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Notation

Notation

N - set of non-negative integers.

R - set of real numbers.

R+ - set of non-negative real numbers.

Rn×m - set of n×m real matrices.

Rn - set of n dimension real vectors.

In (0n,m resp.) - n× n identity matrix (n×m zero matrix resp.).

1n - column vector in Rn whose elements are all equal to one.

diag(P1, P2, ..., Pn) - block diagonal matrix having the matrix P1, . . . , Pn on its main diagonal.

P−1 - inverse of matrix P .

P > 0 (P < 0 resp.) - positive (negative resp.) definite matrix P .

P ≥ 0 (P ≤ 0 resp.) - positive semi-definite matrix (negative semi-definite resp.) P .

P < Q - negative definite matrix P −Q.

P⊤ - transpose of matrix P .

x⊤ - transpose of vector x.

∥P∥ - Euclidean norm of matrix P ∈ Rn×n.

∥x∥ - Euclidean norm of vector x ∈ Rn.

(x, y) - stands for [x⊤y⊤]⊤ where x ∈ Rn, y ∈ Rm.

λmax(P ) (λmin(P ) resp.) - maximum (minimum resp.) eigenvalue of the square matrix P .

ν(P ) - measure of the square matrix P as ν(P ) = 1
2
λmax(P + P⊤).

P ⊗Q - Kronecker product of matrices P and Q.

N (P ) - kernel of matrice P .

R(P ) - image of matrice P .

P⊥ - denotes a matrix such that N (P⊥) = R(P ) and P⊥P⊥⊤ > 0.2



Glossary

ARE - Algebraic Riccati Equation

LMI - Linear Matrix Inequality

LQR - Linear Quadratic Regulator

NE - Nash Equilibrium

SE - Satisfaction Equilibrium

SPT - Singular Perturbation Theory

TSS - Time-Scale Separation
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Introduction

Apart from Chuck Noland 1 and Wilson, few people can claim to be able to escape
the networks. Ubiquitous in all strata of our society, networks in the broadest sense have
gradually infiltrated our daily lives, and now occupy every landscape. Either it is an elec-
trical grid, a social network, a flock of birds in formation, or the spread of a pandemic,
all these interconnected systems show a great degree of interdependence. Given this en-
thusiasm in large-scale physical and societal phenomena, interconnected dynamical systems
have captured the attention of the scientific community in recent decades, [Cao et al., 1997;
Wooldridge, 2009; Mesbahi and Egerstedt, 2010]. Both theoretically and also practically,
multi-agent systems and networked systems are proving to be the most efficient and adequate
way to model the dynamics of large-scale complex systems. In order to prevent and solve
tomorrow’s problems, the analysis and understanding of such systems seem inevitable,
[Baillieul and Antsaklis, 2007; Lamnabhi-Lagarrigue et al., 2017].

A multi-agent system is a set of entities or agents often described by two fundamental
aspects : the dynamics of the agents, and the interactions between them. Commonly, such
an agent can be represented by a mobile robot, person, vehicle, bird, etc. Each agent colla-
borates with its fellow neighbors to carry out its assigned task. This coordination leads the
system as a whole to a common objective, called consensus or synchronization, [DeGroot,
1974; Vicsek et al., 1995].

The consensus problem appears in various disciplines such as biology [Pavlopoulos
et al., 2011], sociology [Hegselmann et al., 2002; Lorenz, 2007; Blondel et al., 2009], social
networks [Blondel et al., 2009] or engineering [Martinez et al., 2007; Anderson et al., 2008;
Bullo et al., 2009]. As for the multi-agent systems synchronization, either natural or arti-
ficial, we can cite the behavior of birds flock, school of fish or coordination of unmanned
aerial vehicles, [Cortes et al., 2004; Blondel et al., 2005; Olfati-Saber, 2006; Tanner et al.,

1. In the movie (Cast Away), FedEx employee Chuck Noland (Tom Hanks) is called to an emergency flight
on Christmas Eve. Unfortunately, his cargo plane crashes, leaving him alone on a Pacific Ocean isolated
island. For four years, he will maintain an unbreakable friendship with Wilson, a volleyball from the cargo.
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Introduction

2007; Leonard et al., 2007]. The applications are many and various : platooning of vehicles,
exploring, patrolling, alignment of satellites, distributed sensor network, drones forma-
tion, tracking of a leader, etc. In general, control algorithms are applied to these systems to
obtain the desired behavior. The purpose is to oil the wheels of the coordination between
the agents.

In the control community, a very large number of works deal with problems related
to the design of control laws achieving the coordination of multi-agent systems. Different
approaches are suggested but two in particular hold our attention. Either, the studies focus
on the dynamics of the agents, or on the type of communication and topology of the net-
work. The first characteristic intrinsically related to the agents depends only on the nature
of the agent itself. Several contributions consider multi-agent systems with linear dyna-
mics [Jadbabaie et al., 2003; Xiao and Boyd, 2004; Moreau, 2005; Ren and Beard, 2005],
non-linear dynamics [Das and Lewis, 2010; Li et al., 2012; Isidori et al., 2014; Su et al.,
2015], non-holonomic robots [Strogatz, 2004; Lin et al., 2005], or coupled oscillators [Dör-
fler and Bullo, 2014]. As for the second characteristic, it depends firmly on the type of
interactions between the agents. Widely addressed in the literature, methods oriented on
network properties propose to model interactions by graphs with fixed or time-varying
topology [Hong et al., 2006; Tanner et al., 2007; Ren, 2007; Scardovi and Sepulchre, 2009],
with time delay [Seuret et al., 2008; Xiao and Wang, 2008] or limited communication ability
[Dimarogonas et al., 2011].

In consensus problems, as the implemented algorithms are sensitive to the different
types of interconnections, the analysis focuses on the network structure. For the synchro-
nization, the primary objective is to coordinate the whole system. Thus, the approaches are
focusing on the control design while taking into account the dynamics of the agents.

However, what is exactly the consensus or synchronization of multi-agent systems?

Consensus

"Consensus means to reach an agreement regarding a certain quantity of interest that depends
on the state of all agents", [Olfati-Saber et al., 2007]. Originated in management science and
statistics, DeGroot provided a formal study of consensus problem for groups of indivi-
duals and described the concept of statistical consensus, [DeGroot, 1974]. The work stu-
dies the evolution of the opinion in a team, where each individual’s opinion is represented
by a probability distribution. In the context of control systems, a consensus occurs when
the agent’s states converge to one common point through interactions. The state or out-
put of each agent represents the information that needs to be coordinated between them,
and mainly depends on the agent’s features. For instance, it can be the agent’s position,
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velocity, voltage, opinion, shared resource, etc. In the problem of rendezvous, the state
corresponds to the physical position of the agents.

Consider a network of N interconnected agents. Each agent i is associated with a state
value xi ∈ Rnx where i ∈ V = {1, ..., N}, and has the following state dynamics

ẋi(t) = ui(t), ∀i ∈ V , (1)

where ui ∈ Rnu is the control or consensus protocol, it defines a rule that governs the
flow of information among agents in close proximity. One possible protocol is the famous
continuous-time consensus algorithm from [Olfati-Saber and Murray, 2003, 2004]. In these
seminal works, the authors posed and solved the consensus problem under various as-
sumptions on the network topology, communication time-delays, and information flow.
Their contributions are mainly inspired by [Fax, 2001; Fax and Murray, 2004]. The consen-
sus protocol is described as follows

ui(t) =
∑
j∈Ni

aij(xi(t)− xj(t)), ∀i ∈ V , (2)

where Ni is the set of agents neighboring the agent i, i.e. whose information is available to
agent i, and the interconnection weight aij is the strength of the link between the i-th and
j-th agent. We understand that the state of each agent is driven toward the states of its
neighbors at each time.

Then, applying the protocol (2) for any initial condition x0, consensus is said to be
achieved if all the agents reach a final value such that

lim
t→+∞

xi(t) = x∗, ∀i ∈ V , (3)

where x∗ is the consensus value.

Finally, by collecting the state of all agents in a single vector x = (x1, ..., xN) ∈ RN.nx ,
we denote the agreement or consensus dynamics by

ẋ(t) = −(L ⊗ Inx)x(t), (4)

where the Laplacian matrix L describes the topology of the network by giving the connec-
tions between the agents, and the symbol ⊗ stands for the Kronecker product. The matrix
form facilitates the analysis of some network properties such as the rate of convergence or
the connectivity.
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Synchronization

The process of synchronization, closely related to consensus, is skillfully explained in
[Su et al., 2015] as "In a multi-agent system, consensus means agents reaching an agreement
regarding a certain quantity of interest that depends on the state of all agents, while synchronization
defines the correlated-in-time behavior among different agents".

In the mid 1990s, Vicsek introduced the heading synchronization and the flocking pro-
blem by investigating on the emergence of self-ordered motion in particles systems, [Vic-
sek et al., 1995]. The authors propose a discrete-time model of particles all moving in the
plane with the same speed but with different headings. The headings of each agent evolves
according to a local rule based on the average of its heading and those of its neighbors. Af-
terwards, [Jadbabaie et al., 2003] completed the previous work by providing a theoretical
framework. Later, [Moreau, 2005] and [Ren and Beard, 2005] extended the theory by dea-
ling with directed information flow. First, necessary and/or sufficient conditions on the
communication topology were provided in [Moreau, 2005] to guarantee that the network
reach the consensus. Then, assuming that certain assumptions are hold, the consensus was
proved to be achieved asymptotically under dynamically changing interaction topologies,
[Ren and Beard, 2005].

To better understand the difference between consensus and synchronization, we illus-
trate with a basic example. Consider a network of N interconnected agents having linear
dynamics, which are described by

ẋi(t) = Axi(t) +Bui(t), ∀i ∈ V = {1, ..., N}, (5)

where xi ∈ Rnx represents the state, ui ∈ Rnu the control, A ∈ Rnx×nx and B ∈ Rnx×nu

correspond to the internal dynamics and control matrix, respectively.

Then, assuming that the controls ui are designed to accomplish the network objec-
tive, we say that the synchronization is achieved if the norm difference between all agents
converge to zero such that

lim
t→+∞

∥xi(t)− xj(t)∥ = 0, ∀i, j ∈ V , (6)

for any initial condition x0.

One of the major difference between the two processes is that the agents posses an
internal dynamics. The individual agent dynamics can be linear, nonlinear, and can only
depend on the state and control of the agent itself but also on those of the other agents. We
say that the dynamics of the network are homogeneous if the dynamics of all the agents are
identical, otherwise it is heterogeneous. Furthermore, the form of the control rely mainly on
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the global objective of the system. For instance, the goal can be to maintain a formation, to
follow a leader, to cover an area, to keep a minimum security distance with other agents,
etc.

By taking these dynamics into consideration, the dimensionality of the problem changes
and it radically affects the control design of the network. A network with homogeneous
dynamics allows the agents to synchronize on a common feature. On the contrary, the
synchronization is achieved on several distinct features if the network has heterogeneous
dynamics. A high degree of heterogeneity thus makes synchronization between agents
more complex.

For the attention of the readers, the following surveys give a general overview of the
progress and advances made in the field of consensus and synchronization of multi-agent
systems until 2017, [Ren et al., 2005; Chen and Wang, 2005; Olfati-Saber et al., 2007; Murray,
2007; Cao et al., 2012; Antonelli, 2013; Oh et al., 2015; Qin et al., 2016; Ge et al., 2017]
Moreover, short introductions to the field can be found in [Ren et al., 2007; Olfati-Saber
et al., 2007; Martinez et al., 2007; Dorri et al., 2018; Chen et al., 2019].

Centralized versus distributed

The multiple controls established in the literature are classified into two categories :
centralized versus distributed control. The control architecture is said to be centralized when
at least one agent communicates with all the other agents or requires global information,
i.e. from the entire system. Conversely, the control is distributed if the task is performed via
local interactions, i.e. each agent only exchanges information with its neighbors.

In the centralized form, a single monolithic, expensive and complex computer have to
manage the coordination mission for the whole group of agents. This configuration can
present several drawbacks : 1) a high computational load proportional to the size of the
network, i.e. the number of agents, 2) a limited application scope for large-scale systems
due to scalability issue, 3) each agent’s controller is susceptible to failure of the central
processing unit, 4) require to communicate with the entire network.

From another perspective, the distributed control design offer major advantages such
as robustness, speed of execution, low operational costs, higher fault tolerance and strong
adaptivity. The distributed approach also appears to be more promising in the presence
of uncertainty such as communication noises or packet loss. In the long run, the purpose
would be to replace the single machine with a fleet of less powerful but more affordable
autonomous systems, that can achieve the same or better through their coordination.
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Introduction

These books among others presented distributed algorithms and applications for multi-
agent systems [Lynch, 1996; Ren and Beard, 2008; Shamma, 2008; Bullo et al., 2009; Qu,
2009; Ren and Cao, 2011; Parker et al., 2016].

Objectives

In the literature, several contributions investigate on a global cost minimization during
the control design of the network, but only a few consider individuals costs. We denote a
global cost by a function that takes into account the effort of the entire network to achieve
the global objective. On the contrary, the individual cost is the effort related to one agent
or a small densely connected group of agents in the network.

In applications with physical networked systems, the individual costs may be of prac-
tical interest when the agents have limited communication (short wireless signal ranges,
narrow bandwidths) and operating capacity (fuel, battery, computation resource), [Anas-
tasi et al., 2009; Goldenberg et al., 2004; Dimarogonas et al., 2011]. For instance, consider
the scenario of automatic cruise control on highways, where each vehicle desires to follow
the vehicle in front of it (global objective of synchronization). At the same time as accom-
plishing their tasks, we also want to ensure that their fuel consumption is not too excessive
(individual costs minimization). The reduction or limitation of the fuel consumption can be
seen as some performance constraints from technical specifications. In such applications,
considering a global cost might not be fair to each vehicle. Moreover, the choice between a
global cost and individual costs may significantly impact the control strategy.

The advantage of constraining or minimizing such a cost is clear, but theoretical re-
sults in this direction are crucially missing in the literature on multi-agent systems. Only
a few results address the control design problem for the synchronization of agents while
minimizing a cost. These reasons then lead us to focus in this direction. The main objec-
tives of this thesis are the control design and the analysis of synchronization algorithms
for multi-agent systems taking into account communication constraints, while ensuring
that the state and control costs are below a given bound. The analysis is carried out with
particular attention on multi-agent systems with homogeneous linear dynamics and clus-
tered networks, with fixed topology in both cases. In the first case, an individual cost per
agent is considered during the control design whereas, a cluster cost for the second case.
Distributed control methods are provided, but the control gains may be designed in a cen-
tralized manner depending on the cases.
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Structure of the thesis

This manuscript is structured in three main chapters. In the following, we give a brief
summary of each of them. A general conclusion and perspectives are presented at the end
of the manuscript.

Chapter 1 : Preliminaries

Basic concepts and a review of theoretical tools used throughout this thesis are presen-
ted. In the first section, the State-of-the-art develops the contributions about distributed
control design from the literature. The consideration of a global or individual cost during
the synthesis of such controllers is also discussed. Then, the second section recalls some
notions of graph theory that are the basis for the analysis of interactions in multi-agent
systems. Finally, concepts from game theory and singularly perturbed systems are presen-
ted.

Chapter 2 : Decentralized control for guaranteed individuals costs

This chapter deals with the design of decentralized control aiming at synchronizing a
network while considering an individual cost per agent. In order to facilitate the analysis,
the synchronization problem is first reformulated into a stabilization problem. Then, we
use the game theoretic notion of satisfaction equilibrium to guarantee, if feasible, a cer-
tain level of performance. Conditions in the form of linear matrix inequalities (LMI) are
provided to check if a given gain profile is a satisfaction equilibrium, i.e. if all individual
costs are bounded by a given threshold. Moreover, based on the output feedback control, a
second result allows us to synthesize the gain of an agent assuming the gains of the other
agents are known. Finally, an algorithm synthesizing the gain profiles corresponding to
the satisfaction equilibria is also presented.

Chapter 3 : Distributed composite control for clustered networks

We present a distributed control design for clustered networks, in which connections
within the cluster are dense and between clusters are sparse. Our goal is to provide a com-
putationally efficient method to design control strategies that guarantee a certain bound
on the cost for each cluster. Based on network structure and singular perturbation theory,
we apply time-scale separation methods to decouple the original system into fast (intra-
cluster) and slow (inter-cluster) dynamics. Subsequently, we synthesize a distributed control-
ler composed of two terms : one responsible for intra-cluster synchronization, and the
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Introduction

other performing inter-cluster synchronization. The internal control does not require a
high computational effort since it is obtained by an analytical expression. As for the ex-
ternal control, it is designed using a satisfaction equilibrium approach. In summary, the
internal (fast) and external (slow) controls are designed independently of each other and
ensure a satisfactory cost for each cluster. Furthermore, we show that the internal control
only affects the cluster cost for a short period of time. Finally, numerical simulations em-
phasize the trade-off between the control performance and computational feasibility to
obtain the required controller by comparing the strategy proposed in Chapter 2, Chapter 3
and in [Rejeb et al., 2018]. Despite being less effective the controller in Chapter 2, we must
keep in mind that the composite control in Chapter 3 suits better for large-scale networks
and presents an essential benefit in computation loads and time than. On the other hand,
while the solution in [Rejeb et al., 2018] is computationally very fast, we observe that our
strategy significantly outperforms the one in [Rejeb et al., 2018].
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This introductory chapter aims to provide the necessary prerequisites for a clear un-
derstanding of the problems presented in this thesis, as well as a short review of the litera-
ture. The Section 1.1 is dedicated to the agreement and synchronization control protocols
for multi-agents systems in continuous time. Especially, we state some innovative works
that tend to optimize an energy function related to the coordination process. In Section
1.2, we provide mathematical tools and concepts useful for the further developments pre-
sented in this manuscript. First, we give few definitions on graph theory and recall some
notions such as undirected and directed graphs. Thereafter, we briefly introduce the no-
tions of Nash equillibrium and satisfaction equillibrium from game theory. Finally, the singular
perturbation theory is explained which focus on the decoupling of two-time scale systems
into slow and fast subsystems. The fundamental definitions and results are given in the
case of static networks.

1.1 State-of-the-art

Over the last two decades, technological advances have sparked a deep interest in the
scientific communities for the research on consensus and synchronization of multi-agent
systems. The distributed control design is one of the most widely addressed problem, ex-
tensively studied and analyzed across different applications and settings.
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Interests in distributed controls date back to 1973. [Wang and Davison, 1973] stabili-
zed homogeneous linear multi-agent systems by applying several local controllers. The
authors provided a necessary and sufficient condition for the existence of local control law
with dynamic compensation. The feedback control depend partially on outputs. Later, mo-
tivated by parallel and distributed computations over a network of processors, [Tsitsiklis,
1984] investigated on the distributed decision-making for asynchronous agreement pro-
blems. Then, notable contributions such as [Tsitsiklis et al., 1986; Bertsekas and Tsitsiklis,
1989] appeared. These works will serve as a framework for the analysis of distributed com-
putational models. After a leap in time, [Fax and Murray, 2004] provided stability analysis
tools for homogeneous linear multi-agent systems. Each subsystem applies a local control
using the average information obtained from neighbors.

Thereafter, the theory of distributed control and optimization for networked systems
have developed rapidly and yielded fruitful results. In this section, we will focus on the
synthesis of distributed protocols and algorithms considering, either a global or individual
cost during the coordination process.

In the following, we briefly present some works related to the synchronization of multi-
agent systems investigating a cost function during the control design. In [Borrelli and Ke-
viczky, 2008], the authors introduce a distributed optimal control problem with a global
cost in the multi-agent framework. The problem is well posed when the dynamics and the
initial state for all agents are perfectly known. However, due to the information structure
imposed by the graph the solution stated therein is a Non-deterministic Polynomial-time hard
(NP-hard) problem. Thus, they provide a distributed sub-optimal control design.

The collective behavior problem for swarms of identical mobile agents is addressed
in [Yang et al., 2008]. An approach based on decentralized joint estimation and control
problem is applied to coordinate the group. The agents communicate with their neighbors
and estimates the global objective performance via distributed estimators, the estimations
are required to implement each local controller.

Dedicated to consensus on networks with time-varying topology, [Nedic et al., 2010]
presents a distributed projected sub-gradient algorithm. A global cost related to the consen-
sus is considered, and it is expressed as the sum of individual agent costs. The algorithm
requires each agent to perform a local computation, i.e. each agent minimizes its own cost
and operates projections on its constraint set.

Later in [Jaleel et al., 2014; Ali and Wardi, 2015], the problem of synchronization is
addressed as an optimal control problem. The authors derived a control law optimizing
a mobility and communication energy in a centralized manner. In the same vein, [Hassan
and Shamma, 2016] proposed a decentralized energy-aware control design. Sub-optimal
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policies inspired from approximate dynamic programming are provided, but no analytical
results allowing the computation of the gain control were given. In these three previous
works, a global cost was considered while designing the control.

More recently, in [Rejeb et al., 2018], the authors present the design of a decentralized
control strategy that allows singularly perturbed multi-agent systems to achieve synchro-
nization with global performance guarantees. Additionally, they assume that all agents
utilize the same gain, which can be restrictive and even undesirable in some cases. Close
to the previous work, [Jiao et al., 2019b,a] provided a distributed sub-optimal control for
undirected multi-agent systems, where agents have homogeneous linear dynamics. The
objective is to achieve a consensus over the network while the associated global quadratic
cost is smaller than an a priori given upper bound. Two design methods are provided, it
requires the solution of an Riccati inequality and the knowledge of smallest nonzero and
the largest eigenvalue of the graph Laplacian.

All of these works mentioned above, concerning consensus or synchronization, have
addressed distributed control with a global cost, but not with individual costs. Generally,
the individual cost is a local cost represented by the sum of a state cost and a control cost
related to one agent. Consequently, we provide some references dealing with coordination
of multi-agents systems while taking into account individuals costs. In [Bauso et al., 2006],
the authors consider consensus protocols for networks with fixed topology and undirected
information flow. The agents have only access to their neighbors’ state to reach a group
consensus value, which depends on all the agents’ initial state. They present a non-linear
protocol designed by imposing individual objective to each agent, a Lyapunov approach
is used to prove the asymptotic convergence to the consensus.

