

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

École doctorale IAEM Lorraine

Efficient Rules Management
Algorithms in Software Defined

Networking

Algorithmes efficaces de gestion des règles dans les réseaux définis par logiciel

THÈSE

présentée et soutenue publiquement le 09 Décembre 2021

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Ahmad ABBOUD

Composition du jury

Rapporteurs : Mohamed Yacine Ghamri-Doudane Professeur à l’Université de la Rochelle, France

Stefano Secci Professeur au Cnam, Paris, France

Examinateurs : Bernardetta Addis Mâıtre de conférences à l’Université de Lorraine, France

Mondher Ayadi Directeur Général, Numeryx, France

Amina Boubendir Ingénieur de Recherche, Orange Labs, France

Encadrants : Abdelkader Lahmadi Mâıtre de conférences à l’Université de Lorraine, France

Michal Rusinowitch Directeur de recherche Inria, Nancy, France

Adel Bouhoula Professeur à l’Arabian Gulf University, Bahrëın

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

Acknowledgments

First and foremost, I am extremely grateful to my supervisors, Dr. Ab-
delkader Lahmadi, Dr Michaël Rusinowitch and Dr. Adel Bouhoula, for
their invaluable advice, continuous support and patience during my PhD
study. Their immense knowledge and plentiful experience have encouraged
me in all the time of my academic research.

I would like to express gratitude to all my colleagues at Numeryx Technolo-
gies and special thanks to Dr. Mondher Ayadi for this beautiful experience
and for allowing me to conduct this thesis.

I would like to thank all members of RESIST research team in Inria Nancy
for the support you have offered me throughout my journey.

It is my privilege also to thank Dr. Miguel Couceiro, Rémi Garcia, and
Dr. Nizar Ben Néji for their kind help and insightful comments on my
research.

My appreciation also goes out to all my friends for their unwavering sup-
port during the past three years.

And my biggest thanks go to my family, my mother Zeinab, and my sis-
ters Rim, Saba, Layan, and Assan, for their encouragement and support
throughout my studies.

i

ii

For My Father,
May he rest in peace.

iii

iv

Résumé
Au sein des réseaux définis par logiciel (SDN), les exigences de filtrage
pour les applications critiques varient souvent en fonction des changements
de flux et des politiques de sécurité. SDN résout ce problème avec une
abstraction logicielle flexible, permettant la modification et la mise en
œuvre simultanées et pratiques d’une politique réseau sur les routeurs.

Avec l’augmentation du nombre de règles de filtrage et la taille des don-
nées qui traversent le réseau chaque seconde, il est crucial de minimiser le
nombre d’entrées et d’accélérer le processus de recherche. D’autre part,
l’accroissement du nombre d’attaques sur Internet s’accompagne d’une
augmentation de la taille des listes noires et du nombre de règles des pare-
feux. Leur capacité de stockage limitée nécessite une gestion efficace de
l’espace.

Dans la première partie de cette thèse, nous proposons une représen-
tation compacte des règles de filtrage tout en préservant leur sémantique.
La construction de cette représentation est obtenue par des algorithmes
raisonnablement efficaces. Cette technique permet flexibilité et efficacité
dans le déploiement des politiques de sécurité puisque les règles engendrées
sont plus faciles à gérer.

Des approches complémentaires à la compression de règles consistent à
décomposer et répartir les tables de règles, pour implémenter, par exemple,
des politiques de contrôle d’accès distribué. Cependant, la plupart d’entre
elles nécessitent une réplication importante de règles, voire la modifica-
tion des en-têtes de paquets. La deuxième partie de cette thèse présente
de nouvelles techniques pour décomposer et distribuer des ensembles de
règles de filtrage sur une topologie de réseau donnée. Nous introduisons
également une stratégie de mise à jour pour gérer les changements de poli-
tique et de topologie du réseau. De plus, nous exploitons également la
structure de graphe série-parallèle pour résoudre efficacement le problème
de placement de règles.

Mots-clés: Minimisation des paquets, Filtrage des paquets, Réseaux défi-
nis par logiciel, Placement des règles.

v

Abstract
In software-defined networks (SDN), the filtering requirements for crit-

ical applications often vary according to flow changes and security policies.
SDN addresses this issue with a flexible software abstraction, allowing si-
multaneous and convenient modification and implementation of a network
policy on flow-based switches.

With the increase in the number of entries in the ruleset and the size of
data that traverses the network each second, it remains crucial to minimize
the number of entries and accelerate the lookup process. On the other
hand, attacks on Internet have reached a high level. The number keeps
increasing, which increases the size of blacklists and the number of rules
in firewalls. The limited storage capacity requires efficient management of
that space.

In the first part of this thesis, our primary goal is to find a simple
representation of filtering rules that enables more compact rule tables and
thus is easier to manage while keeping their semantics unchanged. The
construction of rules should be obtained with reasonably efficient algo-
rithms too. This new representation can add flexibility and efficiency in
deploying security policies since the generated rules are easier to manage.

A complementary approach to rule compression would be to use multi-
ple smaller switch tables to enforce access-control policies in the network.
However, most of them have a significant rules replication, or even they
modify the packet’s header to avoid matching a rule by a packet in the
next switch. The second part of this thesis introduces new techniques to
decompose and distribute filtering rule sets over a given network topology.
We also introduce an update strategy to handle the changes in network
policy and topology. In addition, we also exploit the structure of a series-
parallel graph to efficiently resolve the rule placement problem for all-sized
networks intractable time.

Keywords: Packet minimization, Packet filtering, Software defined net-
works, Rule placement

vi

Contents

Chapter 1 General Introduction 1

1.1 Context . 1
1.2 Problem Statement . 3
1.3 Our Contribution . 4
1.4 Thesis Organization . 4
1.5 Publications . 5

Chapter 2 Related work 7

2.1 Introduction . 7
2.2 Packet Classification Approaches 8

2.2.1 A Hardware Based Solution: TCAM 9
2.2.2 A Software Based Solution: Decision Tree 12

2.3 Minimization of Packet Classification Rules 14
2.3.1 Range Encoding . 14
2.3.2 Classifier Minimization 15

2.4 Software Defined Networking 17
2.4.1 SDN Architecture 17
2.4.2 OpenFlow Protocol 18

2.5 Rules Placement . 24
2.5.1 Rulesets Decomposition and Placement 24
2.5.2 Rules Caching and Swapping 27
2.5.3 Path Based Rules Placement 28
2.5.4 Rules Update . 30

2.6 Summary . 31

vii

Chapter 3 Filtering Rules Compression with Double Masks 35

3.1 Introduction . 35
3.2 Double Mask Technique . 37

3.2.1 Preliminaries . 37
3.2.2 Double Mask Representation 38

3.3 Double Mask Computation Algorithms 40
3.3.1 Naive Algorithm . 40
3.3.2 Linear Time Algorithm 44

3.4 Evaluation by Simulation 48
3.4.1 Simulation Setup . 48
3.4.2 Real-world IP Ruleset 49
3.4.3 Synthetically Generated Rulesets 49

3.5 Experimental Evaluation . 51
3.5.1 Setup and Parameters 51
3.5.2 Implementation and Integration 52
3.5.3 Experiments and Results 57

3.6 Discussions . 60
3.7 Summary . 60

Chapter 4 Rules Distribution Over a Single Path Topology 63
4.1 Introduction . 63
4.2 Problem Statement . 64

4.2.1 Problem Definition 64
4.2.2 Requirements . 65

4.3 Distribution Over a Single Path 66
4.3.1 Rules Representation 66
4.3.2 Forward Rules Generation 67
4.3.3 Distribution Algorithm 68
4.3.4 Algorithmic Complexity 70

4.4 Evaluation . 70
4.4.1 Simulation Setup . 70
4.4.2 Simulation Results 71

4.5 Summary . 73

viii

Chapter 5 Rules Distribution Over a Graph 75
5.1 Introduction . 75
5.2 Two-Terminal Series-Parallel Graph 76

5.2.1 Distribution Algorithm 77
5.2.2 Algorithmic Complexity 81
5.2.3 Generalization to St-Dags 81

5.3 Two-Tier Distribution Approach 85
5.3.1 Distribution of Multi-Fields Rulesets 85
5.3.2 Multi-level Distribution 85

5.4 Evaluation of Two-Tier Approach 87
5.4.1 Experimental Setup 87
5.4.2 Overhead . 88
5.4.3 Bandwidth and Latency 89
5.4.4 Multiple Destinations 91

5.5 Rulesets Update Strategy 95
5.5.1 Update Strategy With Generated Forward Rules . . 96
5.5.2 Update Strategy With Two-Tier Approach 99
5.5.3 Evaluation . 99
5.5.4 Network Topology Update 101

5.6 Summary . 102

Chapter 6 General Conclusion 105
6.1 Achievements . 106
6.2 Limitations . 107
6.3 Future Work . 108

Bibliography 111

List of Figures 125

List of Tables 129

Appendix A Résumé de la thèse en français 131
A.1 Context . 131
A.2 Problématique . 133
A.3 Notre contribution . 134

ix

A.3.1 Compression des règles de filtrage avec Double Mask 135
A.3.2 Gestion des règles 135

A.4 Limitations . 137
A.5 Travaux futurs . 138

x

Chapter 1

General Introduction

Contents
1.1 Context . 1
1.2 Problem Statement 3
1.3 Our Contribution 4
1.4 Thesis Organization 4
1.5 Publications . 5

1.1 Context
The increasing size and complexity of network topologies make it chal-
lenging to manage network devices. In 2021, for example, the number of
estimated IoT devices embedded with sensors and software to share data
over the Internet is around 13.8 billion worldwide. This number will reach
30.9 billion in just four years from now [1]. This enormous number of
connected devices generate over 2.5 quintillion bytes of data every day [2],
and by 2025, we create 463 exabytes of data each day [3]. In addition, the
type of data transferred over the Internet is significant, and any delay or
security breach can cost millions of dollars in loss. TABB Group study
shows that if an electronic broker platform has a delay of 5 milliseconds, it
could lose at least 4 million dollars per millisecond [4]. In another case, a
breach in Yahoo costs the company around $4.48 billion [5], while the loss
resulting from another hacking breach is estimated to have cost the same
company $444 billion [6]. This shows how severe and costly an attack can
be and triggers the scientific community to find new solutions to adapt to
the new challenges.

In the last decade, a new networking trend called Software Defined
Network (SDN) is developed to enhance the manageability of networks.
SDN decouples the control plane and the data plane that communicate

1

with each other by OpenFlow protocol. Thanks to this decoupling net-
work devices are reduced to simple forwarding devices, leading to a faster
packet classification. At the same time, dataflow control tasks are assigned
to an entity called the controller. This new approach gives the adminis-
trator a global view of the network and simplify updating and problem
resolution, therefore improving the performance of SDN-enabled devices
and controllers.

Moreover, the growth of traffic impacts the size of forwarding tables
which are the core OpenFlow-based software-defined networking switches.
These tables aim to route any packet to the right destination. Blacklists
too, may have to store millions of IP addresses of malicious sources. Some
rulesets admit more than 250000 instances corresponding to malicious do-
mains [7] and more than 5000 new malicious IP addresses are discovered
daily. On August 8th, 2014, some Internet service providers (ISP) expe-
rienced router crashes causing network outages around the globe. This
problem arised after the number of entries in a global BGP routing table
stretched to more than 512000 entries, leading to a problem in routers
with memory up to 512K entries [8]. While 512k seems large, the active
BGP entries nowadays are about 900k and keep increasing with time as
shown in Fig. 1.1.

Figure 1.1: Active BGP entries [9].

This growing number of entries in networking devices can create bottle-
necks and affect the performance and quality of service (QoS). In addition,
with a higher number of entries, we have a higher probability of errors and
misconfiguration. According to [10] 20% of all failures in a network can

2

be attributed to poorly planned and configured updates in the network.
Managing these large rulesets and data flow is complex. While automati-
zation and artificial intelligence are being deployed in many applications
nowadays, many networking systems still rely on the administrator for de-
ployment and configuration of the network, therefore adding more delays
and source of errors and interruptions in the network.

Reducing rulesets size is a challenging problem for networking devices
and their associated packet classification solutions. Moreover, the place-
ment of any rule entry in the network based on its priority is essential to
ensure that every harmless flow can reach the correct destination while
malicious ones are blocked. In this thesis, our primary focus will be to
address these two problems.

1.2 Problem Statement

With the trend of continue growing of number of rules in ruleset, it be-
comes a great challenge their management regarding multiple issues like
rule shadowing, rule redundancy, inconsistencies, . . . Besides trying to solve
these problems directly, one may attempt to mitigate them by relying on
rules compression in order to reduce the size of rulesets. CIDR notation
is not efficient when dealing with nowadays rulesets especially when the
number of exceptions is high. Therefore we need a new notation that can
handle a large number of such rules. However, deriving a set of rules se-
mantically equivalent to the initial one while being space saving, is not
obvious. Therefore the first objective of this thesis is to minimize rulesets
by designing a succinct notation to compress large sets of IP addresses.
This notation needs to be generalized to work with any range type, IP, or
port range. In addition, we show that the translation between the CIDR
representation and the novel one is fast and linear. In some cases, the size
of networking switches is too limited to fit all rules even after compres-
sion. In some other cases, the type of application requires rules set to be
decomposed and distributed over the network instead of storing them in
the same location. With the large size of the nowadays networks and their
complex topologies, distributing rules is a challenge. For example, pack-
ets can traverse multiple paths and need to be rechecked with the same
rules in every path. In other scenarios, a switch belonging to several paths
needs to maintain specific rules for each one, making it difficult to share
the switch capacity between paths.
Most decomposing rules techniques use additional rules in switches to
maintain the same semantics. For example, let us consider a switch with
all rulesets installed in that switch. We have two scenarios, the packet
matches a rule, or no match is found. If we need to decompose the same
ruleset on multiple switches, the same packet must match the same rule

3

in a switch then traverse all following switches without any match in the
first scenario. However, in the second case, the packet must always match
the default rule in all switches.

Existing decomposition techniques rely mainly on rule duplication and
generate new rules to preserve the semantics of the rulesets. However,
adding additional rules increases the overhead of switches and affects the
performance of the packet filtering and classification process. To overcome
this problem, we need to find a way to minimize the number of new rules
generated. Moreover, the complexity of network topologies makes the
distribution of rules complicated. In particular, intersection nodes, switch
capacities, processing power, etc., need to be considered in any distribution
strategy. Therefore, the second objective of this thesis is mainly concerned
with decomposing and distributing a set of rules in an SDN network while
preserving the rulesets’ general semantics and respecting each switch’s
capacity constraint.

1.3 Our Contribution

Packet classification is achievable with software or hardware-based solu-
tions. Devices that use TCAM memories are standard for packet clas-
sification due to their faster lookup time. However, these devices have
a limited space and require significant amounts of power. On the other
hand, software-based applications like a decision tree are easier to imple-
ment but slower than TCAMs. Besides, to decrease the classification time,
the number of rules in the tables is reduced. This will decrease the power
consumption and make searching a data structure more efficient, resulting
in a better classification process.
This thesis provides two major contributions in rules management. The
first one is an efficient method to reduce the number of entries in tables by
using a new range encoding technique extending the standard CIDR no-
tation. The second contribution provides algorithms for distributing rules
over an SDN network while reducing the overhead in switches. Finally, we
have developed an efficient rules update strategy to handle the continuous
changes in network topologies.

1.4 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 details the
state of the art regarding the rule minimization problem and we discuss
the limitations of existing approaches. Moreover, we present the exist-
ing research body for the decomposition and distribution of rules in SDN
and update strategy approaches to reduce the overall update time and the

4

overhead in switches.
Chapter 3 introduces a new representation for field ranges called Double
Mask. This strategy aims to reduce the number of entries in rulesets by
targeting a larger number of addresses with a smaller set of rules, thus
resolving the rule expansion problem, especially in port ranges. A linear-
time algorithm is designed to compute the new notation by transferring
the old CIDR notations to new ones or directly generating a list of new
entries. Moreover, we implement a solution in SDN by adding support
for the representation inside the OpenFlow protocol. This enables sending
and receiving messages between the controller and switches that contain
rules with Double Mask.
In Chapter 4, we introduce our rule decomposition approach by using the
Longest Prefix Match (LPM) strategy. Indeed, to reduce the overhead, we
tried to minimize the number of forward rules generated by considering
the action field of a rule.
In Chapter 5, we develop an algorithm for the decomposition and distri-
bution of rules on series-parallel graphs, and we generalize the distribution
to all st-dags graphs. Another proposed approach called Two-Tier, elim-
inates the need for forward rules, and therefore reduce the overhead of
switches. Next, we evaluate our algorithms and compare their results with
exiting approaches available in the literature. Finally, we introduce an
update strategy that focus only on the part of the network that can be
potentially affected by the modification. Our strategy amounts to apply
the above decomposition and distribution algorithm with a subset of rules
and a (generally smaller) subnetwork. This leads to a faster solution than
with the naive approach as shown by our carried simulations.
In Chapter 6 we present the overall conclusions of our contributions. We
also discuss some perspectives on how these approaches can be enhanced
and extended.

1.5 Publications

The contributions of this thesis have been published in a number of inter-
national conferences as detailed below:

� Ahmad Abboud, Rémi Garcia, Abdelkader Lahmadi, Michaël Rusi-
nowitch, and Adel Bouhoula. "Efficient Distribution of Security Pol-
icy Filtering Rules in Software Defined Networks." In 2020 IEEE 19th
International Symposium on Network Computing and Applications
(NCA), pp. 1-10. IEEE, 2020. [11]

� Ahmad Abboud, Rémi Garcia, Abdelkader Lahmadi, Michaël Rusi-
nowitch, and Adel Bouhoula. "R2-D2: Filter Rule set Decomposition
and Distribution in Software Defined Networks." In 2020 16th Inter-

5

national Conference on Network and Service Management (CNSM),
pp. 1-4. IEEE, 2020. [12]

� Ahmad Abboud, Abdelkader Lahmadi, Michaël Rusinowitch, Miguel
Couceiro, Adel Bouhoula, and Mondher Avadi. "Double mask: An
efficient rule encoding for software defined networking." In 2020 23rd
Conference on Innovation in Clouds, Internet and Networks (ICIN),
pp. 186-193. IEEE, 2020. [13]

� Ahmad Abboud, Abdelkader Lahmadi, Michaël Rusinowitch, Miguel
Couceiro, and Adel Bouhoula. "Poster: Minimizing range rules for
packet filtering using a double mask representation." In 2019 IFIP
Networking Conference (IFIP Networking), pp. 1-2. IEEE, 2019.
[14]

6

Chapter 2

Related work

Contents
2.1 Introduction . 7
2.2 Packet Classification Approaches 8

2.2.1 A Hardware Based Solution: TCAM 9
2.2.2 A Software Based Solution: Decision Tree 12

2.3 Minimization of Packet Classification Rules . 14
2.3.1 Range Encoding 14
2.3.2 Classifier Minimization 15

2.4 Software Defined Networking 17
2.4.1 SDN Architecture 17
2.4.2 OpenFlow Protocol 18

2.5 Rules Placement 24
2.5.1 Rulesets Decomposition and Placement 24
2.5.2 Rules Caching and Swapping 27
2.5.3 Path Based Rules Placement 28
2.5.4 Rules Update . 30

2.6 Summary . 31

2.1 Introduction
The increasing size of routing tables, blacklists, intrusion detection sys-
tems, etc., raises the question of representing a set of addresses by the
smallest ruleset. For many decades, the Classless Inter-Domain Routing
(CIDR) notation has been used to partially resole this problem by group-
ing IP addresses from the same network into one representation. However,
managing large rulesets in complex topologies is a non-trivial task. We
need to consider the limitations in memory capacity and process power as
well as the location of each switch in the network.

