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Résumé

Cette these est le fruit d'une collaboration entre les laboratoires LIRIS et LARIS et I'’entreprise
Carbon Bee, un acteur francais des technologies numériques pour I'agriculture. Carbon Bee dé-
veloppe une caméra couplée a un algorithme d’apprentissage profond a des fins de pulvérisation
ciblée de produits phytosanitaires. Sont regroupés dans cette caméra plusieurs capteurs permettant
de réaliser des acquisitions dans différentes gammes de longueurs d’onde. Nous y trouvons en parti-
culier un capteur infrarouge ainsi qu'un capteur hyperspectral instantané peu étudié jusqu’alors: le
spectromeétre imageur par tomographie (Computed Tomography Imaging Spectrometer en anglais,
ou CTIS). Ce capteur permet une acquisition rapide d’'une information spectrale riche mais qu’il
est nécessaire de post-traiter par un algorithme de reconstruction pour la rendre interprétable par
I’ceil humain. Dans ce travail, nous nous sommes intéressés a I’exploitation optimale des différents
capteurs de cette caméra, pour un cas d’étude a fort intérét agronomique : la détection de la tavelure
du pommier.

Nous nous sommes tout d’abord concentrés sur I'exploitation du signal produit par le CTIS,
dans un cadre de classification d’images de feuilles saines et atteintes de lésions de tavelure.
Nous avons développé une approche qui permet de s’affranchir de I’étape de reconstruction en
conduisant un apprentissage directement dans I'espace brut des images CTIS, une démarche dite
d’apprentissage comprimé. La conception d'une nouvelle architecture neuronale a permis d’obtenir
des performances d’apprentissage supérieures a celles permises par la procédure classique, et ce
en réduisant substantiellement les temps de calcul associés. Ces recherches ont par ailleurs mené
au développement de plusieurs nouveaux simulateurs d’'images permettant de pallier le manque
d’images réelles annotées, une difficulté prégnante dans le domaine de 1'apprentissage profond, et
en particulier lors de I'étude de nouveaux systemes d’imagerie.

Les travaux portant sur le CTIS ayant été menés a I'échelle de la feuille de pommier individuelle,
nous nous sommes par la suite focalisés sur un contexte plus exigeant, proche des situations
industrielles rencontrées par Carbon Bee. Nous avons cherché a optimiser des détections de 1ésions
de tavelure menées au niveau du pixel dans des images infrarouges représentant des canopées de
feuilles, et ce avec un nombre restreint de données annotées. A cette fin, nous avons développé
plusieurs simulateurs d’'images inspirés des derniers développements dans la matiere en sciences
végétales. Nous avons en particulier concu un simulateur de canopées dont les images ont permis
de substantiellement réduire la quantité de données réelles annotées nécessaire pour mener a bien
une segmentation dans ce contexte.

Enfin, la présence au sein de la caméra de plusieurs capteurs aux résolutions spatiales et spec-
trales différentes ouvrait la voie a 'utilisation conjointe des informations qu'’ils fournissaient, un
procédé connu sous le nom de fusion de données. Nous avons exploré plusieurs pistes de travail
dans ce cadre.

Mots-clés : apprentissage profond, vision par ordinateur, apprentissage comprimé, imagerie
hyperspectrale, spectrometre imageur par tomographie.
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Abstract

This thesis is the result of a collaboration between the LIRIS and LARIS laboratories and Carbon
Bee, a French company focused on developing digital technology for agriculture. Carbon Bee
develops a camera coupled with a deep learning algorithm in order to conduct spot spraying of crop
protection products. This camera contains several sensors which allow for acquisitions in different
wavelength ranges. It includes in particular an infrared sensor along with a snapshot hyperspectral
spectrometer seldom studied until now : the Computed Tomography Imaging Spectrometer (CTIS).
This sensor allows for a fast acquisition of rich spectral information. However, it is necessary to
post-process this information via a reconstruction algorithm to make it understandable to the
human eye. In this work, we have taken interest in the optimal use of these sensors for a case study
with a high agronomic impact : the detection of apple scab.

We focused at first on the analysis of the CTIS signal in the context of a binary classification
between images of healthy and diseased leaves. We developed a procedure which allowed to
bypass the reconstruction algorithm by training a neural network directly on raw CTIS images, an
approach known as compressed learning. Using a novel neural architecture allowed us to achieve
a classification performance higher than the one obtained following the classical reconstruction
pipeline, while substantially reducing the related training and inference times. This study led to the
development of several novel image simulators which allowed to compensate for the low number
of annotated images, an oft-encountered hurdle in deep learning studies, especially when working
with a new imaging system.

While the work we have conducted on the CTIS images was carried out at the leaf scale, we
afterward focused on a more demanding context, closer to the industrial challenges faced by Carbon
Bee. We strove to improve scab detection at a pixel level in infrared images of leaf canopies; what
is more, with a limited quantity of annotated data. For this purpose, we developed several image
simulators inspired by the latest trends in the plant sciences domain. In particular, we designed a
canopy image simulator whose images enabled us to considerably reduce the number of annotated
images necessary to conduct a segmentation in this context.

Finally, the presence of several sensors in the camera paved the way to the combination of the
information that they gathered, a process known as data fusion. We have explored several pathways
within this framework.

Keywords : deep learning, computer vision, compressed learning, hyperspectral imaging, com-
puted tomography imaging spectrometer.
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Notations

Acronymes et sigles

Ce tableau présente les acronymes et sigles employés dans ce manuscrit. Leur signification est
par ailleurs systématiquement précisée lors de leur premiere utilisation dans le texte.

Si ce document est lu en version numérique via un logiciel de visualisation de PDF qui supporte
les hyperliens, alors cliquer sur les instances des acronymes dans le texte renverra a leur définition
dans ce tableau.

Acronyme Signification Traduction (si nécessaire)

CASSI Coded Aperture Snapshot Spectral Imager imageur spectral instantané a ouverture codée!

CCD Charge-Coupled Device dispositif a transfert de charge

CIE Commission Internationale de I'Eclairage

CNN Convolutional Neural Network réseau de neurones convolutif

CT Computed Tomopgrahy tomographie assistée par ordinateur

CTIS Computed Tomopgrahy Imaging Spectrometer spectrometre imageur par tomographie’

DCGAN Deep Convolutional Generative Adversarial Network réseau antagoniste génératif convolutif profond

DEL Diode Electro-Luminescente

ECC Enhanced Correlation Coefficient coefficient de corrélation amélioré

EM Expectation-Maximization espérance-maximisation

FBP Filtered Back-Projection rétro-projection filtrée

FC Fully Connected entierement connecté(es)

FN, FB VN, FP  Faux Négatif, Faux Positif, Vrai Négatif, Vrai Positif

FSL Few-Shot Learning apprentissage en peu d’exemples’

GAN Generative Adversarial Network réseau antagoniste génératif

GAP Global Average Pooling regroupement par moyennage global!

1A Intelligence Artificielle

ILSVRC ImageNet Large Scale Visual Recognition Challenge ~ défi de reconnaissance visuelle a grande échelle d'TmageNet!
IR InfraRouge

IRHS Institut de Recherche en Horticulture et Semences

MART Multiplicative Algreabric Reconstruction Technique  technique de reconstruction algébrique multiplicative'
MCC Matthews Correlation Coefficient coefficient de corrélation de Matthews

MLP MultiLayer Perecptron perceptron multi-couches

NDVI Normalized Difference Vegetation Index indice de végétation de différence normalisée

ReLU Rectified Linear Unit unité linéaire rectifiée

RVB Rouge Vert Bleu

SIFT Scale-Invariant Feature Transform transformation de caractéristiques invariante a I’échelle
VGG Visual Geometry Group groupe de géométrie visuelle!

1. Latraduction proposée est la notre car il n’existe pas de terme francais « officiel ».
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Objets mathématiques

Ce tableau présente les notations que nous adoptons dans le manuscrit pour désigner les
différents objets mathématiques employés.

Notation Signification

hauteur x largeur Dimensions d'un objet bidimensionnel.

hauteur x largeur x profondeur Dimensions d'un objet tridimensionnel.

[valeur basse, valeur haute] Intervalle de valeurs.

{valeur 1, valeur 2} Ensemble de valeurs.

(coordonnée 1, coordonnée 2) Coordonnées d'un point dans un objet bidimensionnel.
objet[indice] Elément a la position «indice » d’'un objet unidimensionnel.
objet[ :, :, indice] Tranche a la position «indice » d'un objet tridimensionnel.
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INTRODUCTION

Contexte général

Laugmentation rapide de la population mondiale fait de I'agriculture un domaine clé pour
I’humanité [Golhani et al., 2018]. La demande alimentaire ne cesse de croitre, et les agriculteurs
doivent faire face aux défis menacant les plantations. Les stress dits biotiques, c’est-a-dire ceux
liés aux attaques d’éléments vivants tels que les insectes ravageurs, mais aussi des maladies dé-
coulant d’infections par des parasites, virus et champignons, constituent la menace principale
de I'agriculture moderne [Strange and Scott, 2005]. Tous les types de culture sont affectés par des
maladies, y compris les plants consommés par les humains ou le bétail (céréales, légumineuses,
fruits, etc.) [Kaur et al., 2019]. Dans ce contexte, les études visant a réduire I'impact de ces maladies
sont nombreuses. Un grand nombre de moyens de lutte chimique ont été concus au cours des
dernieres décennies, en particulier lors de la « révolution verte » [Cooper and Dobson, 2007]. En
parallele, une lutte génétique s’est développée par le biais de la culture de cultivars, c’est-a-dire des
plants sélectionnés pour leurs traits de résistance aux maladies. Que ce soit dans le cadre de I'appli-
cation de produits phytosanitaires en champ ou de culture de cultivars en serre, la détection des
symptdomes de ces maladies est primordiale pour évaluer la performance des solutions déployées.

Historiquement, la détection de maladies était conduite par un controle visuel humain du
phénotype de la plante ou gréace a des tests destructifs et chronophages car réalisés en laboratoire,
tels que les tests enzymatiques [Golhani et al., 2018]. Les techniques de détection par imagerie
ont naturellement trouvé leur place dans ce domaine en tant que procédés rapides et non-invasifs
[Mahlein, 2016]. Ces méthodes consistent en I’acquisition d'images des plantes via des systémes
optiques et des capteurs photographiques. Elles sont particulierement pertinentes dans le cadre
de la détection de maladies végétales car les réactions d'une plante a une attaque se manifestent
la plupart du temps par des symptomes visuels. Ces méthodes d’acquisition faciles a mettre en
ceuvre, bon marché et non-destructives ont mené a une quantité importante de données a traiter.
L'analyse de ces données est alors devenue le nouveau goulot d’étranglement de la série d’opéra-
tions (pipeline en anglais) de détection de symptdmes [Singh et al., 2016]. En conséquence, des
méthodes d’apprentissage automatique (machine learning en anglais) ont été implémentées afin
d’accélérer I'analyse des images acquises en proposant une classification automatique de celles-ci
sans qu’'une expertise humaine soit nécessaire. Dans les années 2000, un pipeline typique d'une
détection automatique de maladies végétales via un systeme d’imagerie se déroulait selon les
étapes suivantes [Kaur et al., 2019] :

1. acquisition de I'image de la scéne via un capteur, en général en couleurs Rouge Vert Bleu
(RVB);

2. définition et extraction de caractéristiques (couleur, forme, etc.);

3. classification de I'image en se basant sur ces caractéristiques via un algorithme d’apprentis-
sage automatique.

Cependant, au cours de ces derniéres années, deux développements matériels importants ont
ouvert de nouvelles perspectives pour les scientifiques et les industriels. Premiérement, le cotit des
systemes d’imagerie scientifique a fortement baissé [Mathews, 2008]. Ceci a mené a une adoption
forte de capteurs autres que RVB, en particulier des capteurs dits hyperspectraux, permettant d’ac-
quérir de I'information dans un grand nombre de longueurs d’onde, y compris hors du domaine
visible. Ces capteurs sont particulierement utiles dans le champ des sciences végétales, puisquune
grande partie des activités internes d'une plante entraine des symptémes visibles dans des gammes
de I'ultraviolet et de I'infrarouge (IR) [Li et al., 2014]. La figure 1.1 illustre par exemple l'intérét
manifeste de I'imagerie IR pour la détection de la tavelure du pommier sur des feuilles. Les taches
sombres visibles en IR indiquent les 1ésions dues a la tavelure. Ces 1ésions sont beaucoup plus
difficiles a distinguer, voire invisibles en imagerie RVB.

Deuxiemement, la capacité de calcul des ordinateurs a fortement progressé et I'utilisation
de cartes graphiques a permis le développement d’algorithmes d’apprentissage dits profonds
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FIGURE I.1 - [llustration de I'intérét de 'imagerie IR pour la détection de maladies. Limage est un montage
composé d'une acquisition RVB (haut) et d'une acquisition IR (bas) de feuilles de pommier atteintes de
la tavelure du pommier. Les feuilles avaient été inoculées avec le champignon responsable de la tavelure
quatorze jours auparavant. Source : acquisitions a 'TRHS avec la caméra Carbon Bee.

(deep learning en anglais) [Goodfellow et al., 2016]. Couplés a des jeux de données de tres grande
taille, ces algorithmes ont révolutionné le champ de I'apprentissage automatique ainsi que celui
de la vision par ordinateur et constituent I'état de I'art pour la grande majorité des taches de
classification d’'images [Voulodimos et al., 2018]. Ces deux axes de progression technologique
permettent I'acquisition d'une information plus riche et un traitement plus complet et efficace de
cette information. Ils sont intégrés de maniere croissante dans les pipelines actuels de détection de
maladies de plantes en tant que domaines d’innovation clés.

Contexte industriel : Carbon Bee

Cette thése a été réalisée dans le cadre d'un dispositif de Convention Industrielle de Formation
par la REcherche (CIFRE) en partenariat avec 'entreprise Carbon Bee (CIFRE n°2017/0639). Lentre-
prise a été créée en 2015 a Saint-Marcel-Lés-Valence (26). Une filiale dédiée a 'agronomie nommée
Carbon Bee AgTech a été créée en 2017. Cette derniere propose des solutions pour I'entretien et
le soin des champs dans le cadre de 'agriculture de précision. Dans ce paradigme, le champ est
considéré comme I'échelle pertinente de travail [Zhang et al., 2002]. Il s’agit donc de tenir compte
des variabilités internes a ce champ plut6t que de le considérer comme un bloc monolithique
auquel on appliquerait des traitements phytosanitaires de maniére uniforme. Carbon Bee AgTech
s’'intéresse entre autres a la détection de maladies et propose leur localisation dans la parcelle
étudiée.

Pour réaliser cette détection, Carbon Bee se base sur I'imagerie et commercialise une caméra
dédiée a cette tache. Cette caméra est associée a un algorithme d’apprentissage profond qui analyse
les images et repere la présence de la cible recherchée. Le but de cet algorithme est de procéder a
une segmentation, c’est-a-dire la détection de la cible a I'échelle du pixel (figure 1.2).

Carbon Bee AgTech propose des solutions ol1 les caméras sont montées sur des drones ou tenues
a la main, mais le cas d’'usage le plus fréquent pour 'entreprise est le montage d'un ensemble
de caméras sur des « rampes » axiales portées par des tracteurs (figure 1.3). Ces rampes sont des
structures métalliques déployées orthogonalement au sens de déplacement du tracteur, comme
les ailes d’'un oiseau. Sur ces rampes sont positionnées, a espacement régulier, des contenants de
produits phytosanitaires, équipés de buses permettant de réguler leur débit d’épandage. Chaque
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(a) Image originale. (b) Segmentation réalisée. Les pixels indiqués
en rouge correspondent aux lésions repérées par
I'algorithme d’apprentissage.

FIGURE I.2 — Un exemple de segmentation réalisée par Carbon Bee AgTech sur une image RVB représentant
des feuilles de vigne atteintes d’esca. Source : Carbon Bee AgTech (https://carbonbee-agtech.fr).

cameéra est associée a un contenant et commande 'ouverture de la buse si et seulement si une cible
est détectée. Le but in fine est de permettre aux agriculteurs d’appliquer des produits phytosanitaires
de maniere localisée et donc d’en réduire la quantité nécessaire. Cette réduction de produits a pour
double bénéfice une diminution des cofits pour I’agriculteur ainsi qu'une limitation de I'impact
chimique sur I'environnement.

(a) Vue d’ensemble du tracteur équipé de rampes. Les fleches jaunes indiquent la  (b) Vue rapprochée d’'une
position de deux caméras. caméra.

FIGURE 1.3 — Un tracteur équipé de rampes axiales sur lesquelles sont montées plusieurs caméras Carbon
Bee. Source : Carbon Bee AgTech.

Contraintes et verrous scientifiques

Procéder a une détection dans les conditions réelles d’utilisation de la caméra entraine plu-
sieurs contraintes. Premierement, pour offrir un avantage agronomique significatif, la caméra doit
pouvoir obtenir une information suffisamment riche afin de permettre une détection fine des
cibles. En particulier, il est attendu que des maladies soient identifiées au stade le plus précoce
possible. Ensuite, il faut que I'acquisition soit réalisée dans un laps de temps compatible avec la
vitesse du support. L'utilisation attendue de cette caméra est que son analyse ne nécessite pas un
ralentissement du déplacement de 1’agent : on parle d’analyse en « temps réel ». En particulier,
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dans le cas de I'épandage par un tracteur, Carbon Bee a calculé, en prenant en compte la vitesse de
déplacement du tracteur, le temps d’activation de la buse et le temps nécessaire pour I'épandage du
produit, que 'acquisition par la caméra et '’analyse qui suit doivent étre réalisées en moins de 200
ms. En outre, la caméra doit étre de taille relativement réduite et légere pour pouvoir étre montée
sur la variété de supports nécessaires aux diverses taches de détection que propose I’entreprise.

Nous pouvons ajouter a ces contraintes techniques une contrainte économique. Les capteurs
doivent étre les moins onéreux possibles afin que 1'offre de Carbon Bee soit compétitive sur le
marché. Ce sont ces impératifs qui ont faconné la caméra de I'entreprise. Pour permettre a la fois
I'acquisition d’'une information riche et de respecter les impératifs de vitesse, de taille et de cofit,
I'entreprise a fait le choix d’inclure trois capteurs distincts dans la caméra (figure 1.4) :

— un capteur RVB,
— un capteur IR,

— un capteur hyperspectral bas-cofit.

FIGURE 1.4 - La camera Carbon Bee vue de face. Les trois fleches jaunes indiquent les positions des objectifs
des trois capteurs. Source : Carbon Bee AgTech.

Cependant, I'utilisation de ces capteurs de facon optimale est sujette a plusieurs verrous scien-
tifiques.

— Le capteur hyperspectral choisi est encore peu étudié par la communauté des chercheur
-euses en imagerie spectrale. Il s’agit du spectrometre imageur par tomographie (Computed
Tomography Imaging Spectrometer en anglais, ou CTIS) [Descour and Dereniak, 1995]. Ce
capteur, développé dans les années 1990, n'a a notre connaissance jamais été utilisé pour
des applications industrielles avant son emploi par Carbon Bee. Cependant, I'intérét s’y
rapportant va croissant car ce capteur est robuste, bon marché et propose une acquisition
rapide de I'information hyperspectrale [Salazar-Vazquez and Mendez-Vazquez, 2020]. Lutili-
sation du CTIS est cependant limitée par certains inconvénients du systeme. En particulier,
les résolutions spatiale et spectrale des images sont réduites par rapport a des capteurs
hyperspectraux plus conventionnels [Hagen et al., 2006] et I'acquisition de I'information
hyperspectrale compléte nécessite une étape de calcul.

— La caméra de Carbon Bee inclut d’autre part un capteur IR, une gamme de longueurs d’onde
tres étudiée en sciences végétales [Mahlein, 2016], en particulier dans le cadre de détection
de maladies [Jones, 2004]. Ce capteur est utilisé par 'entreprise dans des contextes de vision
difficiles, en particulier a des fins de segmentations de maladies dans des environnements
agronomiques complexes tels que des canopées de feuilles enchevétrées. A cette échelle
apparaissent des problématiques de préparation des données d’apprentissage qui peuvent
devenir rédhibitoires par rapport au gain attendu par ce procédé.
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— Enfin, la présence de multiples capteurs ouvre la voie a la fusion de données [Baltrusaitis
etal., 2018], c’est-a-dire la combinaison d’informations de plusieurs sources afin de mener a
bien une tache. Combiner plusieurs images est un procédé implanté depuis longtemps dans
certains domaines de vision par ordinateur tels que la détection de silhouettes [Hwang et al.,
2015] et qui se popularise plus récemment dans le cadre des sciences végétales [Mahlein,
2016]. Cependant, plusieurs difficultés surviennent dans le cas du systeme Carbon Bee, liées
notamment a la nature différente des images acquises par les capteurs.

Il nous a paru pertinent de mener plusieurs études afin de tenter de lever ces verrous. Nous
avons conduit ces travaux dans le cadre d'une application agronomique au fort impact économique :
la détection de la tavelure du pommier. Il s’agit d’'une maladie fongique affectant les pommiers,
premiére cause de perte de production de pommes au niveau mondial [Bowen et al., 2011].

La these a été menée sous la direction de deux laboratoires :

— le Laboratoire d’'InfoRmatique en Image et Systémes d’information (LIRIS), équipe Imagine, a
Lyon (69). Ce laboratoire posséde une expertise dans les domaines de la vision par ordinateur
et de 'apprentissage automatique, appliquée en particulier aux sciences végétales.

— le Laboratoire Angevin de Recherche en Ingénierie des Systemes (LARIS), équipe « Informa-
tion, Signal, Image et Sciences du Vivant », a Angers (49). Ce laboratoire posséde une expertise
concernant les instrumentations d'imagerie pour les sciences végétales. Le laboratoire a en
outre a sa disposition plusieurs serres dans lesquelles diverses especes de plantes et leurs
réactions aux maladies sont étudiées, via un partenariat avec I'Institut de Recherche en
Horticulture et Semences (IRHS).

Plan du manuscrit

Le manuscrit est organisé de la facon suivante :

— Le chapitre 1 présente les éléments théoriques et bibliographiques relatifs aux deux défis
actuels de la détection de maladies de plantes : I'imagerie hors du domaine du visible et
I'apprentissage profond.

— Les chapitres 2, 3 et 4 sont dédiés a une étude que nous avons menée concernant I’exploitation
optimale des images d'un capteur CTIS dans un cadre d’apprentissage automatique. Plus
précisément, nous nous sommes intéressés au cas d'une détection de 1ésions de tavelure
a I'échelle de la feuille. En conséquence de la relative jeunesse de ce capteur CTIS, nous
nous sommes tournés vers la simulation de données pour se donner les moyens d’analyser
ses capacités, un recours tres utilisé lors d’études de capteurs innovants [Spoelder, 1999].
Le chapitre 2 détaille le fonctionnement du CTIS et le positionne par rapport aux autres
capteurs hyperspectraux existants. Le chapitre 3 présente les différents simulateurs que nous
avons développés pour générer des signaux produits par ce capteur. Le chapitre 4 contient
I'approche d’apprentissage que nous avons explorée pour exploiter les signaux du CTIS en
contournant certains inconvénients de ce spectrometre.

— Dans le chapitre 5, nous nous sommes tournés vers un contexte agronomique plus proche
des défis industriels de Carbon Bee, I'échelle de la canopée, et intéressés a la problématique
du manque d’images annotées. Nous avons développé en réponse plusieurs simulateurs
d’images IR inspirés des derniers développements dans la matiére en sciences végétales.

— Enfin, le chapitre 6 présente plusieurs pistes de travail que nous avons explorées concernant
la fusion des images des différents capteurs de la caméra. Nous nous sommes intéressés en
particulier au cas de la combinaison d'images a l'information structurelle différente et aux
problématiques de recalage provenant du décalage physique entre les différents capteurs.



Chapitre 1

Les défis d’aujourd’hui pour la détection
de maladies de plantes

Dans ce chapitre, nous présentons les éléments théoriques et une bibliographie relative aux
deux défis technologiques actuels dans le domaine de la détection de maladies végétales. Premiere-
ment, nous nous intéressons a I'imagerie hors du domaine du visible qui permet I'obtention d'une
large gamme d’informations concernant la santé d'une plante. Nous introduisons les notions de
physique électromagnétique nécessaires avant de nous concentrer sur les apports de 'imagerie
IR et hyperspectrale dans le domaine des sciences végétales. Deuxiémement, nous présentons les
méthodes d’apprentissage profond qui ont révolutionné le champ de I'apprentissage automatique,
en particulier dans le domaine de la vision par ordinateur. Nous nous attardons en particulier sur
les difficultés spécifiques du domaine des sciences végétales. Enfin, nous présentons les travaux
déja menés sur notre cas d’étude : la détection de la tavelure du pommier.
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CHAPITRE 1. LES DEFIS D’AUJOURD’HUI POUR LA DETECTION DE MALADIES DE PLANTES

1.1 Intérét de I'imagerie invisible pour les plantes

Nous commencons par présenter les différents éléments théoriques relatifs a 'imagerie hors
du domaine du visible, en nous attardant en particulier sur 'impact de cette technologie dans le
domaine des sciences végétales.

1.1.1 Principe d’'un spectre électromagnétique

La lumiere est une onde électromagnétique caractérisée par sa longueur d’onde, c’est-a-dire sa
période spatiale, exprimée en metres. La valeur de la longueur d’onde est inversement corrélée avec
I'énergie que porte cette onde, exprimée en joules. La longueur d’onde d'une onde électromagné-
tique conditionne ainsi la facon dont 'onde peut étre exploitée par les étres vivants et les systemes
technologiques. Nous présentons quelques-unes des gammes qui ont un intérét particulier pour
les travaux de ce manuscrit, par longueur d’onde croissante :

— T'ultraviolet;

— le domaine visible, qui correspond aux ondes que I'ceil humain peut capter et que le cerveau
humain peut interpréter. Chaque longueur d’onde correspond a une couleur spécifique pour
le cerveau. Par opposition, les autres gammes de longueurs d’onde sont parfois regroupées
sous le terme de domaine invisible.

— I'IR. Nous pouvons diviser cette gamme en plusieurs sous-gammes, suivant plusieurs nomen-
clatures. Dans ce document, nous adoptons la division de la Commission Internationale de
I’Eclairage (CIB) 2 :

— I'IR-A, oul'IR proche;
— I'IR-B, oul'lR court;
— I'IR-C, ouI'IR thermique.
Les gammes de longueur d’onde correspondant aux différents domaines sont précisées figure 1.1.
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FIGURE 1.1 — Représentation des différentes gammes de longueurs d’onde entre I'ultraviolet et I'IR thermique,
ordonnées en fonction de la longueur d’onde (échelle logarithmique).

On appelle spectre d'une sceéne I'ensemble des ondes électromagnétiques qui émanent de cette
scene. Ce spectre est composé d’ondes de différentes longueurs, émises avec différentes intensités.
On le représente comme une fonction traduisant I'intensité du rayonnement émis en fonction de la
longueur d’onde. Sur la surface terrestre, le spectre de la plupart des objets est la somme de deux
types de spectres. Tout d’abord, tout objet opaque et dont la température est supérieure au zéro
absolu émet spontanément un spectre électromagnétique dit « thermique » qui dépend de cette
température selon la loi de Planck [Planck, 2013]. Pour un objet a la température T, en notant I(A)
I'intensité du spectre a la longueur d’onde A, alors ce spectre se calcule comme

IA,T) = & !

5 k ’
A eixr —1

(1.1)

ol kj et ky sont des constantes dépendant de la constante de Planck, la constante de Boltzmann et
la vitesse de la lumiere. Plus la température de I'objet est élevée, plus cet objet émet dans des lon-
gueurs d’onde courtes. Les étres et les objets a température ambiante sur Terre émettent un spectre

2. http://cie.co.at/eilv/580.
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compris dans le domaine de I'IR thermique (qui en tire son nom). Le soleil, dont la température est
d’environ 5800 K, émet un rayonnement thermique qui s’étend de I'IR thermique a I'ultraviolet, en
passant par le visible.

Par ailleurs, tout objet non transparent exposé a la lumiére renvoie une partie de cette lumiére.
Le facteur qui correspond a la proportion du rayonnement renvoyé par rapport a celui recu s’appelle
la réflectance. On appelle spectre de réflexion la réflectance exprimée en fonction de la longueur
d’onde incidente. Le spectre de réflexion d'un objet dépend de la composition chimique et de la
structure interne de I'objet. Le spectre percu par un ceil humain d’'un objet a température ambiante
et éclairé par la soleil correspond principalement au spectre de réflexion de cette lumiere, plus
intense que le spectre thermique.

1.1.2 Les plantes ont des spectres de réflexion complexes

Le spectre de réflexion des plantes est complexe car ce sont des organismes ou divers méca-
nismes meénent a des régimes de réflectance bien distincts en fonction du domaine de longueur
d’onde considéré [He et al., 2011]. La figure 1.2 présente un spectre de plante typique qui illustre
ces différents régimes.

Réflectance (%)
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o
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FIGURE 1.2 — Spectre de réflexion typique d'une feuille. Source : simulateur PROSPECT [Jacquemoud and
Baret, 1990].

Nous pouvons distinguer plusieurs mécanismes biologiques en fonction de la gamme de lon-
gueur d’'onde considérée. Dans le domaine visible, la forte concentration en pigments tels que
la chlorophylle meéne a une importante absorption de la lumiere solaire [Blackburn, 2007]. Cette
plage d’énergie est adéquate pour la génération de molécules carbonées via la photosynthese.
L'absorption est un peu moins forte dans le vert que dans le rouge et le bleu, ce qui explique la
couleur des plantes. La lumiére du domaine de 1 'IR-A est énergétiquement peu intéressante pour
les plantes. Les structures internes de celles-ci ont évolué de maniere a ce que les multiples couches
qui les composent menent a une grande réflectance dans ce domaine, afin de ne pas provoquer
un échauffement inutile [Gates, 2012]. Des altérations dans l'intégrité de ces couches internes
peuvent provoquer une variation de la réflectance dans cette gamme [Mahlein, 2016]. Enfin, dans le
domaine de 1 'IR-B, plusieurs composants comme la cellulose, la lignine et d’autres protéines, mais
aussi les molécules d’eau causent plusieurs spectres d’absorption indicatrices de la composition
chimique de la plante [Elvidge, 1990].

Il apparait donc que de nombreuses informations concernant I'état physiologique de la plante
sont accessibles dans le domaine invisible. Nous présentons maintenant les différentes applications
existantes pour la détection de maladies dans ce domaine.
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1.1.3 Limagerie invisible permet d’évaluer finement la santé d’une plante

Les premiéres analyses en imagerie invisible se concentraient sur certaines gammes de lon-
gueurs d’onde spécifiques de I'IR. Les études plus modernes discrétisent pour la plupart I'informa-
tion spectrale de facon plus fine.

Domaine infrarouge

Tout d’abord, des mesures dans I'IR-A été intégrées dans des calculs de valeurs appelées indices,
qui correspondaient a des combinaisons arithmétiques de valeurs de réflectance a des longueurs
d’onde différentes [Bannari et al., 1995]. Des capteurs IR ont ainsi été utilisés dans le domaine de
la télédétection spatiale pour la segmentation de couverts végétaux a la surface terrestre [Rouse
etal., 1974]. Lindice associé a ces études, nommé l'indice de végétation de différence normalisée
(Normalized Difference Vegetation Index en anglais ou NDVI), est un ratio de luminosité entre une
longueur d’onde de I'IR et une longueur d’onde du domaine visible proche du rouge. Le fort ratio
des plantes entre la lumiere réfléchie dans I'IR et celle dans le visible (figure 1.2) permet d’isoler
la biospheére d’autres zones terrestres. Dans le cadre de la détection de maladies, une variation de
I'IR proche réfléchi peut étre signe d'une destruction des structures internes de la plante [Mahlein,
2016], en particulier des pigments [Pefiuelas and Filella, 1998] a cause d’attaques parasitaires.

Limagerie par IR-B a servi a différentes analyses quantitatives concernant la composition chi-
mique fine des plantes. Plusieurs études se sont penchées sur la détermination de la quantité d’eau
dans les plantes dans des conditions de stress hydrique grace aux informations de ces longueurs
d’onde [Buddenbaum et al., 2015; Kim et al., 2015]. D’autres se sont intéressées a la quantification
des taux de nutriments absorbés tels que I'azote [Camino et al., 2018] ou d’autres composants
d’'intérét des plantes tels que le tanin [Lehmann et al., 2015].

L’IR-C a aussi été beaucoup étudiée dans le cadre de la détection de maladies. La température
est une mesure qui fournit des informations précieuses concernant les réactions d'une plante a un
stress [Chaerle and Van Der Straeten, 2000]. La régulation de la température dans une plante s’ef-
fectue principalement par des pores, que 'on appelle des stomates, qui servent de voies d’échange
d’eau et de gaz avec 'atmosphere. Ces stomates s’ouvrent et se ferment afin conserver ou d’évacuer
I'eau afin de réguler la température de la plante [Kiimmerlen et al., 1999]. En temps normal, cette
régulation s’effectue en fonction de la quantité d’eau disponible dans la plante. Des travaux ont
montré que certains parasites induisaient une fermeture de ces stomates similairement a I’effet
d’un stress hydrique [Chaerle et al., 1999], provoquant un échauffement local de la plante. Des
attaques parasitaires plus avancées peuvent mener a une percée des membranes cellulaires [Penna-
zio and Sapetti, 1982]. Le contenu aqueux des cellules est alors déversé, menant a une transpiration
stomatique excessive et donc a un refroidissement local [Chaerle et al., 2001]. Il a été montré que
I'imagerie thermique était adéquate pour détecter la présence de certaines attaques parasitaires, et
notamment que les zones de variation de température coincidaient avec les zones ol les parasites
s'implantaient [Chaerle et al., 2001]. Ces études montraient en particulier que la détection ther-
mique pouvait précéder parfois de plusieurs jours 'apparition visible des parasites en surface de la
plante, permettant ainsi un traitement plus anticipé des maladies.

Spectre complet

Les capteurs dits hyperspectraux, qui seront plus longuement détaillés au chapitre suivant, per-
mettent d’acquérir pour un spectre donné l'intensité de chacune d’'un grand nombre des longueurs
d’onde qui le composent. En sciences végétales, la gamme spectrale ainsi étudiée couvre en général
le domaine visible et une partie de I'R-A. Les informations du spectre complet peuvent étre exploi-
tées pour des caractérisations plus fines que ne le permet I'information d'une réflectance IR ou
visible seule. En particulier, les applications suivantes ont été possibles grace a I'utilisation de cap-
teurs hyperspectraux : la détection de stress hydriques ou d’attaques parasitaires significativement
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plus tot qu’en détection IR [Behmann et al., 2014]; la classification de diverses especes végétales
[He et al., 2011], soit une analyse plus poussée que le classification binaire « plante/non plante »
rendue possible par le NDVI; la caractérisation biochimique d’espéces, telle que la composition
pigmentaire [Ustin et al., 2004], 'analyse de stress hydrique multi-niveaux [Kim et al., 2011]; la
classification d’attaques parasitaires a un niveau fin, par exemple pour des maladies dont le spectre
differe peu du spectre sain [Bravo et al., 2003], pour distinguer plusieurs types de maladies [Rumpf
et al., 2010] ou encore pour caractériser la date de la gravité de I'infection [Mahlein et al., 2012].

Méthodologiquement, les utilisations de I'information spectrale peuvent étre séparées en deux
catégories. La premiere possibilité est d'opérer une sélection de quelques longueurs d’onde parmi
toutes celles offertes par I'imagerie hyperspectrale. Il est possible de sélectionner les longueurs
d’onde pour créer des indices végétaux basés sur des connaissances biologiques de mécanismes
spécifiques des plantes. Par exemple, les auteurs de [Rumpf et al., 2010] ont conduit une classi-
fication de maladies en choisissant comme caractéristiques de multiples indices tres utilisés en
sciences végétales donnant des indications sur les contenus en chlorophylle, en caroténoides, sur
la biomasse en général. Il est aussi possible de procéder a la sélection automatique des longueurs
d’onde les plus pertinentes par un algorithme statistique [Benoit et al., 2016]. Toutes les longueurs
d’onde sont alors considérées dans un premier temps, et sont conservées uniquement celles qui
contribuent le plus a I'application selon un certain critere. Par exemple, les auteurs de [Bravo et al.,
2003] ont proposé une analyse de variance pour une sélection de longueurs d’onde « utiles » qu’ils
fournissent ensuite en entrée a un algorithme de classification, pour des maladies affectant le blé.
Les auteurs de [Delalieux et al., 2009b] ont testé exhaustivement tous les ratios de longueurs d’onde
sur une gamme donnée afin d’évaluer leur impact pour la détection de tavelure par régression
logistique.

La deuxieme possibilité consiste a exploiter I'entiereté du spectre. Les spectres peuvent alors
étre condensés via une analyse en composante principale [Golhani et al., 2018] ou bien servir
d’entrée tels quels a des algorithmes de classification de vecteurs a grande dimension. Les auteurs
de [Mahlein et al., 2012] ont utilisé un tel algorithme appelé le Spectral Angle Mapper [Yuhas et al.,
1992] pour la classification de plusieurs stades de maladies affectant la betterave sucriere. Les
auteurs de [Qin et al., 2009] ont comparé des spectres de citrons sains avec ceux atteints de chancre
afin de procéder a leur classification avec une variation de cet algorithme.

1.1.4 Positionnement

Le grand nombre d’études basées sur 'imagerie dans des domaines invisibles pour la détection
de maladies de plantes montre a quel point cet axe de recherche est prometteur. Il faut cependant
noter que ces recherches ont été conduites en grande majorité avec des capteurs qui ne concordent
pas avec des contraintes industrielles comme celles de Carbon Bee. Les caméras utilisées pour
I'imagerie thermique et 'imagerie hyperspectrale peuvent valoir jusqu’a plusieurs dizaines de
milliers d’euros et ont des temps d’acquisition de I'ordre de la seconde. Le CTIS proposé par Carbon
Bee est radicalement différent de ce type d’imagerie. Les particularités, promesses et difficultés du
CTIS sont détaillées plus abondamment dans le chapitre 2.

1.2 Apprentissage profond pour les images de plantes

Nous présentons maintenant les bases théoriques relatives a un autre domaine qui a considéra-
blement influencé les méthodes développées en détection de maladies végétales : 'apprentissage
profond. Il existe de nombreuses ressources qui décrivent méticuleusement I'histoire, les attri-
buts et les enjeux du champ de 'apprentissage profond. Nous nous limitons a décrire les blocs
nécessaires a la compréhension du manuscrit. Nous nous attardons par la suite sur les enjeux liés a
I'application de ces méthodes au domaine des sciences végétales.
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1.2.1 Apprentissage profond et réseaux de neurones
Généralités sur 'apprentissage automatique supervisé

Nous rappelons d’abord les principes généraux du champ de I'apprentissage automatique, dont
I'apprentissage profond est un sous-domaine. Nous nous concentrons ici sur le cas d'un algorithme
de classification. D’autres taches d’apprentissage automatique existent (segmentation, régression,
systeme de recommandation, etc.) mais peuvent étre dérivées a partir du cas de la classification.
Le but d’un algorithme de classification est d’associer de fagon automatique une étiguette a un
objet. Nous nous placons dans le domaine de la vision par ordinateur, ou I'objet est une image et
I'étiquette peut étre par exemple un mot qui décrit le contenu de 'image. Initialement, 'apport
principal de ces algorithmes était une accélération de cette étiquetage lorsque le nombre d’objets
en faisait une charge trop fastidieuse pour des humains. Aujourd’hui, certains de ces algorithmes
ont progressé au point d’obtenir des performances surhumaines sur certaines taches [He et al.,
2015]. Nous nous limitons au cas des algorithmes dits « supervisés », c’est-a-dire ceux qui sont
entrainés sur un ensemble d'images dont les étiquettes sont connues.

Nous détaillons a présent les étapes d'un tel apprentissage. Nous considérons pour illustration
une classification binaire o1 nous cherchons a déterminer la présence ou I’absence de pommes
dans des images (figure 1.3). Les étapes que nous décrivons sont valables pour n'importe quel
algorithme d’apprentissage supervisé.

2. Détermination des
caractéristiques

rond
rouge

3. Calcul des vecteurs de
caractéristiques

1. Constitution du jeu d’entrainement

Images

Etiquettes
O Ppas ) pas ) 1
«Pomme» «Pomme» «Pomme»
Représentation des images dans

I’espace des caractéristiques

rouge

4. Calcul de
la frontiére de décision

rond

FIGURE 1.3 — Schéma représentant les étapes d’entrainement d'un algorithme d’apprentissage automatique
pour une détection de pommes dans des images. Source des images de fruits: https://www.inaturalist.
org.

1. Constitution d’'un jeu d’entrainement : un ensemble d’images dont les étiquettes sont
connues sont regroupées dans un jeu de données dit d’entrainement. On appelle anno-
tation le processus d’attribuer des étiquettes aux images en premier lieu.

12



CHAPITRE 1. LES DEFIS D’AUJOURD’HUI POUR LA DETECTION DE MALADIES DE PLANTES

2. Détermination des caractéristiques : une caractéristique est une mesure que 1'on fait sur
les objets contenus dans I'image relativement a leur forme, leur couleur, leur gradient, leur
longueur, etc. Dans I'application donnée en exemple, les caractéristiques retenues sont la
présence de la couleur rouge (qui pourrait étre calculée via une recherche de pixels dont la
valeur est comprise dans une gamme représentant la couleur rouge) et de formes rondes
(qui pourrait étre calculée via un algorithme de détection de forme tel que la transformée
de Hough [Duda and Hart, 1972]) dans I'image. Des caractéristiques plus élaborées ont été
développées au fil des années, telles que des caractéristiques de textures d’'Haralick [Haralick
etal., 1973; Ramesh et al., 2018] ou les caractéristiques visuelles invariantes a I’échelle (Scale-
Invariant Feature Transform en anglais, ou SIFT) [Lowe, 2004; Lavania and Matey, 2014].

