus précisément, nous avons mené une pré-étude

où nous avons entraîné un GAN ad infinitum et visualisé les images générées au fil des itérations.
Cette étude nous a poussé à fixer le nombre optimal d’itérations à 100 000. Il est intéressant de
noter qu’à ce moment de l’entraînement, la métrique de performance du discriminateur n’était
pas de 0,5, mais variait plutôt entre 0,95 et 0,97. Ainsi, le générateur s’améliorait en parvenant à
tromper, sur une proportion réduite d’images, un discriminateur très performant. Nous présentons
figure 5.11 des exemples d’images générées par ce procédé.

(a) Images IR réelles. (b) Images IR générées par GAN.

(c) Annotations réelles. (d) Annotations générées par GAN.

FIGURE 5.11 – Exemples d’images générées par le GAN entraîné sur D0,2
tuilé. Les images réelles étaient de

dimension 64×64×2 pixels. Les deux canaux de 25 de ces entrées tirées aléatoirement sont représentés dans
les sous-figures (a) (canal « IR ») et (c) (canal « annotation »). Chaque image de la sous-figure (a) est associée
à l’annotation située à la même position dans la sous-figure (c). La même représentation est utilisée pour
présenter les images générées par le GAN, sous-figures (b) et (d).

18. Cette évaluation humaine de la qualité d’ une image avait évidemment ses limites, d’autant plus lorsque, comme
ici, les images générées étaient destinées non pas à être esthétiquement plaisantes ou réalistes aux yeux d’autres humains
comme dans le domaine des deep fakes [Westerlund, 2019], mais à améliorer les performances d’apprentissage de
réseaux. Or, il est connu, en particulier grâce aux études portant sur les exemples adversariaux, que des modifications
portées à une image invisibles à l’œil humain pouvaient avoir un effet drastique sur la performance des réseaux qui la
traitaient [Szegedy et al., 2013].
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Algorithme 5.1 : Création d’une image de canopée de feuilles tavelées.

Entrées : un jeu d’images de feuilles saines RVB L, un jeu d’images de canopées D, les
dimensions de l’image de sortie d1 ×d2 pixels, le nombre de plants n, la proportion de
feuilles tavelées p.

Générer un motif de tavelure synthétique à partir des zones étiquetées comme « tavelure »
dans les images de D.

Générer un motif de sol synthétique généré à partir des zones correspondant au sol dans les
images de D.

Créer une image S vide de dimension d1 ×d2 pixels.
Remplir S du motif de sol synthétique.

nombre_de_plants = 0.
tant que nombre_de_plants < n faire

/* Création de la feuille tavelée. */

Tirer au hasard une image I du jeu L.
Convertir I en niveaux de gris.
Tirer un nombre aléatoire r dans [0,1].
/* Appliquer la tavelure. */

si r < p alors

Générer un masque de lésions de tavelure Mtavelure.
Appliquer le motif de tavelure à l’endroit des lésions en utilisant Mtavelure et le motif

synthétique de tavelure.

fin

/* Déformation de la feuille. */

Simuler un effet de pliure pour I.
Calculer le placement de I dans S en fonction du nombre et de la position des feuilles

déjà placées.
Redimensionner, modifier la luminosité et appliquer une rotation à I en fonction de son

placement dans S.

Placer la feuille dans S.
Si un plant est terminé, incrémenter nombre_de_plants.

fin

Appliquer un effet de vignettage sur l’image.

Sortie : une image de feuilles tavelées organisées en canopée, de dimension d1 ×d2 pixels.

Génération des motifs de tavelure et de sol

Contrairement au simulateur présenté à la section 3.1 où seule la variation moyenne d’intensité
causée par les lésions sur la feuille était prise en compte, nous avons généré ici un motif de tavelure
avec un niveau de réalisme plus élevé. Ce réalisme accru était guidé par la précision attendue
dans la tâche de segmentation. Nous avons créé ce motif en suivant une approche procédurale
similairement au procédé de création de bruit que nous avons implémenté à la section 4.5.

Pour obtenir le motif « modèle » duquel nous avons mesuré les valeurs des caractéristiques à
ajuster, nous nous sommes concentrés sur les images du bloc d’entraînement de Doriginal. Nous
avons rogné et conservé parmi celles-ci les zones étiquetées comme « tavelure » situées sur les
feuilles appartenant à la couche supérieure de la canopée. Nous avons appelé l’ensemble de ces
imagettes le jeu Dtavelure. Nous avons écarté de ce jeu toutes les imagettes dont les dimensions
étaient inférieures à un carré de 10 pixels de côté. Nous avons calculé les moments d’ordre 1 et
2 ainsi que l’autocorrélation sur ces imagettes, calculé la moyenne de ces mesures, et ajusté un
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bruit gaussien en conséquence. La figure 5.13 présente une comparaison d’un motif de tavelure
réel et d’un motif synthétique ainsi créé. Nous avons généré un motif de sol en suivant la même
procédure, en nous basant sur des imagettes de sol du bloc d’entraînement de Doriginal. Ce motif
était utilisé pour remplir l’image simulée avant le placement des feuilles.

(a) Extrait de Dtavelure. (b) Tavelure synthé-
tique.

FIGURE 5.13 – Comparaison entre les motifs de tavelure réel et synthétique. Le contraste et la luminosité ont
été augmentés à des fins de visualisation.

Application du motif de tavelure

Nous avons généré pour chaque feuille une distribution spatiale des lésions Mtavelure selon
l’algorithme 3.2. Pour y appliquer le motif de tavelure, nous avons souhaité introduire un degré de
réalisme supplémentaire par rapport au simulateur du chapitre 3 en modélisant l’effet « gradient »
causé par le développement des lésions de tavelure dans le temps à partir d’un foyer d’infection.
Nous avons modélisé cet effet en fixant la valeur des pixels appartenant à une lésion comme
une somme pondérée des pixels du motif de tavelure et de ceux la feuille saine. La pondération
de la texture de tavelure dans cette opération était décrite par une décroissance gaussienne qui
dépendait de la distance du pixel au centre de cette lésion. L’ensemble du procédé est décrit dans
l’algorithme 5.2 (figure 5.14). Nous avons fixé empiriquement la valeur de σ à 1.

Algorithme 5.2 : Création d’une feuille tavelée avec un effet « gradient ».

Entrées : une image de feuille saine I de dimension d1 ×d2 pixels, un motif de tavelure
synthétique T de dimension d1 ×d2 pixels, la distribution spatiale de lésions Mtavelure de
dimension d1 ×d2 pixels, l’écart-type de la modulation spatiale gaussienne σ.

Créer par un seuillage de la couleur verte un masque Mfeuille où les pixels blancs
correspondent aux pixels appartenant à la feuille dans I.

Appliquer pour chaque lésion de Mtavelure individuellement une décroissance gaussienne,

c’est-à-dire multiplier chaque pixel de la lésion par 1
σ
p

2π
e−

1
2 ( l

σ
)2

, où l correspond à la

distance de ce pixel par rapport au centre de masse de la lésion. Nous notons
Mtavelure gradient cette image.

Créer l’image Msain gradient en soustrayant Mtavelure gradient à Mfeuille.
Créer l’image tavelée par l’opération suivante : Itavelure = Msain gradient.I + Mtavelure gradient.T,

où « . » désigne la multiplication pixel à pixel.

Sortie : une image de feuille tavelée avec un effet « gradient », de dimension d1 ×d2 pixels.

Effet de pliure

Les feuilles sont des organes dont la forme générale peut être considérée en première approxi-
mation comme un plan [Raabe et al., 2015], mais qui peuvent être en réalité significativement
courbées [Rolland-Lagan et al., 2014] (figure 5.15).

108







CHAPITRE 5. SIMULATION D’IMAGES POUR ALLÉGER LA CHARGE D’ANNOTATION D’IMAGES
RÉELLES

Algorithme 5.3 : Placement des feuilles dans la scène.

Entrées : une image de la scène S de dimension d1 ×d2 pixels, un jeu d’images de feuilles L
sur lesquelles des lésions de tavelure ont été simulées et où l’effet pliure a été appliqué, le
nombre de plants n, les variations de luminosité l = {l1, l2, l3}, les variations de taille r = {r1,
r2, r3}.

Générer n coordonnées correspondant aux « tiges » sous la forme tpl ant = (xpl ant , ypl ant ),
avec xpl ant et ypl ant tirés indépendamment et uniformément dans [0,d1] et [0,d2], sous
contrainte d’un critère de distance suffisant avec les tiges déjà existantes.

pour plant ∈ [1,n] faire

Tirer un angle d’accroche initial αpl ant aléatoirement dans [0,2π] radians.
fin

Nous modélisons chaque tige comme ayant trois niveaux de « points d’accroche » de feuilles.
Nous remplissons S en ajoutant chaque niveau l’un après l’autre.

pour niveau ∈ [1,3] faire

pour plant ∈ [1,n] faire
Tirer le nombre de feuilles présent f à ce niveau pour ce plant, tiré uniformément

dans [2,4].
pour feuille ∈ [1, f ] faire

Tirer une feuille I du jeu L.
Multiplier tous les pixels de I par l[niveau].
Redimensionner I par un facteur r[niveau].
Tourner I selon l’angle αpl ant .
Placer I de façon à ce que l’extrémité du pétiole de la feuille soit positionnée en

tpl ant .
αpl ant = αpl ant + 2,4 radians.

fin

fin

fin

Sortie : une image S où ont été placées les feuilles sous forme de plants, de dimension
d1 ×d2 pixels.

Nombre de plants n 20
Variations de luminosité l {0,4, 0,7, 1}
Variations de taille r {0,6, 0,8, 1}

TABLEAU 5.3 – Valeurs des paramètres que nous avons utilisés pour l’algorithme 5.3.

5.4 Résultats : des simulateurs efficaces

5.4.1 L’intégration des données simulées

Les différents moyens d’intégration

Il existait plusieurs manières d’utiliser des données simulées en appui d’un entraînement sur
données réelles. La voie la plus intuitive consistait à rassembler l’ensemble des données, c’est-à-dire
créer un bloc d’entraînement contenant à la fois les données réelles et les données simulées. C’est
ainsi que procédaient la plupart des études qui exploitaient des données simulées dans le domaine
des sciences végétales [Valerio Giuffrida et al., 2017; Ubbens et al., 2018; Ward et al., 2018]. Nous
avons proposé par ailleurs une autre voie, qui était bien moins souvent explorée dans le domaine
des sciences végétales : l’utilisation des données simulées pour pré-entraîner des réseaux, voie
suivie par exemple par les auteurs de [Barth et al., 2018]. Il s’agissait de réaliser un apprentissage
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(a) Avant l’application de l’effet. (b) Après l’application de l’effet.

FIGURE 5.18 – Illustration de l’effet de vignettage.

par transfert (cf. section 4.1.2) en entraînant le réseau sur des données simulées dans un premier
temps puis sur les données réelles dans un second temps. En ce sens, ce procédé était une exten-
sion des objectifs de l’apprentissage par transfert à partir de l’ILSVRC. Nous avons proposé ici de
remplacer la tâche générique de vision qu’était l’ILSVRC par une tâche conçue spécifiquement
pour être proche de la tâche réelle, en faisant l’hypothèse que ce pré-entraînement serait d’autant
plus bénéfique pour l’apprentissage ainsi. Enfin, il existait même une troisième voie d’utilisation
possible pour les données créées par déformation : la déformation « en ligne » (online en anglais)
[Shorten and Khoshgoftaar, 2019]. Il s’agissait d’appliquer des déformations de données au bloc
d’entraînement non pas avant l’entraînement proprement dit, mais au cours de celui-ci, en faisant
varier les déformations appliquées à chaque époque 19.

Il n’existait pas à notre connaissance d’étude comparative de ces différentes façons d’intégrer les
données simulées dans le champ des sciences végétales. Aussi avons-nous décidé d’implémenter
chacune des voies proposées (rassemblement, pré-entraînement, en ligne) pour les différentes
catégories de données simulées (déformation de données, GAN, modèle de canopée) afin de com-
parer les performances obtenues pour notre application. Afin de limiter le nombre d’expériences,
nous avons dans un premier temps restreint cette étude au jeu D0,2

tuilé, en faisant l’hypothèse que les

tendances des résultats seraient extrapolables aux autres jeux Dp
tuilé. Nous détaillons à présent les

protocoles d’entraînement suivis pour chacune des façons d’intégrer les données.

Protocoles d’intégration

Rassembler les données était une opération simple, mais dépendante d’un hyperparamètre
important : la quantité relative de données simulées à ajouter au jeu de données réelles. Dans
la littérature, cette quantité variait énormément selon les études. Nous avons trouvé des travaux
où le nombre d’images simulées utilisé était significativement inférieur [Valerio Giuffrida et al.,
2017], sensiblement égal [Ward et al., 2018], ou largement supérieur [Di Cicco et al., 2017] au
nombre d’images réelles. Nous avons suivi la stratégie des auteurs de [Zhu et al., 2020] en menant
plusieurs expériences avec les ratios « simulées sur réelles » suivants : 25, 100, 400 et 800%. Afin de
ne pas surcharger les résultats, nous présentons uniquement dans les résultats d’apprentissage
(tableau 5.4) les performances correspondant à la quantité de données optimale pour chaque
expérience de « rassemblement ». Pour toutes ces expériences, nous avons intégré des données
simulées uniquement au bloc d’entraînement du jeu, c’est-à-dire que les blocs de validation et de

19. Le terme online est aussi employé pour désigner un paradigme d’entraînement où de nouvelles données sont
présentées régulièrement à l’algorithme qui apprend ainsi « en continu » [Fontenla-Romero et al., 2013]. Des méta-
algorithmes d’augmentation de données inspirées de ce paradigme sont parfois désignées comme online [Tang et al.,
2020]. Nous ne faisons pas référence à ces méthodes lorsque nous utilisons ce terme.
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test restaient constitués uniquement d’images réelles.