7

The categorization and grouping of a data flow require to classify each
packet in the network. This process is called packet classification, and all
packets belonging to the same flow are processed in the same way [15]. This
technique enables routing, filtering, monitoring, and many other services
on the Internet [16]. Securing a flow of data means testing every packet
traversing the network. Unfortunately, this process adds a delay each
time a packet arrives, especially if the number of entries is large,and can
even block harmless flows if the system is poorly configured. Hardware-
based packet classification is the fastest solution for this problem. TCAMs,
for example, are becoming the standard in industry due to their high-
speed classification capabilities. TCAMs permit a fast parallel search of
the memory but admit memory limitations, high power consumption, and
costly memory architecture modification. Software solutions, on the other
hand, are slower but their implementation, updating, and scaling are much
more manageable.

In this thesis we tackle the enhancement of packet classification process
by considering the minimization of rulesets and their distribution among
network devices with limited memory.

The rest of this chapter proceeds as follows. Section 2.2 introduces
multiple hardware and software approaches to handle the packet classifi-
cation problem. In Section 2.3 we describe two software-based solutions
for minimizing the number of entries. Section 2.4 provides an overview of
the Software Defined Network. In Section 2.5 we investigate the methods
used in the rule placement problem. Finally, in Section 2.6 we analyze and
discuss the different proposed approaches for both rule minimization and
rule placement problems.

2.2 Packet Classification Approaches
CIDR [17] notation is applied to all network devices and appliances, in
blacklists, whitelists, routing table, firewalls, access-control list (ACL),
etc. An example of an ACL rule is the following:

access− list permit udp 192.168.32.0 0.0.7.255 192.168.77.3 0.0.0.255

According to this rule, we permit any UDP packet from an IP source
192.168.32.0 with a wild card equal to 0.0.7.255 and a destination IP ad-
dress equal to 192.168.77.3 with a wild card 0.0.0.255.

With a packet classification process, network nodes must classify indi-
vidual packets traversing the node by matching such rules stored in the
tables of networking devices. Packet classification requires searching the
tables and apply the action associated with the highest priority rule which
matches the packet. When the number of entries increase the packet clas-
sification time also increases. To solve this problem, we need to minimize
the number of entries in the rulesets, leading to better performance.

8

Priority IP Src IP dst Src Port Src Port Action
4 192.168.100.0/24 19.153.234.163/32 [1,65534] [1,65534] Accept
3 201.162.23.191/32 10.133.202.145/32 [1,65534] [1,65534] Deny
2 184.166.27.94/31 98.85.58.204/31 [1,65534] [1,65534] Deny
1 192.168.100.2/30 19.153.234.0/24 [1,65534] [1,65534] Deny
0 21.79.252.56/30 49.50.220.0/22 [1,65534] [1,65534] Accept

Table 2.1: Example of an ACL rule table.

Table 2.1 shows a rule table containing 5 ACL rules. Each rule has a
priority between 0 and 4, a source and destination address, and an action
field. A packet with an IP source 192.168.100.1 and an IP destination
19.153.234.163, matches two rules, one with priority 4 and the other with
priority 1. In this case, the action of rule with the highest priority, accept
in this case, is applied.

Packet classification often relies on multiple dimensions which is com-
plex if the number of rules is large and introduces a performance bottle-
neck. Many attempts to accelerate the classification process have been
developed over the years. For example, this process can be improved by
decreasing the lookup time for a packet inside a rule table or minimizing
the number of entries in a rule table either by re-encoding rules or reduc-
ing their size. The type of memory used to store rules can also affect the
classification process.

2.2.1 A Hardware Based Solution: TCAM

Ternary Content Addressable Memories (TCAM) are the most popular
hardware-based technique in networking devices. TCAMs store rules as a
W-bit field (value, bitmask). For example, if W=4, a prefix 01** will be
stored as (0100,1100) inside TCAM memory. An input key is compared
with all stored patterns simultaneously. A TCAM gives us a result when-
ever a key matches a pattern or not in one cycle. At the same time, other
types of memory like Static Random-Access Memory (SRAM) needs more
cycles resulting in slower network switching applications.

Rule Address Port
1 10** a
2 010* b
3 01** c
4 1000 d

Table 2.2: Example of a routing table.

In Table 2.2 we have four addresses, each one with a different port.
Based on the address, each of the packets will be directed to one of the
four ports. In standard cases, and without TCAMs, if a packet has an
address of 0101, according to Table 2.2 Rules 2 and 3 will be triggered.
To solve this problem, standard memory like SRAM uses Longest Prefix

9

Match (LPM), where a packet is matched by the most specific entry in
the rule table. In this case, Rule 2 is more specific, and the packet will be
sent to port b.

10XX

010X

01XX

1000

00 a

01 b

10 c

11 d

P Encoder

D
ecoder

0101

word

port b

1

1

0

0

01

Figure 2.1: TCAM with a priority encoder.

Fig. 2.1 shows a TCAM with the same rules from Table 2.2. In this
scenario, we will use a priority encoder instead of LPM. If we need to
match the input key 0101, the TCAM tries to find a pattern that matches
the key. A vector of N-bit, where N is the number of rows in the TCAM,
is generated to indicate which rules match the input key. In case of Fig.
2.1, this vector is equal to {0, 1, 1, 0}. Then, the vector is sent to a priority
encoder which indicates the address of the rule with the highest priority
in the memory. The address is then sent to a decoder that matches the
address with the list of ports and chooses the right one. In our example,
Port b is selected. An encoder can also apply LPM to find the best match.

SRAM and TCAM have the same output, but the set of addresses is
divided into multiple parts in SRAM. Each of them takes a cycle to be
searched, while in TCAM, we can explore all entries in parallel.

For a faster classification and lookup process in TCAM, we can reduce
the number of entries that need to be checked instead of running a parallel
search on all entries. This can be done by having multipl blocks inside
TCAM, and each one has a set of rules. A key represents each block (i.e.,
the common prefix of all rules inside this block, for example). Therefore,
a packet that matches a key k will be checked against all rules inside the
block represented by k.

As mentioned above, TCAMs offer a full parallel search of the memory
which makes it very fast but has also some drawbacks. The explosion
in the number of TCAMs entries is a well-known problem [18; 19; 20].

10

According to [21] the maximum number of entries needed to represent an
interval of w-bits binary numbers is 2(w − 1) prefixes for a w-bit phrase.
For example, in Table 2.1, the sources and destinations ports [1,65534]
need each one 30 prefixes to be represented. This means that we need 30
x 30 = 900 entries to represent all port combinations for a single rule only.
With the limitation in space, it becomes worse and limits the scalability
of such a technique.

Power consumption is another problem faced by TCAMs. Multiple
research attempts have been proposed to solve this problem [22; 23; 24; 25;
26]. According to [16], with the same number of memory access, TCAMs
consume 30 times more power than a standard SRAM. In some high-
end routers, 30 to 40 percent of all power is consumed by TCAMs [19].
According to [23], a TCAM consumes 100 times more power per bit than
a standard SRAM. A power-hungry device increases the heat generated
by such a device leading to a degradation in performance and a delay in
the classification and lookup process. In [27], the authors show that the
energy per access scales linearly with the number of entries in TCAMs.

It is worthy to note that TCAMs memories are expensive. According to
[28], TCAMs are 400 times more expensive than standard SRAMs with the
same capacity. With the high number of rules that need to be installed
in TCAMs, managing that space is a crucial element. The high-cost of
memory leads to TCAMs with smaller capacity. For example, an HP
ProCurve 5406zl TCAM switch can support up to 1500 OpenFlow rules,
and with an average of 10 rules per active host, this switch will support 150
users only [29]. In addition to the space limitation and cost, increasing the
space means increasing the number of entries in TCAMs, which reflects on
the power consumption and the generated heat, leading to more expensive
cooling systems [19].

In addition to the high cost and power-hungry issues, TCAMs are
facing their low capacity problem. The largest TCAM chip available has
a 72Mb capacity [30], while 1Mb and 2Mb are the most popular ones [31].
According to [32], a 2Mb TCAM can store around 33000 entries of size
60 bit, while the number of entries with 16 bits can reach 125000. This
increase in the number of entries can save the cost of buying high-end
switches with more significant TCAM memory capacity.

As mentioned before, the worst case for rule expansion is 900 per rule.
Since each TCAM entry needs 144 bits to be represented, the worst-case
scenario requires 144*900 = 129600 bits or 0.1296Mb in TCAM memory. If
all rules have a worst case, the largest TCAM memory can store 555 rules
only. While the worst case is unlikely to happen, this is still an alarming
issue [31]. This is where range re-encoding and classifier minimization can
help to reduce the cost of TCAMs, as shown in the next part.

In addition to memory limitation, TCAMs are not expandable and
need to be changed altogether, making it difficult and costly for ISPs to

11

handle the significant growth of TCAMs entries every day.
To overcome TCAMs problems, we need to improve the packet classi-

fication process by reducing the ruleset size or implementing a better data
structure to store data and speed up the lookup process. With a software
solution based on a decision tree, we can find quickly a match between a
word and a list of patterns by traversing the tree. However, if the tree is
poorly implemented, memory access increases, leading to a longer lookup
time.

2.2.2 A Software Based Solution: Decision Tree

Representing rules with a decision tree

Building an efficient decision tree is a key factor in any lookup process.
In addition, this structure can be applied to remove redundant rules and
detect rule shadowing resulting in a smaller set of rules. Table 2.3 shows
a prioritized list of 5 rules on two dimensions, X and Y. In a prioritized
list, if a packet matches several rules, the one that comes first in the list
has priority, and we apply the corresponding action.

Rules X Y
R1 [0-3] [0-3]
R2 [2-3] [0-7]
R3 [0-7] [4-7]
R4 [6-7] [0-1]
R5 [0-7] [0-7]

Table 2.3: Example of a prioritized rule list.

Fig. 2.2 shows the 2D representation on two axis X and Y of rules from
Table 2.3.

R1

R2 R3

R4

R5

0

7

7X

Y

cut 1

cut 2

Figure 2.2: A 2D distribution of Table 2.3

12

Now let us apply Cut 1 and Cut 2 on the 2D representation. The
decision tree in Fig. 2.3 shows the different nodes, each belonging to a
different part of the network based on the X and Y value. Let p = (2, 3)
a packet that needs to be matched. p is in the range ([0-3],[0-3]), by
traversing the tree from the root to leaves, we see that Rules R1, R2 and
R5 matches p, and since R1 has the highest priority, the action of R1 will
be applied to p.

The decision tree data structure has to be implemented in the right
way for a fast lookup process. For example, if a decision tree has a very
long path from the root to a leaf while other paths are short and if most
packets need to traverse this long path, the performance of the lookup will
be affected. Another problem faced by decision trees is the way a cut is
performed. In a set of rules with high overlapping, the duplication in tree
nodes will also be increased, affecting the memory occupied by the tree
and the lookup time as well.

R1
R2
R5

R4
R5 R2

R3
R5

R3
R5

[0-3],[0-3]

[0-3],[4-7]

[4-7],[0-3]
[4-7],[4-7]

Figure 2.3: Example of a decision-tree of Table 2.3 after Cut 1 and Cut 2.

Decision Tree Based Classifiers

HiCuts [33] is one of the first to apply a decision tree to packet classifica-
tion. At every packet reception, the tree is traversed to find the leaf that
contains a set of candidate rules. Then, this set of rules is be searched to
find a match for the received packet. HiCuts works by cutting the two-
dimension (rectangle) representation of rules into two equal parts at each
time. Each of the parts genrates a node in the decision tree. An exten-
sion called HyperCuts [34] allows for cutting the two dimensions (X and Y
axis) simultaneously (Fig. 2.3) whereas HiCuts handle only one dimension
at a time. HyperCuts minimizes the decision tree depth and speed up the

13

lookup process. HyperSplit [35] achieves better performance by minimiz-
ing memory usage and processing time with a different cutting strategy.
The authors in [36] propose four heuristics to overcome the extensive mem-
ory usage, to reduce the overlapping rules, and to cut the tree into equal
dense parts to tackle the variation problem in rule density which occurs
with other approaches. CutSplit [37] combines the previous techniques to
handle the rule duplication and reduce the memory consumption at the
same time. With Multibit Tries [38] two tries representing source and des-
tination are combined in a two-levels tree. Every level is associated with
a dimension. This structure can speed up look up time.

While most decision tree techniques described above are developed
to accelerate classification by minimizing the number of traversed nodes
in a tree, this structure is also helpful to remove redundant rules. In
[39], the authors propose an algorithm for reducing the number of entries
in TCAM that removes redundant rules based on a tree representation.
This structure can be also applied to decompose a set of rules, as we
will see in Section 2.5. Although solutions based on a decision tree are
easy to implement and modify, and are more scalable, they have some
shortcomings. They are slower than hardware solutions and designing an
efficient decision tree is hard.

2.3 Minimization of Packet Classification Rules

Solving the rule expansion problem makes the classification process in
TCAMs more efficient since this reduction decreases power consumption
and overcomes the space limitation. This section will discuss how range
encoding and classifier minimization can reduce the packet classification
time and simplify rule management.

2.3.1 Range Encoding

An efficient solution to deal with the high number of TCAMs entries is
range encoding. It consists in mapping each of the ranges to a short ternary
format sequence. Ranges in TCAMs are represented by this sequence
without the need to expand them, thus, improving the storage capacity of
TCAMs and affecting positively the overall performance.

In [40], Liu and al. propose a technique that requires less TCAM
storage space and a deterministic execution time. In their approach, a
key is generated for each of the rules and stored alongside the address
in TCAM. The key is an n-bit vector V = {v1, v2..., vn}, where n is the
number of distinct ranges. Each of the vi in this case corresponds to a range
with vi = 1 if and only if v ∈ Ri otherwise vi will be set to 0. Although
this technique can reduce the number of entries in TCAM by relying on
ternary format instead of prefixes, it requires extra bits to represent keys

14

in the TCAM memory. An algorithm called SRGE is introduced in [41] to
handle the rule expansion problem by encoding ranges with Gray codes.
In this binary encoding, two adjacent numbers differ by one bit only. This
encoding improves the maximal rule expansion to 2 ∗ w − 4 prefixes for
each range.

From a topological view of the TCAM re-encoding process, the au-
thors in [42] propose a technique to optimize packet classifiers with domain
compression to eliminate as many redundant rules as possible, and prefix
alignment to reduce range expansion.

A TCAM-based algorithm is presented in [43] called parallel packet
classification (P 2C). In this approach, each header field is re-encoded
using fewer bits, and then all fields are concatenated to form a TCAM
entry. Although we will end up with the same number of rules, the total bit
size is smaller. This method is based on a primitive-range hierarchy, where
different ranges are mapped to a different layer. Disjoint rangers are put
in the same layers and represented by code-words. An approach that relies
on inclusion tree (i-tree) called prefix inclusion coding (PIC) is developed
in [44] to overcome some drawbacks of the P 2C approach, especially w.r.t.
the update cost where all ranges in a layer will be affected by an insertion
while in PIC an insertion will affect a small part of ranges in that layer.
DRES [45] is a bit-map-based scheme based on a greedy algorithm for
range encoding in TCAM co-processors. In DRES, ranges are encoded
by the algorithm from [43]. Ranges with the highest prefix expansion
will be assigned extra bits. In DRES, decoding is done inside TCAMs,
meaning that a modification is necessary and existing network devices
cannot be employed directly. To handle the range expansion, [46] proposes
a Non-Adjacent Form or NAF. In this approach, a range is re-encoded
with a set of signed prefixes. While the encoding reduces ranges, signed
representations complicate the matching implementation and performance
and add overheads.

The approach Flow Table Reduction Scheme has been introduced in
[47] to minimize the number of flow entries in SDN. This paper focuses on
reducing the number of entries by using a new representation for IP ranges
since reducing the number of entries can improve the power consumption
of TCAM while respecting the capacity constraint.

The DNF (disjunctive normal form) has also been applied to compute
the minimal Boolean expression for a range in linear time [21] and to
prove the 2w−4 upper bound. Table 2.4 shows a summary of some range
encoding techniques already presented.

2.3.2 Classifier Minimization

Another technique to reduce the number of entries before storing them
into TCAMs, relies on transforming a given classifier into a semantically

15

Reference Approach Goal Limitations
[40] Store a key for each

rule in TCAM
Reduce memory usage Require extra bits

[41] Gray Coding for ranges Reduce rule expansion Require more entry in
some cases

[42] Rule compression / re-
dundancy removal

Reduce classification
time

Not optimal / rule can
be more compressed

[43] Rule header re-
encoding

Reduce memory usage Costly update / Hard-
ware modification

[44] Rule header re-
encoding

Reduce memory us-
age/ Better update
cost

Hardware modification

[45] Bit-map based scheme Reduce memory usage Need extra bits / Hard-
ware modification

[46] Non-Adjacent form Reduce memory usage Additional overhead
for classification and
lookup

[47] New IP range represen-
tation

Reduce memory usage Costly update

Table 2.4: Summary of range encoding techniques.

equivalent one with fewer TCAMs entries. This technique is called classi-
fier minimization.

A framework presented in [48] is aimed to reduce the size of rulesets in
a classifier by running multiple techniques like trimming, merging, expand-
ing, or adding new rules. This approach does not introduce any hardware
modification. In [49], an extended version of a tree representation of a
classifier called decision diagram allows one to remove redundancy. This
technique decreases the number of entries needed in TCAMs.

Alternatively, [16] proposes a greedy algorithm to decompose a multi-
dimensional rules list into several one-dimensional rules, and then tries to
solve each one apart and finally combines all solutions into a smaller and
equivalent classifier.

Most classifier compression techniques rely on a prefix to minimize the
number of rulesets. In [30], a non-prefix approach takes advantage of the
fact that TCAMs can handle ternary format where the don’t care bit ’*’
can appear at any position. In this case, all TCAMs entries with the
same action and with only one bit difference in the same position can be
merged. This approach runs in a polynomial-time without any regard to
the number of TCAM entries.

In [50], McGeer and Praveen Yalagandula propose an algorithm based
on two-level logic optimization to reduce the size of the classifier at first
before converting rules into TCAM entries. Unfortunately, although this
method can achieve an excellent compression ratio, it is time-consuming.

Compression techniques are also applied to reduce the size of the rule-
sets. For example, in [51] the authors try to compress routing tables with
aggregation on the source field, the destination field, or with a default
rule. This technique reduces the number of rules needed for the routing

16

application and has a limited impact on loss rates. In [52], a new compres-
sion scheme was presented to minimize the number of policies in a firewall
by removing redundant and shadowed rules. Finally, in [53], the authors
present a new aggressive reduction algorithm by merging rules relying on
a two-dimensional representation. Other techniques besides compression
such as shadowing removal, generate a set of rules semantically equivalent
to the original one. Authors in [54] propose an approach to detect anoma-
lies in firewall rules like generalization and shadowing and correct these
anomalies to reduce the number of rules.

While classifier minimization can reduce the number of entries, the
original classifier cannot be computed from the new one resulting in a loss
of information that could be helpful if new rules are added or removed.

2.4 Software Defined Networking

The number of users and connected devices are in continuous increase
which led to a high demand for new data management and network ar-
chitecture design that can handle the large amount of data transferred
and providing a support of simplified software management. Software De-
fined Networking (SDN) [55] and its associated OpenFlow protocol have
emerged to provide programmability to networks and simply network man-
agement.

2.4.1 SDN Architecture

SDN decouples the control plane from the data plane as shown in Fig. 2.4.
Switches and routers in SDN perform forwarding packets only. However,
the controller in the control plane controls how and where each packet
will be handled. This level of separation between the control and data
plane builds a more flexible environment. In addition, the controller has
an overview of all the network. The controller oversees switches in the data
plane via a well-known protocol called OpenFlow [56]. Switches running
OpenFlow have one or more tables that can store rules called flow tables.
OpenFlow switches can have TCAM or SRAM memory. When a packet
arrives at a switch for the first time, a packet_in message is sent to the
controller if no match is found. Then, the controller sends back a rule to
be installed in the switch’s flow table with the proper action that needs to
be taken for every packet with the same header field as the first received
packet. Since switches in SDN apply the matching process based on rules
sent from the controller, they can behave like a router, a firewall, a switch,
etc.