3. Calcul des vecteurs de caractéristiques : les caractéristiques sont calculées sur chaque image
du jeu d’entrainement, qui sont a I'issue de cette étape représentées chacune par un vecteur
de caractéristiques. Dans I'exemple de la figure 1.3, nous indiquons pour chaque caractéris-
tique sa présence ou son absence dans I'image par une valeur binaire. Nous pouvons alors
nous représenter visuellement les différentes images dans |’ « espace des caractéristiques ».
Dans cet espace au nombre de dimensions égal au nombre de caractéristiques calculées,
chaque image est représentée par un point dont la position est donnée par son vecteur de
caractéristiques.

4. Calcul de la frontiere de décision : les vecteurs de caractéristiques des images du jeu d’entrai-
nement sont présentées a un algorithme d’apprentissage avec les étiquettes associées. Le but
attendu de cette étape est que le lien se fasse entre les valeurs des caractéristiques des images
et les étiquettes qui leur sont associées. Visuellement, le but de I’algorithme est de trouver
I'hyperplan qui sépare dans cet espace de caractéristiques les groupes d’objets avec la méme
étiquette, que 'on appelle la frontiere de décision (ligne pointillée rouge en bas a droite de
la figure 1.3). Si les caractéristiques sont bien choisies, que le jeu d’entrainement est assez
divers et que la capacité de I'algorithme, c’est-a-dire la complexité de ’hyperplan qu’il peut
définir, sont suffisants pour la classification considérée, alors I’algorithme convergera vers
cet hyperplan [Goodfellow et al., 2016].

Une fois I'algorithme entrainé, il peut étre utilisé pour réaliser des prédictions, c’est-a-dire des
propositions d’étiquettes sur un jeu d'images qu’on ne lui a jamais présenté. Visuellement, cela
correspond a placer un point dans ’espace des caractéristiques et de lui attribuer une étiquette en
fonction de sa position par rapport a la frontiere de décision.

Lexemple d’algorithme d’apprentissage automatique supervisé le plus simple est celui des
« k plus proches voisins » [Cover and Hart, 1967]. On présente d’abord a I’algorithme les vecteurs
de caractéristiques et les étiquettes du jeu d’entrainement. Puis, pour déterminer I'étiquette d'un
nouvel élément, on calcule les k plus proches éléments parmi ceux du jeu d’entrainement. Plusieurs
possibilités existent pour calculer cette distance, la plus populaire étant la distance euclidienne
entre les vecteurs de caractéristiques. L'étiquette la plus représentée parmi ces plus proches voisins
est attribuée a ce nouvel élément3.

En pratique, lorsque I'on souhaite entrainer un algorithme de classification a partir d'un jeu
d’images, il est rare que I'on ait a disposition dans le méme temps les images non étiquetées pour
lesquelles on souhaiterait que 1'algorithme propose une prédiction. Pour évaluer les performances
de 'algorithme, la procédure est alors de séparer le jeu d’entrainement, dont on connait les éti-
quettes, en plusieurs sous-ensembles que I'on appelle des blocs (sets en anglais). On conserve
typiquement entre 60 et 80% des images comme bloc d’entrainement, et on utilise le reste comme
bloc dit de test. Ce bloc ne sert pas a entrainer I’algorithme, mais a évaluer les performances de ce

3. Lafrontiere de décision est ici calculée de fagon locale, élément par élément lors de la phase de prédiction, plutot
que globalement comme dans la figure 1.3
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dernier sur des images hors de son bloc d’entrainement. La performance obtenue sur le bloc de test
agit donc comme un indicateur de la performance de 'algorithme en déploiement sur de nouvelles
images.

De plus, pour beaucoup de ces algorithmes, il est nécessaire de fixer des hyperparamétres,
c’'est-a-dire des parametres concernant le fonctionnement de I'algorithme lui-méme. Par exemple,
la valeur k et la métrique de distance sont les hyperparameétres de I'algorithme des « k plus proches
voisins ». Pour fixer ces hyperparametres, on a souvent recours a une autre division du jeu, que
I'on appelle bloc de validation. Lidée est alors, pour chaque combinaison d’hyperparametres que
I'on souhaite tester, d’effectuer un entrainement sur le bloc d’entrainement, puis d’effectuer une
prédiction sur le bloc de validation. La performance atteinte sur ce bloc est alors un indicateur
de la qualité des hyperparametres pour cette tiche. Lensemble d’hyperparametres menant a la
performance de validation la plus élevée est alors conservé. Pour entrainer un algorithme d’appren-
tissage, il est donc tres courant de diviser le jeu d'images disponible en trois blocs : entrainement,
validation et test.

Principes de 'apprentissage profond

Lapprentissage profond est un paradigme d’apprentissage automatique inspiré de I'anatomie
du cerveau humain [Hubel and Wiesel, 1959]. Cet apprentissage est associé a une structure algo-
rithmique que I'on appelle un réseau de neurones. Le neurone biologique est une cellule complexe,
mais seul son fonctionnement basique a servi d’inspiration au neurone informatique [Rosenblatt,
1957] (figure 1.4).

Wy y
Wo

X2

W3
X3

FIGURE 1.4 — Schéma d’un neurone informatique superposé a un schéma de neurone biologique. Les
variables indiquées en vert sont les parametres du neurone. Source de I'image du neurone biologique :
https://simple.wikipedia.org/wiki/Neuron.

Un neurone biologique recoit des signaux électriques d’autres neurones en amont via des
points d’entrées. Ces signaux sont accumulés a I'intérieur du corps du neurone, et si leur somme
dépasse un certain seuil, le neurone s’active et envoie a son tour un signal a des neurones en aval
[Gerstner and Kistler, 2002]. Un neurone informatique modélise ces principes. Il accepte en entrée
un nombre fixe de nombres réels (x; dans la figure 1.4, représentant les signaux des neurones en
amont) et produit en sortie une valeur réelle (y dans la figure 1.4, représentant le signal envoyé aux
neurones en aval). Cette sortie est calculée a partir des entrées via I’équation

y=f0_ wixi+b) (1.2)
i=0
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qui représente 'accumulation de signaux électriques. Dans cette équation, les entrées x; sont mul-
tipliées par des valeurs w; que I'on appelle les poids, qui représentent la force de la connexion entre
ce neurone et les neurones en amont. La fonction f est une fonction dite d’activation. Il s’agit d'une
fonction non-linéaire croissante. Les premieres implémentations de réseaux définissaient f comme
une fonction seuil : f renvoyait 1 si son argument était strictement positif et 0 sinon, mais d’autres
fonctions furent proposées au fil des années comme la fonction unité linéaire rectifiée (Rectified
Linear Unit en anglais, ou ReLU) [Glorot et al., 2011]. Cette fonction représente I'activation du
neurone si celui-ci a accumulé suffisamment de potentiel électrique. La valeur b, que I’on appelle
le biais, représente I'appétence ou la résistance du neurone a s’activer. Les poids et le biais (souvent
désignés collectivement sous le nom de « poids ») sont les parameétres du neurone : ce sont ces
valeurs qui sont modifiées au cours d'un entrainement.

Un neurone informatique peut constituer a lui seul le support d'un algorithme d’apprentissage
pour certaines taches bien définies. En construisant un bloc d’entrainement composé de paires
d’entrées réelles et des sorties binaires attendues, et en présentant séquentiellement ces exemples
au neurone, il existe un algorithme d’entrainement qui définit comment modifier les poids de
celui-ci afin de converger vers I'hyperplan attendu [Rosenblatt, 1957]. Cependant, la capacité d'un
neurone unique est trop faible pour qu’il soit appliqué a d’autres cas que des cas «jouets ».

Les algorithmes d’apprentissage profond sont basés sur des ensembles de neurones inter-
connectés que I'on appelle des réseaux. On appelle architecture’organisation selon laquelle les
neurones sont reliés entre eux. Les premieres architectures de réseaux s’appelaient les « percep-
trons multi-couche » (Multi-Layer Perceptron en anglais, ou MLP). Dans un MLP, les neurones sont
connectés a la fois parallelement et séquentiellement selon une structure en couches (figure 1.5).
La premiere couche est constituée d'un certain nombre de neurones qui prennent en entrée les
données. Les sorties des neurones de cette couche servent d’entrée a une deuxiéme couche de neu-
rones, et ainsi de suite, jusqu’a une derniére couche dont on identifie la sortie a la proposition faite
par le réseau pour I'étiquetage de I'entrée. Cette structure en couches est inspirée de I'architecture
neuronale du cerveau humain.

18 couche 2¢me couche
Y
10—
: : 3éme couche
: i
i 1
11 I Y \b
H I
I : Sortie  Etiquette
I Xp i
]
et \./
Entrée

FIGURE 1.5 - Un MLP composé de trois couches. On identifie la sortie de la derniéere couche y ala prédiction
du réseau, que I'on compare a la véritable étiquette attendue /.

La phase d’entrainement d'un réseau se déroule de la facon suivante. Tous les parameétres sont
initialisés aléatoirement. Un ensemble d’exemples issus du bloc d’entrainement, que I'on appelle
un lot, est présenté au réseau. Le réseau calcule une sortie pour chacun de ces exemples, que 'on
compare aux étiquettes. On en calcule une fonction de coiit dont la valeur est corrélée a la distance
entre les sorties et les étiquettes. Le but de I'entrainement est de réduire la valeur de cette fonction
de cofit, notée h, moyennée sur 'ensemble du bloc d’entrainement. Un algorithme que 'on appelle
la « rétro-propagation d’erreur » [Rumelhart et al., 1986; LeCun et al., 1989] permet alors de calculer
la contribution de chaque poids du réseau a la sortie proposée et donc a la fonction de cofit pour cet
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exemple. La connaissance de ces contributions permet de connaitre la forme locale de la fonction
de cofit en fonction des valeurs des poids, c’est-a-dire la valeur du gradient

0h
aw,-

(1.3)

pour chaque poids w;. Une itération d'un algorithme d’optimisation, tel que la descente de gradient,
est alors appliquée pour modifier les valeurs des poids afin d’améliorer la performance du réseau sur
ce lot d’exemples. Un nouveau lot d’exemples est présenté et le cycle recommence. Lentrainement
se poursuit jusqu’'a ce que la performance se stabilise ou selon d’autres criteres d’arrét. On dit alors
que le réseau a convergé ou bien est entrainé. Le réseau peut ensuite étre utilisé en prédiction pour
produire des étiquettes sur des données qu’on ne lui a jamais présentées.

Avantages et inconvénients par rapport a 'apprentissage automatique traditionnel

Par rapport a d’autres structures algorithmiques, les réseaux de neurones ont deux grands
avantages. Premiérement, leur structure basée sur ’empilement de fonctions non-linéaires leur
octroie une énorme capacité. Il a été montré qu'un réseau avec deux couches seulement peut repré-
senter n'importe quelle fonction mathématique liant des entrées et une sortie [Hornik et al., 1989].
Pour des raisons d’entrainement et de capacité de calcul, les architectures modernes comprennent
toutefois un plus grand nombre de couches. Deuxiemement, les réseaux agissent a la fois comme
algorithmes de classification et comme extracteurs de caractéristiques. En effet, ce sont, dans la
grande majorité des cas, les données elles-mémes (les valeurs des pixels dans le cas des images) qui
sont fournies en entrée a un réseau et non des caractéristiques pré-définies (comme dans I'exemple
de la figure 1.3). Les algorithmes de rétro-propagation et d’optimisation permettent d’exploiter la
grande capacité du réseau en guidant les changements des poids des réseaux vers un ensemble
des valeurs qui méne a une bonne performance de classification : en d’autres termes, les carac-
téristiques sont apprises spécifiquement pour la tache considérée. Les caractéristiques extraites,
simples si nous les considérons dans les premiéres couches, se complexifient peu a peu au fil des
opérations faites par les couches. C’est cette dimension de couches empilées, qui permettent la
création de caractéristiques complexes, a laquelle on fait référence lorsqu’on parle d’apprentissage
«profond ». Cet empilement mene a des caractéristiques qui peuvent étre extrémement raffinées et
subtiles, bien plus que ce qu'un humain ou un algorithme de calcul de caractéristiques classique
peuvent réaliser.

La grande capacité des réseaux peut entrainer cependant un grand inconvénient : le surappren-
tissage (overfit en anglais) [Goodfellow et al., 2016]. Pour l'illustrer, plagcons-nous dans le cadre d'une
application d’apprentissage automatique simple : la régression non-linéaire (figure 1.6). Considé-
rons que nous avons n points d’entrainement qui sont des paires de nombres réels (x;, y;) et que
nous souhaitons ajuster un polynéme de degré m a ces points, c’est-a-dire trouver les coefficients
qui permettent au polynéme de passer au plus pres de ces points. Si m = n, il existe forcément un
polyndme qui soit exactement ajusté a ces données : un tel modele a assez de capacité pour repré-
senter complétement le jeu de données. Loptimisation des coefficients du polynd6me mene donc a
une fonction qui passe exactement par tous les points d’entrainement. Cette situation, alléchante
sur le papier, est en fait souvent tres facheuse. En effet, il faut se souvenir que, comme pour toute
procédure de statistique inférentielle, le bloc d’entrainement ne constitue qu'un échantillon de la
distribution que 'on cherche a ajuster. En conséquence, les points d’entrainement représentent la
fonction génératrice des données mais avec un certain bruit. En optant pour un polynéme de degré
élevé, I'ajustement se fera sur ce bruit plutét que sur la véritable distribution. Par exemple, dans
la figure 1.6, les dix points semblent provenir d'une distribution qui pourrait étre ajustée par un
polyndme de degré deux (courbe verte). L'utilisation d'un polynéme de degré dix (courbe marron)
mene a un ajustement plus précis des points d’entrainement, mais nous constatons aisément que la
capacité « excédentaire » du modele a servi a ajuster le bruit. Une telle configuration d’entrainement
mene souvent en outre a un modele ajusté trés éloigné de la fonction génératrice dans les plages
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ou il n'y a pas suffisamment de données d’entrainement (figure 1.6, tout a droite par exemple).
Lors d’'une phase de prédiction d’'une nouvelle donnée, I’ajustement proposé risque de ne pas étre
satisfaisant. On parle alors de surapprentissage : I’algorithme a appris « par cceur » les données
d’entrainement sans en tirer la « substantifique moelle » [Rabelais, 1534].

X

FIGURE 1.6 — Illustration sur un cas de régression non-linéaire du phénomene de surapprentissage. Les
carrés noirs représentent les points d’entrainement. La courbe verte représente ’ajustement d'un polynéme
au degré adéquat par rapport a la fonction génératrice du jeu de données, et la courbe marron celui d'un
polynoéme au degré trop important qui meéne a un surapprentissage.

Les réseaux de neurones doivent faire face a cette difficulté. En effet, le nombre de poids d'un
réseau est dans de nombreux cas bien supérieur au nombre de parametres de 'hyperplan « opti-
mal » permettant de séparer les données d’entrée selon leurs étiquettes. Des méthodes dites de
régularisation sont alors implémentées pour combattre ce surapprentissage. Dans le cas « jouet »
de régression polynomiale, la solution est de choisir un modele de degré moindre, adapté au degré
de la fonction génératrice. Dans le cas des réseaux de neurones, bien que cette idée fasse partie des
méta-méthodes pour limiter le surapprentissage et soit méme la clé de votte de certaines archi-
tectures neuronales [landola et al., 2016; Tan and Le, 2019], nous souhaitons en général conserver
la grande capacité de ces réseaux car c’est elle qui permet de générer des caractéristiques variées
et sophistiquées. La solution pour obtenir un modele utile est alors d’augmenter au maximum le
nombre de données afin de contraindre la frontiere de décision et d’éviter les zones « vides » dans
lesquelles les prédictions du modele risquent d’étre aberrantes. La figure 1.7 illustre cette idée dans
le cadre de la régression non-linéaire.

> X

FIGURE 1.7 - Illustration sur un cas de régression non-linéaire de la stratégie d’obtenir un nombre important
de données pour contraindre fortement un polynéme de degré élevé.

Les algorithmes d’apprentissage profond nécessitent donc pour donner des performances
convenables un nombre de données extrémement important [Warden, 2017]. De plus, il est néces-
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saire que ces données soient annotées, c’est-a-dire qu’elles aient recu une étiquette. En fonction de
I'application, 'annotation peut étre extrémement chronophage ou cotiteuse. Ceci est particulie-
rement vrai dans des domaines oli cette annotation doit étre réalisée par des expert -e -s tels que
I’agronomie ou la médecine, et/ou pour des taches plus fines telles que la segmentation.

Réseaux de neurones convolutifs pour la vision par ordinateur

Dans les applications ol les données a traiter sont des signaux bidimensionnels tels que des
images, une autre catégorie de réseaux est régulierement employée : les réseaux de neurones
convolutifs (Convolutional Neural Networks en anglais, ou CNN) [LeCun et al., 1989] (figure 1.8).
Une image de dimension d; x d» pixels est considérée comme une entrée de d; x d» éléments.
Plusieurs changements structuraux et conceptuels sont implémentés par rapport aux MLP. Ces
changements sont motivés par la volonté de réduire le nombre de parameétres du réseau et transpo-
ser des concepts d’apprentissage automatique « classique » sur images (filtres, cascades, etc.) au
domaine de I'apprentissage profond.

1% couche

Représentation des sorties de la 1¢
couche sous la forme d’une image

Représentation des poids sous
la forme d’une imagette

FIGURE 1.8 — Schéma de I'action des neurones dans un CNN. Source de 'image du chien : photo personnelle.

Premierement, chaque neurone n’est connecté qu’a une portion des sorties des couches précé-
dentes (zones colorées de I'image de la figure 1.8). On dit que les neurones ont un champ de vision.
Un neurone de la premiere couche prend donc en entrée une petite portion de 'image centrée
autour d'un pixel, que 'on appelle une imagette. Nous pouvons nous représenter I'’ensemble des
sorties des neurones de la premiére couche comme une nouvelle image, puisque chaque sortie a été
calculée sur une imagette centrée sur une position spatiale dans I'image d’origine. Ainsi, 'analogie
d’une entrée structurée en image peut étre poursuivie pour les couches suivantes (image a droite
de la figure 1.8). De plus, puisque chaque poids d'un neurone de la premiére couche est associé a
un pixel de 'image d’entrée, nous pouvons nous représenter I'ensemble des poids d'un neurone
par une imagette également, d'une taille égale au champ de vision du neurone (imagette en bas
de la figure 1.8). On appelle alors '’ensemble des poids du neurone un noyau. Un neurone envoie
un signal en sortie d’autant plus élevé que la somme des entrées pondérées par les poids associés
est forte. Si nous représentons a la fois les poids et les entrées sous la forme d’images, alors nous
pouvons nous représenter qu'un neurone produit une valeur forte en sortie si l'imagette qu'il « voit »
correspond a son noyau.

Une contrainte supplémentaire des CNNSs est qu’au sein d’'une couche, tous les poids sont les

mémes d'un neurone a l'autre. Ainsi, la méme imagette est recherchée dans toute 'image d’entrée a
différentes positions, et la sortie de la couche correspond a une carte de chaleur pour la détection de
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cette imagette. On peut dire par analogie avec le champ de la vision par ordinateur qu'une couche
de neurones fonctionne a la maniére d’un filtre appliqué a une image pour en détecter un motif (par
exemple, le filtre de Sobel permet de détecter les bords d'une image [Sobel, 2014]). Dans la figure 1.8,
la premiere couche recherche dans I'image d’entrée une forme arrondie (imagette du bas), et en
conséquence les neurones qui s’activent sont ceux connectés a des zones qui correspondent a cette
description, telles que la truffe, les pattes et les yeux du chien.

A la différence d'une opération de recherche de bords qui est réalisée avec un seul filtre, les
CNNs correspondent a plusieurs filtres appliqués séquentiellement, c’est-a-dire que les filtres d'une
couche donnée s’applique sur la sortie de la couche précédente, menant a un filtrage de plus en
plus complexe, et donc a des caractéristiques recherchées de plus en plus élaborées [Yosinski et al.,
2015]. Par exemple, la couche de neurones qui prend en entrée la sortie de la premiere couche de la
figure 1.8 applique un filtre non pas sur les valeurs brutes des pixels de I'image mais sur des valeurs
représentant la présence de formes arrondies. De plus, un CNN comprend une dimension de plus
qu'un MLP : chaque couche d’'un CNN est en fait constituée d'un certain nombre de filtres. On
appelle cet ensemble de filtres une couche convolutive. Limage en sortie d'une couche de CNN
est donc une image constituée d’autant de canaux que la couche comprend de filtres, et sert toute
entiere comme entrée a la couche suivante. On appelle une telle image tridimensionnelle une carte
de caractéristiques (figure 1.9).

Carte de caractéristiques

Couche convolutive

FIGURE 1.9 - Extension de la figure 1.8 pour un cas ot la couche convolutive contient deux filtres.

Pour compléter le tableau d'un CNN, il est nécessaire de préciser qu’ils sont composés d’autres
couches que les couches convolutives :

— des couches de «regroupement par maximum » (max-pool en anglais) sont insérées entre
certaines couches convolutives. Cette couche réduit spatialement la taille de la carte de
caractéristiques produite par la couche précédente, la plupart du temps par un facteur deux.
Cette action permet mécaniquement d’augmenter le champ de vision des neurones de la
couche convolutive suivante, puisque leur noyau s’applique a une imagette correspondant a
une zone plus grande de I'image d’origine. Ainsi, a mesure que les caractéristiques extraites
se complexifient, ces dernieres sont calculées sur des sections de plus en plus importantes de
I'image d’origine. Ces couches max-pool permettent une évolution harmonieuse entre un
calcul de caractéristiques simples (bords, couleurs, etc.) sur des zones spatialement réduites
a des caractéristiques complexes (forme d’objet plus large, etc.) sur des zones plus étendues.

— une couche de «regroupement par moyennage global » (Global Average Pooling en anglais,
ou GAP) est parfois présente apres toutes les couches convolutives et max-pool. Cette couche
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réduit spatialement la taille de la carte de caractéristiques a une résolution spatiale fixe. Cette
couche permet a |'utilisateur de fournir des images de tailles variables en entrée du réseau
sans modifier I'architecture de ce dernier.

— des couches de MLP, donc composées de neurones qui prennent en entrée l'intégralité de
I'image, sont présentes en général apres toutes les couches convolutives et max-pool et
I'éventuelle couche GAP. On les appelle dans le cadre d'un CNN des couches entierement
connectées (Fully Connected en anglais, ou FC). Puisque les neurones de ces couches sont
connectés a la totalité des cartes de caractéristiques données en entrée, les caractéristiques
provenant de ’ensemble de 'image sont ainsi regroupées pour permettre au réseau de
proposer une étiquette en se basant sur la totalité de I'information disponible.

— enfin, apres les couches FC, une couche de « fonction exponentielle normalisée » (softrmax)
applique une opération de normalisation aux sorties brutes du réseau afin que la somme des
scores proposés pour les classes soit égale a un.

La figure 1.10 présente 'agencement de ces différentes couches dans un CNN simple.

Entrée Couche convolutive Couche GAP Couche softmax
Score pour la classe A
Etiquettage proposé
0.23 | Seuillage a 0.5 E « Cette image ‘i
0.77 i est de classe i
I Score pour la classe B

Couche max-pool Couche FC

FIGURE 1.10 — Schéma d'un CNN simple. Nous conserverons le méme code couleur pour toutes les figures
présentant des réseaux de neurones dans ce manuscrit.

Les méthodes d’apprentissage profond ont révolutionné le champ de 'apprentissage auto-
matique au début des années 2010 [Krizhevsky et al., 2012], permettant d’obtenir des progres
significatifs sur des taches de classification considérées jusqu’alors comme extrémement exi-
geantes [Alom et al., 2018]. Les progres ont été particulierement stupéfiants dans les domaines de
vision par ordinateur [He et al., 2017; Zhu et al., 2017] et du traitement automatique du langage
naturel [Vaswani et al., 2017; Brown et al., 2020]. Malgré les difficultés importantes du domaine,
et notamment le besoin d'un trés grand nombre de données afin de limiter le surapprentissage,
les gains de performance possibles sont si substantiels par rapport aux méthodes d’apprentissage
classiques que de nombreux acteurs de la recherche et de I'industrie, dont Carbon Bee, cherchent a
implémenter prioritairement ces méthodes lors de I'étude d'un nouveau probleme.

1.2.2 Spécificités du domaine de la détection de maladies de plantes

Nous discutons a présent les spécificités du domaine d’intérét relativement a 'application des
méthodes d’apprentissage profond.

Les jeux de données sont restreints mais comportent une grande variabilité

Les techniques d’apprentissage profond ont été diffusées dans le domaine des sciences végé-
tales comme dans de nombreux autres domaines a partir du milieu des années 2010. La détection
de maladies d’'une plante s’effectue principalement en analysant des images de ses feuilles [Singh
et al., 2018]. Cependant, cette tiche présente plusieurs difficultés pour 'application des méthodes
d’apprentissage profond. Tout d’abord, les jeux de données contiennent en général peu d'images.
Ceci est di en partie a la grande variabilité des plantes et des types de maladies, ce qui nécessite de
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circonscrire strictement le cas d’étude [Ubbens et al., 2018]. De plus, le processus d’annotation doit
trés souvent étre confié a un-e expert-e agronome du domaine. En effet, les symptomes visuels de la
maladie recherchée sont souvent trés proches de ceux d’autres maladies voire de ceux indiquant des
mécanismes physiologiques sains au sein de la plante [Daughtry et al., 2000]. En conséquence, les
jeux de données annotés disponibles sont restreints par rapport a ceux d’autres domaines comme
la conduite autonome [Saleem et al., 2019].

Une autre difficulté est que la variabilité des symptomes possibles méme pour un systéme
plante-pathogéne défini complique la tache de classification. Les plantes et les agents pathogenes
sont des organismes vivants, et leur signature visuelle évolue donc dans le temps. Au sein d'un
méme jeu voire d'une méme image, plusieurs plantes peuvent étre atteintes d’'une méme maladie
présente a différent stades, parfois avec des signatures visuelles tres différentes. De plus, les acquisi-
tions des images sont trés souvent réalisées a ’extérieur ou en serre : les conditions météorologiques
et d'illumination ménent a une grande variabilité dans les jeux disponibles. La figure 1.11 illustre
quelques-unes de ces variabilités.

Parmi les applications d’apprentissage profond, plus du tiers [Abade et al., 2020] des études
publiées aujourd’hui utilisent au moins partiellement le jeu annoté PlantVillage [Hughes et al.,
2015] pour mener a bien leur entrainement. Il s’agit d'un jeu libre d’environ 50 000 images RVB
de feuilles atteintes de maladies. La tache de classification associée est de déterminer la maladie
dont sont atteintes les feuilles parmi les 38 présentes dans le jeu. Limportante proportion d’études
s’appuyant sur ce jeu souligne le probléme de I'étroitesse des jeux qui handicape I'application de
techniques d’apprentissage profond au domaine.

(@)

(© (d)

FIGURE 1.11 - Quelques exemples d'une campagne d’acquisition d'images de vignes atteintes d’esca, ac-
quises par Carbon Bee AgTech. Les sous-figures (a) et (b) illustrent la différence de luminosité qui peut exister
entre des acquisitions en fonction de la position du soleil par rapport au capteur. Les sous-figures (c) et (d)
illustrent les différences de signature de la maladie (taches brunes dans le cas de 'esca) en fonction de son
stade de développement au moment de I’acquisition.
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Les taches étudiées concernent souvent une classification en conditions controlées

Par ailleurs, il est nécessaire de souligner que, plus encore que dans d’autres domaines, les
jeux de données sont pour beaucoup en conditions dites controlées. Dans ces jeux, les acquisitions
concernent des feuilles isolées sur un fond uni prises en intérieur avec une illumination homogeéne.
Or les conditions réelles d’application de ces algorithmes, que ce soit en serre ou en champ, sont
bien différentes : nombreuses feuilles superposées a distance variable, positionnement avec des
angles arbitraires par rapport a la caméra, conditions lumineuses diverses et potentiellement variées
au sein d'une méme feuille, etc. La figure 1.12 illustre la différence entre les deux types de conditions.

AT o

§

(a) Une image, en conditions controlées, dujeu (b) Une image, en conditions réelles, du jeu de
de données PlantVillage. Source : https://www. données PlantDisease. Source : [Arsenovic et al.,
kaggle.com/emmarex/plantdisease. 2019].

FIGURE 1.12 - Comparaison entre un jeu en conditions contrdlées et un jeu en conditions réelles.

Par conséquent, les apprentissages réalisés sur des jeux en conditions contrdolées masquent
une grande partie des difficultés du domaine lorsque le bloc de test est aussi acquis dans ces
conditions. Les performances obtenues surestiment la capacité des modeles a effectuer leur tache
en conditions réelles [Ferentinos, 2018]. Les quelques études s’étant intéressées a cet écart de
performance rapportent une baisse d’environ 30% de leur métrique de performance lorsque ces
modeéles sont utilisés en prédiction en conditions réelles [Mohanty et al., 2016]. PlantVillage est un
exemple de jeu en condition controlées, et plus largement il est estimé que les deux tiers des études
publiées a ce jour travaillent uniquement en conditions contrdlées [Abade et al., 2020]. Certain
-es chercheur -euses, conscients de ces difficultés, cherchent a promouvoir 'utilisation de jeux
comprenant au moins une certaine proportion d'images en conditions réelles. C’est le cas du jeu de
données PlantDisease [Arsenovic et al., 2019], qui contient prés de 80 000 images représentant 42
maladies, acquises en conditions réelles, pouvant notamment contenir plusieurs feuilles atteintes
dans la méme image.

Les architectures des réseaux employés sont empruntées a d’autres domaines

Malgré ces limitations, de nombreuses études ont porté sur I'application d’algorithmes d’ap-
prentissage profond a des problemes de détection de maladies [Singh et al., 2018]. Les plantes
les plus étudiées sont les céréales (riz, mais, blé, etc.) et les maladies les plus étudiées sont celles
causées par des champignons [Abade et al., 2020]. Beaucoup de ces études consistaient simplement
a appliquer un réseau de neurones constituant I’état de I'art au moment de I’étude au probléeme
considéré [Kaur et al., 2019]. Par ailleurs, des réseaux dont I'architecture a été personnalisée pour
la tache considérée ont aussi été développés, en modifiant notamment le nombre de couches ou
d’autres hyperparametres architecturaux [Abade et al., 2020]. Certains réseaux ont des architectures
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plus spécifiques encore au domaine, a I'image de PlantDiseaseNet [Arsenovic et al., 2019]. Cette
architecture comprend un premier réseau servant a la détection d’instances de feuilles dans I'image
suivi d'un deuxiéme dédié a la détection de maladie sur feuille isolée. Limmense majorité des
études se cantonne au cas d'une classification binaire (présence ou absence de maladie) ou multiple
(identification de la maladie), alors que des taches plus complexes comme la segmentation avaient
été explorées dans ce domaine par le biais de méthodes d’apprentissage classiques [Arivazhagan
et al., 2013]. Or, une connaissance des positions et des tailles des lésions via la segmentation per-
mettrait de proposer un diagnostic plus fin quant au stade d’évolution de la maladie. Conscients de
I'enjeu d'une telle information, de nombreux -ses chercheur -euses ont proposés des approches
pour extraire des résultats de segmentation a partir de réseaux destinés a la classification, telles
qu’'une analyse de saillance ou une visualisation des cartes de caractéristiques du réseau [Saleem
etal., 2019].

1.2.3 Positionnement

Dans ce travail, nous avons implémenté des méthodes d’apprentissage profond pour mener a
bien des classifications liées a notre cas d’étude. Nous avons employé pour la plupart des travaux
présentés dans ce manuscrit une architecture existante, relativement simple et aux performances at-
testées dans le domaine de la vision par ordinateur; mais nous avons aussi contribué aux méthodes
en elles-mémes en proposant une nouvelle architecture dédiée aux images du CTIS (chapitre 4).
Nous nous démarquons significativement de I'état de I’art en ce qui concerne les jeux de données,
puisque nous nous concentrons sur des imageries hors du domaine du visible, largement moins
étudiées que les images RVB dans le cadre de la détection de maladies végétales. Nous menons par
ailleurs une étude en conditions réelles, proche des contraintes industrielles rencontrées dans le
domaine de I'agriculture de précision.

1.3 Tavelure du pommier

Enfin, nous présentons la maladie cas d’étude choisie ainsi que les différents travaux déja menés
pour sa détection.

1.3.1 Une infection difficile a détecter et a soigner

La tavelure du pommier est une maladie fongique causée par le champignon Venturia inaequa-
lis affectant les arbres du genre Malus, qui regroupe les pommiers que nous pouvons trouver en
Europe. Le champignon cause I'apparition de taches brunétres et de zones nécrosées sur les feuilles
etles fruits du pommier. Ces l1ésions ne compromettent pas directement la comestibilité du fruit
mais favorisent I'installation de parasites secondaires qui peuvent, eux, provoquer le pourrissement
du fruit. Méme sans infection secondaire, les 1ésions sont suffisamment intrusives (déformations,
flétrissures, crevasses) pour que les fruits produits perdent toute valeur marchande. A ce titre, il
s’agit de la maladie affectant la pomme la plus grave en termes de colit économique au niveau
mondial [Bowen et al., 2011].

Le cycle de reproduction de V. inaequalis est annuel. Les feuilles infectées au printemps tombent
de I'arbre en automne, créant au pied de celui-ci un humus propice au développement du cham-
pignon. Au printemps suivant, des cellules reproductrices du champignon que I'on nomme asco-
spores sont relachées dans I'air et infectent les feuilles a proximité. Cette étape intervient sous des
conditions d’humidité spécifiques, ce qui rend difficile la prédiction de cette période et donc la
bonne application d'un traitement phytosanitaire [Cuthbertson and Murchie, 2003]. L'attaque de la
feuille par le parasite est représentée figure 1.13.

Lascospore pénétre dans la couche protectrice externe de la feuille, appelée cuticule. Cette
pénétration s’accompagne de signaux chimiques qui inhibent les mécanismes de défense de la
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Conidie

Ascospore
Cuticule

Epiderme

Jo J8

FIGURE 1.13 — Etapes d’infection d'une feuille de pommier par V. inaequalis. La feuille est représentée en
vert et le champignon en marron. L'indication JX correspond au nombre de jours aprés I'infection. Source :
image adaptée de Bowen et al. [2011].

feuille. Le champignon se développe alors en dessous de la cuticule, juste au-dessus de I'épiderme.
La maladie est particuliere en ceci que le champignon ne détruit pas les cellules de la couche
épidermale. La souche croit ainsi sous la surface de la feuille en colonisant progressivement des
zones autour du foyer d’'infection pendant plusieurs jours, et est pendant ce temps quasiment
invisible a I'ceil nu [Oerke et al., 2011]. La sporulation survient autour du huitieme jour : de nouvelles
spores nommées conidies éclosent et percent la cuticule. Les spores se répandent alors vers d’autres
zones de la feuille, voire vers d’autres feuilles. Méme si I'infection est invisible a I'ceil nu pendant la
période « dormante », la présence du parasite est cause d’effets physiologiques importants dans
ses zones d’'implantation. En particulier, les micro-lésions de la cuticule réduisent la capacité de la
feuille a retenir '’eau et causent une transpiration involontaire. Ceci mene a un refroidissement
localisé des zones ol le champignon se développe [Oerke et al., 2011].

1.3.2 De nombreuses imageries ont été employées pour sa détection

Différents types d’'imagerie sont pertinents pour détecter la tavelure. Une fois que la sporulation
sur la feuille a commencé et que la 1ésion est visible a I’ceil nu, des méthodes classiques basées sur
I'imagerie RVB sont tout a fait adaptées. En effet, les 1ésions de tavelure ont une couleur tres dis-
tincte des régions saines de la feuille : jaunatre au début de l'infection, puis tirant progressivement
vers le noir au fur et a mesure que les zones se nécrosent. La figure 1.14 présente une comparaison
entre une feuille saine et une feuille ravelée, c’est-a-dire atteinte de tavelure, qui met en évidence la
visibilité des lésions a I'ceil nu.

Cependant, une infection ayant atteint cette phase détectable dans la lumiere visible est déja
trés avancée et difficile a traiter. Il est, de plus, trés probable que les 1ésions détectées aient a ce
moment la déja causé I'infection, pour I'instant invisible, d’autres zones de la feuille. Pour des
besoins de traitement automatique de la maladie, la détection doit se faire de fagon plus précoce.
Par conséquent, différents types d’imagerie ont été testés dans le but de réaliser une détection
avant les symptomes visibles.

— I'IR proche : les auteurs de [Benoit et al., 2016] ont procédé a des acquisitions d'images de
feuilles tavelées avec une caméra hyperspectrale a balayage sur la gamme [400-1000] nm. En
suivant une méthode basée sur la théorie de I'information, ils ont déterminé automatique-
ment la longueur d’onde offrant le plus de contraste dans cette gamme : 760 nm. En nous
basant sur les études réalisées sur d’autres parasites [Mahlein, 2016], il est possible que que
ce contraste soit di a la destruction des structures internes de la feuille par V. inaequalis.

— Lathermographie : il a été montré que les lésions de tavelure causaient, par 'augmentation
de la transpiration, des zones localement plus froides, visibles par thermographie jusqu’a
quatre jours avant 'apparition de symptomes dans le visible [Oerke et al., 2011; Belin et al.,
2013]. En raison de son cycle de vie en deux temps, dont le premier cause une chute locale
des températures et le deuxieme la nécrose des cellules infectées, la tavelure est une maladie
«modeéle » de I'étude thermographique [Bowen et al., 2011]. En effet, la chute de température
est causée par une seul phénomene isolé dans le temps, contrairement a d’autres interactions
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(a) Feuille saine. (b) Feuille atteinte de tavelure, a J14. Les
fleches indiquent la position de quelques
unes des lésions.

FIGURE 1.14 — Comparaison en imagerie RVB entre une feuille saine et une feuille tavelée. Source : acquisi-
tions réalisées au LARIS.

plante-pathogene ol la concomitance de la mort des cellules et 'augmentation de la transpi-
ration provoque des cycles d’augmentation et de diminution de la température difficilement
interprétables.

— Limagerie hyperspectrale : les auteurs de [Delalieux et al., 2009a] se sont intéressés a la
détermination d’'indices indicateurs de la présence de tavelure a partir d’acquisitions hy-
perspectrales dans le domaine visible jusqu’a I'IR-B pour des cultivars. Ils concluent sur la
difficulté a déterminer des indices robustes au vieillissement de la feuille et aux différents
stades de la maladie. Par exemple, certains indices basés sur I’absorption d’eau permettent
de détecter une infection de tavelure des le jour de I'infection, mais sont inutiles quelques
jours plus tard. Les auteurs sont parvenus a déterminer des indices relativement robustes au
temps, mais dont la qualité est cependant dépendante du cultivar.

— La fluorescence : une part de I'énergie lumineuse absorbée par la feuille est renvoyée sous
la forme d’une onde électromagnétique a plus basse énergie que ’on appelle fluorescence.
Lénergie solaire absorbée par la plante est partiellement consommée par la photosynthese,
mais également renvoyée par fluorescence et sous forme thermique. La mesure de fluores-
cence agit donc comme un indicateur pour mesurer I'énergie absorbée dédiée a la photosyn-
these, indicateur de la bonne santé d’'une plante. Dans le cas de la tavelure, cette imagerie n'a
cependant pas montré une capacité de détection avant 'apparition de symptomes visibles
[Belin et al., 2013].

1.3.3 Positionnement

Ainsi, la tavelure a été étudiée via une grande variété d’imageries, et des longueurs d’onde
optimales pour la détection des lésions ont été déterminées pour plusieurs gammes spectrales.
Cependant, cette caractérisation a nécessité I'usage de caméras hyperspectrales cotiteuses qui
permettaient une acquisition d’'un grand nombre de longueurs d’onde. Dans ce travail, nous pro-
posons d’étudier 'apport potentiel d’'une imagerie bas-cofit et rapide et qui ne nécessite pas de
connaissance biologique a priori sur les longueurs d’onde optimales pour mener a bien la détec-
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tion de lésions de tavelure. Nous exploitons la connaissance de la littérature pour positionner la
performance de cette imagerie par rapport a celles déterminées comme optimales antérieurement.

1.4 Conclusion

Limagerie invisible est utilisée depuis de nombreuses années a des fins de détection de maladies
végétales. Les possibilités d’acquisition qu’elle permet ont été étendues ces derniéres années
via le développement de capteurs hyperspectraux. De plus, son déploiement a été accéléré par
I’avenement des algorithmes d’apprentissage profond qui ont permis d’exploiter efficacement ces
informations spectrales riches. Dans ce travail, nous nous inscrivons dans la continuité de ces deux
axes porteurs dans le domaine de la détection de maladies végétales par imagerie. Cependant,
contrairement aux paradigmes d’« expansion » que 1’on retrouve a la fois dans le domaine de
I'imagerie hyperspectrale via le développement de spectrometres onéreux a forte résolution spatiale
comme spectrale, et dans le domaine de I'apprentissage automatique via le développement de
réseaux de neurones toujours plus profonds et difficiles a entrainer, nous explorons dans ce travail
la viabilité d’'une approche a bas cotit matériellement comme algorithmiquement. En particulier,
nous présentons dans les chapitres suivants une étude menée sur I’exploitation optimale du signal
d’un spectrometre a résolution spatio-spectrale réduite et a acquisition rapide : le CTIS.
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Chapitre 2

Le CTIS : un capteur hyperspectral
atypique a évaluer

Linnovation majeure de la caméra Carbon Bee est I'utilisation du capteur CTIS, encore mé-
connu dans la communauté d’imagerie hyperspectrale. Dans ce chapitre, nous commencons par
positionner ce spectrometre par rapport aux autres capteurs hyperspectraux, en décrivant les prin-
cipes de I'imagerie spectrale et les différents types de capteurs. Nous soulignons les particularités
du CTIS par rapport aux capteurs existants : une capacité d’acquisition instantanée, une acquisition
indirecte, et un cott réduit. Par la suite, nous décrivons en profondeur le CTIS en lui-méme. Nous
nous attardons particulierement sur le lien fort que ce spectromeétre partage avec le champ de la
tomographie.
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CHAPITRE 2. LE CTIS : UN CAPTEUR HYPERSPECTRAL ATYPIQUE A EVALUER

2.1 Principes de I'imagerie spectrale

Nous présentons tout d’abord quelques éléments théoriques relatifs aux capteurs optiques. Par
la suite, nous nous intéressons de facon plus approfondie aux capteurs hyperspectraux.