Pour mener à bien des pré-entraînements à partir d’un simulateur donné, nous avons généré
3000 images à partir de celui-ci. Dans le cas des données issues du modèle de canopée, nous avons
généré suffisamment d’images entières (c’est-à-dire de dimension 1944×2592 pixels) pour conser-
ver 3000 tuiles contenant de la tavelure après l’opération de tuilage sélectif décrite section 5.1.1.
Nous avons initialisé aléatoirement le réseau et l’avons entraîné dans un premier temps sur ces
images simulées jusqu’à convergence. Puis, nous avons utilisé les poids obtenus comme initialisa-
tion du réseau pour un entraînement sur le jeu réel. Notons que dans ce protocole, contrairement à
toutes les autres expériences, le transfert des caractéristiques de l’ILSVRC n’était pas implémenté.

Enfin, concernant la déformation de données en ligne, nous avons appliqué aux données réelles
le pipeline de déformation décrit section 5.3.1 à chaque lot d’images présenté au réseau au cours de
l’entraînement. Puisque ce pipeline était constitué d’une suite de six déformations dont chacune
était appliquée avec une probabilité de 0,5, il y avait moins de 2% de chances qu’une image donnée
subisse les mêmes déformations d’une époque à l’autre. De plus, ces déformations pouvaient varier
en intensité selon la valeur de leur paramètre (par exemple, l’angle de la rotation), tiré aléatoire-
ment pour chaque lot. Comme pour le rassemblement, la déformation en ligne était appliquée
uniquement aux blocs d’entraînement des jeux étudiés.

5.4.2 L’impact des différents simulateurs

Les résultats des apprentissages sont réunis dans le tableau 5.4. Nous y présentons en sus les
résultats d’apprentissage sans aucune donnée simulée, avec et sans transfert de l’ILSVRC. Nous
avons considéré le résultat obtenu sans données simulées mais avec un transfert de l’ILSVRC
comme la performance de référence. Nous commentons à présent l’impact des données simulées
en fonction du simulateur employé.

Données simulées utilisées Performance

Aucune (sans transfert de l’ILSVRC) 0,424 ± 0,013
Aucune (avec transfert de l’ILSVRC) 0,472 ± 0,009

Rassemblement Pré-entraînement En ligne
Déformation de données 0,559 ± 0,007 0,519 ± 0,006 0,574 ± 0,010
GAN 0,496 ± 0,011 0,494 ± 0,010 -
Modèle de canopée 0,509 ± 0,005 0,602 ± 0,007 -

TABLEAU 5.4 – Résultats des expériences concernant l’impact des données simulées sur l’entraînement sur
D0,2

tuilé.

Déformation de données

La déformation de données a permis une augmentation de performance substantielle par
rapport à la performance de référence. En particulier, la configuration en ligne a permis une bond
d’environ 10% de cette valeur. Ces résultats étaient cohérents avec l’omniprésence des déformations
bien choisies dans les pipelines d’apprentissage modernes.

GAN

Contrairement aux autres catégories de simulateurs implémentées dans ce chapitre, les amélio-
rations des performances permises par l’utilisation de données simulées par GAN étaient relati-
vement faibles : environ 2% d’augmentation quelle que soit la manière dont ces données étaient
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intégrées. Nous avons supposé que la faiblesse de ce résultat pouvait s’expliquer par les difficultés
que nous avions rencontrées pour obtenir des images réalistes via un GAN.

Il était certes vrai que ces images, dont nous pouvons voir des exemples dans les figures 5.11 (b)
et (d), avaient des qualités. Premièrement, le GAN parvenait à générer deux canaux qui étaient clai-
rement identifiables aux canaux « IR » et « annotation » qui lui étaient fournis. En nous penchant sur
le canal dédié aux annotations dans les images générées (sous-figure (d)), nous pouvons constater
que ces images avaient une distribution de niveaux de gris proche d’une distribution binaire {0, 255}
comme il était attendu, et que les structures représentées semblaient similaires à celles contenues
dans les annotations réelles (sous-figure (c)). Concernant le canal correspondant aux images IR
(sous-figure (b)), le GAN parvenait bien à générer des images dont la luminosité et les contrastes
étaient similaires aux images IR réelles (sous-figure (a)), et nous y devinions même des formes
plus sombres pouvant correspondre aux lésions ou au sol. Enfin, les canaux générés avaient une
certaine cohérence entre eux puisque certaines structures dans les annotations générées semblent
correspondre aux zones des « lésions » dans les images IR générées.

Cependant, l’information plus haut-niveau des images IR générées était médiocre. Les bords
séparant les objets étaient flous, la texture des différentes zones y était approximative, les structures
plus fines telles que les nervures ou bien des formes de lésions plus subtiles y étaient absentes, et
de légers artefacts en « damier » [Odena et al., 2016] affectaient toute l’image. Ces images n’auraient
pas passé le « test de Turing visuel » [Turing, 1950], c’est-à-dire qu’un humain ne les aurait pas
confondues pas avec des images réelles. Même si la qualité esthétique de l’image pour un cerveau
humain n’est pas strictement corrélée à sa pertinence du point de vue de l’entraînement d’un
réseau de neurones (cf. note 18), nous avons fait l’hypothèse qu’elle en constituait un indicateur
robuste.

Afin de disséquer les raisons de l’échec relatif du GAN, nous avons mené une expérience supplé-
mentaire qui consistait à entraîner un GAN sur une variation de D0,2

tuilé où les annotations associées
aux images IR avaient été permutées aléatoirement entre elles. En d’autres termes, les annotations
n’étaient plus associées à l’image à partir de laquelle elles avaient été créées. Des exemples d’images
générées par le GAN sur ce jeu de données sont présentés dans la figure 5.19. Nous constatons
visuellement que dans cette configuration, en plus d’obtenir des canaux « annotation » de bonne
qualité, les canaux « IR » générées avaient une qualité visuelle beaucoup plus satisfaisante. Ainsi,
il était tout à fait possible pour le GAN de générer chacun des canaux séparément de façon satis-
faisante. La pierre d’achoppement semblait être la création d’annotations corrélées aux images IR.
Il semblait que pour réaliser des images réalistes, le GAN devait dans un premier temps réaliser
une extraction de caractéristiques proche de celle demandée à un réseau de segmentation bona

fide. Nous avons fait l’hypothèse que le cumul de cette tâche avec celle de la génération de données
rendait la tâche trop difficile pour un GAN, ou a minima pour un GAN avec l’architecture utilisée
dans cette étude.

Les difficultés de convergence du GAN employé pouvaient aussi s’expliquer par le faible nombre
de données sur lequel celui-ci était entraîné. Cette dépendance à un grand nombre de données
limitait l’intérêt de ce type d’architecture dans un cadre d’augmentation de données, où dans de
nombreux cas le nombre de données initial était justement particulièrement faible.

Modèle de canopée

Le modèle de canopée a permis une augmentation de 12% de la performance dans le cas où les
données étaient utilisées comme pré-entraînement du réseau. Cette augmentation démontrait que
les images créées par le modèle étaient au moins partiellement réalistes du point de vue du réseau.
Cependant, le gain permis par le rassemblement des images avec les données réelles était moins
important, autour de 3%. Cette différence illustrait l’importance d’étudier les différentes façons
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(a) Images IR réelles. (b) Images IR générées par GAN.

(c) Annotations réelles mais décorrélées des
images IR.

(d) Annotations générées par GAN.

FIGURE 5.19 – Exemples des images générées par un GAN entraîné sur des images de tavelure associées à des
annotations qui leur étaient décorrélées. La présentation des données est identique à celle de la figure 5.11.

dont les données simulées pouvaient être intégrées à l’entraînement. Dans notre cas, les images
issues du modèle de canopée semblaient être pertinentes pour mettre l’entraînement « sur de bons
rails », comme le permettait le transfert de l’ILSVRC, mais étaient cependant trop différentes des
données réelles pour que leur exploitation conjointe avec ces dernières soit très efficace.

Afin d’étudier plus en profondeur l’apport du simulateur, nous avons mené une étude par
ablation. Le but de cette étude était d’évaluer l’apport de chacune des étapes du simulateur « mo-
dèle » au gain de performance observé. Pour ce faire, nous avons implémenté plusieurs versions
du simulateur en omettant dans chacune d’entre elles d’exécuter une étape spécifique, tout en
conservant les autres étapes inchangées. La liste des étapes que nous avons ainsi évaluées est
présentée dans le tableau 5.5.

Pour chacun des simulateurs ainsi « amputés », nous avons généré un jeu de 3000 tuiles. Nous
nous sommes servis de ces jeux pour pré-entraîner le réseau en lieu et place des images du jeu
du modèle « complet », puis avons mené un entraînement sur D0,2

tuilé. Les résultats sont présentés
figure 5.20. La performance obtenue sans ablation (qui correspond à celle du modèle complet,
rapportée dans le tableau 5.4) est indiquée à gauche du graphique. Plus la performance d’un ap-
prentissage mené grâce à un simulateur « amputé » était basse par rapport à cette performance de
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de la scène étaient drastiquement différentes.

FIGURE 5.21 – Une image créée avec le modèle de canopée amputé de toutes les étapes listées dans le
tableau 5.5.

Combinaison de données simulées

Les différentes façons d’exploiter les données simulées que nous avons étudiées agissaient
à différentes étapes de l’entraînement : au cours de l’initialisation des poids, de la constitution
du jeu ou bien des itérations d’apprentissage en elles-mêmes. Il était ainsi très aisé d’utiliser de
façon conjointe certaines d’entre elles. Nous avons mis au point la procédure d’entraînement
« optimale » selon les résultats du tableau 5.4 : nous avons pré-entraîné le réseau avec les données
du modèle de canopée tout en implémentant une déformation de données en ligne. La performance
de segmentation du réseau sur D0,2

tuilé était alors de 0,643 ± 0,005, soit une augmentation de 17%
par rapport à la performance de référence. Ce résultat montrait que les effets bénéfiques de ces
simulations pouvaient être ajoutés voire même mener à une interaction positive.

5.4.3 Les données simulées permettent d’aller au-delà des données réelles...

Nous présentons à présent les performances d’entraînement sur l’ensemble des jeux Dp
tuilé dans

ces conditions de simulation « optimales », en les comparant à celles obtenues sur la performance
de référence (figure 5.22).

Nous pouvons constater qu’inclure des données simulées permettait un gain de performance
sur l’ensemble des jeux Dp

tuilé. Ce gain de performance était d’autant plus important que les jeux

étaient réduits (plus de 24% sur D0,1
tuilé par exemple), mais il était encore important même pour

une quantité de données annotées où la performance était « saturée » (presque 10% sur D1
tuilé

notamment). Nous avons trouvé ce résultat surprenant car nous nous attendions à ce que l’apport
des données simulées tende rapidement vers zéro à mesure que la quantité d’images réelles utilisée
augmentait. Il semblait que pour notre application, l’intégration de données simulées permettait
non seulement de pallier le manque de vraies données mais amenait une véritable plus-value qui
ne semblait pas être atteignable par l’ajout de données réelles, et ce même en quantité importante.
Nous avons supposé que le pré-entraînement avait un effet particulièrement bénéfique à ce titre,
en permettant à l’optimiseur de poids de démarrer la descente de gradient dans une configuration
favorable et par la suite d’atteindre des minima de coût plus bas que ceux auxquels une initialisation
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Ainsi, le gain d’annotation permis par les données simulées n’était pas aussi gratuit que les
résultats de la figure 5.22 pouvaient le laisser penser. Une manière de mitiger ces coûts consistait
à rendre les simulateurs les plus universels possibles, de manière à pouvoir utiliser les données
simulées pour une large gamme d’applications. Nous n’avons pas au cours de ce travail tenté
d’exporter ou d’adapter les simulateurs développés à d’autres applications de sciences végétales.
Cependant, des résultats semblaient indiquer une certaine universalité des données générées, en
particulier la pertinence de pré-entraînements du simulateur « modèle » réalisés sur des feuilles
« simples », sans spécialisation excessive sur les images de notre cas d’étude (cf. étude par ablation
de la section 5.4.2).

5.5 Conclusion

Nous nous sommes dans ce chapitre intéressés à l’apport possible des données simulées pour
réduire la charge d’annotation nécessaire pour mener à bien une tâche de segmentation. Nous
avons pour cela développé plusieurs nouveaux simulateurs de données dédiés à la tavelure du
pommier, qui s’inscrivaient dans le courant des simulateurs développés ces dernières années dans
le domaine des sciences végétales. En particulier, nous avons mis au point un simulateur « modèle »
de canopée à partir de sources externes, selon un pipeline plus simple que d’autres simulateurs de
la littérature. Par ailleurs, nous avons adapté un GAN afin de générer des images annotées utiles
pour la segmentation.

De plus, contrairement à de nombreuses études travaillant sur les données simulées, nous nous
sommes penchés sur les différentes façons dont ces données simulées pouvaient être intégrées
dans le pipeline d’apprentissage. La comparaison que nous avons menée entre les différentes
méthodes employées dans la littérature a souligné que ce choix d’intégration avait un impact fort
sur la performance de segmentation. Les meilleurs résultats que nous avons obtenus provenaient
d’une combinaison de différentes catégories de données simulées. Nous avons montré avec ces
expériences qu’il était possible de réduire considérablement la charge d’annotation de la tâche
à performance égale et même d’améliorer cette performance au-delà de l’apport de nouvelles
données réelles. En particulier, nous sommes parvenus, grâce à l’utilisation de données simulées, à
réduire de plus de 95% le nombre de données réelles à annoter à performance égale.