Employing a game theory approach, [Semsar-Kazerooni and Khorasani, 2009] presen-
ted a semi-decentralized optimal control strategy based on minimization of individual
costs. The goal is to design a control strategy accomplishing a consensus over a common
value, while considering a team cost expressed as a combination of individual costs. The
authors used the concept of Pareto-efficient solution and Nash-bargaining solution to gua-
rantee the minimum individual cost. Linear matrix inequality are provided to solve the
minimization problem, and to ensure that the controls only use local information.

In [Li et al., 2021], a consensus over networks with fixed topology is performed with a
distributed optimal control. It is proved that solving the optimal distributed control pro-
blem for all the agents, while considering local quadratic costs, is equivalent to solve a
globally optimal problem. Moreover, the Laplacian matrix associated with the optimal so-
lution turned out to be a complete graph. Thus, the globally optimal distributed control
problem is solved for protocols with specified distributed structure.
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Although these works are tackling the distributed control design problem while opti-
mization individual costs, it does not address the synchronization of multi-agent systems,
in which agents posses internal dynamics. Recently, Reinforcement Learning (RL) techniques
were applied to solve the distributed optimal control problem for multi-agent systems.
Generally, it requires the solution of the Hamilton-Jacobi-Bellman (HJB) equation, which is a
nonlinear partial differential equation that is almost impossible to be solved analytically.
Based on game theoretic concepts, control theory and estimation methods, they introduce
some interesting contributions suggesting off-line or online algorithms.

In [Vamvoudakis et al., 2012], a multi-agent formulation for the online solution of team
games is considered. The authors developed the notion of graphical games for dynamical
systems, and present the Interactive Nash Equilibrium concept associated with this kind of
games. They provide a cooperative policy iteration algorithm, in which the dynamics and
cost functions of each agent depend only on local neighbor information. In case the neigh-
bors of each agent do not update their policies, the algorithm converges to the best response.
Otherwise, the algorithm converges to the cooperative Nash equilibrium when all agents
update their policies simultaneously.

An RL technique is introduced in [Luo et al., 2014] to address the model-free nonlinear
optimal control problem. The authors overcome the complexity related to the solution of
the HJB equation by using real system data rather than a system model. They propose a
data-based approximate policy iteration method based on off-line RL method. A model-
free policy iteration algorithm is derived and its convergence is proved.

[Modares et al., 2016] consider an output synchronization of heterogeneous linear multi-
agent systems. The authors formulated the output synchronization problem as an optimal
control problem. Then, they apply a model-free off-policy reinforcement learning algo-
rithm to solve the optimal output synchronization problem online in real time.

Based on graphical games, [Li et al., 2017] develops an off-policy RL algorithm to solve
optimal synchronization of multi-agent systems. A prescribed control policy, called beha-
vior policy, is applied to each agent to generate and collect data for learning. An off-policy
HJB equation is derived for each agent to learn the value function for the policy under
evaluation, called target policy, and find an improved policy, simultaneously. Finally, an
off-policy RL algorithm is presented that is implemented in real time and gives the ap-
proximate optimal control policy for each agent using only measured data. It is shown
that the optimal distributed policies found by the proposed algorithm satisfy the global
Nash equilibrium and synchronize all agents to the leader.

In the decentralized control design paradigm, each system is able to design and imple-
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ment its own control law without the help of a central entity. Nevertheless, as soon as each
agent has its own individual cost, standard optimization or optimal control approaches
cannot be directly applied. As reported in the literature, the only access to the local infor-
mation can make the optimal control techniques unusable or make the problem NP-hard.
Furthermore, the distributed controllers designed via a RL technique avoid the difficulty
related to the HJB equation by approximating the solution. Usually, the approximated so-
lution is estimated thanks to given data of the real system, or collect directly the data by
stimulating the system with different input signals. However, these data are not always
available or the access to the systems is impossible.

In this context, we are inspired by notions in game theory, specifically that of satisfaction
equilibrium and satisfaction games introduced in [Ross and Chaib-draa, 2006]. A set of actions
are said to be in satisfaction equilibrium when the individual cost for each agent is upper-
bounded by a given threshold. This notion was applied to wireless networks in order to
guarantee a satisfactory quality of service [Perlaza et al., 2012]. Note that we use game
theory as an inspiration for some concepts and formalism, but not for the mathematical
tools. Thus, we relax the problem of individual costs minimization to ensure that each
individual cost is guaranteed to be lower than a given threshold. Our first objective is to
provide analytical results allowing to compute a control gain that can be implemented in a
distributed manner. The multi-agent system then achieves the synchronization with local
or individual performance guarantees. Presented in Chapter 2, the algorithm performs
well with a small network but is computationally demanding with a large-scale network,
Section 2.3.5.

For this reason, the second objective is focused on the synchronization of large-scale
networks. Examples of such networks include small-world networks [Watts and Stro-
gatz, 1998], power systems [Chow, 1982], [Romeres et al., 2013], wireless sensor networks
[Mytum-Smithson, 2005], social networks [Wasserman and Faust, 1994], etc. The goal is to
provide a design of effective controllers with low computational load. One effective me-
thod to address the synchronization of the large-scale networks is model reduction. Based
on the Singular Perturbation Theory (SPT), the model reduction is achieved by exploiting
the time-scale properties of clustered networks. The purpose is to decrease the size of the
system state while approximating its overall dynamic behavior.

Classical results in [Chow and Kokotović, 1985], [Chow, 1982] develop a simplified
model using SPT on the networks of linear interconnected systems with diffusive coupling.
These results have been extended in [Biyik and Arcak, 2008] to networks of non-linear
systems interacting over fixed undirected networks. In [Romeres et al., 2013], the authors
relax the requirement of some assumptions in [Chow and Kokotović, 1985] and also extend
the results for the weighted graphs. Furthermore in [Martin et al., 2016], a model reduction
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using averaging theory is obtained for the time-varying directed graphs.

It is noteworthy that most of the existing works deals with the synchronization ana-
lysis without internal dynamics for the agents. In other words, they do not consider the
control design for the synchronization of clustered networks. A particular setup for the
synchronization of clustered networks is considered in [Boker et al., 2015]. However, none
of the previously mentioned works consider the synchronization problem under require-
ments of costs optimization. These requirements are on one hand timely and on the other
induce a high computational load preventing the design of (sub-)optimal controllers in a
centralized manner.

1.2 Theoretical notions of interest

1.2.1 Graph Theory

Nowadays, the growing research in intelligent swarms, opinion dynamics, collective
motion in biology, game theory or parallelization in optimization theory has received a si-
gnificant attention in the literature. Among several notions appearing in these studies, the
ones of unity and group especially draw our attention. An appropriate theory characteri-
zing these concepts in a straightforward and clear manner makes use of the Graph Theory.

Throughout this thesis, we denote a single dynamical system by an agent and an en-
semble by a network or graph. An agent is a dynamical system that interacts with other
agents to form a network, and these interconnections are determined according to some
specific communication topology that describe the concept of neighborhood for each agent.
The literature is illustrated by various types of interactions such as information flows, the
influence of social networks, chemical reactions between cells, the rules of a game or pa-
rallel calculations.

Whatever the nature of interactions, the study of graph theory is still a fundamental
component for the analysis of networks and multi-agent systems (MAS). Graph theory is
unavoidable and convenient to model the different communication topologies or concepts
such as neighborhood and connectivity. To this purpose, we will rely on the definitions given
in [Godsil and Royle, 2001] and [Mesbahi and Egerstedt, 2010] about graphs. In addition,
short tutorials for graph theory can be found in [Olfati-Saber and Murray, 2004; Ren et al.,
2007].

Definitions and concepts

Definition 1. A graph G is described by the couple G = (V , E), where V is a set of N vertices or
nodes V = {1, ..., N} and E ⊂ V ×V is a set of edges or pairs of distinct vertices (i, j), i ̸= j which
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represents the flow of information from i to j. We assume that G has no self-loops, i.e. for all i ∈ V ,
(i, i) /∈ E .

Despite its mathematical nature, a graph can be conveniently represented by a graphi-
cal scheme. Each element of V is symbolized by a circle while the edges are pictured by
lines and arrows in the undirected and directed graphs, respectively. In the representation
of digraphs, for (i, j) ∈ E , the tail and the head of an arrow are the vertices i and j, respec-
tively.

When graphs are used to model MAS, we assimilate each vertex/node to an agent
and an edge between two vertices indicates that two agents are communicating with each
other. Moreover, the size of a network or the order of a graph G is given by |V| = N .

FIGURE 1.1 – [Antonelli, 2013] Network from the agent i point of view. The cloud G repre-
sents the whole network whereas the light grey circleNi corresponds to the agent i and its
neighbors. Black lines are connections between agents.

The concept of proximity among the agents is described by the neighborhood. The set of
neighbors of an agent i is defined as

Ni = {j ∈ V : (i, j) ∈ E}, (1.1)

it represents the set of all the agents connected to the agent i, i.e. that can take information
from it. A representation of a network with a neighborhood is illustrated in Fig 1.1.

When the connection between two agents represents an information flow, one may
wonder if the flow is bidirectional or unidirectional. Following that, the concepts of direc-
ted and undirected graphs naturally address the question.
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Definition 2. A graph G is undirected if the edges are bidirectional, i.e. for all i, j ∈ V , (i, j) ∈
E ⇔ (j, i) ∈ E ; it is called directed graph or digraph otherwise.

Definition 3. A path of length p in a graph G = (V , E) is given by a sequence of distinct vertices

i0, i1, ..., ip, (1.2)

such that for k = 0, 1, ..., p−1, the vertices ik and ik+1 are adjacent. In this case, i0 and ip are called
the end vertices of the path ; the vertices i1,...,ip are the inner vertices. Moreover, two nodes i and j

belonging to G are connected nodes if there exists at least a path in G from i to j.

Definition 4. An undirected graph G = (V , E) is connected if, for any node i, j ∈ V , there is a
path joining i and j, i.e. i0 = i and ip = j. If this is not the case, the graph is called disconnected.

Definition 5. An undirected graph G = (V , E) is complete if and only if for any node i, j ∈ V ,
the couple (i, j) ∈ E .

Definition 6. A digraph G = (V , E) is said to be connected if there exists a node i ∈ V such that
for any node j ∈ V\{i}, there is a path from i to j. The node i is called the root node of the graph.

Definition 7. A strongly connected digraph G = (V , E) is such that for any couple (i, j) ∈ E ,
there exits a path from the node i to j.

FIGURE 1.2 – Connected
graph

FIGURE 1.3 – Connected
digraph

FIGURE 1.4 – Strongly
connected digraph

Figure 1.2 is an example of a connected graph whereas Figure 1.3 represents a digraph
with one root node. From the root node, any other node can be reached but there is no way
to reach the node 1 from other nodes. In red are the directional communications leaving
the root node. The Figure 1.4 illustrates the strong connectivity.
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Definition 8. The adjacency matrix A = [aij] ∈ RN×N is the symmetric matrix encoding of the
adjcency relationships in the graph G, in that

[aij] =

{
1 if (i, j) ∈ E ,
0 otherwise.

(1.3)

Definition 9. The graph Laplacian matrix of the graph G is defined as L = [lij] ∈ RN×N such
that

[lij] =


N∑

j=1, i ̸= j

aij, for i = j ,

−aij, if i ̸= j.

(1.4)

For an undirected graph G, the Laplacian matrix L is symmetric and the sum of each row are null.

Remark 1. [Godsil and Royle, 2001] Consider a connected undirected graph G and let denote the
eigenvalues associated with the Laplacian matrix L by λi, in ascending order,

λ1 ≤ λ2 ≤ ... ≤ λN . (1.5)

Then, the following statements hold :

1. λ1 = 0 is a simple eigenvalue of L associated to the eigenvector 1N .

2. λ2 > 0 is the second smallest eigenvalue and L semi-positive definite. Moreover, λ2 is called
the algebraic connectivity of the graph. It expresses the rate of convergence during a consensus
process.

3. There exists an orthonormal matrix T ∈ RN×N , i.e. T⊤T = TT⊤ = IN , such that

TLT⊤ = Λ = diag(λ1, λ2, ..., λN). (1.6)

1.2.2 Game Theory

In this section, we provide some useful definitions and concepts from game theory.
Most of the material is based on [Başar and Olsder, 1998] and [Lasaulce and Tembine,
2011]. This section does not aim to present game theory in details but only gives a very
brief overview of the field.

A little history to whet your appetite. As its name suggests, the basic concepts of game
theory arose from the study of games such as chess and checkers. However, it rapidly
became clear that these techniques can be applied to almost all type of interactions that
occur between players. John von Neumann and Oskar Morgenstern, mathematician and
geneticist respectively, published in 1944 the book Theory of Games and Economic Behavior
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[Morgenstern and Von Neumann, 1953]. Based on the work of Emile Borel, the authors lay
the foundations of the game theory we know today. This act structured the research of the
first generation pioneers, including Robert Aumann, John Harsanyi, John Nash, Reinhard
Selten and Lloyd Shapley. Afterwards, each of them have advanced the research in their
own way. In the 50s, John Nash extended the work of von Neumann by considering games
with more than two players (for non-zero sum games), and it is from him that came the so-
called Nash equilibrium. Later, in 2012 Lloyd Shapley and Alvin Roth were awarded the
Nobel Prize in Economics. Their work focuses on how best to match offer and demand in a
market, with applications in organ donation and education. It is noteworthy that the Nobel
Prize in Economics is mainly awarded for results in pure economics or social sciences.

Game theory has revolutionized microeconomics but also impelled new research di-
rections in other scientific disciplines. For example, John Maynard Smith and George Price
published in 1973 the paper named The Logic of Animal Conflict [Smith and Price, 1973]. The
authors consider a situation of inter-species conflict. A natural selection operates a sort bet-
ween different behaviors. The selection is stimulated by mechanisms of interactions and
asexual reproduction. The interactions are modeled as a non-cooperative game. Individuals
do not have the power to change their behavior over time, they are programmed to deploy
the strategy inherited from their parent. The advantage/utility gained in an interaction
measures the ability of that individual to adapt to the environment. So, what does exactly
game theory mean? And what is a game?

What is game theory?

The game theory provides a mathematical framework and concepts that enables to
model and analyze the interactions between several players who can have conflicting or
common interests. It develops tools, methods, and language allowing a coherent analysis of
the decision-making processes when there are more than one player. Particularly, it studies
the strategy design problems that optimizes the welfare of a player during an encounter.
A natural question one may ask is What is the best rational thing a player can do? How can a
strategy be designed to have certain properties that are desirable or necessary for players
when it is applied?

From this, we can see the game theory as a decision-making problem. Particularly, it
investigates these interactions through a game with different strategical scenarios and out-
comes. By interactions, we mean the impact of the player’s action on the others. In other
words, the player’s decision does not depend only on its own actions but also on those
taken by the other players, i.e. they are interdependent. Thus, the overall outcome will
critically depend on the choices made by all players. The meaning of a player is very
broad : it can be a human being, a machine or a plant, a company, etc. Frequently, a player
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or a decision-maker is facing a situation and has to choose between a range of rational
actions. They must strategically reason in order to achieve their objectives or optimize
their outcomes. As for the interest, depending on the game and the rules, each player
can cooperate for a common goal or compete for its self-interest. It is represented by a
cost/reward/payoff/utility function that has to be optimized. Finally, a game in the sense
of game theory, is described by a set of players and their possibilities to play the game
according to the rules, i.e. their set of strategies.

In order to present some key concepts, let consider two situations where game theory
could be used as a natural tool for predicting or comprehending the outcomes depending
on the interactive scenarios. The most well known game is probably the Prisoner’s Di-
lemma. In this social dilemma, the individuals interests are opposed to collective interests.
These situation are quite well common in modern society, whether it is the problem of
saving energy, paying the television licence fee or, more generally, participating in the fi-
nancing of public goods.

Example 1 : Suspected of having committed a theft, two suspects are arrested. Unable
to convict them because of lack of evidence, the police discuss separately with each suspect
and offer them the same deal. If only one of them confesses and denounces his accomplice,
he will be released. The betrayer goes free and the silent receives the sentence of eight
years. If each betrays the other, each will receive a four-year sentence. If both stay silent,
they will receive a short sentence of one year. Each prisoner must choose between to betray
the other or to remain silent. So the question this dilemma poses is : How will the prisoners
act?

Player 2
Cooperate Defect

P layer 1
Cooperate 1 , 1 8 , 0
Defect 0 , 8 4 , 4

TABLE 1.1 – Prisoner’s Dilemma outcomes

In this game represented by two players {Player 1, P layer 2}, each player has the fol-
lowing strategy set {Cooperate,Defect}. Each action associated with a punishment allows
them to choose the best one. For example, if Player 1 defects and Player 2 cooperates,
they have a punishment of 0 and 8 years respectively. The goal is to minimized the time
spending in the jail.

Player 1 does better by playing Defect no matter what Player 2 does. If Player 2 co-
operates, Player 1 gets 0 by defecting and 1 by cooperating. Moreover, if Player 2 defects,
Player 1 gets 4 by defecting and 8 by cooperating. Likewise, Player 2 does better by de-
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fecting no matter what Player 1 does.

Example 2 : In the Braess Paradox [Braess, 1968; Braess et al., 2005], the author consi-
ders a road network as an example. The drivers wish to travel from point A to B illustrated
in Fig. 1.5. We represent the number of drivers on a given link i by xi, where i = 1, 2, 3, 4.
Depending on the link i, the travel time in minute is given by f(xi) or g(xi). In the ori-
ginal work, the author chose the total number of cars to be x = 6, f(xi) = xi + 50 and
g(xi) = 10xi. In the Scenario 1, drivers can travel on one of two paths : top path or bottom
path. The optimal situation or an equilibrium situation is reached when x1 = x2 = 3 cars.
The travel times related to this equilibrium point are D1,3 = D2,4 = 83 minutes. In Scenario
2, the drives have three possible paths instead of two after the addition of a new road.
One justification for constructing such a link is to redirect traffic away from link 1 if that
route becomes too congested. Defining the cost function associated with the new road as
h(xi) = xi + 10, the new equilibrium is obtained for x1 = 4, x2 = 2, and x5 = 2. The travel
times become D1,3 = D2,4 = D1,5,4 = 92, which are worse than in the Scenario 1. Although
the drivers have more choice, the situation is not improved by adding a new route.

Several real-life examples illustrate this paradox. After investments in the road network
in 1969, the traffic situation in Stuttgart, Germany, did not improve until a portion of the
newly constructed route was blocked to traffic [Knödel, 2013]. In 1990, the closure of 42nd
Street in New York City, decreased the traffic congestion in the region [Kolata, 1990]. In
Seoul, there were three tunnels and one of them had to be shut down from 2003 to restore
a river and a park. People participating in the project noticed that the traffic flow improved
as a result of the adjustment [Vidal, 2006]. In 2012, the same phenomenon was observed
when a road was closed as a result of an accident rather than as part of an urban project.
A bridge in Rouen was destroyed in an accident ; other bridges were utilized more in the
next two years, although the total number of automobiles crossing bridges was reduced.

Where is it applied?

Apart from fields such that economics, sociology or biology, game theory has been wi-
dely applied in various fields like wireless communications [Lasaulce and Tembine, 2011],
network security [Alpcan and Başar, 2010], automatic-control [Başar and Olsder, 1998],
distributed optimization [Yang and Johansson, 2010], [Li and Marden, 2013] or learning
[Syed and Schapire, 2008], [Lanctot et al., 2017].

Consider the water management problem, in which game theory could propose a stra-
tegy favoring a efficient water distribution, rapid access to the resource or control of the
world market. Whenever resources are involved in a conflict or cooperation, game theory
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FIGURE 1.5 – [Lasaulce and Tembine, 2011]The routing scenarios considered by Braess

can be used either to explain existing behaviors or to improve further strategies. In [Ma-
dani, 2010], the game theory is used to analyze the conflicts related water systems mana-
gement. The problem is modeled by water resource non-cooperative games. The authors
discuss about the behaviors of stakeholders in different periods of the conflict.

Furthermore, as soon as a network is concerned, the interactions taking place inside can
often be modeled as a game : the agents are players that compete or form coalitions to get
some benefit. Fortunately, this is the case of multi-agent systems. The main motivation to
formulate a network in a game is the interdependence between the actions of agents. In the
case where a group of individuals has to achieve a goal, whether common or individual,
the approach to designing such strategies can be radically different. The effect is further
accentuated when resources are shared or not.

Definitions and concepts

There are thee main types of representation of a game : the normal or strategic form, the
extensive form and the coalitional form, but only the strategic form will be tackled. For more
details and explanations, readers are referred to [Başar and Olsder, 1998] and [Lasaulce
and Tembine, 2011] as complete resources.

Definition 10. A strategic form game is an ordered triplet

G = (V , {Ki}i∈V , {Ji}i∈V), (1.7)

where V = {1, ..., N} is the set of players,Ki is the set of strategies of player i, and Ji is a utility/cost
function of player i.

In both game theory and multi-agent systems, the strategic form is the most widely
used and the most simple representation. In general, it better suits to mathematical analysis
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and is well adapted to discrete and continuous strategy sets. In fact, the most common form
relies on the existence of a cost/utility/reward function for each player. This allows us to
define the satisfaction equilibrium and the Nash equilibrium as follows.

Definition 11. Let G be a strategic game and f1,...,fN be N set-valued satisfaction functions. The
strategy profile K∗ = (K∗

1 , ..., K
∗
N) is a Satisfaction Equilibrium (SE) if and only if

∀i ∈ V , K∗
i ∈ fi(K

∗
−i), (1.8)

where K∗
−i := (K∗

1 , ..., K
∗
i−1, K

∗
i+1, ..., K

∗
N) denotes the reduced profile with the component K∗

i

removed.