2.1.1 Notions préliminaires
Nomenclature d’un capteur

Un capteur est un composant électronique qui transforme une grandeur physique en une
mesure quantifiée. Dans ce travail, nous nous intéressons aux capteurs de lumiere, ou imageurs,
qui convertissent un nombre de photons en une mesure. Nous nous concentrons en particulier sur
les capteurs lumineux basés sur des circuits intégrés nommés « dispositifs a transfert de charge »
(Charge-Coupled Device en anglais, ou CCD). Ces capteurs sont composés d'une matrice de détec-
teurs lumineux associés a un systeme électronique qui convertit pour chacun de ces détecteurs
I'information lumineuse recue en tension électrique, exprimée en volts, puis en un nombre flottant
ou en entier. Lensemble des valeurs acquises par ces détecteurs constitue 'image obtenue en sortie.
Ces capteurs lumineux sont généralement accompagnés de filtres optiques. Il s’agit de matériaux
fins qui ne transmettent que certaines gammes de longueur d’onde. Ainsi, un capteur dit IR est un
capteur dont les filtres transmettent la lumiére de la gamme IR et absorbent le reste. La figure 2.1
illustre le vocabulaire présenté dans cette section. Dans ce manuscrit, nous utiliserons le terme
«capteur » pour désigner 'ensemble des éléments de cette figure.

CccD
) Systéeme
Filtre

optique

Lumiére incidente

Pixels
de I'image

—-——

Détecteur

FIGURE 2.1 — La nomenclature des différents composants d'un capteur d’images.

Les capteurs multispectraux permettent d’acquérir différentes gammes de longueur d’onde

Lorsque nous observons une scéne plane ou suffisamment éloignée, notre cerveau l'interprete
comme une information a deux dimensions spatiales, accompagnée d'une information de couleur.
Dans le cadre de I'imagerie hyperspectrale, il est pertinent de se représenter mentalement au lieu
de cette information de couleur, qui n’existe que dans notre cerveau, une troisieme dimension qui
décrit le spectre de la scéne. En effet, que ce soit par réflexion de la lumiere solaire ou bien émission
thermique, I'énergie lumineuse qui émane d’'un objet est répartie dans une gamme de longueurs
d’onde distinctes. Une représentation en trois dimensions d’'une scéne permet d’expliciter I'in-
formation spatiale de la scene sous la forme des deux premiéres dimensions x, y et I'information
spectrale sous la forme de de la troisiéme dimension A. Un élément (x;, y;,A;) de la scéne corres-
pond donc a I'intensité lumineuse d'un point spatialement défini a une longueur d’onde donnée.
Cette représentation mentale d’'une scene en tant qu’espace tridimensionnel permet de mieux
appréhender le fonctionnement des différents types d'imageurs scientifiques existants (figure 2.2).

Plusieurs types de capteurs sont employés dans le domaine de la vision par ordinateur. Le plus
simple de ceux-ci est celui dit panchromatique (figure 2.2, en haut a gauche). Il s’agit d’'un capteur
sans filtre, ol chaque détecteur acquiert la somme spectrale de chaque point qui lui correspond
spatialement. L'image acquise est en deux dimensions : chaque pixel (x;, y;) de 'image obtenue
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Panchromatique Infrarouge

FIGURE 2.2 — Illustration des fonctionnements des différents types de capteur, en représentant la scéne
acquise comme une information tridimensionnelle.

contient une seule valeur. Les capteurs de photographie argentique qui produisent les photogra-
phies en « noir et blanc » sont panchromatiques, munis d’un filtre qui transmet uniquement les
longueurs d’onde du domaine visible. Il est important de noter que 'absorption de la lumiere
incidente par chaque détecteur du CCD est pondérée par un coefficient qui dépend de la longueur
d’onde de la lumiere. Cette fonction de transfert, que I'on appelle la sensibilité spectrale du CCD,
dépend de sa composition chimique. La plupart des CCDs utilisés dans les capteurs actuels sont en
silicium, et leur sensibilité spectrale est une courbe en cloche centrée sur le domaine visible et le
proche IR.

Les capteurs IR sont des capteurs panchromatiques (figure 2.2, en haut a droite) auxquels sont
associés un filtre qui transmet une gamme de longueur d’onde dans le domaine IR. On dit que le
capteur acquiert une bande, c’est-a-dire un ensemble restreint de longueurs d’onde contigties :
I'information acquise par chaque détecteur correspond a une moyenne de I'intensité spectrale sur
cette bande.

Les capteurs dits multispectraux (figure 2.2, en bas a gauche) acquierent entre trois et quelques
dizaines de bandes distinctes. Les capteurs RVB sont des exemples de capteurs multispectraux.
Via des filtres de Bayer [Bayer, 1976], ils acquiérent des images contenant I'information de trois
bandes spectrales du domaine visible, que notre cerveau combine pour produire une information
de couleur [Grasset, 2020]. A ce titre, le systéme optique humain est également un capteur mul-
tispectral RVB. Pour des applications scientifiques, les bandes acquises correspondent souvent
aux bandes RVB ainsi qu'une ou plusieurs bandes du domaine IR [Coffey, 2012]. Les capteurs
multispectraux fonctionnent soit en acquérant séquentiellement les bandes en filtrant la lumiere
entrante successivement avec les différents filtres qui correspondent aux bandes que I'on souhaite
acquérir, via par exemple une roue a filtres [Brauers et al., 2008] ; soit en utilisant un filtre composite
comme celui de Bayer, composé de plusieurs micro-filtres rouge, vert et bleu qui alternent entre les
détecteurs.

2.1.2 Capteurs hyperspectraux

Apparus beaucoup plus récemment que les capteurs multispectraux, les capteurs hyperspec-
traux acquierent une information spectrale bien plus fine que ces derniers via un nombre tres
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important de bandes spectrales mesurées [Hagen and Kudenov, 2013] (figure 2.2, en bas a droite).
Chacune représente une gamme de longueurs d’onde tres restreinte, et les bandes sont contigiies. Il
est coutume de dire qu'un capteur hyperspectral acquiert un cube de données puisque la résolution
spectrale de I'information acquise, de plusieurs dizaines a plusieurs centaines de bandes, est du
méme ordre de grandeur que sa résolution spatiale. Pour atteindre ce niveau de précision, les
technologies optiques employées pour I'imagerie multispectrale, c’est-a-dire une multitude de
filtres ou bien des filtres composites, ne sont pas viables pour un nombre de bandes beaucoup
plus élevé. Les capteurs hyperspectraux utilisent a la place des éléments optiques permettant la
décomposition spectrale de la lumiére.

Les éléments dispersifs permettent de séparer finement I'information spectrale

Les éléments optiques dits dispersifs qui décomposent une lumiere selon ses composantes
spectrales. L'élément dispersif le plus connu [Kress, 2017] est le prisme. Ce bloc de verre taillé
permet de décomposer spectralement la lumiere puisque les rayons y empruntent un chemin
différent en fonction de leur longueur d’onde. Un tel élément que I'on placerait entre une source de
lumiere et un CCD permettrait d’obtenir sur des détecteurs différents les intensités de différentes
longueurs d’onde. Le terme « dispersif » est utilisé en optique comme synonyme de « décomposant
spectralement ».

La majorité des capteurs hyperspectraux modernes incluent des éléments dispersifs que I'on ap-
pelle des réseaux de diffraction. Nous détaillons ici les réseaux de diffraction dits « a transmission »,
sachant qu'’il en existe d’autres qui fonctionnent selon des principes similaires. Ces réseaux sont de
petits matériaux en forme de rectangles plats, percés de multiples fentes espacées régulierement.
Les fentes sont de taille assez réduite pour causer le phénomene de diffraction, régi par la loi de
Huygens-Fresnel [Huygens, 1920]. Dans le cadre d'un réseau de diffraction, cette loi stipule qu’au
niveau des fentes, la lumiére agit comme une source sphérique et se diffuse ainsi dans toutes les
directions. La structure d'un réseau de diffraction associée a cette loi permet la décomposition de
la lumiere, comme l'illustre la figure 2.3.

Notons d la distance entre les fentes du réseau. Considérons deux rayons de longueur d’onde
A issus de deux fentes cOte a cOte, atteignant le méme détecteur p (en bleu dans la figure 2.3).
Nous admettons que la distance entre le réseau et le CCD est suffisamment grande pour considérer
que ces rayons sont paralléles, formant un angle 0 avec la normale du réseau. Les deux rayons
ne parcourent pas le méme chemin optique pour atteindre p. Par trigonométrie, nous pouvons
calculer que leur différence de chemin D est égale a dsinf (en jaune sur I’agrandissement de la
figure 2.3). Si cette différence de chemin est par ailleurs égale a mA, m €N, alors les rayons sont en
interférence constructive : le détecteur p recoit I'information lumineuse correspondant a cette lon-
gueur d’onde. Pour toute autre longueur d’onde A’, la différence de chemin D # mA’ est telle que les
interférences sont partiellement destructives. Leur information est donc perdue pour ce détecteur
p. Un détecteur donné regoit donc I'information d'une longueur d’onde en particulier : la lumiere
est décomposée spectralement. Puisque les angles 0 sont petits, si nous faisons 'approximation
sin(B) = 6, nous pouvons remarquer de plus que les angles de dispersion maximale sont linéaires
par rapport a A. Si une longueur d’onde A; est en interférence positive sur le détecteur p; défini par
un angle 0, alors une longueur d’onde deux fois supérieure sera acquise sur un détecteur p, défini
par un angle 0, approximativement deux fois plus grand que 0;.

Si nous considérons, plutdt qu'un détecteur fixe, une longueur d’'onde A donnée, alors nous
pouvons constate qu'’il existe plusieurs angles de diffraction menant a une interférence construc-
tive : tous ceux qui menent a une différence de chemin égale & un multiple de A. Linformation
correspondant a une longueur d’onde A est donc acquise sur plusieurs détecteurs du CCD. Cette
configuration meéne a un ensemble de décompositions spectrales de la lumiere incidente que I'on
appelle des ordres de diffraction, (a droite de la figure 2.3). Par convention, ils sont numérotés selon
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FIGURE 2.3 — Schéma de 'action d'un réseau de diffraction. La taille du réseau est exagérée a des fins
d’illustration : il est en réalité de taille négligeable par rapport a la taille du CCD. Deux rayons lumineux issus
de deux fentes cote a cote et atteignant le méme détecteur sont représentés. La partie inférieure de la figure
est un agrandissement de ces deux fentes.

les entiers naturels et ordonnés selon les angles de diffraction croissants. On distingue en particulier
'ordre 0 qui correspond a I’acquisition de la lumiere non diffractée. La résolution spectrale, c’est-a-
dire a quel point 'information spectrale est séparée spatialement sur le CCD, va en augmentant
avec les ordres. Le nombre d’ordres qu’il est possible d’acquérir sur un CCD dépend de la taille de
ce dernier et des conditions d’illumination. En effet, suivant les lois de la diffraction, la quantité
d’énergie lumineuse va en décroissant selon les ordres, et certains ordres peuvent ainsi ne pas étre
visibles en conditions d’illumination défavorables.

Les capteurs a balayage acquiérent une scéne en plusieurs itérations

La plupart des capteurs hyperspectraux integrent un élément dispersif dans un systeme dit
«a balayage » (scanning en anglais) [Hagen and Kudenov, 2013]. Ces capteurs acquiérent le cube
hyperspectral de la scéne en plusieurs itérations, en se « déplacant » le long d'une dimension,
spatiale ou spectrale. Parmi eux, les plus utilisés sont ceux a balayage spatial car ils permettent
une décomposition plus importante que les systémes a balayage spectral [Gat, 2000]. La figure 2.4
présente le fonctionnement d'un tel systeme dans le cadre d’'un élément dispersif monté sur un
support aéroporté se déplacant selon un axe.

Dans ces systémes, une acquisition concerne une « tranche » spatiale de la scene, c’est-a-dire
une zone spatiale dont une des dimensions est négligeable par rapport a 'autre (représentée en
couleur dans la « Scéne » de la figure 2.4). Un élément dispersif décompose spectralement cette
tranche. Linformation ainsi créée est bidimensionnelle, et représente I'information spectrale de
la tranche spatiale (« Acquisition » de la figure 2.4). Cette information est convertie par le capteur
en une image, qui correspond a une tranche du cube. Afin d’acquérir le cube entier de la scéne,
il est nécessaire que soit I'objet étudié, soit le spectrometre se déplace. Les spectrometres de ce
type étaient employés dans le domaine de la télédétection spatiale, o1 'appareil reste fixe et o1 la
rotation de la Terre permet le balayage dans la dimension spatiale orthogonale a la fente [Green
et al., 1998].
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Acquisition

Cube hyperspectral

Déplacement du
réseau

Réseau ) l x

y Scéne
FIGURE 2.4 — Schéma illustrant le fonctionnement d'un capteur a balayage spatial. Limage bidimensionnelle
acquise a un instant donné, en haut a gauche, constitue une tranche du cube hyperspectral, représenté en

haut a droite. Pour acquérir tout le cube de la scéne, il est nécessaire que le capteur se déplace, mouvement
représenté par la fleche verte. Source de I'image du champ : https://shutterstock. com.

Les capteurs instantanés permettent une acquisition rapide de I'information

Une autre catégorie de spectrometres a vu son développement s’accélérer au cours des der-
nieres décennies : les spectrometres instantanés (snapshot en anglais) [Hagen and Kudenov, 2013].
Ces systemes permettent d’obtenir le cube entier d'une scéne en une seule acquisition. Ils ont
de nombreux avantages par rapport a leurs homologues a balayage. Premiérement, il n’est pas
nécessaire que I'objet étudié ou que des éléments du systéme soient en mouvement, ce qui permet
d’éviter des artefacts de déplacement et notamment le phénomene de flou [Hagen and Kudenov,
2013]. De plus, cette absence de mouvement des éléments du systeme le rend plus compact et
robuste [Descour and Dereniak, 1995]. Par ailleurs, I'acquisition instantanée de la scéne entiére sans
la filtrer spatialement ou spectralement permet une collecte de lumiéere bien plus importante que
dans le cas des spectromeétres a balayage [Hagen et al., 2012]. Enfin, cette catégorie de capteurs est
adaptée a 'acquisition de 'information instantanée de scénes dynamiques comme il est courant
de rencontrer en conditions extérieures.

Les auteurs de [Hagen and Kudenov, 2013] présentent et décrivent la liste exhaustive des
différents capteurs hyperspectraux instantanés existants, dont le développement a commencé dans
les années 1930. Le champ a par la suite beaucoup bénéficié des progres du champ de I'imagerie
computationnelle dans les années 1970. Ce terme désigne les systémes d’imagerie indirects, ou
plusieurs acquisitions incomplétes de la scene nécessitent ensuite une étape de calculs faite par
ordinateur. Ces techniques offrent I’avantage d’'une plus grande capacité de représentation (par
exemple dans le champ de I'imagerie a grande gamme dynamique [Reinhard et al., 2010]) voire
la possibilité de former des images inaccessibles pour des imageurs classiques (par exemple dans
le domaine de la tomographie, comme nous le détaillerons a la section 2.2.3). Les calculs peuvent
aussi au moins partiellement relacher les contraintes sur des systémes optiques parfois difficiles et
coliteux a manufacturer.
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Certains capteurs hyperspectraux sont accessibles a un coiit trés bas

Alors que de nombreuses sociétés produisent des capteurs hyperspectraux dont les prix com-
mencent a plusieurs dizaines de milliers d’euros, des études ont porté sur la possibilité de créer des
capteurs a bas cofit. Les articles dédiés préconisent I'utilisation de matériaux bon marché, voire
a produire directement par des imprimantes 3D [Salazar-Vazquez and Mendez-Vazquez, 2020]
(figure 2.5). Certains de ces capteurs sont a balayage et sont destinés en particulier au montage sur
des drones [Uto et al., 2016; Sigernes et al., 2018], mais il existe aussi des recherches sur les capteurs
instantanés, mieux adaptés a des applications véritablement bas-cofit telles que des acquisitions
ala main. Parmi ceux-ci, certaines solutions optent pour des conceptions originales, inspirés de
capteurs instantanés développés plusieurs décennies en arriere [Mathews, 2008; Gao et al., 2010].

RN liJ»J{JJm-pm‘.u.

FIGURE 2.5 — Un capteur hyperspectral imprimé en 3D. Source : [Salazar-Vazquez and Mendez-Vazquez,
2020].

2.2 Le CTIS: un capteur du domaine de I'imagerie computationnelle

Le CTIS est le premier des capteurs hyperspectraux instantanés exploitant les capacités de I'ima-
gerie computationnelle. Nous détaillons dans cette section le fonctionnement de ce spectrometre
et la facon dont I'imagerie computationnelle permet I'acquisition instantanée de la scéne.

2.2.1 Lacquisition d'une image destinée a une reconstruction

Lacquisition réalisée n’est pas directement un cube hyperspectral mais une image bidimen-
sionnelle. Nous appelons cette image ['image CTIS et 'espace de ces images ['espace de mesures.
Des calculs sont par la suite conduits sur cette image afin d’en produire le cube hyperspectral de
la scene. On appelle ces calculs 'étape de reconstruction du cube. Ce pipeline général est illustré
figure 2.6.

Le banc optique du CTIS est présenté figure 2.7. La lumiére de la scene traverse d’abord une
lentille d’objectif et un diaphragme de champ. Ces éléments ont pour conséquence une baisse de la
résolution spatiale de la lumiére acquise. Cette baisse permet de dégager une partie du CCD pour
I'acquisition de I'information spectrale. Cette information est obtenue via le passage de la lumiere
dans un réseau de diffraction bidimensionnel, qui décompose I'information spectrale selon deux
dimensions (figure 2.6, « Image CTIS »).

L'image acquise est ainsi partagée en plusieurs zones qui correspondent aux différents ordres
de diffraction, que I'on appelle des projections. L'ordre 0, au centre, est la somme du cube selon
la dimension spectrale. Il correspond a une acquisition que 1'on obtiendrait via un capteur pan-
chromatique a faible résolution spatiale. Les ordres supérieurs sont composés des différentes
décompositions spectrales du cube. La figure 2.8 présente une image CTIS comprenant deux
ordres, I'ordre 0 et ’ordre 1.
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FIGURE 2.6 — Pipeline général d'une acquisition CTIS. Source des images « Scéne » et « Image CTIS » :
acquisition au LARIS avec la caméra Carbon Bee.
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FIGURE 2.7 — Schéma du banc optique du CTIS. Le cube hyperspectral au sommet représente la lumiere
acquise au niveau du diaphragme de champ.

2.2.2 Un capteur relativement peu étudié

Le CTIS a été congu indépendamment par les auteurs de [Okamoto and Yamaguchi, 1991] et
de [Bulygin and Vishnyakov, 1992] avant d’étre développé de maniére plus approfondie par les
auteurs de [Descour, 1994; Descour and Dereniak, 1995]. Ces derniers se sont notamment attachés
a dépeindre les performances et les limitations du CTIS et a décrire précisément le protocole
expérimental entier d’'une acquisition, de la calibration du systéme a la reconstruction du cube.
Ces mémes auteurs ont par la suite popularisé 'utilisation du CT1IS via des preuves de concept
dans certaines gammes spécifiques de longueurs d’onde [Volin et al., 2001] et pour des applications
militaires [Descour et al., 1995, 1997]. Les premiéres expériences abouties furent menées dans le
champ de la biologie moléculaire, en particulier dans le cadre de I'imagerie par fluorescence [Volin
et al., 1998; Ford et al., 2001a,b].

Le CTIS bénéficia au fil de ces expériences d’améliorations matérielles. Laugmentation pro-
gressive de la taille du CCD utilisé permit une meilleure résolution spatiale comme spectrale. De
nouvelles structures d’éléments dispersifs permirent d’augmenter le nombre de projections ac-
quises. Une série de travaux s’intéressa en particulier a ces éléments dispersifs, en générant des
simulations d’images CTIS via des réseaux de diffraction théoriques [Hagen et al., 2006; Hagen
and Dereniak, 2007, 2008]. D’autres travaux furent conduits sur I’amélioration de la calibration
du systéme [Wilson et al., 1997]. La maturation de la technologie permit son application dans les
champs de 'ophtalmologie [Johnson et al., 2007; Lee et al., 2010] et de I'astronomie [Hege et al.,
2004; Smart and Kankelborg, 2018].

Il est a noter que pour tous ces travaux, les cubes produits par les CTIS ont servi pour des
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FIGURE 2.8 — Position des différents ordres sur une image CTIS. L'ordre 0 est encadré en vert. Toutes les
autres projections, y compris celles encadrées en rose, appartiennent a ’ordre 1.

analyses qualitatives effectuées « a la main », par exemple pour une sélection manuelle de bandes
spectrales pertinentes [Johnson et al., 2007] ou pour caractériser spectralement des objets [Hege
et al., 2004]. Il n'y a jamais eu d’analyse automatisée a grande échelle des cubes produits comme
cela a été fait pour des images issues d’autres capteurs hyperspectraux [Chen et al., 2016]. En vingt-
cing ans d’existence, le CTIS a donc été relativement peu utilisé dans des applications scientifiques.
Cependant, grace a ses qualités que sont une grande vitesse d’acquisition, une certaine robustesse
et un prix bas par rapport a d’autres caméras hyperspectrales, le CTIS a été intégré cette derniere
décennie dans plusieurs caméras hyperspectrales bas-cotit innovantes [Johnson et al., 2007; Habel
et al., 2012; Germain, 2019; Salazar-Vazquez and Mendez-Vazquez, 2020].

2.2.3 Unlien fort avec la tomographie

Pour mieux comprendre le fonctionnement, et donc les possibilités et les limitations, du CTIS,,
il faut s’intéresser a I’action du réseau de diffraction qui est au cceur du systéme. Pour cela, il est
utile de se représenter les projections de I'image CTIS dans le sens mécanique du terme, c’est-a-dire
que chaque projection est ce que verrait du cube hyperspectral un capteur placé a une certaine
position autour de ce cube. Nous rappelons que la troisiéme dimension du cube n’est en réalité pas
une dimension spatiale, aussi cette illustration mécanique est-elle nécessairement indicative. Elle
représente cependant exactement |'effet qu’a le réseau de diffraction sur le cube spatio-spectral
(figure 2.9).

En ce sens, le principe optique du CTIS est le méme que celui de la tomographie assistée par
ordinateur (computed tomography en anglais, ou CT, domaine qui a donné le nom au CTIS). Il nous
parait des lors pertinent de détailler la procédure d’acquisition conduite en CT, car celle-ci donne
les éléments pour comprendre plus en profondeur I'action de I'élément dispersif et la procédure de
reconstruction du cube dans le cadre du CTIS.

Lacquisition de multiples signaux incomplets

Dans le domaine médical, le but d'une acquisition par CT est d’obtenir 'image d'une tranche
d’un patient. Ce dernier est placé au centre d'une structure torique, que 'on appelle un scanner, oit
sont placés des émetteurs ponctuels de rayons X. Chaque émetteur est placé en face d'un récepteur.
Au cours de 'acquisition, chaque émetteur envoie un rayon dans la direction de son récepteur,
traversant ainsi le patient. La longueur d’onde des rayons est choisie de fagon a ce que ces derniers
soient absorbés différemment en fonction du type de matériau qu’ils traversent. En d’autres termes,
les différents tissus et organes du corps humain ont des coefficients d’absorption aux rayons
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FIGURE 2.9 — Représentation des projections acquises (en bas) comme des projections mécaniques du cube
hyperspectral (en haut). Source : [Descour and Dereniak, 1995].

différents, connus d’avance. Ainsi, I'intensité recue par un récepteur donné est indicatrice de la
composition des tissus que le rayon émis correspondant a traversé. Cependant, une mesure d'un
récepteur donné ne fournit qu'une information partielle quant a ce chemin. En effet, un récepteur
acquiert une seule valeur et permet donc uniquement de mesurer la quantité totale de I'énergie
absorbée au cours du trajet du rayon. En notant Iy I'intensité du rayon émis, I; celle du rayon acquis,
et n(x) le coefficient d’absorption a la position x du trajet du rayon, x € [0, L] nous avons I’équation

L
I; :IOf p(x)dx. 2.1)
0

Ainsi, la valeur acquise ne permet pas d’expliciter les coefficients p(x) individuels du trajet du rayon.
Lacquisition CT repose sur I'idée d’acquérir un grand nombre de rayons a I'information imparfaite
et de rassembler les informations obtenues pour reconstruire la tranche entiére. Il s’agit donc une
technique d’imagerie computationnelle.

La disposition des émetteurs dans le scanner est illustrée figure 2.10. Un ensemble d’émetteurs
positionnés cote a cote émettent un rayon vers des émetteurs qui leur font face. Lensemble des
mesures faites sur les récepteurs pour une position s’appelle une projection (figure 2.10, gauche).
Au cours de I'acquisition, le scanner pivote sur son axe, permettant de déplacer les émetteurs
et récepteurs. Les projections sont acquises réguliéerement, permettant de couvrir une plage im-
portante d’angles d’acquisition, noté 0 sur la figure 2.10. A la fin de 'acquisition, les projections
unidimensionnelles acquises sont parfois regroupées sous la forme d'une image bidimensionnelle
appelée un sinogramme (figure 2.10, droite).

Les algorithmes de reconstruction permettent de retrouver le signal original

Lensemble de ces projections et les angles avec lesquelles elles ont été acquises permet dans
un deuxiéme temps la reconstruction de I'image. Un algorithme appelé la « rétro-projection filtrée »
(Filtered Back-Projection en anglais, ou FBP) est I'algorithme de reconstruction implémenté aujour-
d’hui dans de nombreux scanners commerciaux [Pan et al., 2009]. Il consiste en un « ré-étalement »
des projections dans le domaine spatial, ou chaque projection est filtrée fréquentiellement afin
d’éviter une surreprésentation des fréquences basses. Il a été prouvé que cet algorithme correspond
mathématiquement a 'opération inverse de I'action du scanner, attendu des conditions idéales et
un nombre de projections infinies [Al Hussani and Al Hayani, 2014]. Cependant, si cet algorithme
est théoriquement parfait, il en va autrement dans la réalité. De nombreuses limitations expéri-
mentales nous éloignent de la situation idéale ot le FBP est une solution exacte. Certaines de ces
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FIGURE 2.10 - Le principe de fonctionnement d'une acquisition CT. Source des images « Patient » et « Sino-
gramme » : [Siltanen, 2017].

limitations ont trait a la nature discrete de la réalité. En particulier, le nombre de récepteurs est
discret et donc les projections le sont aussi. De méme, le nombre d’angles d’acquisition est fini, et
par conséquent le nombre de projections I'est aussi. De plus, certaines gammes d’angle peuvent
étre inaccessibles a cause de contraintes du systéme ou du patient.

De surcoit, il existe aussi des problématiques de bruit qui sont absentes du modele idéal. Premie-
rement, lorsque le nombre de photons acquis par un récepteur est bas, il est nécessaire de prendre
en compte le bruit statistique qui apparait sous la forme de bruit de grenaille (shot noise en anglais).
Ce bruit se traduit concretement par une valeur aléatoire ajoutée ou multipliée a chaque pixel du
sinogramme. Par ailleurs, au sein du patient, il peut se dérouler un phénomeéne dit de diffusion
qui cause le changement de direction de photons. Un photon qui arrive a un récepteur ne provient
donc pas nécessairement de I'émetteur associé par le chemin direct, mais peut provenir d'un autre
émetteur via un chemin inconnu. De plus, de nombreux autres phénomenes causent des artefacts
dans l'acquisition : le « durcissement du faisceau » causé par un rayon X trop poly-énergétique,
des artefacts causés par des objets métalliques, des anneaux dus a une mauvaise calibration des
récepteurs, des artefacts de flou causés par le mouvement de I'objet durant I'acquisition, etc. [Boas
and Fleischmann, 2012].

En réponse a ces limitations des acquisition réelles, une autre famille d’algorithmes est régulie-
rement utilisée en reconstruction CT : les méthodes itératives. Ces méthodes se basent sur une
description algébrique et discrétisée du probleme. Limage originale que I'on cherche a acquérir
(c’est-a-dire la tranche du patient) est décrite comme un vecteur f unidimensionnel d'une lon-
gueur égale au nombre de pixels N dans laquelle elle a été discrétisée, en listant les éléments qui les
composent les uns a la suite des autres. Lensemble des projections (c’est-a-dire le sinogramme)
est décrit comme un vecteur g d'une longueur égale au nombre de projections fois le nombre de
récepteurs, c’est-a-dire au nombre de mesures acquises M. L'action du scanner est supposée étre
une action linéaire entre la tranche du patient et le sinogramme, et est donc représentée par une
matrice H de taille M x N. L'acquisition des projections est donc décrite par I'équation

g=Hf 2.2)

ol H et g sont connus. Le but de la reconstruction est de déterminer I'image originale f. La
résolution directe de I'inverse de cette équation, c’est-a-dire I'équation

f=Hg (2:3)
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est impossible car la matrice H est tres grande, tres éparse (c’est-a-dire qu’elle contient beaucoup
de termes nuls), et non carrée : on dit que la matrice est trés « mal conditionnée ». Cela signifie que
lors de la résolution de I'équation 2.3, un bruit méme faible dans la mesure de g peut mener a un
bruit tres grand dans la prédiction de f. Or, il est trés probable que la mesure de g soit effectivement
bruitée en conséquence des problématiques de bruit listées plus haut. Dans ce cas, les méthodes
itératives qui prennent en compte la possibilité de bruit sont les plus adéquates. Il ne s’agit pas de
résoudre I'équation 2.3, mais de trouver la meilleure solution a I'équation

g=Hf+s (2.4)

ol s est un vecteur de la méme taille que g et qui représente le bruit. Le but est alors de trouver le
vecteur f le plus vraisemblant sachant H et g. Le procédé le plus utilisé a cette fin est celui proposé
par les auteurs de [Shepp and Vardi, 1982]. Dans cette étude, le bruit s est considéré comme du
bruit de grenaille et les valeurs de f sont modélisées comme des variables aléatoires suivant une loi
de Poisson centrée sur leur vraie valeur inconnue. Pour trouver le maximum de vraisemblance de
[, 'algorithme itératif de 'espérance-maximisation (Expectation-Maximization en anglais ou EM)
est employé.

g
—
H
_ \ Mise & jour de'f(l')
M g
A (D) Ait1) _ p0) o
g n —Jn
> Hpmn
m=0
H /

FIGURE 2.11 - Schéma du fonctionnement d'une itération de ’algorithme des auteurs de [Shepp and Vardi,
1982] pour la reconstruction d'une image CT. Les objets connus sont indiqués en vert et les inconnus en
rouge. Les noms des différents objets sont explicités dans le texte.

Le déroulement de ’algorithme, dont une itération est illustrée a la figure 2.11, est le suivant.
Nous notons i I'itération courante, en commencant a i = 0.

1. Proposer une estimation initiale de I'image f, notée f©.
2. Calculer le sinogramme de I'estimation actuelle de f : §? = Hf¥). Nous rappelons que cette
étape est possible car nous considérons H, I'action du scanner, comme connue.

3. Mettre a jour f en fonction de la différence entre ce sinogramme calculé g et le sinogramme

mesuré g. En notant f,gi) chaque élément de f, gﬁ,? chaque élément de ¢ et g,,, chaque

élément de g, alors mettre a jour chaque f,gi) selon I’équation

M
ZOHmn
A A(]) m=
W= ) = (2.5)
Z Hmn
m=0
———
T

38



CHAPITRE 2. LE CTIS : UN CAPTEUR HYPERSPECTRAL ATYPIQUE A EVALUER

4. Reprendre a I'étape 2 jusqu’a un critere de convergence, par exemple une valeur seuil pour la
différence entre g et gV

Nous nous proposons d’expliciter I’équation 2.5. Premierement, nous pouvons noter que la

mise a jour de I'image f se fait pixel par pixel : chaque élément f,(f“) dépend uniquement de f,g’)

et pas d’autres éléments f (i), k # n. Au cours d'une mise a jour, chaque élément f,(l”l) est calculé

comme la multiplication de cet élément a 'itération précédente f,g’ ) par un terme noté T. Notons
que T dépend uniquement de H et de g, qui ont des valeurs positives ou nulles : T est donc égale-
ment positif ou nul. Pour calculer T, nous comparons le sinogramme véritable g au sinogramme
calculé a I'itération courante ¢, Cette comparaison est simplement une somme des divisions
terme 2 terme des valeurs de g et §). Chaque division est en outre pondérée par la participation
de f,, alavaleur que prennent les éléments de g et de g'?. Cette participation est la valeur Hy,,
(terme bleu, « normalisé » par le terme marron). Ainsi, si pour une position m donnée, I'estimation
courante de gﬁ:} est loin de celle du véritable sinogramme g, et que f; contribue fortement a
gmeta gﬁf), alors le terme Hmn% influence fortement T. A I'inverse, par exemple dans un cas

ol1 H,,,, = 0, cette différence ne contribue pas du tout a T. Ainsi, si les valeurs de ¥ auxquelles
f,(ll) contribue sont en moyenne (c’est-a-dire en sommant sur toutes les positions m) trop grandes

par rapport a g, alors T sera inférieur a 1 et f,(li“) sera plus petit que f,gi). Nous pouvons tirer les

conclusions inverses pour le cas ot la contribution moyenne de f” est trop faible par rapport
au g attendu. Comme d’autres méthodes de maximum de vraisemblance, cet algorithme permet
toujours de trouver un maximum local de vraisemblance, mais ne garantit pas la globalité de celui-

ci. Comme il n'y a pas de stochasticité dans cet algorithme, le choix de f ©® 3 une grande importance.

Il existe aussi des méthodes plus modernes de reconstruction CT basées sur les réseaux de
neurones. Il est intéressant de constater que dans ces méthodes, les réseaux sont pensés de ma-
niere a reproduire les étapes d’algorithmes de reconstruction déja existants, ou tout au moins les
différentes parties du réseau y sont-elles identifiées. Les travaux de [Wiirfl et al., 2016] par exemple,
cherchent a émuler I'algorithme de FBP. IIs identifient les couches convolutives de leur réseau au
filtrage fréquentiel, les couches FC a la rétro-projection en elle-méme et la fonction d’activation a
la contrainte de positivité. Les travaux de [Hammernik et al., 2017] proposent deux réseaux, I'un
identifié a 1a FBP et I'autre comme un algorithme de réduction d’artefacts.

Le CTIS est une opération de CT basée sur la lumiére

Le CTIS fonctionne selon le principe du CT appliqué a un cube de lumieére. Les similarités
des deux procédés sont présentées dans le tableau 2.1. Notons que contrairement au CT , le CTIS
permet d’obtenir in fine une image tridimensionnelle a partir de projections bidimensionnelles.
Cependant, tous les concepts de la CT présentés dans la section précédente sont généralisables a
des dimensions supérieures.

CT CTIS
Objet a acquérir Tranche d'un patient (2D) Scene vue comme un cube hyperspectral (3D)
Onde pénétrante Rayons X Lumiére de la scéne
Moyen de génération de projections Emetteurs pivotant autour d'un axe Element dispersif
Image acquise Sinogramme Image CTIS

TABLEAU 2.1 — Comparaison entre le procédé d’acquisition du CT médical et celui du CTIS.

2.2.4 Lareconstruction du signal CTIS est épineuse et approximative

La reconstruction du signal CTIS présente quelques difficultés supplémentaires par rapport a
celle menée dans un cadre de CT médical. Premiérement, le nombre de projections est tres limité
par rapport a celui permis par un scanner. Leur nombre dépend de la structure de I’élément disper-
sif et de la taille du CCD, mais méme les CTIS les plus récents ne dépassent pas une cinquantaine
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de projections [Hagen et al., 2006], alors que les scanners en acquierent des centaines. La figure 2.12
présente un exemple d’'image CTIS a 25 projections.

FIGURE 2.12 - Une image CTIS a 25 projections acquise dans un cadre d’étude ophtalmologique. Source :
[Johnson et al., 2007].

Dans la plupart des systemes CTIS, ce nombre est méme encore plus réduit, en dessous de la
dizaine. De plus, contrairement au scanner qui pivote autour du patient, la scéne n’est acquise ici
que d’'un point de vue fixe. La diffraction permet de générer des projections dans des directions
différentes mais il n’en reste pas moins qu'une part importante des angles de projection est impos-
sible a acquérir : ceux qui définissent la demi-sphere qu’il serait possible d’acquérir si le capteur
était placé « de I'autre cOté » de la scene. Il est possible de faire le lien entre le nombre et la position
des projections et la qualité attendue du signal reconstruit via le « théoreme de la tranche centrale »
[Bracewell, 1956] (figure 2.13). Dans un cadre de CT, ce théoreme stipule que, pour une image
bidimensionnelle donnée, les deux mesures suivantes sont équivalentes : (i) la transformée de
Fourier d'une projection faite a un angle 6, et (ii) la tranche de la transformée de Fourier de 'image,
a un angle 0 et passant par le centre de I'image. Ainsi, le nombre de projections conditionne la
proportion de fréquences de la scéne originale que nous retrouvons dans le signal reconstruit. Ce
théoreme se généralise a plus haute dimension. Dans le cas du CTIS, la figure 2.14 illustre le faible
remplissage de l'espace fréquentiel d(i aux nombre réduit de projections.

Une autre difficulté du CTIS est que le phénomene de diffraction, qui permet la décomposition
du cube et donc 'acquisition de projections, conduit a une division de I'intensité de la lumiére inci-
dente entre les ordres (section 2.1.2). Ainsi, certaines projections sont plus lumineuses que d’autres,
et, sous des mauvaises conditions d’illumination, certains ordres peuvent ne pas apparaitre.

Enfin, I'explicitation de la matrice H qui définit ’action du systeme peut étre délicate. L'écrire a
priorinécessite une connaissance fine du systeme optique, des phénomenes de diffraction et des
aberrations optiques s’y déroulant. Il est alors recommandé de déterminer H de maniére expérimen-
tale en utilisant des sources lumineuses dont le spectre est connu [Descour and Dereniak, 1995].
Notons au passage que dans le cas du CTIS, H définit uniquement ’action du réseau de diffraction,
c’est-a-dire la conversion entre le cube hyperspectral réduit au diaphragme de champ et 'image
acquise (figure 2.7). Laction de la lentille d’objectif et du diaphragme de champ mene a une baisse
de résolution spatiale qu’il est impossible de recréer a partir de I’algorithme de reconstruction.

Malgré ces difficultés, les études sur le CTIS reprennent pour réaliser la reconstruction les for-

malisations et algorithmes du domaine du CT. En particulier, 'algorithme EM est utilisé des I'étude
de [Descour and Dereniak, 1995]. Les mémes auteurs ont implémenté plus tard la « technique de
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Projection

FIGURE 2.13 - Le théoreme de la tranche centrale permet de faire le lien entre une projection et 'image dont
elle provient dans le domaine fréquentiel. « TF » indique la transformée de Fourier.

(a) Domaine spatial (b) Domaine fréquentiel

FIGURE 2.14 - Illustration de la faible conservation de I'information fréquentielle d'une image lors de 'action
d'un CTIS a faible nombre de projections. (a) Les projections du CTIS dans le domaine spatial et (b) la
répartition de I'information dans le domaine fréquentiel d’apres le théoreme de la tranche centrale dans sa
version tridimensionnelle (b). Source : [Descour and Dereniak, 1995].

reconstruction algébrique multiplicative » (Multiplicative Algreabric Reconstruction Technique en
anglais, ou MART) [Gordon et al., 1970], et les études ultérieures ont utilisé soit 'algorithme EM
[Descour et al., 1995, 1997; Hege et al., 2004; Johnson et al., 2006, 2007; Lee et al., 2010] soit le MART
[Ford et al., 2001a,b; Hagen et al., 2006; Hagen and Dereniak, 2007]. La différence entre les deux
algorithmes tient a la modélisation du bruit dans I'image. Il existe deux types de bruit que 'on
peut choisir d’inclure dans le modele du CTIS : le bruit de grenaille, décrit plus haut, et le bruit
thermique lié aux fluctuations thermiques des éléments électroniques, suivant une loi normale.
Dans la plupart des études, un des types de bruit est considéré comme tellement prépondérant
dans I'image CTIS que l'autre est considéré comme négligeable. Dans le cas de 1 'EM, c’est comme
nous I'avons dit le bruit de grenaille qui est considéré comme dominant, tandis que dans le cas du
MART, le bruit est considéré comme principalement de source thermique. Quelques études ont
été conduites spécifiquement pour améliorer ces algorithmes. Nous pouvons citer en particulier la
technique de reconstruction a espérance mélangée (Mixed Expectation Reconstruction Technique)
[Garcia and Dereniak, 1999] qui prend en compte les deux sources de bruit sus-citées, arguant que
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la prédominance d'un certain type de bruit pouvait varier en fonction de la localisation dans I'image
acquise en fonction des conditions d’illumination. Cependant, cette initiative, comme d’autres
[Hagen et al., 2007; Vose and Horton, 2007] n’ont jamais été implémentées dans des études publiées
ultérieures. Il est aussi intéressant de noter que, bien que les algorithmes de reconstruction de CT
médical aient grandement évolué depuis l'utilisation de 'algorithme EM, (cf. dernier paragraphe
de la section 2.2.3) ces innovations n’ont jamais été portées au domaine du CTIS.