En outre, nous avons proposé dans ce chapitre un nouveau jeu de données annoté pour la
segmentation de lésions de tavelure. Ce jeu était novateur selon plusieurs aspects par rapport à
la plupart de ceux disponibles dans le domaine des sciences végétales. Premièrement, il s’agissait
d’un jeu en conditions réelles, avec des caractéristiques qui rendaient une tâche de vision par
ordinateur difficile. Il était associé à une tâche de segmentation, et pouvait ainsi servir à entraîner
des algorithmes destinés à évaluer la sévérité des infections, ce qui était considérablement moins
répandu que les jeux de classification de maladies. Enfin, il s’agissait d’un jeu en lumière IR, contrai-
rement à la grande majorité des jeux disponibles qui sont constitués d’images RVB. Pour toutes
ces raisons, les résultats positifs de segmentation que nous avons présenté dans la section 5.1.4
étaient significatifs car ils montraient pour la première fois la capacité d’un réseau de neurones
à être performant sur cette tâche dans ces conditions difficiles. Selon nous, ce jeu présentait un
intérêt pour la communauté des chercheur ·euses en sciences végétales et nous l’avons donc publié
pour une utilisation libre (cf. section Valorisations).

Pour porter un regard critique sur le travail de ce chapitre, nous estimons que le modèle de
canopée comportait des étapes que nous aurions pu enrichir. Similairement au simulateur de cubes
hyperspectraux présenté au chapitre 3, l’acquisition en lumière IR d’une feuille était simulée par
une simple conversion en niveaux de gris d’une feuille acquise par un capteur RVB. Par ailleurs,
nous avons fixé un certain nombre de paramètres de ce simulateur en nous basant sur des simples
observations visuelles des données réelles, mais sans argument biologique pour justifier leur valeur.
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Nous affirmons à nouveau notre volonté présentée lors de la discussion à propos du simulateur de
cubes hyperspectraux (section 3.4) de proposer un modèle relativement simple et facilement para-
métrisable. Les gains de performance que ce modèle a permis pour une application sur données
réelles appuient la viabilité de cette simplicité. Nous soulignons en particulier que, si les lésions de
tavelure du pommier ont une texture complexe sur les images réelles, la simulation d’une petite
partie des caractéristiques de cette texture (figure 5.13) a suffi à améliorer les performances de
segmentation des lésions.

De plus, si le jeu de données réelles et la tâche que nous lui avons associée étaient représentatifs
des défis de vision dans un cadre industriel d’agriculture de précision, nous pensons qu’il serait
bénéfique de créer un « véritable » bloc de test, constitué d’acquisitions réalisées dans un autre
contexte (autre serre, horaire d’acquisition différent, etc.). Bien que nous ayons pris soin de rassem-
bler dans Doriginal des images représentant des zones séparées de la serre sans recouvrement, il y
avait tout de même une ressemblance entre les données du bloc d’entraînement et celles du bloc
de test qui amplifiait artificiellement la capacité mesurée du réseau à généraliser sur des données
« véritablement » nouvelles.

Les travaux de ce chapitre ont permis de montrer que les lésions de tavelure pouvaient être au
moins partiellement détectées par un algorithme d’apprentissage sur des images IR, et ce même en
conditions difficiles. Les travaux des chapitres 3 et 4 avaient par ailleurs montré la viabilité du CTIS
pour réussir cette détection — certes en conditions contrôlées. Les résultats positifs de ces deux
études nous ont poussés à nous intéresser aux possibilités offertes par la fusion de l’information de
ces différents capteurs.
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Chapitre 6

Vers une fusion spatio-spectrale

Lorsque plusieurs sources d’information complémentaires sont disponibles pour répondre à
une question, il survient naturellement l’idée de les exploiter conjointement, de la même manière
que le cerveau humain combine plusieurs entrées sensorielles pour créer un sens du monde qui
l’entoure [Baltrušaitis et al., 2018]. Dans le champ de l’apprentissage automatique, l’action de
combiner plusieurs sources de données afin de répondre à une problématique commune est
désignée sous le nom de fusion de données. Nous avons présenté au chapitre 4 un travail dans
cette optique lorsque nous avons décrit l’architecture CTIS-Net qui tirait parti des deux ordres de
diffraction des images CTIS pour mener à bien une classification des images entières. L’étude de
la fusion de données constitue en vérité un pan entier du champ de l’apprentissage automatique,
et, comme nous y faisons mention au chapitre 4, des travaux s’y rattachant ont porté sur des
modalités très variées dans des champs divers. Nous présentons dans ce chapitre des premiers
travaux concernant la fusion de différentes modalités d’imagerie RVB, IR et CTIS, dans un objectif
de classification. Nous nous attardons en particulier sur les difficultés que nous avons rencontrées
concernant la fusion d’images aux structures très dissemblables, un problème relativement peu
étudié dans la communauté de vision par ordinateur. Nous présentons des pistes de recherche se
rapportant à cette problématique.
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2005]. On qualifie la fusion de plus ou moins « tardive » en fonction de l’option choisie.

La fusion « précoce » consiste à concaténer les modalités entre elles avant de les traiter avec
un réseau unique. Elle permet au réseau d’exploiter au maximum les interactions bénéfiques
possibles entre les modalités [Paisitkriangkrai et al., 2015]. De plus, la simplicité architecturale
permet des entraînements plus aisés. Cependant, cette fusion peut mener à un apprentissage qui
se fait au détriment d’une des modalités qui aurait bénéficié à être traitée seule afin d’en extraire
des caractéristiques pertinentes [Katsaggelos et al., 2015] (voir par exemple la différence des temps
de convergence entre les deux modalités dans notre étude de CTIS-Net, illustrée en figure 4.15).
La fusion « tardive », au contraire, consiste en un traitement individuel de chaque modalité avant
de combiner les sorties de chaque branche. Cette combinaison peut être aussi simple qu’une
moyenne des prédictions obtenues après la couche softmax [Simonyan and Zisserman, 2014a]. Un
des avantages de cette fusion est que les caractéristiques issues de chaque branche sont dans un
espace latent à structure similaire, ce qui permet une combinaison aisée des modalités. De plus,
chaque modalité a pu être traitée de façon personnalisée et approfondie par le réseau [Katsaggelos
et al., 2015]. Dans cette configuration en revanche, le réseau ne peut pas extraire les éventuelles
interactions bénéfiques entre modalités qui peuvent émerger à des niveaux sémantiques moins
élevés. Entre ces deux extrêmes, la flexibilité des architectures à deux branches permet de réaliser la
fusion à n’importe quelle couche du réseau. On parle alors de fusion intermédiaire. Bien que
le niveau de fusion optimal soit très dépendant de l’application et que certain ·es chercheur
·euses n’hésitent pas à l’inclure à la recherche par grille effectuée pour fixer les hyperparamètres
architecturaux de leur réseau [Castro et al., 2020], un niveau de fusion régulièrement implémenté
pour les CNNs se situe à la sortie des couches convolutives [Jing et al., 2017], comme il a été fait
pour l’architecture de CTIS-Net.

6.2 Un gain pour la fusion d’images alignées

Pour étudier la possibilité de fusionner les images produites par la caméra Carbon Bee, nous
avons implémenté trois réseaux de fusion notés VGGfprécoce, VGGfintermédiaire et VGGftardif. Il s’agis-
sait de réseaux à deux branches basés sur VGGr (figure 4.2) qui ne différaient que par la position
de concaténation des caractéristiques. Leur architecture est présentée dans la figure 6.2. Nous
soulignons qu’en conséquence de leur structure à deux branches, ces architectures, en particulier
VGGintermédiaire et VGGtardif, comportaient un nombre de paramètres plus important que VGGr.
Nous avons fait l’hypothèse que les éventuels gains de performance qu’ils permettraient provien-
draient bien de l’exploitation conjointe des deux modalités, et non de la simple augmentation du
nombre de paramètres, comme nous l’avions montré pour CTIS-Net (cf. tableau 4.2).

Nous nous sommes intéressés tout d’abord au cas d’images alignées. Un tel alignement était
difficile à obtenir dans la réalité. Il était en effet nécessaire pour cela que le dispositif optique utilisé
acquière les différentes modalités à travers le même objectif. Or, dans la grande majorité des cas, y
compris celui de la caméra Carbon Bee, les montages optiques sont composés de plusieurs cap-
teurs aux objectifs distincts. La scène n’est alors pas acquise d’un point de vue identique selon les
capteurs, et les images résultantes ne sont pas exactement alignées. Un tel désalignement peut être
délétère pour une analyse conjointe des modalités. En particulier, les CNNs sont moins efficaces en
cas de décalage important car les noyaux de convolution ne s’appliquent alors pas sur les mêmes
zones spatiales d’une modalité à l’autre. Dans ce cas, plus la concaténation envisagée est précoce,
plus il est nécessaire d’aligner ces images en prétraitement 23, notamment par le biais d’algorithmes

23. Il est à noter que les CNNs contenant de couches max-pool sont capables de « corriger » partiellement des
désalignements entre des images. En effet, chacune de ces couches réduit les dimensions spatiales des cartes de
caractéristiques. Il suffit par exemple d’une couche max-pool à coefficient de réduction de deux pour éliminer après
cette couche un décalage d’un pixel entre deux modalités. À l’issue d’un grand nombre de couches max-pool, les cartes
de caractéristiques produites peuvent être alignées même en cas de désalignement important entre les images fournies
en entrée du réseau.
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de recalage. Nous présentons en annexe B des travaux que nous avons réalisés dans ce sens pour
des acquisitions réelles de la caméra Carbon Bee.

Nous avons étudié la fusion des jeux simulés au cours du chapitre 3 (figure 3.23), afin de réaliser
une classification binaire « feuille saine / feuille tavelée ». Les images de certains de ces jeux avaient
l’avantage d’être parfaitement alignées entre elles. C’était le cas notamment des jeux DRVB et DIR.
Nous nous sommes concentrés sur les jeux correspondant à une valeur de sévérité de 0,3 car les
performances obtenues avec VGGr sur D0,3

RVB et D0,3
IR n’étaient ni parfaites (MCC de 1) ni « nulles »

(MCC en dessous de 0,06) (figure 4.21). Étudier la fusion de ces deux jeux permettait donc d’identi-
fier si cette opération était bénéfique, sans effet ou délétère. Nous avons rassemblé les jeux D0,3

RVB et

D0,3
IR dans un nouveau jeu noté D0,3

RVB+IR. Nous avons mené des entraînements sur ce jeu avec les
différents réseaux VGGf, en suivant le protocole d’entraînement détaillé aux sections 4.1.2 et 4.4.1.
Les résultats sont présentés dans le tableau 6.1. Ils indiquaient que la fusion précoce permettait de
tirer parti des interactions bénéfiques entre l’image RVB et l’image IR. Cette interaction bénéfique
n’était pas sans rappeler le succès des indices végétaux mentionnés à la section 1.1.3. Les NDVI
sont en effet basés sur la combinaison arithmétique de plusieurs longueurs d’onde provenant du
visible et de l’IR. Il est possible que l’exploitation conjointe de longueurs d’onde issues de ces deux
domaines ait été bénéfique pour les réseaux d’une façon analogue.

Jeu de données Réseau Performance

D0,3
RVB VGGr

0,91±0,014

D0,3
IR 0,98±0,005

D0,3
RVB+IR

VGGfprécoce 1,00±0,000

VGGfintermédiaire 0,96±0,025

VGGftardif 0,96±0,020

TABLEAU 6.1 – Résultats des expériences de fusion des modalités RVB et IR. Dans tous les tableaux de ce
chapitre, le meilleur résultat parmi les configurations testées est indiqué en gras.

Concaténer les modalités à un niveau plus tardif entraînait une performance légèrement in-
férieure par rapport à l’utilisation de la modalité optimale qu’était l’IR. Nous pouvons noter par
ailleurs que l’écart-type de ces performances-ci était supérieur à celui observé dans le cas des
modalités individuelles. Nous avons en effet observé deux cas différents selon les répétitions : soit
les performances obtenues avec VGGfintermédiaire et VGGftardif étaient comparables à celle obtenue
avec VGGr sur le jeu D0,3

IR , soit celles-ci étaient légèrement inférieures. Il semblerait donc que non
seulement l’interaction bénéfique n’était pas possible à un niveau sémantique plus élevé, mais, de
plus, que l’ajout d’une modalité sous-optimale pouvait perturber la convergence du réseau. En
d’autres termes, le réseau pouvait ne pas être tout à fait capable « d’ignorer » une modalité s’il ne
parvenait pas à intégrer bénéfiquement l’information de celle-ci.

6.3 Les difficultés de fusionner des imageries non standard

L’architecture neuronale à deux branches semblait être la structure naturelle permettant de
fusionner deux images alignées. Elle permettait dans notre cas d’étude de bénéficier d’interactions
positives qui émergeaient dans le cadre d’une fusion précoce. Cependant, il existe aussi de nom-
breux cas où les images à fusionner ne sont pas alignées car elles sont de natures différentes. Cette
problématique d’incompatibilité entre modalités est très répandue dans le domaine de l’imagerie
spectrale. En effet, il est courant pour les imageurs spectraux de produire des cubes à la résolution
spatiale faible par rapport à celle permise par des imageurs non-spectraux [Shaw and Burke, 2003]
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et les images RVB et IR allait plus loin qu’un nombre de canaux différents ou des résolutions
spatiales dissemblables. Les images CTIS étaient des images multiplexées où la distance entre deux
pixels traduit tantôt une distance spatiale, tantôt une distance spectrale en fonction de la position
des dits pixels dans l’image. Les performances sur le jeu D0,3

RVB+CTIS, présentées dans le tableau 6.3,
montraient que les réseaux à deux branches étaient sous-optimaux pour la fusion de deux images si
structurellement différentes, et ce même en fusion tardive. Nous pouvons noter aussi que la fusion
précoce ne permettait qu’une performance bien inférieure à celle permise par la modalité optimale.
Cette performance faible était due à certaines répétitions où le réseau se concentrait uniquement
sur la modalité CTIS malgré son caractère sous-optimal pour cette classification.