The controller in SDN called NOS is a software-based platform that
runs on a server. The network is programmable through a software ap-
plication running on top of NOS [57]. In this thesis we consider that any

17

OpenFlow

Switches

Open southbound API

Open northbound API

Network Application API

Controller Control Plane

Data Plane

Figure 2.4: Overview of SDN architecture.

packet classification approach needs to run on the controller before sending
rules to the switches. For example, if a new classifier is computed in the
controller based on an old one but with the same semantics, new rules of
the new classifier will be sent to the switches. Since the number of rules
in the controller is smaller after applying different techniques, then the
number of rules in switches will also be smaller. If switches in SDN use
TCAM memory, then the classification process becomes faster. The com-
munication between controller and switches uses the OpenFlow protocol
implemented in both the data and control plane. In the next part, we will
describe this protocol and its operations.

2.4.2 OpenFlow Protocol

OpenFlow is the most widely used communication protocol in southbound
API. Started from an academic project in campus networks [56], this pro-
tocol quickly spread between giant companies like Facebook, Google, Mi-
crosoft, etc. In addition, OpenFlow-enabled switches have been produced
by many vendors, including HP, NetGear, and IBM [58]. While SDN gives
an abstraction of the entire network, OpenFlow provides an abstraction for
components in the network. Therefore it is important to decouple the two
from each other. Even though OpenFlow protocol and SDN can complete
each other, they are not tied together. For example, SDN can use other
communication protocols for the southbound API like POF [59], OpFlex
[60] OpenState [61], Open vSwitch [62], PAD [63].

One key element of OpenFlow is the centralization of the control plane.
One controller can be connected to multiple switches, and any decision
can be based on the global view of the network instead of having limited

18

knowledge of the network. This centralization can be helpful in case of
network failure since, in traditional network architecture, a new path needs
to be computed at each switch. However, in SDN, the controller can locally
compute a new route and send new rules for each affected switch.

OpenFlow can also be used to analyze traffic in real-time. Each rule
in the routing table has a counter that indicates how many times this
rule has been matched. This information can be sent to the controller,
where it can be analyzed. To detect a denial of service attack (DDoS),
authors in [64] propose a new method that uses self-organizing maps to
classify network traffic as malicious or not. In [65] a new method for
source address validation mechanism is used with OpenFlow where a new
rule received by the controller for the first time will be analyzed based
on the destination source. OpenFlow is also used in all sort of network
application from traffic engineering [66; 67; 68; 69], mobility and wireless
[70; 71; 72; 73], monitoring [74; 75; 76], data centers [77; 78; 79], security
[80; 81; 82] and many other.

Packets Matching

OpenFlow Controller

OpenFlow Switch

Flow Tables

Secure
Channel

Match Fields Priority Counters Instructions Timeouts Cookie Flags

Main components of a flow entry

OpenFlow Switch

Flow Tables

Secure
Channel

Host 1
Host 2

Host 3

Secure
Channel

Figure 2.5: Overview of OpenFlow-based Networking.

19

Fig. 2.5 shows the main components of an OpenFlow architecture.
Each OpenFlow-enabled switch has one or multiple flow tables that store
rules received from the controller. Each rule in the flow table has a match-
ing field. Incoming packets are compared with the match field. If a packet
p matches a rule, then the action associated with that rule is applied. If
no match is found, a message will be sent to the controller, which sends
back a rule to handle all packets like p in the future without consulting
the controller. Counters in flow entry are used to keep statistics about in-
coming packets. A packet can have multiple matches inside the flow table.
Each rule is associated with a priority field that defined which from the
matched rules will be considered.

In OpenFlow, when a new packet p arrives, the switch tries to match
p with all rules inside flow tables. Let us call the time needed for this
process t1. Next, the switch sends a part of p or the whole packet to the
controller via a packet_in message if no match is found. When a new
message is received, the controller checks his tables for the proper rule r.
Let call the time needed for this process t2. Finally, the controller sends
r back to the switch with a packet_out message. The total time of this
whole process is equal to ttottal = t1 + t2 + tpacketIn + tpacketOut. As seen,
ttottal can be affected by many variables. First, if the number of entries in
flow tables in the switch is high, t1 will increase. Second, if the number of
rules in the controller is high, the matching process inside the controller
will need more time to find the right rule, and t2 will increase. The third
factor is the time needed to transfer a packet between the switch and the
controller. If the number of packets transferred between all switches and
the controller is high, this could create a bottleneck in the controller side
and add more delay affecting tpacketIn. Moreover, fourth, if the switch
spends the majority of time sending packet_in messages to the controller
and trying to match an incoming packet with a large number of entries, the
time to process a packet_out message will increase. Reducing ttottal means
reducing the number of entries in switches and controllers and reducing
the number of packets transferred between the two.

Rules Management

Although, in SDN, the network is seen as one entity, the data plane typ-
ically consists of multiple switches. For an operator, the network is seen
as one big switch. While managing a network seems simple in this case,
we need to resolve how the low-level policies are selected and where they
will be installed.

Every OpenFlow switch has one or more flow tables to store rules
sent from the controller. Switches need to match every incoming packet
against all flow tables entries. This classification and lookup process can
turn to be a bottleneck for the network and can add delays. Therefore,

20

some OpenFlow-enabled switches store entries in TCAMs. However, as
mentioned before, TCAMs are costly and limited in capacity.

Rules in switches are not the same, and their placement is based on the
type of application. For example, rules are stored in the ingress switch with
some firewall applications to filter all incoming packets. While in other
applications, rules for a given flow need to be installed in all switches for
that flow. These rules placement and allocation problems are hard to solve,
especially with the sizable network seen nowadays. Therefore, besides
knowing the proper place of rules, we need to minimize the total number of
rules decomposed over the network to accelerate the classification process
and overcome some of OpenFlow-enabled TCAM switches problems like
power consumption and space limitation. In addition, switches need to
consult the controller for each new flow. The time needed for a switch to
check the entire flow tables, send a message to the controller, receive the
new rule and store it could be large. By making the lookup time faster,
the total time needed to install a rule for a new flow will decrease.

Efforts to reduce the classification process, lookup time and the size of
the flow table mentioned in subsection 2.2.2 can be applied to OpenFlow
switches. On the controller side, the software-based solution can be im-
plemented to reduce the time needed by the controller to take a decision
regarding a new flow.

Compression techniques cannot always be practical since usually the
nature of rules and the overlapping can block any attempts to reduce the
size of a ruleset. Decomposing a set of rules over multiple switches can be
helpful in this case. In addition to this, since switches use TCAMs memory,
distributing rules over multiple switches can enhance the performance of
the overall classification process by minimizing the time in each switch.

@ =111

5 match
attempts in
each switch

switch 1 switch 2 switch 3

installed installed installed

ID Rule Action
1 00* deny
2 010 deny
3 100 deny
4 110 deny
5 *** accept

Figure 2.6: Installing rules into a flow table without compression (Example
1).

21

Fig. 2.6 shows an illustrative example of a flow table with five rules.
Now let us install the same table in three switches in series. A packet p
with address 111 will only match rule number 5. To traverse the three
switches, p needs to be checked with five rules at each switch, a total of
15 times. However, we can see that any packet that matches the first four
rules will not be forwarded to the next switch, so rules from 1 to 4 in
Switches 2 and 3 will never be used. The right way to distribute rules, in
this case, is shown in Fig. 2.7 where all five rules are installed in the first
switch and only the rule number 5 in Switch 2 and 3. Now, if packet p
needs to traverse the network, only 7 (5+1+1) attempts to match the rule
are made.

ID Rule Action
1 00* deny
2 010 deny
3 100 deny
4 110 deny
5 *** accept

@= 111

5 match
attempts in

switch 1

ID Rule Action
5 *** accept1 match attempt in switch

2 & 3

switch 1

switch 2 switch 3

installed installed

installed

Figure 2.7: Installing rules in flow table with compression (Example 1).

Fig. 2.8 shows another example of a flow table with five rules. If we
have the same three switches in series and the same flow table in each
switch, a packet p with address 011 will be checked with rule number 4,
so four attempts in each switch are needed. The total will be equal to 12
attempts for a packet p to traverse the three switches. Now a better way
to distribute rules is shown in Fig. 2.9. In this case, one rule with address
0 ∗ ∗ can replace the first four rules in flow tables of Switches 2 and 3.
Tables in Switches 2 and 3 will have two rules only instead of 5, and a
packet p with address 011 will be checked six times only.

The two examples above show the importance of compression and dis-
tribution techniques in making the classification and lookup process faster
by minimizing the number of entries in the flow table and decreasing the
power consumption and the time needed for a flow of packets to traverse

22

@ = 011

4 match
attempts in
each switch

switch 1 switch 2 switch 3

installed installed installed

ID Rule Action
1 001 accept
2 000 accept
3 010 accept
4 011 accept
5 *** deny

Figure 2.8: Installing rules in flow table without compression (Example
2).

@ = 011

ID Rule Action
1 0** accept
5 *** deny

1 match attempt in switch
2 & 3

switch 1

switch 2 switch 3

ID Rule Action
1 001 accept
2 000 accept
3 010 accept
4 011 accept
5 *** deny

4 match
attempts in

switch 1

installed

installed installed

Figure 2.9: Installing rules in flow table with compression (Example 2).

a network.
Switch memory size can be a problem in some cases where the ruleset

size needs more space than the one available in the switch. For example,
if Switch 1,2 of the example in Fig. 2.6 have a capacity of 2, and the
switch number 3 have a capacity of 3, the only way the initial set of rules
in the table can be installed is if Rules 1,5 are installed in Switch 1, then
Rule 2,5 are installed in switch two and finally Rule 3,4 and 5 in Switch 3.
The capacity problem is not only specific to the switches in SDN, but the

23

controller also needs to have a smaller ruleset to respond quickly. Authors
in [83] for example, try to solve this problem by using multiple controllers.
Another proposition that improves the performance and the distribution
of the controller can be found in [84].

Messages between switches and controllers can also increase delays.
When the number of rules is smaller, the number of messages between the
data and controller plane will be smaller. According to [29], a setup of
N-Switch path with bi-directional flow generates 2N flow-entry and 2N+4
extra packets. This number of packets can add latency on the controller
side. In simple network architecture with a small number of rules, the con-
troller installs all rules in all switches to avoid any packet_in messages to
minimize the delay and enhance the performance of the packet classifica-
tion process. This approach can only be applied in a small network with a
basic application, while others and because of the space limitations and the
complexity of the network, rules need to be decomposed and distributed
while less used rules can be stored in the controller.

2.5 Rules Placement

To avoid expensive hardware with large memory, we can decompose ru-
lessets into smaller subsets, each one being assigned to a switch, with less
capacity requirements. Beside sparing from high price of TCAMs mem-
ory, decomposition accelerates the classification process by allowing to
perform matching on smaller set of rules. Without decomposition, some
rules will never be matched since they are shadowed by rules with higher
priority, for example, or because flows from the same addresses will be
blocked in previous switches, and will never reach the switches where they
are stored. The decomposition problem is not trivial, since rules usually
intersect on multiple dimensions, and each application needs a different
decomposition approach. In access-control policies, we use IP source and
destination, port source and destination, in addition to the protocol to
match a packet. However, in routing applications, only the IP destination
is required. While some works aim to reduce the total number of rules gen-
erated by the decomposition, others try to minimize energy consumption
or maximize traffic satisfaction [85].

2.5.1 Rulesets Decomposition and Placement

To decompose and install rules in a network, the authors in [86] pro-
pose a an approach named One Big Switch (OBS), for rules with a two-
dimensional endpoint policy. Each section of the two-dimensional repre-
sentation corresponds to a node in the tree (a cover). With each cut, two
nodes are created, each one with its own rules. OBS tries to solve the
problem separately for each path.

24

OBS generates forward rules to avoid the processing of packets al-
ready matched by rules in previous switches. The duplication of rules
with lower priority and high overlapping with other rules can increase the
overhead since, according to their approach, they must be installed in mul-
tiple switches. The number of forwarding rules generated can affect the
overhead of switches if the set of rules is poorly chosen.

Rule Src Dst Action
R1 00 1* accpet
R2 11 ** accept
R3 ** 00 deny
R4 0* 11 deny
R5 ** ** deny

Table 2.5: Prioritized ruleset.

Let us consider, as an example, the ruleset shown in Table 2.5. This
table shows prioritized rulesets composed of 5 rules with different source
and destination addresses as well as different actions. This table can be
represented by a rectangle as shown in Fig. 2.10.

00 01 10 11

R1

R2

R3

R4

00

01

10

11

Src

Dst

Figure 2.10: A 2D distribution of Table 2.5

The OBS algorithm tries to compute a tree by cutting the rectangle
into multiple parts based on several factors like the number of duplicated
rules. For example, let us consider a path of two switches in serie. Each
one has a capacity of 4. Since the number of rules in Table 2.5 is greater
than the capacity of each switch, we need to decompose it into two parts.
In Fig. 2.11 the rectangle is divided into two parts. Rules in each part will
be installed in a separate switch. As mentioned before, OBS generates
forward rules to define all rules installed in previous switches so a packet
can be matched only once. In this example, a forward rule will be generated
to represent the chosen rules of the blue rectangle of Fig. 2.11-(b). Rules
in every switch are depicted in Table 2.6. In Table 2.6-(a), four rules are
installed. In Table (b), forward rules that represent all four rules installed
in Table 2.6-(a) are generated and added to the remaining rules. A forward
rule must be installed at the top of the table. If a packet p = {00, 11}

25

matches R1, p will be accepted in Switch 1 and forwarded to Switch 2.
Moreover, if the forward rule is added last in Switch 2, p will match R3
and be deleted.

00 01 10 11

R1

R2

R3

R4

00

01

10

11

00 01 10 11

R2

R300

01

10

11

cut fwd

00 01 10 11

R1

R2

R3

R4

00

01

10

11

(a)

(b)

(c)

Figure 2.11: Decomposing the 2D representation of Table 2.5

Rule Src Dst Action
R1 00 1* accpet
R3 ** 00 deny
R4 0* 11 deny
R5 ** ** deny

Rule Src Dst Action
fwd 1* ** forward
R2 11 ** accept
R3 ** 00 deny
R5 ** ** deny

(a) Rules in switch 1 (b) Rules in switch 2

Table 2.6: Rules decomposition example for two switches in series.

An optimization for choosing the best coverage in two-dimensions rep-
resentation is proposed in [87] to improve the storage and the performance
of the decomposition of rules. More optimizations have been reported in
[37; 88], in order to find the best cut while minimizing the size of the table,
the rule duplication, and the pre-processing time for rule updates. Another
two-dimension cutting technique like those mentioned in subsection 2.2.2
can also be used to choose the best set of rules in each decomposition.

The decomposition process aims to maximize the number of rules cho-
sen and minimize the number of forwarding rules and the number of rules
duplication. Finding the best cover proves to be hard for OBS. Some rule-
set has more than 155% overhead caused by the overlapping rules, which

26

increases the number of rule duplication and forward rule generated. For
the distribution part, each path in OBS is considered as a set of switches
in series. The memory of a switch is divided between all paths traversing
the switch.

Palette [89] is another approach for rule placement and decomposition
providing two methods for transforming an original rule table into multi-
ple subtables. The first method is called Pivot Bit Decomposition (PBD),
where a table is divided into two subtables by changing a wildcard bit "*"
to 0 or 1 in each table. The second approach, called Cut-Based Decompo-
sition (CDB), is based on a directed dependency graph. Nodes represent
rules while edges represent a dependence between two nodes, in this case,
a key that matches both rules. The idea here is to cut the dependency
graph into smaller graphs by removing the dependency between nodes.
This approach can create problems when the dependency between rules is
high. A set of rules with a large number of wildcards generates a denser
graph, making the decomposition harder. Palette also proposes a subopti-
mal greedy algorithm to distribute rules over a network. In this approach,
rules are distributed on all shortest paths from the ingress to the egress
node. Since some paths can be longer than others, some of the switches
in longer paths can stay empty while first switches do all the work.

A near-zero decomposition overhead technique has been proposed in
[90]. This technique is based on adding an extra bit to the packet header.
When a packet has matched a rule, this bit ensures that the packet will not
be processed again. While costing only a bit per rule and in the packet,
this stateful technique requires non-standard modifications on the packet
structure and leads to security issues in case an attacker can manipulate
this additional bit to bypass the filtering mechanism.

The rule distribution problem has been studied in [91] where a prede-
fined set of rules can be shared by multiple paths across the network plus
an immediate failure-recovery to a backup path and without any policy
violation. In this approach, since rules in a switch belong to all paths,
choosing another path in the case where the main one fail will not affect
the total behavior of the network since packets can use other paths.

2.5.2 Rules Caching and Swapping

Each application in OpenFlow needs a different rule placement solution.
Caching rules is one of the solutions, where a chosen set of rules is cached
in switches while others stay in the controller. The way rules are chosen to
be cached can affect the performance of the classification process. Rules
belonging to a critical flow must be present in switches while others can
stay in the controller.

In [28], the authors propose an efficient way to support the abstrac-
tion of a switch that relies on caching rules in a software switch while

27

more essential rules will be installed in hardware switches. The algorithm
constructs a dependency tree, where essential rules are sent to TCAMs
switch, while the rest is sent to a software switch. If no match is found in
the hardware switch, the software switch will be checked. If no match is
found either, the controller is contacted. This technique avoids rule com-
pression or re-encoding to preserve rule priorities and counters needed for
any monitoring application.

CRAFT [92] is another caching technique that can achieve a higher
cache hit ratio, meaning that the criteria of rule importance that chosen
rules are based on is better than others like [28]. In this approach, each
sub-table has a weight based on the hit ratio of his rules. The hit ratio
is the number of times a rule has been matched with a packet. If the hit
ratio of a rule is high, the rule will have more importance. Sub-table with
the highest hit ratio will be cashed.

Huang et al. in [93] propose a rule partition and allocation algorithm
to distribute rules across network. Rules with the same policy or have a
dependency will be put in the same sub-table. Like OBS, the decomposi-
tion is based on a flow path. Meaning that on each switch, a space will be
allocated to each flow.

The approach in [94] aims to overcome the space limitation of TCAMs
switch by swapping rules between the flow table of the TCAM and a less
powerful but more significant memory in the controller called Memory
Management System (MMS). Rules with smaller hit ratio will be moved
to MMS while other will be installed in the TCAMs flow table. Other
solutions like [95] use a caching mechanism on flow-driven rule achieving
a high cache hit ratio.

Angelos et al. [96] propose two types of tables: a cheap software table
with large capacity or an expensive hardware table with less capacity. The
goal here is to increase the utilization of the software-based table without
affecting the network’s overall performance in terms of packet loss or de-
lays. For a more scalable system, DIFANE [97] proposes keeping all traffic
in the data plane by directing traffic through an intermediate switch called
the authority switch, as seen in Fig. 2.12. The controller installs rules in
the authority switches while those play the role of a controller, thus send-
ing rules to the remaining switches of the network. Although DIFANE can
be scalable, rules duplication on the authority switches and the controller
can be costly, especially with a large ruleset.

2.5.3 Path Based Rules Placement

Distributing forward rules differs from access control rules since rules are
tied to flows, and each flow has a path. The best path for a flow is chosen
based on the application like traffic engineering, load balancing, routing,

28

OpenFlow

Switches

Controller

Authority Switches

Control Plane

Data Plane

Figure 2.12: DIFANE architecture.

etc. For example, the shortest path is always the best in routing applica-
tions, but this solution does not always work due to capacity constraints.
To deal with this problem, we can relax the constraint of the shortest
path by choosing another with more switches but with higher capacity.
Path heuristic is used in [98] to find the best path while respecting as
many policies as possible within the resource limits of the network. The
flow of data can be enhanced by mobilizing several paths for it. In this
case, copying the same rules on each path will lead to high TCAM power
consumption and poor space management. Moreover, the fact that paths
have different lengths and resources makes it impossible sometimes to de-
ploy the same set of rules over two paths. Intersection nodes between the
same flow can be helpful since rules do not have to be duplicated, but at
the same time, we need to ensure that rules before the intersection node
are the same between all paths, same for rules in following switches. In
[99], paths for the same flow are chosen to satisfy the requirement and, at
the same time, maximizing the number of nodes. The placement of rules
and paths can also be predicted for mobile users with SDN-enabled access
networks. Due to users’ fast movement and mobility in such a network,
predicting the next step is essential to avoid interruption in connectivity
and quality of service (QoS). MoRule [100] proposes an efficient rule man-
agement scheme to optimize the rule placement problem for mobile users
and minimize rule space occupation at switches.