2.3 Conclusion

Le CTIS est un capteur hyperspectral, c’est-a-dire qu’il permet d’acquérir I'information d'un
grand nombre de longueurs d’onde distinctes d'une scéne. De surcott, il s’agit d'un capteur instan-
tané, une caractéristique utile pour les acquisitions en extérieur comme celles que ménent Carbon
Bee. En contrepartie, une étape de calcul, identique a celle conduite en CT, est nécessaire afin de
reconstruire I'information spectrale a partir du signal acquis par le spectrometre. Nous présentons
dans le chapitre 4 des travaux que nous avons mené afin d’exploiter le signal produit par le CTIS qui
permettent notamment de contourner les difficultés liées sa reconstruction. Nous avons conduit
cette étude sur des données simulées, dont la création est présentée dans le chapitre suivant.
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Chapitre 3

Des simulateurs pour évaluer le capteur
CTIS

Afin d’évaluer la performance du capteur CTIS dans le cadre d’'une application d’apprentissage
automatique, nous avons procédé a une détection de tavelure a I'échelle de la feuille de pommier,
c’est-a-dire en nous basant sur des images de feuilles isolées en conditions controdlées. La feuille est
parmi les organes d'une plante celle qui offre le plus d’indications visuelles quant a la santé de celle-
ci, et elle fut a ce titre massivement étudiée dans des applications de vision par ordinateur [Martinelli
et al., 2015; Khirade and Patil, 2015; Cerutti et al., 2013]. Aujourd’hui, les études portant sur des
feuilles isolées sont pour beaucoup destinées a démontrer la faisabilité de nouvelles méthodes
de détection [Belin et al., 2013] que celles-ci soient matérielles ou algorithmiques, et ce n’est que
lorsque ces technologies sont arrivées a une maturité plus importante qu’elles sont évaluées a des
échelles plus complexes (canopée, champ, etc.) [Wang et al., 2010]. Nous avons jugé que I'étude a
I’échelle de la feuille, en conditions controlées, était adaptée au niveau de maturité technologique
du capteur CTIS. Par ailleurs, comme cela est trés courant pour des capteurs innovants, nous nous
sommes tournés vers la simulation de données pour mener a bien cette étude [Spoelder, 1999]. La
simulation permet en effet de générer un nombre illimité de données annotées a trés faible cofit.
Elle peut permettre en outre d’affiner les analyses, par exemple en générant des configurations qu’il
estrare de rencontrer dans le monde réel [Chawla et al., 2002]. Dans cette étude, nous avons exploité
la flexibilité du procédé de simulation pour mener une analyse fine des différents stades d’infection
de la tavelure. Ce chapitre présente la création de ces données simulées via le développement de
deux nouveaux simulateurs.
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Nous avons créé un jeu de données simulées d’images CTIS de feuilles tavelées en couplant
deux simulateurs distincts.

— D’une part, nous avons développé un simulateur «spectral » de cubes hyperspectraux de
feuilles tavelées acquises en conditions controlées.

— De l'autre, nous avons produit un simulateur « optique » de CTIS qui reproduisait le fonction-
nement de ce spectrometre.

Les cubes créés par le premier simulateur étaient fournis en entrée au deuxiéme, permettant
de générer des images CTIS de feuilles tavelées. Nous présentons a présent plus en détail ces
simulateurs. Tout le code nécessaire au travail présenté dans ce manuscrit relatif au traitement
d’images a été réalisé en Python 3.6 avec la librairie OpenCV 4.1.0.

3.1 Simulateur de cubes hyperspectraux de feuilles tavelées

3.1.1 Notions préliminaires de traitement d’images

Dans tout le travail de ce chapitre, nous avons manipulé des images selon des opérations
typiques du domaine du traitement d'images. Les images étant considérées pour un ordinateur
comme de simples tableaux de nombires, il était tout d’abord possible de procéder a des opérations
mathématiques standards telles que 1’addition pixel a pixel et la multiplication de tous les pixels par
un nombre. Nous avons traité des images encodées sur 8 bits, ce qui signifiait que les pixels peuvent
prendre une valeur entiére entre zéro (noir) et 255 (blanc). Dans le cas d'images RVB, chaque pixel
stockait trois valeurs en 8 bits correspondant aux trois canaux de couleurs.

Nous nous sommes appuyés pour nos simulateurs sur 'opération de seuillage, qui consiste a
mettre a 255 (blanc) les pixels d’'une image si ceux-ci respectent un certain critére, et de mettre a
zéro (noir) les autres. Un cas classique du seuillage est le seuillage binaire, ot le critere de sélection
des pixels est une comparaison de leur valeur avec une certaine valeur donnée. Les images (a) et (b)
de la figure 3.1 illustrent le principe d’un seuillage basé sur la conservation de la couleur verte.

Limage (b) de cette figure est un exemple de masque, c’est-a-dire une image binaire repré-
sentant typiquement la localisation d'un certain objet dans I'image. On dit que I’on procede au
masquage d'une image I par un masque M lorsqu’on conserve de I uniquement les pixels corres-
pondant aux pixels blancs de M, et que I'on fixe les autres pixels a zéro. Les images (a), (b) et (c) de
la figure 3.1 illustrent une telle opération de masquage.

(a) Image originale. (b) Masque obtenu par seuillage de  (c) Image (a) masquée par I'image
la couleur verte. (b).

FIGURE 3.1 - Principes du seuillage et du masquage. Source de I'image originale : [Kumar et al., 2012].

3.1.2 Algorithme général

Nous décrivons a présent le procédé général du simulateur de cubes hyperspectraux de cubes
tavelés. Les cubes hyperspectraux sont des images tridimensionnelles dont deux dimensions repré-
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sentent 'information spatiale de la feuille représentée, et la troisieme I'information spectrale. Un
tel cube peut étre vu comme la concaténation selon I'axe des canaux d’'images bidimensionnelles
représentant 'aspect de la feuille aux différentes longueurs d’onde. Nous avons appelé tranches
spectrales chacune de ces images.

Pour créer un cube donné, nous avons utilisé comme source une image de feuille saine. Nous
avons dupliqué cette image autant de fois que le nombre de tranches spectrales que nous sou-
haitions simuler dans le cube. Nous avons généré une distribution spatiale de lésions de tavelure,
c’est-a-dire un masque représentant les positions des lésions sur la feuille. Nous avons appliqué sur
les tranches un contraste entre les zones saines et les zones tavelées. Ce contraste dépendait de la
longueur d’onde, et était calculé selon des spectres mesurés expérimentalement. L'algorithme 3.1
présente cette procédure plus formellement. Cet algorithme est illustré figure 3.2, Les étapes
indiquées en bleu dans I'algorithme et encadrées en bleu dans la figure sont détaillées dans les
sections suivantes de ce chapitre. Notons que la sortie de cet algorithme était un cube, soit une
image en trois dimensions. Nous désignons chacun des éléments de ces cubes par le mot voxel.

Algorithme 3.1 : Créer un cube hyperspectral a partir d'une image de feuille.
Entrées : une image RVB d’'une feuille saine [, les spectres expérimentaux de zones saines et
tavelées de feuilles Rg et Rt de longueur n,, la dimension spatiale du cube a générer d.

Convertir I en niveau de gris.

Redimensionner I a la dimension d x d pixels.

Créer par seuillage de la couleur verte un masque Mgeijie Ol les pixels blancs correspondent
aux pixels appartenant a la feuille dans I.

/* Distribution spatiale des lésions de tavelure. */

Générer une distribution spatiale de 1ésions Miggions OU les pixels blancs correspondent aux
emplacements des lésions simulées.

Générer un masque de lésions de tavelure Miayelure €0 masquant Migsions Par Mieuille-

Créer 'image Mg,in comme le résultat de I'opération Mgeyiie - Miavelure-

Créer 'image [velure cONtenant uniquement les pixels tavelés de la feuille en masquant I

par Mtavelure-
Procéder similairement pour obtenir Igaip.

/* Création des tranches spectrales. */
pour A € [1, n)] faire
Calculer la tranche spectrale du cube hyperspectral simulé a la longueur d’onde A :
I\ = Msain -Rs[A] + Mavelure -RT[A]
fin

/* Création du cube. */

Concaténer les images I suivant ’axe des canaux pour former le cube C.

Sortie : le cube hyperspectral C de la feuille I, avec des 1ésions de tavelure simulées, de
dimension d x d x n) voxels.

Nous détaillons a présent les étapes suivantes : collecte des images des feuilles saines, génération
des distributions spatiales des lésions, acquisition expérimentale des spectres.

4. La quasi-intégralité des algorithmes de ce manuscrit sont au moins partiellement illustrés afin de faciliter la
compréhension de ceux-ci. La figure correspondante sera indiquée entre parenthéses dans le texte apres la premiére
mention de I'algorithme.
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Conversion en niveaux de gris
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FIGURE 3.2 - Illustration de I'algorithme 3.1. Pour les étapes de masquage, la fleche étiquetée « masquage »
indique le masque employé et la fleche vide 'image masquée. Pour I'étape de soustraction, la fleche étiquetée
«soustraction » indique I'image de laquelle nous soustrayons et la fleche vide I'image que I'on soustrait. Les
étapes encadrées en bleu sont détaillées dans les sections suivantes de ce chapitre. Source de I'image I :
[Kumar et al., 2012].

3.1.3 Collecte des images des feuilles saines

Nous avons construit les cubes hyperspectraux a partir d'images de feuilles saines issues du jeu
de données Leafsnap [Kumar et al., 2012]. Leafsnap est une application pour mobile qui propose
la détermination automatique de I'espece d'un arbre a partir de la photographie de I'une de ses
feuilles. Lapplication, téléchargée plus d'un million de fois°®, permet ainsi la classification de 184
espéces présentes dans I’'hémispheére Nord. Ses auteurs ont validé son fonctionnement sur un jeu
de données éponyme créé pour I'occasion, pour lequel ils ont autorisé l'utilisation libre par la
communauté scientifique. Le jeu a par exemple été téléversé sur Kaggle afin de servir de base a des
compétitions d’apprentissage automatique®.

Ce jeu de données comprend plus de 30 000 images RVB de feuilles acquises en conditions
controlées : les feuilles sont isolées sur un fond uniforme clair, a I'intérieur. Environ la moitié d’entre
elles ont été acquises via un scanner : les feuilles y sont aplaties. Nous nous sommes concentrés sur
l'autre moitié du jeu qui contenait des images de feuilles posées sur un support, ot 'acquisition
avait été réalisée avec un capteur RVB standard. En effet, nous avons estimé que les repliements
et les courbures naturelles de la feuille dans la profondeur étaient des caractéristiques précieuses
pour s’approcher de 'aspect de feuilles en conditions réelles. Le jeu de données « champ » était
subdivisé en plusieurs dossiers correspondant aux différentes especes d’arbres. Parmi celles-ci,
I'espéce Malus pumila (aussi connue sous le nom de Malus domestica) est celle a laquelle nous
avons porté le plus grand intérét car elle correspondait aux pommiers majoritairement présents
en Europe et a ceux cultivés dans les serres de I'IRHS. Cependant, le nombre d’images de Malus
pumila était trop faible pour conduire une tache d’apprentissage profond. Nous avons donc élargi
notre jeu de données a l'intégralité des feuilles du genre Malus. A l'issue de cette sélection, le jeu de
données que nous avons conservé contenait 3000 feuilles. Nous avons désigné ce jeu comme le

5. https://play.google.com/store/apps/details?id=plant.identification.snap.
6. https://www.kaggle.com/xhlulu/leafsnap-dataset.
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«jeu Leafsnap ». La figure 3.1 (a) présente une des images de ce jeu.

3.1.4 Distribution spatiale des lésions

Nous avons généré pour chaque feuille un masque de tavelure ou les pixels blancs représen-
taient les positions des lésions (Mayelure dans la figure 3.2). En observant I'aspect des lésions sur
des images expérimentales de feuilles tavelées [Oerke et al., 2011; Benoit et al., 2016], nous avons
constaté que leurs formes pouvaient étre approximées par des taches ovoides (figure 3.3). Ces
formes s’expliquaient par le mode de développement de V. inaequalis : la densité du parasite était
tres forte a ses emplacements d’incursion sous le cuticule, mais son développement approximative-
ment isotrope a partir de ces foyers menait a ces lésions en forme d’auréole.

FIGURE 3.3 — Une acquisition IR d'une feuille tavelée a J14 apreés I'inoculation. Source : [Benoit et al., 2016].

Nous présentons maintenant le procédé de génération des 1ésions pour une feuille donnée.
Le pipeline que nous avons mis au point est décrit dans I'algorithme 3.2 (figure 3.4). Il est adapté
de travaux que nous avons mené pour une autre application en sciences végétales [Douarre et al.,
2018a].

Algorithme 3.2 : Créer un masque de taches ovoides.
Entrées : la dimension de 'image a créer d; x d, pixels, le diameétre du cercle du masque
fréquentiel r, la valeur du seuillage binaire t.

Créer une image de dimension d; x d» pixels dont les valeurs des pixels sont tirées
indépendamment et uniformément dans I'intervalle [0, 255].
Calculer la magnitude de la transformée de Fourier de cette image.

/* Conserver uniquement certaines fréquences de I'image. */
Masquer cette transformée de Fourier avec un masque noir a I'exception d'un cercle centré
de rayon r.

Calculer la transformée de Fourier inverse du résultat.
Appliquer a I'image obtenue un seuillage binaire avec un seuil ¢.

Sortie : un masque de taches ovoides de dimension d; x d» pixels.

De plus, nous avons constaté que les tailles des 1ésions suivaient pour beaucoup de feuilles
une distribution multi-échelle. En effet, les 1ésions de tavelure s’étendaient avec le temps, et il était
courant que des lésions d’ages différents soient présentes sur une méme feuille. En conséquence,
les 1ésions semblaient générées par un processus qui menait a différentes distributions de tailles, et
il nous a paru important de respecter cette caractéristique. Afin de simuler cet effet, nous avons
généré pour chaque feuille un masque composite « multi-échelle », somme de plusieurs masques de
lésions « mono-échelle » générés selon 1'algorithme 3.2 avec des distributions de tailles différentes

47



CHAPITRE 3. DES SIMULATEURS POUR EVALUER LE CAPTEUR CTIS

Image aléatoire uniforme Résultat

Masquage

FIGURE 3.4 - Illustration de I'algorithme 3.2. « TF » indique I'opération de transformée de Fourier et « TF! »
I'opération de transformée de Fourier inverse. Le masque employé pour I'opération de masquage n’est pas
explicité dans cette figure.

(figure 3.5).

Masques mono-échelle

Sélection
aléatoire

de taches

Addition

tavelure

FIGURE 3.5 — Algorithme de génération de masques de 1ésions multi-échelle. Dans la premieére colonne,
la valeur r indique le rayon du masque fréquentiel utilisé dans 1’algorithme 3.2 pour générer le masque
mono-échelle. Dans la deuxiéme colonne, la valeur p inique la proportion de taches conservées lors de
I'étape de sélection de taches. Dans la deuxieme et la troisieme colonne, des couleurs ont été ajoutées a titre
illustratif, mais les pixels colorés sont blancs dans les faits. Dans la quatrieme colonne, la forme de la feuille,
en vert, est indiquée elle aussi a titre illustratif.

Nous avons commencé par générer trois masques de 1ésions mono-échelle, correspondant
a des tailles de lésions que nous avons identifiées comme « grandes », « moyennes », et « petites »
(figure 3.5, premiere colonne). La distribution des tailles des taches dans les images mono-échelle
dépendait du rayon r du cercle du masque fréquentiel, ainsi que de la valeur du seuil ¢ dans I’al-
gorithme 3.2. Nous avons fixé le seuil ¢ a 1a valeur renvoyée par le seuillage automatique d’Otsu
[Otsu, 1979] multipliée par un coefficient empiriquement posé comme 1,3 afin de se ramener a
un processus paramétré par une seule valeur. Nous avons alors pu faire varier les tailles de taches
générées en fixant différentes valeurs pour le rayon r du masque fréquentiel. Ensuite, pour chacun
de ces masques mono-échelle, nous avons conservé aléatoirement une certaine proportion p des
taches (figure 3.5, deuxiéme colonne). Les valeurs des parametres r et p, fixées empiriquement,
sont précisées figure 3.5.

Par la suite, nous avons combiné ces masques mono-échelle via une opération « OU logique »
pour obtenir un masque de lésions multi-échelle noté Migsions (figure 3.5, troisieme colonne). La
figure 3.6 présente, pour un exemple de masque multi-échelle, la distribution de tailles des taches
dans les trois masques mono-échelle qui le composent. A I'échelle du jeu de données, les aires
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des taches variaient entre 10 et 70 000 pixels carrés, avec un mode a 28 pixels carrés. Nous avons
par la suite masqué ce masque multi-échelle par le masque correspondant a la feuille considérée
(figure 3.5, quatrieme colonne). Nous avons appelé I'image obtenue M ,yelure-

Nombre de taches

40 A

301

20 A

101

0 2000 4000 6000 8000 10000
Aire des taches (pixel carrés)

FIGURE 3.6 — Un histogramme des tailles des taches contenues dans chaque masque mono-échelle avant
que ceux-ci ne soient combinés dans un masque multi-échelle. Le code couleur correspond a celui employé
figure 3.5.

3.1.5 Acquisition expérimentale des spectres

Nous avons incorporé a la simulation des spectres expérimentaux de portions saines et tavelées
de vraies feuilles. Il y avait a 'TRHS des cultures en serre de plants de Malus pumila qui avaient
été inoculés avec V. inaequalis. Nous avons prélevé dix de ces feuilles quatorze jours apres I'inocu-
lation, une durée apres laquelle les 1ésions de tavelure étaient extrémement séveres [Oerke et al.,
2011]. Nous avons acquis leurs cubes hyperspectraux via une caméra hyperspectrale a balayage.
La caméra était de marque HySpex, modéle VNIR 1024 (figure 3.7), qui permettait d’acquérir 160
bandes spectrales sur une gamme de 400 a 1000 nm, correspondant donc aux gammes visible et
IR-A. L'acquisition a été réalisée en intérieur, les lumieres de la salle éteintes. La seule source de
lumiere était produite par la caméra HySpex elle-méme. Les feuilles étaient posées sur un fond
uniforme. Deux tranches spectrales d'une acquisition sont présentées figure 3.8.

Nous avons par la suite modifié la luminosité du cube acquis afin de simuler une acquisition en
lumiere extérieure au lieu de la lumiere produite par la caméra HySpex. Lors de leur acquisition
par cette caméra, les feuilles étaient accompagnées d'un « Spectralon ». Il s’agissait d'un matériau
réfléchissant quasi-uniformément I’ensemble des longueurs d’onde qu'il recevait. Nous avons nor-
malisé chaque tranche du cube gréce a ce Spectralon, c’est-a-dire que nous avons divisé I'intensité
des pixels de chaque tranche par I'intensité moyenne du Spectralon a cette tranche, afin de simuler
une illumination a intensité spectralement constante ’. Puis, nous avons simulé une illumination
extérieure en utilisant le spectre D65 [Schanda, 2007], un spectre produit par la CIE représentant
une illumination standard en extérieur un jour de soleil en Europe. Nous avons normalisé ce spectre
D65 a 1, puis pour chaque tranche du cube, nous avons multiplié I'intensité de tous les pixels par la
valeur de ce spectre a la longueur d’onde correspondante.

7. Cette normalisation n'est pas celle représentée dans les sous-figures (b) et (d) de la figure 3.8. La normalisation qui
est présentée dans cette figure est simplement une division de tous les pixels des images (a) et (c) par la valeur maximale
des images puis une multiplication par 255 afin d’améliorer I'expérience de visualisation.
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FIGURE 3.7 — La caméra HySpex du LARIS durant I'acquisition du cube hyperspectral d'une feuille. Source :
LARIS.

(a) Longueur d’'onde : 560nm (couleur vertedu  (b) Image (a) normalisée a des fins illustratifs.
domaine visible).

o

(c) Longueur d’onde : 956nm (IR-A). (d) Image (c) normalisée a des fins illustratifs.

FIGURE 3.8 - Deux tranches spectrales d'un cube hyperspectral acquis avec la caméra HySpex. La feuille
située en haut est tavelée, celle en bas est saine (pour comparaison).

A ce stade, nous possédions dix cubes hyperspectraux de feuilles tavelées. Nous avons ensuite
séparé les spectres correspondant aux zones saines et tavelées des feuilles. Pour une des tranches
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de chacun des dix cubes hyperspectraux acquis, nous avons annoté les pixels correspondant
aux zones tavelées (figure 3.9). Cette distinction entre zones saines et tavelées nous a permis, en
moyennant tranche par tranche les valeurs de tous les pixels sains d’'un c6té, tavelés de I'autre,
puis en moyennant ces résultats sur les dix feuilles, d’obtenir les spectres expérimentaux moyens
des zones saines et tavelées, sur la gamme 400-1000nm (figure 3.10). Nous notons ces spectres de
réflectance Rg et Rt respectivement.

(a) Image originale. (b) Image annotée.

FIGURE 3.9 - La tranche spectrale annotée d'un des dix cubes acquis. Les pixels verts de I'image (b) corres-
pondent aux zones saines et les pixels noirs aux zones tavelées.

—— Rs
— Ry

Réflectance (U.A.)

400 500 600 700 800 900 1000
Longueur d'onde (nm)

FIGURE 3.10 - Les spectres expérimentaux pour les zones saines et tavelées, Rg et Rt.

Représenter différents stades d’infection

Les feuilles dont nous nous sommes servies afin de déterminer ces spectres étaient tres forte-
ment infectées. Afin de pouvoir évaluer les algorithmes de détection de 1ésions sur des configura-
tions plus difficiles, nous avons par ailleurs simulé des spectres représentant des infections a des
stades intermédiaires, c’est-a-dire datant d’'un nombre de jours inférieur a quatorze et par consé-
quent plus facilement traitables. Nous avons introduit une variable que nous appelons sévérité, qui
prenait une valeur dans [0, 1] et qui représentait la gravité de I'infection. Nous avons généré des
spectres intermédiaires Rggyri 16 calculés a partir des spectres expérimentaux de la facon suivante :

Rséveérite = Rs + sévérité(Rt —Rg). 3.1)

Ainsi, Rg = Rs, R; =R, etles autres valeurs de sévérité permettaient de représenter des infections
intermédiaires. Le spectre Rq 5 est tracé figure 3.11 pour illustration.
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FIGURE 3.11 — Un spectre simulé de sévérité 0,5 (Ro5), comparé aux spectres expérimentaux Rg et Rt.

3.1.6 Exemple d’'un cube simulé

La figure 3.12 présente un exemple de cube généré avec le simulateur présenté dans cette sec-
tion, pour une sévérité de 1. Ces cubes hyperspectraux constituaient les représentations spectrales
des scenes dans lesquelles nous souhaitions procéder a une détection de lésions. Nous avons par la
suite développé un simulateur de CTIS, qui, a partir d'un cube hyperspectral, en créait une image
CTIS.

(a) Image originale du jeu (b) Visualisation 3D du cube, avec x et y indiquantles (c) Deux  tranches

Leafsnap. dimensions spatiales et A la dimension spectrale. extraites du cube corres-
pondant aux longueurs
d’onde présentées
figure 3.8.

FIGURE 3.12 — Exemple d'un cube hyperspectral généré avec le simulateur de cube hyperspectraux de feuilles
tavelées.
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3.2 Simulateur de CTIS

3.2.1 Modele discrétisé de I’action du réseau de diffraction

Laction du réseau de diffraction au cceur du CTIS, qui créé des projections bidimensionnelles a
partir d'une sceéne hyperspectrale tridimensionnelle, a été décrite au chapitre 2. Nous avons créé
un simulateur basé sur une discrétisation de ce fonctionnement (figure 3.13 pour le cas de deux
ordres). L'image CTIS, puisqu’acquise sur un CCD au nombre de détecteurs finis, était intrinseéque-
ment de nature discrete, de dimension d x d pixels. Dans ce modele, nous avons aussi discrétisé la
scene hyperspectrale, que nous représentons sous la forme d'un cube hyperspectral de dimension
d x d x n), voxels. Ce cube servait d’entrée au simulateur.

Lordre 0 de I'image CTIS était créé en sommant toutes les tranches spectrales de ce cube.
Concernant les ordres supérieurs, une projection de 'image CTIS était constituée de I'’ensemble
des tranches spectrales ot chaque tranche était décalée spatialement d'une valeur fixe par rapport
ala précédente en suivant I’axe de la projection. Si nous nous représentons le cube hyperspectral
comme un jeu de cartes a jouer parfaitement empilées, alors une projection d'un des ordres supé-
rieurs correspondaient a ce méme jeu partiellement étalé, comme lorsqu’'un magicien demande au
public de choisir une carte lors d'un tour.

Cube hyperspectral discrétisé

A

Réseau de diffraction

Y (/L

/O /[

Atténuateur
CCD

Ordre 1 Ordre 1

FIGURE 3.13 — Schéma représentant le modele CTIS discrétisé. L'élément « atténuateur » est discuté a la
section 3.2.2.

Ce modele discret du CTIS permettait de mettre en évidence une limite du systéme. Dans une
projection donnée d’'un ordre supérieur, le décalage spatial entre deux tranches spectrales consécu-
tives était tres faible par rapport a la taille de ces tranches : il y avait un recouvrement important,
et donc une perte d’'information, entre les différentes tranches spectrales (figure 3.13,« CCD »).
La présence de plusieurs projections dans des directions différentes permettait de partiellement
compenser cette limitation lors de la reconstruction du cube a partir de I'image.
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Nous avons reproduit ce fonctionnement discret en modélisant I'action du CTIS pour un cube
donné en entrée. L'étape principale de ce modele consistait a ajouter dans une image les tranches
spectrales du cube aux localisations déterminées par le fonctionnement optique du systéeme (fi-
gure 3.14). Ces localisations étaient déterminées par la géométrie du modele, c’est-a-dire le nombre
d’ordres acquis et la disposition générale des projections. Dans le systeme optique d'un CTIS, cette
géométrie dépendait de la structure du réseau de diffraction employé. Nous avons basé notre
simulateur sur un type de réseau proche de celui employé par Carbon Bee, proposant notamment
deux ordres de diffraction (I’ordre 0 et 'ordre 1). Nous pouvons cependant constater figure 3.14 que
la géométrie du modele ne correspondait pas exactement a celle permise par la caméra Carbon Bee.
Le réseau de diffraction utilisé dans cette derniere menait a une différence de luminosité entre les
projections cardinales et diagonales de 'ordre 1. Nous avons préféré modéliser un réseau ou toutes
les projections au sein des ordres étaient de luminosité égale, en accord avec les réseaux étudiés
dans la littérature (section 2.2.2).

>

P

Une projection

de l'ordre 1

%

FIGURE 3.14 — Modéle de CTIS discret que nous avons implémenté, comparé a une acquisition CTIS du
capteur Carbon Bee. Dans ce modele, la position de I'ordre 0 est représentée en vert, et toutes les autres
projections, représentées en jaune, appartiennent a 'ordre 1. Sur la projection de droite, nous avons explicité
le placement de trois tranches spectrales pour illustration.

(a) Modele. (b) Image acquise par le capteur Carbon Bee.

Il est intéressant de noter que cette littérature faisait état d'une grande variété de réseaux
employés dans des systémes CTIS [Hagen et al., 2006]. Nous avons intégré a notre modele un para-
metre régissant la géométrie obtenue, incluant ainsi la possibilité de simuler les géométries les plus
fréquemment implémentées. Quelques exemples des sorties possibles du modele sont présentés fi-
gure 3.15. Nous n'avons pas employé ces géométries pour la simulation d’images dans ce manuscrit.

Par ailleurs, nous avons inclus la possibilité de modifier la résolution spatiale de I'image obtenue
(dp dans la figure 3.14), c’est-a-dire la taille de 'ordre 0 et de chacune des tranches spectrales dans
I'ordre 1. Dans le systeme optique du CTIS, cette résolution est définie par le choix de la lentille
d’objectif, du diaphragme de champ et de la distance entre ces deux éléments (figure 2.7).

La résolution spectrale, elle, c’est-a-dire la longueur des projections de I'ordre 1 (d; dans la
figure 3.14), était fixe car conditionnée par les lois de la diffraction. Dans un montage CTIS, il était
possible d’augmenter cette résolution « vers I'extérieur », c’est-a-dire en rapprochant les bords
extérieurs des projections des ordres supérieurs vers les bords du CCD. Cette augmentation était
dépendante du pouvoir dispersif du réseau de diffraction, et particulierement de la distance entre
ses fentes. Cependant, I'étirement de ces projections « vers 'intérieur », c’est-a-dire rapprocher le
bord intérieur des projections vers le centre du CCD, était limité par la physique de la diffraction. En
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(a) Géométrie : rectangulaire. (b) Géométrie : hexagonale. (c) Géométrie : radiale. Ordres : 2.
Ordres : 3. Ordres : 3.

FIGURE 3.15 — Quelques exemples de géométries de CTIS que notre modele pouvait générer. Nous avons
suivi pour la description de ces géométries la nomenclature de I'étude de [Hagen et al., 2006]. Notre modele
correspondait a une géometrie rectangulaire avec deux ordres.

effet, au passage d'un réseau de diffraction, ’angle de dispersion de la lumiére variait linéairement
avec sa longueur d’onde (cf. section 2.1.2). Notons A, €t A 41 les longueurs d’onde minimale
et maximale acquises dans un cube hyperspectral en entrée du CTIS . Si la tranche spectrale cor-
respondant a A,y était située a une distance ;4 du centre du CCD, alors par linéarité de la
diffraction, la tranche A,;,;,, était nécessairement située a une distance /,;,;,, = % Imax du centre
du CCD. Ainsi, la portion de I'image située entre le centre du CCD et [,;,;;, était nécessairement vide.
Nous avons considéré dans notre simulateur CTIS que le réseau de diffraction utilisé était optimal
et donc que les projections de I'ordre 1 étaient « étirées » au maximum vers I'extérieur. Dans ces
conditions, la résolution spectrale de I'image CTIS d; était fixe pour une géométrie et une gamme
spectrale [A;;in, Amax] donnée.

Dans toutes les simulations de ce manuscrit, la taille de I'image CTIS 4 était fixe. Ainsi, augmen-
ter dy permettait une plus grande résolution spatiale mais menait par ailleurs a un recouvrement
plus important entre les tranches spectrales dans les projections de I'ordre 1. En somme, 'aspect
des projections était dans notre modeéle entierement déterminé par la géométrie des projections, la
taille de I'ordre 0 et la gamme spectrale acquise.

3.2.2 Intégration d’aspects matériels

Le placement des tranches spectrales du cube aux différentes positions dans I'image CTIS,
décrit dans la section précédente, constitue le coeur du simulateur que nous avons développé. Afin
d’en améliorer le réalisme, nous avons incorporé par ailleurs des aspects liés au matériel (hardware
en anglais) du capteur. Premierement, nous avons modélisé la sensibilité spectrale du CCD (cf.
section 2.1.1). La sensibilité spectrale varie peu d'un capteur a un autre, aussi nous sommes nous
basés sur les travaux des auteurs de [Andor, 2020; Spring and Davidson, 2020] pour calculer celle
d'un CCD typique, que nous avons notée St (figure 3.16). Dans la plupart des caméras vendues
dans le commerce, un filtre de Bayer ainsi qu’un filtre anti-IR sont apposés au CCD afin de limiter
la sensibilité « effective » au domaine du visible. Pour son intégration dans le cadre d'un CTIS,
nous modélisons une sensibilité spectrale sans ces filtres. Nous avons intégré cette sensibilité
spectrale au modele en multipliant chacune des tranches du cube donné en entrée par la valeur
St[A] correspondant a la longueur d’onde qu’elles représentaient, avant de les placer dans 'image
CTIS.

Nous avons par ailleurs simulé le gain du capteur : il s’agissait d’'une valeur traduisant I'efficacité

du CCD a convertir des photons en tension électrique, indépendamment de la longueur d’onde.
Nous avons introduit pour cela un parameétre g par lequel I'intégralité des pixels de I'image CTIS
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Sensibilité spectrale (U.A.)

300 400 500 600 700 800 900 1000
Longueur d'onde (nm)

FIGURE 3.16 - Sensibilité spectrale du CCD modélisée d’apres les données de [Andor, 2020; Spring and
Davidson, 2020].

étaient multipliés. De plus, nous avons affiné la simulation de ce gain en introduisant dans notre
modele l'effet d'un atténuateur optique. 1l s’agissait d'un filtre qui absorbait une quantité d’énergie
lumineuse fixe, indépendamment de la longueur d’'onde. Nous avons simulé son placement sur le
trajet de la lumiere qui se dirigeait vers 'ordre 0 (figure 3.13). En effet, puisque I'ordre 0 correspon-
dait a la somme de toutes les longueurs d’onde, la projection concernée était toujours bien plus
lumineuse que les projections de 'ordre 1 ou1 les tranches spectrales n’étaient que partiellement
superposées. En conséquence, lors de 'obtention d'une I'image CTIS par un systeme sans atténua-
teur, il y avait un grand risque que les deux ordres soient dans des dynamiques trés différentes : soit
I'ordre 0 était saturé, soit 'ordre 1 était trop faible (figure 3.17). Un atténuateur placé devant I'ordre
0 permettait de réduire I'intensité de la lumiére correspondant a cet ordre, et d’utiliser ainsi un gain
plus élevé qui permettait d’acquérir les deux ordres dans une dynamique similaire. Nous avons
simulé cet atténuateur par un parametre a < 1 par lequel tous les pixels correspondant a I’ordre 0
étaient multipliés.

(a) Ordre 1 sous-exposé (b) Ordre 0 sur-exposé

FIGURE 3.17 — Deux acquisitions réalisées avec un gain différent. En I’absence d’atténuateur, il est courant
que les deux ordres ne puissent pas étre acquis sur une méme image.

Concretement, pour un jeu de cubes donné en entrée du simulateur CTIS, nous avons implé-
menté un calcul automatique des valeurs a et g qui étaient identiques pour toutes les images CTIS
obtenues. Ces valeurs étaient fixées de maniere a ce que les deux ordres aient la plus grande gamme
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dynamique possible, c’est-a-dire qu'en moyenne sur le jeu d’'images créé, les pixels de chaque ordre
soient compris dans une gamme le plus proche possible de [0,255]. Ce calcul automatique était
proche de ce qui était réalisé dans la réalité. La plupart des caméras, méme grand public, implé-
mentent un gain automatique [Fowler, 2004] afin d’augmenter la gamme dynamique des images
acquises. Quant a un atténuateur automatique de l'ordre 0, il fallait imaginer une atténuation
numérique implémentée spécifiquement pour un capteur CTIS, ot les positions des projections
auraient été connues par le systeme. Un tel systéme était proche d'implémentations réelles, dans
la mesure ou certaines caméras hyperspectrales basées sur le CTIS faisaient intervenir 1'utilisa-
teur dans la définition des zones des ordres [Salazar-Vazquez and Mendez-Vazquez, 2020]. Cette
normalisation automatique nous permettait en outre une grande souplesse quant aux opérations
de normalisation dans le reste du pipeline : possibilité de traiter des cubes dans n'importe quelle
dynamique, d’utilisation de spectres et de sensibilités spectrales non normalisés, etc.

3.2.3 Algorithme général

Lintégralité du modele de CTIS prenant en compte les apports liés au matériel présentés a la
section précédente est décrit dans I’algorithme 3.3 (figure 3.18). Cet algorithme prenait en entrée
un cube hyperspectral de taille arbitraire, et simulait I'entiéreté du banc optique CTIS (figure 2.7),
y compris la baisse de résolution spatiale causée par la lentille d’objectif et le diaphragme de champ.

Algorithme 3.3 : Création d'une image CTIS a partir d'un cube hyperspectral.

Entrées : un cube hyperspectral C de dimension d x d x n), voxels, la gamme spectrale
acquise [Amin, Amax], la géométrie des projections, la taille de I'image CTIS en sortie d, la
résolution spatiale dy, la sensibilité spectrale du CCD ST, I'atténuation de 'ordre 0 a, le

gain g.
Créer une image noire Icyis de dimension d x d pixels.

/* Lentille d’objectif et diaphragme de champ : création d’'un cube hyperspectral spatialement réduit. */
pour A € [1, n)] faire

‘ Csl:,:, Al =C[;,:;, A] redimensionné spatialement a dy x dy pixels.
fin

/* Ordre 0. */
Calculer la somme des tranches spectrales Iy = Z;A: L Gl AISTIAL

Multiplier Iy par a.

Placer Iy au centre de I¢rys.

/* Ordre 1 : Pour chaque projection p de I'ordre 1, soient (x0, ¥po) les coordonnées du point de la projection le plus proche
du centre de I¢Tys, et [xp1, yp1] les coordonnées du point le plus éloigné. Ces coordonnées sont définies par la géométrie des
projections ainsi que la gamme spectrale acquise. */

pour A € [1, n)] faire
Calculer la tranche spectrale A : Iy = Cs[:,:, A]ST[A].
pour p € Projections faire
| Placer I dans Icris al'emplacement (xp0 + M (Xp1 = Xpo), Ypo + M m(Yp1 — Ypo)).
fin
fin

/* Application du gain. */

Multiplier Ics par g.

Sortie : I'image CTIS I¢ris du cube C, de dimension d x d pixels.
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Cube hyperspectral C Cube hyperspectral Image CTIS I qyg
réduit Cs

multiplication de
l'ordre 0 par
I'atténuation a et

m
E‘ de toute I'image

/ p/ﬁ;rg;g;dezns par le gain g

tranches
spectrales

redimensionnement

des tranches spectrales

multiplication par
A la sensibilité spectrale

1 x du CCD ST

FIGURE 3.18 - Illustration de I'algorithme 3.3.

3.2.4 Détermination de la matrice d’action du systeme

L'image CTIS est une représentation indirecte du cube hyperspectral qu’il est par la suite cou-
rant de reconstruire. Cette reconstruction est basée sur la matrice H qui décrit I'action du réseau de
diffraction (section 2.2.3). Nous avons intégré le calcul de cette matrice H a notre simulateur afin
que les images CTIS générées puissent servir pour la reconstruction des cubes hyperspectraux.

Le réseau de diffraction caractérisé par H agissait sur le cube hyperspectral de la scéne réduit
spatialement par la lentille d’objectif et le diaphragme de champ, noté Cs. Nous avons écrit Cs
et Icris comme des vecteurs unidimensionnels, et défini H, de taille nombre de pixels de Icrs %
nombre de voxels de Cs, selon I’équation suivante :

Ictis = HCs. 3.2)

La figure 3.19 illustre 'action de H.

Nombre de voxels dans Cs

ICTIS

—
D

H [ I . pixel n°® 2881

11460 1148t

Nombre de pixels dans |

Cs #, ‘

FIGURE 3.19 - [llustration de la signification de la matrice H. La matrice est représentée en haut a gauche, et
un agrandissement d’une petite section de celle-ci est représenté en haut au centre sous la forme d’'un carte
de chaleur de couleur « plasma ». L'élément H[2881, 11483] représente la contribution du voxel 11483 de Cs,
représenté en bas a gauche, au pixel 2881 de I'image Ictis, représentée en haut a droite.

Utiliser un modele simulé nous a permis, contrairement a un CTIS réel, d’obtenir facilement
H. En effet, les étapes de I'algorithme 3.3 pour convertir un cube hyperspectral réduit en image
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CTIS étaient trivialement transposables en écriture matricielle. Pour les étapes qui nécessitaient
de placer des éléments de Cs a des emplacements spécifiques dans Icrys, il suffisait de fixer a 1 les
éléments de H correspondants. Pour les étapes qui consistaient a multiplier des éléments de Cs
par des valeurs données, il suffisait de multiplier les éléments correspondants de H par ces valeurs.
Notons que la matrice H dépendait uniquement des parametres du modele CTIS, mais qu’elle ne
variait pas en fonction du contenu de Cs.

3.2.5 Simulateurs RVB et IR

Afin de comparer les performances basées sur des images CTIS a des imageries plus convention-
nelles et notamment celles proposées par la caméra Carbon Bee, nous avons également implémenté
des simulateurs de capteurs RVB et IR. L'image RVB simulée était composée de trois canaux corres-
pondant aux trois sous-filtres d'un filtre de Bayer. Chaque canal est créé en sommant les tranches
du cube pondérées par la sensibilité spectrale du CCD pour ce canal. Ce procédé est décrit plus
formellement par I'algorithme 3.4.

Algorithme 3.4 : Création une image RVB a partir d'un cube hyperspectral.

Entrée : un cube hyperspectral C de dimension d x d x n) voxels, les sensibilités spectrales
pour chaque canal de couleur du CCD Sg, Sy et Sg, le gain g.

pour canal € {R,V, B} faire
| Calculer I'image Icanal = X\ | CI:,%, AlScanal [A]-
fin
Concaténer Iy, Iy et Iz suivant ’axe des canaux pour obtenir Igyg.
Multiplier Igyp par le gain g.

Sortie : 'image RVB Iryp du cube C de dimension d x d x 3 pixels.

Nous avons modélisé les sensibilités spectrales d'un CCD pour chaque canal de couleur en
nous basant sur les données expérimentales des auteurs de [Pagnutti et al., 2017] qui ont étudié les
sensibilités d'un CCD associé a un filtre de Bayer. Nous avons généré les sensibilités correspondant
aux canaux bleu, vert, rouge, comme des discrétisations de courbes gaussiennes générées selon les
parametres suivants : Sg ~ A (460, 30), Sy ~ A4 (540, 30), Sg ~ A (625,30) (figure 3.20).

— S
Sy
— S

Sensibilité spectrale (U.A.)

400 500 600 700 800 900 1000
Longueur d'onde (nm)

FIGURE 3.20 - Sensibilités spectrales d'un CCD avec filtre de Bayer modélisées d’apres les données de
[Pagnutti et al., 2017].

Limage IR simulée était composée d'un seul canal qui correspondait simplement a la tranche
spectrale 760nm, une longueur d’onde montrée comme étant optimale pour la détection de tavelure
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[Benoit et al., 2016]. Les images IR étaient en outre, comme les images RVB, pondérées par une
valeur de gain qui permettait de les exprimer dans la plus grande dynamique possible.