We say that a player is satisfied if its current action satisfies his own constraints and
thus an equilibrium is reached when all players are simultaneously satisfied. Since players
are assumed to be selfish, we understand that a player satisfying his own constraints has
no interest in changing his strategy. Moreover, if there is an equilibrium of satisfaction, it
may not be unique.

It is also noteworthy that if for all i ∈ V , the function fi is defined such that fi(K−i) =

{Ki ∈ Ki : Ji(Ki, K−i) ≥ γi} where γi is the minimum utility level required by player i,
Definition 11 coincides with the definition of SE provided in [Ross and Chaib-draa, 2006].

The Nash equilibrium is a fundamental solution concept for the strategic form games
and was extensively studied in the literature.

Definition 12. Let K = K1 × K2 × ... × KN . Let Ji : K → R, i ∈ V . The profile K∗ is a Nash
equilibrium (NE) if

∀i ∈ V , ∀Ki ∈ Ki, Ji(K
∗
i , K

∗
−i) ≥ Ji(Ki, K

∗
−i). (1.9)

Given the strategies adopted by the other players, a Nash equilibrium refers to a situa-
tion in which none of the players can find a better game strategy. Moreover, similarly to an
SE we can have several NE.

One straightforward way for a player to choose its action is to optimize its utility func-
tion given the other players’ strategies. The basic notion of best response is defined as
follows.

Definition 13. The Best Response (BR) of player i to the reduced strategy profiles K−i is the
correspondence given by

BRi(K−i) = arg max
Ki∈Ki

Ji(Ki, K−i), (1.10)

where V = {1, ..., N} is the set of players and Ki is the set of strategies of player i.
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Given the strategies of other players, the best response is the strategy producing the
most favorable immediate outcome for the current player. By introducing the following
function

BR : K → K

K→ BR1(K−1)× ...×BRN(K−N),
(1.11)

one possible characterization of an NE is such that, a stragegy profile K∗ is an NE if and
only if K∗ ∈ BR(K∗). Implicitly, seeking for an NE can be seen as a fixed point problem.

1.2.3 Singularly perturbed systems

Generally, the mathematical results proposed by control theory are applied to a phy-
sical model of a real system. From there, any prior simplification of the equations may
seem welcome. However, do not these simplifications call into question the validity of the
conclusions they have established? Indeed, the real system is often far more complex than
the mathematical model.

This section aims to give some results on two time-scale systems and their approxi-
mations, which are less complex systems with essentially only one time-scale. This allows
us to justify the relevance of reduced models on which we are able to provide stability or
robustness results. The singular perturbation theory enables to take into account the pre-
sence of different time scales in a system. It leads to approaches based on the decoupling
of dynamics such that the separation of slow and fast variables. The theory of singular
perturbations provides a range of analysis tools based on the separation of time scales and
the solution approximations of the original system by decoupling slow and fast dynamics,
for example [Teel et al., 2003], [Nešić and Teel, 2001]. For this purpose, we will rely on
[Kokotović et al., 1999] for existing definitions and results. We only provide results for
linear time-invariant systems. However, I would like to give you a bit of history before we
start.

The story starts in 1904 at the Third International Congress of Mathematicians in Hei-
delberg, Ludwig Prandtl would have presented his paper On fluid motion with small friction
on fluid dynamical boundary layer, and from there the singular perturbation concept was
born. However, the paper published in the wrong journal have delayed the development
of the theory. The result would not surface until some twenty years later.

While singular perturbation theory, which has meanwhile become a traditional tool in
fluid dynamics and nonlinear mechanics, encompasses a wide variety of dynamical phe-
nomena with slow and fast modes, its assimilation into control theory came much later. It
took almost fifty years for singular perturbation theory and control theory to meet. Exten-
sively studied in the mathematical literature in [Tikhonov, 1948, 1952], [Levinson, 1950],
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[Vasil’eva, 1963], [Wasow, 1965], [Hoppensteadt, 1967, 1971], [O’Malley, 1971] and many
others talented mathematicians, the singular perturbation model of finite-dimension was
the first model to be used in control and systems theory.

In the 1950s, Tikhonov laid the foundations of singular perturbation theory in automatic-
control. Afterwards, Kokotovic and Khalil gathered the most significant and useful results
into two works that later became references in terms of nonlinear systems and singular per-
turbed systems, [Khalil and Grizzle, 2002], [Kokotović et al., 1999]. The analysis of these
systems has become a subject of constantly evolving research.

For readers wishing to find more details, here are surveys from 1975 to 2012 : 1975
[Kokotovic et al., 1976], (1976-1983) [Saksena et al., 1984], (1984-2001) [Naidu, 2002], (2002-
2012) [Zhang et al., 2014] and 2001 for Guidance and Control of Aerospace Systems [Naidu
and Calise, 2001].

In order to study the two time-scale properties of a single system, we consider the
following standard perturbation form as{

ẋ(t) = A11x(t) + A12z(t),

ϵż(t) = A21x(t) + A22z(t),
(1.12)

where x ∈ Rnx and z ∈ Rnz represent the slow and fast system respectively, ϵ is a small
positive scalar and A11, A12, A21, A22 are matrices of appropriate dimensions. The scalar ϵ
represents all the small parameters to be neglected. Moreover, all the matrices in (1.12) are
assumed to be constant and independent of ϵ.

Operating in two different time-scales t and τ = ϵt, the fast dynamics emerges during
the transient phase while the steady state is governed by the slow dynamics. By setting
ϵ = 0 in (1.12), if there exists A−1

22 , then the equation (1.12) yields

zs(t) = −A−1
22 A21xs(t). (1.13)

Substituting (1.13) in (1.12) yields the reduced slow model as

ẋs(t) = A0xs(t), (1.14)

where xs(0) = x(0) and A0 = A11 − A12A
−1
22 A21.

As for the boundary layer describing the fast dynamics of z(t), it is given by

ϵżf (t) = A22zf (t), (1.15)

where the initial condition zf (0) = z(0) + A−1
22 A21xs(0).

28



1.2. Theoretical notions of interest

The following theorem provides the approximation conditions of the solution of the
singularly perturbed system (1.12) from the analysis of the slow and fast dynamics sepa-
rately.

Theorem 1. (Theorem 5.1, Chapter 2, [Kokotović et al., 1999]) If the matrix A22 is Hurwitz, there
exists an ϵ∗ > 0 such that, for all ϵ ∈ (0, ϵ∗] and for all t ∈ [0, T ], the states of the original system
(1.12) starting from any bounded initial conditions x(0) and z(0), ∥x(0)∥ < c1 and ∥z(0)∥ < c2,
where c1 and c2 are constants independent of ϵ, are approximated by{

x(t) = xs(t) +O(ϵ),

z(t) = −A−1
22 A21xs(t) + zf (t) +O(ϵ),

(1.16)

where xs(t) and zf (τ) are the solutions of the reduced slow (1.14) and fast (1.13), respectively.
Moreover, if A0 is Hurwitz, then the approximation (1.16) holds for any time t > 0.

The following asymptotic stability result follows.

Theorem 2. [Kokotović et al., 1999] If A22 is non-singular and if the matrices A0 and A22 are
Hurwitz, then there exists ϵ∗ such that for all ϵ ∈ (0, ϵ∗], the system (1.12) is asymptotically stable.

In the following, we present the methodology for designing a state feedback control
law for a singularly perturbed system in continuous time.

Consider the singularly perturbed system under a control law u(t) ∈ Rm

{
ẋ(t) = A11x(t) + A12z(t) +B1u(t),

ϵż(t) = A21x(t) + A22z(t) +B2u(t).
(1.17)

After decoupling the slow and fast dynamics, the reduced system is{
ẋs(t) = A0x(t) +B0u(t), xs(0) = x(0),

ϵżs(t) = −A−1
22 (A21xs(t) +B2us(t)),

(1.18)

where A0 = A11 − A12A
−1
22 A21 and B0 = B1 − A12A

−1
22 A21B2. The vectors xs, zs and us are

the slow parts of the corresponding variables x, z and u in the original system (1.18). The
boundary layer is described by{

ϵżf (t) = A22zf (t) +B2uf (t),

zf (0) = z(0)− zs(0),
(1.19)

where zf (t) = z(t) − zs(t) et uf (t) = u(t) − us(t) correspond to the fast component of the
variables z and u, respectively.
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This chapter presents our results on decentralized controls for multi-agent systems
with homogeneous linear dynamics. The objective is to provide a control strategy design
that can be implemented in a decentralized manner, and allows the network to achieve
synchronization while ensuring that the individual costs are, if feasible, bounded by a cer-
tain given threshold.
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In Section 2.1, we characterize the system and motivate the advantage of bounding an
individual cost. The Section 2.2 explains how the concept of SE is applied to our frame-
work. Then, in Section 2.3, we reformulate the synchronization problem to stabilization
problem via a change of variable. Afterwards, we provide conditions in the form of LMIs
to check if a given set of control gains are in SE, i.e. all individual costs are upper-bounded
by the imposed threshold. In the section 2.2, we An algorithm is also proposed in order to
synthesize gains that are in SE. Furthermore, we briefly address the issue of the algorithm
complexity. The Section 2.4 shows a special case when the graph is complete. Finally, the
Section 2.5 illustrates the results with numerical examples.

The results of this chapter corresponds to the publication [Veetaseveera et al., 2019].

Remark 2. The

2.1 Problem statement

2.1.1 Linear agent dynamics

Consider a network of N agents, where the interactions are described by a graph G =

(V , E), where V = {1, 2, ..., N} and E ⊂ V × V . We identify each agent with its index i ∈ V
and assign to each agent i a state xi ∈ Rnx . The individual agents dynamics are described
by 

ẋi(t) = Axi(t) +Bui(t)

yi(t) =
∑
j∈Ni

xj(t)− xi(t)
, ∀i ∈ V , (2.1)

where xi, yi ∈ Rnx are respectively the state and the output of the agent i, ui ∈ Rnu the
control, A ∈ Rnx×nx and B ∈ Rnx×nu . The control ui applied by the i-th agent depends
directly on the output yi. Let x(t) = (x1(t), ..., xN(t)) ∈ RN ·nx and u(t) = (u1(t), ..., uN(t)) ∈
RN ·nu be respectively the global state of the network and the control at time t ∈ R+. Fur-
thermore, the initial condition is denoted by x0 = x(0).

2.1.2 Individual costs

The control objective is to asymptotically synchronize the set of agents, i.e. to ensure
that for all i, j ∈ V , lim

t→+∞
∥xj(t) − xi(t)∥ = 0. To achieve this common goal, each agent

tends to provide a certain control effort that has to be limited in many real applications.
The decision between a global cost and individual costs to be minimized might be critical
in some circumstances.
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In contrast with the existing works, our objective is to guarantee that the individual
costs incurred by each agent does not exceed a given threshold during the process of syn-
chronization. Furthermore, in the special case of complete graphs, we also provide a control
optimizing each individual cost.

To this end, we consider a per-agent cost and propose two cost expressions. The first
cost concerns the connected graphs while the second one is for complete graphs. Moreover,
we recall that we are seeking for a decentralized control policy, it means that each agent
only has access to the information on the relative state with respect to its neighbourhood
Ni, i.e. yi and does not have access to overall network state x.

Case of connected graphs

For all i ∈ V , we define an individual satisfactory cost JSE
i associated with the agent i

as follows

JSE
i =

∫ +∞

0

∑
j∈Ni

∥xj(t)− xi(t)∥2 + u⊤
i (t)Riui(t) dt, (2.2)

where the positive definite matrix Ri ∈ Rnu×nu represents the weight given to the control
action ui. The quadratic cost (2.2) is equivalent to the energy required by each agent to
establish the network synchronization. The first term corresponds to the state cost or how
far is an agent i with respect to his neighborhood. As for the control part, it represents the
action energy necessary for an agent i to be synchronized.

Case of complete graphs

Considering the particular case of complete graphs, we provide a second expression
for the individual cost JNE

i , for all i ∈ V , such that

JNE
i =

∫ +∞

0

∥∥∥∥∥∑
j∈Ni

xj(t)− xi(t)

∥∥∥∥∥
2

+ u⊤
i (t)Rui(t) dt, (2.3)

where R ∈ Rnu×nu is a positive definite matrix. In (2.2), the state part represents exactly
the sum of the squared difference between an agent i and its neighbors whereas in (2.3),
some crossing terms appear. The cost (2.3) has two drawbacks, it does not represent well
the proximity between an agent and its neighborhood, and in some cases can be conser-
vative for an optimization problem. The state term can be null even though the agent i is
not synchronized with its neighbors. However, the all-to-all connection topology can be of
interest if we consider the computational loads and complexity during the control proce-
dure. This point will be developed later in a further section.
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The notation SE and NE refer respectively to the Satisfaction equilibrium and Nash equi-
librium that will be discussed in the upcoming sections. The next section explains how
game theory allows us to reformulate the problem and to deal with a set of individual
costs.

2.2 Reformulation of the problem via game theory

In the context of decentralized control design, two main reasons limit the direct ap-
plication of the standard optimization techniques. First, the communication constraints
induced by the decentralized control design restrict the access to the overall state x of the
network. The agents only have information from their neighbours and not from the whole
network. The control ui must be designed independently of x0 and must depend only on
yi. Secondly, the notion of optimality related to the set of cost functions seems unsuitable. It
is straightforward to understand with the following example that the concept of optimality
has to be redefined, extended or reformulated.

We do not optimize one global cost anymore but we consider a set of N individual costs.
It results in a non-convex optimization problem. To illustrate the inherent issue related to
the set of cost functions, let us denote{

uA = (uA
1 , ..., u

A
N)

uB = (uB
1 , ..., u

B
N)

and

{
J(uA) = (JA

1 , ..., JA
N )

J(uB) = (JB
1 , ..., JB

N )
, (2.4)

where uA and uB are the control stategy A and B, respectively. The set of costs JA and JB

are obtained by applying the stategy A and B to (2.1), respectively. Moreover, the indivi-
dual costs in JA and JB are defined based on (2.2).

Let the control uA and uB be designed such that the following inequalities hold{
JA
i ≤ JB

i , ∀i = 1, ..., p,

JA
i ≥ JB

i , ∀i = p+ 1, ..., N.
(2.5)

Since the costs rely on the initial condition x0, it is natural that some costs JA
i might be

smaller than JB
i and vice versa. In the case we aim to minimize the costs, the strategy A

is more efficient for i = 1, ..., p, but the strategy B performs better for i = p + 1, ..., N .
In an optimization problem, we observe that any control is better than the other. A piece
is missing to the puzzle. Unfortunately, the classical tools of optimal control cannot be
directly applied in our context.

Our problem involves a set of N agents associated with individual costs. Since each
agent desires to reduce its own cost, we are in the framework of a game. Besides the ge-
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neral information structure, the agents can also use information from past actions and
take this into account for their current and future actions. This case corresponds to a diffe-
rential game with incomplete information [Lasaulce and Tembine, 2011]. Nonetheless, the
research on differential games remains open for a general information structure.

As mention in Chapter 1, we are inspired by [Ross and Chaib-draa, 2006] which intro-
duced the notion of satisfaction games. The SE concept was applied to wireless networks
in order to guarantee a satisfactory quality of service [Perlaza et al., 2012]. Furthermore,
we also apply the concept of NE for complete graphs. In [Marden et al., 2007], the authors
establish a relationship between cooperative control problems, such as the consensus pro-
blem, and game theoretic methods. A learning algorithm for finding a NE is also provided.
Generally, cooperative control problems involve agents seeking to collectively accomplish
a global objective.

In the following, we first reformulate the decentralized control design problem for
multi-agent systems as a satisfaction game. Then, in the subsequent section, we apply re-
sults from LQR control with static output feedback to provide conditions on achieving a
satisfaction equilibrium. Finally, we deal with the complete graphs by providing an analy-
tical result for the control and conclude the chapter with numerical illustrations.

Concerning the controller, we are restricted to designing ui based on the output yi.
In this setting, we search for controllers that are of the static-output feedback type. The
following assumption is valid for both connected and complete graphs.

Assumption 1. The controller for agent i ∈ V is of the form ui = Kiyi, where Ki ∈ Ki with
Ki = Rnu×nx .

With Assumption 1, the control strategy for an agent i is fully defined by the choice of
gain Ki.

2.2.1 Satisfaction Equilibrium approach

Before presenting our satisfaction game, we define a gain profile as K = (K1, ..., KN) ∈
K, where K = K1 × ... × KN . We also use K−i := (K1, ..., Ki−1, Ki+1, ..., KN) to denote
the profile of gains for all agents except i. To emphasize its i-th component, we write the
vector K as (Ki, K−i) with a slight abuse of notation. Under Assumption 1, we define the
satisfaction game as follows.
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Satisfaction game

The satisfaction game in standard form is defined by the ordered triplet

G = (V, {Ki}i∈V , {fi}i∈V), (2.6)

where

• V = {1, ..., N} is the set of agents and we identify each agent i as player i,

• Ki = Rnu×nx is the set of actions or gains Ki applied by player i. The control applied
by each player is given according to Assumption 1,

• A player i is said to be satisfied when his action Ki ∈ fi(K−i) considering the actions
of the other players K−i are given. Here, fi(K−i) is called as the satisfaction function,
and is defined as follows

fi(K−i) := {Ki ∈ Ki|JSE
i (Ki, K−i) < γ∥x0 − 1N ⊗ xi(0)∥2}, (2.7)

where γ > 0 is a given threshold. The satisfaction function fi of the player i describes the
set of actions which guarantees that its cost is upper-bounded by γ given the actions of all
the other players. The cost Ji may represent the investment of agent i in an auction, or the
fuel consumption when the agent i is a car. The expression of the norm ∥x0 − 1N ⊗ xi(0)∥2

is explained later in the next Section 2.3.

Remark 3. The dependence of the cost (2.2) on the gain Ki and the gains K−i is more
explicit. It reflects that agents influence each other. We understand that choosing a single
gain is not sufficient, we need to choose a gain profile such that all the agents are satisfied.

In our satisfaction game, when all players satisfy

JSE
i ≤ γ∥x0 − 1N ⊗ xi(0)∥2, (2.8)

we say that the players are in a satisfaction equilibrium. Next, it is important to note that
the cost Ji will always depend on the global initial state vector x0. However, this depen-
dency can be removed by treating the case in which all the other agents start in a unit
ball radius around each agent. The resulting cost can then be scaled up for other initial
conditions.

Remark 4. To simplify the expression in the following, we scale the initial condition such
that ∥x0−1N⊗xi(0)∥2 ≤ 1, for all i ∈ V . As usual, the individual costs scales with the initial
condition and under the normalization above we get a satisfaction game when JSE

i ≤ γ,
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for all i ∈ V . Thus, the satisfaction function (2.7) becomes

fi(K−i) := {Ki ∈ Ki|JSE
i (Ki, K−i) < γ}, ∀i ∈ V . (2.9)

Satisfaction equilibrium

The introduction of the game (2.6) allows us to define our satisfaction equilibrium as
follows.

Definition 14. Let G be a strategic game and f1,...,fN be N set-valued satisfaction functions.
The strategy profile K∗ = (K∗

1 , ..., K
∗
N) is an SE if and only if

∀i ∈ V , K∗
i ∈ fi(K

∗
−i).

According to Definition 14, the agents reach the satisfaction equibrilium when JSE
i (K∗) ≤

γ, for all i ∈ V . Once the players are at the SE, none of them have a particular interest to
change their current actions as each player has achieved the desired bound on his cost.
They are assumed to be careless of the satisfaction of other players.

Remark 5. First, the Definition 14 implies that the SE is not an optimal solution. Indeed,
we do not minimize the individual costs anymore but we just bound them. In other words,
we are seeking for a gain Ki given K−i such that JSE

i ≤ γ for the agent i. Secondly, if the
SE exists it may not be unique. The notion of equilibrium in game theory is far away from
the one we are used in control theory.

In the sequel, we explain how such a strategy profile K∗ can be designed thanks to the
control theory.

2.3 Satisfactory control design

In this section, we transform the synchronization problem into a stabilization one. Ins-
pired by the sub-optimal output control design in [Iwasaki et al., 1994], we perform a
change of variables and recast the cost (2.2) in a new variable. Then, we provide conditions
to check in the form of LMIs and propose a control design for a gain K∗

i given the other
gains K∗

−i. Finally, we end this section with a brief explanation of the iterative algorithm.

2.3.1 Change of variables

In order to check if K∗ is an SE, we reduce the synchronization problem to a stabiliza-
tion problem by a change of variables on (2.1). For further purpose, for each agent i ∈ V ,
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Chapter 2. Decentralized control for guaranteed individual costs

we introduce the error state vector as follows

χi = (x1 − xi, . . . , xi−1 − xi, xi+1 − xi, . . . , xN − xi), (2.10)

where χi ∈ R(N−1)×nx . The stabilization of χi at the origin corresponds to the synchroniza-
tion of the agent xi with the network. Indeed, one may notice that, ∀i ∈ V , lim

t→+∞
∥χi(t)∥ = 0

⇔ ∀i, j ∈ V , lim
t→+∞

∥xj(t)− xi(t)∥ = 0.

Let us give some useful notation for the dynamics of the error state (2.10). Denote by
L−i, the Laplacian matrix Lwithout the i-th row and column, and by Li, the i-th row of L.
We can now write the dynamics for χi as

χ̇i = Ai(K−i)χi + Biui, (2.11)

where Ai = (In−1 ⊗ A)− (In−1 ⊗B)diag(K−i)(L−i ⊗ Inx) and Bi = −(1n−1 ⊗B).

The term diag(K−i) is not a control action but it represents the behaviour of the network
governed by the other agents actions. For agent i, the control action is simply ui = Kiyi as
it can not control the other agents.