OPTree [101] is another proposed data structure that considers the
position of a device for placing rules in a network. The approach checks
if a rule is covered by another one or if it can be merged. The approach
also builds a relationship between devices based on whether devices are in
series or parallel.

29

2.5.4 Rules Update

Network topologies change needs to be handled to ensure the security and
stability of the network. As mentioned before, according to [10] 20% of all
failures in a network can be attributed to a poorly planned and configured
update. This interruption plus the delay of an update is costly. A study
shows that Amazon will lose 1% of the sales amount for every 100ms of
latency [102]. If an update fails, the delays will increase, resulting in
more losses. In addition, When adding an entry in a TCAM memory, all
the addresses of existing entries with lower priority must be moved. This
process makes the TCAM update slower. According to [103], n flow entries
need n/2 movements to insert a new flow in TCAM.

The delay is not the only problem, since an incorrect update can cause
forwarding loops where packets will be stuck in the network without reach-
ing the destination. Forwarding black hole is another problem where dur-
ing an update, an incoming packet cannot match any entries in the flow
table or if an update matches an old entry that has not been updated
yet by the controller because of some delays. A solution named "add be-
fore remove" is presented in [104] to try solving the forwarding black hole
problem. In this solution, new rules with high priority are added to the
tables before removing old rules. The space limit in switches can cause
problems in this approach when no space is available for new rules to be
installed and forces to remove the old ones before adding any new rule
leading to connection problems since no old or new rules are present in the
switch. A generalised and more enhanced approach of "add before remove"
is introduced in [105]. In this approach, switches receive a new version of
rules but still process the packet classification and lookup according to
the old ones. When all switches receive the new rules, all new packets
will be checked according to the new set, and rules from the old version
will be deleted. When a packet enters the network, the controller defines
which version the packet will be processed. This will avoid the problem of
matching a packet according to two different versions in the network.

Another problem is link congestion, where during an update, a link be-
comes congested by flows after redirecting some of them to a link already
used by other flows. In [106] a solution for link congestion is presented
called SWAN. In this approach, each link has a capacity that will only be
used in an update. Authors show that if the left capacity is equal to s,
a congestion-free update sequence needs no more than 1/s − 1 steps. In
[107], the authors propose another congestion-free approach for a consis-
tent update. The new generic algorithm trades update time for rule-space
overhead. The updated policy is spitted into multiple slices then applying
one at a time. Liu et al. [108] propose ZUpdate to perform a congestion-
free network updates in data centers.

Network policy violation is another form of problems in network up-

30

dates. A packet can be blocked or allowed by mistake due to a bad config-
ured update in middleboxes. To overcome this problem, we add Tags to
each packet. Next, the mapping between the tag and the IP of the packet
is sent to the controller [109]. Switches forward packets according to pack-
ets tags. This ensures a consistent network policy for packets, especially
if middleboxes modify their header or content.

[110] propose a resource constrain splitting algorithm to deal with the
dynamic nature of networks by updating only the set of rules affected by
an update and not the entire topology since generating a solution with
integer linear programming (ILP) takes long time, especially in the case
of high rule overlapping. A firewall is divided into multiple sets based on
the IP source of rules, for example. If a newly added rule overlaps with
a subset of rules, only the dependent subproblems will be solved with the
ILP. Dependency graphs (DAG) are used in [111] to minimize the update
latency by avoiding unnecessary entry moves. With DAG, if a new rule r is
inserted, only rules on which r depends will be moved, reducing the overall
update time. A greedy algorithm that aims to reduce the time complexity
of an update and uses the dependency relationship between rules to avoid
any unnecessary rule modification is presented in [103]. According to the
authors, the algorithm is more than 100 times faster than RuleTris [111]
by using a faster TCAM update scheduler.

2.6 Summary

Packet classification is a fundamental task for several network devices.
With the increasing number of users and applications, entries in tables
and rules sets will only increase. Many existing work have tried to resolve
this problem by software-based approaches: range encoding, classifier min-
imization, removing redundancy, etc. A first category of approaches try
to deal with the classification problem by minimizing the lookup process
time. This can be accomplished by developing data structures similar to
decision trees, to ease rule lookup. A second category of approaches rely
on removing redundant and shadowing rules. While these approaches can
reduce the number of entries, the final solution is not optimal, and other
compression techniques should be applied to reduce the ruleset. Other
approaches applied a hardware-based solution by modifying the TCAM
memory to store rules with a specific classifier matching only a part of
them which reduces the packet classification time. However, modifying
a TCAM architecture is costly and creates compatibility issues between
TCAMs devices from different manufacturers.

In this thesis, we focus on one aspect of the packet classification prob-
lem, rule minimization. To reduce the number of entries in rulesets, we
will introduce a new representation for the CIDR notation called Double

31

Mask. This notation permit to accept and deny a set of IP address at
once. To transform a set of rules in CIDR notation to a set of Double
Masks we have developed a polynomial algorithm that we call Generate-
DMasks. Matching a packet with a CIDR notation is different from the
matching process of Double Mask. Therefore we have developed a match-
ing algorithm for our new notation. We have implemented our solution in
a real testbed with a Zodiac-Fx switch and a Ryu controller to test our
new approach.

With the limitation in memory space in switches nowadays, compres-
sion techniques cannot be sufficient and have to be complemented by
ruleset decomposition and distribution. The approaches discussed in this
chapter generate forward rules and duplicate others, increasing by that
the overhead. Other approaches try to reduce the overhead by modify-
ing packets leading to security issues. Table 2.7 shows a summary of rule
placement techniques used to divide rules over switches in an SDN net-
work. Any rule decomposition’s primary goal is to minimize the overhead
inside switches with limited capacity and the number of packet_in mes-
sages between switches and controllers to achieve a better QoS. In this
thesis, we combine multiple techniques and solutions and develop a gen-
eral approach for any rules while respecting switch limitations in terms of
capacity.

Since most of the works on decomposition in the literature deal with a
set of prioritized rulesets, in our work, we first introduce a decomposition
algorithm for one-dimension rules and Longest Prefix Matching. Although
this algorithm generates forward rules, we tried to reduce their overhead
by considering the action field of rules. A rule with a deny action will not
have a forward rule since a packet that matches this rule will be deleted
and does not traverse to the following switches.

For decomposing a set of rules on multiple dimensions, we introduce an
approach that works with priority lists, and does not require any forward
rules at all or any modification to the hardware or to packets but at the
cost of one additional switch. We design this switch as a forward switch or
FoS. When a packet is matched, the switch sends it to FoS, which forwards
it to the destination. Thus minimizing the time needed for the packet to
traverse the network and avoiding any additional rules in switches. After
the decomposition of rulesets, we need to distribute them over memory
limited switches. In our approach, we consider the position of each switch
in the network. We start by developing an algorithm for series-parallel
graphs. Our algorithm works with any decomposition algorithm like the
one in [86]. We then generalize the algorithm to work with any st-dags.

Updates, on the other hand, are frequent in any network application.
Contrary to some approaches mentioned before, switches in our technique
depend on each other. The distribution algorithm that we have designed
can be applied with any decomposition algorithm as the one in [86], which

32

R
ef

er
en

ce
A

pp
ro

ac
h

D
is

cu
ss

io
ns

P
ac

ke
t

m
od

ifi
ca

ti
on

Fo
rw

ar
d

ru
le

s
R

ul
e

du
pl

ic
at

io
n

[2
8]

R
ul

e
ca

ch
in

g,
D

ep
en

de
nc

y
gr

ap
h

U
se

d
fo

r
ac

ce
ss

co
nt

ro
lr

ul
es

no
no

no

[8
6]

2D
R

ep
re

se
nt

at
io

n
Fo

r
fo

rw
ar

di
ng

ru
le

s
no

ye
s

ye
s

[8
9]

P
iv

ot
B

it
D

ec
om

po
si

ti
on

,
C

ut
-B

as
ed

D
ec

om
po

si
ti

on
,

D
ep

en
de

nc
y

gr
ap

h
Fo

r
ac

ce
ss

co
nt

ro
ll

is
t

no
N

/A
no

[9
0]

A
dd

ex
tr

a
bi

ts
fo

r
ea

ch
pa

ck
et

R
ed

uc
e

cl
as

si
fic

at
io

n
ti

m
e

ye
s

no
no

[9
1]

Tw
o

ty
pe

of
ru

le
s

(s
ha

re
d/

no
n

sh
ar

ed
)

M
ul

ti
pa

th
ro

ut
in

g,
Fa

ilu
re

-r
ec

ov
er

y
no

no
no

[9
2]

R
ul

e
ca

ch
in

g
ba

se
d

on
hi

t
ra

ti
o,

M
in

im
iz

e
ov

er
la

pp
in

g
ru

le
s

So
lv

e
th

e
pr

ob
le

m
of

lo
ng

ch
ai

ns
of

ov
er

la
pp

ed
ru

le
s

no
no

no

[9
3]

R
ul

e
ca

ch
in

g
F

lo
w

ru
le

s
no

no
no

[9
4]

R
ul

e
sw

ap
pi

ng
m

ec
ha

ni
sm

be
tw

ee
n

tw
o

ty
pe

of
m

em
or

y
O

pt
im

iz
es

th
e

us
ag

e
of

ne
tw

or
k

de
vi

ce
s

m
em

or
y

no
no

no

[9
6]

Tw
o

ty
pe

of
ru

le
ta

bl
e

(h
ar

dw
ar

e
an

d
so

ft
w

ar
e)

V
er

y
hi

gh
co

m
pu

ta
ti

on
al

co
m

-
pl

ex
ity

be
tw

ee
n

so
ft

w
ar

e
an

d
ha

rd
w

ar
e

sw
it

ch
es

no
no

no

[9
7]

A
dd

an
in

te
rm

ed
ia

te
sw

it
ch

be
tw

ee
n

ne
tw

or
k

sw
it

ch
es

an
d

co
nt

ro
lle

r
Fa

st
er

re
sp

on
se

ti
m

e
no

no
ye

s

[1
01

]
Ta

ke
th

e
po

si
ti

on
re

la
ti

on
sh

ip
be

tw
ee

n
ne

ig
hb

or
de

vi
ce

s
in

to
co

ns
id

er
at

io
n

Fo
r

ac
ce

ss
co

nt
ro

ll
is

t
no

no
no

Ta
bl

e
2.

7:
Su

m
m

ar
y

of
ru

le
pl

ac
em

en
t

te
ch

ni
qu

es
.

33

means that rules in switches, especially forward rules, depend on rules
installed in previous switches. In this case, any modification will affect all
the following switches but not the previous ones. A naive solution will be
to run an update on the whole topology with the new rulesets. However, in
our approach, we consider only the affected part of the topology and apply
the same decomposition and distribution algorithm mentioned before to
this subtopology.

34

Chapter 3

Filtering Rules Compression
with Double Masks

Contents
3.1 Introduction . 35
3.2 Double Mask Technique 37

3.2.1 Preliminaries . 37
3.2.2 Double Mask Representation 38

3.3 Double Mask Computation Algorithms 40
3.3.1 Naive Algorithm 40
3.3.2 Linear Time Algorithm 44

3.4 Evaluation by Simulation 48
3.4.1 Simulation Setup 48
3.4.2 Real-world IP Ruleset 49
3.4.3 Synthetically Generated Rulesets 49

3.5 Experimental Evaluation 51
3.5.1 Setup and Parameters 51
3.5.2 Implementation and Integration 52
3.5.3 Experiments and Results 57

3.6 Discussions . 60
3.7 Summary . 60

3.1 Introduction

Multiple network appliances and applications including firewalls, intrusion
detection systems, routers, and load balancers rely on a filtering process
using sets of rules to decide whether to accept or deny an incoming packet.
Effective filtering is essential to handle the rapidly increasing and dynamic

35

nature of network traffic where more and more nodes are connected, due
to the emergence of 5G networks and the increasing number of sources
of attacks. With many hosts, it remains crucial to minimize the number
of entries in routing tables and accelerate the lookup process. On the
other hand, attacks on Internet keep increasing according to [112], which
increases the size of blacklists and the number of rules in firewalls. The
limited storage capacity of switches [52] requires efficient space manage-
ment. To face the large number of hosts and routing tables, [17] developed
Classless Inter-Domain Routing (CIDR) to replace the classful network
architecture. However, using this notation to represent routing table rules
that contain ranges can lead to multiple entries, and thus there is a need
for a better notation along with an efficient algorithm to reduce the num-
ber of entries and therefore the classification and lookup time, and memory
usage [46]. Since TCAM is the standard for rules storage and matching
in packet classification for Openflow switches, multiple attempts to solve
their problems was considered in [23; 40; 113; 114; 115]. Range expansion
is one of the most important problems faced by TCAMs. This problem
occurs when the port range of rules have exceptions. In the worst-case
scenario, a rule needs more than 900 entries to be represented, as seen in
Table 2.1.

In this Chapter, we design a simple representation of filtering rules that
enables more compact rule tables, easier to manage while keeping their se-
mantics unchanged. The construction of rules is obtained with reasonably
efficient algorithms too. This representation applies to IP addresses and
port ranges to mitigate the range expansion problem. For that, we express
packet filter fields with so-called Double Mask [116], where a first mask is
used as an inclusion prefix and the second as an exclusion one. This repre-
sentation adds flexibility and efficiency in deploying security policies since
the generated rules are easier to manage. The Double Mask representation
makes configurations simpler since we can accept and exclude IPs within
the same rule. A Double Mask rule can be viewed as an extension of a
standard prefix rule with exceptions. It is often more intuitive than the
alternative representations and therefore prevent errors in network man-
agement operations. Our work is software-based, and relies only on accept
rules, unlike [46; 117; 118]. Our notation can reduce dramatically the
number of entries in routing tables. In comparison, representing a w-bit
range may need 2w − 2 prefixes [119]. For example [1, 14] needs 6 entries
but with the Double Mask notation two entries are sufficient. This new
notation has the same upper bound of 2w − 4 presented in other papers
[21; 41], but in some cases, the number can be reduced as shown before in
our experimental results.

This chapter is organized as follows. In Section 3.2 we introduce our
new representation. Section 3.3 describes our algorithm for computing
a Double Mask. Then, in Section 3.4 we evaluate the performance of

36

our linear algorithm. Next, in Section 3.5 we develop a real testbed and
evaluate our matching algorithm’s performance. In Section 3.6 we discuss
how we can extend our representation to achieve a higher compression
ratio. Finally, Section 3.7 summarizes and concludes this chapter.

3.2 Double Mask Technique

3.2.1 Preliminaries

Before introducing the Double Mask representation, we define the notation
used throughout the thesis, that is summarized in Table 3.1.

ip IP address
w number of bits representing an IP address
P prefix covering an ip

binv(a) binary representation of integer a using v bits
valv(a) integer value of bitstring a with length v

range [a, b] set of IP addresses with value between a and b

tw perfect binary tree of height w

ε empty bitstring
p bitstring (or path in tw)
|p| length of p
t(p) perfect binary subtree of tw with root p

l(p) set of leaves of t(p)
DMp set of Double Masks covering l(p)

Table 3.1: Employed notation.

Prefix and Simple Mask

A prefix P is a word of length w on alphabet {0, 1, ∗} where all ∗’s occur
at the end of the word: P = pk−1...p0∗i where k + i = w. To avoid
confusion with the usual notion of word prefix, we will also sometimes call
P a Simple Mask. An address ip ∈ {0, 1}w is covered by Simple Mask P
if ipi = pi for i ∈ [k, k − i + 1]. The subword p = pk−1...p0 is called the
path of P for reasons to be explained below.

Range

A range is denoted by an integer interval [a, b] (where 0 ≤ a ≤ b ≤ 2w−1).
A range represents the set of IP addresses ip, with integer value valw(ip)
between a and b.

37

Perfect Range

[a, b] is a perfect range if there is r ∈ {0, 1}w−k such that binw(a) = r.0k

and binw(b) = r.1k.

Perfect Binary Tree

The IP addresses of length w are in bijection with the leaves of a perfect
binary tree tw of height w. More generally, we can define the following
bijection t() on the set of bitstrings of length ≤ w with the perfect binary
subtrees of tw : t(ε) = tw where ε is the empty bitstring, and given
bitstring v we define t(v0) (resp. t(v1)) to be the left (resp. right) subtree
of t(v). In particular, if prefix P has a path p of length k the IP addresses
covered by P are exactly the leaves of the perfect subtree t(p). This set of
addresses is a perfect range. Every perfect range is also the set of leaves
of a perfect subtree.

a b

t(p) t(p′)

k + 1 k + 1

c d e

height w

Figure 3.1: Illustration of a perfect Binary Tree.

In Fig. 3.1, [a, b] is a perfect range as it is the set of leaves of the perfect
binary tree t(p) of height k. However, [c, d] is not a perfect range as it is
not the set of leaves of a perfect binary tree.

3.2.2 Double Mask Representation

Now we will define the Double Mask representation for range fields, in
particular for IP address fields. Note that the representation can be applied
to other range fields such as ports.

38

We assume in the following that IP addresses are binary words of
length w, i.e., IP addresses are elements of {0, 1}w indexed from 1 to
w. A Double Mask representation has three components and is denoted
netpref/mask1/mask2. The first component netpref ∈ {0, 1}w is a net-
work prefix. The second and third components are integers mask1,mask2 ∈
[0, w]. Component mask1 defines all accepted IPs, and component mask2
defines all excluded IPs from the list of accepted ones. In case where
mask2 is equal to 0, the Double Mask will be equivalent to a Simple Mask.
Definition 1. An IP address ip is in the set defined by netpref/mask1/mask2
if ipi = netprefi for i ∈ [1, . . . ,mask1] and there exists j ∈ [mask1 +
1,mask2] such that ipj 6= netprefj. In that case we say that ip is covered
by netpref/mask1/mask2.

Let us consider the following example of a Double Mask representation:
192.168.100.96/26/2

This representation means that any selected (or filtered) address must have
its 26 first bits equal to the 26 first bits of 192.168.100.96 (that is equal to
11000000.10101000.01100100.01), and at least one of the two following Bits
27,28 should not be equal to the corresponding bit of 192.168.100.96. In
other words, either Bit 27 is not 1 or Bit 28 is not 0. As we will see, this new
representation can reduce the number of filtering rules dramatically. It is
also possible to represent more explicitly the Double Mask as a word where
the forbidden combination of bits is overlined, the leftmost part specifies
the fixed bits and the rightmost part the free bits (that are allowed to take
any value). The two possible notations of a Double Mask are given below:

N1 : ak−1...a0aj−1...a00i−1...00/k/j

N2 : ak−1...a0aj−1...a00i−1...00

where (i+ j + k = w), and if j = 0 the Double Mask is equivalent to a
Simple Mask (or a TCAM entry) ak−1...a0∗w−k.

When designing filtering rules, it is proper to represent the excluded
addresses rather than the accepted ones when there are many more ex-
cluded addresses than accepted ones. In this case, using a Double Mask
representation has a better effect since by reducing the number of filtering
rules, we reduce the computation time, memory, and power usage.

The examples below illustrate the benefits of using Double Masks over
Simple Masks.