3.3 Création des jeux simulés

Nous décrivons a présent la facon dont nous avons créé les jeux d'images simulées en couplant
le simulateur de cubes de feuilles tavelées et ceux des capteurs. Nous avons d’abord créé un jeu de
cubes hyperspectraux de feuilles tavelées a partir des 3000 images du jeu Leafsnap. Pour chaque
image, nous avons tiré une valeur binaire aléatoire. Dans la moitié des cas, nous avons généré des
cubes avec des lésions de tavelure, suivant I'algorithme 3.1. Pour 'autre moitié, nous n’avons pas
généré de tavelure. Concretement, la procédure était la méme que 'algorithme 3.1, a la différence
que I'image Myayelure (figure 3.2) était fixée comme une image noire. Nous avons fixé la dimension
spatiale des cubes (d dans I'algorithme 3.1) a 512 pixels, une longueur proche de la taille moyenne
des images du jeu Leafsnap. Quant a la dimension spectrale de ces cubes () dans I'algorithme 3.1),
nous avons discrétisé les spectres expérimentaux a 80 valeurs. Les cubes générés étaient donc de
dimension 512 x 512 x 80 voxels.

Tous les cubes étaient par la suite convertis en image CTIS en utilisant le simulateur éponyme.
Les parametres du simulateur, choisis pour étre aussi proches que possibles du capteur présent
dans la caméra Carbon Bee, sont précisés dans le tableau 3.1. Un exemple d’image CTIS simulée est
présentée figure 3.21.

Parametre Valeur

d 512 pixels
dy 60 pixels
Amin 400 nm
Amax 1000 nm

Géométrie Rectangulaire, deux ordres

TABLEAU 3.1 — Parametres fixés pour le simulateur CTIS.

FIGURE 3.21 — Un exemple d’'image généré en couplant le simulateur de cubes hyperspectraux de feuilles
tavelées et le simulateur CTIS.

Conformément a I'action optique du CTIS, les tranches des cubes hyperspectraux subissaient
un redimensionnement a la dimension dj x dy pixels avant que leurs tranches ne soient placées

dans I'image CTIS. Ce redimensionnement n’était pas sans conséquence pour la discriminabilité
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des spectres sains et tavelés, en particulier dans I'ordre 0. La figure 3.22 présente la différence
moyenne entre les spectres sains et tavelés au sein des cubes en fonction de la taille a laquelle
ceux-ci étaient réduits. Nous pouvons observer que pour des valeurs de dj typiques des systémes
CTIS, c’est-a-dire entre 5 et 20% de la taille du CCD d (entre 25 et 100 pixels pour notre cas), cette
discriminabilité diminuait fortement.

Mode de la taille des taches de tavelure (pixels carrés)
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FIGURE 3.22 - Etude de la discriminabilité des spectres sains et tavelés. Laxe des abscisses du bas indique la
dimension spatiale des cubes Cs. Laxe des abscisses du haut indique 1'aire moyenne des taches de tavelure.
L'axe des ordonnées indique la différence en norme 2 entre les spectres tavelés et sains, moyennée sur
I'ensemble des cubes générés. La différence spectrale entre les cubes non redimensionnés, c’est-a-dire de
taille 512 x 512 pixels, est fixée arbitrairement a 1.

Le jeu final était donc constitué de 3000 images CTIS de feuilles tavelées de dimension 512 x 512
pixels, associées chacune a une classe «saine » ou « tavelée ». La tAche d’apprentissage associée
était donc une classification binaire. Afin de pouvoir évaluer la performance des algorithmes
d’apprentissage dans des configurations plus ou moins difficiles, nous avons fait varier dans le
simulateur de cubes hyperspectraux le parametre sévérité (section 3.1.5) afin de générer plusieurs
jeux de 3000 images avec des contrastes sain-tavelure différents. Nous avons noté DSC‘:‘T"IéSrité les jeux
ainsi créés. Nous avons créé de facon analogue les jeux Dﬁg}’gmé et Dfﬁ"ér“é. La figure 3.23 résume
les différents jeux créés. Les valeurs de sévérité que nous avons fixées pour la création de ces jeux
sont: {0, 0,1, 0,12, 0,14, 0,16, 0,18, 0,20, 0,22, 0,25, 0.27, 0,3, 0,4, 0,5, 0,6, 0,7, 1}. Nous avons séparé
chacun de ces jeux en trois blocs d’entrainement, validation et test selon une proportion de 60%,
20% et 20%. Nous avons noté Dcrrs, Dryp et Dir les ensembles de jeux correspondant a toutes les
valeurs de sévérité.

3.4 Conclusion

Nous avons présenté dans ce chapitre deux simulateurs innovants. Le premier permettait une
génération de cubes hyperspectraux de feuilles tavelées a partir d'images de feuilles saines et de
spectres expérimentaux. Le principe d'un modeéle d'imagerie est d’abstraire suffisamment le pro-
cessus de génération d’'images réalistes pour nous permettre de le paramétriser simplement. Cette
paramétrisation permet alors de controler dans les images créées la variabilité qui est d'intérét pour
I'expérience que nous souhaitons mener. Ainsi, ce simulateur était volontairement simple, en parti-
culier dans son processus de génération de lésions de tavelure. Nous y avons intégré I'information
qui nous semblait étre la plus cruciale pour I'évaluation d'un spectrometre, c’est-a-dire le contraste
entre zones saines et tavelées, contraste qui dépendait de la longueur d’onde. Nous espérons ainsi
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FIGURE 3.23 — Résumé des différents jeux simulés créés grace aux deux simulateurs présentés dans ce
chapitre.

que ce simulateur puisse étre utilisé pour d’autres maladies de plantes dont les symptdomes se
manifestent par des taches foliaires, telles que le mildiou ou des rouilles [Mahlein et al., 2012].

Pour des simulations plus fines, nous pourrions étoffer le modele en incluant certains traits
biologiques a un niveau de réalisme plus élevé. En particulier, nous avons utilisé pour toutes les
longueurs d’onde d’'un cube donné une image unique de feuille correspondant a son acquisition
dans le domaine visible. Ainsi, les tranches correspondant au domaine de I'IR étaient représentées
par des images acquises en lumiere visible. Nous pourrions enrichir le modele d’informations
texturales provenant de différentes longueurs d’onde, d’autant plus que nous possédions les cubes
entiers de dix feuilles expérimentales. Il faut cependant noter que I'application de motifs provenant
d’'images réelles pour créer des images simulées constitue un champ de recherche en lui-méme
[Efros and Freeman, 2001; Kopf et al., 2007; Dong et al., 2019]. Dans la méme veine, nous pourrions
introduire une variation des formes des lésions de tavelure en fonction de la longueur d’onde
représentée. Par ailleurs, la modélisation de la sévérité de I'infection était tres simple et pourrait étre
significativement complétée. Nous avons simulé une progression de l'infection qui se traduisait par
une évolution du spectre simultanément pour toutes les longueurs d’onde, ce que nous savions étre
une approximation de la réalité biologique. Pour s’approcher davantage des signatures visuelles de
lésions de tavelure réelles, il faudrait suivre I'évolution des spectres de zones saines et tavélées sur
des feuilles que nous étudierions entre leur inoculation et le J14. La simulation des distributions
spatiales des 1ésions de tavelure pourrait aussi étre affinée. Nous pouvons par exemple constater
sur des images réelles des concentrations préférentielles du champignon au niveau des nervures
(figure 5.15) de la feuille, par simple effet de gravité (figure 3.9). Nous pourrions aussi simuler I'effet
«gaussien » de la concentration en agent infectieux. Enfin, pour rapprocher les cubes simulés de
mesures réelles, nous pourrions intégrer une variabilité dans les spectres simulés pour un cas
d’étude donné afin de traduire les différences qui existent entre les représentants distincts d'une
méme espece. Certaines études comme celles de [Delalieux et al., 2009a] et de [Hu et al., 2008]
ont présenté I'ensemble des acquisitions qui ont été réalisées pour les différentes instances d’'un
systéeme hote-pathogéne donné, permettant ainsi de prendre la mesure de la variabilité spectrale
inter-individus.

Concernant le simulateur CTIS, il s’agissait du premier modele qui permettait la création
d’images éponymes a partir de cubes hyperspectraux arbitraires. Nous pensons que ce simulateur
représentait fidelement les principes du spectrometre. Bien que nous ayons peu fait varier ses
parametres dans ce travail, nous avons volontairement intégré a ce simulateur la possibilité de
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nombreuses personnalisations : géométrie des projections, sensibilité spectrale du CCD, résolution
spatiale; afin que ce simulateur puisse étre librement utilisé et adapté par la communauté scienti-
fique. Nous avons publié le code de ce simulateur en code source ouvert (cf. section Valorisations).

Il faut noter cependant que contrairement a tout systeme optique réel, les images qu’il permet-
tait de générer étaient vierges d’aberrations optiques et autres imperfections de la réalité, comme
l'illustre la figure 3.24. Il était donc possible que les images obtenues en I'état masquaient une
partie de la difficulté d’exploitation des images CTIS réelles. Il aurait été bénéfique d’intégrer au
moins partiellement ces irrégularités au fonctionnement du simulateur, ou tout au moins d’évaluer
a quel point il était nécessaire d’intégrer chacune d’entre elles afin que des résultats d’apprentissage
obtenus sur ces données simulées soient véritablement transposables en situation réelle. Nous
avons mené a la section 4.5 et a 'annexe A des premiers travaux dans cette veine.

Irrégularités dans le
découpage de l'objectif Dynamique différente

selon les ordres

Taille variable des tranches
spectrales dans les
projections de l'ordre 1 Bruits thermique et

de grenaille

Artefacts liés a des
irrégularités dans le

. . Effet de vignettage
reseau de diffraction

FIGURE 3.24 —Illustration des irrégularités que I'on observe dans des images CTIS réelles par rapport au
modele théorique que nous avons développé. Lacquisition présentée a été réalisée en conditions lumineuses
faibles, ce qui a nécessité d’augmenter fortement le gain du capteur. Aussi le bruit observé est-il plus prégnant
que dans d’autres images CTIS présentées dans ce manuscrit, telle que la figure 2.8. Source : acquisition avec
la caméra Carbon Bee.

Nous avons généré grace a ces deux simulateurs une quantité suffisante de cubes hyperspec-
traux de feuilles tavelées, qui de plus représentaient une gamme de difficulté suffisamment variée,
pour qu’ils puissent servir de base d’évaluation de la viabilité d'un algorithme d’apprentissage au-
tomatique. Dans le chapitre suivant, nous présentons I'étude que nous avons conduite concernant
I'exploitation du signal CTIS en nous basant sur les jeux créés dans ce chapitre.
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Chapitre 4

Apprentissage comprimé sur images CTIS

Ce chapitre présente les apprentissages menés sur les signaux produits par le CTIS. Les systemes
d’'imagerie computationnelle comme le CTIS permettent d’accroitre les capacités des imageurs
en exploitant la puissance de calcul des ordinateurs pour former une image enrichie a partir de
mesures indirectes. Néanmoins, cette reconstruction du signal est souvent tres chronophage et
imprécise [Arce et al., 2013]. Nous avons commencé par implémenter cette reconstruction ainsi
qu'une méthode d’apprentissage automatique travaillant sur les cubes reconstruits, en nous basant
sur une littérature dédiée aux méthodes d’apprentissage pour 'imagerie hyperspectrale. Cependant,
nous avons considéré qu'il existait aussi, grace aux progres récents des réseaux de neurones, une
possibilité de mener des apprentissages directement dans I'’espace de mesures du CTIS, c’est-
a-dire en exploitant directement les images éponymes plutdt que les cubes reconstruits. Cette
approche non-standard s'inscrivait dans le jeune champ de I'apprentissage comprimé (compressed
learning en anglais). Nous avons ainsi mené dans ce chapitre plusieurs apprentissages de cette
maniere, d’abord avec un réseau de neurones générique, puis avec une architecture développée
spécifiquement pour tirer parti des images CTIS de facon optimale. Nous avons comparé les
résultats obtenus avec ceux de la voie « classique » ainsi qu’avec d’autres types d’imagerie.
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4.1 Un cadre commun pour les expérimentations

Nous présentons dans ce chapitre de nombreux résultats d’apprentissages profonds menés
grace a des réseaux de neurones. Afin que les résultats obtenus soient comparables entre les
expériences, nous avons fixé une méta-architecture de réseau standard sur laquelle toutes se sont
basées ainsi qu'un protocole d’apprentissage identique pour toutes.

4.1.1 Une architecture établie dans la communauté

Larchitecture du réseau de neurones sur laquelle nous nous sommes basés est celle du réseau
VGG (Visual Geometry Group) [Simonyan and Zisserman, 2014b]. Nous avons choisi ce réseau d'une
part car c’était un des réseaux les plus performants au moment de sa création. Cette architecture
avait notamment remporté la catégorie « classification et localisation » du défi de reconnaissance
visuelle a grande échelle d'ImageNet (ImageNet Large Scale Visual Recognition Challenge en anglais,
ou ILSVRC) [Russakovsky et al., 2015], la tAche publique servant de point de comparaison entre les
architectures (benchmark en anglais) la plus populaire dans le domaine de la vision par ordinateur .
D’autre part, son architecture était simple, composée uniquement de blocs de couches convolutives
avec des activations ReLU, suivies de couches max-pool, ainsi qu'une série de couches FC. Bien
qu'il existait des architectures de CNN proposées depuis la sortie de VGG qui obtenaient des perfor-
mances supérieures sur les benchmarks les plus populaires [Szegedy et al., 2015; He et al., 2016; Tan
and Le, 2019], cette simplicité nous paraissait étre un avantage pour deux raisons. Premierement,
au moment des travaux présentés dans ce manuscrit, les couches qui composaient VGG avaient été
étudiées suffisamment en profondeur (voir par exemple pour les couches convolutives les travaux
de [Zeiler and Fergus, 2014], pour les activations ReLU les travaux de [He et al., 2015], pour les
couches FC les travaux de [Montufar et al., 2014]) pour que les principes de fonctionnement de
cette architecture nous semblent étre solidement ancrés et validés par la communauté. Ces couches
sont d’ailleurs toujours les piliers des architectures des réseaux créés aujourd’hui. Deuxiémement,
cette architecture simple rendait les résultats que nous avons obtenu plus généralisables, car relati-
vement agnostiques a l'ossature de I'architecture et ne dépendant pas de la présence de couches
créées plus récemment et spécifiques a certaines architectures.

Larchitecture de VGG ? est présentée en figure 4.1. Tous les termes qui y sont employés ont été
présentés a la section 1.2.1. Cette architecture était sujette a plusieurs hyperparametres. Pour en
fixer les valeurs optimales, nous avons effectué une recherche par grille (grid search en anglais),
c’est-a-dire que nous avons mené des entrainements avec toutes les combinaisons possibles d’hy-
perparametres sur des gammes prédéfinies. La combinaison qui permettait la performance la plus
élevée sur les blocs de validation était retenue. Nous avons utilisé pour blocs de validation celui de
D(IZTIS et celui du jeu de cubes reconstruits Dér (présenté ala section 4.2.1). Les hyperparametres
optimaux étaient identiques pour les deux blocs. Le résultat de cette recherche en grille est présenté
dans le tableau 4.1.

Comme l'indique la liste des hyperparametres étudiés (premieére colonne du tableau 4.1), la
recherche concernant certains d’entre eux n’a été que partielle. Nous n’avons pas fait varier le
nombre de couches au sein de chaque bloc convolutif, en conservant par défaut celui de VGG. Par
ailleurs, nous avons conservé le doublement du nombre de filtres a chaque bloc convolutif. Enfin,

8. http://image-net.org/challenges/LSVRC/2014/results.

9. Pour étre précis, les auteurs de [Simonyan and Zisserman, 2014b] présentaient dans leurs travaux plusieurs
variations architecturales de VGG. Nous avons utilisé la configuration dénotée « D » dans cette étude, et connue par la
suite comme « VGG-16 », en référence au nombre de couches de poids qui composaient I'architecture. Cette configuration
était celle qui avait été retenue comme l'architecture « standard » de VGG par la communauté. En particulier, il s’agissait,
avec « VGG-19 », de celle que les auteurs avaient utilisé pour I'ILSVRC 2014 et qui était donc devenue de facto une
architecture a laquelle les réseaux créés par la suite tels que ResNet [He et al., 2016] se sont comparés. De plus, VGG-16
a servi de base a d’autres architectures neuronales, et en particulier SegNet [Badrinarayanan et al., 2017], que nous
présentons au chapitre 5. Dans tout ce manuscrit, nous avons écrit simplement « VGG » pour faire référence a VGG-16.
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Entrée Couche convolutive Couche GAP Couche softmax

!

64 2

|

Couche max-pool Bloc convolutif Couche FC

FIGURE 4.1 - Architecture du réseau VGG [Simonyan and Zisserman, 2014b]. Les nombres inscrits au-dessus
des couches indiquent le nombre de filtres pour les couches convolutives (constant au sein d'un méme bloc
convolutif), le facteur de redimensionnement pour les couches max-pool, 1a dimension de sortie pour la
couche GAP, le nombre de neurones pour les couches FC . La hauteur et la largeur des couches représentent
les dimensions spatiales de leur entrée.

Hyperparametre Valeur dans VGG Valeurs testées Valeur optimale
Nombre de blocs convolutifs 5 [2-5] 3

Nombre de filtres dans la premieére couche convolutive 64 {32, 64, 128} 64

Nombre de neurones dans chaque couche FC 4096 {512, 1024, 2048, 4096} 1024

Taille des noyaux 3 {3,5,7} 3

TABLEAU 4.1 — Résultats de la recherche par grille des hyperparametres architecturaux de VGG, sur les blocs
de validation de D}, ;s et DL

nous avons conservé tel quel le nombre de couches FC.

Nous pouvons remarquer en comparant les valeurs des hyperparametres de VGG et celles du
réseau optimal (colonnes 2 et 4 du tableau 4.1) que ce dernier possédait moins de parametres
que VGG, a la faveur d'un nombre réduit de blocs convolutifs et de neurones dans les couches
FC. Cette différence s’expliquait par I’écart de complexité entre nos jeux de données et ceux pour
lesquels les réseaux standards tels que VGG avaient été concus. En effet, ces derniers avaient
été créés de maniere a étre compétitifs pour une large gamme de taches de vision. Pour juger
de leur performance, ils avaient été appliqués a des taches de classification génériques, comme
I'ILSVRC, qui nécessitaient la reconnaissance de centaines de classes d’objets différentes dans
des environnements variés. Comparativement, les taches de classification que nous avons exploré
dans ce travail étaient beaucoup plus cloisonnées. Il n’était donc pas surprenant que la frontiére
de décision pour ces taches soit considérablement moins complexe que pour des taches plus
vastes, et que la capacité du réseau optimal soit plus réduite que celle de VGG. Nous précisons
cependant qu’au cours de la recherche par grille, les écarts de performance entre le réseau optimal
et d’autres architectures avec une capacité plus élevée étaient relativement faibles. Nous avons
plutot observé une saturation qu'un déclin des performances avec I’augmentation de la capacité,
et le choix d’utiliser I'architecture optimale la plus réduite possible était en partie motivée par la
réduction des temps d’entrainement des apprentissages. Nous avons noté VGGr («1» pour « réduit »)
I'architecture optimale pour les jeux de données étudiés (figure. 4.2).

4.1.2 Un protocole d’entrainement standard

Nous avons défini un protocole commun a tous les entrainements conduits dans ce manuscrit.
Les réseaux étaient pré-entrainés sur 'ILSVRC, c’est-a-dire qu’avant tout entrainement, nous avons
téléchargé les poids du réseau VGG entrainé sur cette tache et ces poids servaient d’initialisation
en lieu et place d'une distribution aléatoire. Cette technique, connue sous le nom d’apprentissage
par transfert était trés régulierement implémentée dans les applications d’apprentissage profond
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' 1024 2

FIGURE 4.2 — Architecture de VGGr. Dans cette figure comme dans les suivantes, nous n'indiquons pas le
facteur de redimensionnement des couches max-pool, ni la dimension de sortie de la couche GAP, qui sont
fixés a deux et sept respectivement pour toutes les architectures employées dans ce manuscrit.

[Yosinski et al., 2014]. Elle permettait de tirer parti de caractéristiques apprises sur une tache de
vision générique, caractéristiques qui étaient supposées utiles comme « point de départ » pour
d’autres taches plus spécifiques [Sharif Razavian et al., 2014]. Parmi ces poids, nous avons conservé
uniquement ceux correspondant aux couches convolutives présentes dans VGGr. Ainsi, les trans-
ferts de poids que nous avons réalisé n’était que partiel. En particulier, la différence du nombre de
blocs convolutifs entre VGG et VGGr entrainait un changement de role pour les caractéristiques
transférées. Par exemple, celles du troisieme bloc de VGG, qui représentaient des caractéristiques
intermédiaires pour la classification de 'TLSVRC, étaient directement fournies aux couches FC
dans le cas de VGGr. Malgré le caractére incomplet de ce transfert, des expériences préliminaires
que nous avions menées nous avaient convaincus de son utilité. Sans ce transfert, les résultats
d’apprentissage étaient erratiques. En lancant plusieurs instances d’entrainements avec les mémes
hyperparameétres sur les mémes jeux de données, nous obtenions tantdt des performances tradui-
sant une classification partiellement réussie, tantdt des cas ol le réseau échouait compleétement a
sa tache. En d’autres termes, I'écart-type entre les performances était trop important pour tirer des
conclusions des apprentissages. Le transfert de poids a permis de réduire fortement ces écarts-types
de performance.

Au cours de 'entrainement proprement dit, les images étaient normalisées par une soustraction
de leur moyenne et une division par leur écart-type. Elles étaient présentées par lot de 4 au réseau.
Cette taille de lot relativement basse par rapport aux applications typiques d’apprentissage auto-
matique s’expliquait par les limitations en mémoire que nous rencontrions a cause de la grande
taille des données d’entrée lorsque nous avons traité des cubes hyperspectraux. Nous avons utilisé
I'algorithme de descente du gradient stochastique [Kiefer et al., 1952] avec une inertie (momentum
en anglais) de 0,99. La fonction de colit implémentée était 'entropie croisée [Goodfellow et al.,
2016]. Nous avons implémenté les mécanismes de régularisation présentés dans les travaux de
[Simonyan and Zisserman, 2014b] pour réduire le surapprentissage, c’est-a-dire des couches de
décrochage (dropout en anglais) [Srivastava et al., 2014] a 50% entre chaque couche FC ainsi qu'une
dégradation des poids (weight decay en anglais) avec un coefficient fixé 4 5.10™%. La performance du
réseau était suivie sur le bloc de validation associé au bloc d’entrainement toutes les deux époques,
une époque correspondant au passage de toutes les images a travers le réseau. L'entrainement
était arrété lorsque le cott sur le bloc de validation n’atteignait pas une valeur plus basse que sa
valeur jusque-la minimale pendant 30 époques consécutives. Les valeurs des poids ayant mené au
cot de validation le plus bas étaient alors conservées. Ce critere d’arrét, que 'on appelle 'arrét
précoce (early stopping en anglais) était un des outils employés pour combattre le surapprentissage
[Goodfellow et al., 2016].

Le bloc de test était alors présenté au réseau entrainé, et une métrique de classification était

calculée. C’est a la valeur de cette métrique que nous faisons référence lorsque nous indiquons la
«performance » du réseau dans ce manuscrit. Nous avons choisi pour métrique le coefficient de
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corrélation de Matthews (Matthews Correlation Coefficient en anglais, ou MCC) [Matthews, 1975].
Dans un cas de classification binaire entre deux classes « A » et « B», en notant VP le nombre de vrais
positifs dans une prédiction, c’est-a-dire le nombre d’objets de la classe « A » prédits comme tels, et
que en définissant de facon analogue les valeurs FP, VN et FN, alors le MCC se calculait comme

VPVN - FPFN
vV (VP +FP)(VP + EN) (VN + FP) (VN + EN)

(4.1)

Nous avons choisi cette métrique car elle produisait des résultats cohérents dans le cas ol les
classes étaient déséquilibrées, un cas que nous avons rencontré dans I’étude présentée au chapitre 5.
Nous entendons en particulier par « cohérent » la qualité qu’avait cette métrique de ne pas prendre
des valeurs hautes lorsque les prédictions du réseau étaient absurdes a cause d’effets dis aux
déséquilibres d’effectif entre les classes. La configuration la plus illustre pour laquelle des métriques
plus « classiques » pouvaient échouer de la sorte était la suivante : le cas d'une classification binaire
sur un jeu de données comprenant 99% d’images appartenant a une classe « A » et 1% a une classe
«B», ol1 une prédiction attribuerait la classe « A » a tous les objets. Une métrique de performance
«simple », comme par exemple un ratio entre images bien classées et le nombre d’images total,
aurait pris une valeur de 99% pour une prédiction pourtant inutile. Des métriques telles que le score
F1 ont été développées pour pallier ces défauts. Le MCC pouvait étre vu comme un prolongement
du score F1, qui corrigeait quelques cas pathologiques de ce dernier. Cette métrique prenait une
valeur dans [—1, 1]. Une valeur de 1 indiquait une prédiction parfaite tandis qu'une valeur de 0 indi-
quait une prédiction aléatoire. Des valeurs négatives signalaient une prédiction « inverse » (images
de la classe « A » classées en majorité dans la classe « B »), mais nous n’avons observé cette gamme
de valeurs dans aucune de nos expériences. En réponse a la stochasticité liée a I'initialisation des
réseaux, tous les résultats présentés dans ce manuscrit sont les moyennes et écarts-types de dix
répétitions des expériences lancées avec les mémes hyperparametres (runs en anglais).

Toutes les architectures ont été implémentées en Python 3.6 avec la librairie PyTorch 1.5.1. Tous
les entrainements ont été menés sur une carte graphique Nvidia Titan RTX, avec les librairies CUDA
10.2 et cuDNN 7.6.

4.2 Une performance de référence : 'apprentissage sur cubes recons-
truits

Pour évaluer 'apport possible d'une classification basée sur le CTIS, nous avons tout d’abord
souhaité établir une performance de référence (baseline en anglais) par le biais d'un pipeline qui
représentait ’état de I'art des analyses de signaux produits par un CTIS. Dans tous les travaux
menés sur le CTIS, le cube hyperspectral est reconstruit a partir de I'image CTIS. Nous avons donc
commencé par implémenter cette étape pour les jeux de données Dcrrs.

4.2.1 Une reconstruction réussie mais chronophage

Nous avons implémenté pour chacun des jeux Dcrs I'algorithme de reconstruction EM, (sec-
tion 2.2.4) en suivant les directives de I’étude de [Descour and Dereniak, 1995]. Les reconstructions
ont été réalisées sur un processeur Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz, commercialisé au
meéme trimestre que les carte graphiques dont nous nous sommes servis pour meenr les apprentis-
sages. Pour une reconstruction donnée, nous avons utilisé comme estimation initiale du cube un
cube spatialement identique a I'ordre 0 de 'image CTIS et spectralement uniforme. Nous avons
défini comme critére d’arrét une différence inférieure a 1% entre deux itérations de reconstruction.
En notant Cr” la reconstruction du cube a l'itération i et Cr,, le voxel n du cube, alors le critére
d’arrét s’écrivait formellement

TalCry Y -
TCry

=<0,01. 4.2)
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L'algorithme de reconstruction convergeait en six itérations par image en moyenne, chaque ité-
ration durant environ 200 millisecondes. Bien que ce procédé pouvait paraitre rapide, il fallait
remettre en contexte ce temps avec le délai moyen de la prédiction d'un réseau, qui est de I'ordre
de quelques dizaines de millisecondes. Ainsi, dans le cadre d'un apprentissage sur cubes recons-
truits, le délai de prédiction d'un réseau sur une acquisition CTIS était dii en tres grande partie a
I'opération de reconstruction du cube.

Nous avons noté D¢; les jeux de données constitués des cubes reconstruits selon ce procédé
a partir des images des jeux Dcris. Pour juger de la qualité de cette étape, nous avons comparé
chaque cube reconstruit Cr avec le « vrai» cube Cs associé, c’est-a-dire celui utilisé pour générer
I'image CTIS a partir de laquelle Cr avait été reconstruit. Nous avons choisi I’erreur quadratique
moyenne comme mesure d’erreur, conformément aux autres travaux qui évaluaient la qualité de la
reconstruction de cubes CTIS [Hagen et al., 2006]. En notant N le nombre total du voxels dans ces
cubes, alors 'erreur entre une paire de cubes Cr et Cs était calculée comme

1 Cr, —Cs, )2
erreur =1/ — _— . 4.3
\/N Z( Csy, (43)

n

L'erreur moyenne sur les cubes reconstruits a partir du jeu DéTIS était de 0,392 + 0,137. Cette valeur
était cohérente avec les résultats de la littérature correspondant a la reconstruction d’objets spatia-
lement et spectralement complexes [Hagen and Dereniak, 2008]. Malgré I'écart-type relativement
élevé de cette mesure, les forces et faiblesses du procédé de reconstruction étaient tres similaires
d’'un cube al’autre. Nous présentons les résultats pour une reconstruction typique dans la figure 4.3.

Nous pouvons voir dans cette figure que la reconstruction de I'information spatiale, c’est-a-dire
la forme et 'aspect des feuilles ainsi que la position des taches de tavelure au sein d'une tranche
donnée était tres précise. Nous pouvons le constater en comparant les tranches de Cr et Cs deux a
deux pour plusieurs longueurs d’onde (figure 4.3 (b)). Nous expliquons ce succes par deux raisons :
d’abord parce qu’au sein d'un cube, la variation de I'information spatiale en fonction de la longueur
d’onde était tres faible; ensuite parce que I'algorithme de reconstruction était initialisé avec un
cube représentant spatialement I'ordre 0. Ainsi, avant méme la premiere itération de 1'algorithme,
I'essentiel de I'information spatiale était présent dans le cube reconstruit. Nous avions tenté lors
d’expériences préliminaires d’autres initialisations proposées dans la littérature, et en particulier
I'utilisation de cubes issus de I'application d'une approximation de I'algorithme de FBP appliqué
aux images CTIS [Descour and Dereniak, 1995]. Avec ces initialisations, I'information spatiale des
cubes initiaux était appauvrie et la qualité de la reconstruction s’en ressentait grandement.

La reconstruction de I'information spectrale, c’est-a-dire les spectres moyens des zones saines
et tavelées, était, elle, plus imprécise. Pour la mesurer, nous avons tracé pour le cube étudié les
intensités moyennées des zones saines et tavelées par tranche (figure 4.3 (a)). Les spectres re-
construits suivaient approximativement la forme générale des spectres originaux, et en particulier
représentaient fidelement I’agrandissement de I'écart entre les deux spectres dans le domaine
IR. Cependant, une grande part de la complexité des spectres originaux était perdue : nous n'y
retrouvions ni la rapide croissance en réflectance au passage dans le domaine IR, ni 'incrément
correspondant a la lumiére verte.

Enfin, nous pouvons remarquer sur ces reconstructions des artefacts locaux sur certaines
tranches. Ainsi, nous pouvons voir sur la tranche de Cr correspondant a la longueur d’onde 800 nm
dans la figure 4.3 (b) une zone sombre au centre de la feuille par comparaison avec la tranche de Cs.
Ces variations locales de luminosité étaient trés fréquentes parmi les cubes reconstruits.
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Cs - sain

Cr - sain
—— Cs - tavelure
---- Cr - tavelure

Réflectance (A.U.)
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Longueur d'onde (nm)

(a) Spectres correspondant aux zones saines de tavelées pour Cs et Cr.

560 nm 680 nm

(b) Comparaison a quatre longueurs d’onde différentes de tranches spectrales de Cr
et Cs. Dans I'image correspondant a la longueur d’'onde 990 nm, les fleches jaunes
indiquent la position de quelques taches de tavelure.

FIGURE 4.3 — Analyse de la qualité de reconstruction d'un cube Cr dont I'erreur de reconstruction par rapport
au cube original Cs était de 0,354.

4.2.2 Une performance d’apprentissage de référence

Comme il a été discuté au cours du chapitre 2, le CTIS a été peu exploité dans le monde de
I'industrie comme dans celui de la recherche, et il n’existait a notre connaissance aucune analyse
automatique a grande échelle menée sur des acquisitions faites par un CTIS. Il nous était donc
difficile de définir les modalités d'un apprentissage « classique » sur les cubes reconstruits. Nous
avons implémenté une approche basique qui consistait a entrainer le réseau VGGr sur les jeux Dy,
et nous nous sommes par ailleurs penchés sur la facon dont la communauté de I'apprentissage
automatique traitait les images hyperspectrales.

Il existe un sous-champ de I'apprentissage automatique dédié aux images hyperspectrales car
elles présentaient pour des réseaux des défis d’interprétation par rapport a leurs homologues RVB.
Le nombre important de canaux qui les composaient nécessitait une plus grande compression de
I'information entre I’espace image (jusqu’a plusieurs centaines de canaux) et I'espace de I'anno-
tation (un canal) au cours de I'apprentissage [Yu et al., 2017]. Par ailleurs, ce nombre important
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de canaux menait a un grand nombre de caractéristiques, et il était donc nécessaire de fournir
aux réseaux un nombre conséquent d’'images pour que I'apprentissage soit mené a bien [Donoho
et al., 2000]. Enfin, ces images contenaient une information spatio-spectrale riche, mais prendre
avantage des trois dimensions simultanément ainsi que de leurs interactions positives n’était pas
trivial [Li et al., 2017b]. Cette derniere difficulté a orienté le développement des réseaux dédiés aux
cubes hyperspectraux au cours de ces dernieres années. Les premiers réseaux qui apprenaient sur
des cubes hyperspectraux avaient une puissance de calcul limitée, et ne pouvaient pas traiter des
cubes entiers en entrée. Les auteurs de [Hu et al., 2015] ont procédé a un découpage des cubes de
dimension d x d x ny, voxels en d? vecteurs de dimension 1 x 1 x n) éléments qui étaient ensuite
traités séparément. Dans ce procédé, seule I'information spectrale était prise en compte. Certain
-es chercheur -euses ont par la suite intégré une part d'information spatiale en effectuant des dé-
coupages des cubes en imagettes spectrales de dimension k x k x n) pixels, k < d [Makantasis et al.,
2015; Yu et al., 2017], ou bien en compressant I'information spectrale des cubes via des analyses en
composantes principales afin de se ramener dans le cadre d'images de dimension d x d x 3 pixels et
ainsi pouvoir utiliser des réseaux congus pour des images RVB [Yue et al., 2015; Liang and Li, 2016].
Plus récemment, des réseaux de neurones a convolutions tridimensionnelles, ou CNN 3D, déve-
loppés initialement a des fins d’analyse de vidéos [Tran et al., 2015], ont été appliqués a des cubes
hyperspectraux en identifiant la dimension spectrale a celle du temps dans les vidéos '° [Chen et al.,
2016; Li et al., 2017b; Paoletti et al., 2018]. Lors de la convolution d’'une image, les noyaux d'un
CNN 3D se déplacaient selon les dimensions spatiales mais aussi selon la dimension des canaux.
Cela permettait a la dimension spectrale d’étre considérée localement par les couches convolu-
tive et avec un champ de vue variable a I’échelle du réseau, exactement comme sont considérées
les dimensions spatiales. Par comparaison, les CNNs classiques « écrasaient » toute I'information
spectrale de cubes hyperspectraux des la premiére convolution. La figure 4.4 illustre cette différence.

dxdxn, dxdx1 —x xl dxdxn dxdxn dodomny
A 4 27272
' Convolution ’ Max- poo/ ’ g Convolution Max-| pool ’
Noyau 2D Noyau 3D
(a) CNN standard. (b) CNN 3D.

FIGURE 4.4 - Comparaison entre (a) un CNN standard (2D) et (b) un CNN 3D. Dans les deux sous-figures
sont représentés un cube hyperspectral en entrée, le résultat de I'action d'une couche convolutive a un seul
filtre, et le résultat de I'action d’'une couche de max-pool. Les fleches blanches autour des noyaux convolutifs
indiquent le déplacement du noyau dans I'image au cours de la convolution. Les dimensions de chaque objet
sont indiquées au-dessus de ceux-ci. Nous ignorons dans cette figure les modifications de dimensions par
«effet de bord », c’est-a-dire le rognage des bords de I'image par I'action des noyaux convolutifs et I'éventuel
prolongement qui est implémenté pour pallier cela.

Les CNN 3D travaillaient sur le cube hyperspectral dans son intégralité, permettant ainsi
d’exploiter complétement les interactions spatio-spectrales. Les résultats sur les benchmarks hy-
perspectraux classiques montraient que ces approches constituaient I’état de I’art pour I'analyse
de cubes hyperspectraux [Paoletti et al., 2018]. Il nous a des lors paru pertinent d’intégrer cette
troisieme dimension convolutive dans I’architecture « de référence ». Nous avons implémenté un
CNN 3D noté VGGr-3D, dont la seule différence avec VGGr était I'utilisation de noyaux convolutifs
tridimensionnels (figure 4.5). Chyperparametre correspondant a la troisieme dimension du noyau

10. Dans le cadre d’analyses de vidéos par CNN 3D, les vidéos sont considérées comme des objets a quatre dimensions
dy x dy x f x ¢, ou dj et dy sont les dimensions spatiales de chaque image constituant la vidéo, f est le nombre de
ces images et ¢ est le nombre de canaux de chacune de ces images. Pour adapter |'utilisation de CNN 3D aux cubes
hyperspectraux, nous avons considéré ces derniers comme des objets a quatre dimensions dj x do x f x c ou f était égal
au nombre de tranches spectrales du cube et ¢ était fixé a 1.
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FIGURE 4.5 — Architecture de VGGr-3D. Hormis la dimension des noyaux, tous les hyperparametres architec-
turaux sont identiques a ceux de VGGr (figure 4.2).

Nous avons donc mené pour chacun des jeux D¢, un apprentissage avec deux réseaux : un
réseau « naif» VGGr et un réseau dont la structure était plus proche de I'état de I'art pour images
hyperspectrales, VGGr-3D. Les performances sur la gamme de sévérité des jeux D¢, sont présentées
figure 4.6 Nous pouvons noter tout d’abord que I'action du parametre de sévérité et la gamme de
valeurs qu’il pouvait prendre étaient a priori pertinents pour notre étude car les performances de
I'apprentissage varient d’'une prédiction aléatoire !! a une prédiction parfaite selon la sévérité du
jeu. Nous avions donc a notre disposition une gamme de difficulté représentative de probléma-
tiques réelles et qui permettait de comparer les résultats d’autres méthodes a la performance de

référence.
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MCC
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—e— D¢ | VGGr-3D

0.0 : : : . .
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FIGURE 4.6 — Résultats des apprentissages sur les jeux D¢ avec les architectures VGGr et VGGr-3D. Dans
toutes les figures présentant les performances d’apprentissage dans ce manuscrit, nous employons une
légende de la forme « jeu de données concerné | architecture employée ».

11. Pour les résultats de cette section ainsi que pour toutes les études de ce manuscrit, nous n’avons jamais obtenu
un MCC de zéro, méme dans les cas les plus difficiles. Il s’agissait d'un artefact du protocole d’apprentissage. En effet,
méme pour une configuration tres difficile ou méme impossible (par exemple les jeux correspondant a une sévérité de
zéro) ol le réseau proposait une prédiction aléatoire a chaque époque, il y avait des époques ot le réseau était un peu
meilleur que le hasard, par simple effet d’échantillonnage (comme il y avait aussi des époques ou le réseau était un peu
moins performant que le hasard). Or, la métrique de performance était définie comme celle calculée al’époque ot le
colt de validation - globalement inversement corrélé aux MCC de validation et de test - était le plus bas. Cette définition
menait donc a une sélection «artificielle » de MCC légérement au-dessus de zéro, méme pour un classifieur aléatoire. En
prenant en compte cet effet, nous avons estimé qu’en suivant ce protocole, toute valeur de MCC en dessous de 0,06 était
équivalente a une valeur de zéro.
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La performance de reconstruction évoluait différemment en fonction de la sévérité selon
I'architecture employée. L'architecture VGGr permettait une prédiction parfaite a partir d'une
sévérité de 0,3 mais échouait pour les cas plus difficiles correspondant aux sévérités en dessous
de 0,22. Utiliser I'architecture VGGr-3D menait a des performances plus linéaires en fonction de
la sévérité, offrant des résultats meilleurs que VGGr pour des cas plus difficiles, mais en étant
moins compétitif pour des cas plus simples. Nous avons considéré ces deux résultats comme la
performance de référence, représentant les performances d’apprentissage « classique » sur les
cubes reconstruits. Nous avons par la suite exploré nouvelle approche distincte de ce pipeline
d’apprentissage.

4.3 Lapprentissage comprimé : une alternative viable pour le CTIS

Lapproche que nous avons suivie s'inscrivait dans un courant développé cette derniere dé-
cennie au sein de la communauté de 'imagerie computationnelle : 'apprentissage comprimé.
Nous présentons a présent un bref historique de ce champ ainsi que I'extension que nous lui avons
proposé pour le CTIS.

4.3.1 Une tendance nouvelle en imagerie computationnelle

Dans le cas de nombreuses applications d’imagerie computationnelle, la reconstruction du
signal original n’est pas une fin en soi, mais une étape intermédiaire pour effectuer une tache de clas-
sification de la scéne. Des chercheur -euses se sont penchés sur la possibilité d’effectuer ces taches
directement dans I’espace de mesures, en s’affranchissant entiérement de 1'étape de reconstruction.