In order to rewrite the cost (2.2), let us define the auxiliary variables as
zi = Ciχi +Diui,

yi = Fiχi,

ui = Kiyi,

(2.12)

where

Ci =

(
diag(Li:red)⊗ Inx

0nu×(N−1)nx

)
, Di =

(
0(N−1)nx×nu

Ri

)
and Fi = −(Li:red ⊗ Inx). (2.13)

Since the N -th block of Ci is 0 by definition, the N -th block of zi will contain the weighted
control Riui. Finally, we also use Li:red to denote the row matrix Li with the i-th column
removed. The cost for any agent i can now be written in terms of zi as

JSE
i =

∫ +∞

0

∥zi(t)∥2 dt. (2.14)

2.3.2 LMIs conditions for an SE

Under the new variables, the problem of asymptotic synchronization of the system (2.1)
now becomes stabilization of the system (2.11). This allows us to establish the following
result.
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2.3. Satisfactory control design

Proposition 3. Let a gain profile K∗ be given. The following statements are equivalent when As-
sumption 1 holds.

1. The gain profile K∗ is an SE of the satisfaction game G that stabilizes (2.11)-(2.12) for all
i ∈ V .

2. For all i ∈ V , there exists a positive-definite matrix Pi > 0 such that{
PiAi,cl(K

∗) +Ai,cl(K
∗)⊤Pi + C⊤i,clCi,cl < 0,

Pi − γI(n−1)nx < 0,
(2.15)

where Ai,cl(K
∗) = (Ai(K

∗
−i) + BiK∗

i Fi), Ci,cl = (Ci + DiK
∗
i Fi) are respectively the closed-

loop matrices for χi and zi.

Proof :

Lemma 1 in [Iwasaki et al., 1994] states that, when K∗
i is given and ∥χi(0)∥ ≤ 1 is

known, the following are equivalent

1. The gain K∗
i stabilizes the system (2.11)-(2.12) and yields the quadratic cost JSE

i (K∗
i , K

∗
−i) <

γ

2. There exists Pi > 0 such that

PiAi,cl(K
∗) +Ai,cl(K

∗)⊤Pi + C⊤i,clCi,cl < 0, and ∥Pi∥ < γ. (2.16)

We develop the proof in two steps. First we prove the direct implication, then we show the
inverse relation.

Proof of 1)⇒ 2)

Let K∗ be an SE of G that stabilizes (2.11)-(2.12) for all i ∈ V . By Definition 14, for all
i ∈ V , one has K∗

i ∈ fi(K
∗
−i) yielding JSE(K∗

i , K
∗
−i) < γ, for all i ∈ V . We rewrite (2.11)-

(2.12) in closed-loop form as
χ̇i = Ai,cl(K

∗)χi,

with the cost given by

JSE
i =

∫ +∞

0

∥Ci,clχi(t)∥2 dt < γ,

for all i ∈ V . Since K∗ is given, the matrices Ai,cl(K
∗) are fixed and known. From Remark

4, we have ∥χi(0)∥ ≤ 1 and applying Lemma 1 in [Iwasaki et al., 1994] one obtains the
existence of matrices Pi satisfying (3.56).

Proof of 2)⇒ 1)
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Suppose now that (3.56) holds for all i ∈ V . Again, from Lemma 1 in [Iwasaki et al.,
1994], one has that K∗

i stabilizes (2.11)-(2.12) and JSE(K∗
i , K

∗
−i) < γ for all i ∈ V . Therefore,

K∗
i ∈ fi(K

∗
−i), for all i ∈ V which means that K∗ is an SE of G given a γ. ■

To summarize, we have provided LMIs conditions to test if a given K is an SE of the
game G for the performance bound γ. The given K is a satisfaction equilibrium of G if and
only if it satisfies the condition 2) for all i ∈ V . However, the inability to find matrices Pi

does not imply that they do not exist, this may arise due to numerical issues with the LMI
solver. Finally, for a given γ, K may not be unique and it is possible to have several gains
which are satisfaction equilibria. Therefore, we define the set of satisfaction equilibria as

K∗ = {K∗ : ∀i ∈ V , K∗
i ∈ fi(K

∗
−i)}. (2.17)

In the next subsection, we provide a method which allows us to synthesize the gains for a
given thereshold γ.

2.3.3 Synthesis of a gain profile K ∈ K∗

In this section, we first present conditions that allow us to generate the satisfaction
function fi(K−i) based on the results in [Iwasaki et al., 1994]. In the following proposition,
for a given set of gains K−i, we find a synchronizing gain Ki under certain conditions as
described below.

Proposition 4 (Based on Theorem 1 in [Iwasaki et al., 1994]). Let the set of gains K−i be given.
Consider the sets

Xi(K−i) :=

X ∈ R(N−1).nx×(N−1).nx :

[
Bi
Di

]⊥ [
AiX +XA⊤

i XC⊤i
CiX −I(N−1).nx

][
Bi
Di

]⊥⊤

< 0

 ,

Yi(K−i) :=
{
Y ∈ R(N−1).nx×(N−1).nx : F⊤⊥

i (YAi +A⊤
i Y + C⊤i Ci)F⊤⊥⊤

i < 0, Y − γI(N−1).nx < 0
}
.

(2.18)

Under Assumption 1, if no P > 0 exists such that P−1 ∈ Xi(K−i) and P ∈ Yi(K−i), then
fi(K−i) = ∅, which implies that we can not find a suitable Ki such that (Ki, K−i) is a satisfaction
equilibrium. Otherwise, the satisfaction function for the game G is given by

fi(K−i) =
{
−ρiB⊤

i Φi(K−i)C ⊤
i (CiΦi(K−i)C ⊤

i )−1 + ρiSi(K−i)
1/2Mi(CiΦ(K−i)C ⊤

i )−1/2 :

P > 0, P−1 ∈X (K−i), P ∈ Y (K−i), ∥Mi∥ < 1} ,
(2.19)
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where

Bi :=

[
PBi
Di

]
, Ci :=

[
Fi 0

]
, Qi(K−i) :=

[
PAi(K−i) +Ai(K−i)

⊤P C⊤i
Ci −I(N−1).nx

]
,

Φi(K−i) := (ρiBiB⊤
i −Qi(K−i))

−1, Si(K−i) = ρiInx −B⊤
i [Φi − ΦiC ⊤(CiΦiC ⊤

i )−1CiΦi]Bi,

ρi(K−i) := ρmin(K−i) + p, ρi,min(K−i) := max{0, λmax[B
+
i (Qi(K−i)−

Qi(K−i)B⊥⊤
i (B⊥

i Qi(K−i)B⊥⊤
i )−1B⊥

i Qi(K−i))B
+⊤
i ]},

with p ∈ R≥0 an arbitrary non-negative scalar.

Proof : By definition of the satisfaction function, we have fi(K−i) = {Ki|JSE
i (Ki, K−i) <

γ}. Therefore, for a given K−i, the subset fi is the set of gains resulting in a cost bounded
by γ.

Moreover, we know that the Theorem 1 in [Iwasaki et al., 1994] provides conditions on
the existence of a stabilizing static output feedback gain such that the LQ cost is bounded
by a given factor γ, when χi(0) = Ww0 with ||w0|| = 1. From Remark 4, we have that
∥χi(0)∥ ≤ 1.

Then, once we rewrite the synchronization problem as (2.11) and (2.12), for a given K−i,
finding Ki which results in JSE

i (Ki, K−i) < γ is transformed into a problem of static output
feedback with a bounded LQ cost.

Since we take ∥Ww0∥ ≤ 1, the condition W⊤YW − γI < 0 as required in [Iwasaki et al.,
1994] is satisfied if Y − γI(N−1).nx < 0. Applying the theorem, we get that the following are
equivalent

• There exists Ki stabilizing (2.11)-(2.12) such that JSE
i (Ki, K−i) < γ,

• There exists P > 0 such that P−1 ∈ X (K−i) and P ∈ Y (K−i) and Ki is given by
−ρB⊤Φ(K−i)C ⊤(CΦ(K−i)C ⊤)−1 + ρS(K−i)

1/2Mi(CΦ(K−i)C ⊤)−1/2.

Therefore, if no such P exists, the satisfaction function is the empty-set. Otherwise, it can
be written as in (2.19). ■

Remark 6. It is noteworthy that the dynamicsAi depends on the set of gains K−i. Further-
more, the matrix Mi is a parameter in the algorithm chosen such that ∥Mi∥ < 1.

2.3.4 Symmetric case

If all agents have the same structure of yi and the dynamics are identical even if the
indices are permuted the computation load is reduced by a factor of N. This type of graphs
is called in the literature prime w.r.t. the modular decomposition, see [Brandstadt et al.,
1999]. This means that the agents react the same way, so it allows us to look for a symmetric
satisfaction equilibrium, i.e. we look for K0 such that (1⊤

N ⊗ K0) ∈ K. For a given K0, we
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Chapter 2. Decentralized control for guaranteed individual costs

can apply Proposition 3 to get that (1⊤
N ⊗ K0) ∈ K∗ if and only if there exists P > 0 such

that

PAi,cl(1
⊤
N ⊗K0) +Ai,cl(1

⊤
N ⊗K0)

⊤P + C⊤i,clCi,cl < 0 and ∥P∥ < γ. (2.20)

for any i ∈ V . Due to symmetry, we have Ai,cl = Aj,cl and Ci,cl = Cj,cl for any i, j ∈
V . Therefore instead of having to solve N LMIs, we just need to solve one. We can also
simplify the synthesis with the following result.

Corollary 1. Let the network be prime w.r.t. the modular decomposition. Under Assumption 1, an
SE for dynamics (2.1) with individual costs (2.2) is given by (1⊤

N ⊗K0) if and only if there exists
P > 0, ||M || < 1 such that

P−1 ∈Xi(1
⊤
N−1 ⊗K0), P ∈ Yi(1

⊤
N−1 ⊗K0)

K0 = −ρiB⊤
i Φi(1

⊤
N−1 ⊗K0)C ⊤

i (CiΦi(1
⊤
N−1 ⊗K0)C ⊤

i )−1

+ρiSi(1
⊤
N−1 ⊗K0)

1/2M(CiΦi(1
⊤
N−1 ⊗K0)C ⊤

i )−1/2

(2.21)

with Xi,Yi,Ci,Φi, Si, ρ as defined in Proposition 4, for all i ∈ V .

Proof : The above result is obtained by directly applying Proposition 4 and by exploi-
ting the fact that Ki = K0 and K−i = (1⊤

n−1 ⊗K0). Additionally, the closed-loop dynamics
are identical for all i ∈ V . ■

Corollary 1 implies that for K0 can be found as a solution to a fixed point equation. The
Algorithm 1 developed in the next Section 2.3.5, can be used in a simpler manner to find a
suitable K0 by fixing all agents outside an arbitrary agent i to have some gain K0 and then
finding Ki using Proposition 4. Then, K0 is updated to the Ki and the process is repeated
until (1⊤

N ⊗K0) ∈ K∗.
The main motivation for considering this special case is that the number of iterations

does not scale with N as it does in the general case.

2.3.5 Sequential Satisfactory Response Algorithm (SSRA)

How does this algorithm work?

In [Iwasaki et al., 1994], the Section 4 provides a scaled min-max algorithm which ge-
nerates a matrix P > 0 satisfying the conditions in Proposition 4, if the problem has a
solution. It is noteworthy that our design remains centralized although its implementation
is distributed. Indeed, in order to find a K which satisfies Proposition 3, we need to find
the gains Ki for all agents.

To do that, we propose an algorithm which we call the Sequential Satisfaction Response
(SSR) in order to achieve this task. This iterative algorithm is inspired by the sequential best
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2.3. Satisfactory control design

response algorithm that is commonly found in the literature on game theory [Lasaulce and
Tembine, 2011]. In contrast with the classical best response algorithm where the actions
of players must converge over iterations, our algorithm only needs to satisfy K ∈ K∗ to
succeed.

• Step 0 : (Initialization)
Set k = 1, the maximum number of iterations kmax and
K0 = (K0

1 , ..., K
0
N) synchronizing the system.

• Step 1 : (Check stopping criterion)
If the N LMIs in Proposition 3 are satisfied, then stop.
OR
If k > kmax, then stop.

• Step 2 :
If Step 1 not satisfied, then compute the gain Kk

i given
Kk−1

−i according to Proposition 4. Solve the two convex
optimizations problems with the scaled min/max algorithm.

• Step 3 : Set k = (k mod N) + 1 and return to Step 1.

Algorithm 1: Sequential satisfaction response

The Algorithm 1 applies the scaled min-max algorithm in [Iwasaki et al., 1994] repea-
tedly to find P > 0 satisfying the conditions in Proposition 4 given K−i. This results in a
gain for player i which satisfies cost requirement. The player index is then updated to the
next player and this procedure is repeated until K is a satisfaction equilibrium. The first
player index i is chosen arbitrarily.

Even if the algorithm fails to find a gain for a player i, it does not immediately stop
and the player index is updated. However, if all N players consecutively fail to find a
gain Ki, the algorithm is stopped. Indeed, it is possible that the algorithm never stops as
only a certain number of players are satisfied with this set cycling or not changing. We
have no theoretical guarantee that this algorithm will find a satisfaction equilibrium even
if |K∗| > 0. In case of the algorithm failing, a larger γ may be considered in order to find a
satisfaction equilibrium for the game with the larger γ. This equilibrium may then be used
as input for initializing the algorithm with the smaller γ.

Future works will explore improving the algorithm by adapting γ, but theoretical re-
sults are hard to obtain due to the conditions for finding the gains for just one player
being non-convex and requiring the min-max algorithm. This difficulty is inherited from
the problem of static output feedback design for linear systems and is not related to the
multi-agent systems.
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Chapter 2. Decentralized control for guaranteed individual costs

What is the algorithm complexity?

Consider a network of N agents with their respective dynamics. Our aim is to design a
synchronizing gain profile K = (K1, ..., KN) satisfying the cost constraints (2.14).

In Step 1, we first check N LMIs. At Step 2, we compute in the best case at least 2N
gains Kk

i . To solve the convex optimization problems, we use the SeDuMi software. The
complexity of solving an optimization problem is of order O(N4.5) [Labit et al., 2002]. In
our case the matrix size of LMIs during Step 2 depends also on the number of agents, i.e.
N and the computational effort increases with increase in N . Since we solve at least 2N
LMI, using SeDuMi the complexity of the Algorithm 1 is O(2N.N4.5). It is also important
to note that the complexity of the algorithm depends on the choice of the solver.

For large scale networks, obtaining the gains via the general algorithm may be compu-
tationally infeasible as both the system matrix dimensions and the iterations scale with N ,
or the algorithm will require significant resources in terms of memory and time.
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2.4 Analysis over complete graphs

Since designing the control ui is equivalent to choose a proper gain Ki, we apply the NE
concept to select a gain profile K∗ for the whole network achieving the synchronization.
Similarly to the Section 2.2-2.3, we first define the strategic game and perform a change of
variables. Then, we provide an analytical result deriving from the LQR control.

Nash Equilibrium approach

Based on the Chapter 1, the strategy game in standard form related to the cost (2.3) is
defined by the triplet as follows

G =
(
V , {Ki}i∈V ,

{
JNE
i

}
i∈V

)
, (2.22)

where V = {1, ..., N} is the set of players, Ki = Rnu×nx represents to the set of gains Ki

applied by player i and JNE
i corresponds to (2.3). For K = K1 ×K2 × ...×KN , we say that

the profile K∗ ∈ K is a Nash equilibrium to the game (2.22) if

∀i ∈ V ,∀Ki ∈ Ki, J
NE
i (K∗

i , K
∗
−i) ≤ JNE

i (Ki, K
∗
−i). (2.23)

For this game, we recall that if a player unilaterally plays an action different from the
Nash one while the remaining players maintain their Nash actions, then the player in ques-
tion will inevitably increase his cost it aims to reduce. The players don’t want anymore to
satisfy their individual constraints but they desire to optimize their own costs.

In an all-to-all connection graph, each agent is aware of all the other agents and due
to the symmetry in the communication structure, their actions might be similar. Thus, we
assume that one possible equilibrium is when all the players apply the same best response,
Definition 13.

Assumption 2. Each agent applies a strategy K∗ such that it is the best response to all the
other agents also applying K∗.

In this case, the Nash equilibrium will be the same for every agents and will correspond
to the optimal gain.
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Change of variables and optimal control design

On the purpose of studying the synchronization, we introduce an error variable δi cor-
responding to each agent i as

δi(t) =
∑

j∈N int
i

xi(t)− xj(t), ∀i ∈ V . (2.24)

Then, the error dynamics derived from (2.1)-(2.24) is described by

δ̇i(t) = Aδi(t) + (N − 1)Bui(t)−
∑

j∈N int
i

Buj(t). (2.25)

Under Assumption 2 and due to the complete topology, the last term (2.25) can be written
as ∑

j∈N int
i

Buj(t) = BK∗
∑

j∈N int
i

xi(t)− xj(t) = −ui(t). (2.26)

Therefore, the error dynamics (2.25) takes the following form,

δ̇i(t) = Aδi(t) +NBui(t). (2.27)

Now, we recast the cost (2.3) into the error variable δi as follows

JNE
i =

∫ +∞

t0

δ⊤i (t)δi(t) + u⊤
i (t)Rui(t) dt, ∀i ∈ V , (2.28)

where R is a positive definite matrix.

Proposition 5. Consider any complete graph of N agents and assume that the pair (A,NB) is
stabilizable. If there exists an equilibrium such that Assumption 2 holds, then the gain expression
is given by

K∗ = NR−1B⊤P ∗, (2.29)

where the positive definite matrix P ∗ is the solution of the Algebraic Riccati Equation (ARE)

P ∗A+ A⊤P ∗ −N2P ∗BR−1B⊤P ∗ + Inx = 0. (2.30)

Furthermore, the feedback control with the gain (2.29) stabilizes the error system (2.27) while opti-
mizing the NE cost (2.28).

Although the requirement of a complete graph is restrictive, Proposition 5 has the ad-
vantage of finding an NE by just solving a Riccati equation, and it is computationally effi-
cient even for large graphs. Thus, this motivates us to consider clustered networks where
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the control inside clusters is designed by using Riccati equations while the control between
clusters are based on the results from Section 2.3.

2.5 Numerical illustrations

In this section, we provide some numerical examples to illustrate the effectiveness of
the algorithm proposed in this manuscript. Without any loss of generality, we consider
only the following simple agent dynamics (2.1) with A = 1, B = 1 and Ri = 1 for all
i. We use K∗

i and JSE∗
i for the control gains and the corresponding costs obtained using

the proposed strategy. On the other hand, Ko
i and JSEo

i are the control gains and the cor-
responding costs obtained using the strategy in [Rejeb et al., 2018]. For both graphs, we
provide the a posteriori values of cost functions obtained by implementing the controller
gains profile K. The costs are computed by using the initial condition x0 and the state of
the network. Through the second graph, we show that the constraints are still satisfied
independently of the initial conditions.

2.5.1 Ring directed graph

Let us first consider a simple ring directed graph with 5 agents described by the follo-
wing Laplacian matrix

L =


1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1
−1 0 0 0 1

 (2.31)

For the simulation, we use γ = 1.3 and the results of the proposed algorithm are summa-
rized in the table below.

1 2 3 4 5
xi(0) 0.67 0.67 0.31 0.01 0.02
K∗

i 3.54 3.54 3.52 3.51 3.60
JSE∗
i 0.46 0.64 0.33 0.51 0.95

We note that, due to the regularity of the graph the five gains are quite similar and the
costs are bounded by γ. The synchronizing trajectories of the 5 agents are plotted in Fig.
2.1 and the corresponding control inputs are in Fig. 2.2.
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FIGURE 2.1 – Trajectories of the agents for the ring directed graph given by (2.31).

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

FIGURE 2.2 – Controls ui for the ring directed graph given by (2.31).

2.5.2 Undirected graph : comparison with [Rejeb et al., 2018]

In the following we consider an undirected graph with 8 agents in order to compare
our design strategy with the one proposed in [Rejeb et al., 2018]. It is noteworthy that
[Rejeb et al., 2018] proposes a decentralized control achieving synchronization with global
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performance guarantees. The control is applied to singularly perturbed multi-agent sys-
tems interacting over networks represented by undirected fixed graphs. It is imposed that
all agents applies the same control gain. Moreover, the synchronizing control design is re-
duced to a stabilizing control design for an uncertain system with bounded uncertainties.
These uncertainties are related to the bounds on the maximum and minimum (non-zero)
eigenvalues of the Laplacian. Solving a Riccati equation, one finds a common gain for all
agents ensuring that the global cost is upper-bounded.

In order to highlight the improvements that we can obtain by using the approach pro-
posed, in this simulation, we consider a graph in which the agent centralities are very
different. For the example above, the controller gains are almost similar meaning that the
strategy proposed in [Rejeb et al., 2018] might provide good results. However if the undi-
rected graph G is associated to the following Laplacian

L =



7 −1 −1 −1 −1 −1 −1 −1
−1 2 0 0 0 0 0 −1
−1 0 2 0 0 0 0 −1
−1 0 0 2 0 0 0 −1
−1 0 0 0 2 0 0 −1
−1 0 0 0 0 2 0 −1
−1 0 0 0 0 0 2 −1
−1 −1 −1 −1 −1 −1 −1 7


, (2.32)

one has no reason to apply the same controller gain to all the agents. For the simulation, we
use γ = 0.6 and the results of both strategies are summarized in the table below. We test 3
different initial conditions by varying x0. We use K∗ = (0.39, 1.30, 1.30, 1.30, 1.30, 1.30, 1.30, 0.39)

found using Algorithm 1, and Ko = (3.09, 3.09, 3.09, 3.09, 3.09, 3.09, 3.09, 3.09) based on the
results in [Rejeb et al., 2018].