Example 1. Range [1,14] needs a set of 6 standard prefixes to be rep-
resented. However this range can be represented using only two Double
Masks prefixes as shown below :

39

range Simple Masks Double Masks

[
1, 14

]
=

0001
001∗
01 ∗ ∗
10 ∗ ∗
110∗
1110

{
0000
1111

Example 2. Range [1, 15] is of form [1, 24 − 1] and needs 4 simple masks
{0001, 001∗, 01 ∗ ∗, 1 ∗ ∗∗} but only one Double Mask: 0000.
More generally, a range [1, 2w − 1] can be represented by a unique Double
Mask 0

w However, it cannot be represented by less than w Simple Masks.
Let us demonstrate this by contradiction. Let us assume that [1, 2w − 1]
can be represented by strictly less than w Simple Masks. Then at least two
different addresses 2i− 1, 2j − 1(j > i) are covered by the same mask. The
mask has to be a common prefix of their binary representations: therefore
it has to be a prefix of 0w−j. However, in that case, the mask would also
cover 0w, which is a contradiction.

3.3 Double Mask Computation Algorithms

3.3.1 Naive Algorithm

We now present an algorithm to generate a set of Double Masks that
covers a range [a, b], i.e., selects exactly the addresses in this range. The
algorithm proceeds recursively on the binary tree tw = t(ε) that stores all
IP addresses of size w. Note that each node of t(ε) can be located uniquely
by a path (bitstring) p from the root to this node: the root is located by ε;
the left and right children of the node located by p are located by p0 and
p1, respectively. We will identify a node with the path that locates it. A
path can also be viewed as a prefix where the ∗’s are omitted. The leaves
of t(ε) are the IP addresses. We denote the set of leaves of subtree t(p)
by l(p). Algorithm 1 computes in a bottom-up way a set of Double Masks
covering l(p). Moreover we denote these partial results by by DMp. We
denote by ī the complement of boolean i, i.e., 0̄ = 1, 1̄ = 0. To process a
node p in t(ε) we have to consider several cases according to the left and
right children of p, as described below and as illustrated in Fig. 3.2.

Case 0: if p is a leaf and l(p) ⊆ [a, b], then
DMp = {p/|p|/0}, else ∅

Case 1: if l(p0) and l(p1) are both subsets of [a, b] then
DMp = {p0w−|p|/|p|/0}

Case 2: if there is a unique i ∈ {0, 1} such that l(pi) is a subset of [a, b]
then

40

Case 2.1: if DMp̄i = {p̄idq/|p|+ 2/0} (d ∈ {0, 1}) then
DMp = {p̄id̄q/|p|/2}

Case 2.2: if DMp̄i = {p̄iq/|p|+ 1/m} (where m > 0) then
DMp = {p̄iq/|p|/m+ 1}

Case 3: Otherwise DMp = DMp0 ∪DMp1

pCase 2.2 :

a b

p

a

Case1 :

b

pCase 2.1 :

a b

Figure 3.2: Typical examples for Cases 1, 2.1 and 2.2

Given a range [a, b], the set of Double Masks DMε returned by Al-
gorithm 1 covers [a, b]. The proof of correctness is to demonstrate by
induction on w−|p| that DMp spans l(p)∩ [a, b]. For the base case |p| = w
and l(p) is an IP address: then DMp = {p/0/0}. For the induction step
we have to prove by cases that if DPpi spans l(pi) ∩ [a, b] and DPp̄i spans
l(p̄i) ∩ [a, b] then DMp spans l(p) ∩ [a, b]. We then conclude that DMε

spans l(ε) ∩ [a, b] = [a, b]. Fig. 3.3 gives an illustrative example of the
algorithm execution.

0 1 2 3 4 5 6 7

0 1

8 9 10 11 12 13 14 15

0 1

10 10

0

height 4

height 3

height 2

height 1

Figure 3.3: Illustration of the execution of Algorithm 1

Let [a, b] = [2, 15]. The algorithm start from the button. [2, 2] is a
leaf and ∈ [a, b]. According to Case 0, DM0010 = {0010/1/0}. Same
for each leaf in [a, b]. At Height 1, if l(p0), l(p1) ⊆ [a, b], the algorithm
return DMp = {p0w−|p|/|p|/0}. For [2, 3], DM001 = {0010/3/0} according
to Case 1 since l(p0) = 2 and l(p1) = 3. At Height 2, according to
Case 3, DM00 = DM000 ∪ DM001, but DM000 = ∅ since 0, 1 6∈ [a, b],
so DM00 = {0010/3/0}. For [4, 7], [8, 11] and [12, 15], l(p0), l(p1) ⊆

41

Algorithm 1 DM-Naive(a,b)
1: Input: a,b
2: Output: set of Double Masks representing [a,b]
3: return DMε where:
4: if p is a leaf then
5: if p 6∈ [a, b] then
6: return DMp = ∅
7: else
8:
9: return DMp = {p/|p|/0} .Case 0

10: end if
11: end if
12: if l(p0), l(p1) ⊆ [a, b] then
13:
14: return DMp = {p0w−|p|/|p|/0} .Case 1
15: else
16: if l(pi) ⊆ [a, b] then
17: if DMp̄i = {p̄idq/|p|+ 2/0} (d ∈ {0, 1}) then
18:
19: return DMp = {p̄id̄q/|p|/2} .Case 2.1
20: else
21: if DMp̄i = {p̄iq/|p|+ 1/m} (m > 0) then
22:
23: return DMp = {p̄iq/|p|/m+ 1} .Case 2.2
24: end if
25: end if
26: end if
27: end if
28:
29: return DMp = DMp0 ∪DMp1 .Case 3

[a, b]. For example, in [4, 7], l(010), l(011) ⊆ [2, 15], the algorithm return
DM01 = {p0w−|p|/|p|/0} = {0100/2/0} according to Case 1. At Height 3,
for [2, 7], l(00) 6∈ [2, 15] but l(01) ∈ [2, 15] and DM00 = {p̄idq/|p|+2/0} =
{0010/3/0}. DM0 will be equal to {0000/1/2} according to Case 2.1. For
[8, 15] the algorithm return DM1 = {1000/1/0} since l(10), l(11) ⊆ [2, 15].
At height 4, l(0) 6∈ [2, 15], but DM0 = {0000/1/2}, according to Case 2.2
the algorithm return DM = {0000/0/3}. By performing a case analysis,
we can show the following results:

Proposition 1. Let v ≥ 2 and 0 ≤ a, b ≤ 2v − 1. Any range of type
[a, 2v − 1] or [0, b] can be represented by at most v − 1 masks.

Proof: By symmetry we only consider [a, 2v−1]. We perform an induction

42

on v. If binv(a) = 0k1s with k ≤ v − 2. By induction hypothesis applied
to v − k − 1 [valv(s), 2

v−k−1 − 1] can be represented by v − k − 1 masks
in t(0k1). These masks can be extended to masks in v bits by adding
0k1 to the left of the network prefix and adjusting the components of the
mask. The complement [2v−k−1, 2v−1] can be represented by the k prefixes
01∗v−2, 021∗v−3, . . . , 0k−11∗v−k. Overall we get (v − k − 1) + k = v − 1
masks. If a = 0v−11 then [a, 2v − 1] is represented by a Double Mask
excluding 0. If a = 0v then [a, 2v − 1] is represented by a Simple Mask
associated to prefix ∗v. Hence the proposition holds.

Using Proposition 1, we will show now that, for w > 2, any range can
be covered with at most 2w − 4 Double Masks.

Proposition 2. Let w > 2. Every range [a, b] ⊆ [0, 2w − 1] can be repre-
sented by at most 2w − 4 masks.

Proof: Let [a, b] be a range of addresses of length w. It is well known, ac-
cording to [120], that n ≤ 2w− 2 Simple Masks are sufficient to represent
a range [a, b] ⊆ [0, 2w − 1].

Now let us prove by induction that a range [a, b] of w bits can be
represented with ≤ 2w − 4 masks.
For w = 3, two masks are sufficient. For w = 4, four masks are sufficient
to represent any range [a, b].
Assume the proposition holds for w − 1 bits. We perform a case analysis
and assume that one case is applied only if the previous ones are not
applicable:

• [a, b] ⊆ l(0) or [a, b] ⊆ l(1) then by induction hypothesis the propo-
sition holds.

• [a, b] ⊆ l(01)∪ l(10) then applying Proposition 1 to [a, b]∩ l(0) with
v = w−2 we obtain that [a, b]∩ l(0) is covered by v−3 masks. These
masks can be extended to masks in w bits. In the same way [a, b]∩l(0)
is covered by w − 3 masks. Therefore [a, b] can be represented with
2w − 6 masks.

• [a, b] ⊆ l(01) ∪ l(10) ∪ l(11) we apply the previous item reasoning
to show that [a, b] ∩ (l(01) ∪ l(11)) is represented by 2w − 6 masks.
Since one mask is sufficient for perfect range [a, b]∩ l(10), we obtain
overall 2w − 5 masks.

• [a, b] ⊆ l(00) ∪ l(01) ∪ l(10): we reason as in the previous case.

• [a, b] ⊆ l(00)∪ l(01)∪ l(10)∪ l(11): we need 2w− 6 masks for [a, b]∩
(l(00) ∪ l(11)), one mask for each of [a, b] ∩ l(01) and [a, b] ∩ l(10)
since they are perfect ranges. Hence overall 2w − 6 + 2 = 2w − 4
masks are sufficient.

43

Therefore the total number of masks needed to represent [a, b] is 2w−4.

The following proposition shows that the 2w − 4 bound is tight, i.e.,
some ranges cannot be represented by less than 2w − 4 Double Masks.

Proposition 3. Let w > 3. The range [3, 2w − 4] cannot be represented
by less than 2w − 4 Double Masks.

Proof: First note that no mask can cover a set of addresses with non
empty intersection with both l(0) and l(1). Therefore we have to add
the minimal number of masks for covering [3, 2w−1 − 1] and the minimal
number of masks for covering [2w−1, 2w − 4]. Address 3 cannot be covered
by a mask s/p/k with p < w− 1: otherwise, if k > 0 only a unique perfect
subrange l(s|p+k) would be excluded, but [0, 2] is composed of two perfect
subranges, contradiction ; if k = 0 then l(s|p) would contains address 2,
contradiction. Hence address 3 can be covered only by 0w−211/w/0 or
0w−110/w− 1/1. In the same way, no address between 3 and 2w−1− 1 can
be covered by a Double Mask. By reasoning as in Example 2 we can also
show that two addresses of type 2w

′−1 − 1 with 3 < 2w
′−1 − 1 ≤ 2w−1 − 1

cannot be covered by the same Simple Mask. As a consequent the minimal
number of masks needed to cover [3, 2w−1− 1] is w− 2. By symmetry this
is also true for [2w−1, 2w − 4]. The total number of masks is therefore
2w − 4.

From Proposition 2 and Proposition 3, we can easily see that the 2w−4
bound is tight.

3.3.2 Linear Time Algorithm

This section introduces a more efficient algorithm, named DoubleMasks,
to compute a set of masks covering any range [a, b]. The new designed
algorithm is linear in k where k is the number of bits to represent an IP
address. Given two binary strings u, v we write u ≺ v (resp. u � v)
when u is a strict prefix (resp. prefix) of v. We denote by prec(p) the
longest proper suffix of p. Recall that u < v indicates that the natural
number denoted by u is smaller than the one denoted by v. We assume
that binw(a) = ca′, binw(b) = cb′ where c is the longest common prefix of
binw(a) and binw(b).

DM-Naive (Algorithm 1) processes all nodes on paths from the root to
leaves with value in [a, b]. Hence the number of processed nodes can be ex-
ponential in w. Unlike DM-Naive, DoubleMasks (Algo. 3) only processes
nodes p in paths leading to leaves with value a or b, i.e., DoubleMasks
examines only two branches in the tree t(ε). Fig. 3.4 depicts the idea
behind the algorithm. DoubleMasks works in two phases. The algorithm
computes first for each node p a set of masks for l(p) ∩ [a, b], in a bottom
up way and starting from the two nodes binw(a) and binw(b). Then, when

44

reaching node c, the set of masks computed at the siblings of c (i.e., c0
and c1) are combined and the algorithm stops. This strategy is justified
by the following Fact 1:

Fact 1. Let c be the longest common prefix of binw(a) and binw(b). Inter-
val [a, b] is the disjoint union of [a, valw(c01w−|c|−1)] and [valw(c10

w−|c|−1), b].

Now we introduce ComputeMasks, a procedure that computes the
Double Mask DM representation of each subinterval in Fact 1.
ComputeMasks has a parameter x that will be successively substituted
by a and b in the main algorithm DoubleMasks. The Boolean parameter
β is chosen such that cβ is a prefix of x. If x < valw(cββ̄

w−|c|−1) (resp.
x > valw(cββ̄

w−|c|−1)), the algorithm computes a DM representation of
range [x, valw(cββ̄

w−|c|−1)] (resp. [valw(cββ̄
w−|c|−1), x]).

ComputeMasks relies on the following case analysis:

Case 1: c ≺ pβ � x:

Case 1.1: if DMpβ = {pββ̄s/|p|+2/0}, then DMp = {pββs/|p|/2}
(DM generated)

Case 1.2: if DMpβ = {pβs/|p|+1/k}, then DMp = {pβs/|p|/k+1},
since l(pβ̄) ⊆ [a, b] (DM extended)

Case 1.3: if DMpβ = {pβs/|p| + 1/0}, then DMp = {pβs/|p|/0},
since l(pβ̄) ⊆ [a, b] and DMpβ is a Simple Mask (SM Extended)

Case 1.4: otherwise DMp = DMpβ ∪{pβ̄s/|p|+1/0}, since l(pβ̄) ⊆
[a, b] (SM added)

Case 2: if c ≺ pβ̄ � x, then DMp = DMpβ̄ (masks maintained)

a b

p q

c

Figure 3.4: Illustration of DoubleMasks strategy.

Now we detail the auxiliary procedure ComputeMasks and the main
procedure DoubleMasks.

45

ComputeMasks (Algo. 2)

This algorithm takes a binary number x such that cβ ≺ x and returns a
set of masks representing the interval between x and valv(cβ̄

w−|c|). First
we add the Simple Mask corresponding to x (Line 3). Then, we proceed
on all prefixes of x from the longest one (Lines 4-20). For each prefix,
the algorithm checks the type of the previously computed mask. If this
mask contains a mask1 of length |p| + 2 (corresponding to a perfect tree
of height |p|+2) a new Double Mask is generated (Lines 7-8). If a Double
Mask is present, this Double Mask will be extended (Lines 9-10). If the
mask computed before has a mask1 of length |p| + 1 the same mask will
be extended (Lines 11-12). If neither of the previous cases holds, the
algorithm adds a new mask to the set of masks computed before (Lines
13-14).

The proof of correctness of ComputeMasks is by induction on w− |p|
and checks whether DMp covers l(p)∩[a, b], as for DM−Naive. Therefore
the result of ComputeMasks(a, c, 0) (resp. ComputeMasks(b, c, 0)) is a
DM representation of l(c0) ∩ [a, b] (resp. l(c1) ∩ [a, b]).

Algorithm 2 ComputeMasks(x,c,β)
1: Input: x, c, β such that cβ ≺ x
2: Output: set of masks DMcβ

3: p← prec(x);DMx ← {x/w/0} .processing path x
4: while c ≺ p do
5: if case 1 then
6: switch (DMpβ)
7: case 1.1 = {pββ̄s/|p|+ 2/0}:
8: DMp ← {pββs/|p|/2} .new DM generated
9: case 1.2 = {pβs/|p|+ 1/k}:

10: DMp ← {pβs/|p|/k + 1} .DM extended
11: case 1.3 = {pβs/|p|+ 1/0}:
12: DMp ← {pβs/|p|/0} .SM extended
13: default:
14: DMp ← DMpβ ∪{pβ̄β|w|−|p|−1/|p|+1/0}.SM added - Case 1.4
15: end switch
16: else
17: case 2
18: end if
19: p← prec(p) .process parent node on the path
20: end while
21: return DMp

46

DoubleMasks (Algo. 3)

This algorithm takes as input an interval [a, b] and computes a set of masks
representing it.

Algorithm 3 DoubleMasks(a,b)
1: Input: a, b
2: Output: set of masks representing [a, b]
3: c← longest common prefix of a and b
4: p← c0, q ← c1 .final result will be computed from siblings of c
5: DMp ← ComputeMasks(a, c, 0) .refer to Algo. 2
6: DMq ← ComputeMasks(b, c, 1) .refer to Algo. 2
7: if DMp = {pr/|p|/0} then
8: if DMq = {qs/|q|/0} then
9: return {cr/|c|/0} .new SM generated

10: else if DMq = {c{1}w−|c|/|q|/|s|} then
11: return {c1s/|q| − 1/|s|+ 1} .DM extended
12: else if DMq = {qs/|q|+ 1/0} then
13: return {c11t/|c|/2} .new DM generated
14: else
15: return DMp ∪DMq

16: end if
17: else if DMq = {qs/|q|/0} then
18: if DMp = {c{0}w−|c|/|p|/|s|} then
19: return {c0s/|p| − 1/|s|+ 1} .DM extended
20: else if DMp = {ps/|p|+ 1/0} then
21: return {c00t/|c|/2} .new DM generated
22: else
23: return DMp ∪DMq

24: end if
25: else
26: return DMp ∪DMq

27: end if

First, the algorithm computes the common prefix c of a and b (Line 3).
Then, according to Fact 1, interval [a, b] can be divided into [a, valw(c01

w−|c|−1)]
and [valw(c10

w−|c|−1), b]. ComputeMasks is called for each subinterval
(Lines 5-6). The final result depends on the sets of masks DMp and DMq

generated by Algo. 2. If l(c0), l(c1) ⊆ [a, b] a new Simple Mask is gener-
ated (Lines 7-9). If a DoubleMask is generated for t(c1) (resp. t(c0)) , the
DoubleMask will be extended (Lines 10-11) (resp. Lines 18-19). If l(c0)
(resp. l(c1)) is covered by a Simple Mask of length |p| (resp. |q|) and l(c1)
(resp. l(c0)) is covered by a mask of length |q|+ 1 (resp. |p|+ 1), then a
new DoubleMask will be generated (Lines 12-13) (resp. Lines 20-21). If

47

not, the algorithm returns the union of the two parts.
DoubleMasks computes a DM representation of l(c)∩ [a, b] from DM

representations of l(c0) ∩ [a, b] and l(c1) ∩ [a, b] obtained by calling
ComputeMasks. We can stop when reaching c in the main “while” loop
of ComputeMasks and return the result DMc since we can see easily that
l(c) ∩ [a, b] = l(ε) ∩ [a, b] = [a, b].

3.4 Evaluation by Simulation

We evaluate the performance of the Algorithm Double Mask (DM), and
we compare it with an algorithm that only generates Simple Masks (SM).
This algorithm is obtained by a simple modification of Double Mask. We
conducted experiments using two types of data sets. The first dataset is
a real-world IP ruleset downloaded from the repository [121]. The second
ruleset is a list of synthetically generated IP addresses.

3.4.1 Simulation Setup

The real-world ruleset contains more than 133 million IP addresses. There-
fore, we first transform this set of IPs into ranges. Then we compare the
effects of a Double Mask representation w.r.t. a Simple Mask representa-
tion in reducing the size of our ruleset. To generate Double Masks we rely
on Algo. 3 and to generate Simple Masks we rely on a simple modification
of the same algorithm.

The two algorithms were coded in Java language and the experiments
are carried on a desktop computer with Intel Core i7-7700 3.6-GHz CPU,
32 GB of RAM, and running Windows 10 operating system.

We define the following metric for analysing the performance of the
two algorithms:

Average Compression Ratio = 1− M
n∗S

where

M is the number of masks generated in all iterations,

S is the number of IPs in the ruleset,

n denotes the number of iterations.

To compute the average compression ratio, the number of iterations is
set to 20. We use this metric to show that our algorithm can generate a
more compact list of rules in comparison with Simple Mask algorithm. We
also compute the total number of masks generated with each algorithm.

48

3.4.2 Real-world IP Ruleset

The ruleset IPs are aggregated into approximately 11K ranges. To have
much larger ranges, the two algorithms will take as input all the ranges
located between the set of ranges computed previously. The two programs
take as input each range and compute a set of masks covering this range.