Les premiers travaux dans ce sens ont eu lieu dans le domaine de I'acquisition comprimée
(compressed sensing en anglais) [Candes et al., 2006]. Ce champ de I'imagerie computationnelle
s'intéresse a la possibilité d’obtenir un signal (par exemple, une image) en ’acquérant avec un faible
taux d’échantillonnage (autrement dit, avec un nombre réduit de mesures) puis de reconstruire au
mieux le signal théorique que I’on aurait acquis avec un taux d’échantillonnage plus élevé. L'ac-
quisition comprimée peut étre considérée comme une extension des objectifs de la compression
d’image. Dans ce dernier champ, les images sont acquises avec un taux d’échantillonnage élevé
puis converties vers un autre domaine de représentation o1 'essentiel de I'information qu’elles
portent est contenu dans un nombre réduit de coefficients. Les autres coefficients portant le peu
de I'information restante peuvent alors étre éliminés sans dégrader significativement la qualité de
I'image. Dans le champ de I'acquisition comprimée, I'objectif est de ne pas acquérir de mesures
inutiles — celles que les algorithmes de compression écartent par la suite — en premier lieu. Les
auteurs de [Candes et al., 2006] ont montré que sous certains conditions, ce procédé était pos-
sible, et ont développé le formalisme mathématique adéquat. L'acquisition comprimée se base sur
I'acquisition d'un signal intermédiaire de taille restreinte qui sert a une reconstruction du signal
original, et en ce sens s'inscrit pleinement dans le cadre de 'imagerie computationnelle. Plusieurs
imageurs ont été développés suivant les principes de I'acquisition comprimée comme les caméras
mono-pixel [Takhar et al., 2006], ou, dans I'imagerie hyperspectrale, 'imageur spectral instantané
a ouverture codée (Coded Aperture Snapshot Spectral Imager en anglais, ou CASSI) [Wagadarikar
etal., 2008].

Le champ de 'apprentissage comprimé est né lorsque les auteurs de [Calderbank et al., 2009]
ont montré que dans un cadre d’acquisition comprimée, un algorithme d’apprentissage pouvait,
sous certaines conditions, théoriquement obtenir une performance de classification aussi élevée
lorsqu’appliqué directement dans I'espace de mesures que lorsqu’appliqué sur le signal reconstruit.
Ce résultat était surprenant voire contre-intuitif car les images de 'espace de mesures des capteurs
a acquisition comprimée n’étaient pas interprétables par des humains. L'apprentissage comprimé
mettait en lumiere |’existence d'une information dissimulée aux yeux des humains, mais exploitable
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par des algorithmes spécialisés. Le champ s’est développé par la suite grace a 'émergence de
classifieurs de plus en plus performants. En particulier, les CNNs ont abondamment démontré
dans les années qui suivirent leur capacité a extraire des caractéristiques complexes et pertinentes
pour une grande variété de taches de vision par ordinateur [Krizhevsky et al., 2012], y compris
celles concernant des données que les humains ne pouvaient pas interpréter [Purwins et al., 2019].
Les travaux de [Lohit et al., 2016; Adler et al., 2016; Bacca et al., 2020] ont montré la possibilité
d’apprentissage comprimé via des CNNs dans un cadre de classification d’images issues de caméras
mono-pixel. Les travaux de [Ramirez et al., 2013] ont procédé similairement dans le CASSI. Plus
récemment, les principes de I’apprentissage comprimé ont été appliqués dans des champs plus
divers de I'imagerie computationnelle. Les auteurs de [Gao et al., 2019; De Man et al., 2019; Lee et al.,
2019] ont montré la possibilité de réaliser des taches de classification dans le domaine de la CT, c’est-
a-dire en entrainant des algorithmes directement sur des sinogrammes. Dans ce travail, nous avons
souhaité explorer la possibilité de réaliser un apprentissage comprimé dans I’espace de mesures du
CTIS 2 (figure. 4.7). En effet, nous avons pu voir lors de I’étude de la voie « classique » que I'étape
de reconstruction, en plus d’étre extrémement chronophage, menait a des approximations dans
la reconstruction du cube. Une approche qui permettrait de s’affranchir de cette étape était donc
prometteuse, en particulier dans des contextes industriels comme ceux de Carbon Bee.

Scene

Image CTIS

Cube hyperspectral

Reconstruction @

Acquisition
—_—

Apprentissage Apprentissage
comprimé classique

FIGURE 4.7 - Principe de I'apprentissage comprimé appliqué au CTIS : Lapprentissage est mené directement
sur 'image CTIS, sans qu’il ne soit nécessaire de reconstruire le cube hyperspectral.

4.3.2 Des performances d’apprentissage proches de la référence

Nous avons mené un apprentissage comprimé adapté au CTIS, c’est-a-dire que nous avons
conduit des apprentissages sur les jeux D¢rys avec le réseau VGGr. Les résultats (figure 4.8) mon-
traient que 'apprentissage comprimé était possible pour une gamme de sévérité proche de celle
sur laquelle I'apprentissage classique fonctionnait : les performances étaient non-nulles pour les
sévérités supérieures a 0,2 et augmentaient pour des valeurs de sévérité croissantes. Lapprentis-
sage comprimé sous ces conditions était cependant moins performant que la performance de
référence : les résultats étaient notamment inférieurs a ceux permis par 'utilisation de VGGr en
apprentissage classique sur une large gamme de sévérité. Cependant, au vu des gains de temps
qu’elle permettait, cette approche pouvait étre viable sur certaines gammes de sévérité en fonction

12. Dans le cas d’apprentissages portant sur les espaces de mesures de la CT et du CTIS, la dénomination « apprentis-
sage comprimé » était moins appropriée que dans le cadre de 'acquisition comprimée. En effet, les espaces de mesures
concernés (sinogrammes et images CTIS) n’étaient pas a proprement parler des compressions du signal a reconstruire.
En fonction des dimensions de ce signal et de celles des projections, il est méme treés courant que le nombre de mesures
acquises soit plus important que le nombre d’éléments du signal reconstruit. Cependant, nous avons retrouvé dans
notre application le principe d’apprentissage direct dans I’espace de mesures d'un systéme d’imagerie computationnelle,
et nous avons donc conservé cette dénomination, méme si la nature de I’espace de mesures était différent de celui de
I'acquisition comprimée.
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du compromis entre performance et vitesse d’exécution exigé par les conditions d’expérimentation.

MCC

—o— D¢ | VGGr
—e— D¢ | VGGr-3D
Dcmis | VGGr

06 0.8 10
sévérité

FIGURE 4.8 — Comparaison entre les résultats de 'apprentissage comprimé et la performance de référence.

Pour affiner 'analyse des performances de 'apprentissage comprimé, nous avons calculé la
matrice de confusion et la courbe Receiver Operating Characteristic (ROC) pour les sévérités dans
la gamme [0,10, 0,50] (figure 4.9). Les indicateurs statistiques de classification (sous-figure 4.9
(a)) indiquaient que le nombre de VP et celui de VN étaient proches quelle que soit la sévérité.
Cela signifiait que le classifieur n’était pas biaisé vers un certain type d’erreur de classification,
c’est-a-dire qu’il ne sous-détectait ni ne sur-détectait systématiquement la présence de tavelure.
Les courbes ROC (figure 4.9 (b)) fournissent des indications sur le seuillage optimal a appliquer
en sortie de classifieur. Nous avions implémenté un seuillage a 0,5 (figure 1.10), ce qui signifiait
que nous n'avions pas incorporé d’a priori sur les biais du classifieur. En fonction des sévérités, le
seuillage optimal, c’est-a-dire celui dont le point était le plus proche du point (0,1) dans I'espace
de la courbe ROC, variait dans une gamme qui incluait cette valeur de 0,5. Lorsque la sévérité
augmentait, les points sur les courbes se rapprochaient. Cela signifiait qu’a mesure que la tache
devenait plus facile, les prédictions proposées par le réseau devenaient de plus en plus nettes,
et le choix du seuillage prenait de moins en moins d’importance. En vertu des résultats de ces
deux analyses, nous avons considéré que le seuillage a 0,5 était un choix pertinent pour juger de la
performance du réseau.

4.3.3 Une exploitation sub-optimale des entrées

En plus de ces analyses qui étaient génériques pour toute tache de classification, nous avons
mené une étude plus spécifique aux images CTIS qui concernait I’'apport de chacun des ordres de
diffraction. En effet, I'image CTIS pouvait étre interprétée comme une image composite, ot 'ordre
0 représentait 'information spatiale du cube hyperspectral, et 'ordre 1 'information spectrale
(figure 2.8). Nous nous sommes intéressés a I'apport de chacun de ces ordres pour la performance
de la classification. Connaitre cet apport était d’autant plus pertinent que les choix du matériel
optique d'un CTIS pouvaient influencer de facon bénéfique la résolution d'un des ordres au détri-
ment de I'autre (cf. section 3.2.1).

Pour étudier 'apport des ordres séparément, nous avons créé a partir de chacun des jeux Dcris
deux jeux Dcriso et Dcrisi- Dans les images des jeux Dcriso, les pixels correspondant a 'ordre 1
étaient mis a zéro afin de conserver uniquement ’ordre 0. Les jeux Dcris1 étaient construits de
facon analogue en mettant a zéro les pixels de 'ordre 1. Les résultats d’apprentissages sur ces
deux types de jeux sont présentés figure 4.10. Nous constatons que dans notre cas d’étude, les
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(a) Indicateurs statistiques de classification en fonction (b) Courbes ROC. Les courbes correspondent aux diffé-

de la sévérité. rentes sévérités (cf. légende). Sur une courbe donnée,
chaque point représente le taux de faux positifs FP/(FP+VN)
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FIGURE 4.9 — Analyses des performances de 'apprentissage comprimé.

performances sur Dcris et Deriso étaient tres similaires, et supérieures a celles obtenues avec Dcris; -
Cette proximité indiquait que le réseau se basait quasiment exclusivement sur I'ordre 0 pour mener
a bien son apprentissage.
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FIGURE 4.10 - Etude de I'apport de chacun des ordres pour les apprentissages menés sur Dcris.

Nous avons souhaité confirmer ce résultat en implémentant un algorithme de visualisation.
De tels algorithmes visent a expliquer visuellement les décisions d'un réseau de neurones [Yo-
sinski et al., 2015], qui sont a cause de leur grand nombre de parametres souvent qualifiés de
«boites noires » [Shwartz-Ziv and Tishby, 2017]. Nous nous sommes concentrés sur les visualisa-
tions destinées a mettre en lumiere au sein d'une image d’entrainement les portions qui ont le plus
contribué a I'attribution de sa classe [Springenberg et al., 2015]. Nous avons utilisé 1'algorithme
Grad-CAM [Selvaraju et al., 2017] qui constituait ’état de I'art pour ce type d’analyse a I'époque
de nos travaux. L'algorithme de Grad-CAM s’appliquait sur un réseau entrainé et pour une image
donnée. Il produisait un moyennage des cartes de caractéristiques issues du dernier bloc convolutif,
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pondéré par les gradients provenant des neurones de la derniere couche FC. L'utilisation des cartes
de caractéristiques permettait de produire comme visualisation une image ayant une structure
spatiale similaire a 'image d’entrée, et les gradients des couches FC complétaient cette information
en augmentant l'intensité des portions de ces cartes qui avaient eu un impact fort sur la prédiction
finale. La figure 4.11 présente le résultat de I'application de Grad-CAM sur un réseau VGGr entrainé

sur le jeu DOC’}IIS. Nous pouvons y constater que le réseau s’est effectivement concentré sur I'ordre 0.

FIGURE 4.11 — Résultat de I'application de I'algorithme Grad-CAM sur un réseau VGGr entrainé sur le jeu

Dg'{‘fls. La carte de chaleur produite par I’algorithme est représentée en fausses couleurs (échelle a gauche)
0,4

et superposée a I'image de D¢ utilisée pour générer la visualisation. Des agrandissements de I'ordre 0 et
d’une projection de I'ordre 1 sont proposés a droite de la figure.

Ces dernieres expériences montraient que, bien que I'apprentissage comprimé était possible sur
les images CTIS, le réseau ne tirait profit que d'une partie de I'information contenue dans ces images.
Nous avons souhaité mieux tirer parti de I'intégralité de I'information disponible, convaincus que
la séparation de I'information spatiale et spectrale pouvait étre une chance plutét qu'une entrave
pour un apprentissage. A cette fin, nous avons développé une architecture neuronale spécifique
dédiée aux images CTIS.

4.4 Une architecture dédiée aux images CTIS

4.4.1 Des traitements spécifiques aux ordres de 'image

La figure 4.12 présente 'architecture proposée, nommeée CTIS-Net. Le but premier de cette
architecture était de tirer parti des deux ordres du CTIS pour améliorer la qualité de la classification,
un procédé connu sous le nom de fusion de données. Pour suivre la nomenclature de ce champ,
nous avons désigné par modalités les deux ordres. Bien qu’exploiter 'image CTIS telle quelle avec
VGGr, comme nous I'avons fait dans la section précédente, pouvait étre considéré comme un cas de
fusion trés précoce de ces modalités, nous avons estimé que traiter les ordres séparément pouvait
étre utile au regard de I'étude de I'apport de chacun de ces ordres.

Nous avons donc implémenté une architecture « a deux branches» pour la fusion d'images
[Eitel et al., 2015]. Une telle architecture prenait deux images en entrée. Nous avons fourni a cette
architecture les bases de données Dcrisp et Dcris: (figure 4.12, bloc a). Les modalités étaient ensuite
traitées indépendamment par deux sous-réseaux que ’on nomme branches (figure 4.12, bloc c).
Pour mener une comparaison la plus juste possible avec les performances de VGGr, nous avons
utilisé la méme architecture que les couches convolutives de VGGr pour chacune de ces branches.
Les cartes de caractéristiques en sortie de chaque branche étaient ensuite concaténées selon I’axe
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FIGURE 4.12 - Architecture de CTIS-Net. Bloc a : séparation des ordres. Bloc b : prétraitement des ordres.
Bloc c: réseau en branches. Bloc d : concaténation et décision.

des canaux, c’est-a-dire que les deux cartes de dimension 7 x 7 x 256 éléments étaient réunies en une
carte de dimension 7 x 7 x 512 éléments. Ce nouvel objet était par la suite traité par des couches FC.
Nous avons utilisé la méme architecture que les couches FC de VGGr pour ces couches (figure 4.12,
bloc d).

La séparation des ordres d'une image CTIS, en plus de rendre possible une recherche person-
nalisée de caractéristiques pour chacun via une différenciation des couches convolutives, nous a
permis d'implémenter des prétraitements spécifiques a chacun (figure 4.12, bloc b). Concernant
l'ordre 1, I'information était répartie dans de multiples projections qui étaient étirées par la décom-
position spectrale. Pour mieux exploiter cette information, nous avons intégré deux modifications
ala branche de I'ordre 1. Premierement, nous avons implémenté un prétraitement pour les images
de Dcris1 qui consistait en I'alignement des projections selon le méme axe. Chaque projection
était rognée et tournée de facon a ce que les axes des projections soient alignés a I’horizontale
(figure 4.13). Cette opération était destinée a aider le réseau a apprendre des caractéristiques utiles
pour toutes les projections, sans qu’il ne lui soit nécessaire d’acquérir une invariance a la rotation.
Les positions de chaque projection dans cette nouvelle image et le choix d'un alignement horizontal
plut6t que vertical étaient arbitraires car nous avons supposé que ces choix n’affecteraient pas les
performances des apprentissages.

FIGURE 4.13 - Illustration du processus d’alignement mis en place pour les images de Dcrys; . Cette étape
correspond a I'étape « Alignement des projections » dans le bloc b de la figure 4.12.

Deuxiemement, inspirés par le réseau personnalisé que les auteurs de [Lee et al., 2019] ont
développé pour traiter des sinogrammes issus de la CT, nous avons utilisé pour les couches convo-
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lutives de la branche de I'ordre 1 des noyaux convolutifs rectangulaires au lieu de noyaux carrés. Ce
changement était destiné a mieux correspondre aux formes des caractéristiques des projections de
l'ordre 1. En particulier, le spectre d'une zone spatiale donnée d’une feuille était représenté dans
I'image comme des lignes suivant I’axe des projections, c’est-a-dire ’horizontale apres 'opération
d’alignement. Nous avons fait 'hypotheése que des champs de vue neuronaux étendus dans la
direction de la décomposition spectrale ménerait a une meilleure compréhension de ce spectre et
serait ainsi bénéfique pour la prise de décision du réseau. Ainsi, nous avons utilisé des noyaux de
dimension 3 x 6 plutét que 3 x 3. Nous avons adapté le transfert de poids de I'ILSVRC en redimen-
sionnant les noyaux convolutifs téléchargés de 3 x 3 a 3 x 6 par interpolation bilinéaire.

Quant a 'ordre 0, nous avons implémenté un rognage du centre des images de D¢risp afin de
conserver uniquement les pixels de la projection correspondant a I'ordre 0. Cette opération a permis
une accélération substantielle de I'entrainement, mais a également amélioré la résolution spatiale
des cartes de caractéristiques apres la couche GAP (figure 4.14). En effet, nous rappelons que la
couche GAP avait pour effet de redimensionner les cartes de caractéristiques a une dimension
fixe, dans notre cas 7 x 7 éléments. Une image de D¢risp de dimension 512 x 512 pixels menait, a
l'issue des couches de max-pool de VGGr a des cartes de caractéristiques de dimension spatiale
64 x 64 éléments qui étaient ensuite réduites spatialement a 7 x 7 par la couche GAP, menant a
une forte perte d'information (figure 4.14, haut). En rognant les images de Dc¢risp @ une dimension
60 x 60 pixels, les cartes de caractéristiques en sortie des couches max-pool de la branche de I'ordre
0 étaient déja de dimension spatiale 7 x 7 éléments et ne subissaient donc pas de dégradation de
leur résolution spatiale (figure 4.14, bas).

512 x 512
64 x 64
7x7
Couches convolutives
et max-pool GAP
—_— —
1 Rognage au centre
60 x 60
7x7
Couches convolutives
et max-pool GAP
——- —

FIGURE 4.14 - Illustration de 'effet bénéfique d'un rognage au centre de I'ordre 0 vis-a-vis de la couche GAP.
Les dimensions des objets sont indiquées au dessus d’eux.

Lentrainement de CTIS-Net suivait un protocole particulier. Les deux modalités que nous
traitions étaient de nature différente, et nous avions observé lors d’expériences préliminaires
une différence de temps de convergence de VGGr lorsqu’appliqué sur Dcrisp ou sur Dcrisy- La
figure 4.15 présente les courbes de deux entrainements de VGGr, 'un portant sur DéTISO et'autre
sur D(leISI' Le réseau avait convergé en environ 30 époques sur 'ordre 0 et en 80 sur I'ordre 1.
Cette différence de temps de convergence, qui était peut-étre causée en partie par le transfert de
poids de I'ILSVRC qui orientait I’entrainement vers une recherche de caractéristiques « spatiales »,
était délétere pour 'apprentissage avec CTIS-Net. En effet, au cours d'un entrainement, le réseau
convergeait sur I'information de 'ordre 0 et ignorait I'information de I'ordre 1, méme apres 80

époques. Du point de vue de I'optimiseur, nous avons supposé qu’a partir de I'époque 30, les poids
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du réseau constituaient un « minimum local » défini uniquement par I'information de I'ordre 0. En
conséquence, les performances de CTIS-Net étaient identiques que I’on inclue I'ordre 1 ou bien
que I'on mette tous les pixels de cet ordre a zéro. Cette problématique d’un réseau de fusion qui
développait les caractéristiques d'une seule branche au détriment de ’autre était présente dans
de nombreuses études portant sur la fusion de données [Wang et al., 2020a]. Afin de pallier cet
effet, nous avons réalisé les entrainements de CTIS-Net « en deux temps » [Eitel et al., 2015]. Dans
un premier temps, nous entrainions chaque branche individuellement en fournissant a I'autre
branche un jeu d’'images vides. Puis, nous créions une nouvelle instance de CTIS-Net dont les poids
des couches convolutives étaient initialisées aux valeurs convergées a la du fin premier temps pour
chaque branche. Cette distinction permettait au réseau d’extraire des caractéristiques de chaque
modalité indépendamment du temps de convergence nécessaire afin d’étre dans les meilleurs
conditions pour les combiner lors du second temps.
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FIGURE 4.15 - Evolution du cofit d’entrainement en fonction des époques pour deux entrainements portant
sur Dlpyqo €t Dpys; avec VGGr.

4.4.2 Une nette amélioration de la performance

Lutilisation d’'une architecture spécifiquement concue pour les images CTIS permettait une
nette amélioration des performances par rapport a celle du réseau plus générique VGGr (figure 4.16).
Parce qu’elle était constituée de deux branches, 'architecture de CTIS-Net contenait environ deux
fois plus de parametres que celle de VGGr. Pour mener une comparaison juste avec ce dernier, nous
avons implémenté une version de VGGr o1 le nombre de filtres dans chaque couche convolutive
était doublé par rapport a VGGr, que nous avons noté VGGr2. La comparaison des performances de
CTIS-Net avec VGGr2 montrait que la progression permise par CTIS-Net n’était pas simplement
due a une augmentation du nombre de parametres. L'architecture CTIS-Net permettait en outre
d’étre proche des meilleurs résultats de la performance de référence et méme de les dépasser sur
certaines gammes de sévérité.

Afin de compléter la comparaison entre les différentes architectures, nos avons résumé dans
le tableau 4.2 les spécificités des différentes expériences présentées jusqu’ici autres que leur per-
formance, en soulignant en particulier les durées des entrainements et des prédictions. Nous
confirmons par ces mesures que I'apprentissage comprimé permet un gain de temps substantiel
par rapport a I'apprentissage classique, en particulier lors de la phase de prédiction.
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FIGURE 4.16 — Comparaison des résultats d’apprentissage comprimé avec |'architecture dédiée CTIS-Net et
ceux avec l'architecture standard VGGr.

Jeu de données Réseau Taille des noyaux Nombre de parametres Temps d’entrainement Temps de prédiction
(heures, pour 1800 images*)  (ms, pour une image)

DY VGGr-3D 3x3x3 1,9.107 4,0 (+0,6)” 50 (+1200)"

D VGGr  3x3 1,6.107 1,6 (+0,6)" 10 (+1200)"

0,4 7

Dty VGGr 3x3 1,6.10 1,6 10

DY VGGr2  3x3 3,4.107 3,0 25

D3 CTIS-Net 3x3&3x6~"  3,2.107 4,4 35

CTIS

* Ce nombre correspond 2 la taille des blocs d’entrainement pour tous les jeux présentés dans ce chapitre.

*Le temps indiqué entre parentheses correspond au temps de reconstruction nécessaire pour obtenir DOC’;l a partir de D

“* La branche de l'ordre 0 a des noyaux de taille 3 x 3 et celle de I'ordre 1 des noyaux de taille 3 x 6 (cf. figure 4.12).

TABLEAU 4.2 — Comparaison des caractéristiques des différentes expériences, mesurées sur la sévérité 0,4.

4.4.3 Une étude par ablation met en lumiere les apports de CTIS-Net

Afin de déterminer la contribution de chacun des changements architecturaux entre VGGr
et CTIS-Net au gain de performance observé, nous avons mené une étude par ablation sur cette
derniére architecture.

Modifications de I'ordre 0

Pour commencer, nous avons évalué I'apport des modifications faites a 'ordre 0. Nous avons
concentré notre étude sur la branche de I'ordre 0 de CTIS-Net en ignorant 'apport de 'ordre 1. Dans
les faits, nous avons créé des jeux Dcriso rogne composés d’images de I'ordre 0 rognées au centre, et
nous avons entrainé un réseau VGGr sur Dcriso rogné €t Dcriso- Cette procédure était équivalente a
éliminer la branche de 'ordre 1 de CTIS-Net. Les résultats indiquaient que le rognage permettait

une performance légerement supérieure dans la gamme de sévérité en dessous de 0,2 (figure 4.17).

Nous avons également mesuré le temps que cette opération permettait de gagner, notamment a
I'entrainement : une époque d’entrainement sur Dcriso rogne dure huit secondes environ contre une
minute trente environ sur Dcrisg.

Modifications de I'ordre 1

Concernant les modifications portées a I’ordre 1, nous avons concentré notre étude sur la
branche éponyme en comparant les performances de la branche de 'ordre 1 de CTIS-Net selon
diverses configurations pour évaluer I’apport des noyaux rectangulaires et de 'alignement. Comme
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FIGURE 4.17 — Etude de I'apport du rognage de I'ordre 0.

pour I'étude de I'impact du rognage de 'ordre 0, nous avons entrainé dans les faits un réseau VGGr.
Nous avons noté Dcris; aligné l€s jeux constitués d’images des projections de I'ordre 1 « alignées ».
Pour éviter une surabondance de résultats, nous avons concentré notre étude sur les jeux corres-
pondant a la sévérité 0,4 (tableau 4.3). Les résultats étaient comparables pour d’autres sévérités.

Jeu de données Réseau Taille des noyaux Nombre de parametres Temps d’entrainement Temps de prédiction  Performance
(heures, pour 1800 images)  (ms, pour une image) (MCC)
3x3 1,6.107 1,6 7 0,790,018
6x3 1,7.107 2,9 14 0,810,032
D0,4 o » » y 3
CTIS1 aligné VGGr a6 1,7.107 3,1 14 0,930,031
6x6 2,1.107 6,0 23 0,940,019
3x3 1,6.107 1,6 7 0,520,015
0.4 6x3 1,7.107 2,9 14 0,560,029
2 \Y(
Demsi GOr 5.6 1,7.107 2,9 14 0,560,021
6x6 2,1.107 5,8 23 0,580,017
3x3 1,6.107 0,06 0,7 0,720,008
0,4 6x3 1,7.107 0,13 14 0,620,016
Dériso rogne VGGr 56 1,7.107 0,13 1,4 0,630,015
6x6 2,1.107 0,24 2,3 0,510,016

TABLEAU 4.3 — Etude par ablation concernant les améliorations portées a la branche de I'ordre 1.

0,4
CTIS1 aligné

a ceux sur Doc'}lm (quatre premieres lignes du tableau 4.3 et les quatre suivantes). Nous y constatons
que ce procédé a eu un effet positif considérable sur la performance du réseau, quelle que soit la
taille du noyau utilisé. Ces résultats donnaient aussi une indication sur I'effet des noyaux rectangu-
laires : 1a taille du noyau avait un effet positif substantiel lorsque le réseau travaillait sur les images
alignées. Ce résultat nous paraissait cohérent car nous avions implémenté I’étirement des noyaux
selon un axe pour bénéficier des caractéristiques des projections alignées au préalable selon ce
méme axe. Pour évaluer plus finement 'impact de la taille des noyausx, il faut comparer entre eux
les résultats sur D%%Sl aligné (quatre premiéres lignes du tableau). Ces résultats montraient que
¢’était bien I'étirement du noyau dans le sens des caractéristiques alignées plutot que le simple
agrandissement de celui-ci qui permettait d’obtenir un gain de performance. Cette distinction
était particulierement visible en comparant les performances obtenues graces a des noyaux de
dimension 3 x 6 (ligne 3) par rapport a celles obtenues avec des noyaux 6 x 3 et 6 x 6 (lignes 2 et
4). Nous pouvons noter par ailleurs qu’augmenter la taille des noyaux augmentait de facon non
négligeable le temps d’entrainement et de prédiction, justifiant d’autant plus I'utilisation de noyaux
rectangulaires 3 x 6 par rapport a des noyaux 6 x 6 qui menaient a des performances sensiblement

Pour juger de l'effet de 'alignement des projections, il faut comparer les résultats sur D
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similaires.

Par ailleurs, les résultats concernant le jeu D%}llso rogné (quatre derniéres lignes) montraient qu'il
était pertinent d’affecter des tailles de noyaux différentes en fonction de la branche comme c’était
le cas dans CTIS-Net. En effet, la taille de noyau optimale pour 'ordre 0, 3 x 3, était différente de
celle pour I'ordre 1 aligné, 3 x 6. Ce résultat était cohérent avec la recherche par grille que nous
avions menée pour fixer les hyperparameétres de VGGr (section 4.1.1). En effet, puisque VGGr se
concentrait exclusivement sur 'ordre 0 lorsqu’on lui fournissait une image CTIS (figure 4.10), il
était logique que la taille de noyau optimale ait été trouvée a 3 x 3, au détriment de I'ordre 1 qui
était ignoré dans cette recherche en grille.

Fusion des ordres

Pour terminer cette étude par ablation, nous avons évalué le bénéfice d’exploiter conjointement
les jeux Dcriso rogné €t DcTisi aligne, € est-a-dire de procéder a la fusion de ces ordres. Nous avons
comparé les résultats des apprentissages sur chaque branche individuelle contre celui réalisé en
utilisant CTIS-Net (figure 4.18).

1.04
0.8

0.6 1

MCC

0.4 4

021 —e— Dcris | CTIS-Net
—o— Dcrist aligns | CTIS-Net, branche 1
—o— Dcmiso rogné | CTIS-Net, branche 0

0.0

02 0.4 06 0.8 10
sévérité

FIGURE 4.18 — Etude par ablation pour évaluer I'impact de la fusion des ordres.

Bien que la fusion des deux ordres n’abaissait pas la performance, elle ne permettait pas d’obte-
nir une performance meilleure que celle permise par la meilleure des branches du réseau considérée
individuellement. Nous avons supposé que certaines limitations a une fusion plus efficace venaient
des principes optiques du CTIS lui-méme. En effet, les informations spatiale et spectrale d'un
cube n’étaient pas aussi clairement séparées dans les ordres respectifs d'une image CTIS que I'on
pourrait le croire a premiere vue. L'ordre 0 contenait une information moyennée du spectre du
cube, et I'ordre 1 une information spatiale, certes rendue floue par la décomposition spectrale.
Linformation apportée par les deux modalités n’était donc pas aussi orthogonale que dans d’autres
cas de fusion de données (par exemple, image et son [Meishvili et al., 2020], image et odeur [Korel
et al., 2001] ou image et information mécanique [Ruiz-Altisent et al., 2006]) et par conséquent
les modalités avaient ici une complémentarité limitée. De plus, nous avons fait I'hypothése que
notre cas d’étude exacerbait cette corrélation. En particulier, la différence de réflectance entre
une zone saine et une zone tavelée d’'une feuille était considérable pour une gamme significative
de longueurs d’onde (figure 3.10). En conséquence, I'ordre 0 contenait une information spectrale
importante.
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Nous avons cependant considéré cette fusion comme utile pour plusieurs raisons. Premiéere-
ment, la modalité optimale pour mener un apprentissage sur un jeu de données pouvait varier
d'un jeu al'autre, sans qu’il ne soit nécessairement possible de la connaitre a priori. Nous avons
pu constater cet effet en faisant varier le parameétre « sévérité » des jeux (figure 4.18) mais nous
avons aussi imaginé des cas ou la modalité optimale pouvait varier en fonction du type de ma-
ladie a détecter. Nous nous attendions par exemple a ce que la fusion soit utile dans un cas de
détection de multiples maladies ou bien un cas olt de multiples stades de la méme maladie étaient
rassemblés dans un méme jeu de données. Deuxiemement, nous supposions qu'’il existait des cas
ou les informations spatiale et spectrale dans I'image CTIS étaient plus indépendantes que dans
notre cas d’étude. Nous avons exploré dans 'annexe A un apprentissage ol I’architecture CTIS-Net
permettait véritablement de tirer parti de la fusion des deux ordres.

4.5 Les performances subsistent malgré I'ajout de bruit

Bien que nous ayons émulé avec soin les propriétés optiques du CTIS dans notre simulateur
éponyme, les images que celui-ci permettait de produire et que nous avons exploitées dans ce
chapitre manquent de caractéristiques distinctives d'images réelles, comme discuté a la section 3.4.
Nous présentons dans cette section un premier travail destiné a améliorer le réalisme des images de
Dcris via I'ajout de bruit. Similairement a I’étude par ablation portant sur I'ordre 1 (section 4.4.3),
nous avons limité cette analyse au jeu DCTIS

Comme discuté a la fin de la section 2.2.4, il existe des études qui ont modélisé mathémati-
quement des distributions de bruits thermique et de grenaille sur des images a faible intensité
lumineuse comme celles acquises par le CTIS. Une telle modélisation requérait cependant d’identi-
fier et de séparer les deux sources principales de bruit dans les images. Devant la difficulté de cette
opération pour les images CTIS réelles que nous avions a disposition, et apres avoir constaté que le
bruit présent dans ces images suivait une distribution de niveaux de gris proche d'une gaussienne,
nous avons préféré suivre une approche dite « procédurale » [Dong et al., 2019]. Une telle approche
consistait a créer une distribution de niveaux de gris et a en ajuster les caractéristiques par rapport
a celles mesurées sur une distribution réelle, dites « caractéristiques modele ». Pour évaluer ces
caractéristiques dans le cas du bruit des images CTIS réelles, nous avons conduit des mesures dans
des zones périphériques de ces images, a faible intensité lumineuse, ot nous estimions que les
deux sources de bruit susmentionnées étaient présentes.

Concernant le choix des caractéristiques a ajuster, nous nous sommes basés sur des travaux
que nous avions mené auparavant pour une autre application en sciences végétales [Douarre et al.,
2018a]. Nous avons d’abord mesuré deux caractéristiques liées a la distribution des niveaux de gris :
les deux moments d’ordre 1 et 2, c’est-a-dire la moyenne et I'écart type du bruit. Nous avons noté
Mbruit réel €t Obruit réel C€S Mesures. Nous avons également calculé une caractéristique spatiale liée a
la texture de ce bruit. Il existait de nombreuses manieres de définir et de mesurer ce que 'on appelle
la « texture » d'une image [Haralick et al., 1973; Howarth and Riiger, 2004]. Nous nous sommes basés
sur la fonction d’autocorrélation [Jain et al., 1995] qui mesurait la concordance spatiale de pixels
d’intensité similaire entre une image et cette méme image décalée spatialement. Cette mesure
donnait ainsi des indications sur la présence de structures répétées dans I'image et la taille typique
de celles-ci. Plus formellement, I'autocorrélation A d'une image I de dimension d x d pixels prenait
la forme d'une image de méme taille et se mesurait comme suit :

a4 Z ollx, ylIlx +dx, y+dy]
Aldx,dy] = i (4.4)
Y4 X Plx, ]

Nous avons noté Apyit réel |2 mesure que nous avons ainsi effectué.
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Une fois ces mesures de caractéristiques modele réalisées, nous avons créé pour chaque image
du jeu DOC’}IIS une image de bruit synthétique o1 chaque pixel était tiré indépendamment de la
distribution A (Upruit réel, Obruit réel) - PUiS Nous avons ajusté I'autocorrélation de ces images en sui-
vant l'algorithme 3.2 pour différentes valeurs de rayon r et en retenant la valeur qui menait a
I'autocorrélation de I'image la plus proche de Apyit réel- NOus avons choisi la somme des écarts
pixel a pixel au carré comme mesure de distance entre I’autocorrélation de I'image et Ap it réel- La
figure 4.19 présente une comparaison visuelle entre le bruit réel et le bruit synthétique ainsi créé.

Nous avons par la suite créé le jeu p%4 en ajoutant une image de bruit synthétique a

CTIS bruité
toutes les images de Dg'%s. La figure 4.20 présente un comparaison entre une image des deux jeux

de données.

Bruit réel

Nombre de pixels

0 i i 40
Bruit synthétique Niveau de gris

FIGURE 4.19 - Quelques illustrations concernant la génération du bruit synthétique. Gauche : des imagettes
de dimension 50 x 50 pixels de bruits réel et synthétique sont présentées. Leur contraste et leur luminosité
ont été augmentés a des fins de visualisation. Droite : les histogrammes de niveaux de gris des imagettes sont
tracés sur un graphe commun, avec un code couleur correspondant aux encadrements des imagettes.

e e 0,4 PN o . 0,4
FIGURE 4.20 - Un extrait d'image de Dy, (haut), comparé a la méme image dans D¢\ . ... (bas).

. L s . . 0,4
Nous avons ensuite reconstruit a partir des images de Dpqy . les cubes hyperspectraux

correspondants, constituant ainsi le jeu DOCfbruité' Nous avons alors conduit a nouveau les princi-
pales méthodes de classification présentées dans ce chapitre sur ces deux jeux bruités (tableau 4.4).
La performance était sans surprise amoindrie par rapport aux études menées sur les versions
non bruitées des jeux. La performance d’apprentissage comprimé était toujours dans cette confi-
guration proche de celle obtenue sur le jeu reconstruit, indiquant que cette approche pourrait
effectivement étre pertinente pour des applications réelles. L'utilisation de I'architecture CTIS-Net
permettait d’augmenter encore cette performance, bien que de fagon moins importante que dans

le cas « propre ».
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Jeude données Réseau Taille des noyaux Nombre de parametres Temps d’entrainement Temps de prédiction  Performance
(heures, pour 1800 images) (ms, pour une image) (MCC)
0.4 7 ;
Deris bruite VGGr 3x3 1,6.10 1,6 6 0,520,028
D bruiee VGGr-3D  3x3x3 1,9.107 4,0 (+0,6) 30 (+720) 0,540,028
D24 CTIS-Net 3x3&3x6 3,2.107 4,4 22 0,570,030

CTIS bruité

TABLEAU 4.4 — Performances de classification sur données bruitées.

4.6 Une plus grande polyvalence par rapport aux imageurs classiques

La comparaison des résultats d’apprentissage comprimé avec celle d’apprentissage classique
était pertinente dans le cadre de I'’étude d'une imagerie computationnelle. Nous avons par ailleurs
souhaité comparer les performances rendues possibles avec 'imagerie CTIS avec des imageurs
plus standards. Nous nous sommes intéressés en particulier aux imageurs RVB et IR, imageurs qui
étaient a la fois considérablement plus répandus et moins onéreux que n'importe quel capteur
hyperspectral. Les performances qu’ils permettaient constituaient une référence quasiment de
facto pour évaluer un nouveau type d’'imageur spectral.

Ainsi avons-nous comparé les résultats obtenus sur les images de Dc¢ris aux performances
d’apprentissage obtenues avec les jeux Dgryp et Dir (figure 4.21). Il en est ressorti que si I’apprentis-
sage comprimé sur images CTIS offrait des performances comparables voire meilleures sur une
courte gamme de sévérité par rapport au RVB, les deux imageries standards restent en général des
alternatives plus performantes que le CTIS dans notre cas d’étude.
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0.0 . . . ] ]
0.2 0.4 0.6 0.8 1.0
sévérité

FIGURE 4.21 — Comparaison entre les résultats d’apprentissage comprimé sur image CTIS et ceux d’appren-
tissages sur les capteurs RVB et IR.

Il faut cependant noter que I'imagerie CTIS offre une plus grande polyvalence d’imagerie, en
permettant d’obtenir de I'information dans une large gamme de longueurs d’onde. Autrement dit,
les imageurs RVB et IR sont particulierement appropriés lorsque I'on dispose d’information a priori
sur les bandes spectrales pertinentes pour la classification attendue. Le cas de la tavelure répond a
ces criteres puisque les longueurs d’onde optimales sont connues dans la littérature. Nous avons
intégré cette information dans le choix de la longueur d’onde employée dans le simulateur IR que
nous avons implémenté (section 3.2.5). Il faut bien noter que 'obtention et la confirmation de
cette information en premier lieu a nécessité plusieurs études [Delalieux et al., 2009b; Benoit et al.,
2016] et 'usage de caméras hyperspectrales a balayage. Il existe de nombreuses applications ot ces
études n'ont pas été menées et de telles informations a priori sont inexistantes. Les imageurs plus
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classiques utilisés « a 'aveugle » pourraient étre dans ces cas beaucoup moins pertinents.

4.7 Une influence forte des parameétres optiques

Pour terminer I'étude de la valeur de 'apprentissage comprimé sur images CTIS, nous rap-
pelons que la géométrie des images CTIS dépendait d'un certain nombre de parameétres liés aux
choix du matériel optique (section 3.2.1). Nous avons intégré dans le simulateur CTIS nombre de
ces parametres, permettant d'obtenir théoriquement une grande variété d’images CTIS (figure 3.15).

La résolution spatiale d était un des parametres les plus importants du modéle. Ce parametre
était directement lié a la résolution spatiale du CTIS mais conditionnait également la qualité des
projections spectrales (cf. section 3.2.1). Dans les cas limites du montage optique, une valeur de
dy de 1 pixel menait a un ordre 0 inexistant et a un ordre 1 sans recouvrement spatial : en d’autres
termes, a une résolution spatiale minimale et une résolution spectrale maximale. A l'inverse, une
valeur de d égale a la taille de I'image CTIS d maximisait la résolution spatiale mais ne permettait
pas de décomposition spectrale. Des valeurs intermédiaires permettaient de faire varier le cur-
seur entre résolutions spatiale et spectrale. En guise d’ouverture, nous présentons les principaux
résultats obtenus dans ce chapitre en étudiant des images CTIS ayant un ordre 0 différent de 60
pixels. Pour fixer une nouvelle valeur, nous nous sommes basés sur une idée de « taille spatiale
minimale » des lésions de tavelure. Pour le cas dj = 60 pixels, toute tache de tavelure ayant une aire
inférieure a 15% de celle de la feuille sur laquelle nous la simulions n’était pas « discriminable » dans
I'ordre 0 de I'image CTIS associée. Nous entendons par ce terme que 'aire de la tache était alors
en deca du pixel carré, et donc que le contraste causé par la Iésion était nécessairement atténué
car I'information lumineuse était moyennée avec celles des zones saines environnantes. Nous
avons étudié le cas dy = 80 pixels qui permettait de diviser a peu pres par deux cette taille spatiale
minimale des lésions. La figure 4.22 présente 'aspect des images pour les deux valeurs de dy. Nous
pouvons y constater une taille plus grande de I'ordre 0, et donc une discriminabilité des 1ésions
facilitée dans cet ordre, mais en contrepartie un recouvrement plus important des tranches au sein
des projections de I'ordre 1.

(a) Une image CTIS avec dy = 60 pixels. (b) Une image CTIS avec dj = 80 pixels.

FIGURE 4.22 — Comparaison visuelle de I'impact du parametre dy, pour les valeurs 60 et 80 pixels.