γ = 0.6 1 2 3 4 5 6 7 8
Case 1 xi(0) 0.50 0.1 0.4 0.1 0.4 0.4 0.1 0.04

JSE∗
i 0.41 0.13 0.10 0.13 0.10 0.10 0.13 0.35

JSEo
i 1.17 0.14 0.11 0.14 0.11 0.11 0.14 0.88

Case 2 xi(0) 0.04 0.53 0.04 0.46 0.04 0.46 0.04 0.53
JSE∗
i 0.35 0.21 0.18 0.12 0.18 0.12 0.18 0.40

JSEo
i 0.80 0.27 0.21 0.15 0.21 0.15 0.21 1.05

Case 3 xi(0) 0.44 0.47 0.03 0.07 0.02 0.54 0.06 0.54
JSE∗
i 0.16 0.05 0.33 0.26 0.35 0.10 0.28 0.29

JSEo
i 0.45 0.15 0.34 0.26 0.36 0.26 0.28 1.10

TABLE 2.1 – Undirected graph : Individual cost JSE
i for different initial conditions, γ = 0.6

In Table 2.1, JSE∗
i and JSEo

i are respectively the costs incurred by agent i using our stra-
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tegy and the one in [Rejeb et al., 2018]. Since [Rejeb et al., 2018] bounds a global cost, we can
compare their global cost to a total cost evaluated as nγ. The guaranteed overall bounds
are nγ = 4.8, for our strategy and 10.8 for the one in [Rejeb et al., 2018]. As seen from the
table, each of individual costs are bounded by γ for several possible initial conditions.

2.6 Conclusion

We study the problem of static-output feedback synchronization in a multi-agent sys-
tem, which guarantees individual performance bounds. This problem is modeled as a sa-
tisfaction game and we seek gains that are in satisfaction equilibrium, i.e. the cost associa-
ted to each agent is upper-bounded by a given γ. In this context, we provide conditions
in the form of LMIs which can verify if a given set of gains are in satisfaction equilibrium.
We provide a method to generate the gain for a certain agent when the gains for the other
agents are known and this is used in an iterative algorithm which can synthesize a satis-
faction equilibrium. Numerical examples illustrate our algorithm and compare our results
with a previous result found in the literature.

Unfortunately, solving the LMIs using SeDuMi yields a complexity of order O(2N.N4.5).
Even though the complexity of the algorithm varies with the choice of the solver, it is
mainly scaled with the number of agents N . Thus, computing the gains via the general
algorithm may be computationally intractable in some cases. For this reason, we aim to
provide a computational efficient control algorithm for large-scale networks in the next
chapter.
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Chapter 3. Distributed composite control for clustered networks

FIGURE 3.1 – A network partitioned into 4 clusters represented by the circles. The blue
points corresponds to the agents while the black lines are the links between them.

This chapter considers clustered networks, in which connections inside the cluster are
dense and between clusters are sparse [Holland and Leinhardt, 1971; Watts and Strogatz,
1998]. We address the problem of distributed composite control design by exploiting the
network structure. The objective is to provide a computationally efficient method to de-
sign control strategies. At the same time, we also guarantee that the cost of each cluster is
bounded by a given threshold when applying the proposed control law. By separating the
control design and the cost optimization to the cluster-level, the approach aims to signifi-
cantly reduce the problem’s complexity and the computational effort necessary to obtain
the controller.

In a clustered network, the interconnections are dense inside the clusters and sparse
between them. This results in a fast convergence inside the cluster towards a local agree-
ment and then slowly towards the global consensus. The approach relies on this net-
work property to divide the control design problem into computationally tractable sub-
problems.

Provided that connections are much denser inside clusters than between clusters, we
show that the network exhibits a slow (inter-cluster) and a fast (intra-cluster) dynamics
that can be decoupled, via Time-Scale Separation (TSS) techniques. The fast variables re-
present the synchronization error inside the clusters whereas the slow variables represent
the aggregate behavior of the agent states within each cluster. The long term behavior of
the network depends on this slow dynamics.

Decoupling these dynamics, we can approximate the behavior of the original system
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while independently designing the controllers for the intra and inter clusters synchroniza-
tion. For each agent present in the network, we define a composite control as a sum of the
internal and external control. The two controls are designed independently at the cluster-
level and employ a simplified model that significantly reduces the computational load and
the control design complexity. The internal control, related to the fast dynamics, achieves
the local consensus inside the clusters while minimizing a local cost. As the connections
are dense inside the clusters, the internal control design is described analytically assuming
that clusters are characterized by all-to-all (complete topology) connections. This assump-
tion is only made for the design purpose and it is not required to be satisfied in practice.
As for the external control, it synchronizes all the clusters employing a satisfaction equili-
brium technique in Chapter 2. The only requirement for the global synchronization is the
connectivity of the graph representing the inter-cluster network.

Finally, applying the results from Singular Perturbation Theory (SPT) [Kokotović et al.,
1999], we show that the closed-loop response due to the composite control is close to that
of the approximate models. In addition to the distributed control design, we also provide
an approximation of the cluster cost after a short period of time required to synchronize
the agents inside clusters.

The chapter is organized as follows. The model with the objectives are stated in Sec-
tion II. The time-scale modeling is described in detail in Section III. Then, the internal and
external design procedures are developed in Section IV. In Section V, we provide an ap-
proximation of the cluster cost. Finally, numerical results are presented in Section VI before
concluding in Section VII. To make the chapter easily readable, some proofs are included
in the Appendix.

3.1 Problem Statement

3.1.1 System Model

Consider a network of N agents, where the interactions are described by a graph G =

(V , E), with V = {1, 2, ..., N} and E ⊂ V × V . We assume the network to be partitioned
into m non-empty clusters C1, . . . , Cm ⊂ V . Let us denote byM = {1, 2, . . . ,m}, the set of
clusters while nk represents the cardinality of the cluster Ck such that N =

∑m
k=1 nk.

Each agent in the network is identified by a couple (k, i) ∈ Ck, where k ∈ M refers to
the cluster Ck and i = 1, ..., nk the index of the agent. The state dynamics xk,i of an agent
(k, i) ∈ Ck is given by

ẋk,i(t) = Axk,i(t) +Buk,i(t), (3.1)

where xk,i ∈ Rnx , uk,i ∈ Rnu , A ∈ Rnx×nx and B ∈ Rnx×nu .
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For each cluster Ck, let xk(t) = (xk,1(t), . . . , xk,nk
(t)) ∈ Rnk.nx denote the vector collecting

the states of the cluster and uk(t) = (uk,1(t), . . . , uk,nk
(t)) ∈ Rnk.nu the cluster control. Thus,

the cluster dynamics takes the following form

ẋk(t) = (Ink
⊗ A)xk(t) + (Ink

⊗B)uk(t), ∀k ∈M. (3.2)

The agents in the network may have connections with other agents in the same or different
clusters. Throughout the Chapter 3, an internal connection is any connection between two
agents from the same cluster, and an external connection refers to any connection between
two agents from different clusters.

3.1.2 Objective

The main objective is to design a distributed control synchronizing the network with a
sub-optimal cost. The network is said to be asymptotically synchronized when lim

t→+∞
∥xk,i(t)−

xl,j(t)∥ = 0, for all (k, i) ∈ Ck, (l, j) ∈ Cl and k, l ∈M.

Pertaining to our control design, we propose an individual composite control for an
agent (k, i) ∈ Ck and k ∈M, as

uk,i(t) = uint
k,i (t) + uext

k,i (t), (3.3)

where 
uint
k,i (t) = −Kint

k

∑
(k,j)∈Nk,i

xk,i(t)− xk,j(t),

uext
k,i (t) = −Kext

k

∑
(l,p)∈Nk,i

xk,i(t)− xl,p(t).
(3.4)

In other words, we apply a common internal gain for all agent’s to synchronize with other
agents in the same cluster and a common external gain to synchronize with external agents.
The notation (k, j) ∈ Nk,i represents the neighbors of the agent (k, i) in the same cluster Ck
whereas (l, p) ∈ Nk,i indicates the neighbors belonging to a different cluster, with (l, p) ̸=
(k, i). Thus, the composite cluster control is

uk(t) = uint
k (t) + uext

k (t), ∀k ∈M, (3.5)

where uint
k (t) = (uint

k,1(t), ..., u
int
k,nk

(t)) and uext
k (t) = (uext

k,1(t), ..., u
ext
k,nk

(t)) correspond to the
internal and external cluster control, respectively.

54



3.1. Problem Statement

The cluster cost Jk associated with the cluster Ck, for k ∈M, is defined as

Jk =

∫ +∞

0

x⊤
k (t)(Lint

k ⊗ Inx)xk(t) + x⊤(t)(Lext
k ⊗ Inx)x(t) + u⊤

k (t)Rkuk(t) dt, (3.6)

where the internal Laplacian Lint
k ∈ Rnk×nk captures the connections inside Ck, and the

external Laplacian Lext
k ∈ RN×N expresses the external connections between Ck and the

neighboring clusters.

Remark 7. The following vector xk = (xk,1, . . . , xk,nk
) ∈ Rnk.nx representing the states of the

cluster Ck should not be confused with the previous form xi ∈ Rnx referring to the state of
the agent i ∈ V , in Chapter 2. The same applies to the various controls. The cost Jk is now a
group cost and is assimilated to the cluster Ck, unlike the individual cost Ji associated with
the agent i.

By substituting the individual control (3.4) into (3.6), we recast the cost (3.6) as a sum
of the internal and external cost, and a composite term as

Jk =

∫ +∞

0

x⊤
k (t)(Lint

k ⊗ Inx)xk(t) + uint
k

⊤
(t)(Ink

⊗Rk)u
int
k (t) dt︸ ︷︷ ︸

Jint
k

+

∫ +∞

0

x⊤(t)(Lext
k ⊗ Inx)x(t) + uext

k
⊤
(t)(Ink

⊗Rk)u
ext
k (t) dt︸ ︷︷ ︸

Jext
k

+ 2

∫ +∞

0

uext
k

⊤
(t)(Ink

⊗Rk)u
int
k (t) dt︸ ︷︷ ︸

Jcross
k

.

(3.7)

The internal control uint
k represents the effort required to the local agreement, whereas the

external control uext
k is the energy necessary to synchronize the agents between the clusters.

In order to remove the crossed term J cross
k and to reduce the optimization of (3.6) to the

optimization of the internal and external cost only, we consider the following inequality

Jk ≤ 2(J int
k + Jext

k ). (3.8)

Thus, the main goal is to decouple the control design (3.5) such that the internal control de-
sign is related to the minimization of the internal cost J int

k , and the external control is desi-
gned by imposing a prescribed satisfactory level on the external cost Jext

k . Additionally, we
prove that the cluster cost Jk(T,+∞) is approximated only by external cost Jext

k (T,+∞),
where T > 0 is a finite time after which the agents inside the clusters are synchronized.
The notation Jk(T,+∞) stands for the cost evaluated during the time interval [T,+∞].
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3.2 Time-Scale Modeling

In this section, we provide a procedure to decouple the closed-loop network dyna-
mics into two subsystems, evolving on different time scales. First, we perform a coordinate
transformation to exhibit the collective dynamics of the network : the average and the syn-
chronization error dynamics. Then, we apply the TSS techniques to decouple the collective
dynamics into slow and fast subsystems. In two time-scale, the slow variable corresponds
to the average while the fast variable to the synchronization error.

For further analysis, let us denote the Laplacian of the network by L ∈ RN×N such
that L = Lint +Lext, [Chow and Kokotović, 1985]. The internal Laplacian of the network is
defined asLint = diag(Lint

1 , ...,Lint
m ) and the external Laplacian of networkLext corresponds

to the connections between agents from different clusters.

3.2.1 Coordinate transformation

Following [Panteley and Loria, 2017], [Adhikari et al., 2021], we introduce the coordi-
nate transformation for the cluster Ck as

xk(t) = (T⊤
k ⊗ Inx)xk(t), ∀k ∈M, (3.9)

where the orthonormal matrix Tk, i.e. T⊤
k Tk = TkT

⊤
k = Ink

, is obtained by a Jordan de-
composition of the symmetric Laplacian Lint

k . Referring to the algebraic properties of the
Laplacian matrix in Chapter 1, it satisfies

Lint
k = Tk

[
0 0

0 Λint
k

]
T⊤
k , ∀k ∈M, (3.10)

where Λint
k = diag(λint

k,2, . . . , λ
int
k,nk

) ∈ R(nk−1)×(nk−1) collects the nk − 1 eigenvalues of Lint
k .

Moreover, the matrix Tk is expressed as

Tk =
[
vk,1 Vk

]
, ∀k ∈M, (3.11)

where v⊤k,1 = 1√
nk
1
⊤
nk

is the eigenvector associated with the 0 eigenvalue and the matrix
Vk ∈ Rnk×(nk−1) is constituted of the eigenvectors corresponding to the nonzero eigenvalues
of Lint

k . Furthermore, it can be verified that,

v⊤k,1Vk = 0 and V ⊤
k Vk = Ink−1.
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According to (3.9) and (3.11), the collective state of each cluster is

xk(t) =

[
yk(t)

ξk(t)

]
: =

[(
v⊤k,1 ⊗ Inx

)
xk(t)

(V ⊤
k ⊗ Inx)xk(t)

]
=

[
H⊤

k xk(t)

Z⊤
k xk(t)

]
, ∀k ∈M (3.12)

where H⊤
k = (v⊤k,1 ⊗ Inx) and Z⊤

k = (V ⊤
k ⊗ Inx). The first component yk√

nk
is regarded as

an average of the respective agents’ states in the cluster Ck. As for the second component,
ξk(t) = (ξk,1(t), . . . , ξk,nk

(t)) ∈ R(nk−1).nx is the projection of the synchronization error,

ek(t) = xk(t)− (vk,1 ⊗ Inx)yk(t), (3.13)

onto the subspace orthogonal to vk,1, i.e. ek(t) = Zkξk(t).

Thanks to (3.12) and (3.13), the vector xk is expressed in terms of yk and ξk as follows,

xk(t) = Hkyk(t) + Zkξk(t), ∀k ∈M. (3.14)

Finally, using the transformation (3.9) on the overall network, the compact form is{
y(t) = H⊤x(t) and ξ(t) = Z⊤x(t),

x(t) = Hy(t) + Zξ(t),
(3.15)

where x(t) = (x1(t), . . . , xm(t)) ∈ RN.nx is the vector collecting the states, y(t) = (y1(t), . . . , ym(t)) ∈
Rm.nx represents the scaled average and ξ(t) = (ξ1(t), . . . , ξm(t)) ∈ R(N−m).nx the synchroni-
zation error. We also denote H = diag(H1, ..., Hm) and Z = diag(Z1, ..., Zm).

3.2.2 Collective dynamics

Gathering the cluster dynamics (3.2) results in the network dynamics as follows

ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗B)u(t), (3.16)

where u(t) = (u1(t), . . . , um(t)) ∈ RN.nu . Substituting the control (3.5) into (3.16), it yields
the closed-loop dynamics

ẋ(t) =
[
(IN ⊗ A)− (IN ⊗B)Kint(Lint ⊗ Inx)− (IN ⊗B)Kext(Lext ⊗ Inx)

]
x(t), (3.17)

where {
Kint = diag((In1 ⊗Kint

1 ), . . . , (Inm ⊗Kint
m )),

Kext = diag((In1 ⊗Kext
1 ), . . . , (Inm ⊗Kext

m )).
(3.18)
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Finally, using (3.15) and (3.17), the collective dynamics is recasted as follows{
ẏ(t) = Ā11y(t) + Ā12ξ(t),

ξ̇(t) = Ā21y(t) + (Ā1
22 + Ā2

22)ξ(t),
(3.19)

where 

Ā11 = (Im ⊗ A)−HT (IN ⊗B)Kext(Lext ⊗ Inx)H,

Ā12 = −H⊤(IN ⊗B)Kext(Lext ⊗ Inx)Z,

Ā21 = −Z⊤(IN ⊗B)Kext(Lext ⊗ Inx)H,

Ā1
22 = −Z⊤(IN ⊗B)Kext(Lext ⊗ Inx)Z,

Ā2
22 = (IN−m ⊗ A)− (IN−m ⊗B)Kint

N−m(Λ
int ⊗ Inx),

Kint
N−m = diag((In1−1 ⊗Kint

1 ), . . . , (Inm−1 ⊗Kint
m )),

Λint = diag(Λint
1 , . . . ,Λint

m ).

(3.20)

3.2.3 Time-Scale Separation

To study the time-scale behavior and analyze the synchronizing behavior, we define
the network parameters as follows

µext = ∥(IN ⊗B)Kext(Lext ⊗ Inx)∥,

µint = min
k∈M
∥(Λint

k ⊗BKint
k )∥,

ϵ =
µext

µint
.

(3.21)

The network parameter ϵ is the ratio of the strength of the controls between and within the
clusters. A small ϵ means that the dense connections inside the cluster coupled with the
internal control is stronger that the sparse connections between the clusters coupled with
the external control. The role of the controllers is not to change the strength of the com-
munications between and within the clusters. In term of structure, a small ϵ is equivalent
to a sparse connections between the clusters and a dense connections within them. This
ratio should be small enough compare to 1 for the two time-scale separation to occur, it is
a standard assumption in SPT. The norm ∥.∥ in (3.21) corresponds the 2-norm for a matrix.

In the absence of agents’ internal dynamics, the authors in [Chow and Kokotović, 1985],
[Martin et al., 2016], are able to express the closed-loop dynamics (3.17) into a Standard
Singular Perturbation Form (SSPF). Upon analyzing the orders of the state matrices of the
collective dynamics (3.19), it appears that the closed-loop network dynamics cannot be
expressed in SSPF without the knowledge of the state matrix A.
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Assumption 3. The state matrix A satisfies the following

∥A∥ = O(µext). (3.22)

The assumption on the order of the matrix A is necessary for representing the dynamics
(3.19) in SSPF. However, we note that since µext depends on Kext, we can always choose
Kext sufficiently large such that the assumption 3 is satisfied. In the following lemma, we
analyze the order of the matrices in equation

Lemma 6. Under Assumption 3, the matrices in (3.20) satisfy the following conditions,

• ∥Ā11∥, ∥Ā12∥, ∥Ā21∥, ∥Ā1
22∥ are of order O(ϵµint)

• ∥Ā2
22∥ is of order O(µint)

Proof : From [Laub, 2005], we know that ∥(A⊗B)∥ = ∥A∥.∥B∥ for any matrix A ∈ Rn×n,
B ∈ Rm×m. In addition, we have ∥H∥ = ∥H⊤∥ = 1 and ∥Z∥ = ∥Z⊤∥ = 1.

We only prove the order for the matrices Ā11, Ā12 and Ā2
22. From the Assumption 3,

there exists a strictly positive constant c1 ∈ R such that ∥A∥ = c1µ
ext. It follows that,

∥Ā11∥ = ∥(Im ⊗ A)−HT (In ⊗B)Kext(Lext ⊗ Inx)H∥

≤ ∥A∥+ ∥HT∥.∥(IN ⊗B)Kext(Lext ⊗ Inx)∥.∥H∥

= (c1 + 1)µext

= (c1 + 1)ϵµint.

(3.23)

The bounds of Ā12, Ā21 and Ā1
22 are derived similarly. That is why we only prove for

Ā12,
∥Ā12∥ = ∥H⊤(IN ⊗B)Kext(Lext ⊗ Inx)Z∥

= ∥H⊤∥.∥(IN ⊗B)Kext(Lext ⊗ Inx)∥.∥Z∥

≤ µext = ϵµint.

(3.24)

Then, we lower-bound the matrix Ā2
22 such that

∥Ā2
22∥ = ∥(IN−m ⊗ A)− (IN−m ⊗B)Kint

n−m(Λ
int ⊗ Inx)∥

≥ |∥A∥ − ∥(IN−m ⊗B)Kint
N−m(Λ

int ⊗ Inx)∥|.
(3.25)

From (3.21)-(3.22), we understand that the second norm in (3.25) is much larger than the
first one. Thus, by taking the difference between the largest value of the first term and a
value less than ∥(IN−m ⊗B)Kint

N−m(Λ
int ⊗ Inx)∥2, it yields a lower-bound as

∥Ā2
22∥ ≥ |c1ϵµint − µint| = |1− c1ϵ|µint, (3.26)
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where µint = min
k∈M
∥(Λint

k ⊗BKint
k )∥2.

Finally, through the bounds (3.23), (3.24) and (3.26), we conclude the proof. ■

As the consequence of the Assumption 3, all the matrices in (3.20) are of order O(ϵµint)

except A2
22, which is of order O(µint). Furthermore, due the standard assumption in SPT

the network parameter ϵ is small, or equivalently we have µext ≪ µint. In other words, the
dynamics of the aggregate state y is much smaller than the dynamics of the synchroniza-
tion error ξ. For this reason, the variable y behaves as a slow variable and the variable ξ

behaves as a fast variable.

Thereafter, to reveal the evolution of the system on different time-scale, we define a
fast time-scale tf = µintt and a slow time-scale ts = ϵtf . The matrices Āij in (3.20) are also
re-scaled as follows, 

A11 =
Ā11

ϵµint
, A12 =

Ā12

ϵµint
, A21 =

Ā21

ϵµint
,

A1
22 =

Ā1
22

ϵµint
, A2

22 =
Ā2

22

µint
.

(3.27)

3.2.4 Fast Dynamics

Performing the time re-scale tf = µintt, we obtain the fast dynamics as follows,
dŷ

dtf
(tf ) = ϵA11ŷ(tf ) + ϵA12ξ̂(tf ),

dξ̂

dtf
(tf ) = ϵA21ŷ(tf ) + (ϵA1

22 + A2
22)ξ̂(tf ).

(3.28)

Then, setting ϵ = 0, we have dŷ
dtf

= 0 implying ŷ is constant and the decoupled fast dyna-
mics is

dξ̂f
dtf

(tf ) = A2
22ξ̂f (tf ). (3.29)

The fast dynamics (3.29) in original time-scale t is

ξ̇f (t) = (IN−m ⊗ A)ξf (t) + (IN−m ⊗B)uf (t), (3.30)

where uf (t) = −Kint
N−m(Λ

int ⊗ Inx)ξf (t).
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3.2.5 Slow Dynamics

The collective dynamics in slow time-scale ts = ϵtf is
dỹ

dts
(ts) = A11ỹ(ts) + A12ξ̃(ts),

ϵ
dξ̃

dts
(ts) = ϵA21ỹ(ts) + (ϵA1

22 + A2
22)ξ̃(ts).