Fig. 3.5 compares the number of masks generated by the two algo-
rithms. By using Double Masks representation, we can reduce the number
of masks by more than 18%. The total number of generated masks using
Simple Mask is 18118. Using Double Mask, the number is reduced to 14919
masks. In total, 15.4% of all generated masks are Double Masks (i.e. 2301
DM). As the number of ranges increases, we observe that Algo. 3 generates
fewer masks than Simple Mask algorithm.

 0

 2

 4

 6

 8

10

12

14

16

18

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 m

as
ks

 (
*1

02
)

Number of ranges

DM
SM

Figure 3.5: Number of masks generated respectively by Double Mask (DM)
and Simple Mask (SM) algorithms using the real-world IP ruleset.

3.4.3 Synthetically Generated Rulesets

In the second experiment, we evaluated more than 6000 ranges computed
from more than 1.5 million IPs obtained synthetically. Fig. 3.6 shows the
difference between the total number of masks computed respectively by
the two algorithms. In this scenario, we observe a significant difference
between simple and Double Mask techniques. The total number of gener-
ated Simple Masks is 29958. Using Double Mask algorithm, we are able
to reduce this number by 74% (i.e., 7872 masks). The synthetic ruleset
used in Fig. 3.6 contains a higher number of ranges of the form [1, 2w − 1]
which explains the difference between the obtained number of double and

49

Simple Masks.

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 m

as
ks

 (
*1

02
)

Number of ranges

DM
SM

Figure 3.6: Number of masks generated respectively by Double Mask (DM)
and Simple Mask (SM) algorithms using the synthetic ruleset.

Fig. 3.7 shows the average compression ratio of the two algorithms
while increasing the number of IPs. We observe, that Double Mask algo-
rithm performs better than Simple Mask with a difference of at least 10%.

 0

 10

 20

 30

 40

 50

 60

 70

0 1 2 3 4 5

Av
er

ag
e

co
m

pr
es

si
on

 r
at

io
 (

%
)

Number of IPs (*104)

DM
SM

Figure 3.7: Compression ratio of Double Mask (DM) and Simple Mask
(SM) using a synthetic ruleset of range fields of length 16bits.

50

Fig. 3.8 shows the difference in compression ratio between Double Mask
and Simple Mask while modifying the length of IPs field. Furthermore, we
observe that Double Mask algorithm always performs better than Simple
Mask for each length value.

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 12 16 20 24 32

Av
er

ag
e

co
m

pr
es

si
on

 r
at

io
 (

%
)

Field length (bits)

DM
SM

Figure 3.8: Comparison of compressions ratio between Double Mask (DM)
and Simple Mask (SM) algorithms while varying the length of a field.

The compression ratio depends on each ruleset and on the nature of IPs
ranges. We use two types of rulesets to demonstrate that this technique
can reduce the number of rules by 79% and more in some cases and by
18% or less in others, depending on the nature of IP ranges. Since Double
Mask algorithm generates a Simple Mask when no Double Mask can be
generated, the total number of masks will be at most equal to the number
of Simple Masks computed by Simple Mask. This is why, according to our
empirical simulations, Simple Mask cannot generate a smaller set of masks
than Double Mask.

3.5 Experimental Evaluation
We implement the Double Masks representation and its respective match-
ing algorithm using an OpenFlow switch and an SDN controller. We
evaluate and compare the performance of our matching algorithm with a
Simple Masks representation which is considered as a baseline.

3.5.1 Setup and Parameters

In our experimental setup, we use the physical SDN testbed shown in
Fig. 3.9.

51

Figure 3.9: The experimental physical SDN testbed.

The testbed contains a Zodiac FX switch [122] connected to a RYU
controller [123] and three hosts. The code in the controller and the switch
has been modified with Double Masks representation for IP matching fields.
A matching function is added in both of them to match a received packet
with the set of rules in the routing table of the switch or with a list of
rules in the controller. In this scenario, a host machine (Host 3) connected
to the switch takes a list of IP addresses as input and sends packets to
those destinations. Another host (Host 1) tries to send a ping message
to Host 2. The ping message will match all rules in the switch’s routing
table before forwarding the packet to Host 2. If no match is found, the
message will be sent to the controller, who matches the message with the
list of rules then send back the action needed for the specific packet to the
switch. The round trip time (RTT) from host 1 to Host 2 is recorded.

3.5.2 Implementation and Integration

Integration in the Controller

The code of the RYU controller has been modified to integrate the Double
Masks representation in the OpenFlow protocol match fields. The con-
troller takes a set of rules (simple or Double Masks) computed from a
blacklist using our transformation algorithm. The controller matches the
header of the OpenFlow PACKET_IN messages with the set of rules to
block or not the traffic to specific destinations.

As depicted in Figure 3.10, when a rule is being sent to the controller
containing a Double Mask represented field (i.e. 169.254.120.190/25/1,

52

action field empty = [Drop]), the controller add it to its flow table as shown
in Figure 3.11. This message also contains the switch id, the timeout, and
the priority or the rule. When a packet matches multiple rules, only the
one with the highest priority will be applied.

Figure 3.10: Illustration of OpenFlow rule sent to the controller through
the REST API.

Figure 3.11: The rule with Double Mask is inserted in the controller flow
table.

Integration in Zodiac FX Switch

In our setup, we use the OpenFlow-enabled Zodiac FX switch shown in
Fig. 3.12 that provides an inexpensive alternative to experiment SDN net-
works in hardware. The OpenFlow implementation of the Zodiac FX
switch has been modified to integrate the processing of rules by using
the Double Masks representation. This code has also been modified to

53

apply a matching between the IP source of a packet and all the rules in
the switch.

Figure 3.12: OpenFlow-enabled Zodiac FX switch

The routing table of our Zodiac FX switch can store a maximum num-
ber of 448 rules using simple or Double Masks. The timeout for each rule is
set to 30 seconds. After that, the rule will be automatically removed from
the table. The switch has two matching algorithms for matching a packet.
The first algorithm is the standard algorithm used to match a received
packet with a Simple Mask rule in the routing table, and the second one
is used for the Double Mask rules.

Algorithm 4 implemented both in the switch, and the controller applies
the double mask matching process between a source IP and a rule in the
flow table. For example, if the value of S0 is zero, that means the IP
source matches the network IP. If the value of S1 is different from zero,
that means the IP source is not included in the set of rejected IPs by
mask2, in this case, the IP source will match the rule.

Fig. 3.13 shows the logical representation for the simple matching func-
tion used for the standard CIDR notation. While Fig. 3.14 shows the
logical representation of our matching function for Double Mask represen-

54

Algorithm 4 Matching(netref,mask1,mask2, ip_source)

1: Input: netref,mask1,mask2, ip_source
2: Output: accept or deny
3: X1← mask1 ∧ netref
4: X2← X1⊕ ip_source
5: S0← X2 ∧mask1
6: if S0 = 0 then
7: .ip_source match the ip of the network
8: X3← mask1 ∨mask2
9: X4← X3 ∧ ip_source

10: X5← X3 ∧ netref
11: S1← X4⊕X5
12: if S1 # 0 then
13: .ip_source not included in IPs rejected by mask2
14: return accept
15: else
16: return deny
17: end if
18: else
19: return deny
20: end if

x3x0 x1

IPsrcnetpref mask1

1

2
3

S0

Figure 3.13: Logical representation of the simple matching function for
CIDR notation.

tation implemented in both the switch and the controller with the added
part in red. This new function has four inputs and two outputs.

Let us take the rule with a Double Mask notation (192.168.100.0/24/6−
− accept) as an example. This representation means that all IP ad-
dresses between 192.168.100.5 and 192.168.100.255 are accepted while ad-
dresses between 192.168.100.0 and 192.168.100.4 are rejected. And let p a
packet with an address 192.168.100.1. In this case, x0 is used to represent
netpref or 192.168.100.0. x1 is used to represent mask1 and is equal to
255.255.255.0 (i.e. the first 24 bits) while x2 represent mask2 and is equal
to 0.0.0.252 (i.e. the next 6 bits after mask1). Finally, x3 will be equal to

55

x2 x3x0 x1

mask2

IPsrc

netpref

mask1

4

1

2
3

5

6
7

S0

S1

Figure 3.14: Logical representation of the matching function for Double
Mask.

the IP address of p (i.e. 192.168.100.1). Since the address of p is a part
of the accepted IPs of the network represented by mask1 the value of S0

will be equal to 0. S2 will be equal to 0 since the IP of p is included in
the rejected part represented by mask2 and the packet will not match the
rule.

Table. 3.2 shows all the different combinations from the output of the
logical circuit in Fig. 3.14. An IP can match a Double Mask rule if the
output of S0 is equal to 0, meaning that the IP of the packet matches the
accepted part of the rule, and if S1 is different from 0, meaning that the
IP does not belong to the rejected part of the network.

S0 S1 Match
0 0 no
0 6= 0 yes
6= 0 0 no
6= 0 6= 0 no

Table 3.2: All matching outputs from the logical circuit in in Fig. 3.14.

Although the logical circuit for matching Double Mask is bigger than
Simple Mask, we hope that the compression ratio can compensate for the
additional time. To test our theory, we need to run experiments on the
real testbed shown in Fig. 3.9 that supports Double Mask.

When the controller sends an OpenFlow message with the match field
represented in Double Mask notation to the Zodiac FX switch. The switch
adds the rule to its flow table as shown in Fig. 3.15. When a packet is

56

received, for example, from a host with an IP 169.254.130.226, the switch
performs matching between the receiving packet and the rules in the flow
table. Since the source IP belongs to the network 169.254.130.128/25, the
value of S0 in the matching Algorithm 4 will be 0. However, the value
of S1 will be different from 0 since the IP of the source is not included
in the set of IPs rejected by the Double Mask (i.e., All IPs on the net-
work 169.254.130.128/25 except those with a bit 0 in the 26 places will
be dropped). In this case, the switch finds a match between the received
packet and the rule in the flow table, and the action associated with the
rule will be performed.

Figure 3.15: The flow table of the Zodiac FX after inserting a double-mask
based rule.

3.5.3 Experiments and Results

We use the testbed depicted in Figure 3.9 to validate the applicability of
the double-mask representation in an OpenFlow network and to evaluate
its performance. To generate our evaluation workload, we developed a
packet generator that takes a list of IP addresses and then sends packets
to each address in the list. We set the packet rate for each experiment
to be 9, 12, or 15 packets/second. The packets are being sent to different
destinations based on multiple rulesets. The number of packets per second
is chosen so that the time needed for the saturation of the switch routing
table is around 10 min. If the number of packets is too small, the table

57

will never reach the maximum number of 448 rules, and if it is too large,
the table will max out quickly. We repeat each experiment 6 times on 6
different rulesets then we compute the average matching time. The same
rulesets are used to generate the different packets to match the sets of
simple and Double Masks rules.

Matching Time in Switch

In these experiments, the average matching time is computed after using
a simple or a Double Masks list. Our goal is to study the impact of the
compression ratio on the matching time in the switch. We will use two
sets of rules the first one with a compression ratio of 5% and the second
one with 30%.

 0

 1

 2

 3

 4

 5

 6

9 12 15

Av
er

ag
e

Ti
m

e
(m

s)

Number of Packets/second

DM
SM

Figure 3.16: The difference in the average time for matching between using
simple or Double Masks with a 30% compression ratio.

Figures 3.17 and 3.16 show the difference in the average matching time
between simple and Double Masks while varying the number of the packets
generated at Host 3. As shown in the two figures, the average matching
time with simple and Double Masks are very close. Matching with a Double
Mask is more costly than with a Simple Mask. However, this increase in
time is compensated by a smaller number of rules in the routing table
while using a Double Mask.

To see the real impact of the compression ratio on the global matching
time, we evaluate the response time on the controller side using the two
matching functions for simple and Double Masks with multiple sets of rules
with a different compression ratio.

58

 0

 1

 2

 3

 4

 5

9 12 15

Av
er

ag
e

Ti
m

e
(m

s)

Number of Packets/second

DM
SM

Figure 3.17: The difference in the average time for matching between using
simple or Double Masks with a 5% compression ratio.

Matching Time in Controller

In a second experiment, we compare the matching time between a list
of simple or Double Masks in the controller side. Our experiment uses 7
IP blacklists. Each blacklist generates two lists of rules, one with only
Simple Masks and the other with both simple and Double Masks. The
compression ratio for the different sets of lists varies between 0.5% and
83%. The goal here is to evaluate the effect of the compression ratio on
the controller’s response time. A set of 300K IPs is used to match each IP
address with each rule for the different sets. We use this number of IPs to
simulate heavy traffic to show the gain in response time.

First, we compute the response time of the controller using only Simple
Mask rules. Then we compute the response time using the same sets of
IPs on the second set of rules that uses simple and Double Masks. As
shown in Fig. 3.18, when the compression ratio is at 0.5% it is better
to use a Simple Mask over a Double Mask since the gain in space is low
in comparison with what we lose by using the matching function for the
Double Mask that takes more time than the matching time for Simple
Mask. At 15%, we can see that the time needed for matching Double
or Simple Mask is similar. When the compression ratio is higher than
15%, we obtain substantial gain in response time by using Double Masks.
From a 30% compression ratio, the results show a gain in the controller’s
matching time. However, at the same ratio, the gain in space is obtained
in the switch and the controller.

59

-20

 0

 20

 40

 60

 80

 100

0.5 15 30 50 63 70 83

G
ai

n
ov

er
 s

im
pl

e
m

as
k

(%
)

Compression ratio (%)

DM

Figure 3.18: Gain in the response time in the controller side when using
Double Masks filters.

3.6 Discussions

As shown in previous sections, our linear algorithm computes a set of masks
covering a range given as input. If the range is not perfect, a Double Mask
is generated. Moreover, in this technique, each set of masks for a range
is independent of other sets belonging to other ranges. However, if we
compute the union of ranges, we can achieve a higher compression ratio.

For example, let us consider the example in Fig. 3.19 with two perfect
ranges [a, b] and [e.f]. Normally, since each range is independent, our
algorithm return all masks covering the two ranges. In this case Simple
Mask = binv(a)/|r|+ 1 for range [a, b], and Double Mask = binv(c)/|r|+
1/|s| − 1 for range [e.f]. However, one Double Mask = binv(c)/|r|/|s| can
be generated to cover the two ranges.

3.7 Summary

The Double Masks is a new representation used to reduce the number
of rules in firewalls, IDS’s or routing tables to make their configuration,
management, and deployment easier. In this chapter, we formally propose
the first linear algorithm to compute a set of Double Masks covering a range
of IPs. Note that our algorithm can be applied after or in combination
with known redundancy removal techniques like [52] to further reduce the
number of entries in filtering rule tables. Then we conducted a series of
experiments on real and synthetic rulesets. According to our experiments,

60

a b

height k − 1

height k − |s|

c d e f

height k

r

s

Figure 3.19: Extending Double Mask

using the Double Mask representation allows one to reduce the number
of rules needed to cover a set of ranges by more than 18% on a real-
life ruleset (after removing the redundant rules) and more than 74% on
synthetic data. The algorithm is not limited to IP ranges, and it can be
applied to port ranges too and to reduce the range expansions in TCAM.
We also evaluate the effectiveness of Double Masks using an OpenFlow
based implementation and evaluate its matching time using a physical
SDN testbed. Although we obtain a similar matching time in the switch
for the simple and Double Masks representations, the storage space of
rules is reduced. On the controller side, with compression ratios higher
than 15% we observe a substantial gain in the matching and response
times. However, compression techniques cannot always be efficient. In
some cases, the size of switches is too small to fit all rules even after
compression. To deal with this problem, we will introduce in the following
chapter a new approach for distributing rules over multiple switches.

61

62

Chapter 4

Rules Distribution Over a
Single Path Topology

Contents
4.1 Introduction . 63
4.2 Problem Statement 64

4.2.1 Problem Definition 64
4.2.2 Requirements . 65

4.3 Distribution Over a Single Path 66
4.3.1 Rules Representation 66
4.3.2 Forward Rules Generation 67
4.3.3 Distribution Algorithm 68
4.3.4 Algorithmic Complexity 70

4.4 Evaluation . 70
4.4.1 Simulation Setup 70
4.4.2 Simulation Results 71

4.5 Summary . 73

4.1 Introduction

The previous chapter tries to solve the rule management problem in each
switch by relying on a new representation for the IP address field called
Double Mask. However, the compression technique cannot always be effi-
cient either because the compression ratio is minor or because the memory
capacity of switches is small. Therefore, to deal with this problem, we can
rely on software-defined networks (SDN) to distribute rules over multiple
switches. In SDN, the filtering requirements for critical applications of-
ten vary according to flow changes and security policies. SDN addresses

63

this issue with a flexible software abstraction, allowing simultaneous and
convenient modification and implementing a network policy on flow-based
switches. This single-point deployment approach constitutes an essential
feature for complex network management operations.

The growing number of attacks from diverse sources increases the num-
ber of entries in access-control lists (ACL). To avoid relying on large and
expensive memory capacities in network switches, a complementary ap-
proach to rule compression [13; 39; 41] would be to divide the ACLs in
smaller switch tables to enforce the access-control policies. It paves the
way towards distributed access-control policies, which have been the topic
of many previous studies [86; 89; 90]. However, most of their proposals
give rise to a large rules replication rate [86; 89]. Some proposal even needs
to modify the header of the packet [90] to prevent it to match a second
filter rule in a following switch.

This chapter is organised as follows. Section 4.2 introduces the general
principles and distribution constraints in this problem, like switch capacity.
Next, in Section 4.3 we introduce new techniques to distribute filtering
rulesets over a single path topology. Our approach is to design distribution
schemes for simple and complex policies that rely on single dimensions
to forward packets to the destination. In Section 4.4 we evaluate the
performance of our distribution algorithm. Section 4.5 summarizes and
concludes this chapter.

4.2 Problem Statement

4.2.1 Problem Definition

We consider a network N with SDN-enabled switches that are connected
to each other using their respective ports. Each of the switches can store
in its flow table different types of access control and filtering rules. Every
flow table has a limited capacity regarding the number of stored rules.
We assume that an SDN policy is a collection of rules generated by an
administrator or an external module. The size of the set of rules of the
policy exceeds the capacity of a single switch table. In this chapter, we
are mainly concerned with decomposing and distributing a set of filtering
rules along with the switches in the network N to implement an SDN policy
while preserving its general semantics and meeting the capacity limitation
of each of the switches.

In the network N , packets are controlled by rules stored in their For-
ward Information Bases or flow tables. A rule is specified by a priority,
matching patterns on packet fields and an action. A matching pattern of
a source (resp. destination) field is given by a list of 0, 1 followed by ∗’s
(don’t care bits), of global length w (word length) called a prefix p. Any
bit matches wildcard character ∗. A rule with prefix p for the source (resp.

64

destination) applies to a packet if this packet source (resp. destination)
field matches p, bit by bit. We call bit-prefix of the rule the sublist of 0, 1
of p.

The matching process for a given set of rules can follow different strate-
gies. A simple strategy prioritizes the rules by their order in the ruleset.
For example, a packet matching the first rule will apply the action of that
rule without considering the following ones. With a Longest Prefix Match-
ing (LPM) strategy, one packet can match multiple rules, but only the one
with the most specific matching prefix (i.e., the longest prefix) will be se-
lected. In the example shown in Table 4.1, if a switch receives a packet
with 0001 as an address, and using a prioritized list strategy, action A1

of the first rule is applied. However, with an LPM strategy, the packet
matches both Rules 1 and 2, but only action A2 will be applied since Rule
2 covers the address field with a longer prefix.

Rule Address field Action
1 0 0 * * A1

2 0 0 0 * A2

Table 4.1: Example of a ruleset in a switch table.