Les résultats d’apprentissage pour les images créées avec dy = 80 pixels (figure 4.23) montraient
tout d’abord que la valeur de dj avait un fort impact sur la qualité de la reconstruction : les ap-
prentissages sur les cubes reconstruits par VGGr a partir d'images CTIS créées avec dy = 80 pixels
étaient beaucoup plus performants que dans le cas dy = 60 pixels pour les sévérités les plus basses.
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FIGURE 4.23 — Etude de 'impact du parametre dy sur les performances des apprentissages. Contrairement a
toutes les autres figures de ce chapitre, nous avons ici limité la gamme de sévérité a [0,1, 0,5] afin d’améliorer
la visibilité des résultats, les performances au-dela étant similaires a celles obtenues a la sévérité 0,5.

Ce parametre pouvait donc rebattre les cartes concernant la pertinence de la reconstruction de
cubes par rapport a I'apprentissage comprimé. Il faut cependant noter qu'une reconstruction d’'un
cube de 80 pixels de large demandait en moyenne environ une fois et demie plus de temps qu'un
cube de 60 pixels.

Concernant les performances de 'apprentissage comprimé, nous avons observé un double
effet en comparant les deux courbes relatives aux performances de CTIS-Net. Nous savions par
I’étude par ablation s’attachant a la fusion des ordres que dans notre cas cette architecture se
basait sur un ordre ou sur I'autre en fonction de la valeur du parametre « sévérité » (figure 4.18). En
travaillant sur des images ou 'ordre 0 était de taille 80 pixels au lieu de 60, nous avons constaté que
les performances du réseau augmentaient pour les sévérités les plus faibles, pour lequel le réseau se
basait sur 'ordre 0, et inversement pour les sévérités les plus élevées. Ces résultats étaient cohérents
avec 'effet attendu d’augmenter la valeur de dy qui facilitait I'exploitation de I'information de
I'ordre 0 au détriment de celle de 'ordre 1. Ainsi, avec une taille d’ordre 0 plus grande, 'imagerie
CTIS devenait compétitive vis-a-vis de 'imagerie RVB dans la gamme de sévérité la plus faible.
Il fallait cependant noter que les performances du CTIS dans cette gamme étaient loin d’étre
suffisantes pour étre pertinentes industriellement. Cette expérience soulignait néanmoins que le
compromis de résolution spatio-spectral conditionnait la performance de 'apprentissage sur des
images CTIS par rapport a celles obtenues avec des imageurs plus classiques.

4.8 Conclusion

Dans ce chapitre, nous avons étendu pour la premiére fois le principe d’apprentissage com-
primé a I'imagerie CTIS. En effet, nous avons montré, dans le cadre de I'application agronomique
que nous avions définie, qu’il était possible pour un réseau de neurones générique d’effectuer
une tache de classification en se basant directement sur I'image CTIS (figure 4.8) plutét que sur
le cube reconstruit. De plus, nous avons mis au point une architecture dédiée a la structure des
images CTIS, en nous basant en particulier sur une séparation des ordres afin de leur appliquer un
traitement séparé. Les résultats obtenus étaient substantiellement meilleurs que ceux obtenus par
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un réseau générique, et proches de ceux obtenus lors de I'approche classique, ce qui appuyait la
possibilité de s’affranchir de I'étape chronophage de reconstruction pour analyser un signal CTIS.
Le succes de I'apprentissage comprimé pouvait paraitre contre-intuitif a priori tant 'information
spatiale de la scene semblait dégradée et son information spectrale brouillée dans une image CTIS.
Ces résultats mettaient en évidence les différences d’interprétation entre le cerveau humain et les
réseaux de neurones informatiques, et rappelaient que I'anthropomorphisme que nous attribuons
parfois a ces algorithmes est bien souvent plus limité qu’on ne le croit.

Nous estimons que quelques améliorations auraient pu étre apportées aux protocoles d’entrai-
nement que nous avons établis (section 4.1.2). Il aurait en particulier été bénéfique d’inclure a la
recherche par grille quelques hyperparametres fixés arbitrairement tels que celui de 'optimiseur
et celui des couches concernées par le pré-entrainement sur I'ILSVRC. De plus, nous considérons
que les conditions sous lesquelles nous avons conduit les apprentissages sur les cubes reconstruits
étaient légérement moins favorables que celles relatives a I'apprentissage comprimé. En effet, la
recherche par grille que nous avons menée pour fixer la dimension de profondeur des noyaux
convolutifs VGG-3D était incompléte, puisque nous avons effectué une recherche par grille spé-
cifique a ce parametre (section 4.2.2) au lieu de réaliser une nouvelle recherche concernant tous
les hyperparametres de ’architecture en incluant ce dernier. Nous pensons cependant que cette
approximation n’affaiblit pas significativement les conclusions que nous avons formulées dans ce
chapitre.

Les conditions contrblées des expérimentations de ce chapitre étaient pertinentes pour I'étude
d’un systeme d’imagerie relativement nouveau. Cependant, dans le cadre d’applications indus-
trielles telles que celles que ménent Carbon Bee, I'échelle pertinente pour la détection de maladies
de plantes est bien souvent plus grande que celle de la feuille isolée. Les algorithmes destinés a une
intégration dans un produit commercialisé sont appliqués a I’échelle d'un ensemble de plantes
[Abdelghafour et al., 2020], voire du champ tout entier [Kerkech et al., 2020], et ce en conditions
réelles. Ces algorithmes se basent sur des systemes imageurs dont la pertinence est reconnue par
la communauté des chercheur -euses en sciences végétales, tels que les imageurs IR [Jones, 2004;
Mabhlein, 2016]. Dans le chapitre suivant, nous nous intéressons aux défis rencontrés dans le cadre
d'une détection de tavelure sous ces conditions difficiles.
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Chapitre 5

Simulation d’'images pour alléger la
charge d’annotation d’images réelles

Dans ce chapitre, nous nous sommes intéressés a la détection de 1ésions de tavelure en condi-
tions industrielles. Nous avons pour cela acquis un jeu d’images représentant un ensemble de
pommiers tavelés, en lumiere IR. Nous avons associé a ce jeu une tache de segmentation, qui est
une opération alignée avec les objectifs industriels de I'agriculture de précision. Si la précision
requise par cette tache rendait la détection en elle-méme plus ardue, il était par ailleurs particulie-
rement difficile d’annoter les données pour constituer un jeu d’entrainement en premier lieu. Nous
nous sommes penchés sur ce défi qui nous a paru particulierement impérieux. Nous croyions a la
valeur des données simulées pour réduire cette charge d’annotation, et nous les avons employé
ici en complément d’entrainements menés sur des données réelles et destinés a des prédictions
également sur données réelles. Nous présentons dans ce chapitre des simulations innovantes spéci-
fiques a notre application, basées sur les tendances les plus récentes en sciences végétales. Nous
avons exploré par ailleurs les différentes facons d’'intégrer ces données simulées aux entrainements
conduits sur données réelles.

Sommaire
5.1 Uneannotation chronophagearéduire . . . . ..................... 92
5.1.1 Unjeudifficile en conditionsréelles . . . . . ... ................ 92
5.1.2 Lapport potentiel des données simulées . . . ... ... ... ......... 93
5.1.3 Une architecture spécifique pour effectuer une segmentation ... ... .. 94
5.1.4 Premiers résultats de segmentation : une performance «saturée» . ... .. 96
5.2 Les différentes catégoriesdesimulateurs . . . . . ... ... ... 0 0o 98
5.2.1 Augmentation d'imagesdujeudedonnées. . . ... ... ........... 98
5.2.2 Génération d'images a partirdemodeles . . . . . ... ... ... .. ... .. 100
5.3 Simulateurs implémentés pour notrecasd’étude . . . .. ..... .. ... ... 101
5.3.1 Déformationdedonnées . . ... ... ... ... ... ... ... 101
5.3.2 GAN . . . o e 103
5.3.3 Modeledecanopée . . . . . . . ... 106
5.4 Résultats:des simulateursefficaces . . . .. ......... ... .. .. 0 111
5.4.1 Lintégration des donnéessimulées . . ... ... .. ... ........... 111
5.4.2 Limpactdes différents simulateurs . ... ... ................. 113
5.4.3 Les données simulées permettent d’aller au-dela des données réelles... . . . 117
5.4.4 .. maisnesont passi«gratuites»quecela . . ... ... ... ... ..., . 118
55 Conclusion . . . . . o i ittt i i i e e e e et e e e e e 119

91



CHAPITRE 5. SIMULATION D’IMAGES POUR ALLEGER LA CHARGE D’ANNOTATION D’IMAGES
REELLES

5.1 Une annotation chronophage a réduire

5.1.1 Un jeu difficile en conditions réelles

Nous avons créé un jeu de données pour réaliser une détection de tavelure en acquérant des
images de plants de Malus pumilla dans les serres de I'IRHS. Ces plants avaient été inoculés avec
V. inaequalis quatorze jours avant 'acquisition. Les plants étaient placés proches les uns des
autres, les feuilles formant une canopée. Cette structure était typique a la fois des environnements
de recherche en sciences végétales et des plantations en champ. L'acquisition s’est déroulée en
avril, a midi, sous conditions ensoleillées. Elle fut réalisée avec le capteur IR de la caméra Carbon
Bee, portée manuellement environ un meétre au-dessus des plants, pointée vers le sol. Le gain de
la caméra était réglé de facon automatique. Sept images de dimension 1944 x 2592 pixels furent
acquises de cette maniére, couvrant 'intégralité des plants disponibles, sans recouvrement entre
les images. Nous avons appelé Dyiginal ce jeu de données. Nous avons tiré au hasard cing de ces
images pour constituer le bloc d’entrainement, une pour le bloc de validation et une pour le bloc
de test de Doriginal-

Nous avons associé a ce jeu une tache de segmentation des lésions de tavelure. Pour ce faire,
nous avons procédé a une annotation en assignant a chaque pixel des images une étiquette « ta-
velure » ou «non tavelure ». Ainsi, bien que le nombre d’images du jeu pouvait paraitre faible,
chacun des pixels de ces images constituait en réalité une unité d’entrainement pour un algorithme
d’apprentissage. Une image de Doiginal €t sOn annotation sont présentées figure 5.1.

(a) Image. (b) Annotation.

FIGURE 5.1 - (a) Une image du bloc d’entrainement de D yiginal. (b) Lannotation au niveau du pixel que nous
avons réalisée pour cette image. Les pixels orange correspondent aux pixels étiquetés « tavelure », les autres
a ceux étiquetés « non tavelure ». Dans tout ce chapitre, le contraste et la luminosité des images (réelles et
simulées) présentant des canopées de feuilles ont été augmentés pour faciliter la visualisation.

En plus des difficultés communes aux jeux de données en condition réelles (illumination non
homogene, feuilles orientées selon des angles variés, etc.), plusieurs caractéristiques de Doriginal
rendaient particulierement ardue la tiche de segmentation qui lui était associée. Premiérement,
le positionnement resserré des plants entrainait de nombreux recouvrements partiels entre les
feuilles. Ensuite, I'’échelonnage des feuilles selon leur position sur les tiges des plants entrainait
des conditions d’illumination différentes pour les feuilles en fonction de leur distance a la source
de lumiere et des jeux d’ombres causés par les feuilles situées sur les couches supérieures. De
plus, les différences d’illumination étaient accentuées par un effet dit de vignettage du capteur,
c’est-a-dire que la zone centrale de 'image était plus lumineuse que sa périphérie [Zheng et al.,
2008]. Concernant les 1ésions de tavelure, bien que leur localisation pouvait paraitre aisée a I’ceil
nu, certains facteurs compliquaient cette détection. Les lésions étaient des structures de tailles
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variables en fonction de la proximité de la feuille concernée au capteur, mais globalement de faible
dimension. De plus, la frontiere entre les lésions et les zones saines était souvent difficile a localiser.
En effet, le procédé de prolifération du parasite (section 1.3.1) menait a une concentration variable
d’agent en fonction de la proximité de la distance au point d’attaque originel. Ce comportement se
manifestait visuellement par un contraste fort au centre de la 1ésion mais qui décroissait a mesure
que I'on s’en éloignait. Enfin, certaines structures telles que les nervures des feuilles produisaient
un contraste avec le reste de la feuille proche de celui créé par les 1ésions de tavelure.

Le jeu présentait par ailleurs une difficulté supplémentaire du point de vue de ’apprentissage en
lui-méme. Parmi les images de Doyiginal, seuls 2% des pixels étaient étiquetés comme « tavelure ». De
tels déséquilibres étaient néfastes pour les apprentissages : il était nécessaire pour une classification
efficace que toutes les classes d'un jeu soient représentées de facon suffisante [Chawla, 2009]. Si une
classe était excessivement sous-représentée, il y avait un fort risque que I'algorithme d’optimisation
des poids du réseau mene a une frontiere de décision qui « ignore » cette classe, car la prédiction
erronée d’'un faible nombre d’exemples n’était pas suffisamment pénalisante pour que d’autres
configurations de poids soient explorées. Bien qu’il existe des méthodes pour modérer les problemes
engendrés par les jeux déséquilibrés [Yap et al., 2014], il est de bon aloi de mener des apprentissages
sur des jeux les plus équilibrés possibles en premier lieu. Afin de réduire le déséquilibre des classes
dans Dyyiginal, NOUs avons implémenté un type de sous-échantillonnage [Chawla, 2009] via un
tuilage sélectif. Nous avons divisé les images de Dyyiginal €n imagettes, ou tuiles, de dimension
64 x 64 pixels, sans recouvrement '3, Parmi les 6150 tuiles du bloc d’entrainement de Doriginal, NOUS
avons conservé uniquement les 535 tuiles qui contenaient au moins un pixel étiqueté comme
«tavelure ». Apres ce tuilage, 10% des pixels du bloc étaient étiquetés comme tels. Nous appelons
Dyyii¢ le jeu constitué de ce bloc d’entrainement tuilé sous-échantillonné et des blocs tuilés complets
de validation et de test.

5.1.2 Lapport potentiel des données simulées

Nous soulignons que le processus d’annotation de Doriginal fut une entreprise particulierement
chronophage. D’'une maniere générale, 'annotation de données représente un cotit considérable
pour les entreprises qui implémentent des algorithmes d’apprentissage profond. Une technicienne
était employée a plein temps a cette fin par Carbon Bee AgTech, et les ingénieur -es agronomes de
I'entreprise y consacraient aussi une partie de leur temps. Il était de plus nécessaire d’ajouter a ces
cotits celui du processus d’acquisition des données brutes en premier lieu.

De nombreuses études se sont penchées sur la possibilité de réduire la charge d’annotation
de données pour I'entrainement d’algorithmes d’apprentissage, que ce soit par le biais de méta-
algorithmes tel que I'apprentissage actif [Settles, 2009; Nagasubramanian et al., 2020] ou bien via
I’amélioration des moyens techniques d’annotation [Papadopoulos et al., 2014; Samiei et al., 2020].
Nous avons considéré pour notre part que la simulation de données pouvait ici aussi avoir un role
ajouer. Bien que dans le champ de I'apprentissage automatique, certains apprentissages soient
réalisés sur un bloc d’entrainement constitué uniquement de données simulées [Nikolenko, 2019],
les performances de classification chutent la plupart du temps lorsque le réseau est utilisé en
prédiction sur des images réelles [Tobin et al., 2017]. Cet écroulement de la performance est dii a
«l'écart de la réalité » [Tremblay et al., 2018] entre les caractéristiques des images d’entrainement et
celles de prédiction qui peuvent persistent malgré le soin amené a rendre les images simulées le
plus réalistes possibles. Aussi dans de nombreuses études les données simulées sont-elles utilisées

13. Il est a noter que I'information d'une image pouvait étre partiellement détruite au cours d'un tuilage. En particulier,
le positionnement relatif d’objets dans I'image était perdu lorsque ceux-ci étaient répartis dans différentes tuiles.
Cependant, la structure des images de Dyyigina limitait cet effet délétere. En effet, les images du jeu représentaient une
multitude de plants inoculés séparément, dont le positionnement relatif n’amenait que peu information quant a la
présence de tavelure. Nous avons donc considéré que le tuilage était une opération peu destructrice pour Dyyigina) au vu
de 'absence de structure globale dans les images du jeu.
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en complément plutdét qu'en remplacement de données réelles pour mener a bien les entraine-
ments. Dans ce cadre, les données simulées sont considérées comme des outils de régularisation
[Goodfellow et al., 2016] et permettent d’augmenter la variabilité des caractéristiques présentes
dans un bloc d’entrainement, en particulier dans le cas de classes déséquilibrées [Chawla et al.,
2002].

Nous nous sommes alors posé la question suivante : des données simulées pouvaient-elles
permettre de réduire la charge d’annotation tout en maintenant des performances proches de
celles du jeu complet? Pour répondre a cette question, nous avons d’abord évalué la performance
de segmentation sur Dyjj¢ ainsi que sur des versions de ce jeu aux blocs d’entrainement réduits.
Nous présentons maintenant ’architecture du réseau employé et le protocole d’apprentissage que
nous avons suivi pour mener a bien les segmentations.

5.1.3 Une architecture spécifique pour effectuer une segmentation

Les réseaux de neurones destinés a la classification, tel VGG que nous avons utilisé au chapitre 4,
n’'étaient pas adéquats pour réaliser une segmentation, car il s’agissait d’architectures congues
pour proposer un étiquetage unique pour 'intégralité de I'image qu’on leur fournissait en entrée.
Nous nous sommes par conséquent tournés vers une autre catégorie d’architectures : les réseaux de
segmentation. Nous présentons a présent un bref historique de ces réseaux ainsi que I’architecture
retenue pour notre travail.

Les réseaux de classification ne permettaient pas de mener a bien des taches de segmentation
car ils compressaient I'information spatiale des caractéristiques par I'action des couches de max-
pool et la détruisaient via les couches FC. Dans le cas d'une classification, cette perte d'information
spatiale est sans conséquence puisque la réponse que I'on attend du réseau in fine est une valeur
unique, mais pour réaliser une segmentation, cette information spatiale doit étre conservée, ou
plutot reconstruite.

Le «réseau entiérement convolutif» [Long et al., 2015] fut le premier réseau de neurones destiné
a la segmentation d’images. Ce réseau se basait sur I'architecture d’'un réseau de classification
mais, comme son nom I'indiquait, se passait de couches FC. Ces dernieres étaient remplacées
par une opération de redimensionnement afin de ramener les dimensions spatiales des cartes de
caractéristiques a celles de I'image d’entrée. Ainsi, pour une image donnée en entrée de dimension
dy x dy pixels, la sortie de ce réseau était une carte de segmentation de dimension d; x d» x n
éléments avec n le nombre de classes différentes dans le bloc d’entrainement. Chaque pixel de la
sortie représentait alors la probabilité d’appartenance aux classes de chacun des pixels de I'image
d’entrée. La fonction de cott de 'entrainement était calculée en sommant les différences entre
chacun des pixels de cette sortie et ceux de 'image annotée.

Les auteurs de ces travaux avaient implémenté le redimensionnement par une série de simples
interpolations bilinéaires, mais aussi par des opérations paramétrisables, apprises par le réseau
au cours de I'entrainement. 11 s’agissait de couches convolutives dites « transposées » [Dumoulin
and Visin, 2016] avec un pas (stride en anglais) supérieur a un, ce qui permettait de générer des
sorties aux dimensions spatiales plus grandes que les entrées. Les auteurs de [Noh et al., 2015]
ont implémenté cette idée de redimensionnement paramétrisable en utilisant un ensemble de
couches convolutives classiques entrecoupées de couches de « dégroupement » (unpool en anglais).
Alinverse des couches de max-pool, les couches d’ unpool augmentaient la taille des cartes de
caractéristiques qu’on leur fournissait. Larchitecture proposée, DeconvNet, était composée pour
moitié d'un ensemble de blocs convolutifs identique a celui de VGG, et pour moitié du méme
nombre de blocs dits « déconvolutifs » constitués de couches convolutives et de couches d’ unpool.
Dans la premiere moitié du réseau, les caractéristiques de 'image étaient extraites et réduites
spatialement jusqu’a une compression maximale au centre du réseau que 1’on appelait I'espace
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latent, comme ’aurait fait un réseau de classification. Dans la seconde moitié, cet espace latent était
converti en une image aux mémes dimensions spatiales que I'image d’entrée via I'action des blocs
déconvolutifs. Les couches convolutives de ces blocs apprenaient a associer les caractéristiques
de 'espace latent a des classes, et ce a différentes échelles de I'image, similairement a la partie
convolutive du réseau. Les opérations d’ unpool inversaient les opérations de max-pool auxquelles
elles étaient associées, permettant ainsi de reconstruire couche par couche la localisation spa-
tiale des caractéristiques. Le réseau U-Net [Ronneberger et al., 2015], contemporain a DeconvNet
et tres utilisé dans la communauté de I'imagerie, est basé sur des principes architecturaux similaires.

Dans ce travail, nous avons utilisé le réseau SegNet [Badrinarayanan et al., 2017], un réseau
trés proche de DeconvNet qui n'en différait que par 'architecture des couches liées a I'espace
latent. SegNet proposait une réduction des dimensions spatiales de 'image moins importante que
DeconvNet dans cet espace, ce qui le rendait d’apres ses auteurs a la fois plus performant et plus
aisé a entrainer. Son architecture est présentée figure. 5.2.

Sortie
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FIGURE 5.2 — Architecture de SegNet. L'architecture des bloc convolutifs est identique a celle de VGG, et celle
des blocs « déconvolutifs » est calquée sur cette architecture.

Nous avons choisi de travailler avec cette architecture pour les mémes raisons que nous avions
sélectionné I'architecture VGG pour mener a bien les travaux présentés dans le chapitre 4 : au
moment de la mise en place de ces travaux, SegNet nous paraissait proposer le meilleur compromis
entre ses performances (il constituait I'état de I'art sur un certain nombre de benchmarks de seg-
mentation) et son ancrage dans la communauté de I'apprentissage automatique. Depuis, plusieurs
innovations ont été apportées au champ de la segmentation. Nous pouvons citer en particulier le
réseau DeepLab [Chen et al., 2017] qui intégrait plusieurs modifications pour faciliter la recons-
truction de I'information spatiale : un nouveau type de convolution pour augmenter le champ
de vue des neurones [Holschneider et al., 1990] et la concaténation a chaque couche convolutive
des résultats de plusieurs couches avec des tailles de noyaux différentes [Szegedy et al., 2015]. Ils
proposaient en outre une opération d’affinage des sorties obtenues [Krdhenbiihl and Koltun, 2011].

Pour mener a bien I’entrainement, nous avons suivi quasiment le méme protocole d’apprentis-
sage que celui présenté a la section 4.1.2. Au vu du déséquilibre d’effectifs entre les deux classes qui
persistait dans le jeu Dy,j¢ malgré I'opération de tuilage sélectif, nous avons de plus implémenté
un « équilibrage de classes » (class balancing en anglais). Cet équilibrage consistait a pondérer
la fonction de cofit d’entrainement avec des coefficients qui dépendaient de la classe du pixel
sur laquelle cette fonction était calculée. Nous avons implémenté I'équilibrage par fréquence mé-
diane [Badrinarayanan et al., 2017] pour établir ces coefficients en les fixant comme I'inverse de
la fréquence relative de la classe concernée dans le jeu de données. Ainsi, le cotit de prédiction
erronée d’'un pixel étiqueté « tavelure » était environ dix fois plus élevé que celui d'une prédiction
erronée d’'un pixel étiqueté « non tavelure ». Cet équilibrage permettait de compenser aux yeux de
I'optimiseur le faible effectif des pixels étiquetés « tavelure » en leur conférant un fort impact sur la
fonction de coft.
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5.1.4 Premiers résultats de segmentation : une performance « saturée »

La segmentation du jeu D¢ avec SegNet menait a une performance de 0,570+0,008. La fi-
gure 5.3 présente les résultats de la prédiction sur I'image de test. La figure 5.4 présente ces mémes
résultats sur une zone restreinte de I'image de test afin de permettre une visualisation plus fine.

(a) Limage dont 'ensemble des tuiles constituait le  (b) Résultats de la prédiction du réseau a I'échelle de
bloc de test de Dyij¢- I'image : la couleur de chaque pixel dépend de sil s’agit
d’'un VP, d'un VN, d'un FP ou d'un FN.

FIGURE 5.3 — Résultats de la prédiction sur le bloc de test de Dy,j¢ par SegNet entrainé sur ce jeu de données.

La métrique de précision, c’est-a-dire le ratio %, qui mesurait parmi tous les pixels prédits
comme « tavelure » la proportion qui était étiquetée comme telle, était de 0,34. Un certain nombre
de faux positifs étaient dus a des zones entiéres incorrectement prédites comme des lésions de
tavelure, par exemple des jeux d’'ombres sur les feuilles ou des portions du sol. Une autre partie était
due a une sur-détection de tavelure autour des lésions véritables. Il est possible que I'équilibrage
de classes ait été en cause pour ces faux positifs-ci. En effet, le cotit artificiellement accru pour le
réseau de prédire de facon erronée un pixel étiqueté « tavelure » a peut-étre mené ’optimiseur a
des choix excessivement « prudents » en particulier dans des zones indécises tels que les alentours
des lésions. La métrique de rappel, c’est-a-dire le ratio % qui mesurait parmi tous les pixels
étiquetés « tavelure » la proportion qui a été prédite comme telle était de 0,65. Les faux négatifs
étaient regroupés dans des zones relativement peu étendues. Nous pouvons noter en particulier
que le réseau n’avait commis aucun oubli a I'échelle de la feuille : pour toute feuille dont au moins
certains pixels étaient étiquetés « tavelure », au moins certains de ces pixels étaient prédits comme
tels. Ces résultats de prédiction pouvaient étre considérés comme satisfaisants ou non suivant
I'application qui leur était associée. Ils auraient traduit par exemple un apprentissage convenable
pour une application de pulvérisation de produit phytosanitaire localisée, sans nécessité d’évaluer
la gravité de I'infection.

Pour évaluer I'impact de la quantité de données annotées sur les performances de I'entraine-
ment, nous avons mené une étude qui consistait a entrainer le réseau avec des portions réduites
du bloc d’entrainement de D¢ (figure 5.5). Plus précisément, nous avons commencé par créer a
partir du bloc d’entrailnement de Dy,j¢ un bloc d’entrainement réduit en ne conservant aléatoire-
ment que 5% des tuiles. Nous appelons D?ﬁ?ﬁé ce bloc d’entrainement réduit '* associé aux blocs
de validation et de test complets de Dyjj¢. Nous avons ensuite créé a partir de D?l'glsé le jeu D?lﬁl% en
ajoutant a son bloc d’entrainement 5% des tuiles du bloc d’entrainement de Dyj¢ qui n’avaient pas

été utilisées pour Dgﬁ?ﬁé . Nous avons procédé de facon analogue pour la construction d’'un ensemble

14. Nous soulignons pour éloigner toute confusion que nous reprenons dans ce chapitre la notation D’JE employée
au chapitre 4, mais que la valeur x indique ici la taille du bloc d’entrainement du jeu et non la valeur de « sévérité » qui
paramétrisait les données simulées au chapitre précédent.
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(a) Portiondel'imagedublocdetest (b) Pixels prédits comme « tavelure» (c) Résultat de la prédiction sur

de Dyilé- par le réseau, en rouge, superposés  cette (a). Les couleurs sont iden-
al'image (a). tiques a celles de la sous-figure 5.3
(b).

FIGURE 5.4 — Agrandissement d'une partie de I'image du bloc de test, et résultats de la prédiction associés.

de jeux réduits imbriqués les uns dans les autres (figure 5.5, droite), jusqu’a la création de D}

tuilé

qui correspondait a Dyj¢. Plus formellement, pour deux jeux Dtpl:ﬂé et Dfuzﬂé avec p; < po, alors

D! e DP? . Pour tous les jeux D” . ., les blocs de validation et de test étaient identiques a ceux de
tuilé tuilé tuilé

Dyuil¢- Les différents proportions p employées et le nombre de tuiles correspondant dans les blocs
d’entrainement sont précisés dans le tableau 5.1.

1
tuilé

0,1 0,3
Doriginal - - D = D

)
tuilé tuilé

e
RENALNT S
—

& ¢
-
"i“, |

entrainement &
y

tuilage mm| selection bl 4 : entrainement

validation LY. & % tuilage ‘ T validation

test 0 e tuilage Gl o test

FIGURE 5.5 — Création des jeux Dfm.lé a partir de Doyiginal-

Proportion conservée 0,02 005 01 02 03 04 05 075 1
Nombre d’images dans le bloc d’entrainement 11 27 54 107 161 214 268 401 535

TABLEAU 5.1 - Caractéristiques des jeux Dfuﬂé créés.

Les performances d’apprentissage sur '’ensemble des jeux Dfuﬂé sont présentées figure 5.6.
Conformément aux principes de I'apprentissage automatique, la performance du réseau croissait
lorsque le bloc d’entrainement était enrichi. Par ailleurs, nous pouvons observer qu’il était plus
bénéfique pour la performance d’ajouter une quantité d’'images donnée au bloc d’entrainement
lorsque ce dernier était restreint que lorsqu’il était plus fourni. En d’autres termes, il y avait un
effet de « saturation » de la performance en fonction du nombre de données disponibles pour
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I'entrainement. En particulier, la taille du bloc d’entrainement de D%uﬂ ¢ correspondait a une confi-

guration considérablement « saturée ». Cela indiquait donc que la quantité d’annotation que nous
avions réalisée était suffisante pour notre application, et que des annotations supplémentaires ne
semblaient pas pouvoir améliorer substantiellement les performances du réseau. Par contre, I'exis-
tence de cette performance « saturée » nous a amenés a nous pencher sur la possibilité d’annoter
uniquement une portion réduite du jeu et d’'intégrer a I'entrainement des données simulées afin
d’atteindre cette performance saturée permise par I’annotation du jeu complet.

0.7 9
0.6 1
0.51

0.4

MCC

0.3 1

0.2

0.14

—e— D¢ | SegNet

0.0 T T T T T
0.2 0.4 0.6 0.8 1.0

p

FIGURE 5.6 — Performance de SegNet sur les jeux D . ..
uilé

Le reste de ce chapitre est consacré aux différentes méthodes de données simulées que nous
avons implémentées a cette fin. En effet, il existe dans la littérature plusieurs familles de simulateurs
de données, mais pas, a notre connaissance, d’étude comparative de I'apport de celles-ci, au moins
dans le domaine des sciences végétales. Aussi avons-nous décidé d'implémenter chacune de ces
familles de méthodes et de proposer pour la premiere fois une comparaison de leur apport sur un
méme cas d'usage de sciences végétales.

5.2 Les différentes catégories de simulateurs

Nous présentons maintenant une littérature concernant les différentes catégories de simu-
lateurs d’images existants, en mettant 'accent sur leur utilisation dans le domaine des sciences
végétales.

5.2.1 Augmentation d’'images du jeu de données

Une premiére famille de simulateurs consiste a générer des données en modifiant des images
du jeu de données concerné. On appelle cette action I'augmentation de données. On trouve deux
classes de méthodes dans cette famille : celles basées sur des déformations des images et celles
basées sur des réseaux génératifs.

Déformation d’images

Limplémentation la plus courante dans cette veine est appelée la déformation de données
(data warping en anglais). Suivant les auteurs, ces techniques sont parfois aussi désignées sous
le nom d’« augmentation de données ». Dans ce document, nous utiliserons plutdt ce terme pour
toute méthode visant a créer des nouvelles données a partir des données initiales. La déformation
de données consiste a appliquer des modifications géométriques simples aux images du jeu de
données a augmenter : retournement horizontal ou vertical, rotation, déformation 3D, variation de
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couleur, de contraste, etc. [Buslaev et al., 2020]. On trouve trace de ces déformations des certaines
des premieres études d’apprentissage profond, mais ces techniques sont particulierement mises
en avant lors de I'étude séminale des auteurs de [Krizhevsky et al., 2012]. Dans cette étude, les
déformations de données sont, avec d’autres techniques de régularisation, citées explicitement
comme des implémentations nécessaires afin d’éviter le surapprentissage. Depuis, la déformation
de données fait régulierement partie des protocoles d’apprentissage profond, notamment lorsque
les blocs d’entrainement sont de taille réduite [Wang et al., 2017]. Elle est intégrée a de nombreuses
applications en sciences végétales, en adaptant les déformations appliquées aux spécificités du
domaine [Pawara et al., 2017].

Réseaux génératifs

Au cours de cette derniere décennie, des techniques plus sophistiquées d’augmentation de
données ont vu le jour, rendues possibles par '’emploi de réseaux de neurones. Une architecture
particulierement utilisée a cette fin est le réseau antagoniste génératif (Generative Adversarial
Network en anglais, ou GAN) [Goodfellow et al., 2014] (figure 5.7).

Jeu de données

Classe : « vraie »

e e

Vecteur aléatoire

Classe : « fausse »

" Gradient du codt
d’entrainement

o

FIGURE 5.7 — Architecture et entrainement d'un GAN. Cette figure illustre le fonctionnement général d'un
GAN :l'architecture des réseaux générateur et discriminateur, désignés respectivement par les lettres « G » et
«D» n’est pas précisée. Nous représentons dans cette figure une itération de I'’entrainement ot une image
du générateur, étiquetée « fausse », est présentée au discriminateur : le gradient de 'erreur de ce dernier
remonte alors dans les deux réseaux. Lors d’autres itérations (non représentées), ce sont des images du jeu
réel qui sont présentées au discriminateur. Source des images : articles wikipedia des tableaux concernés
pour les images «vraies », xkcd . com pour I'image « fausse ».

On désigne par ce nom un ensemble de deux réseaux. Le premier est appelé « générateur » : il est
utilisé pour créer une image a partir d'un vecteur aléatoire. Le second est appelé « discriminateur » :
il est utilisé pour produire une valeur binaire a partir d'une image. Les deux réseaux sont entrainés
conjointement de la facon suivante. On fournit au générateur un vecteur aléatoire qui change a
chaque itération de I'apprentissage. On fournit au discriminateur des images provenant du jeu de
données que I'on étiquette « vraies » et des images produites par le générateur que I’on étiquette
«fausses ». Le discriminateur propose une étiquette « vraie » ou « fausse » pour chaque image, et est
entrainé a distinguer les images du jeu de données de celles créées par le générateur. Sa fonction de
cofit associée vaut 1 s'il se trompe systématiquement et 0 s’il parvient a une distinction parfaite. Au
début de 'entrainement, les deux réseaux sont initialisés avec des poids aléatoires. En conséquence,
le générateur produit des images de « bruit », c’est-a-dire ou chaque pixel prend une valeur aléatoire,
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et le discriminateur ne sait pas distinguer les images vraies des fausses. Le gradient, qui résulte de
I'erreur que le discriminateur commet, est propagé dans ce dernier. Lastuce des GANs est que ce
gradient est aussi propagé dans le générateur, dont la fonction de cofit est définie comme 'opposée
de celle du discriminateur. En d’autres termes, le générateur est entrainé a « tromper » le discrimi-
nateur, et génere par conséquent des images de plus en plus proches des images du jeu de données.
On emploie souvent pour décrire le fonctionnement d'un GAN l'analogie de I'association d'un
faussaire qui peint des faux tableaux et d'un policier chargé de les repérer, tous deux s’améliorant a
leur tache au fil du temps [Goodfellow et al., 2014].

Lorsqu’'un GAN a convergé, les images créées par le générateur sont en théorie indiscernables
des images du jeu de données du point de vue du discriminateur. Il faut cependant noter que
I'entrainement de deux réseaux en opposition est beaucoup plus instable que I'entrainement d’'un
seul réseau associé a une fonction de cotit unique. Les GANs comptent parmi les architectures les
plus difficiles a faire converger et des études entiéres ont été menées pour améliorer leur stabilité
[Salimans et al., 2016; Arjovsky and Bottou, 2017]. En effet, pour qu'un GAN converge, il faut que
les deux réseaux antagonistes progressent a la méme vitesse. Il survient souvent le déséquilibre
suivant : a un instant donné de I'’entrainement, le discriminateur est bien meilleur a détecter les
vraies images des fausses que le générateur ne I'est pour créer des fausses images. Si ce déséquilibre
devient extréme, I'erreur du discriminateur est de zéro, et aucun gradient n’est fourni au générateur,
qui cesse alors de progresser : le GAN est en « échec » [Arjovsky et al., 2017].

Lorsque les GANs ont convergé convenablement, ils sont exploités dans de nombreuses applica-
tions, y compris a des fins d’augmentation de données, afin de produire des images proches du bloc
d’entrainement, mais qui pourraient compléter les manquements de celui-ci [Nikolenko, 2019]. Les
versions initiales des architectures de GANs menaient cependant a une reproduction trop fidele du
bloc d’entrainement et n’apportaient pas un gain significatif a 'apprentissage [Arjovsky et al., 2017].
Une architecture développée en parallele, le GAN conditionnel [Mirza and Osindero, 2014], permet-
tait de produire des images en fonction d'une étiquette fournie par l'utilisateur. Cette architecture a
été un pas significatif dans la génération d’'images véritablement différentes du jeu de données. En
parallele, les travaux de [Gatys et al., 2016] ont montré qu'un réseau de classification pouvait étre
entrainé a séparer le contenu d'une image de son «style », c’est-a-dire des informations d’apparence
multi-échelle sans notion de spatialité. Le « transfert de style neuronal » désigne I’application du
style d'une image au contenu d’'une autre. Cette idée a été intégrée dans des GANs [Isola et al.,
2017] a des fins d’augmentation de données. L'architecture la plus utilisée aujourd hui [Yi et al.,
2019] dans cette veine est le CycleGAN [Zhu et al., 2017] qui permet d’appliquer le style des images
d’'un domaine aux images d’un autre, sans avoir eu besoin au cours de 'entrainement d’'images
appariées de chaque domaine. Dans le champ des sciences végétales, des GANs conditionnels
simples ont montré des bons résultats, en particulier a des fins de phénotypage [Valerio Giuffrida
etal., 2017; Zhu et al., 2020]. REcemment, des architectures basées sur le StyleGAN [Arsenovic et al.,
2019] et le CycleGAN [Tian et al., 2019; Nazki et al., 2020] ont été employées a des fins de génération
d’images de plantes malades.

5.2.2 Génération d’images a partir de modeéles

A la différence des méthodes d’augmentation de données, une autre famille de simulateurs vise
a créer des données a partir de sources externes au jeu de données concerné. Beaucoup d’entre eux
ont été développés spécifiquement pour une tache de reconnaissance d’'un objet donné. Parmi les
applications les plus étudiées, on retrouve des simulateurs de texte [Gupta et al., 2016], de visages
[Richardson et al., 2016] et de silhouettes [Ragheb et al., 2008]. Les principes de fonctionnement
de ces simulateurs sont tres variés car ils reposent sur des pipelines personnalisés, adaptés au
domaine d’application concerné. Par exemple, les auteurs de [Gupta et al., 2016] proposent une
incrustation de textes dans des images déja existantes, tandis que les auteurs de [Richardson et al.,
2016] travaillent sur des modeles de visages déformables. Certains simulateurs sont volontairement
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plus polyvalents, permettant la génération de multiples objets différents [Chang et al., 2015]. Dans
le domaine des plantes, la génération d objets synthétiques individuels a été facilitée par la présence
de modeles de plantes antérieurs a I’ére de 'apprentissage profond [Prusinkiewicz and Runions,
2012]. Ces modeles existaient a des échelles variées, des cellules jusqu’aux écosystemes [Pradal
et al., 2008; Ubbens et al., 2018]. IIs étaient utilisés pour une grande variété d’analyses : étude de
la croissance des plantes, de la distribution du poids des feuilles, des transferts d’eau, des études
génotypiques, etc. [Prusinkiewicz, 2004]. En particulier, les L-systemes [Lindenmayer, 1968] ont été
une avancée mathématique majeure pour les modélisations a I’échelle de la plante. Il s’agit d'une
grammaire itérative proposée pour modéliser le développement de plantes ramifiées. Des exten-
sions multi-échelle de cette grammaire ont été proposées par la suite [Godin and Caraglio, 1998].
Des plantes ainsi simulées ont pu étre employées pour améliorer les performances d’algorithmes
d’apprentissage [Benoit et al., 2014; Isokane et al., 2018; Ubbens et al., 2018].

Pour d’autres domaines d’application, des simulateurs ont été développés dans le but de créer
des environnements synthétiques, c’est-a-dire de véritables mondes virtuels tridimensionnels o1
des caméras virtuelles pouvaient acquérir des images a partir de points de vue variés. On trouve ce
type de simulateurs principalement dans des applications de conduite autonome [Ros et al., 2016],
de déplacement de robots [Handa et al., 2016] et de comptage de foules [Wang et al., 2019]. Ces
simulateurs se basaient souvent sur des moteurs graphiques utilisés dans les jeux vidéo, par exemple
celui de Grand Theft Auto [Wang et al., 2019] ou celui d’ Unreal [Dosovitskiy et al., 2017]. Dans le
domaine des sciences végétales, certaines études se sont penchées sur la génération de scénes
tridimensionnelles de plantations accompagnées d'une caméra afin d’améliorer la performance de
taches de segmentation [Di Cicco et al., 2017; Barth et al., 2018].

5.3 Simulateurs implémentés pour notre cas d’étude

Nous avons pour notre cas d’étude exploré les différentes catégories de simulateurs de données
qui constituaient 1'état de I'art a 'époque des travaux, en les adaptant pour la problématique
étudiée. Ainsi avons-nous implémenté des déformations de données spécifiques aux modalités
d’acquisition des images de canopée. Nous avons par ailleurs adapté le fonctionnement d'un GAN
afin que celui-ci puisse produire des images utiles dans le cadre d'une segmentation. Ces deux
simulateurs augmentaient directement les images des jeux Dfuﬂé. Enfin, nous avons développé un
simulateur « modele » dédié qui permettait une génération de feuilles tavelées réparties en canopée,

imitant ainsi les images de Doyiginal- Cette section présente les détails de ces trois simulateurs.