Jeu de données Réseau Performance

D0,3
RVB VGGr

0,91±0,014

D0,3
CTIS 0,52±0,031

D0,3
RVB+CTIS

VGGfprécoce 0,67±0,121

VGGfintermédiaire 0,91±0,016

VGGftardif 0,89±0,012

TABLEAU 6.3 – Résultats des expériences de fusion des modalités RVB et CTIS.

Ainsi, la question de la fusion d’une image CTIS avec une image plus standard était à rapprocher
d’études traitant de la fusion d’informations spatiales et spectrales qui sont véritablement structu-
rellement différentes. On trouve ce cas en particulier dans le domaine de la sécurité alimentaire
[Borràs et al., 2015] où de nombreux capteurs sont utilisés en parallèle pour juger de la qualité d’un
aliment. Il est courant dans ce domaine qu’une image RVB soit associée à une information spectrale
qui n’est pas représentée sous la forme d’une image, mais plutôt comme un vecteur unidimension-
nel car provenant d’un spectromètre mesurant le spectre de l’aliment en une seule localisation.
Les études de ce domaine suivent souvent des protocoles hybrides entre apprentissage profond et
caractéristiques prédéfinies [Huang et al., 2011; Simonyan and Zisserman, 2014a; Sanaeifar et al.,
2018]. Des caractéristiques telles que les moments et des informations de texture sont extraites des
images RVB avant d’être concaténées avec les informations spectrales conservées telles quelles ou
bien soumises à des algorithmes de réduction de dimension. Des réseaux de neurones sont ensuite
employés pour proposer une prédiction à partir de ces caractéristiques.

6.4 Conclusion

Nous avons présenté dans ce chapitre des résultats d’apprentissage se basant sur la fusion
de données. La fusion d’images parfaitement alignées, un cas rendu possible par l’utilisation de
données simulées, a permis un gain de performance via l’exploitation d’architectures de fusion
dites « précoces », c’est-à-dire où les deux modalités étaient exploitées conjointement dès le début
de l’analyse. Ces gains étaient cohérents avec ceux observés dans la littérature, en particulier celle
relative aux indices végétaux. Cependant, dans le cas d’images non alignées telles que les images
RVB et CTIS, nous n’avons pas obtenu de gain de performance malgré l’implémentation de plu-
sieurs types d’architectures de fusion.

Selon nous, la littérature concernant l’apprentissage automatique dans la sécurité alimentaire
est riche d’enseignements pour la fusion d’informations spatiales et spectrales structurellement
différentes. Il y est présenté des caractéristiques spatiales et spectrales variées, prétraitées afin
d’être combinées efficacement par la suite. Selon nous, un travail important reste à mener dans
le domaine de la fusion spatio-spectrale concernant le développement de telles caractéristiques
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personnalisées. Nous estimons par ailleurs que les pipelines d’apprentissage spécifiques, comme
nous avons proposé avec CTIS-Net pour les images CTIS et comme il existe déjà dans le domaine
des sciences végétales [Louargant et al., 2018] auront aussi leur rôle à jouer.

Nous pensons que les travaux dans cette optique sont encore peu avancés car les signaux
aux formats non-standards tels que les images CTIS sont encore peu exploités dans des pipelines

d’apprentissage automatique, que cela soit dans un cadre de fusion ou non. Rappelons que le
pipeline standard de l’imagerie CTIS mène à la génération d’un cube hyperspectral, dont la fusion
avec une éventuelle image RVB est abondamment étudiée via les algorithmes d’affinage panchro-
matique. Cependant, il n’existe que peu de travaux portant sur la fusion de signaux véritablement
non standards, tels que les signaux comprimés, avec des imageries classiques. Des progrès dans
cette voie bénéficieraient pourtant au champ de l’apprentissage comprimé dans son ensemble, en
permettant d’intégrer plus aisément les méthodes concernées en complément d’autres modalités.
Ces avancées seraient d’autant plus fructueuses que d’autres modalités actuellement acquises
conjointement avec les imageries RVB comme le lidar et le radar commencent tout juste à être
étudiées dans le cadre de l’acquisition comprimée [Sher et al., 2018; Yang et al., 2019].
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Retour et perspectives pour les travaux effectués

Dans ce manuscrit, nous avons abordé plusieurs problématiques liées à l’acquisition d’images
via le spectromètre RVB-IR-CTIS de l’entreprise Carbon Bee. Nous avons en particulier développé
des simulateurs d’images innovants destinés à appuyer l’analyse de scènes complexes en lumière
IR et à évaluer la viabilité du CTIS, un capteur hyperspectral jusqu’alors peu étudié.

Un jeu simulé pour le capteur CTIS

Afin d’étudier la viabilité d’analyses automatiques menées par apprentissage profond sur une
problématique d’intérêt agronomique, nous avons conçu et implémenté plusieurs simulateurs
d’images. D’une part, nous avons généré des cubes hyperspectraux de feuilles de pommier tavelées
à partir d’images de feuilles saines. D’autre part, nous avons bâti un simulateur du système optique
CTIS qui permettait de convertir des cubes hyperspectraux en images CTIS. Nous avons pu grâce
au couplage de ces deux simulateurs procéder à la création d’images CTIS de feuilles tavelées
visuellement proches d’acquisition réelles, et ce en nombre virtuellement illimité. Nous avons par
ailleurs obtenu des premiers résultats encourageants concernant la transférabilité des résultats
d’images simulées vers des images réelles (annexe A). Ces images simulées nous ont permis de
mener des expériences encore inédites dans le champ de recherche de l’imagerie hyperspectrale.

Nous pensons que les travaux portant sur la simulation des cubes hyperspectraux de feuilles
tavelées pourraient être étendus. Il est possible pour commencer de s’intéresser à d’autres maladies
végétales que la tavelure. Il existe en effet de nombreuses infections affectant les plantes dont les
spectres moyens ont été déterminés via l’utilisation de caméras hyperspectrales [Thomas et al.,
2018]. Parmi ces maladies, certaines d’entre elles causent une déviation spectrale faible par rapport
au spectre de la plante saine. Se circonscrire à ces cas permettrait de mettre davantage en valeur
l’intérêt de l’imagerie hyperspectrale puisque celle-ci y apporte un vrai bénéfice par rapport à des
imageries plus classiques (cf. section 4.4.3). Pour aller plus loin, il est aussi possible de se tourner
vers des simulateurs spectraux tels que PROSPECT [Jacquemoud and Baret, 1990]. Ce simulateur
permet de générer des spectres de feuilles en fonction de leur contenu en chlorophylle, caroté-
noïdes, contenu aqueux, etc. Nous nous sommes d’ailleurs servis de ce simulateur pour produire la
figure 1.2) d’une plante saine, mais il peut aussi permettre de représenter des situations de stress
telles que des carences de nutriments ou des sevrages en eau. Ces cas d’étude ont une importance
agronomique et industrielle forte (cf. section 1.1.3), ainsi qu’un intérêt scientifique puisque les si-
gnatures spectrales des symptômes peuvent être subtiles et limitées à certaines gammes restreintes
de longueurs d’onde.

Concernant le simulateur du système CTIS, nous avons implémenté une grande variabilité des
paramètres optiques et spectraux (section 3.2), que nous n’avons toutefois pas exhaustivement
explorée au cours de ce travail (voir par exemple les différentes géométries d’images CTIS possibles,
figure 3.15). Nous espérons qu’ainsi ce simulateur pourra être utile à d’autres études portant sur le
CTIS, même dans le cas de configurations optiques différentes de celles étudiées dans ce manuscrit.
De plus, le découplage volontaire de ce simulateur par rapport au procédé de génération de cubes
hyperspectraux en fait un outil agnostique aux cubes fournis en entrée, pertinent pour des cas
d’étude divers. Enfin, nous avons pris soin d’implémenter le calcul automatique de la matrice
d’action du système quels que soient les paramètres optiques choisis (section 3.2.4). Une perspec-
tive d’utilisation de ce simulateur pourrait être son usage à des fins d’évaluation des nouvelles
stratégies de reconstruction des cubes hyperspectraux à partir de l’espace de mesures. En effet,
de nombreuses innovations ont été apportées au processus de reconstruction dans le domaine
du CT sans jamais être adaptées au champ connexe de l’imagerie CTIS (section 2.2.4). Dans ce
manuscrit, nous n’avons pas proposé de contribution concernant cette reconstruction, mais nous
estimons que cet axe n’est pas à négliger. Malgré les avantages de l’apprentissage comprimé pour
certaines applications, l’acquisition d’un cube hyperspectral complet peut avoir de la valeur dans
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d’autres, comme par exemple dans un cadre de recherche de longueurs d’onde optimales pour une
détection.

Apprentissage comprimé sur images CTIS

Grâce aux deux simulateurs développés, nous avons mené pour la première fois un apprentis-
sage comprimé réalisé sur des images CTIS dans le cadre d’une classification binaire. Nous avons
pu montrer que les performances d’apprentissage étaient comparables à celles obtenues grâce à un
apprentissage mené sur des cubes hyperspectraux reconstruits, et ce avec un temps d’entraînement
et de prédiction considérablement réduits. Nous avons de plus conçu une nouvelle architecture
neuronale spécifique aux images CTIS qui a permis d’améliorer les performances de classification
par rapport à l’emploi d’une architecture générique. Par ailleurs, nous avons comparé les perfor-
mances obtenues avec l’imagerie CTIS à celles permises par les imageurs RVB et IR. Si pour notre
cas d’étude, ces imageurs standards étaient autant, voire plus, efficaces que l’imagerie CTIS, nous
avons souligné la polyvalence du CTIS qui permettait d’étudier une large gamme de longueurs
d’onde d’une scène sans a priori tandis qu’une utilisation des imageurs standards nécessitait une
connaissance en amont des longueurs d’onde optimales. De surcoît, nous avons montré qu’un
gain de performance était possible en exploitant conjointement le CTIS avec ces imageurs plus
standards.

Nous voyons deux axes de recherche concernant l’apprentissage comprimé sur images CTIS. Le
premier consiste à poursuivre la recherche d’architectures et de prétraitements spécialisés pour
l’analyse de ces images. Il pourrait par exemple être bénéfique d’intégrer de façon structurelle une
éventuelle information a priori sous la forme de longueurs d’onde connues comme optimales ou
bien supposées comme telles. Puisque la position de ces longueurs d’onde dans les projections
de l’ordre 1 sont fixes et connues d’avance, un simple prétraitement consistant à augmenter la
luminosité des zones concernées dans l’image pourrait suffire pour mettre en avant cette infor-
mation « aux yeux » du réseau (figure C.1, a). Nous pouvons aussi imaginer plutôt intégrer cette
information à la structure du réseau via l’intégration de mécanismes d’attention [Vaswani et al.,
2017]. Un autre prétraitement possible consisterait à approximativement superposer les différentes
projections de l’ordre 1. Il s’agirait d’appliquer des rotations et des retournements à chaque pro-
jection afin de les aligner spectralement entre elles. Il serait alors possible de concaténer celles-ci
selon l’axe des canaux afin de regrouper les informations spectrales et ainsi rendre l’exploitation
des caractéristiques plus aisée pour le réseau (figure C.1, b) 25. Une autre voie, compatible avec
un tel repliement ou bien avec le procédé d’alignement que nous avons proposé pour CTIS-Net
(figure 4.13), consisterait en l’implémentation de noyaux convolutifs aux formes non-standards.
Nous pourrions imaginer des noyaux en forme de « + » ou bien un ensemble au sein d’une même
couche de noyaux horizontaux et verticaux, ce qui permettrait d’intégrer les informations spatiale
et spectrale des projections de façon plus décorrélée qu’un noyau carré (figure C.1, c). Une telle
configuration n’est pas sans rappeler les opérations de convolutions séparables selon la profondeur
(depthwise separable convolutions en anglais) [Chollet, 2017] développées à des fins de réduction
du nombre de paramètres des réseaux afin de les implémenter sur des supports embarqués. Nous
pourrions imaginer adapter la philosophie de cette implémentation afin d’améliorer l’exploitation
d’une information spatio-spectrale.

Le deuxième axe consiste, plutôt qu’à rechercher des modifications du pipeline d’apprentissage
spécifiques aux images CTIS, à examiner celles qui bénéficieraient à d’autres signaux comprimés.
Il s’agit en d’autres termes d’analyser s’il existe des intuitions développées lors de l’étude de
l’apprentissage comprimé sur images CTIS qui pourraient être transposables à d’autres signaux.

25. Nous qualifions cette superposition d’« approximative » car la superposition exacte des projections n’est pas
possible. En effet, comme le montre la figure 3.13, les projections ne sont pas symétriques par rapport à l’ordre 0, comme
nous pourrions le croire à première vue, puisque les tranches spectrales individuelles ne sont pas retournées par l’action
du réseau de diffraction.
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données produites. Nous pouvons imaginer en particulier générer des masques de tavelure selon
un procédé proche de celui que nous avons implémenté pour le simulateur « modèle de cano-
pée » (figure 3.4) et contraindre un GAN à générer des images de feuilles tavelées suivant ce masque.

Plus étonnant, le champ des déformation de données, c’est-à-dire l’application de transforma-
tions simples aux images du jeu initial, a également beaucoup progressé ces dernières années. Un
sous-champ de l’apprentissage automatique appelé l’automatic machine learning en anglais [Yao
et al., 2018], ou autoML, a été développé récemment. Ce champ regroupe les meta-algorithmes
qui visent à optimiser les choix d’hyperparamètres, au sens large, d’un pipeline d’apprentissage
automatique. Bien que l’autoML se concentre en particulier sur la recherche d’architectures neuro-
nales [Zoph and Le, 2016], d’autres travaux du champ s’intéressent à toutes les autres étapes du
pipeline d’apprentissage, de la collecte des données à l’évaluation des performances du réseau [He
et al., 2021]. La déformation de données peut ainsi être optimisée via des méthodes destinées à
sélectionner automatiquement les meilleures transformations et les valeurs de leurs paramètres à
appliquer au vu du jeu de données [Cubuk et al., 2018]. Ces méthodes ont un apport en particulier
lorsque les a priori structuraux de la scène à augmenter sont méconnus ou entachés d’incertitude.
Il serait éclairant de comparer les déformations proposées avec ces méthodes par rapport à celles
que nous avons choisies en nous basant sur la littérature.