(3.31)

Setting ϵ = 0 in (3.31) yields ξ̃s(ts) = 0 and the decoupled slow dynamics is,

dỹs
dts

(ts) = A11ỹs(ts). (3.32)

Since we have ts = ϵtf = ϵµintt, the slow dynamics is

ẏs(t) =(Im ⊗ A)ys(t) + (Im ⊗B)us(t), (3.33)

where us(t) = −H⊤Kext(Lext ⊗ Inx)Hys(t).

Under Assumption 3, the closed-loop network dynamics (3.16) is reformulated into the
collective dynamics (3.19) namely, the average and error dynamics. Afterward, the average
and error dynamics (3.19) are decoupled into the slow (3.33) and fast dynamics (3.30) using
TSS and SPT. It is noteworthy that the decoupled fast (3.29) and slow (3.32) dynamics are
an approximation of the synchronization error and average dynamics (3.19), respectively.

3.2.6 Singular Perturbation Approximation

Assumption 4. There exists an internal gain Kint and an external gain Kext such that the
network dynamics (3.17) is synchronized.

Remark 8. Although, we assume the existence of the synchronizing internal and external
gain, it will be ensured by a design protocol presented in Section 3.3 that such gains exist.
The internal and external gains are designed independently and the obtained internal gain
is optimal while the external gain is sub-optimal.

Under Assumption 3 and 4, the following theorem provides an approximation of the
original system depending on the slow and fast subsystems. Applying the individual
control (3.3) on the actual network (3.16), we show that the closed-loop response is close to
that obtained from the approximated models. The proof follows Theorem 1 (from Theorem
5.1, Chapter 2, [Kokotović et al., 1999]).
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Theorem 7. Under the Assumption 3, if the matrix A2
22 is Hurwitz, there exists an ϵ∗ > 0 such

that, for all ϵ ∈ (0, ϵ∗], the original variables in (3.19) starting from any bounded initial conditions
y(t0) and ξ(t0), are approximated for all finite time t ≥ t0 by{

y(t) = ys(t) + ϵΨ(ϵ)ξf (tf ),

ξ(t) = ξf (tf )− Ω(ϵ)ys(t)− ϵΩ(ϵ)Ψ(ϵ)ξf (tf ),
(3.34)

where ys(t) ∈ Rm.nx and ξf (tf ) ∈ R(N−m).nx have the respective the slow dynamics (3.33) and the
fast dynamics (3.29). The terms ϵΨ(ϵ)ξf (tf ) and Ω(ϵ)ys(t) + ϵΩ(ϵ)Ψ(ϵ)ξf (tf ) are of order O(ϵ).
The approximation of the functions Ω and Ψ are{

Ω(ϵ) = ϵ(A2
22)

−1A21 +O(ϵ2),

Ψ(ϵ) = A12(A
2
22)

−1 + ϵ((A2
22)

−1A11A12(A
2
22)

−1 − A12) +O(ϵ2).
(3.35)

Proof : See Appendix 4. ■

In (3.34), we notice that the approximation of ξ depends on fast variable ξf and the
slow variable ys, but the slow variable may not be stable. Then, as a auxiliary result we
prove the following lemma which ensures the exponential stability of ξ provided that ξf is
exponentially stable.

Lemma 8. The exponential stability of the fast dynamics (3.30) and the external error dynamics
(3.50) implies the exponential stability of the error dynamics in (3.19).

Proof : See Appendix 4. ■

Although, we assume the existence of the gain that stabilizes the slow and fast sub-
systems to prove the above theorem, in the next section we explain in detail the design of
the fast (internal) and slow (external) gain. The internal and external gains are designed
independently. The obtained internal gain Kint is optimal while the external gain Kext is
sub-optimal.

3.3 Design procedure

In this section, we explain the procedure to design the internal and external control
independent of each other. The internal control design is related to the fast subsystem
whereas the external control to the slow one. Although the control design is based on
their respective reduced subsystems, we can still apply it to the collective dynamics (3.19).
The purpose is to design an internal gain using the local information to asymptotically
synchronize the agents inside the clusters. As for the external control, it must achieve the
synchronization between the clusters while bounding a cost given a threshold.

62



3.3. Design procedure

The two next assumptions aim to model the graph structure. Due to the intensive com-
munications between the agents inside the clusters, we approximate the interconnections
inside the clusters by assuming all-to-all connections.

Assumption 5. The internal graphs are complete for all clusters.

This assumption greatly reduces the computational effort required to obtain the control ;
it allows us to decouple the control design into agents’ level and to obtain an analytical ex-
pression. However, it is imposed only for the control design purpose and the obtained
controller can be implemented even if the Assumption 5 does not hold.

Remark 9. Under Assumption 5, the non-zero eigenvalues of the internal Laplacian Lint
k

are λint
k,i = nk, for i = 2, ..., nk and for all k ∈M.

To ensure the synchronization of the entire network, we also assume that no cluster is
isolated.

Assumption 6. The graph of clusters is connected.

In the following, we first address the internal control by giving an analytical gain ex-
pression under Assumption 5. The key idea is to break down the control design at the
cluster’s level into the agent’s level.

3.3.1 Internal (Fast) Control Design

As the fast variable ξf is an approximation of the synchronization error ξ inside the
clusters, it is still relevant to consider the fast subsystems (3.30) for the internal control
design. We denote by ξf,k ∈ Rnk.nx the components of ξf = (ξf,1, ..., ξf,m) corresponding to
the k-th cluster. For each cluster Ck, for k ∈M, we have the following dynamics{

ξ̇f,k(t) = (Ink−1 ⊗ A)ξf,k(t) + (Ink−1 ⊗B)uf,k(t),

uf,k(t) = −(Λint
k ⊗Kint

k )ξf,k(t),
(3.36)

where uf,k ∈ Rnk.nu is the k-th component of uf = (uf,1, ..., uf,m) corresponding to the k-th
cluster control.

The cluster cost associated with the cluster Ck takes the form

Jf,k =

∫ +∞

0

ξ⊤f,k(t)(Λ
int
k ⊗ Inx)ξf,k(t) + u⊤

f,k(t)(Ink−1 ⊗Rk)uf,k(t) dt . (3.37)

Furthermore, the dynamics (3.36) and the cost (3.37) can be decoupled into nk − 1 com-
ponents. For each cluster Ck, let denote the fast subsystems and the associated control by
ξf,k = (ξf,k,2, ..., ξf,k,nk

) and uf,k = (uf,k,2, ..., uf,k,nk
), respectively.
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Then, for i = 2, ..., nk and for all k ∈M, the dynamics are{
ξ̇f,k,i(t) = Aξf,k,i(t) + nkBuf,k,i(t),

uf,k,i(t) = −Kint
k ξf,k,i(t),

(3.38)

and the associated individual cost is

Jf,k,i =

∫ +∞

0

nkξ
⊤
f,k,i(t)ξf,k,i(t) + u⊤

f,k,i(t)n
2
kRkuf,k,i(t) dt . (3.39)

Thus, the cost (3.37) is the sum of individual costs (3.39) as follows,

Jf,k =

nk∑
i=2

Jf,k,i, ∀k ∈M. (3.40)

Remark 10. The decoupling of (3.36) into nk − 1 subsystems (3.38) is not only limited to
all-to-all connections only. In case where the Laplacian eigenvalues can be characterized in
terms of nk (for example, star graph), similar decoupling can be achieved.

Remark 11. It is noteworthy that the gain Kint
k is same for all the agents belonging to the

same cluster Ck. As a result, the rewriting of (3.37) into (3.40) reduces the computational
effort for the control design. Indeed, one can solve only one optimization problem (3.38)-
(3.39) for each cluster, it is equivalent to optimizing the cluster cost (3.37).

Finally, we apply the LQR-control to stabilize (3.38) while minimizing the cost (3.39).

Lemma 9. Under Assumption 6, if the pair (A, nkB) is stabilizable and (A, (n2
kRk)

1/2) is detec-
table, then there exists a gain Kint

k stabilizing (3.38) and minimizing (3.39) such that

Kint
k =

R−1
k

nk

B⊤P int
k , k ∈M, (3.41)

where P int
k is the solution of the Algebraic Riccati Equation

P int
k A+ A⊤P int

k − P int
k BR−1

k B⊤P int
k + nkInx = 0. (3.42)

The internal control at agent’s level are, for all i ∈ Ck and k ∈M,

uint
k,i (t) = −

R−1
k

nk

B⊤P int
k

∑
(k,j)∈Nk,i

(xk,i(t)− xk,j(t)). (3.43)

Once the local consensus is achieved, the external behavior is basically the dynamics
of the average states formed by each cluster. It is safe to assume that the agents have mer-
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3.3. Design procedure

ged into a single node. Therefore, the number of nodes representing the external network
equals the number of clusters.

3.3.2 External (Slow) Control Design

The graph of agents connecting the clusters, or the external graph, is only connected.
Thus, the previous procedure cannot be adopted to design the external control. To achieve
the synchronization between the clusters, we propose a method based on Chapter 2. First,
we define the average slow variable. Then, the synchronization problem is transformed
to a stabilization problem using a change of variable. Finally, we design the control to
stabilize the system while bounding an associated cost.

We recall that a block-diagonal matrix with the entries P1,...,PN on the diagonal is writ-
ten as P = diag(P1, ..., PN). In addition, we denote by P−k = diag(P1, ..., Pk−1, Pk+1, ..., PN)

the block-matrix with the k-th block removed. However, if the matrix P ∈ RN×N , then we
denote by P−k ∈ R(N−1)×(N−1) the matrix P with its k-th row and column removed.

Average slow variables

After the transformation (3.12), we recall that the slow variable in (3.19) is a scaled
average. Thus, we redefine the average from (3.32) as follows,

y(t) = (W ⊗ Inx)ys(t), (3.44)

where y = (y1, . . . , ym) and W = diag
(

1√
n1
, . . . , 1√

nm

)
. Then, the closed-loop average dy-

namics is
ẏ(t) =

[
(Im ⊗ A)− (Im ⊗B)K

ext
(Lext ⊗ Inx)

]
y(t), (3.45)

where 
Lext

=


∑m

l=2

aext1l

n1
−aext12

n1
. . . −aext1m

n1

...
... . . . ...

−aextm1

nm
−aextm2

nm
. . .

∑m−1
l=1

aextml

nm

 ∈ Rm×m,

K
ext

= diag
(
Kext

1 , ..., Kext
m

)
,

(3.46)

are the average Laplacian matrix and the external gain related to (3.45), respectively. The
weights aextkl stand for the total number of connections between cluster Ck and Cl.
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The average dynamics of each cluster Ck, for k ∈M, is
ẏk(t) = Ayk(t) +Buext

k (t),

uext
k (t) = −Kext

k

∑
l∈NCk

aextkl

nk

(yk(t)− yl(t)).
(3.47)

The average cost associated with each cluster Ck, k ∈M, is defined as

J
ext

k =

∫ +∞

0

∑
l∈NCk

aextkl

nk

(yk(t)− yl(t))
2 + nk

nk∑
i=1

ûext⊤
k,i (t)Rkû

ext
k,i (t) dt, (3.48)

where ûext
k,i = −Kext

k

∑
l∈NCk

aext(k,i)↔Cl

nk

(yk − yl), for i ∈ Ck, and aext(k,i)↔Cl is the total number of

connections between the i-th agent belonging to Ck and the cluster Cl. The control ûext
k,i is the

external control (3.4) expressed in the average variable y. In addition, we have the relation
uext
k =

∑nk

i=1 û
ext
k,i and aextkl =

∑nk

i=1 a
ext
(k,i)↔Cl .

Remark 12. Although the cluster have merged into a single node, the agents still apply
the control (3.4) rather than the average control uext

k . Thus, we do not consider the average
control uext

k directly into the cost. In fact, we express the control (3.4) in average variables
y and apply it in individual manner as in equation (3.48).

Change of Variables

To study the consensus between the clusters, we define the external error variable from
Chapter 2 such that

Yk: =



y1 − yk
...

yk−1 − yk

yk+1 − yk
...

ym − yk


, ∀k ∈M. (3.49)

Then, the corresponding external error dynamics are

Ẏk(t) = AkYk(t) +Bku
ext
k (t), ∀k ∈M, (3.50)

where {
Ak = (Im−1 ⊗ A)− (Im−1 ⊗B)K

ext

−k(L
ext

−k ⊗ Inx),

Bk = −(1m−1 ⊗B).
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Here, K
ext

−k = diag(Kext
1 , . . . , Kk−1, Kk+1, . . . , Km) is not a control action but it represents the

behavior of the network.

Upon close inspection at the structure of the external Laplacian Lext we see that it has
the following form,

Lext =


Lext

1,1 Lext
1,2 . . . Lext

1,m

Lext
2,1 Lext

2,2 . . . Lext
2,m

...
...

...
Lext

m,1 Lext
m,2 . . . Lext

m,m

 ∈ RN×N , (3.51)

where Lext
p,q ∈ Rnp×nq for p, q ∈ M. We denote by Lext

k,row ∈ Rnk×N the k-th row of the
block-matrix (3.51) for all k ∈ M. It describes the connections of the cluster Ck with the
rest of the agents in the network. The matrix Lext

k,red ∈ Rnk×(N−nk) is obtained by removing
the Lext

k,k block from the Lext
k,row. For example, Lext

2,row = [Lext
2,1 Lext

2,2 . . . Lext
2,m] and Lext

2,red =

[Lext
2,1 Lext

2,3 . . . Lext
2,m].

Then, we express the external cost (3.48) in terms of new variables as

J
ext

k =

∫ +∞

0

Y ⊤
k (t)Qext

k,1Yk(t) + Y ⊤
k (t)

Qext
k,2

nk

Yk(t) dt (3.52)

where 

Qext
k,1 =

(
diag

(
aextk,1

nk

, ...,
aextk,k−1

nk

,
aextk,k+1

nk

, ...,
aextk,m

nk

)
⊗ Inx

)
,

Qext
k,2 = U⊤

−k(Lext⊤
k,redLext

k,red ⊗Kext⊤
k RkK

ext
k )U−k,

U = (diag(1n1 , . . . ,1nm)⊗ Inx),

Rk > 0.

(3.53)

The matrices Qext
k,1 and Qext

k,2 simplify the expression (3.48) such that
Y ⊤
k Qext

k,1Yk =
∑

l∈NCk

aextkl

nk

(yk − yl)
2,

Y ⊤
k

Qext
k,2

nk

Yk = nk

nk∑
i=1

ûext⊤
k,i Rkû

ext
k,i .

(3.54)

Control Design

To design the external control, we use the satisfaction equilibrium approach proposed
in Chapter 2. Given the external error dynamics (3.50), it characterizes the external gain
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profile synchronizing the network in such a way that each cost (3.48) is bounded,

J
ext

k ≤ γext∥Yk(0)∥2, for k ∈M. (3.55)

The term ∥Yk(0)∥ represents the initial condition of the cluster Ck while γext is a given
threshold. The proposition is stated as follows.

Proposition 10 (Prop 1, Chapter 2). Let a gain profile K
ext

= diag
(
Kext

1 , ..., Kext
m

)
be given.

The following statements are equivalent

1. The gain profile Kext is an SE of the satisfaction game (3.50) for all k ∈M.

2. For all k ∈M, there exists a positive-definite matrix P ext
k > 0 such that{

P ext
k Ak,cl(K

ext
k ) +A⊤

k,cl(K
ext
k )P ext

k +Qext
k (Kext

k ) < 0,

P ext
k − γextI(m−1).nx < 0,

(3.56)

where 

Ak,cl(K
ext
k ) = Ak +BkK

ext
k (Fk ⊗ Inx),

Fk =

(
aextk,1

nk

, ...,
aextk,k−1

nk

,
aextk,k+1

nk

, ...,
aextk,m

nk

)
,

Qext
k =

(
Qext

k,1 +
Qext

k,2

nk

)
.

(3.57)

3.3.3 Algorithm complexity

To illustrate how the design procedure reduces the computational load, we briefly ex-
plain the algorithm stated below. Consider a network of m agents (which is the number of
cluster in our case) with their respective dynamics. We aim to design a synchronizing gain
profile Kext = (Kext

1 , ..., Kext
m ) satisfying the cost constraints. The algorithm is as follows :

Data : A,B and nk, k ∈M ;
Set : iterations iter = 1, maximum number of iterations itermax, 0 < ϵ∗ ≪ 1 and
Kext(0) = (Kext

1 (0), ..., Kext
m (0)) initial gain profile synchronizing the system;

Calculate : P int
k and Kint

k using equation (3.42) and (3.41) for all k ∈M, respectively ;
while LMIs (3.56) not satisfied OR iter ≤ itermax do
Kext(iter + 1)← αextKext(iter), αext ∈ R+ \ {0} ;
Calculate : ϵ ;
if ϵ > ϵ∗ then
Kint

k ←
ϵ

ϵ∗
Kint

k ;
end if

end while
Algorithm 2: Sequential Satisfaction Algorithm
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3.4. Cost approximation

In the above algorithm, we first calculate the internal gain by solving the algebraic
riccati equation (3.42). To design the external gain, we start with an initial gain profile
that synchronizes the network. Then, to obtain a sub-optimal gain, we multiply the gain
from the previous iteration with a scalar αext ∈ R+ \ {0} and check if satisfies the LMI
(3.56). One approach could be to start with high gain and decrease αext until the condition
(3.56) is not satisfied and use the smallest gain that satisfied the condition. Furthermore,
we should also make sure the network parameter ϵ is small so that control design using
time-scale separation holds. Thus, to ensure this, we multiply the internal gain Kint

k with
ϵ/ϵ∗ to obtain the new internal gain such that ϵ ≤ ϵ∗.

In algorithm 2, the computational complexity to obtain the internal gain is of order
O(m) since we need to solve m AREs, one for each cluster. The size of the LMIs depends on
nk, k ∈ M. However for the external gain we just need to check that LMI (3.56) is satisfied
for all k ∈M. Moreover, if the algorithm successfully converge to stabilizing internal gain
Kint and satisfy the LMI conditions (3.56) for synchronizing external gain Kext, then they
will satisfy the Assumption 4.

3.4 Cost approximation

The second objective of this chapter is to provide an approximation of the cluster cost.
In the following, we prove that the cluster cost Jk can be approximated only by nkJ̄

ext
k

during the time interval [T,+∞). The time T > 0 is chosen such that the synchronization
error inside the clusters is bounded by ϵ.

3.4.1 Internal error bound

The necessity of the internal error bound arises in the approximation of the cluster
cost. During the control design, we remind that the internal consensus is considered to
be achieved before designing the external control. Thus, we need to characterize an error
bound in finite time T , at which the cluster is very close to the internal consensus.

After, the internal control design uint
k , the closed-loop fast dynamics is

ξ̇f,k(t) =
[
(Ink−1 ⊗ A)− (Λint

k ⊗BKint
k )
]
ξf,k(t), (3.58)

and it yields
ξf,k(t) = eClf,ktξf,k(0), (3.59)

where Clf,k = (Ink−1 ⊗ A)− (Λint
k ⊗ BKint

k ). Then, taking the norm on both sides and with
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the measure of the matrix, we obtain

∥ξf,k(t)∥ = eν(Clf,k)t∥ξf,k(0)∥

≤ eν(Clf )t∥ξf,k(0)∥ (3.60)

where ν(Clf ) = max
k∈M

ν(Clf,k).
Afterwards, as an internal error bound, we choose the smallest T ≥ 0 such that

∥ξf,k(T )∥ ≤ eν(Clf )Tmax
k∈M
∥ξf,k(0)∥ ≤ ϵ. (3.61)

This bound characterizes the local consensus inside each cluster in the finite time T , it
yields

∥ξf,k(t)∥ ≤ ϵeν(Clf )(t−T ) ∀k ∈M, (3.62)

and

∥ξf (t)∥ ≤ ϵ
√
n−m.eν(Clf )(t−T ). (3.63)

3.4.2 Approximation of the cluster cost

In this section, we prove that for the time t ∈ [T,+∞), the cluster cost Jk is approxi-
mated by nk times the average cost, as nkJ

ext

k . The motivation is derived from the fact that
the internal dynamics converges rapidly to the consensus and the dominating network
behaviour is illustrated by the external dynamics.

Proposition 11. During the time interval [T,+∞), the following approximation holds,

Jk(T,+∞) = nkJ
ext

k (T,+∞) +O(ϵ), ∀k ∈M. (3.64)

Proof : See Appendix 4.

3.5 Simulation

In this section, we provide some numerical examples to illustrate the effectiveness of
the control procedure and the cost approximation through three scenarios. The agents dy-
namics are given by (3.1), where the dynamics state and control matrices are

A =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, θ = 30 radians, B =

(
1

1

)
. (3.65)

The external connections between the agents in different clusters are generated using
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Erdos-Renyi [Erdos et al., 1960] random graph generator. In the Scenario 1, we consider a
graph G1 with four clusters (m = 4). The total number of agents in the graph G1 is nG1 = 630

agents. Moreover, we impose the threshold γext = 0.8 for the average cost (3.48).

The Scenario 2 is slightly different from Scenario 1, we keep the same parameters for
the simulation. However, the internal graphs are not complete anymore but just connected,
we use graphs where the connections are dense inside. We remind that the Assumption 5

is only needed for the design of the internal control. It is still practical for clusters with
dense connections.

For the last Scenario 3, we compare the composite control with the method in Chapter
2 but also the control in [Rejeb et al., 2018] through the graph G1 and G2. The details of the
simulations are present in Table 3.1 and 3.2.

In the tables, nk represent the number of agents in cluster Ck, error(k) = |Jk−nkJ
ext
k |

Jk
×100,

is the error percentage between the total cost and the external cost after time T , and Kext

and Kint are the respective external and internal gains.

Scenario 1

The Figure 3.2 represents the synchronization of the agents in graph G1 with only 299
external connections between the clusters. For the graph G1, the network parameter is ϵ1 =
0.06. In the figure, we can observe the four branches appearing and merging into one. Each
branch represents the local agreement within the clusters. Next, Figure 3.3 illustrates the
cost approximation for the cluster C4 by comparing the total cluster cost J4 and the external
cost n4J̄

ext
4 , after finite time T = 2s.