5.3.1 Déformation de données

Afin d’adapter la déformation de données a notre tache, nous avons repris des transformations
employées trés régulierement dans les protocoles d’apprentissage profond. Nous avons basé notre
sélection des transformations a appliquer en partie sur la littérature du domaine des sciences
végétales [Pawara et al., 2017] mais surtout par rapport aux conditions d’acquisition des images du
jeu de données. Nous avons choisi ces déformations car elles représentaient des transformations
qui pouvaient relier deux images données du jeu. Les déformations de données servaient ainsi a
introduire une variabilité que I'on supposait potentiellement présente dans le bloc de test (et pour
le champ d’application véritable du modéle entrainé si celui-ci était déployé industriellement) mais
pas nécessairement dans le bloc d’entrainement. En d’autres termes, les déformations implémen-
tées n'étaient pas choisies aveuglément mais correspondaient a des connaissances a priori sur la

structure des scénes acquises '°.

15. Tl estintéressant de noter qu’il existe un paradigme plus récent de déformations de données, la randomisation
de domaine [Tobin et al., 2017], dont le but n’est pas de représenter des transformations réalistes. Dans ce domaine,
de nombreuses déformations irréalistes du point de vue des données d’entrainement sont appliquées afin d’aiguiller
le réseau a se concentrer sur |’ « essentiel » des données. Le but de ces déformations est que lors de la prédiction, les
différences entre les images simulées et les images réelles soient identifiées comme simplement une autre variation

101



CHAPITRE 5. SIMULATION D’IMAGES POUR ALLEGER LA CHARGE D’ANNOTATION D’IMAGES
REELLES

Le tableau 5.2 liste les déformations que nous avons sélectionnées pour ces raisons. La figure 5.8
présente des illustrations de I'effet de ces déformations pour une image de feuille. Les retourne-
ments, rotations étaient justifiés par la grande variabilité des positions des feuilles par rapport au
capteur. Les redimensionnements traduisaient la distance variable des feuilles par rapport au cap-
teur. Les transformations de perspective représentaient les différences d’angles d’acquisition des
feuilles selon leur position par rapport au capteur. Le flou gaussien était justifié par les différences
de netteté entre des feuilles présentes a différents niveaux de la tige acquises par un capteur a focale
fixe.

Déformation Parameétre associé Valeur possibles du parametre
Retournement Direction {horizontal, vertical}

Rotation Angle T, 33

Agrandissement Coefficient d’agrandissement [0,8, 1,2]

Flou o du flou gaussien {1, 2}

Perspective Coordonnées destination cf. texte

TABLEAU 5.2 — Déformations choisies avec leurs gammes de parametres associées.

Pour une image donnée, chacune de ces déformations était réalisée avec une probabilité 0,5.
Plusieurs de ces transformations pouvaient donc étre combinées. Des parametres, présentés ta-
bleau 5.2, étaient associés a ces déformations. A chaque application de ces déformations, les valeurs
de ces parametres étaient tirés au hasard. Lorsque les valeurs possibles étaient un ensemble fini
d’éléments, la valeur du parametre était tirée aléatoirement parmi ces éléments. Lorsque les valeurs
possibles étaient un intervalle de valeurs, la valeur du parametre était tirée aléatoirement uniformé-
ment dans cet intervalle.

Image originale Retournement Rotation Perspective

FIGURE 5.8 — Illustration des différentes déformations que nous avons implémentées.

La quasi-totalité de ces déformations constituaient des opérations basiques du domaine du
traitement d’'images. Nous explicitons ici seulement le procédé de changement de perspective.
Nous avons procédé a cette transformation via une opération d’homographie. Lhomographie est
la transformation géométrique qui relie les images d’'une méme scéne plane acquises par deux
caméras différentes. Les homographies sont par conséquent souvent utilisées dans le domaine
de la vision par ordinateur a des fins de recalage, en particulier pour des taches de « cartographie
et localisation simultanées » (Simultaneous Localization And Mapping en anglais) [Chatila and
Laumond, 1985]. Pour notre application, nous nous sommes servis de 'opération d’homographie
pour représenter un simple effet de perspective. Il y avait plusieurs maniéres de paramétriser I'opé-
ration d’homographie. Nous avons suivi la procédure recommandée par OpenCV '® qui consistait
a choisir dans I'image source quatre points d’intérét (les « coordonnées source ») puis de spéci-
fier les coordonnées que nous souhaitions que ces points d’'intérét occupent dans 'image apres

aléatoire que le réseau a appris a ignorer. Nous n’explorons pas I'utilisation de données déformées dans ce cadre dans ce
manuscrit.

16. https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_
geometric_transformations/py_geometric_transformations.html.
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la transformation (les « coordonnées destination »). Une fois ces deux groupes de coordonnées
précisés, OpenCV fournissait des fonctions capables de calculer automatiquement la matrice d’ho-
mographie qu'il était nécessaire d’appliquer a I'image source afin que les points d’intérét de I'image
transformée coincident effectivement avec les positions spécifiées. Pour notre application, nous
avons défini les coordonnées source comme les quatre coins de I'image originale de dimension
d x d, et les coordonnées destination comme des points tirés aléatoirement dans un cercle d'un
rayon % des coordonnées sources (figure 5.9).

FIGURE 5.9 - Illustration de la transformation de perspective réalisée par homographie. Les fleches rouges
relient les coordonnées source aux coordonnées destination.

5.3.2 GAN

Nous avons implémenté un GAN pour générer des nouvelles images a partir des images de
Dfuﬂé. La différence avec un GAN classique est qu’afin de pouvoir exploiter ces images a des fins de
segmentation, nous avons généré dans le méme temps les annotations correspondant a ces images.
En pratique, nous avons fourni au GAN des images a deux canaux, dont le premier correspondait
al'image IR et le second a 'annotation que nous en avions faite, et I'entrainions a produire les
deux conjointement [Neff et al., 2017; Pollastri et al., 2020]. Ce protocole était inspiré d’'une étude
annexe des travaux de [Isola et al., 2017] ol1 les auteurs montraient que les GANs étaient capables
de générer des cartes de segmentation a partir d'images.

Nous avons utilisé comme architecture le GAN convolutif profond (Deep Convolutional GAN en
anglais, ou DCGAN) [Radford et al., 2015]. Dans cette configuration, le générateur et le discrimina-
teur étaient des CNNs, adaptés donc a la génération et la discrimination d’images. Le discriminateur
était composé de couches convolutives au stride de deux qui réduisaient la dimension des images
et permettaient ainsi de se passer de couches de max-pool. Le générateur suivait une architecture
analogue, composé de couches convolutives transposées a stride de deux. Nous avons suivi le
protocole du GAN Wasserstein [Arjovsky et al., 2017] pour 'entrainement, qui constituait a I'époque
de ces travaux !” I'état de I'art concernant I'entrainement de GANs. Pour améliorer davantage la
stabilité de I'entrainement, nous avons implémenté des stratégies dédiées issues de la littérature
[Chintala et al., 2016; Salimans et al., 2016]. Parmi celles-ci, la seule qui permit une amélioration
notable de la stabilité de la convergence fut de doubler le nombre de filtres du générateur par
rapport a celui du discriminateur. Cette modification était cohérente avec le cas pathologique
décrit section 5.2.1 ol le générateur échouait complétement a « tromper » le discriminateur. Par
conséquent, nous avons conservé cette modification uniquement. L'architecture finale que nous
avons utilisée est illustrée figure 5.10.

17. Les travaux présentés dans ce chapitre sont les premiers qui ont été menés au cours de cette thése, au cours du
premier semestre 2018.
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Image réelle —»

Vecteur aléatoire
Taille =1 x 100

Couche convolutive transposée Image générée Couche convolutive
stride =2 stride =2

FIGURE 5.10 — Architecture du GAN utilisé. Les tailles des couches représentent les dimensions spatiales
des cartes de caractéristiques qu’elles prennent en entrée. Puisque le pas de ces couches est fixé a deux, les
dimensions de sortie des cartes ne sont pas les mémes que celles d’entrée. Les dimensions spatiales des
images en sortie de couches sont indiquées en dessous des couches concernées.

Au cours de I'entrainement, nous fournissions au GAN des images formées par la concaténation
selon 'axe des canaux d'une image de Dfuﬂé et de son annotation (figure 5.10, haut). Une image
était donc de dimension 64 x 64 x 2 pixels, et le GAN était contraint de créer des images de méme
taille. Le protocole d’entrainement, c’est-a-dire la normalisation des images, la mise en lots, la
fonction de cofit pour le discriminateur, etc., était identique a celui décrit pour nos expériences
de classification (section 4.1.2). A la différence de I'entrainement d’un réseau de classification
ou de segmentation cependant, I’évaluation de convergence du GAN n’était pas triviale car elle
ne pouvait pas se mesurer par la valeur d’'une fonction de cofit unique ou d’'une métrique de
performance simple. Intuitivement, nous avions voulu nous baser sur I’erreur de classification
du discriminateur puisqu’une valeur de 0,5 de celle-ci signifiait que ce dernier ne parvenait pas
a séparer les images créées par le générateur de celles du jeu de données. Cependant, nous nous
sommes aperc¢us que cela ne signifiait pas que ces images générées étaient effectivement proches
de celles du jeu de données : le discriminateur pouvait a ce stade étre encore mal entrainé a sa tache
et ne pas parvenir a prédire comme « fausses » des images extrémement bruitées. Ainsi, la métrique
de cott du discriminateur n’était pas un indicateur adéquat pour évaluer la convergence du GAN.
Au moment de la réalisation de ces travaux, certaines métriques commencaient a étre développées
spécifiquement a cette fin telles que I’ Inception Score [Salimans et al., 2016; Heusel et al., 2017],
qui était basé sur la capacité d’'un réseau annexe a classifier les images générées dans certaines
classes prédéfinies de la méme maniere qu'’il le ferait pour des images réelles. Pour notre travail,
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nous nous sommes simplement basés sur une évaluation subjective de la proximité visuelle entre
les images générées et les images de Dfuﬂé 18 Plus précisément, nous avons mené une pré-étude
ol nous avons entrainé un GAN ad infinitum et visualisé les images générées au fil des itérations.
Cette étude nous a poussé a fixer le nombre optimal d’itérations a 100 000. Il est intéressant de
noter qu’a ce moment de I’entrainement, la métrique de performance du discriminateur n’était
pas de 0,5, mais variait plutot entre 0,95 et 0,97. Ainsi, le générateur s’améliorait en parvenant a
tromper, sur une proportion réduite d’'images, un discriminateur trés performant. Nous présentons

figure 5.11 des exemples d'images générées par ce procédé.

(c) Annotations réelles. (d) Annotations générées par GAN.

FIGURE 5.11 — Exemples d’'images générées par le GAN entrainé sur D?l‘lzﬂé. Les images réelles étaient de
dimension 64 x 64 x 2 pixels. Les deux canaux de 25 de ces entrées tirées aléatoirement sont représentés dans
les sous-figures (a) (canal « IR ») et (c) (canal « annotation »). Chaque image de la sous-figure (a) est associée
al’annotation située a la méme position dans la sous-figure (c). La méme représentation est utilisée pour
présenter les images générées par le GAN, sous-figures (b) et (d).

18. Cette évaluation humaine de la qualité d’ une image avait évidemment ses limites, d’autant plus lorsque, comme
ici, les images générées étaient destinées non pas a étre esthétiquement plaisantes ou réalistes aux yeux d’autres humains
comme dans le domaine des deep fakes [Westerlund, 2019], mais a améliorer les performances d’apprentissage de
réseaux. Or, il est connu, en particulier grace aux études portant sur les exemples adversariaux, que des modifications
portées a une image invisibles a I’ceil humain pouvaient avoir un effet drastique sur la performance des réseaux qui la
traitaient [Szegedy et al., 2013].
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5.3.3 Modéele de canopée

Le simulateur « modeéle » que nous avons développé permettait de créer des images de feuilles
tavelées organisées en canopée, proches de celles du jeu Dyiginal- Les simulateurs d'images de
canopée contemporains a nos travaux qui généraient des sceénes de plantations en trois dimensions
étaient basés sur un grand nombre d’étapes et nécessitaient I'utilisation de logiciels sophistiqués
tels que Blender [Di Cicco et al., 2017; Barth et al., 2018]. Nous avons volontairement implémenté
un modele plus simple, basé sur un script Python et une base d’images libre.

Il y avait deux hypotheéses sous-jacentes fortes au fonctionnement de ce simulateur. Premiée-
rement, nous avons considéré que le positionnement des feuilles des plants dans les images de
Doriginal POUvait étre approximé par le placement itératif de feuilles les unes par dessus les autres,
similairement au modele dit de « feuilles mortes » [Lee et al., 2001]. Il a été prouvé que ce procédé
simulait des propriétés statistiques proches de celles que I'on trouve dans des images naturelles,
telles que 'invariance a I’échelle de plusieurs mesures statistiques [Ruderman and Bialek, 1993].
Deuxiemement, nous avons considéré que les 1ésions de tavelure pouvaient étre caractérisées par
un ensemble d’indicateurs statistiques simples.

Lalgorithme 5.1 présente les étapes générales du modéle que nous avons développé (figure 5.12).
Les étapes indiquées en bleu sont détaillées dans les sections suivantes de ce chapitre. Les étapes
indiquées en violet sont identiques au simulateur de cubes tavelés hyperspectraux présenté a la
section 3.1. En particulier, nous avons utilisé le jeu de données Leafsnap comme source d'images
de feuilles saines, et 'algorithme de création de la distribution spatiale des lésions de tavelure était
identique a celui présenté dans la section 3.1.4.

Doriginal Motif du sol

Motif des zones
tavelées Changement de

Application du motif luminosité

H de tavelure
———

Feuille saine

tavelure

Feuille tavelée

FIGURE 5.12 - Illustration de I'algorithme 5.1. Les étapes indiquées en bleu sont détaillées dans le texte.

Nous avons utilisé comme jeu d’'images de canopées D le bloc d’entrainement de D griginal- Nous
avons fixé les dimensions de I'image de sortie égales a celles des images de Doiginal, C'est-a-dire
dy = 1944 et d» = 2592. Nous avons fixé le nombre de plants 7 a 20 et la proportion de feuilles
tavelées p a % en concordance avec les images réelles. Nous détaillons a présent les différentes
étapes de 'algorithme.
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Algorithme 5.1 : Création d'une image de canopée de feuilles tavelées.

Entrées : un jeu d'images de feuilles saines RVB L, un jeu d'images de canopées D, les
dimensions de 'image de sortie d; x d, pixels, le nombre de plants n, la proportion de
feuilles tavelées p.

Générer un motif de tavelure synthétique a partir des zones étiquetées comme « tavelure »
dans les images de D.

Générer un motif de sol synthétique généré a partir des zones correspondant au sol dans les
images de D.

Créer une image S vide de dimension d; x dy pixels.

Remplir S du motif de sol synthétique.

nombre_de_plants = 0.
tant que nombre_de_plants < n faire
/* Création de la feuille tavelée. */
Tirer au hasard une image I du jeu L.
Convertir I en niveaux de gris.
Tirer un nombre aléatoire r dans [0,1].
/* Appliquer la tavelure. */
sir < p alors
Générer un masque de 1ésions de tavelure Mayelure-
Appliquer le motif de tavelure a I'endroit des 1ésions en utilisant M,yelure €t le motif
synthétique de tavelure.
fin

/* Déformation de la feuille. */

Simuler un effet de pliure pour I.

Calculer le placement de I dans S en fonction du nombre et de la position des feuilles
déja placées.

Redimensionner, modifier la luminosité et appliquer une rotation a I en fonction de son
placement dans S.

Placer la feuille dans S.
Si un plant est terminé, incrémenter nombre_de_plants.

fin
Appliquer un effet de vignettage sur I'image.

Sortie : une image de feuilles tavelées organisées en canopée, de dimension d; x d» pixels.

Génération des motifs de tavelure et de sol

Contrairement au simulateur présenté a la section 3.1 ou seule la variation moyenne d’intensité
causée par les lésions sur la feuille était prise en compte, nous avons généré ici un motif de tavelure
avec un niveau de réalisme plus élevé. Ce réalisme accru était guidé par la précision attendue
dans la tache de segmentation. Nous avons créé ce motif en suivant une approche procédurale
similairement au procédé de création de bruit que nous avons implémenté a la section 4.5.

Pour obtenir le motif « modele » duquel nous avons mesuré les valeurs des caractéristiques a
ajuster, nous nous sommes concentrés sur les images du bloc d’entrainement de Doiginal- Nous
avons rogné et conservé parmi celles-ci les zones étiquetées comme « tavelure » situées sur les
feuilles appartenant a la couche supérieure de la canopée. Nous avons appelé I'ensemble de ces
imagettes le jeu Di,yelure- NOUs avons écarté de ce jeu toutes les imagettes dont les dimensions
étaient inférieures a un carré de 10 pixels de c6té. Nous avons calculé les moments d’ordre 1 et
2 ainsi que l'autocorrélation sur ces imagettes, calculé la moyenne de ces mesures, et ajusté un
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bruit gaussien en conséquence. La figure 5.13 présente une comparaison d’'un motif de tavelure
réel et d'un motif synthétique ainsi créé. Nous avons généré un motif de sol en suivant la méme
procédure, en nous basant sur des imagettes de sol du bloc d’entrainement de Doyigina. Ce motif
était utilisé pour remplir I'image simulée avant le placement des feuilles.

(a) Extraitde Diyyelure-  (b) Tavelure synthé-
tique.

FIGURE 5.13 — Comparaison entre les motifs de tavelure réel et synthétique. Le contraste et la luminosité ont
été augmentés a des fins de visualisation.

Application du motif de tavelure

Nous avons généré pour chaque feuille une distribution spatiale des lésions Mayelure S€lon
I'algorithme 3.2. Pour y appliquer le motif de tavelure, nous avons souhaité introduire un degré de
réalisme supplémentaire par rapport au simulateur du chapitre 3 en modélisant I'effet « gradient »
causé par le développement des lésions de tavelure dans le temps a partir d'un foyer d’infection.
Nous avons modélisé cet effet en fixant la valeur des pixels appartenant a une lésion comme
une somme pondérée des pixels du motif de tavelure et de ceux la feuille saine. La pondération
de la texture de tavelure dans cette opération était décrite par une décroissance gaussienne qui
dépendait de la distance du pixel au centre de cette 1ésion. Lensemble du procédé est décrit dans
I'algorithme 5.2 (figure 5.14). Nous avons fixé empiriquement la valeur de o a 1.

Algorithme 5.2 : Création d'une feuille tavelée avec un effet « gradient ».
Entrées : une image de feuille saine I de dimension d; x d; pixels, un motif de tavelure
synthétique T de dimension d; x d, pixels, la distribution spatiale de 1ésions Mayelure de
dimension d; x d» pixels, I'écart-type de la modulation spatiale gaussienne o.

Créer par un seuillage de la couleur verte un masque Mgyjje Ol les pixels blancs
correspondent aux pixels appartenant a la feuille dans I.

Appliquer pour chaque lésion de M,yelure individuellement une décroissance gaussienne,

c—lzne‘%(%)z, ol [ correspond a la
distance de ce pixel par rapport au centre de masse de la 1ésion. Nous notons
Miavelure gradient cette image~

Créer I'image Msain gradient €N soustrayant Meavelure gradient @ Mfeuille-

Créer I'image tavelée par I'opération suivante : Itavelure = Msain gradient-1 + Mtavelure gradient- T,
ol «.» désigne la multiplication pixel a pixel.

c’est-a-dire multiplier chaque pixel de la 1ésion par

Sortie : une image de feuille tavelée avec un effet « gradient », de dimension d; x d» pixels.

Effet de pliure

Les feuilles sont des organes dont la forme générale peut étre considérée en premieére approxi-
mation comme un plan [Raabe et al., 2015], mais qui peuvent étre en réalité significativement
courbées [Rolland-Lagan et al., 2014] (figure 5.15).
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M M

tavelure tavelure gradient

l’ ‘? £ ""'< tavelure
§ Modulation WEEEY Masquage
—_—  ————
gaussienne
Image RVB | 1
o5 Mfeuille I\/Isain gradient

4R

Masquage ‘-.\,

Seuillage ‘ ‘ Soustraction

Conversion en niveaux de gris

FIGURE 5.14 - [llustration de I'algorithme 5.2.

limbe

apex

nervures

«— pétiole

FIGURE 5.15 —Illustration d’une feuille courbée. Les principales structures anatomiques d'une feuille sont
indiquées. Source : image adaptée de http://soutien67.free.fr/svt/vegetaux/reproduction.htm.

Dans les images de Doriginal, NOus avions constaté que les feuilles étaient bombées sous le
double effet de I'attache de leur pétiole a la tige du plant, orienté vers le ciel, et de la gravité qui
entrainait le limbe vers le sol. Ainsi, une approximation plus correcte de la forme générale des
feuilles du jeu était une concaténation de deux plans formant un angle entre eux. Puisque les
images de Leafsnap représentaient des feuilles a plat posées sur un support, nous avons simulé
cette pliure en appliquant une transformation de perspective a la moitié supérieure de la feuille.

Nous avons implémenté une homographie pour réaliser cette transformation de perspective
(figure 5.16), selon le méme procédé que celui suivi a la section 5.3.1. Pour une image de feuille
donnée I, orientée vers le haut, nous considérions la moitié supérieure de cette image notée
Ihaut, de dimension d; x d» pixels. Nous définissions un repére orthonormé dont I'origine était
située en bas a gauche de Ij,,¢, et nous associions aux quatre coins SO, SE, NE, NO de I, les
coordonnées destination (0,0), (0,d>), ( di, 4d2) et ( di, 2d2) La matrice d’homographie était
calculée et appliquée a I} ¢ pour obtemr I'image Ihaut transformé- INOUs remplacions alors la moitié
supérieure de I par Ijau¢ transformé-
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Ihaut transformé

FIGURE 5.16 — Illustration de la transformation de perspective que nous appliquons aux feuilles. La dite
transformation est effectuée entre les images Inhay¢ €t Ihaut transformé-

Placement dans la scéne

Afin de se rapprocher du positionnement spatial des feuilles entre elles dans les images de
Doriginal, NOUs avons placé les feuilles simulées selon une distribution spatiale en « plants ». Nous
avons placé des groupes de feuilles ensemble de fagon a ce que les extrémités de leur pétioles soient
ala méme position, séparées par des rotations dont les angles simulaient la distribution des feuilles
le long d'une méme « tige », c’est-a-dire 2,4 radians [Zeng and Wang, 2009]. Nous avons simulé
trois différents niveaux d’accroche le long de ces tiges. La taille et la luminosité des feuilles étaient
modifiées en fonction du niveau d’accroche afin de simuler un effet de profondeur. Cette procédure
est décrite plus formellement par I'algorithme 5.3.

Nous avons fixé les valeurs des parametres de cet algorithme a celles précisées dans le ta-
bleau 5.3, en accord avec les images de Dgrigina- La figure 5.17 illustre la création d'un plant.
Comme spécifié dans I'algorithme, a I'’échelle de 'image, nous avons d’abord ajouté les feuilles
appartenant aux premiers niveaux de tous les plants, puis du deuxieme, puis du troisieme, afin de
simuler la croissance simultanée des plants et les recouvrements qui s’en suivaient.

Effet de vignettage

18 niveau  rreeerrrsssssssssssssss. zéme niveau 3éme niveau

FIGURE 5.17 —Illustration de I'algorithme 5.3 pour un plant.

Les images de Dyiginal souffraient d'un effet de vignettage. Nous avons représenté cet effet en
appliquant une décroissance gaussienne de la lumiere selon un procédé analogue a celui employé

pour simuler un contraste « gaussien » des lésions. Plus formellement, nous avons multiplié tous

Ly , . . .
les pixels de I'image par la valeur %me 2" o1 représentait la distance de ce pixel par rapport

au centre de I'image. Nous avons fixé empiriquement la valeur de o, a 1300. La figure 5.18 illustre
l'effet de vignettage appliqué.
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Algorithme 5.3 : Placement des feuilles dans la scéne.

Entrées : une image de la scene S de dimension d; x d» pixels, un jeu d’'images de feuilles L
sur lesquelles des lésions de tavelure ont été simulées et ou I'effet pliure a été appliqué, le
nombre de plants n, les variations de luminosité [ = {l;, l», I3}, les variations de taille r = {ry,
T, I'3}.

Générer n coordonnées correspondant aux « tiges » sous la forme ;45 = (Xprant: Ypiant)s
avec Xpjant €t ¥pian, tirés indépendamment et uniformément dans [0,d,] et [0,d>], sous
contrainte d’'un critere de distance suffisant avec les tiges déja existantes.

pour plant € [1,n] faire
Tirer un angle d’accroche initial ay;4,, aléatoirement dans [0,27] radians.
fin

Nous modélisons chaque tige comme ayant trois niveaux de « points d’accroche » de feuilles.
Nous remplissons S en ajoutant chaque niveau l'un apres I'autre.
pour niveau € [1,3] faire

pour plant € [1,n] faire
Tirer le nombre de feuilles présent f a ce niveau pour ce plant, tiré uniformément

dans [2,4].
pour feuillee [1,f] faire
Tirer une feuille I du jeu L.
Multiplier tous les pixels de I par l[niveau].
Redimensionner I par un facteur r[niveau].
Tourner I selon I'angle a4
Placer I de fagon a ce que I'extrémité du pétiole de la feuille soit positionnée en

tplunt-
Qplant = Qplant + 2,4 radians.

fin
fin

fin

Sortie : une image S ol ont été placées les feuilles sous forme de plants, de dimension
dy x dy pixels.

Nombre de plants n 20
Variations de luminosité ! {0,4, 0,7, 1}
Variations de taille r {0,6, 0,8, 1}

TABLEAU 5.3 — Valeurs des parameétres que nous avons utilisés pour I'algorithme 5.3.

5.4 Résultats: des simulateurs efficaces

5.4.1 Lintégration des données simulées
Les différents moyens d’intégration

1l existait plusieurs manieres d’utiliser des données simulées en appui d'un entrainement sur
données réelles. La voie la plus intuitive consistait a rassembler I'ensemble des données, c’est-a-dire
créer un bloc d’entrainement contenant a la fois les données réelles et les données simulées. C’est
ainsi que procédaient la plupart des études qui exploitaient des données simulées dans le domaine
des sciences végétales [Valerio Giuffrida et al., 2017; Ubbens et al., 2018; Ward et al., 2018]. Nous
avons proposé par ailleurs une autre voie, qui était bien moins souvent explorée dans le domaine
des sciences végétales : I'utilisation des données simulées pour pré-entrainer des réseaux, voie
suivie par exemple par les auteurs de [Barth et al., 2018]. Il s’agissait de réaliser un apprentissage
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(a) Avant 'application de I'effet. (b) Apres I'application de 'effet.

FIGURE 5.18 - Illustration de I'effet de vignettage.

par transfert (cf. section 4.1.2) en entrainant le réseau sur des données simulées dans un premier
temps puis sur les données réelles dans un second temps. En ce sens, ce procédé était une exten-
sion des objectifs de 'apprentissage par transfert a partir de 'ILSVRC. Nous avons proposé ici de
remplacer la tiche générique de vision qu’était 'ILSVRC par une tache congue spécifiquement
pour étre proche de la tiche réelle, en faisant ’hypothese que ce pré-entrainement serait d’autant
plus bénéfique pour 'apprentissage ainsi. Enfin, il existait méme une troisiéme voie d'utilisation
possible pour les données créées par déformation : la déformation « en ligne » (online en anglais)
[Shorten and Khoshgoftaar, 2019]. Il s’agissait d’appliquer des déformations de données au bloc
d’entrainement non pas avant I’entrainement proprement dit, mais au cours de celui-ci, en faisant

varier les déformations appliquées a chaque époque '°.

Il n’existait pas a notre connaissance d’étude comparative de ces différentes facons d’intégrer les
données simulées dans le champ des sciences végétales. Aussi avons-nous décidé d'implémenter
chacune des voies proposées (rassemblement, pré-entrainement, en ligne) pour les différentes
catégories de données simulées (déformation de données, GAN, modele de canopée) afin de com-
parer les performances obtenues pour notre application. Afin de limiter le nombre d’expériences,
nous avons dans un premier temps restreint cette étude au jeu D?lﬁlé, en faisant '’hypothése que les
tendances des résultats seraient extrapolables aux autres jeux Dfuﬂé. Nous détaillons a présent les
protocoles d’entrainement suivis pour chacune des fagons d’intégrer les données.

Protocoles d'intégration

Rassembler les données était une opération simple, mais dépendante d'un hyperparameétre
important : la quantité relative de données simulées a ajouter au jeu de données réelles. Dans
la littérature, cette quantité variait énormément selon les études. Nous avons trouvé des travaux
out le nombre d’images simulées utilisé était significativement inférieur [Valerio Giuffrida et al.,
2017], sensiblement égal [Ward et al., 2018], ou largement supérieur [Di Cicco et al., 2017] au
nombre d’images réelles. Nous avons suivi la stratégie des auteurs de [Zhu et al., 2020] en menant
plusieurs expériences avec les ratios « simulées sur réelles » suivants : 25, 100, 400 et 800%. Afin de
ne pas surcharger les résultats, nous présentons uniquement dans les résultats d’apprentissage
(tableau 5.4) les performances correspondant a la quantité de données optimale pour chaque
expérience de «rassemblement ». Pour toutes ces expériences, nous avons intégré des données
simulées uniquement au bloc d’entrainement du jeu, c’est-a-dire que les blocs de validation et de

19. Le terme online est aussi employé pour désigner un paradigme d’entrainement ot de nouvelles données sont
présentées régulierement a ’algorithme qui apprend ainsi « en continu » [Fontenla-Romero et al., 2013]. Des méta-
algorithmes d’augmentation de données inspirées de ce paradigme sont parfois désignées comme online [Tang et al.,
2020]. Nous ne faisons pas référence a ces méthodes lorsque nous utilisons ce terme.
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test restaient constitués uniquement d’images réelles.

Pour mener a bien des pré-entrainements a partir d'un simulateur donné, nous avons généré
3000 images a partir de celui-ci. Dans le cas des données issues du modele de canopée, nous avons
généré suffisamment d'images entiéres (c’est-a-dire de dimension 1944 x 2592 pixels) pour conser-
ver 3000 tuiles contenant de la tavelure aprés I'opération de tuilage sélectif décrite section 5.1.1.
Nous avons initialisé aléatoirement le réseau et I’avons entrainé dans un premier temps sur ces
images simulées jusqu’a convergence. Puis, nous avons utilisé les poids obtenus comme initialisa-
tion du réseau pour un entrainement sur le jeu réel. Notons que dans ce protocole, contrairement a
toutes les autres expériences, le transfert des caractéristiques de I'lLSVRC n’était pas implémenté.

Enfin, concernant la déformation de données en ligne, nous avons appliqué aux données réelles
le pipeline de déformation décrit section 5.3.1 a chaque lot d'images présenté au réseau au cours de
I'entrainement. Puisque ce pipeline était constitué d'une suite de six déformations dont chacune
était appliquée avec une probabilité de 0,5, il y avait moins de 2% de chances qu'une image donnée
subisse les mémes déformations d'une époque a I'autre. De plus, ces déformations pouvaient varier
en intensité selon la valeur de leur parameétre (par exemple, I'angle de la rotation), tiré aléatoire-
ment pour chaque lot. Comme pour le rassemblement, la déformation en ligne était appliquée
uniquement aux blocs d’entrainement des jeux étudiés.

5.4.2 Limpact des différents simulateurs

Les résultats des apprentissages sont réunis dans le tableau 5.4. Nous y présentons en sus les
résultats d’apprentissage sans aucune donnée simulée, avec et sans transfert de 'ILSVRC. Nous
avons considéré le résultat obtenu sans données simulées mais avec un transfert de I'ILSVRC
comme la performance de référence. Nous commentons a présent I'impact des données simulées
en fonction du simulateur employé.

Données simulées utilisées Performance
Aucune (sans transfert de 'ILSVRC) 0,424 + 0,013
Aucune (avec transfert de 'TLSVRC) 0,472 + 0,009

Rassemblement Pré-entrainement En ligne

Déformation de données 0,559 + 0,007 0,519 + 0,006 0,574 + 0,010
GAN 0,496 + 0,011 0,494 + 0,010 -
Modele de canopée 0,509 + 0,005 0,602 + 0,007 -
TABLEAU 5.4 — Résultats des expériences concernant 'impact des données simulées sur 'entrainement sur
p%2 .
tuilé

Déformation de données

La déformation de données a permis une augmentation de performance substantielle par
rapport a la performance de référence. En particulier, la configuration en ligne a permis une bond
d’environ 10% de cette valeur. Ces résultats étaient cohérents avec I’'omniprésence des déformations
bien choisies dans les pipelines d’apprentissage modernes.

GAN

Contrairement aux autres catégories de simulateurs implémentées dans ce chapitre, les amélio-
rations des performances permises par 'utilisation de données simulées par GAN étaient relati-
vement faibles : environ 2% d’augmentation quelle que soit la maniéere dont ces données étaient
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intégrées. Nous avons supposé que la faiblesse de ce résultat pouvait s’expliquer par les difficultés
que nous avions rencontrées pour obtenir des images réalistes via un GAN.

11 était certes vrai que ces images, dont nous pouvons voir des exemples dans les figures 5.11 (b)
et (d), avaient des qualités. Premiérement, le GAN parvenait a générer deux canaux qui étaient clai-
rement identifiables aux canaux « IR » et «annotation » qui lui étaient fournis. En nous penchant sur
le canal dédié aux annotations dans les images générées (sous-figure (d)), nous pouvons constater
que ces images avaient une distribution de niveaux de gris proche d'une distribution binaire {0, 255}
comme il était attendu, et que les structures représentées semblaient similaires a celles contenues
dans les annotations réelles (sous-figure (c)). Concernant le canal correspondant aux images IR
(sous-figure (b)), le GAN parvenait bien a générer des images dont la luminosité et les contrastes
étaient similaires aux images IR réelles (sous-figure (a)), et nous y devinions méme des formes
plus sombres pouvant correspondre aux lésions ou au sol. Enfin, les canaux générés avaient une
certaine cohérence entre eux puisque certaines structures dans les annotations générées semblent
correspondre aux zones des «1ésions » dans les images IR générées.

Cependant, I'information plus haut-niveau des images IR générées était médiocre. Les bords
séparant les objets étaient flous, la texture des différentes zones y était approximative, les structures
plus fines telles que les nervures ou bien des formes de lésions plus subtiles y étaient absentes, et
de légers artefacts en « damier » [Odena et al., 2016] affectaient toute 'image. Ces images n’auraient
pas passé le « test de Turing visuel » [Turing, 1950], c’est-a-dire qu'un humain ne les aurait pas
confondues pas avec des images réelles. Méme si la qualité esthétique de 'image pour un cerveau
humain n’est pas strictement corrélée a sa pertinence du point de vue de I'entrainement d'un
réseau de neurones (cf. note 18), nous avons fait 'hypothése qu’elle en constituait un indicateur
robuste.

Afin de disséquer les raisons de I’échec relatif du GAN, nous avons mené une expérience supplé-
mentaire qui consistait a entrainer un GAN sur une variation de D?lﬁlé ol les annotations associées
aux images IR avaient été permutées aléatoirement entre elles. En d’autres termes, les annotations
n’étaient plus associées a I'image a partir de laquelle elles avaient été créées. Des exemples d'images
générées par le GAN sur ce jeu de données sont présentés dans la figure 5.19. Nous constatons
visuellement que dans cette configuration, en plus d’obtenir des canaux « annotation » de bonne
qualité, les canaux « IR » générées avaient une qualité visuelle beaucoup plus satisfaisante. Ainsi,
il était tout a fait possible pour le GAN de générer chacun des canaux séparément de facon satis-
faisante. La pierre d’achoppement semblait étre la création d’annotations corrélées aux images IR.
Il semblait que pour réaliser des images réalistes, le GAN devait dans un premier temps réaliser
une extraction de caractéristiques proche de celle demandée a un réseau de segmentation bona
fide. Nous avons fait 'hypothése que le cumul de cette tache avec celle de la génération de données
rendait la tache trop difficile pour un GAN, ou a minima pour un GAN avec 'architecture utilisée
dans cette étude.

Les difficultés de convergence du GAN employé pouvaient aussi s’expliquer par le faible nombre
de données sur lequel celui-ci était entrainé. Cette dépendance a un grand nombre de données
limitait I'intérét de ce type d’architecture dans un cadre d’augmentation de données, ot dans de
nombreux cas le nombre de données initial était justement particulierement faible.

Modele de canopée

Le modéle de canopée a permis une augmentation de 12% de la performance dans le cas ou1 les
données étaient utilisées comme pré-entrainement du réseau. Cette augmentation démontrait que
les images créées par le modele étaient au moins partiellement réalistes du point de vue du réseau.
Cependant, le gain permis par le rassemblement des images avec les données réelles était moins
important, autour de 3%. Cette différence illustrait 'importance d’étudier les différentes facons
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(b) Images IR générées par GAN.
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(c) Annotations réelles mais décorrélées des (d) Annotations générées par GAN.
images IR.

FIGURE 5.19 - Exemples des images générées par un GAN entrainé sur des images de tavelure associées a des
annotations qui leur étaient décorrélées. La présentation des données est identique a celle de la figure 5.11.

dont les données simulées pouvaient étre intégrées a ’entrainement. Dans notre cas, les images
issues du modele de canopée semblaient étre pertinentes pour mettre I’entrainement « sur de bons
rails », comme le permettait le transfert de 'LSVRC, mais étaient cependant trop différentes des
données réelles pour que leur exploitation conjointe avec ces derniéres soit tres efficace.

Afin d’étudier plus en profondeur I'apport du simulateur, nous avons mené une étude par
ablation. Le but de cette étude était d’évaluer I'apport de chacune des étapes du simulateur « mo-
dele » au gain de performance observé. Pour ce faire, nous avons implémenté plusieurs versions
du simulateur en omettant dans chacune d’entre elles d’exécuter une étape spécifique, tout en
conservant les autres étapes inchangées. La liste des étapes que nous avons ainsi évaluées est
présentée dans le tableau 5.5.

Pour chacun des simulateurs ainsi « amputés », nous avons généré un jeu de 3000 tuiles. Nous
nous sommes servis de ces jeux pour pré-entrainer le réseau en lieu et place des images du jeu
du modele « complet », puis avons mené un entrainement sur Dtull Les résultats sont présentés
figure 5.20. La performance obtenue sans ablation (qui correspond a celle du modele complet,
rapportée dans le tableau 5.4) est indiquée a gauche du graphique. Plus la performance d'un ap-
prentissage mené grace a un simulateur « amputé » était basse par rapport a cette performance de
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Etape omise Changement implémenté pour omettre cette étape du simulateur
Genre Les feuilles employées étaient remplacées par des feuilles de marier (Broussonettia papyrifera).
Structure Les feuilles étaient placées en trois niveaux mais pas organisées en plants.
Luminosité La luminosité globale des feuilles n’était pas modifiée en fonction de leur niveau sur la tige.
Taille Les feuilles n’étaient pas redimensionnées en fonction de leur niveau sur la tige.
Courbure Les feuilles ne subissaient pas de transformation de perspective pour simuler une pliure.
Tavelure (moments) Le motif de tavelure était généré en fixant pavelure €t Otavelure de facon aléatoire pour chaque 1ésion.
Tavelure (texture) Le motif de tavelure était généré sans modifier 'autocorrélation du bruit gaussien.
Vignettage Leffet de vignettage n’était pas simulé.

TABLEAU 5.5 — Etapes étudiées lors de I'étude par ablation du modele de canopée.

référence, plus nous pouvions considérer que I'étape associée était opportune.
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FIGURE 5.20 — Résultats de I’étude par ablation menée sur le modéle de canopée. Chaque barre correspond a

. 2 . oy . N h
la performance d’apprentissage sur D*? . pré-entrainé sur des données issues du modele de canopée dont
tuilé

une des étapes a été omise. L'étape omise en question est indiquée sur la barre. Nous présentons aussi la
performance sans ablation (barre de gauche) ainsi que celle obtenue avec un simulateur qui cumule toutes
les ablations (barre de droite).

Les résultats de cette étude montraient que I'effet « gradient » des 1ésions et la pliure des feuilles
avaient 'impact le plus significatif parmi les étapes du modele (+ 3%). A I'inverse, placer les feuilles
dans une structure en plants semblait inutile. Nous nous sommes gardés cependant de généraliser
excessivement ces résultats : ils traduisaient la pertinence des simulations telles que nous les avons
implémentées, mais ne permettaient pas de valider ou d’infirmer l'utilité de tel ou tel trait de réa-
lisme en général, méme dans le cadre restreint de notre application. Par exemple, I'effet « gradient »
des 1ésions de tavelure avait peut-étre eu un impact positif sur la segmentation pour les raisons
qui ont motivé son intégration au simulateur, c’est-a-dire un réalisme accru dt a la modélisation
de la dispersion « gaussienne » de la concentration en agent infectieux. Mais il était aussi possible
que le gain de performance ait été le résultat d’effets imprévus tels que la réduction de la taille
effective des lésions, qui aurait compensé des tailles trop importantes de taches de tavelure dans
notre modele, ou bien la réduction du contraste des 1ésions, qui aurait mieux représenté certaines
zones moins contrastées a cause des conditions d’illumination.

Nous avons mené une expérience supplémentaire qui a son intérét : 'ablation de toutes les
étapes listées dans le tableau 5.5 simultanément (barre rouge a droite dans la figure 5.20). Un
exemple d'une image générée ainsi est présentée figure 5.21. Il était intéressant de noter que méme
dans ce cas, le pré-entrainement sur les images du modele de canopée permettait une augmentation
de performance de 8% par rapport a la performance de référence. Nous avons supposé, de la méme
maniere qu'un pré-entrainement sur 'ILSVRC était utile pour toute tdche de vision [Sharif Razavian
et al., 2014], un pré-entrainement sur une tache des sciences végétales pouvait étre utile pour
d’autres taches du domaine, et ce méme si les informations de luminosité, contraste, structure, etc.,
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de la sceéne étaient drastiquement différentes.

FIGURE 5.21 — Une image créée avec le <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>