Enfin, concernant le simulateur « modèle de canopée », nous pensons que la discussion initiée
à la section 5.4.4 à propos de l’universalisation des simulateurs est essentielle. Plusieurs questions
se cachent derrière cette notion d’universalité d’un modèle et nous estimons qu’une étude par
ablation telle que celle menée à la section 5.4.2 permet d’y apporter des éléments de réponse. D’une
part, une telle étude permet d’identifier, pour une tâche donnée, les traits de réalisme du simulateur
qui sont les plus utiles pour améliorer la classification du jeu réel. Par exemple, dans notre cas
d’étude, nous avions ainsi déterminé que la simulation de la courbure des feuilles constituait un
trait de réalisme précieux (figure 5.20). Mais une telle étude est par ailleurs indicatrice, pour un
simulateur donné, d’autres tâches qui pourraient bénéficier des images générées. En effet, les traits
de réalisme n’amenant pas de gain de performance sur des données réelles, et donc écartables,
permettent de partiellement généraliser l’usage du simulateur. Par exemple, dans notre cas d’étude,
puisque nous avions conclu qu’il n’était pas nécessaire de simuler une structure en plants des
feuilles, cela laissait supposer que ce trait n’était pas utile au réseau pour détecter des lésions de
tavelure, et donc que des jeux de données présentant d’autres répartitions des feuilles pourraient
bénéficier de ce simulateur. De plus, le gain de performance substantiel obtenu malgré une simpli-
fication extrême du simulateur suggérait un intérêt partiel de celui-ci pour des tâches variées dans
le domaine des sciences végétales.

Ainsi, il serait enthousiasmant de se procurer d’autres jeux de données de segmentation du
domaine des sciences végétales et d’explorer la transférabilité du simulateur à ces tâches. En
particulier, nous pourrions imaginer créer un ensemble de simulateurs plus simples « contenus »
dans le simulateur « complet », en « amputant » progressivement des étapes comme il a été fait
au cours de l’étude par ablation, puis de mettre en place un pré-entraînement « hiérarchisé ».
Nous entendons par là le pipeline consistant à mener, pour une tâche donnée, un premier pré-
entraînement sur des images issues du simulateur le plus simple, puis d’enchaîner d’autres pré-
entraînements sur des images issues de simulateurs de plus en plus en plus spécifiques si l’on
constate que cela amène une augmentation des performances sur le jeu de données réelles étudié.
Cette idée s’aligne avec la hiérarchisation sémantique des caractéristiques dans un CNN entraîné,
où les premières couches apprennent des caractéristiques génériques à toute tâche de vision et
les couches suivantes se spécialisent graduellement pour la tâche étudiée. Si une large gamme de
jeux de données est disponible, nous pourrions même imaginer formaliser le niveau de précision
optimal du simulateur pour un jeu donné en fonction d’une notion de « distance » au jeu pour lequel
le simulateur a été initialement développé. Ainsi, le temps nécessaire pour le développement d’un
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simulateur complet pourrait être davantage rentabilisé en créant un continuum de simulateurs
variant entre universalité et spécificité. En outre, nous pensons que cette méta-procédure pourrait
évidemment être appliquée à d’autres modèles hors du domaine des sciences végétales.

Vers un monde plus sobre

Les travaux que nous avons menés dans cette thèse s’inscrivent dans la tendance actuelle de
l’apprentissage en peu d’exemples (Few-Shot Learning en anglais, ou FSL) [Wang et al., 2020b]. Ce
paradigme a été développé récemment en réaction aux exigences démesurées de l’apprentissage
profond en termes de nombre de données et de temps de calcul. Il regroupe l’ensemble des mé-
thodes qui permettent de mener à bien un apprentissage profond avec un nombre de données
annotées restreint. La revue de littérature de [Wang et al., 2020b] catégorise ces méthodes selon
trois axes : augmenter les données afin de se ramener au cas de l’apprentissage profond classique,
contraindre l’architecture du réseau pour limiter l’espace des frontières de décision à rechercher,
aider l’optimiseur de poids à effectuer cette recherche plus efficacement. Les travaux de ce manus-
crit se sont inscrits dans un de ces axes, que cela soit via l’implémentation de diverses méthodes
de simulation de données, l’utilisation de réseaux de taille réduite ou encore l’implémentation de
pré-entraînements sur des tâches afférentes afin de faciliter l’optimisation des poids 26.

De plus, il nous semble que l’apprentissage comprimé, paradigme auquel nous avons consacré
une part importante de nos travaux, est compatible avec la philosophie plus large du FSL. En
travaillant avec succès directement sur des signaux « intermédiaires » d’un capteur d’imagerie
computationnelle et en évitant ainsi la reconstruction des signaux originaux, la génération de
données elle-même a un coût limité. Nous considérons d’ailleurs que le système optique du CTIS
lui-même est proche de cette sensibilité puisqu’il permet d’acquérir des images hyperspectrales
pour une fraction du prix et du temps d’acquisition nécessaires aux caméras à balayage standards et
est partie prenante du développement récent de caméras hyperspectrales à bas coût (section 2.1.2).
Pour résumer en un mot le leitmotiv des travaux que nous avons menés pour réduire tous les
coûts des pipelines d’apprentissage automatique, qu’ils soient liés à l’acquisition des données, leur
traitement, leur annotation, ou bien au procédé d’apprentissage en lui-même, nous estimons que
nous avons suivi une démarche de sobriété.

Pour conclure, nous souhaiterions arguer — et tout ce qui suit n’engage que l’auteur de ces
lignes — que la sobriété prônée dans des domaines comme le FSL et l’apprentissage comprimé
reflète une frugalité dont la nécessité s’impose de plus en plus nettement, dans le domaine de
l’apprentissage automatique certes, mais plus largement dans la société humaine en général. Il
est notoire que l’apprentissage profond est un champ de recherche gourmand en ressources. Les
entraînements réalisés par les géants du domaine requièrent des parcs de cartes graphiques et
une consommation électrique en conséquence. À cela s’ajoute le prix d’acquisition des données :
nous pouvons par exemple citer les voitures autonomes de Tesla qui circulent uniquement afin de
fournir des images destinées à entraîner des nouvelles voitures autonomes 27 [Karpathy, 2020]. De
plus, les succès du domaine dopent le déploiement massif d’objets connectés [Shanthamallu et al.,
2017] eux aussi énergivores. Comme l’accès à une source gargantuesque d’énergie sous la forme de
charbon a permis l’avènement de la révolution industrielle il y a deux siècles, le développement de
la puissance de calcul et des moyens d’acquisition massive de données a permis l’envol du champ
de l’apprentissage profond voilà une décennie. Mais aurons-nous toujours les moyens de soutenir

26. Il faut noter que les méthodes développées récemment qui se revendiquent explicitement comme adoptant le
paradigme FSL suivent des protocoles élaborés, tirant souvent partie d’un co-apprentissage sur des tâches connexes pour
lesquelles on dispose de jeux de données réels annotés conséquents. Nous n’avons pas développé de telles méthodes,
mais estimons malgré cela que nos travaux ont suivi les objectifs affichés du FSL.

27. ... situation qui, pour le cycliste convaincu qu’est votre serviteur, incarne une certaine idée du neuvième cercle de
l’Enfer.
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nos ambitions?

M. Jancovici, ingénieur spécialisé dans le domaine de l’énergie et du dérèglement climatique,
souligne depuis des années le lien causal entre disponibilité de l’énergie fossile — en particulier, le
pétrole — et PIB mondial [Jancovici, 2019]. Selon lui, aucune source d’énergie ne pourra remplacer
à court ou moyen terme le pétrole, dont le pic de production est à présent derrière nous [Jancovici,
2020]. Par conséquent, il prévoit une décroissance inéluctable du PIB, qui se traduira à la fois par
un déclin de la production industrielle et de l’investissement dans la recherche. Pour lui, il ne sera
pas possible de conserver tout l’héritage technologique des deux derniers siècles. Il y aura donc un
arbitrage à réaliser quant aux technologies que nous souhaiterons conserver, ainsi que celles dans
lesquelles nous continuerons à investir en recherche et développement malgré un déclin continuel
des ressources disponibles. Si ce scénario se vérifie, la question de la pertinence de l’intelligence
artificielle (IA) dans nos sociétés pourra être posée, en particulier lorsque l’intérêt de l’application
associée est discutable [Branwen, 2019], voire dangereuse [Korshunov and Marcel, 2018]. S’il n’est
sans doute pas de bon ton de conclure un manuscrit traitant de l’IA par une remise en question
de l’intérêt de l’intégralité du champ pour l’humanité, nous estimons que l’IA gourmande ayant
basé sa renaissance sur la consommation massive d’énergie n’a pas nécessairement sa place dans
le monde à venir, en particulier lorsque les applications qui en découlent ne permettent pas un
progrès ou une augmentation du bonheur évident de l’humanité. Même dans le cas d’applications
plus vertueuses qu’il pourrait être pertinent de pérenniser et développer — et nous considérons
par exemple les travaux de Carbon Bee participant à la transition vers une agriculture plus verte
comme tels — , nous espérons que la philosophie de sobriété dont nous avons brossé quelques
traits dans ce manuscrit constituera un des piliers de cette IA du futur.
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Valorisations

Publications

Les travaux menés dans ce manuscrit ont été publiés sous plusieurs formes. Pour valoriser la
transdisciplinarité de ces travaux, nous avons pris soin de les présenter à plusieurs communautés
scientifiques : imagerie computationnelle, vision par ordinateur pour sciences végétales, optique.

— Journaux internationaux :

— Computers and Electronics in Agriculture pour les travaux concernant la simulation de
données pour améliorer la détection de tavelure en conditions industrielles (chapitre 5)
[Douarre et al., 2019c].

— Applied Optics pour les travaux concernant l’apprentissage comprimé sur images CTIS
avec VGG (chapitres 3 et 4) [Douarre et al., 2020a].

— (en révision) IEEE Transactions on Computational Imaging pour les travaux concernant
l’apport de l’architecture CTIS-Net à l’apprentissage comprimé sur images CTIS.

— Conférence internationale :

— (en révision) Optical Society of America Digital Holography and Three-Dimensional Ima-

ging Topical Meeting pour les travaux du chapitre 4 ainsi que l’étude de transférabilité
entre images CTIS simulées et réelles (annexe A).

— Ateliers internationaux :

— Workshop on Machine Learning Assisted Image Formation pour les premiers résultats
des travaux des chapitres 3 et 4 [Douarre et al., 2019b].

— International Workshop on Image Analysis Methods in the Plant Sciences pour les travaux
concernant le recalage d’images réelles RVB et IR (annexe B) [Douarre et al., 2019a].

— Dissémination nationale :

— Rencontres du végétal pour les travaux du chapitre 5 [Douarre et al., 2018b].

— Réunion du Groupement de Recherche « Information, Signal, Images et Vision », journée
à thème « Intelligence artificielle / Apprentissage machine pour l’agriculture » pour les
travaux des chapitres 3 et 4 [Douarre et al., 2020b].

— (à venir) Réunion du Groupement de Recherche « Information, Signal, Images et Vi-
sion », journée à thème « Imagerie Optique Non Conventionnelle » pour les travaux du
chapitre 4.

Codes source et jeux de données

Le code du simulateur de CTIS présenté au chapitre 3 est disponible aux adresses https:

//gitlab.liris.cnrs.fr/cdouarre/ctis-simulator ethttps://github.com/CarbonBee/
ctis-simulator.

Le jeu de données annoté d’images IR de canopées de feuilles tavelées étudié au chapitre 5 est
disponible à l’adresse http://eidolon.univ-lyon2.fr/cdouarre_ScabIrDataset/dataset.
zip.

Le jeu de données d’images CTIS simulées et réelles utilisé pour l’étude de transférabilité présen-
tée à l’annexe A est disponible à l’adressehttp://eidolon.univ-lyon2.fr/MNIST-CTIS-datasets.
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ANNEXES

A.2 Entraînement et résultats

A.2.1 Protocole d’entraînement

Pour tous les apprentissages présentés dans cette annexe, nous avons suivi un protocole d’en-
traînement identique à celui décrit aux sections 4.1.2 et 4.4.1 à deux différences près. Premièrement,
nous avons modifié la métrique de performance, le MCC n’étant défini que dans un cas de classifi-
cation binaire. Nous avons choisi à la place une métrique standard en classification multi-classes :
le taux de classification correcte, qui correspondait au ratio entre le nombre d’images bien clas-
sées et le nombre d’images total. Cette métrique ne s’interprétait pas exactement de la même
manière que le MCC. En particulier, une valeur positive de cette métrique n’indiquait pas néces-
sairement une classification même partiellement réussie, puisqu’une prédiction aléatoire menait
à une performance égale à 1

nombre de classes , soit 0,25 dans notre cas. Notons aussi, même si cela
ne nous concernait pas dans cette étude, que, contrairement au MCC, cette métrique était peu
adaptée à une analyse pour des classes aux effectifs déséquilibrés. L’autre changement apporté au
protocole était que, cette étude annexe ayant un caractère plus exploratoire que celles menées dans
le manuscrit, nous avons réalisé une seule répétition par apprentissage au lieu de dix.