4.2.2 Requirements

To ensure that distributing the rules along different switches does not
change the initial policy compared to a single-switch placement, we must
preserve its overall semantics, i.e., the action applied on a matched packet
in a single switch with the initial policy ruleset should be the same action
in a chain of switches with the distributed policy ruleset. Here, we consider
that filtering rules have two possible actions: "Forward" or "Deny". In the
following, the prefix of a rule r is denoted by Pref(r) and its action by
Action(r). If Pref(r1) matches Pref(r2) and has a shorter bit-prefix than
Pref(r2), like Rule 1 with Rule 2 in Table 4.1, then we say that r1 > r2 or
r1 overlaps r2. In the example of Table 4.1, it is also true that Pref(r1)
is the next longest matching prefix i.e there is no r such that r1 > r > r2.
We express this by r1 >: r2.

Let R be the initially given ruleset of a policy. Let R1 and R2 be
two subsets of R located in different switches along a path, with R2 being
located in a switch after the one of R1 as illustrated in Fig. 4.1.

When applying the LPM strategy in a switch, a packet must be pro-
cessed by the most specific matching rule. Thus, if r2 ∈ R2, there must
not exist any r1 ∈ R1 such as r1 > r2. To enforce this precedence
property, when we place a rule r in a switch, we must also place in the
same switch any rule r′ such as r > r′.
When a packet has been accepted by a switch containing ruleset R1 and

65

S0 S1 S2

C=6 C=6 C=6

Figure 4.1: Flow table capacities of switches along a single path.

enters a switch containing ruleset R2, if r1 and r2 are matching rules in
R1 and R2 respectively, and r2 > r1 then r2 should not block it. Thus,
we must prevent blocking a packet when there is an action conflict. Given
two rules r1 ∈ R1 and r2 ∈ R2, we have an action conflict iff r2 >: r1,
Action(r1) = ”Forward” and Action(r2) = ”Deny”.

In this thesis, we rely on forward rules to solve action conflicts: if two
conflicting rules r1 and r2 belong respectively to two successive switch ta-
bles R1 and R2, a rule fw with Action(fw) = ”Forward” and Pref(fw) =
Pref(r1) is added to R2. When the policy preserving condition is re-
spected, Pref(fw) has a higher specificity, thus priority, than Pref(r2)
by construction.

When decomposing and distributing R into subsets to be stored in
the different switches and adding forward rules to solve action conflicts,
the distribution problem is formulated as a Bin Packing problem with
fragmentable items [124] where each fragmentation induces a cost.

4.3 Distribution Over a Single Path

Networks often have a blacklisting policy that specifies that packets origi-
nating from specific IPs are potentially harmful and need to be dropped,
for instance, when handling denial of service attacks [125]. Thus, in a first
step, we resolve the distribution problem with a single filtering field and by
using an LPM strategy, which could be sufficient for placing a blacklisting
policy in the network.

4.3.1 Rules Representation

We use a binary tree to represent the rules ordered by their prefix speci-
ficity. We study the single field case, so each rule contains one filtering
field, and there is at most one rule associated with a tree node. The se-
quence of edge labels taken from the root to a node represents the bit
prefix of the rule linked to this node.

As shown in Fig. 4.2, the pattern 00∗ of a rule r is at a distance of
two from the root, reachable through the leftmost branch of the tree. The
complete prefix with wildcards of a node n represents a rule pattern. It is

66

∗

0∗ 1∗

00∗ 01∗

Figure 4.2: Compact representation of rules prefixes in a binary tree.

denoted as NodePrefix(n) and is equal to Pref(r), when a rule r is con-
tained in n. We denote by fw(n) the forward rule with a matching pattern
NodePrefix(n). Once the rules are distributed among the switches, if in
any switch no matching rule is found for an incoming packet, the packet
will be forwarded to the next switch using a default rule.

4.3.2 Forward Rules Generation

We assume the set of rules R has been distributed along successive switches
s1, . . . sn forming a path in the network graph. For this distribution to
be correct with respect to the initial R and LPM semantics, we need to
introduce additional forward rules in some switches.

The forward rule generation is illustrated in Fig. 4.3, where we install
half of the rules in the first switch.

IP Action
000* A1
00** A3
**** Forward

IP Action
00** Forward
0*** A2
**** A4

Switch 1 Switch 2

IP Action
000* A1
0*** A2
00** A3
**** A4

Rule set :

Figure 4.3: Illustration of forward rule generation with a ruleset and two
successive switches.

We have selected rules with 00** as a common prefix for the first switch,

67

so accepted packets with an IP matching this pattern must be accepted in
the second switch and forwarded. Thus, we have generated a forward rule
with the prefix 00** in the second switch. A default forward rule must
also be added to the first switch to allow the second one to receive any
unmatched packets.

Given a set of rules R, two rule prefixes p1 = w0∗, p2 = w1∗ can be
merged to obtain a forward rule prefix p′ = w∗. This operation can be
iterated. Fig. 4.4 illustrates a rule tree with merging possibilities. This tree
contains four rules with prefixes 00∗, 01∗, 1∗, 10∗. We iteratively merge 00∗
and 01∗ to form a prefix 0∗, which is merged then with 1∗ into a common
forward prefix. In this example, only one forward rule is needed for this
set. As shown in Fig. 4.4, the forward rule covers the subtree with rules
at every branch above the blue line.

00∗ 01∗

1∗

10∗

Figure 4.4: Single-forward rule tree.

The set of resulting prefixes obtained by iterating the merging opera-
tion in R and that are maximal for > is called MaxFwdMerges(R).

On a filtering path of length n, let Ri be a rule subset placed in switch
si, 0 < i < n. The potentially necessary forward rules in si+1, i + 1 ≤ n
after adding rules in si is composed of successive MaxFwdMerges results
and called PotentialFwds. Considering Ri+1, only forward rules needed
to resolve action conflicts with R1,...,i are added in si+1. Thus, the forward
ruleset needed in switch si+1 is a subset of PotentialFwds. If a prefix
covers only deny rules in R, packets matching this prefix in si will not travel
to the next switch. Therefore, such a prefix is not added to PotentialFwds
of si+1 since there will be no packet to match.

4.3.3 Distribution Algorithm

Let us consider the binary tree shown in Fig. 4.5 which represents an
ordered ruleset. As an illustration example, each node contains one rule,
and we need to distribute the ruleset along the path shown in Fig. 4.1. In
this path, each switch has a maximal capacity of 6 rules. If we consider
the default rule in each switch, we need to find a set of 5 rules to fill the
first switch. As depicted in Fig. 4.5, we select the set of nodes containing

68

a total of 5 rules maximum (all nodes in red). After this selection step, all
rules added to the switch will be removed from the binary tree. If some
space remains in the switch, we will try to find other rules candidates.

Figure 4.5: Choosing a set of candidate rules from the binary tree to be
placed in a switch.

The rule distribution is performed in one pass following a bin-focused
approach and a Minimum Bin Slack heuristic [126]. Thus, each switch
is filled as much as possible with a set of rules while trying to minimize
the overhead caused by action conflicts with rules in previous switches.
The required extra forward rules in switch i for a ruleset Ri is defined
as NeededFwds(Ri, PotentialFwds) = {fwd ∈ PotentialFwds | ∃r ∈
Ri such that r >: fwd ∧Action(r) = ”Deny”}.

Algo. 5 is firstly called with an empty PotentialFwds and it describes
the distribution of a given ruleset over switches in a single path.

Algorithm 5 DecPath(R, 〈s1, s2, . . . , sk〉, PotentialFwds)
Input: set of rules R, k switches si of capacities ci, set of forward rules
PotentialFwds
Output: ChosenRules, the rules added to the k switches;
R, the remaining rules;
PotentialFwds, the forward rules computed after adding ChosenRules.

1: Let ChosenRules← ∅
2: for i = 1 to k do
3: Add a default forward rule to si
4: Let Ri ← ChosenCandidates(R, si, PotentialFwds)
5: ChosenRules← ChosenRules ∪Ri

6: Add Ri ∪NeededFwds(Ri, PotentialFwds) to si, replacing the de-
fault forward rule if Ri contains the default rule

7: PotentialFwds←MaxFwdMerges(Ri ∪ PotentialFwds)
8: R← R \Ri

9: end for
10: return 〈R,PotentialFwds, ChosenRules〉

The function ChosenCandidates searches in the rules tree R for a rule

69

subset Ri that can fit in switch si, and has a maximum of:

|Ri| − |NeededFwds(Ri, PotentialFwds)|

4.3.4 Algorithmic Complexity

When building the rules tree, we can efficiently add information that will
speed up the set selection part. In that way, we record with every node i)
the number of rules in its subtree, ii) whether this subtree is a blacklist,
and iii) whether this node prefix is a valid result of prefix merges. When
a rule r is inserted in a given node tn, every parent of tn can update these
variables in O(w) since w (word length) is an upper bound for the length
of the bit-prefix of r. The rule tree construction part is then achieved in
O(nw) time.

Selecting the rules to be stored in a switch requires at most an entire
tree traversal in O(nw) time. Given a node prefix p, searching for a rule
conflict with it can be done in O(w) time, as the forward rules can also
be represented in a tree data structure. The distribution can be done in
O(nw) time for every switch.

We adopt a greedy approach where the potential forward rules tree
representation of O(nw) size is the main runtime memory cost.

4.4 Evaluation

4.4.1 Simulation Setup

In our evaluation of Algo. 5, we rely on 2 rulesets available in [127]. These
rulesets are generated with ClassBench [128]. The first one, called "fw1"
contains 8902 forwarding rules, while the second one, called "acl1", con-
tains 9928 access control rules. Our algorithms are implemented in Java
with single-threaded programs. The evaluation has been performed on a
desktop computer with Intel Core i7-7700 3.6-GHz CPU, 32 GB of RAM,
and running the last version of Windows 10 operating system.

We define the overhead OH in terms of additional forward rules placed
on the switches of a path for a given ruleset as follows:

OH = Nt−Ni
Ni

where

Nt is the total number of rules used in a path (initial ruleset plus
extra forward rules).

Ni is the number of rules in the initial ruleset.

The overhead depends on the length of the path, the capacity of the
switches on the path, and the diversity of rules’ actions in the ruleset.

70

4.4.2 Simulation Results

We decompose the rulesets using the source IP address as a filtering field.
Even with a synthetic ruleset of 64000 random rules, no ruleset takes
more than 150ms to be decomposed and distributed. This processing time
includes tree building, ruleset decomposition, and rules distribution. This
level of performance should enable a network administrator to react and
deploy almost immediately an updated policy suited to a new kind of
attack flow.

Applying our approach to two classical rulesets, white-lists and black-
lists, the forward rules overhead is very low since such rulesets contain
few actions conflicts. For example, only the last default rule has a "Deny"
action with a white-list policy, so only the last switch will need additional
rules in its table. In terms of a blacklist policy, no forward rules are
required, so the tree structure is only useful as a sorting and updating
mechanism. The decomposition of multi-field filtering policies is possible
when dealing with blacklists, with only one default forward rule added to
each switch except the last one.

If a set of rules R1 (0*,deny) and R2 (*,forward) need to be divided
using OBS, a forward rule for R1 will be generated to avoid conflict with
R2. However, using our approach, no forward rule should be generated
since a packet matching R1 in a switch does not continue to the next one.
To show the effect of the action field on the overhead OH and the minimal
capacity Cmin, we use two rulesets (fw1 and acl1), from the 12 rulesets
[90], with 0 to 100% percentage of rules having "Forward" action. The
average values of OH and Cmin are computed by running 10 simulations
for each percentage value since the "Forward" actions will be distributed
randomly among prefixes.

Fig. 4.6 shows the effect of the action field on both OH and Cmin

metrics. When a set of rules has very low action diversity, the overhead
is very low since the number of conflicting actions is small. The situation
where half of the rules have a "Forward" action introduces the highest
overhead, and we obtain similar results with the other rulesets.

Fig. 4.7 shows the overhead distribution using the 12 rulesets from
ClassBench while varying the path length. The overhead in the worst case
is around 30% with 8 switches and for 50% of accepting rules. By using
LPM, our approach does not necessarily introduce rule duplication with
sets having overlapping rules like the OBS approach. For example, if a
rule r is selected, no rule r′ such as r′ > r is needed in the current switch.
Only forward rules fw such as r > fw are added to resolve action conflicts.
However, the performance of our LPM based method can not be compared
to OBS in terms of placement results because of the single filtering field
that we use. In addition, the OBS approach operates on both source and
destination fields, which is not the case for our method.

71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600
O

ve
rh

ea
d

Cm
in

Percentage of "forward" action

Overhead
Cmin

(a) fw1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

O
ve

rh
ea

d

Cm
in

Percentage of "forward" action

Overhead
Cmin

(b) acl1

Figure 4.6: Effect of action field on overhead OH and Cmin using respec-
tively two different rulesets (fw1 and acl1).

Contrarily to Palette [89], we do not cut the packet header space in
two, so our performance is not affected by the path length being or not a
power of two, as highlighted in OBS benchmarks. We do not need either
to build classifiers in such a way that rules from two different classifiers do
not intersect. We only have to respect the rule precedence relation, which
enables us to decompose a given ruleset without the overhead of rule bits

72

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1 2 3 4 5 6 7 8

O
ve

rh
ea

d

Path length

Figure 4.7: Rule space overhead while distributing a ruleset with a 50% of
rules having Forward actions.

expansion. While Palette assumes that the classifiers have the same size
at the end of the decomposition, our approach is not dependent on switch
capacities, as each next switch receives as many rules as it can with our
algorithm.

Our technique based on LPM is limited to rules composed of a bit prefix
followed by wildcards. For general rules with wildcards possibly occurring
at any position, we have to perform a rule expansion like in Palette Pivot
Bit Decomposition [89].

4.5 Summary

In this chapter, we introduce a new LPM based distribution algorithm.
Like OBS [86], and Palette [89], we rely on rule dependency relations, but
we generate fewer forward rules by considering the action field. Indeed, a
packet can be matched by rules with two prefixes from successive switches
if their resulting action does not violate the initial policy semantics. As
previous works we adress the problem of distributing a ruleset among net-
work switches to meet a policy. However, in our approach, we rely on the
properties of the LPM strategy and leverage action field information to
handle overlapping rules and avoid replication in switch tables. Further-
more, unlike [90] our solution does not need packet or rule modifications.
Our simulations show that when rules have the same action field, the over-
head is close to null. This technique can be helpful if we use a blacklist or
a whitelist where all rules have the same action. In the next chapter, we

73

will introduce a general approach for all types of rules strategies. We will
also introduce distribution techniques for rules over more complex network
topologies.

74

Chapter 5

Rules Distribution Over a
Graph

Contents
5.1 Introduction . 75
5.2 Two-Terminal Series-Parallel Graph 76

5.2.1 Distribution Algorithm 77
5.2.2 Algorithmic Complexity 81
5.2.3 Generalization to St-Dags 81

5.3 Two-Tier Distribution Approach 85
5.3.1 Distribution of Multi-Fields Rulesets 85
5.3.2 Multi-level Distribution 85

5.4 Evaluation of Two-Tier Approach 87
5.4.1 Experimental Setup 87
5.4.2 Overhead . 88
5.4.3 Bandwidth and Latency 89
5.4.4 Multiple Destinations 91

5.5 Rulesets Update Strategy 95
5.5.1 Update Strategy With Generated Forward Rules 96
5.5.2 Update Strategy With Two-Tier Approach . . . 99
5.5.3 Evaluation . 99
5.5.4 Network Topology Update 101

5.6 Summary . 102

5.1 Introduction
The previous chapter introduces a distribution algorithm for one dimen-
sion rules that work with LPM strategy. The algorithm generated forward

75

rules in each switch to preserve the semantics of the rulesets. In addi-
tion, the algorithm is developed for single path topologies. However, net-
work topologies can be more complex with multiple overlapping or crossing
paths. While a distribution on one path can be relatively easy to deploy,
with multiple paths scenarios, rules in nodes belonging to multiple routes
must be carefully managed to serve all of them and limit redundancies.

In this chapter, we present a technique to enforce the same filtering
policy across all paths in the network while limiting rules redundancies.
First, in Section 5.2 we present an algorithm for distributing a set of rules
on a network whose topology is a two-terminal series-parallel graph [129].
Compared to the algorithms presented in Chapter 4, this algorithm is not
specific to LPM policy. It can be applied to all rule matching strategies
and to all dimensions. Then we show how to handle more general two-
terminal directed acyclic graphs. Next, in Section 5.3 we introduce a more
general approach to the decomposition problem that does not rely on any
additional rules. Section 5.4 evaluates the performance of our distribution
technique. In Section 5.5 we introduce an update strategy to handle mod-
ifications in rulesets and topologies, and we evaluate the performance of
our technique. Finally, Section 5.6 summarizes and concludes this chapter.

5.2 Two-Terminal Series-Parallel Graph
Series-parallel graphs are widely used in telecommunication networks [130],
since the failure of a network part can be mitigated by using a parallel path,
especially in critical applications with low tolerance to network paths fail-
ure. Moreover, these network types can be updated to easily add or remove
some parts by dividing the network into parallel or series compositions.

Definition 2. A two-terminal directed acyclic graph (st-dag) has only one
source s and only one sink t. A series-parallel (SP) graph is an st-dag
defined recursively as follows:
(i) A single edge (u, v) forms a series-parallel graph with source u and sink
v.
(ii) If G1 and G2 are series-parallel graphs, so is the graph obtained by
either of the following :
(a) Parallel composition: identify the source of G1 with the source of G2

and the sink of G1 with the sink of G2. (b) Series composition: identify
the sink of G1 with the source of G2.

A two-terminal series-parallel graph is a graph with distinct source and
destination vertices, and obtained by a set of series and parallel composi-
tions, merging the source and destination of components in case of series
decomposition or by merging the two sources and the two destinations
in case of parallel decomposition as shown respectively in Fig. 5.1 and
Fig. 5.2.

76

S SD D S D

Figure 5.1: Series composition.

S

S

D

D

S D

Figure 5.2: Parallel composition.

We define an S-component as an oriented path, that is, either an edge
or a series composition of edges as shown in Fig. 5.3. A series-parallel
graph can be represented by a binary tree [131], where each internal node
of the tree is a series or a parallel composition operation and each leaf
is an edge of the graph. Fig. 5.4 shows a binary tree representation of a
series-parallel graph.

Figure 5.3: S-component.

We can derive a more compact representation of series-parallel graphs
by replacing maximal subtrees built solely from series operators by the
S-components they represent. Hence, leaves are S-components in this al-
ternative representation.

In the example of Fig. 5.4, edges 1→ 2 and 2→ 4 can be merged into
one S-component, as edges 1→ 3 and 3→ 4.

5.2.1 Distribution Algorithm

To determine if our algorithm can find a solution given a ruleset R to
decompose, we need to try the decomposition on all paths of the directed
network graph. We will then find the smallest ruleset that can fit in all
paths, considering the overhead in terms of forward rules and the compat-
ibility between different paths that share some switches.

77

2

3

4 5

S

P

S

S S

P

132412 34

124 134

1

4545

Binary tree representing Graph G

Graph G

Binary tree using S-component

Figure 5.4: Tree representation of a series-parallel graph.

Algo. 6 outputs a ruleset placed in a specific path from s to t using a
representation of the graph as a binary tree with S-components. Let R0

be the initially given policy ruleset, and N0 the root of a binary tree T0

representing the series-parallel network graph. Each node N of the binary
tree will be labelled with a triplet 〈R′

, F
′
, R〉, where:

R
′ is the remaining rules to place in next switches.

F
′ represents the PotentialFwds set computed from R0 \R

′ .

R is the subset of rules from R0 occurring in the subtree rooted at
N .

The obtained labeling can be interpreted as a solution to the distribu-
tion problem. We define the solution affected to a node n in T0 to be the
label of the subtree rooted at n.

If node N corresponds to an S-component, the field N.switches in
Algo. 6 is by definition the sequence of switches in the S-component minus
the first one if that S-component is in series composition with a previous
one.