ϵ = 0.06, γ = 0.8 Gain

nk Jk(×104) error(k) Kint Kext

C1 120 8.966 0.45% [1.5352,−0.1102] [0.85, 0.16]

C2 140 5.768 0.86% [1.5349,−0.1114] [1.17, 0.22]

C3 170 18.950 0.24% [1.5346,−0.1128] [0.59, 0.11]

C4 200 6.405 0.65% [1.5344,−0.1137] [1.05, 0.2]

TABLE 3.1 – Scenario 1 : Network with 630 agents and 299 external connections.

Scenario 2

In this scenario, we consider the graph where the clusters has dense interconnections
instead of the all-to-all connections compared to Scenario 1. We consider the network with
same number of agents inside each cluster as Scenario 1. The internal gains are designed
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FIGURE 3.2 – State error between the first agent of the cluster C2 and the network, with the
graph G1.
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FIGURE 3.3 – State error between the first agent of the cluster C2 and the network, with the
graph G2.

assuming the clusters has all-to-all connections and the gain is applied to the network with
connected intra-cluster connections.
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3.5. Simulation

ϵ = 0.06, γ = 0.8 Gain

nk Jk(×104) error(k) Kint Kext

C1 120 8.983 0.64% [1.5352,−0.1102] [0.85, 0.16]

C2 140 5.780 1.07% [1.5349,−0.1114] [1.17, 0.22]

C3 170 1.8.975 0.37% [1.5346,−0.1128] [0.59, 0.11]

C4 200 6.415 0.81% [1.5344,−0.1137] [1.05, 0.2]

TABLE 3.2 – Scenario 2 : graph G1 without complete graphs for the internal graphs but with
299 external connections.

Scenario 3

In the last scenario, we consider a network of m = 4 clusters with nk = 10 agents in
each. We recall that γext = 1 is chosen for both controls. A comparison is done between the
composite control proposed in Chapter 3 and the satisfactory control approach proposed
in Chapter 2. The design procedure in Chapter 2 needs 13752 seconds (3.8 hours) to com-
pute the gains for n = 40 agents while the composite design requires 13 seconds. However,
we can observe an incontestable difference in performance on the cluster costs due to satis-
factory control, as shown in Table 3.3. This emphasize the trade-off between the computing
time/resources to obtain the required controller. Despite being less effective, we have to
keep in mind that the composite control suits better for large-scale networks and present a
important benefit in term of computation loads and time.

C1 C2 C3 C4
nk 10 10 10 10
Jk 17204 5452 6943 16949
JNE
k 10164 3303 3080 9714

TABLE 3.3 – Graph G3 : nG3 = 40, γext
3 = 1 and 4 external connections.

Next, we compare the strategy in [Rejeb et al., 2018] with the composite control. In
[Rejeb et al., 2018], every agents apply the same gain independently of their neighborhoods
and aim to bound a global cost. Applying the control [Rejeb et al., 2018] on the graph G1, it
results in a cluster cost which we label by J†

k . From Table 3.4, we observe that our strategy
significantly outperforms the strategy in [Rejeb et al., 2018], the first cluster cost obtained
via the composite control is 20 times smaller. One may observe the same for the other
clusters.
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C1 C2 C3 C4
nk 120 140 170 200

Jk(×106) 0.385 0.269 0.689 0.262

J†
k(×106) 6.7 8.1 16.7 20.5

TABLE 3.4 – Comparison of the cost based on the graph G1.

3.6 Conclusion

In this chapter, we propose a distributed composite control design strategy for the clus-
tered network. Using coordinate transformation, the network dynamics is transformed
into standard singular perturbation form and decoupled into slow and fast dynamics using
time-scale separation. This decoupling of the network dynamics also decouple the control
into fast (internal) and slow (external). The internal control is responsible for intra-cluster
synchronization while the external synchronizes the network while satisfying the impose
cost criterion. This independent design greatly reduces the computational effort required
to obtain the control. Finally, we show that the cluster cost is approximated only by the
external cost after short period of time.

Numerical simulations show that while the strategy proposed in Chapter 2 outper-
forms the strategy proposed in Chapter 3 (about 50% lower costs), the computation load
is 1000 times more with merely N = 40 agents. Furthermore, the computations become
infeasible for large-scale networks. On the other hand, while the solution in [Rejeb et al.,
2018] is computationally very fast, the control performance is extremely poor compared
to our solution. Thus, we demonstrate that the solution proposed in Chapter 3 offers an
interesting trade-off between control performance and computational feasibility.
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Chapter 4
Final conclusions

Overview

This thesis is dedicated to synchronization algorithms for multi-agent systems (MAS)
that consider individual costs during the coordination process. The analysis is carried out
with particular attention on MAS with homogeneous linear dynamics and clustered net-
works, with fixed topology in both cases. We have exploited concepts from game theory
[Perlaza et al., 2012] as well as singular pertubation tools for time-scale separation [Ko-
kotović et al., 1999] for this purpose. Furthermore, we take into account communication
constraints in the network, i.e. the controls of each agent only use information coming
from its neighborhood. Distributed control protocols are provided, but the control gains
may be designed in a centralized manner depending on the cases.

In Chapter 2, we deal with the problem of output feedback synchronization for MAS,
which guarantees individual performance bounds. The synchronization problem is first
recast into a stabilization problem to make the analysis easier. Then, the problem is mo-
deled as a satisfaction game and we seek gains that are in satisfaction equilibrium (SE),
i.e. the cost associated to each agent is upper-bounded by a given threshold. Conditions in
the form of linear matrix inequalities are provided to check if a given gain profile is an SE.
Moreover, based on the output feedback control, a second result allows us to synthesize
the gain of an agent assuming the gains of the other agents are known.

In Chapter 3, we present a distributed composite control design that synchronizes clus-
tered networks, while guaranteeing a certain bound on the cluster costs. The approach
aims to significantly reduce the problem’s complexity and the computational effort ne-
cessary to obtain the controllers for large-scale networks. Based on the network structure,
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we apply time-scale separation techniques to decouple the original system into fast (intra-
cluster) and slow (inter-cluster) dynamics. The fast variables correspond to the cluster syn-
chronization error, whereas the slow variables is the aggregate behavior of the agent states
inside each cluster. Then, the control design is broken into independent designs of slow
and fast controllers, that aims at enhancing the synchronization process. Only one control-
ler is derived per cluster for all the agents inside, irrespective of the number of agents
in the cluster. This drastically reduces the computational effort and the complexity of the
control design. Finally, we propose sub-optimal control strategies as the internal cost is
minimized while the external cost is satisfactory for each cluster. The composite controller
for each agent is synthesized as the sum of the internal and external control. Furthermore,
we show that the internal control only affects the cluster cost for a short period of time
compared to the synchronization time of the full network.

According to the simulations, even though the control strategy in Chapter 2 outper-
forms the control protocol in Chapter 3, the computation load related to the satisfactory
control is substantially higher than the composite control, and is even infeasible for large-
scale networks. On the other hand, the analytical result in [Rejeb et al., 2018] provides
a very fast computation but presents an extremely poor control performance compared
to the composite control. As a result, the composite control offers an interesting trade-off
between control performance and computing efficiency.

Perspectives

The results of the work developed in this thesis lead to various possible extensions that
can be scientifically relevant.

Short term

• For both homogeneous linear MAS and clustered networks, extending the study to
weighted graphs can enlarge the range of possible applications as the communication
topology will be more realistic. For example, the choice of directed threshold graphs
to represent the energy flow in a electrical grid can be relevant to investigate on the
behavior of the network.

Definition 15. An directed graph G = (V , E) is said to be threshold if there exists an injective
weight function on the vertices w(x) : V(G) → R and a threshold value t ∈ R such that
−→xy ∈ E if and only if |w(x)|+ |w(y)| > t and w(x) > w(y), where |.| is the absolute value.

The term−→xy represents the edge from x to y and the inequality w(x) > w(y) expresses
the fact that the flow is moving to x to y.
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• In clustered networks, it could be of interest to relax the assumption of complete
graph (for internal graphs) to connected graph that can be characterized by its eigen-
values. We recall that if the eigenvalues of the internal Laplacian are known, then
the internal cluster cost (3.37) can be separated into nk individual costs (3.39). The
purpose is to reduce the computations while considering a communication topology
that fit better to the reality. For instance, such a graph could be a strongly k-regular
graph or threshold graph.

Definition 16. In a k-regular graph G, each node is connected to k other nodes.

Definition 17. ([Godsil and Royle, 2001])
Let G be a regular graph that is neither complete nor empty. Then G is said to be strongly
regular with parameters

(N, k, a, c), (4.1)

where N is the total number of nodes. If it is k-regular, every pair of adjacent nodes has a

common neighbors and every pair of distinct non-adjacent nodes has c common neighbors.

Proposition 12. ([Godsil and Royle, 2001])
Let G be a strongly regular graph with parameters (N, k, a, c). Then, G has the three following
eigenvalues such that

— k with multiplicity 1,

— θ =
(a− c) +

√
∆

2
with multiplicity mθ =

1

2

(
(N − 1)− 2k + (N − 1)(a− c)√

∆

)
,

— τ =
(a− c)−

√
∆

2
with multiplicity mτ =

1

2

(
(N − 1) +

2k + (N − 1)(a− c)√
∆

)
,

where ∆ = (a− c)2 + 4(k − c).

Definition 18. Let d1 ≥ d2 ≥ ... ≥ dN be the ordered degree of the graph G. Then, the
conjugate sequence of d1, d2, ..., dN is defined as

d∗j = |{di : di ≥ j}|card, j = 1, 2, ..., (4.2)

where |.|card is the cardinality of the set.

Theorem 13. (Theorem 10.8, [Bapat, 2010]) Let G be a threshold graph with V(G) = 1, 2, ..., N .
Let L(G) be the Laplacian and d1, ..., dN the degree sequence of G, then d∗1, ..., d

∗
N are the ei-

genvalues of L(G).
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Long term

• In homogeneous linear MAS, the synchronization problem with cost optimization
can be formulated as a potential game.

Definition 19. (Exact potential game, Lasaulce and Tembine [2011])
The game G is an exact potential game if there exists a function Φ such that for all i ∈ V and
for all Ki, K ′

i ∈ K,

Ji(Ki, K−i)− Ji(K
′
i, K−i) = Φ(Ki, K−i)− Φ(K ′

i, K−i), (4.3)

where Ji(Ki, K−i) is the individual cost resulting from the actions Ki and K−i associated
with the player i and the other players, respectively.

Thanks to the relation (4.3), one may choose a potential function Φ as a global cost
and expresses it as a linear combination of individuals costs. Thus, the minimization
of the global cost will be equivalent to the minimization each individual cost. Fur-
thermore in the case of potential games, the Nash equilibrium can be found by ap-
plying the Best Response Algorithm in which each player chooses its Best Response
turn-by-turn.

• The control protocols proposed in the thesis are derived from model-based design
and it can be limited by an intensive computational effort or restrictive due to some
required information on the whole network. In this context, data-driven techniques
from Reinforcement Learning seem promising to reduce the computational burden and
to propose a flexible control design. To the best of our knowledge, few control design
based on data-driven methods address the problem of consensus. Thus, it can be
interesting to propose a model-free approach to derive a distributed control.
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Lemma 8

Proof : Integrating the error dynamics in (3.19), we obtain

ξ(t) = eĀ22tξ(0) +

∫ t

0

eĀ22(t−τ)Ā21y(τ) dτ

= eĀ22tξ(0) +

∫ t

0

eĀ22(t−τ)Ā21(ys(τ) + ϵΨ(ϵ)ξf (τ)) dτ

= eĀ22tξ(0) +

∫ t

0

eĀ22(t−τ)ZTMY (τ) dτ +ϵ

∫ t

0

eĀ22(t−τ)Ā21Ψ(ϵ)ξf (τ) dτ

(1)

where M = diag(M1, ...,Mm) and Mk = (Lext
k,red⊗BKext

k )U−k. By taking norm on both sides,
we have

∥ξ(t)∥ ≤ ∥eĀ22t∥.∥ξ(0)∥+ ∥ZTM∥
∫ t

0

∥eĀ22(t−τ)∥.∥Y (τ)∥ dτ

+ ϵ∥Ā21Ψ(ϵ)∥
∫ t

0

∥eĀ22(t−τ)∥.∥ξf (τ)∥ dτ
(2)

Also, from the design of internal and external control we know that, for all t ≥ 0,{
Y (t) = eAcltY (0)

ξf (t) = eĀ
2
22tξf (0)

⇒

{
∥Y (t)∥ ≤ eν(Acl)t∥Y (0)∥

∥ξf (t)∥ ≤ eν(Ā
2
22)t∥ξf (0)∥

(3)

where Acl = diag(A1,cl, ...,Am,cl) is the closed-loop dynamics of the external error (3.50).
Then, it follows that

∥ξ(t)∥ ≤ eν(Ā22)t∥ξ(0)∥+ ∥ZTM∥.∥Y (0)∥
∫ t

0

eν(Ā22)(t−τ)eν(Acl)τ dτ

+ ϵ∥Ā21Ψ(ϵ)∥.∥ξf (0)∥
∫ t

0

eν(Ā22)(t−τ)eν(Ā
2
22)τ dτ .

(4)
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By integrating the second term in (4), we have

∥ZTM∥.∥Y (0)∥
∫ t

0

eν(Ā22)(t−τ)eν(Acl)τ dτ = ∥ZTM∥.∥Y (0)∥eν(Ā22)t

∫ t

0

e(ν(Acl)−ν(Ā22))τ dτ

=
∥ZTM∥.∥Y (0)∥
ν(Acl)− ν(Ā22)

[
eν(Acl)t − eν(Ā22)t

] (5)

In the same manner, we obtain

ϵ∥Ā21Ψ(ϵ)∥.∥ξf (0)∥
∫ t

0

eν(Ā22)(t−τ)eν(Ā
2
22)τ dτ =

ϵ∥Ā21Ψ(ϵ)∥.∥ξf (0)∥
ν(Ā2

22)− ν(Ā22)

[
eν(Ā

2
22)t − eν(Ā22)t

]
(6)

Finally, we have

∥ξ(t)∥ ≤ C1e
ν(Acl)t + ϵC2e

ν(Ā2
22)t + (∥ξ(0)∥ − C1 − ϵC2) e

ν(Ā22)t, (7)

where C1 =
∥ZTM∥∥Y (0)∥
ν(Acl)−ν(Ā22)

and C2 =
∥Ā21Ψ(ϵ)∥∥ξf (0)∥
ν(Ā2

22)−ν(Ā22)
. Moreover, we know that ν(Ā2

22) < ν(Ā22) <

ν(Acl) < 0. Thus, we conclude that ξ converges exponentially to zero and the rate of
convergence can be bounded as

∥ξ(t)∥ ≤ ∥ξ(0)∥eν(Acl)t. (8)

■

Theorem 7

Proof : The proof follows the reasoning in Theorem 1 (from Theorem 5.1, Chapter 2,
[Kokotović et al., 1999]). In the book, via similarity transformation, the authors express
and decouple the original slow and fast variables into the approximated variables.

The singularly perturbed system dynamics (3.31) is slightly different from the one in
the book. Thus, we adapt their results to our system model to obtain the approximation
results. The similarity transformations [Kokotović et al., 1999] for the decoupling of the
dynamics are [

y

ξ

]
=

[
Im.nx ϵΨ(ϵ)

−Ω(ϵ) Inx(n−m) − ϵΩ(ϵ)Ψ(ϵ)

][
ys

ξf

]
(9)

and

[
ys

ξf

]
=

[
Im.nx − ϵΨ(ϵ)Ω(ϵ) −ϵΨ(ϵ)

Ω(ϵ) Inx(n−m)

][
y

ξ

]
, (10)
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where the functions Ω and Ψ should satisfy the following,{
R(Ω(ϵ), ϵ) = ϵA21 − ϵA1

22Ω(ϵ)− A2
22Ω(ϵ) + ϵΩ(ϵ)A11 − ϵΩ(ϵ)A12Ω(ϵ) = 0,

S(Ψ(ϵ), ϵ) = ϵA11Ψ(ϵ) + A12 − ϵA12Ω(ϵ)Ψ(ϵ)− ϵΨ(ϵ)A1
22 −Ψ(ϵ)A2

22 − ϵΨ(ϵ)Ω(ϵ)A12 = 0.

(11)
The approximation of Ω and Ψ, obtained with the Taylor development w.r.t. ϵ, are{

Ω(ϵ) = ϵ(A2
22)

−1A21 +O(ϵ2),

Ψ(ϵ) = A12(A
2
22)

−1 + ϵ((A2
22)

−1A11A12(A
2
22)

−1 − A12) +O(ϵ2).
(12)

From Lemma 8, we know that ξ(t) and ξf (tf ) converge to zero exponentially fast as t and
tf tend to +∞, respectively. Thus, we can claim that Ω(ϵ)ys(t) has an exponential decrease
to zero w.r.t. t.

Finally, from the above transformation (9)-(10) and (12), we obtain the approximations
(3.34).

■

Proposition 3.64

Proof : The cost Jk is split into the sum of the internal and external costs and composite
term as follows,

Jk(T,+∞) =

∫ +∞

T

x⊤
k (Lint

k ⊗ Inx)xk + uint⊤
k (Ink

⊗Rk)u
int
k dt︸ ︷︷ ︸

Jint
k

+

∫ +∞

T

x⊤(Lext
k ⊗ Inx)x+ uext⊤

k (Ink
⊗Rk)u

ext
k dt︸ ︷︷ ︸

Jext
k

+ 2

∫ +∞

T

uext
k

⊤
(Ink
⊗Rk)u

int
k dt︸ ︷︷ ︸

Jcomp
k

.

(13)

Then, we bound the internal and external costs from time T to infinity. We proceed simi-
larly with the composite term.
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Internal cost

For all k ∈M and for t ≥ T ,

J int
k (T,+∞) =

∫ +∞

T

x⊤
k (Lint

k ⊗ Inx)xk + uint⊤
k (Ink

⊗Rk)u
int
k dt . (14)

Substituting xk = Hkyk + Zkξk from equation (3.14) into (14) and with H⊤
k (Lint

k ⊗ Inx) = 0,
it yields

J int
k (T,+∞) =

∫ +∞

T

ξ⊤k Z
⊤
k

(
(Lint

k ⊗ Inx) + (Lint⊤
k Lint

k ⊗Kint⊤
k RkK

int
k )
)
Zkξk dt

=

∫ +∞

T

ξ⊤k

(
(Λint

k ⊗ Inx) +

(
Λint

k

2 ⊗ P int⊤
k B

R−1
k

n2
k

B⊤P int
k

))
ξk dt

=

∫ +∞

T

ξ⊤k
(
(Λint

k ⊗ Inx) +
(
Ink−1 ⊗ P int⊤

k BR−1
k B⊤P int

k

))
ξk dt

=

∫ +∞

T

ξ⊤k M1ξk dt

(15)

where M1 = (Λint
k ⊗ Inx) +

(
Ink−1 ⊗ P int⊤

k BR−1
k B⊤P int

k

)
. Taking the norm on both sides,

J int
k (T,+∞) ≤ ∥M1∥

∫ +∞

T

∥ξk(t)∥2 dt (16)

where
∥M1∥ ≤ ∥Λint

k ∥+ ∥P int
k

⊤
BRk

−1B⊤P int
k )∥

= nk + ∥P int
k A+ A⊤P int

k + nkInx∥

≤ 2(nk + Λmax(nk)∥A∥) = M2.

(17)

Then, it follows,

J int
k (T,+∞) ≤M2

∫ +∞

T

∥ξk(t)∥2 dt

≤M2

∫ +∞

T

∥ξ(t)∥2 dt . (18)

From Lemma 8 and equation (8), we have ∥ξ(t)∥ ≤ ∥ξ(T )∥eν(Acl)(t−T ), for all t ∈ [T,+∞).
Then, with ν(Acl) < 0, we have,∫ +∞

T

∥ξ(t)∥2 dt ≤ −∥ξ(T )∥
2

2ν(Acl)
= C3∥ξ(T )∥2, (19)

where C3 = − 1
2ν(Acl)

.
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Thus, from (18)-(19) and the approximation of ξ in equation (3.34),

J int
k (T,+∞) ≤M2C3∥ξf (T ) +O(ϵ)∥2

≤M2C3

(
∥ξf (T )∥2 + 2O(ϵ)∥ξf (T )∥+O(ϵ2)

)
.

(20)

Finally, replacing ∥ξf (T )∥ ≤ ϵ
√
n−m from (3.63) in (20) we have

J int
k (T,+∞) ≤M2C3(n−m)ϵ2 +O(ϵ2) = O(ϵ2). (21)

External cost

First, we recast the collective external control (3.4) in the external error variable Yk, as
follows

uext
k (t) = −(Ink

⊗Kext
k )(Lext

k,row ⊗ Inx)x(t)

= −(Lext
k,row ⊗Kext

k )(Hy(t) + Zξ(t))

= −(Lext
k,row ⊗Kext

k )(Hys(t) + ϵHΨ(ϵ)ξf (tf ) + Zξ(t))

= (Lext
k,red ⊗Kext

k )U−kYk(t)− (Lext
k,row ⊗Kext

k )(ϵHΨ(ϵ)ξf (tf ) + Zξ(t)),

(22)

where Lext
k,row is the k-th block-row of Lext and Lext

k,red is obtained by removing the Lext
k,k block

from Lext
k,row. Then, it yields

uext
k

⊤
(t)(Ink

⊗Rk)u
ext
k (t) = Y ⊤

k (t)Qext
k,2Yk(t) + ϵ2ξ⊤f (tf )D1ξf (tf ) + ξ⊤(t)D2ξ(t)

− ϵY ⊤
k (t)D3ξf (tf )− Y ⊤

k (t)D4ξ(t) + ϵξ⊤(t)D5ξf (tf ),
(23)

where 

Qext
k,2 = U⊤

−k(Lext⊤
k,redLext

k,red ⊗Kext⊤
k RkK

ext
k )U−k,

D1 = Ψ(ϵ)⊤H⊤(Lext⊤

k,rowLext
k,row ⊗Kext⊤

k RkK
ext
k )HΨ(ϵ),

D2 = Z⊤(Lext⊤

k,rowLext
k,row ⊗Kext⊤

k RkK
ext
k )Z,

D3 = 2U⊤
−k(Lext⊤

k,redLext
k,row ⊗Kext⊤

k RkK
ext
k )HΨ(ϵ),

D4 = 2U⊤
−k(Lext⊤

k,redLext
k,row ⊗Kext

k
⊤
RkK

ext
k )Z,

D5 = 2Z⊤(Lext⊤
k,rowLext

k,row ⊗Kext
k

⊤
RkK

ext
k )HΨ(ϵ).