A.2.2 Expériences préliminaires

Avant toute expérimentation concernant les données réelles, nous avons réalisé une expérience
préliminaire concernant les données simulées uniquement. Plus précisément, nous avons divisé
DCTIS simulé en blocs d’entraînement, de validation et de test, conduit un entraînement avec VGGr
(figure 4.2) sur le bloc d’entraînement avant de réaliser une prédiction sur le bloc de test. La per-
formance était égale à 1, ce qui signifiait que la prédiction était parfaite. Ce résultat a permis de
confirmer que la tâche de classification était très aisée pour un réseau de neurones, et donc que
toute performance en dessous de 1 lors de l’application du réseau sur des données réelles serait
attribuable à un manque de transférabilité.

Afin d’étudier la transférabilité du savoir acquis sur les images simulées pour les images réelles,
nous avons conduit un entraînement sur le bloc d’entraînement de DCTIS simulé jusqu’à conver-
gence sur le bloc de validation de DCTIS simulé, puis mené une prédiction sur DCTIS réel. Les résultats
obtenus indiquaient une transférabilité nulle. Cependant, nous nous sommes rendus compte que
celle-ci s’améliorait considérablement lorsque nous utilisions pour la prédiction sur DCTIS réel, à la
place des poids convergés sur les données simulées, des poids provenant d’époques antérieures,
avant la convergence. En d’autres termes, au cours de l’entraînement sur données simulées, le
réseau semblait d’abord apprendre un savoir qui était transférable aux données réelles, avant de
surapprendre 29 sur le jeu simulé. La figure A.6 illustre le comportement que nous observions.

La convergence basée sur le bloc de validation de DCTIS simulé n’était donc pas un bon critère
d’arrêt pour une transférabilité optimale. Nous avons construit en réponse à cette observation le
jeu Dtransférabilité constitué de l’intégralité du jeu DCTIS simulé en tant que bloc d’entraînement, de
la moitié de DCTIS réel en tant que bloc de validation et de l’autre moitié en tant que bloc de test
(figure A.7). La séparation de DCTIS réel a été réalisée en prenant en compte les classes des images
de manière à obtenir autant d’images de chaque classe dans le bloc de validation de Dtransférabilité

que dans celui de test. Ainsi, des images réelles servaient à évaluer si l’entraînement sur des images
simulées avait convergé. Nous avons utilisé ce jeu pour conduire les expériences de transférabilité
présentées dans les sections suivantes.

29. Le terme de « surapprentissage » est bien ici à comprendre comme « surapprentissage par rapport au bloc de test ».
L’expérience préliminaire sur les données simulées a bien montré que le réseau était tout à fait capable d’apprendre sur
données simulées sans surapprentissage rédhibitoire lorsque le bloc de test était lui aussi constitué de données simulées.
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B Recalage d’images multimodales

B.1 Contexte : un décalage substantiel

Lorsque plusieurs capteurs distincts sont employés dans un cadre de vision par ordinateur
multimodale, il est très courant que les différentes images obtenues lors d’une acquisition donnée
ne soient pas alignées entre elles. Ce désalignement survient en particulier lorsqu’il existe un
décalage physique entre les objectifs des capteurs qui acquièrent alors la scène selon des points de
vue différents. On trouve un tel décalage dans la caméra Carbon Bee puisque les trois objectifs des
capteurs RVB, IR et CTIS sont distants de quelques centimètres au sein du boitier (figure I.4). Le
désalignement des images obtenues est d’autant plus fort que la distance entre la scène acquise
et la caméra est faible par rapport à la distance entre les objectifs. Ainsi, le décalage est faible
lors d’applications où la caméra est montée sur un drone et procède à des acquisitions plusieurs
dizaines de mètres au-dessus du sol. Mais dans de nombreuses autres applications industrielles qui
nécessitent que la caméra soit tenue à la main ou bien montée sur un tracteur, le désalignement
peut poser problème. Comme discuté au chapitre 6, un tel désalignement est souvent néfaste pour
les analyses multimodales et nécessite d’être corrigé.

Pour illustrer l’importance de ce désalignement dans ce cas, nous avons acquis un ensemble
multimodal d’images de plants de pommiers avec la caméra Carbon Bee à l’IRHS. Les conditions
d’acquisition étaient identiques à celles suivies pour la constitution du jeu Doriginal présenté au
chapitre 5. Nous avons acquis pour 50 positions différentes une image RVB et une image IR si-
multanément. Nous avons noté Ddécalage cet ensemble de 50 paires d’images (figure B.1). Nous
pouvons voir dans cette figure que la distance entre la caméra et les plants était variable d’une paire
d’images à l’autre en fonction de la taille des plants et de la hauteur de leur support. Nous pouvons
y constater par ailleurs que les conditions de luminosité variaient en fonction de la localisation des
plants dans la serre.

Le désalignement entre les images RVB et IR est illustré figure B.2, où nous avons souligné l’écart
entre les positions de certaines feuilles spécifiques entre les deux images. Les décalages entre les
encadrements jaunes et rouges de la sous-figure (b) indiquaient un désalignement suffisamment
important pour nuire à l’apprentissage d’un réseau dans ses premières couches (cf. note 23). Ce
désalignement pouvait être encore plus délétère dans le cas d’un tuilage comme celui que nous
avons implémenté pour l’étude du chapitre 5. Aussi nous sommes-nous intéressés à procéder à un
recalage des images qui viendrait en prétraitement d’un tel apprentissage.

B.2 Différentes familles de recalage

Dans le champ du traitement d’images, on appelle recalage le procédé permettant d’aligner
deux images I1 et I2. Il s’agit plus formellement de trouver la transformation géométrique à ap-
pliquer à I1 qui permet de maximiser une métrique de similarité entre I1 transformée et I2. Si les
CNNs sont régulièrement employés pour trouver cette transformation [Haskins et al., 2020], il est
nécessaire de leur fournir une quantité importante de paires d’images dont le décalage est connu.
Dans notre cas, nous n’avions pas à notre disposition une telle base annotée, et nous nous sommes
par conséquent tournés vers les méthodes de recalage issues du champ du traitement d’images. Il
existe dans ce cadre deux familles d’algorithmes de recalage [Zitova and Flusser, 2003].

La première est basée sur la recherche de caractéristiques. Les caractéristiques les plus lar-
gement utilisées à cette fin sont celles issues de l’algorithme SIFT. Une caractéristique SIFT est
définie par une position dans l’image, que l’on appelle un point saillant, et un vecteur de carac-
téristiques qui décrit le voisinage de ce point. Dans le cadre d’un recalage, ces caractéristiques
sont calculées dans chacune des deux images, puis un appariement est réalisé entre les points
saillants de chaque image en comparant leurs vecteurs descriptifs deux à deux et en associant les
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recherchée comme étant une homographie. Comme expliqué au chapitre 5, l’homographie est la
transformation qui existe entre deux images acquises par deux capteurs d’une même scène plane.
Cette description était proche du protocole d’acquisition de Ddécalage, mais pour être exact, il faut
noter que les scènes acquises dans le jeu n’étaient pas planes. En effet, la distance entre l’objectif
et les feuilles de pommier était variable en fonction de la hauteur d’attachement des feuilles sur
les tiges des plants auxquels elles appartenaient. Pour être plus précis qu’une transformation par
homographie, il aurait fallu idéalement s’intéresser à des transformations plus complexes, dites
« non-rigides », capables de modéliser des déformations locales des images [Crum et al., 2004].
Cependant, ces méthodes étaient bien plus gourmandes en temps et en ressources calculatoires. De
plus, le recalage n’aurait été, même avec ces méthodes, pas parfait, car l’échelonnage des feuilles
sur l’axe des tiges menait à des occultations entre elles qui différaient en fonction de la modalité.

Il était par ailleurs nécessaire que l’utilisateur choisisse la métrique de similarité à maximiser.
La métrique la plus standard était la corrélation pixel à pixel entre les images. En notant d1 ×d2

pixels la dimension des images, alors cette métrique se calculait comme

corrélation =
∑d1

x=0

∑d2
y=0 I1[x, y].I2[x, y]

√

∑d1
x=0

∑d2
y=0 I1[x, y]2.I2[x, y]2

. (6.1)

Ainsi, plus les pixels à la même position dans les deux images recalées avaient des valeurs proches
deux à deux, plus la valeur de cette métrique était haute. Dans le cas d’images multimodales,
cependant, cette mesure pouvait engendrer des résultats fallacieux. En effet, un objet donné de
l’image pouvait apparaître de façon très différente d’une modalité à l’autre. Dans notre cas par
exemple, les feuilles saines étaient beaucoup plus lumineuses en lumière IR qu’en lumière visible.
Un recalage qui aurait aligné parfaitement les paires d’images RVB/IR aurait donc mené à une
valeur faible de corrélation pixel à pixel.

Il existe d’autres métriques qui permettaient de prendre en compte au moins partiellement la
multimodalité. Nous avons choisi parmi celles-ci le coefficient de corrélation amélioré (Enchanced

Correlation Coefficient en anglais, ou ECC) [Evangelidis and Psarakis, 2008]. L’ECC de deux images,
qui prenait des valeurs entre 0 et 1, se calculait ainsi :

ECC =
∑d1

x=0

∑d2
y=0 Î1[x, y].Î2[x, y]

√

∑d1
x=0

∑d2
y=0 Î1[x, y]2.Î2[x, y]2

, (6.2)

où la notation Î signifiait

I−
∑d1

x=0

∑d2
y=0 I[x,y]

d1.d2
√

∑d1
x=0

∑d2
y=0 I[x, y]2

. (6.3)

La normalisation des images (equation 6.3) permettait de s’affranchir partiellement des différences
de luminosité causées par la multimodalité. D’autres métriques telles que l’information mutuelle
[Shannon, 1948] qui prend une valeur haute lorsque tous les pixels de valeur p1 dans I1 sont alignés
avec des pixels proches d’une valeur p2 dans I2 sans que les valeurs p1 et p2 aient de l’importance,
auraient aussi été pertinentes [Wang et al., 2010].

Nous avons utilisé cette métrique comme valeur à optimiser pour le recalage par intensité, ainsi
qu’en tant que métrique de performance pour évaluer la qualité du recalage à l’échelle de Ddécalage

pour les deux familles de recalage. Plus précisément, nous avons désigné par « performance » la
différence moyenne d’ECC entre toutes les paires de Ddécalage telles quelles d’une part, et après
avoir appliqué l’algorithme de recalage sur ces paires de l’autre.
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B.3.1 L’échec du recalage par caractéristiques

Nous avons implémenté un recalage par caractéristiques SIFT sur le jeu Ddécalage. Ce recalage a
mené à des résultats médiocres : les déformations proposées étaient aberrantes, et la performance
était négative, c’est-à-dire que les paires originales étaient mieux alignées initialement qu’après
l’étape de recalage. Après inspection, il s’avéra que, si de nombreux points saillants étaient bien
calculés sur chacune des images, l’étape d’appariement de ces points était en échec. Un exemple
d’appariement défaillant est proposé figure B.5.

FIGURE B.5 – Appariement des caractéristiques SIFT sur une paire d’images de Ddécalage. Les lignes noires tra-
cées entre les deux images représentent chacune une paire de points saillants appariés. Ne sont représentées
que les paires les plus fortement appariées, c’est-à-dire celles où la proximité entre les vecteurs descriptifs
des points saillants était supérieure à une certaine valeur seuil.

Nous pouvons constater dans cette figure que les appariements étaient incorrects : la plupart
des paires de points saillants ne correspondaient pas au même élément spatial. Un appariement
correct aurait mené à des lignes noires à peu près parallèles entre elles. Selon nous, ce recalage
par caractéristiques a échoué pour deux raisons. Premièrement, la multimodalité compliquait
l’appariement de points saillants : le vecteur descriptif d’un même élément pouvait être différent
selon la modalité d’acquisition. Deuxièmement, les feuilles étaient des structures très similaires les
unes aux autres, ce qui pouvait facilement mener à des vecteurs descriptifs proches et donc à des
appariements hasardeux.

B.3.2 Une adaptation du recalage par intensité

Nous avons par ailleurs implémenté un recalage par intensité. Nous avons désigné l’image IR
comme l’image déformable, et nous avons initialisé la transformation à la transformation nulle,
c’est-à-dire que l’image IR acquise telle quelle dans Ddécalage était utilisée comme image initiale.
L’algorithme de descente de gradient était utilisé comme optimiseur. Ce recalage a permis d’obtenir
une performance de 0,084, un résultat significativement meilleur que le recalage par caractéris-
tiques. Cependant, nous avons constaté que pour de nombreuses images, l’algorithme de recalage
convergeait en quelques itérations seulement, et que les transformations optimales renvoyées
étaient alors extrêmement proches de la transformation nulle. Nous avons fait l’hypothèse que
dans ces cas, l’optimiseur utilisé dans l’algorithme était rapidement pris dans un maximum local
d’ECC. En effet, les images de Drecalage comportaient de nombreuses fréquences hautes, causées
non seulement par les bords des feuilles mais aussi par leur texture. Nous supposions qu’en consé-
quence, la forme de la fonction d’ECC selon les paramètres de l’homographie était hautement
non-convexe, et donc difficile à optimiser.

En réponse à cette observation, nous avons implémenté un prétraitement sur les paires d’images
afin de rendre cette fonction plus lisse. Nous avons appliqué un redimensionnement afin de ré-
duire la taille des images, suivi d’une opération de flou gaussien. La transformation optimale était
calculée sur ces images prétraitées, avant d’être appliquée aux images non prétraitées. La métrique
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et que les seules informations de haute fréquence restantes provenaient des bords des feuilles
particulièrement marqués, qui étaient des caractéristiques robustes pour un recalage multimodal.
En effet, les détails estompés par le prétraitement pouvaient même être trompeurs : les structures
internes des feuilles pouvaient correspondre à des taches de tavelure dans les images IR et à des
nervures dans les images RVB par exemple. En d’autres termes, le prétraitement que nous avons
proposé permettait de contrôler l’échelle de détail auquel le recalage s’effectuait.

FIGURE B.8 – Paire d’images présentée dans la figure B.2, après application du prétraitement décrit avec
d = 0,1 et σ= 4.

B.4 Conclusion

Nous avons proposé dans cette annexe un protocole de recalage basé sur le recalage par
intensité et adapté aux scène auto-similaires et aux nombreuses fréquences hautes comme les
images de canopée. Nous estimons que grâce au recalage effectué ainsi, les deux modalités étaient
suffisamment alignées pour qu’un apprentissage par CNN puisse être mené sur les informations
conjointes RVB et IR. Cette fusion a montré son potentiel dans des conditions simulées pour une
détection optimale de lésions de tavelure (tableau 6.1).

152



Références

Abade, A. S., Ferreira, P. A., and Vidal, F. d. B. (2020). Plant diseases recognition on images using
convolutional neural networks : A systematic review. arXiv preprint arXiv :2009.04365.

Abdelghafour, F., Keresztes, B., Germain, C., and Costa, J.-P. D. (2020). In field detection of downy
mildew symptoms with proximal colour imaging. Sensors, 20(16) :4380.

Adler, A., Elad, M., and Zibulevsky, M. (2016). Compressed learning : A deep neural network
approach. arXiv preprint arXiv :1610.09615.

Al Hussani, M. T. and Al Hayani, M. H. A. (2014). The use of filtered back projection algorithm for
reconstruction of tomographic image. Al-Nahrain Journal for Engineering Sciences, 17(2) :151–
156.

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal,
A. A. S., and Asari, V. K. (2018). The history began from alexnet : A comprehensive survey on deep
learning approaches. arXiv preprint arXiv :1803.01164.

Andor, O. I. (2020). How to define the quantum efficiency of ccd cameras. https://andor.oxinst.
com/learning/view/article/ccd-spectral-response-(qe). Accédé : 2020-11-13.

Arce, G. R., Brady, D. J., Carin, L., Arguello, H., and Kittle, D. S. (2013). Compressive coded aperture
spectral imaging : An introduction. IEEE Signal Processing Magazine, 31(1) :105–115.

Arivazhagan, S., Shebiah, R. N., Ananthi, S., and Varthini, S. V. (2013). Detection of unhealthy
region of plant leaves and classification of plant leaf diseases using texture features. Agricultural

Engineering International : CIGR Journal, 15(1) :211–217.

Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv :1701.04862.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In
International conference on machine learning, pages 214–223.

Arsenovic, M., Karanovic, M., Sladojevic, S., Anderla, A., and Stefanovic, D. (2019). Solving current
limitations of deep learning based approaches for plant disease detection. Symmetry, 11(7) :939.

Bacca, J., Galvis, L., and Arguello, H. (2020). Coupled deep learning coded aperture design for
compressive image classification. Optics Express, 28(6) :8528–8540.

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet : A deep convolutional encoder-
decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine

intelligence, 39(12) :2481–2495.

Baltrušaitis, T., Ahuja, C., and Morency, L.-P. (2018). Multimodal machine learning : A survey and
taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2) :423–443.

Bannari, A., Morin, D., Bonn, F., and Huete, A. (1995). A review of vegetation indices. Remote sensing

reviews, 13(1-2) :95–120.

153



REFERENCES

Barth, R., IJsselmuiden, J., Hemming, J., and Van Henten, E. J. (2018). Data synthesis methods for
semantic segmentation in agriculture : A capsicum annuum dataset. Computers and electronics

in agriculture, 144 :284–296.

Bayer, B. E. (1976). Color imaging array. US Patent 3,971,065.

Behmann, J., Steinrücken, J., and Plümer, L. (2014). Detection of early plant stress responses in
hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93 :98–111.

Belin, É., Rousseau, D., Boureau, T., and Caffier, V. (2013). Thermography versus chlorophyll
fluorescence imaging for detection and quantification of apple scab. Computers and electronics

in agriculture, 90 :159–163.

Ben Hamza, A., He, Y., Krim, H., and Willsky, A. (2005). A multiscale approach to pixel-level image
fusion. Integrated Computer-Aided Engineering, 12(2) :135–146.

Benoit, L., Benoit, R., Belin, É., Vadaine, R., Demilly, D., Chapeau-Blondeau, F., and Rousseau, D.
(2016). On the value of the kullback–leibler divergence for cost-effective spectral imaging of
plants by optimal selection of wavebands. Machine Vision and Applications, 27(5) :625–635.

Benoit, L., Rousseau, D., Belin, É., Demilly, D., and Chapeau-Blondeau, F. (2014). Simulation of image
acquisition in machine vision dedicated to seedling elongation to validate image processing root
segmentation algorithms. Computers and electronics in agriculture, 104 :84–92.

Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of experimental

botany, 58(4) :855–867.

Boas, F. E. and Fleischmann, D. (2012). Ct artifacts : causes and reduction techniques. Imaging in

medicine, 4(2) :229–240.

Borràs, E., Ferré, J., Boqué, R., Mestres, M., Aceña, L., and Busto, O. (2015). Data fusion methodolo-
gies for food and beverage authentication and quality assessment–a review. Analytica Chimica

Acta, 891 :1–14.

Bowen, J. K., Mesarich, C. H., Bus, V. G., Beresford, R. M., Plummer, K. M., and Templeton, M. D.
(2011). Venturia inaequalis : the causal agent of apple scab. Molecular Plant Pathology, 12(2) :105–
122.

Bracewell, R. N. (1956). Strip integration in radio astronomy. Australian Journal of Physics, 9(2) :198–
217.

Branwen, G. (2019). This waifu does not exist. https://www.thiswaifudoesnotexist.net/.
Accédé le 2021-02-03.

Brauers, J., Schulte, N., and Aach, T. (2008). Multispectral filter-wheel cameras : Geometric distortion
model and compensation algorithms. IEEE transactions on image processing, 17(12) :2368–2380.

Bravo, C., Moshou, D., West, J., McCartney, A., and Ramon, H. (2003). Early disease detection in
wheat fields using spectral reflectance. Biosystems Engineering, 84(2) :137–145.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. arXiv preprint

arXiv :2005.14165.

Buddenbaum, H., Stern, O., Paschmionka, B., Hass, E., Gattung, T., Stoffels, J., Hill, J., and Werner, W.
(2015). Using vnir and swir field imaging spectroscopy for drought stress monitoring of beech
seedlings. International Journal of Remote Sensing, 36(18) :4590–4605.

154



REFERENCES

Bulygin, T. V. and Vishnyakov, G. N. (1992). Spectrotomography : a new method of obtaining
spectrograms of two-dimensional objects. In Analytical Methods for Optical Tomography, volume
1843, pages 315–322.

Busemeyer, L., Mentrup, D., Möller, K., Wunder, E., Alheit, K., Hahn, V., Maurer, H. P., Reif, J. C.,
Würschum, T., Müller, J., et al. (2013). Breedvision—a multi-sensor platform for non-destructive
field-based phenotyping in plant breeding. Sensors, 13(3) :2830–2847.

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and Kalinin, A. A. (2020).
Albumentations : fast and flexible image augmentations. Information, 11(2) :125.

Calderbank, R., Jafarpour, S., and Schapire, R. (2009). Compressed learning : Universal sparse
dimensionality reduction and learning in the measurement domain. Penn State University

Report.

Camino, C., González-Dugo, V., Hernández, P., Sillero, J., and Zarco-Tejada, P. J. (2018). Improved
nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from vnir-swir
hyperspectral imagery in the context of precision agriculture. International journal of applied

earth observation and geoinformation, 70 :105–117.

Candes, E. J., Romberg, J. K., and Tao, T. (2006). Stable signal recovery from incomplete and
inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8) :1207–1223.

Castro, F. M., Marín-Jiménez, M. J., Guil, N., and de la Blanca, N. P. (2020). Multimodal feature fusion
for cnn-based gait recognition : an empirical comparison. Neural Computing and Applications,
pages 1–21.

Cerutti, G., Tougne, L., Mille, J., Vacavant, A., and Coquin, D. (2013). Understanding leaves in natural
images–a model-based approach for tree species identification. Computer Vision and Image

Understanding, 117(10) :1482–1501.

Chaerle, L., De Boever, F., Montagu, M. V., and Straeten, D. V. D. (2001). Thermographic visualization
of cell death in tobacco and arabidopsis. Plant, Cell & Environment, 24(1) :15–25.

Chaerle, L., Van Caeneghem, W., Messens, E., Lambers, H., Van Montagu, M., and Van Der Straeten,
D. (1999). Presymptomatic visualization of plant–virus interactions by thermography. Nature

biotechnology, 17(8) :813–816.

Chaerle, L. and Van Der Straeten, D. (2000). Imaging techniques and the early detection of plant
stress. Trends in plant science, 5(11) :495–501.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., et al. (2015). Shapenet : An information-rich 3d model repository. arXiv preprint

arXiv :1512.03012.

Chatila, R. and Laumond, J.-P. (1985). Position referencing and consistent world modeling for
mobile robots. In Proceedings. 1985 IEEE International Conference on Robotics and Automation,
volume 2, pages 138–145.

Chawla, N. V. (2009). Data mining for imbalanced datasets : An overview. In Data mining and

knowledge discovery handbook, pages 875–886.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote : synthetic minority
over-sampling technique. Journal of artificial intelligence research, 16 :321–357.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Deeplab : Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE transactions on pattern analysis and machine intelligence, 40(4) :834–848.

155



REFERENCES

Chen, Y., Jiang, H., Li, C., Jia, X., and Ghamisi, P. (2016). Deep feature extraction and classification of
hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience

and Remote Sensing, 54(10) :6232–6251.

Chintala, S., Denton, E., Arjovsky, M., and Mathieu, M. (2016). How to train a gan ? tips and tricks to
make gans work. https://github.com/soumith/ganhacks. Accédé le 2021-03-15.

Chollet, F. (2017). Xception : Deep learning with depthwise separable convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 1251–1258.

Coffey, V. C. (2012). Multispectral imaging moves into the mainstream. Optics and Photonics News,
23(4) :18–24.

Cooper, J. and Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop

Protection, 26(9) :1337–1348.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on informa-

tion theory, 13(1) :21–27.

Crum, W. R., Hartkens, T., and Hill, D. (2004). Non-rigid image registration : theory and practice.
The British journal of radiology, 77(S2) :S140–S153.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2018). Autoaugment : Learning
augmentation policies from data. arXiv preprint arXiv :1805.09501.

Cuthbertson, A. and Murchie, A. (2003). The impact of fungicides to control apple scab (Venturia
inaequalis) on the predatory mite Anystis baccarum and its prey Aculus schlechtendali (apple
rust mite) in Northern Ireland Bramley orchards. Crop Protection, 22(9) :1125–1130.

Daughtry, C. S., Walthall, C., Kim, M., De Colstoun, E. B., and McMurtrey Iii, J. (2000). Estimating corn
leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment,
74(2) :229–239.

De Man, Q., Haneda, E., Claus, B., Fitzgerald, P., De Man, B., Qian, G., Shan, H., Min, J., Sabuncu,
M., and Wang, G. (2019). A two-dimensional feasibility study of deep learning-based feature
detection and characterization directly from ct sinograms. Medical Physics, 46(12) :e790–e800.

Delalieux, S., Auwerkerken, A., Verstraeten, W. W., Somers, B., Valcke, R., Lhermitte, S., Keulemans,
J., and Coppin, P. (2009a). Hyperspectral reflectance and fluorescence imaging to detect scab
induced stress in apple leaves. Remote sensing, 1(4) :858–874.

Delalieux, S., Somers, B., Verstraeten, W., Van Aardt, J., Keulemans, W., and Coppin, P. (2009b).
Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology.
International journal of remote sensing, 30(8) :1887–1912.

Descour, M. and Dereniak, E. (1995). Computed-tomography imaging spectrometer : experimental
calibration and reconstruction results. Applied optics, 34(22) :4817–4826.

Descour, M. R. (1994). Non-scanning imaging spectrometry. PhD thesis, The University of Arizona.

Descour, M. R., Dereniak, E. L., and Dubey, A. C. (1995). Mine detection using instantaneous spectral
imaging. In Detection Technologies for Mines and Minelike Targets, volume 2496, pages 286–304.
International Society for Optics and Photonics.

Descour, M. R., Volin, C. E., Dereniak, E. L., Thome, K. J., Schumacher, A., Wilson, D. W., and Maker,
P. D. (1997). Demonstration of a high-speed nonscanning imaging spectrometer. Optics letters,
22(16) :1271–1273.

156



REFERENCES

Di Cicco, M., Potena, C., Grisetti, G., and Pretto, A. (2017). Automatic model based dataset generation
for fast and accurate crop and weeds detection. In 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 5188–5195.

Dong, J., Wang, L., Liu, J., Gao, Y., Qi, L., and Sun, X. (2019). A procedural texture generation
framework based on semantic descriptions. Knowledge-Based Systems, 163 :898–906.

Donoho, D. L. et al. (2000). High-dimensional data analysis : The curses and blessings of dimensio-
nality. AMS math challenges lecture, 1(2000) :32.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). Carla : An open urban driving
simulator. In Conference on robot learning, pages 1–16.

Douarre, C., Crispim-Junior, C., Gelibert, A., Rousseau, D., and Tougne, L. (2019a). A strategy
for multimodal canopy images registration. In 7th International Workshop on Image Analysis

Methods in the Plant Sciences.

Douarre, C., Crispim-Junior, C., Gelibert, A., Tougne, L., and Rousseau, D. (2019b). When spectro-
imaging meets machine learning. In Workshop on Machine Learning Assisted Image Formation.

Douarre, C., Crispim-Junior, C. F., Gelibert, A., Tougne, L., and Rousseau, D. (2019c). Novel data
augmentation strategies to boost supervised segmentation of plant disease. Computers and

electronics in agriculture, 165 :104967.