(24)

Secondly, let consider the state part in the external cost. To simplify the expression, we use
(Lext

k ⊗ Inx)Hys(t) = −(Lext
k,col ⊗ Inx)U−kYk(t) where Lext

k,col is the matrix Lext
k with its k-th

block-column removed. Then, we obtain

x⊤(t)(Lext
k ⊗ Inx)x(t) = (⋆)⊤(Lext

k ⊗ Inx)(Hys(t) + ϵHΨ(ϵ)ξf (tf ) + Zξ(t))

= nkY
⊤
k (t)Qext

k,1Yk(t) + ϵ2ξf (tf )
⊤M1ξf (tf ) + ξ⊤(t)M2ξ(t)

− ϵY ⊤
k (t)M3ξf (tf )− Y ⊤

k (t)M4ξ(t) + ϵξ⊤(t)M5ξf (tf )

(25)
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where 

M1 = Ψ(ϵ)⊤H⊤(Lext
k ⊗ Inx)HΨ(ϵ)

M2 = Z⊤(Lext
k ⊗ Inx)Z

M3 = 2U⊤
−k(Lext⊤

k,col ⊗ Inx)HΨ(ϵ)

M4 = 2U⊤
−k(Lext⊤

k,col ⊗ Inx)Z

M5 = 2Z⊤(Lext
k ⊗ Inx)HΨ(ϵ).

(26)

Then, replacing (23) and (25) into the expression of (13), we get

Jext
k (T,+∞) = nk

∫ +∞

T

Y ⊤
k (t)Qext

k,1Yk(t) + Y ⊤
k (t)

Qext
k,2

nk

Yk(t) dt+∆1

= nkJ
ext

k (T,+∞) + ∆1,

(27)

where ∆1 = ∆1
1 +∆2

1 +∆3
1 +∆4

1 +∆5
1 and

∆1
1 = ϵ2

∫ +∞

T

ξf (tf )
⊤ (M1 +D1) ξf (tf ) dt,

∆2
1 =

∫ +∞

T

ξ⊤(t) (M2 +D2) ξ(t) dt,

∆3
1 = −ϵ

∫ +∞

T

Y ⊤
k (t) (M3 +D3) ξf (tf ) dt,

∆4
1 = −

∫ +∞

T

Y ⊤
k (t) (M4 +D4) ξ(t) dt,

∆5
1 = ϵ

∫ +∞

T

ξ⊤(t) (M5 +D5) ξf (tf ) dt .

(28)

We recall that from the design of internal and external control, we have for all t ≥ 0{
Y (t) = eAcltY (0)

ξf (t) = eĀ
2
22tξf (0)

⇒

{
∥Y (t)∥ ≤ eν(Acl)t∥Y (0)∥

∥ξf (t)∥ ≤ eν(Ā
2
22)t∥ξf (0)∥

(29)

where Acl = diag(A1,cl, ...,Am,cl) is the closed-loop dynamics of the external error. Also,
we have ν(Acl) < 0, ν(Ā2

22) < 0 and ξf (t) = eĀ
2
22tξf (0) = eA

2
22tf ξf (0) = ξf (tf ).

Bound for ∆1
1

∆1
1 ≤ ϵ2∥M1 +D1∥

∫ +∞

T

∥ξf (tf )∥2 dt

≤ −ϵ2∥M1 +D1∥∥ξf (0)∥2

2ν(Ā2
22)

e2ν(Ā
2
22)T = O(ϵ2).

(30)

84



Bound for ∆2
1

In the same manner as the internal cost, we have

∆2
1 ≤ ∥M2 +D2∥

∫ +∞

T

∥ξ(t)∥2 dt

≤M3∥M2 +D2∥∥ξ(T )∥2

≤M3∥M2 +D2∥
(
∥ξf (T )∥2 + 2O(ϵ)∥ξf (T )∥+O(ϵ2)

)
.

(31)

Replacing ∥ξf (T )∥ ≤ ϵ
√
n−m in the above inequality,

∆2
1 ≤M3∥M2 +D2∥

(
ϵ2(n−m) + 2ϵO

√
n−m+O(ϵ2)

)
= O(ϵ2). (32)

Bound for ∆3
1

It yields

∆3
1 ≤ ϵ∥M3 +D3∥

∫ +∞

T

∥Yk(t)∥∥ξf (tf )∥ dt

≤ ϵ∥M3 +D3∥∥Y (0)∥∥ξf (0)∥
∫ +∞

T

eν(Acl)teν(Ā
2
22)t dt

= −ϵ∥M3 +D3∥∥Y (0)∥∥ξf (0)∥
ν(Acl) + ν(Ā2

22)
e(ν(Acl)+ν(Ā2

22))T

= O(ϵ).

(33)

Similarly, ∆4
1 and ∆5

1 are of order O(ϵ). Finally, from (27) and bounds in (28) for ∆1, we
obtain

Jext
k (T,+∞) = nkJ̄

ext
k (T,+∞) +O(ϵ). (34)

Composite term

In order the simplify the expression, we rewrite the external control (22) as

uext
k (t) = −C4Yk(t)− ϵC5ξf (tf )− C6ξ(t), (35)

where C4 = (Lext
k,red ⊗Kext

k )U−k, C5 = (Lext
k,row ⊗Kext

k )HΨ(ϵ) and C6 = (Lext
k,row ⊗Kext

k )Z. As
for the internal control, from (3.14) and (3.4) we have

uint
k (t) = (Lint

k ⊗Kint
k )Zkξk(t) = C7ξk(t). (36)
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Appendix

Then, the bound for the composite term is

J comp
k (T,+∞) = 2

∥∥∥∥∫ +∞

T

uext
k

⊤
(t)Rku

int
k (t) dt

∥∥∥∥
≤ 2∥Rk∥

∫ +∞

T

∥uext
k

⊤
(t)∥.∥uint

k (t)∥ dt

≤ 2∥Rk∥
∫ +∞

T

∥ − C4Yk(t)− ϵC5ξf (tf )− C6ξ(t)∥.∥C7ξk(t)∥ dt

≤ 2∥Rk∥
(
∥C4∥.∥C7∥

∫ +∞

T

∥Yk(t)∥.∥ξk(t)∥ dt + ϵ∥C5∥.∥C7∥
∫ +∞

T

∥ξf (tf )∥.∥ξk(t)∥ dt

+ ∥C6∥.∥C7∥
∫ +∞

T

∥ξ(t)∥.∥ξk(t)∥ dt
)
.

(37)

With simple calculation it can be shown that the first integral in the above equation is of
order O(ϵ) and the second and the third integrals are of order O(ϵ2). This concludes our
proof.

■
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Résumé
À part Chuck Noland et Wilson, peu de personnes peuvent prétendre pouvoir échap-

per aux réseaux. Omniprésents dans toutes les strates de notre société, les réseaux au sens
large ont progressivement infiltré notre quotidien et occupent désormais tous les paysages.
Qu’il s’agisse d’un réseau électrique, d’un réseau social, d’une volée d’oiseaux en forma-
tion, ou de la propagation d’une pandémie, tous ces systèmes interconnectés montrent un
grand degré d’interdépendance. Compte tenu de cet engouement pour les phénomènes
physiques et sociétaux à grande échelle, les systèmes dynamiques interconnectés ont capté
l’attention de la communauté scientifique au cours des dernières décennies, [Cao et al.,
1997; Wooldridge, 2009; Mesbahi and Egerstedt, 2010]. Tant sur le plan théorique que pra-
tique, le systèmes multi-agents et le systèmes en réseau s’avèrent être la manière la plus efficace
et la plus adéquate de modéliser la dynamique des systèmes complexes à grande échelle.
Afin de prévenir et de résoudre les problèmes de demain, l’analyse et la compréhension
de ces systèmes semblent inévitables, [Baillieul and Antsaklis, 2007; Lamnabhi-Lagarrigue
et al., 2017].

Un système multi-agents est un ensemble d’entités ou d’agents souvent décrits par
deux aspects fondamentaux : la dynamique des agents, et les interactions entre eux. Com-
munément, un tel agent peut être représenté par un robot mobile, une personne, un véhi-
cule, un oiseau, etc. Chaque agent collabore avec ses voisins pour accomplir la tâche qui
lui est assignée. Cette coordination conduit le système dans son ensemble vers un objectif
commun, appelé consensus ou synchronisation, [DeGroot, 1974; Vicsek et al., 1995].

Le problème du consensus apparaît dans diverses disciplines comme la biologie [Pav-
lopoulos et al., 2011], la sociologie [Hegselmann et al., 2002; Lorenz, 2007; Blondel et al.,
2009], les réseaux sociaux [Blondel et al., 2009] ou l’ingénierie [Martinez et al., 2007; Ander-
son et al., 2008; Bullo et al., 2009]. Quant à la synchronisation des systèmes multi-agents,
qu’elle soit naturelle ou artificielle, on peut citer le comportement des oiseaux en vol, les
bancs de poissons ou la coordination des drones, [Cortes et al., 2004; Blondel et al., 2005;
Olfati-Saber, 2006; Tanner et al., 2007; Leonard et al., 2007]. Les applications sont nom-
breuses et variées : pelotonnage de véhicules, exploration, patrouille, alignement de satel-
lites, réseau de capteurs distribués, formation de drones, suivi d’un leader, etc. En général,
des algorithmes de contrôle sont appliqués à ces systèmes pour obtenir le comportement
souhaité. Le but est de faciliter de la coordination entre les agents.

Dans la communauté du contrôle, un très grand nombre de travaux traitent des pro-
blèmes liés à la conception de lois de contrôle permettant la coordination de systèmes
multi-agents. Différentes approches sont proposées mais deux en particulier retiennent
notre attention. Soit, les études se concentrent sur la dynamique des agents, soit sur le type
de communication et la topologie du réseau. La première caractéristique intrinsèquement
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liée aux agents ne dépend que de la nature de l’agent lui-même. Plusieurs contributions
considèrent les systèmes multi-agents avec une dynamique linéaire : [Jadbabaie et al., 2003;
Xiao and Boyd, 2004; Moreau, 2005; Ren and Beard, 2005], une dynamique non-linéaire :
[Das and Lewis, 2010; Li et al., 2012; Isidori et al., 2014; Su et al., 2015], les robots non-
holonomes [Strogatz, 2004; Lin et al., 2005], ou les oscillateurs couplés [Dörfler and Bullo,
2014]. Quant à la seconde caractéristique, elle dépend fortement du type d’interactions
entre les agents. Largement abordées dans la littérature, les méthodes orientées sur les
propriétés des réseaux proposent de modéliser les interactions par des graphes à topolo-
gie fixe ou variable dans le temps [Hong et al., 2006; Tanner et al., 2007; Ren, 2007; Scardovi
and Sepulchre, 2009], avec un délai [Seuret et al., 2008; Xiao and Wang, 2008] ou à capacité
de communication limitée [Dimarogonas et al., 2011].

Dans les problèmes de consensus, les algorithmes mis en oeuvre étant sensibles aux
différents types d’interconnexions, l’analyse se concentre sur la structure du réseau. Pour
la synchronisation, l’objectif premier est de coordonner l’ensemble du système. Ainsi, les
approches se concentrent sur la conception du contrôle tout en tenant compte de la dyna-
mique des agents.

Dans la littérature, plusieurs contributions s’intéressent à la minimisation du coût glo-
bal lors de la conception du contrôle du réseau, mais seules quelques-unes considèrent les
coûts individuels. Nous désignons par un coût global, une fonction qui prend en compte
l’effort de l’ensemble du réseau pour atteindre l’objectif commun. Au contraire, le coût in-
dividuel est l’effort lié à un agent ou à un petit groupe d’agents densément connectés dans
le réseau.

Dans les applications de systèmes physiques en réseau, les coûts individuels peuvent
présenter un intérêt pratique lorsque les agents ont une capacité de communication (courte
portée des signaux sans fil, bande passante étroite) et de fonctionnement (carburant, bat-
terie, ressources de calcul) limitée, [Anastasi et al., 2009; Goldenberg et al., 2004; Dima-
rogonas et al., 2011]. Par exemple, considérons le scénario du contrôle automatique de la
vitesse des véhicules sur les autoroutes, où chaque véhicule souhaite suivre celui qui le
précède (objectif commun de synchronisation). En même temps qu’ils accomplissent leurs
tâches, nous voulons aussi nous assurer que leur consommation de carburant n’est pas
trop excessive (minimisation des coûts individuels). La réduction ou la limitation de la
consommation de carburant peut être considérée comme des contraintes de performance
issues de spécifications techniques. Dans de telles applications, la prise en compte d’un
coût global peut ne pas être équitable pour chaque véhicule. De plus, le choix entre un
coût global et des coûts individuels peut avoir un impact significatif sur la stratégie de
contrôle.
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L’avantage de contraindre ou de minimiser un tel coût est clair, mais les résultats théo-
riques dans cette direction manquent cruellement dans la littérature sur les systèmes multi-
agents. Seuls quelques résultats abordent le problème de la conception du contrôle pour
la synchronisation des agents tout en minimisant un coût. Ces raisons nous amènent donc
à nous concentrer dans cette direction. Les objectifs principaux de cette thèse sont la
conception de contrôle et l’analyse d’algorithmes de synchronisation pour les systèmes
multi-agents prenant en compte les contraintes de communication, tout en assurant que
les coûts d’état et de contrôle sont inférieurs à une borne donnée. L’analyse est menée
avec une attention particulière sur les systèmes multi-agents à dynamique linéaire homo-
gène et les réseaux clusterisés, à topologie fixe dans les deux cas. Dans le premier cas, un
coût individuel par agent est considéré lors de la conception du contrôle, alors qu’un coût
de cluster dans le second cas. Des méthodes de contrôle distribuées sont fournies, mais les
gains de contrôle peuvent être conçus de manière centralisée selon les cas.

Dans ce qui suit, nous donnons un résumé de la thèse et décrivons de brièvement les
trois chapitres principaux. Une conclusion générale est présentée à la fin.

Les travaux de cette thèse portent sur la synthèse et l’analyse d’algorithmes de syn-
chronisation pour des systèmes multi-agents avec une dynamique linéaire. Par synchro-
nisation, nous voulons que les états de tous les agents évoluent sur la même trajectoire à
partir d’un certain temps. En prenant en compte des contraintes de communication, nous
proposons des architectures de commandes décentralisées, c-à-d qui n’utilisent que des
informations locales. Chaque agent n’exploite que des données venant de son voisinage
direct. Par exemple, en collectant les positions et les vitesses de ses voisins, l’agent en
question sera capable de choisir la bonne trajectoire à suivre.

Dans une première partie, nous nous inspirons de la théorie des jeux pour proposer
une loi de commande considérant un coût individuel de satisfaction par agent. Afin de
faciliter l’analyse, le problème de synchronisation est d’abord reformulé en un problème de
stabilisation. Ensuite, des conditions données sous forme d’inégalités matricielles linéaires
permettent de vérifier si un profil de gains correspond à un équilibre de satisfaction ou
non. Un ensemble de gains est un équilibre de satisfaction lorsque le coût individuel de
chaque agent est borné par un seuil donné. Un algorithme itératif permettant de calculer
les gains de chaque agent est présenté à la fin du Chapitre 2.

La seconde partie consacrée aux réseaux avec des clusters, se base sur la théorie des
systèmes singulièrement perturbés pour présenter une loi de commande plus axée sur des
réseaux de grandes envergures. L’objectif est de fournir une méthode efficace en termes de
calcul pour concevoir des stratégies de contrôle qui garantissent une certaine performance
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sur le coût de chaque cluster. En utilisant une méthode de séparation d’échelles de temps,
la conception de la loi de commande est séparée en deux parties : une commande interne
et une commande externe. Les commandes internes sont liées aux synchronisations locales
à l’intérieur de chaque cluster alors que les commandes externes vont synchroniser tout le
réseau. Leurs conceptions se font indépendamment l’une de l’autre et tend à réduire les
charges de calculs. De plus, nous montrons que la commande interne n’affecte le coût du
cluster que pendant une courte période de temps. Les méthodes de conception des lois de
commande sont expliquées dans le Chapitre 3.

Chapitre 1 : Préliminaires

Les concepts de base et une revue des outils théoriques utilisés tout au long de cette
thèse sont présentés. Dans la première section, l’état de l’art développe les contributions
de la littérature sur la conception de commandes distribuées. La prise en compte d’une
fonction coût global ou individuel lors de la synthèse de telles commandes est également
discutée. Ensuite, la deuxième section rappelle quelques notions de théorie des graphes
qui sont à la base de l’analyse des interactions dans les systèmes multi-agents. Enfin, des
concepts issus de la théorie des jeux et des systèmes singulièrement perturbés sont présen-
tés.

Chapitre 2 : Commande décentralisée avec des garanties de coûts indivi-

duels

Ce chapitre traite de la conception d’une commande décentralisée visant à synchroni-
ser un réseau tout en considérant un coût individuel pour chaque agent. En considérant
une même dynamique linéaire pour tous les agents et un graphe de communication non-
dirigé, nous associons à chaque agent une fonction d’énergie tenant en compte l’objectif de
synchronisation mais aussi l’énergie de synchronisation utilisée par chaque agent. Afin de
faciliter l’analyse, le problème de synchronisation est d’abord reformulé en un problème
de stabilisation. Ensuite, nous utilisons la notion d’équilibre de satisfaction de la théorie
des jeux pour garantir, si possible, un certain niveau de performance de la commande. Des
conditions sous forme d’inégalités matricielles linéaires sont fournies pour vérifier si un
profil de gains donné est un équilibre de satisfaction, c’est-à-dire si tous les coûts indivi-
duels sont limités par un seuil donné. De plus, sur la base d’une commande par retour de
sortie, un deuxième résultat nous permet de synthétiser le gain d’un agent en supposant
que les gains des autres agents sont connus. Enfin, un algorithme itératif synthétisant les
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profils de gain correspondant aux équilibres de satisfaction est également présenté. Une
ouverture sur la puissance de calcul nécessaire à cette méthode est également faite pour
les systèmes de grande taille.

Chapter 3 : Commande composée distribuée pour un réseau avec des

clusters

Nous présentons une conception de commandes distribuées pour les réseaux avec des
clusters, dans lesquels les connexions au sein des clusters sont denses et entre les clus-
ters sont éparses. Notre objectif est de fournir une méthode efficace en termes de calcul
pour concevoir des stratégies de contrôle qui garantissent une certaine limite sur le coût
pour chaque cluster. Sur la base de la structure du réseau et de la théorie des perturbations
singulières, nous appliquons des méthodes de séparation d’échelle temporelle pour décou-
pler le système original en dynamiques rapides (intra-cluster) et lentes (inter-cluster). Par
la suite, nous synthétisons une commande distribuée composée de deux termes : l’un res-
ponsable de la synchronisation intra-cluster, et l’autre effectuant la synchronisation inter-
cluster. La commande interne ne nécessite pas un effort de calcul élevé puisqu’il est ob-
tenu par une expression analytique. Quant au contrôle externe, il est conçu en utilisant
l’approche d’équilibre de satisfaction du Chapitre 2. En résumé, les commandes internes
(rapides) et externes (lentes) sont conçues indépendamment l’un de l’autre et assurent un
coût satisfaisant pour chaque cluster. En outre, nous montrons que le contrôle interne n’af-
fecte le coût du cluster que pendant une courte période. Enfin, des simulations numériques
soulignent le compromis entre la performance de la commande et les ressources de calculs
nécessaires pour obtenir la commande requise en comparant la stratégie proposée dans le
Chapitre 2, le Chapitre 3 et dans [Rejeb et al., 2018]. Bien que la commande du Chapitre
2 soit moins efficace, nous devons garder à l’esprit que la commande composée du Cha-
pitre 3 convient mieux aux réseaux de grande échelle et présente un avantage essentiel
en termes de charges de calcul et de temps. D’autre part, alors que la solution de [Rejeb
et al., 2018] est très rapide à obtenir, nous observons que notre stratégie est nettement plus
performante que celle de [Rejeb et al., 2018].

Conclusion

Cette thèse est consacrée aux algorithmes de synchronisation pour les systèmes multi-
agents (SMA) qui considèrent les coûts individuels pendant le processus de coordination.
L’analyse est menée avec une attention particulière sur les SMA à dynamique linéaire
homogène et les réseaux avec des clusters, avec une topologie fixe dans les deux cas.
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Nous avons exploité à cette fin des concepts de la théorie des jeux [Perlaza et al., 2012]
ainsi que des outils de la théorie des systèmes singulièrement perturbés pour la sépara-
tion des échelles de temps [Kokotović et al., 1999]. De plus, nous prenons en compte les
contraintes de communication dans le réseau, c’est-à-dire que les contrôleurs de chaque
agent n’utilisent que les informations provenant de son voisinage direct. Des protocoles
de commandes distribuées sont fournis, mais les gains de commande peuvent être conçus
de manière centralisée selon les cas.

Mots clés : systèmes multi-agents ; commandes décentralisées ou distribuées ; coûts in-
dividuels ; synchronisation ; théorie des jeux ; systèmes singulièrement perturbés ; réseaux
avec clusters ; réduction des charges de calculs.
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