Douarre, C., Crispim-Junior, C. F., Gelibert, A., Tougne, L., and Rousseau, D. (2020a). On the value of
ctis imagery for neural-network-based classification : a simulation perspective. Applied optics,
59(28) :8697–8710.

Douarre, C., Schielein, R., Frindel, C., Gerth, S., and Rousseau, D. (2018a). Transfer learning from
synthetic data applied to soil–root segmentation in x-ray tomography images. Journal of Imaging,
4(5) :65.

Douarre, C., Tougne, L., Crispim-Junior, C., Gelibert, A., and Rousseau, D. (2018b). Data simulation
to improve supervised segmentation of apple scab images. Les Rencontres du Végétal, 10eme

edition.

Douarre, C., Tougne, L., Crispim-Junior, C., Gelibert, A., and Rousseau, D. (2020b). Apprentissage
comprimé sur images hyperspectrales de feuilles de pommier atteintes de tavelure. In Réunion

du Groupement de Recherche Information, Signal, Images et Vision, journée à thème Intelligence

artificielle / Apprentissage machine pour l’agriculture.

Duda, R. O. and Hart, P. E. (1972). Use of the hough transformation to detect lines and curves in
pictures. Communications of the ACM, 15(1) :11–15.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv

preprint arXiv :1603.07285.

Efros, A. A. and Freeman, W. T. (2001). Image quilting for texture synthesis and transfer. In Pro-

ceedings of the 28th annual conference on Computer graphics and interactive techniques, pages
341–346.

Eitel, A., Springenberg, J. T., Spinello, L., Riedmiller, M., and Burgard, W. (2015). Multimodal deep
learning for robust rgb-d object recognition. In 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 681–687.

Elvidge, C. D. (1990). Visible and near infrared reflectance characteristics of dry plant materials.
Remote Sensing, 11(10) :1775–1795.

157



REFERENCES

Evangelidis, G. D. and Psarakis, E. Z. (2008). Parametric image alignment using enhanced correla-
tion coefficient maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(10) :1858–1865.

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers

and Electronics in Agriculture, 145 :311–318.

Ferraris, V., Dobigeon, N., Wei, Q., and Chabert, M. (2017). Detecting changes between optical
images of different spatial and spectral resolutions : a fusion-based approach. IEEE Transactions

on Geoscience and Remote Sensing, 56(3) :1566–1578.

Fontenla-Romero, Ó., Guijarro-Berdiñas, B., Martinez-Rego, D., Pérez-Sánchez, B., and Peteiro-
Barral, D. (2013). Online machine learning. In Efficiency and Scalability Methods for Computatio-

nal Intellect, pages 27–54.

Ford, B. K., Descour, M. R., and Lynch, R. M. (2001a). Large-image-format computed tomography
imaging spectrometer for fluorescence microscopy. Optics Express, 9(9) :444–453.

Ford, B. K., Volin, C. E., Murphy, S. M., Lynch, R. M., and Descour, M. R. (2001b). Computed
tomography-based spectral imaging for fluorescence microscopy. Biophysical Journal, 80(2) :986–
993.

Fowler, K. R. (2004). Automatic gain control for image-intensified camera. IEEE Transactions on

Instrumentation and Measurement, 53(4) :1057–1064.

Gao, L., Kester, R. T., Hagen, N., and Tkaczyk, T. S. (2010). Snapshot image mapping spectrometer
(ims) with high sampling density for hyperspectral microscopy. Optics express, 18(14) :14330–
14344.

Gao, Y., Tan, J., Liang, Z., Li, L., and Huo, Y. (2019). Improved computer-aided detection of pulmonary
nodules via deep learning in the sinogram domain. Visual Computing for Industry, Biomedicine,

and Art, 2(1) :1–9.

Garcia, J. P. and Dereniak, E. L. (1999). Mixed-expectation image-reconstruction technique. Applied

optics, 38(17) :3745–3748.

Gat, N. (2000). Imaging spectroscopy using tunable filters : a review. In Wavelet Applications VII,
volume 4056, pages 50–64. International Society for Optics and Photonics.

Gates, D. M. (2012). Biophysical ecology. Courier Corporation.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2414–2423.

Germain, G. (2019). Dispositif de capture d’une image hyperspectrale. Brevet FR3071124.

Gerstner, W. and Kistler, W. M. (2002). Spiking neuron models : Single neurons, populations, plasticity.
Cambridge university press.

Ghassemian, H. (2016). A review of remote sensing image fusion methods. Information Fusion,
32 :75–89.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of

the fourteenth international conference on artificial intelligence and statistics, pages 315–323.

Godin, C. and Caraglio, Y. (1998). A multiscale model of plant topological structures. Journal of

theoretical biology, 191(1) :1–46.

158



REFERENCES

Golhani, K., Balasundram, S. K., Vadamalai, G., and Pradhan, B. (2018). A review of neural networks
in plant disease detection using hyperspectral data. Information Processing in Agriculture,
5(3) :354–371.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1. MIT press
Cambridge.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing

systems, pages 2672–2680.

Gordon, R., Bender, R., and Herman, G. T. (1970). Algebraic reconstruction techniques (art) for
three-dimensional electron microscopy and x-ray photography. Journal of theoretical Biology,
29(3) :471–481.

Grasset, L. (2020). Dirty biology : comment créer une couleur? https://www.youtube.com/

watch?v=wCMGxXgypS4. Accédé : 2021-03-12.

Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., Faust,
J. A., Pavri, B. E., Chovit, C. J., Solis, M., et al. (1998). Imaging spectroscopy and the airborne
visible/infrared imaging spectrometer (aviris). Remote sensing of environment, 65(3) :227–248.

Gunes, H. and Piccardi, M. (2005). Affect recognition from face and body : early fusion vs. late
fusion. In 2005 IEEE international conference on systems, man and cybernetics, volume 4, pages
3437–3443.

Gupta, A., Vedaldi, A., and Zisserman, A. (2016). Synthetic data for text localisation in natural
images. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2315–2324.

Habel, R., Kudenov, M., and Wimmer, M. (2012). Practical spectral photography. In Computer

graphics forum, volume 31, pages 449–458.

Hagen, N. and Dereniak, E. L. (2007). New grating designs for a ctis imaging spectrometer. In
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII,
volume 6565, page 65650N.

Hagen, N. and Dereniak, E. L. (2008). Analysis of computed tomographic imaging spectrometers. i.
spatial and spectral resolution. Applied Optics, 47(28) :F85–F95.

Hagen, N., Dereniak, E. L., and Sass, D. T. (2006). Maximizing the resolution of a ctis instrument. In
Imaging Spectrometry XI, volume 6302, page 63020L.

Hagen, N., Dereniak, E. L., and Sass, D. T. (2007). Fourier methods of improving reconstruction
speed for ctis imaging spectrometers. In Imaging Spectrometry XII, volume 6661, page 666103.

Hagen, N. A., Gao, L. S., Tkaczyk, T. S., and Kester, R. T. (2012). Snapshot advantage : a review of
the light collection improvement for parallel high-dimensional measurement systems. Optical

Engineering, 51(11) :111702.

Hagen, N. A. and Kudenov, M. W. (2013). Review of snapshot spectral imaging technologies. Optical

Engineering, 52(9) :090901.

Hammernik, K., Würfl, T., Pock, T., and Maier, A. (2017). A deep learning architecture for limited-
angle computed tomography reconstruction. In Bildverarbeitung für die Medizin 2017, pages
92–97. Springer.

159



REFERENCES

Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., and Cipolla, R. (2016). Understanding real
world indoor scenes with synthetic data. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4077–4085.

Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural features for image classification.
IEEE Transactions on systems, man, and cybernetics, (6) :610–621.

Haskins, G., Kruger, U., and Yan, P. (2020). Deep learning in medical image registration : a survey.
Machine Vision and Applications, 31(1) :1–18.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE

international conference on computer vision, pages 2961–2969.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers : Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on

computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

He, K. S., Rocchini, D., Neteler, M., and Nagendra, H. (2011). Benefits of hyperspectral remote
sensing for tracking plant invasions. Diversity and Distributions, 17(3) :381–392.

He, X., Zhao, K., and Chu, X. (2021). Automl : A survey of the state-of-the-art. Knowledge-Based

Systems, 212 :106622.

Hege, E. K., O’Connell, D., Johnson, W., Basty, S., and Dereniak, E. L. (2004). Hyperspectral imaging
for astronomy and space surveillance. In Imaging Spectrometry IX, volume 5159, pages 380–391.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans trained by a
two time-scale update rule converge to a local nash equilibrium. Advances in neural information

processing systems, 30 :6626–6637.

Holschneider, M., Kronland-Martinet, R., Morlet, J., and Tchamitchian, P. (1990). A real-time
algorithm for signal analysis with the help of the wavelet transform. In Wavelets, pages 286–297.

Hornik, K., Stinchcombe, M., White, H., et al. (1989). Multilayer feedforward networks are universal
approximators. Neural networks, 2(5) :359–366.

Howarth, P. and Rüger, S. (2004). Evaluation of texture features for content-based image retrieval.
In International conference on image and video retrieval, pages 326–334.

Hu, B., Levesque, J., and Ardouin, J.-P. (2008). Vegetation species identification using hyperspectral
imagery. In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium,
volume 2, pages II–299.

Hu, W., Huang, Y., Wei, L., Zhang, F., and Li, H. (2015). Deep Convolutional Neural Networks for
Hyperspectral Image Classification. Journal of Sensors, 2015 :1–12.

Huang, X., Xin, J., and Zhao, J. (2011). A novel technique for rapid evaluation of fish freshness using
colorimetric sensor array. Journal of Food Engineering, 105(4) :632–637.

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex.
The Journal of physiology, 148(3) :574.

Hughes, D., Salathé, M., et al. (2015). An open access repository of images on plant health to enable
the development of mobile disease diagnostics. arXiv preprint arXiv :1511.08060.

Huygens, C. (1920). Traité de la lumière. Éditions Dunod.

160



REFERENCES

Hwang, S., Park, J., Kim, N., Choi, Y., and So Kweon, I. (2015). Multispectral pedestrian detection :
Benchmark dataset and baseline. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1037–1045.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K. (2016). Squeeze-
net : Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint

arXiv :1602.07360.

Isokane, T., Okura, F., Ide, A., Matsushita, Y., and Yagi, Y. (2018). Probabilistic plant modeling via
multi-view image-to-image translation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2906–2915.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1125–1134.

Jacquemoud, S. and Baret, F. (1990). Prospect : A model of leaf optical properties spectra. Remote

sensing of environment, 34(2) :75–91.

Jain, R., Kasturi, R., and Schunck, B. G. (1995). Machine vision, volume 5. McGraw-hill New York.

Jancovici, J.-M. (2019). Co2 ou pib, il faut choisir. https://www.youtube.com/watch?v=

Vjkq8V5rVy0. Conférence à Sciences Po. Accédé le 2021-02-03.

Jancovici, J.-M. (2020). Transition énergétique : pourquoi dit-on depuis 40 ans qu’il
y a 40 ans de pétrole? https://jancovici.com/transition-energetique/petrole/

pourquoi-dit-on-depuis-40-ans-quil-y-a-40-ans-de-petrole/. Accédé : 2020-11-13.

Jing, L., Wang, T., Zhao, M., and Wang, P. (2017). An adaptive multi-sensor data fusion method
based on deep convolutional neural networks for fault diagnosis of planetary gearbox. Sensors,
17(2) :414.

Johnson, W. R., Wilson, D. W., and Bearman, G. (2006). Spatial-spectral modulating snapshot
hyperspectral imager. Applied optics, 45(9) :1898–1908.

Johnson, W. R., Wilson, D. W., Fink, W., Humayun, M. S., and Bearman, G. H. (2007). Snapshot
hyperspectral imaging in ophthalmology. Journal of biomedical optics, 12(1) :014036.

Jones, H. G. (2004). Application of thermal imaging and infrared sensing in plant physiology and
ecophysiology. In Advances in Botanical Research, volume 41, pages 107–163.

Karpathy, A. (2020). Ai for full-self driving at tesla. https://www.youtube.com/watch?v=

hx7BXih7zx8. 5th Annual Scaled Machine Learning Conference 2020. Accédé le 2021-02-03.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014). Large-scale
video classification with convolutional neural networks. In Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, pages 1725–1732.

Katsaggelos, A. K., Bahaadini, S., and Molina, R. (2015). Audiovisual fusion : Challenges and new
approaches. Proceedings of the IEEE, 103(9) :1635–1653.

Kaur, S., Pandey, S., and Goel, S. (2019). Plants disease identification and classification through leaf
images : A survey. Archives of Computational Methods in Engineering, 26(2) :507–530.

Kerkech, M., Hafiane, A., and Canals, R. (2020). Vddnet : Vine disease detection network based on
multispectral images and depth map. Remote Sensing, 12(20) :3305.

Khirade, S. D. and Patil, A. (2015). Plant disease detection using image processing. In 2015 Interna-

tional conference on computing communication control and automation, pages 768–771.

161



REFERENCES

Kiefer, J., Wolfowitz, J., et al. (1952). Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, 23(3) :462–466.

Kim, D. M., Zhang, H., Zhou, H., Du, T., Wu, Q., Mockler, T. C., and Berezin, M. Y. (2015). Highly
sensitive image-derived indices of water-stressed plants using hyperspectral imaging in swir and
histogram analysis. Scientific reports, 5(1) :1–11.

Kim, Y., Glenn, D. M., Park, J., Ngugi, H. K., and Lehman, B. L. (2011). Hyperspectral image analysis
for water stress detection of apple trees. Computers and Electronics in Agriculture, 77(2) :155–160.

Kim, Y. M., Theobalt, C., Diebel, J., Kosecka, J., Miscusik, B., and Thrun, S. (2009). Multi-view image
and tof sensor fusion for dense 3d reconstruction. In 2009 IEEE 12th international conference on

computer vision workshops, ICCV workshops, pages 1542–1549.
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