Algo. 6 has as parameters a node of T0, a set of rules R ⊆ R0, a set
of forward rules F . In the main program the recursive procedure Algo. 6
is called with N equal to the root of T0, F empty, R equal to R0. This
algorithm terminates successfully when at the end the first field R′ of

78

Algorithm 6 DecGraph(N,R, F)
Input: N , node in T0; R, set of rules;
F , set of forward rules to be installed in the following switches.
Output: label of N

1: if N.isS-Component then
2: 〈R′

, F
′
, R〉 ← DecPath(R,N.switches, F) .refer to Algo. 5

3: return 〈R′
, F

′
, R〉

4: else if N.isSeries then
5: 〈R′

, F
′
, leftR〉 ← DecGraph(N.leftChild,R, F)

6: 〈R′′
, F

′′
, rightR〉 ← DecGraph(N.rightChild,R

′
, F

′)
7: return 〈R′′

, F
′′
, leftR ∪ rightR〉

8: else if N.isParallel then
9: 〈R′

, F
′
, leftR〉 ← DecGraph(N.leftChild,R, F)

10: 〈R′′
, F

′′
, rightR〉 ← DecGraph(N.rightChild,R, F)

11: while leftR 6= rightR do
12: if |leftR| < |rightR| then
13: 〈R′′

, F
′′
, rightR〉 ← DecGraph(N.rightChild, leftR, F)

14: else
15: 〈R′

, F
′
, leftR〉 ← DecGraph(N.leftChild, rightR, F)

16: end if
17: end while
18: return 〈R′

, F
′
, leftR〉 .equal to 〈R′′

, F
′′
, rightR〉

19: end if

the root label is empty: this ensures that all rules have been distributed
successfully and no rule has been left out.

This algorithm can be applied with other decomposition algorithms
like those defined in [86; 89; 90] just by modifying the DecPath function
that is called at Line 2. Note that, in our approach and unlike One Big
Switch (OBS) [86] technique, we do not create several rule table partitions
for each path traversing an intersection switch. Instead, a packet will be
processed by the same rule table at an intersection, regardless of the path
it came from. This also facilitates policy updating, as the places where
some specific rules occur are easier to localize.

Proof of correctness for Algo. 6

By induction, we conclude that if we can build a solution for a graph
obtained by eliminating Braess graphs successively, we can construct a
solution for the initial st-dag. After applying Algo. 6 on the syntax tree
of a series-parallel graph, the relations between the labels in each node
are partially determined by which rule sets are placed in subtrees with a
parallel node root.

79

S
P

S
P

Figure 5.5: Dependency path between subtrees’ labels.

In Fig. 5.5, the children of the parallel node contain the same subset
of rules from R0, so they share a common label with their parent, which
is denoted by their red color. The simplified tree at the right is the mini-
mal one necessary to establish the final labels. As stated, a subgraph G2

labelling depends on the label affected to the subgraph G1 whose switches
lead to G1’s source. These labellings must summarize a correct LPM rule
distribution. Assuming that DecPath procedure in Alg. 6 implements
the LPM semantics of the initial rule set R0 in the path directly given,
we show it is also true for the series composition of path components on
which DecPath is called:

Lemma 1. Switches in a given path enforce a correct LPM policy.

Proof: The first S-component encountered in a prefix traversal is con-
stituted of the first switches in the path. Applying DecPath on this
component will ensure that LPM is respected among its switches. The
recursive calls of Algo. 6 follow the prefix order, so the precedence relation
between switches is maintained. Lines 4-7 of Algo. 6 maintain the coher-
ence between calls and resulting labellings under a series node. If N with
label 〈R′, F ′, R〉 has children, then for the left and right ones T1 and T2, if
T1.L = 〈R′

1, F
′
1, R1〉 then T2.L = 〈R′

2, F
′
2, R2〉 with:

– R′ = R′
2 = R′

1 \R2

– F ′ = F ′
2 = MaxFwdMerge(R0 \R′

2)

– R2 ∈ R′
1

– R = R1 ∪R2

With this precedence and forward relations, a series node’s right child
will receive the appropriate forward rules and rules from R0 as base for
distribution in its subtree. DecPath is called several times for different
components of a path. The definition of N.switches guarantees that in
a series composition, the common vertex between two components is not
filled twice. With a path s1 → s2 → s3, DecPath could then be called
on s1 → s2 then s3, so s2 would not be filled again. Consequently, the
result of successive DecPath calls on path components is equal to the one
obtained with a single call on the whole path. This path contains a rule
set decomposed with respect to the intended LPM policy.

80

When a packet has the option to take different paths towards a network
location, each of these paths must be equivalent, filtering-wise. Algo. 6
must terminate correctly in this case.

Lemma 2. Switches in parallel paths enforce the same filtering policy.

Proof: Lines 8-18 ensure that a parallel node will share the same labelling
as its two children, i.e its children subtrees will contain the same rules from
R0. Algo. 6 always terminates, because of the process of decomposition
trial and error. After decomposing a part of R0 in the two parallel sub-
graphs represented by T1 and T2, we obtain R1 and R2 respectively fitting
in those subgraphs. Three cases can occur:

• R1 is identical to R2.

• R1 or R2 has smaller size than the other.

• R1 and R2 are different rule sets of the same size.

These last two cases indicate a decomposition mismatch. To correct
it, Algo. 6 iteratively tries to propagate the smallest rule set resulting
from T1 or T2. If R1 has to be propagated on T2, R′

1 ⊆ R1 will fit in T2.
Because of this inclusion relation, R′

1 can fit in T1 and Algo. 6 returns it
once propagated. The process is symmetrical if R2 has to be propagated
on T1. Thus, Algo. 6 terminates after having ensured that two parallel
subgraphs enforce the same filtering policy. Only one set of forward rules
can be used at the common sink of these subgraphs.

5.2.2 Algorithmic Complexity

The labels computed by Algo. 6 when it is successful, defines a solution
to the rule distribution problem. The labels are obtained after exploring
the entire graph, and the tree representation allows for single processing
of edges shared by several paths. Several trial and error steps can be
necessary for rule propagation, but the process is substantially faster in
many cases since only one propagation try has to be performed under a
parallel node. Such cases include paths with switches of identical capacities
or rulesets in which action conflicts cannot happen, for example, when the
rules sets are blacklists. In this way, given a graph G = (V,E), Algo. 6
computes a ruleset decomposition and distribution in O(p|E|) time where
p is the number of parallel nodes. Since the cost for distributing rules on
a switch is O(nw), we have an overall complexity of O(p|E|nw).

5.2.3 Generalization to St-Dags

In Subsection 5.2, we discussed how to distribute rulesets in series-parallel
graph. Here, we show that this technique can be applied to arbitrary two-
terminal directed acyclic graphs or st-dags. Duffin [129] proved that a

81

two-terminal st-dag is series-parallel if and only if it does not contain any
subgraph homeomorphic to the Braess graph as shown in Fig. 5.6.

S T

A

B

Figure 5.6: The Braess graph.

We note in such a graph that having the same rulesets in vertices A,
and B still leads to a correct distribution: a packet traveling from A to B
would be applied the same rule and action a second time. To generalize
the distribution mechanism, A and B could be considered as one vertex,
thus eliminating a Braess graph to obtain a series-parallel one. We then
merge them as illustrated in Fig. 5.7.

S T

A

B

S AB T

Figure 5.7: Merging of vertices A and B to eliminate Braess components.

Let G = (V,E) the initial network graph, which is not series-parallel.
Let a Braess component of G be a subgraph whose vertices are labeled as
in Fig. 5.6. Let us define the set Inter to be the set of vertices occurring
on any path from A to B including A and B. We perform a merge on A
and B to obtain the graph G′ = (V ′, E′) defined as follows:

• V ′: (V \ Inter) ∪ {AB} with
capacity(AB) = min(capacity(A), capacity(B))

• E′:

– if x→ y ∈ E ∧ x = A ∧ y /∈ Inter then AB → y ∈ E′

– if x→ y ∈ E ∧ x = B then AB → y ∈ E′

– if x→ y ∈ E ∧ y ∈ {A,B} then x→ AB ∈ E′

– if x→ y ∈ E ∧ {x, y} ∩ Inter = ∅ then x→ y ∈ E′

Iterating the merging operation and once every Braess component has
been eliminated, we apply our distribution algorithms on the resulting
series-parallel graph. The decomposition and distribution are valid as
shown by:

82

Lemma 3. If we have a solution for the distribution problem of the initial
ruleset R0 in G′, then we can construct a solution for the graph G.

Proof: Leaving empty the intermediate vertices between A and B, we
know exactly where the rules will be located. As AB contains a ruleset
that can fit in both A and B by definition, this ruleset is duplicated in A
and B. The solution in G′ is supposed valid, so precedence and intersection
constraints at AB are satisfied. Thus, paths S → · · · → A and S → · · · →
B contain the same rules from R0 and the potentially necessary forward
ruleset Fw is the same just after A and B. For the same reason, it is also
true that paths A → · · · → T and B → · · · → T contain the same rules
from R0 and generate the same forward rules. Distribution constraints are
then satisfied for paths S → · · · → T and the solution affected to G is
valid.

Series-Parallel Network Derivation by Braess Subgraph Elimina-
tion

We show with an example how merging nodes in a network can transform
any st-dag graph into a series-parallel graph. We consider a real network
topology from [132] with 19 nodes, each representing a town, as shown in
Fig. 5.8. Our objective is to distribute rules over this network so that the
processing of any packet traversing any path from Frankfurt to Budapest
will end with the same result. We added a capacity for each switch as
shown in Fig. 5.8. Before running our distribution and decomposition
algorithm, we need to eliminate any Braess subgraph to transform the
graph into a series-parallel one as described in before. This can be done
by merging some nodes. First, Bratislava and Vienna are replaced by one
node BV . Then Salzburg and Villach are merged to generate SV .

Frankfurt

Budapest

Bratislava

Vienna

Villach

Salzburg

Verona

Figure 5.8: Memorex network.

83

Fig. 5.9 shows the final result of our transformation. Algo 6 can be
applied to the binary tree of the derived series-parallel graph. After the
decomposition is performed, nodes Salzburg and Villach get the same set
of rules. Similarly, Bratislava and Vienna are assigned the same set of
rules. In Fig. 5.10 we show an example of applying the distribution algo-

Frankfurt

Budapest

SV (Salzburg-
Villach)

BV (Bratislava-
Vienna)

Verona

Figure 5.9: Series-parallel approximation of Memorex network.

rithm Algo. 6 to the series-parallel approximation of Memorex network.
In this example, a prioritized list is given as input, and the decompo-
sition algorithm does not need to generate forward rules. Each node i
represents a switch with capacity Capai. Node 11 is a combination of
two nodes from the initial network. The capacity of this node is taken
to be the minimal capacity of the two nodes that have been merged since
the solution for the initial network will be obtained by lifting the merged
node solution to these nodes. The same is true for node 16. Capai = 2
for all i ∈ {1, 4, 5, 6, 7, 8, 9, 10, 16, 17} and 1 otherwise. Fig5.10 shows the

{3}

{3,4}

{5,6}

{7,8}

{7,8}

{9,10}

{9} {11,12} {13,14}{10}

{10}

{4}

{ } { }

{ }

{ }

1

2 3

4

5

6 7

8

9 10

11

12 14

13

15 16 17{1,2}

Figure 5.10: Distribution algorithm on the series-parallel approximation
of Memorex network

Distribution of rules with Algo. 6 on the series-parallel approximation of
Memorex network with a simple decomposition algorithm without forward

84

rules. The first component has two parallel paths 1−2−3−4 and 1−4−5.
The algorithm starts by computing a solution for each path (Lines 9-10).
Since the two solutions are equal, one will be returned. Then the algo-
rithm processes the next component with the set of rules not stored in the
first component (Lines 5-6). Some switches like 9 and 10 have an empty
set. The algorithm computes a solution for Path 8-9 with 3 rules, then for
the parallel path 8− 9− 10− 11, which has 7 rules. According to Algo. 6
(Lines 11-18), the solution with the smaller set of rules should be projected
to the other parallel paths of the component. In this case, Switches 9 and
10 remain empty.

5.3 Two-Tier Distribution Approach

In our first approach described in Section 4.3, we restrict the rules to be
single field filtering rules, mainly to reduce the forward rules overhead
for conflicting actions. Although this technique is helpful in blacklisting
policies, it is limited and inefficient when decomposing and distributing
complex policies that involve filtering rules with IPs, ports fields, and
overlapping.

5.3.1 Distribution of Multi-Fields Rulesets

If we consider, for example, both source and destination IP fields, we can
get a significant overhead in terms of forwarding rules when using our
previous decomposition technique. As shown in Fig. 5.11, since for each
rule added in Switch 1, we need to generate a forward rule for it in Switch
2. Unless we find mergeable prefixes on the second filtering field, we have
to generate as many rules as we have removed from the initial ruleset,
which limits the decomposition interest.

It is nevertheless feasible to apply this approach to several fields when
the overlapping rules reside in the same switches or when we are deal-
ing with a blacklist. With all actions of rules being "Deny", all packets
matching some rules are stopped, and the other are captured by the de-
fault rule to be tested in the next switch, so non-default forward rules are
unnecessary in a blacklist case. In [90], the authors propose a technique
to deactivate rule matching on the following switches when a packet is
matched in the current switch. However, their technique requires a non-
standard modification on the packet structure by adding an additional
bit.

5.3.2 Multi-level Distribution

We believe a more practical solution could be used in real-world environ-
ments and avoid modifications to the packet structure. To achieve this, we

85

Switch 1 Switch 2

Rule set :

src dst Action
00** 1111 A1
00** 0000 A2
0*** 0*** A3

src dst Action
00** 1111 A1
00** 0000 A2
**** **** Forward

src dst Action
00** 1111 Forward
00** 0000 Forward
0*** 0*** A3

Figure 5.11: A counter-productive example of forward rules generation
applying Section 4.3 approach to multi-field filtering rules.

propose a novel approach with nearly zero rule space overhead in switch
tables.

When distributing a ruleset in a network, a packet coming from the
source switch needs to travel along a path towards the destination. Only
a single filtering action needs to be applied to a given packet. Thus, if
a packet is accepted in a switch, all the following switches must transfer
the packet to the destination since a match with a higher priority rule has
already been applied. In our first approach, the forward rules mechanism
allows us to do that. However, it increases the total number of rules in
the switches. To avoid this overhead problem and allow the distribution of
multi-fields ruleset, we use two levels of switches: Forward Switches (FoS)
and Filtering Switches (FiS) as shown in Fig. 5.12.

Forward Switches

Filtering Switches

Figure 5.12: Network topology with multi-levels switches using FoS and
FiS.

86

All FiS at a distance of 2 or more from the destination are connected to
one FoS, as it would be impractical to connect all switches to the destina-
tion in practice. The role of an FoS is to transmit a packet directly to the
destination to skip the next FiS on the path, reducing the path length and
network latency. For the sake of simplicity, we use three types of actions
in a rule: "Forward", "Deny" and "Default forward". If the selected action
is "Forward", the packet is sent to an FoS, and if the action is "Deny",
the packet is dropped. The default forward action sends the packet to the
following filtering switch.

By using two types of switches, in this second approach, we eliminate
the need for non-default forward rules, which reduces the total number
of rules used over a path, and accelerates the processing time of each
packet by forwarding it to the destination directly using FoS. A practical
requirement for this technique is to rely on high throughput FoS. This
technique is applicable in any priority strategy, assuming that every switch
which enforces the network policy is linked to the destination, directly or
through FoS.
A suitable networking architecture for our approach could be the Flat-
tree structure [133], used in data centers. In a flat-tree architecture, we
can perform matching tests over successive switches using neighbor-to-
neighbor connections and benefit from a multi-tier topology. Indeed, once
a packet matches a rule, it can be forwarded directly to the top-level
switch instead of going through the other filtering switches. To distribute
the rules on a network graph, the approach described in Section 5.2 can
be applied without forward rules. Therefore the decomposition algorithm
can be simplified since the F ′ component of node label of the binary tree
in Algo. 6 can be eliminated.

5.4 Evaluation of Two-Tier Approach

5.4.1 Experimental Setup

In our evaluation of the two-tier approach presented before, we first con-
sider a single path topology and then a tree-based topology with one source
and different destinations. In those tests, we use 12 rulesets generated from
ClassBench [128] and available in [127]. In this evaluation, all switches
have the same capacity (tables size), and the minimal capacity required
to find a rules placement solution by our distribution algorithm is defined
as Cmin. Mininet is used to build the topology, while all switches are
connected to a RYU controller. The controller sends rules to all switches
before the experiments and does not affect the results shown below. In
each scenario, the bandwidth and the latency are computed by Qperf.
Each experiment is launched 10 times on a desktop machine with Intel
Core i7-9700 3.00-GHz CPU, 32 GB of RAM, and running Ubuntu 18.04

87

LTS.
Comparisons are made with three topologies, as shown in Fig. 5.13.

Scenario 1 has only one FoS switch shared by all paths between source
and destination nodes. In Scenario 2, each path will have its own FoS
switch. Finally, in Scenario 3, there are no FoS at all. The latter Scenario
aims to simulate other approaches like OBS [86] where a packet needs to
traverse all switches to reach the destination node.

path for a matched packet

FiS

FoS

Scenario 1 :

Scenario 2 :

Scenario 3 :

Figure 5.13: The three scenarios used in the experiments.

5.4.2 Overhead

Our two-tier approach for multi-field rulesets does not introduce rule space
overhead except for the extra default rule in each switch and provides re-

88

sults similar to the OneBit [90] approach. However, our approach offers
low rule space overhead. It preserves packets structure without introduc-
ing extra bits and ensures in a stateless way that packets can perform a
network traversal without being matched.

Table 5.1: Values of Cmin for different approaches on 12 rulesets with a
single path of 10 switches.

Palette OBS ONEBIT TWO-TIER
rulesets Size Cmin Cmin Cmin Cmin

acl1 9928 2480 1030 997 994
acl2 7433 2308 1214 746 745
acl3 9149 3622 2687 919 916
acl4 8059 2870 1706 809 807
acl5 9072 2265 912 910 909
fw1 8902 3776 2423 891 891
fw2 9968 4308 3688 997 998
fw3 8029 3877 2818 804 804
fw4 2633 1196 800 268 265
fw5 8136 2651 1780 814 815
ipc1 8338 2260 1088 837 835
ipc2 10000 4348 2406 1002 1001

Table 5.1 shows the different values of Cmin obtained from [90], in ad-
dition to our two-tier approach results on the same rulesets with a single
path of 10 switches topology. Our approach, similar to OneBit divides all
rules over the path of 10 switches with an equivalent number of rules in
each switch. In this case, each switch will be full. The only extra cost will
be one default rule by switch. On the contrary, using Palette or OBS, for
example, and a set of 9968 rules such as fw2, the value of Cmin is around
4000. In this case, the number of used switches belonging to the path will
be low, but these approaches introduce the cost of using switches with
higher capacity and higher overhead because of rules duplication, which
affects the performance of the matching rule process along the network.
Our two-tier approach can be used with arbitrary rules priority criterion
and handle rulesets with multiple filtering fields. In addition, the forward-
ing switches (FoS) will decrease the time needed for a packet to reach its
destination since an FoS does not perform any rule matching test. Ad-
ditionally, since FoS is a straightforward forwarding device, the cost of
adding a few FoS to the network remains reasonable.

5.4.3 Bandwidth and Latency

We consider a single path topology to study the effect of path length on
bandwidth and latency. The size of the topology varies from 100 to 1000

89

switches.

100 200 400 600 800 1000
Path length

0

200

400

600

800

1000

1200

1400

1600

La
te

nc
y

(u
s)

Scenario
s1
s2
s3

Figure 5.14: The latency on different single path topologies for each sce-
nario.

Fig. 5.14- shows the latency computed for each topology on each sce-
nario. The time needed for a packet to traverse a network increases with
the topology length. Scenario 3 always has a higher latency than Scenarios
1 and 2 since a packet needs to traverse the entire network to reach the
destination. The difference in latency between the three scenarios becomes
noticeable, primarily starting from the 400 single switches topology. This
is why we compute the packet loss on each one of the six topologies. The
result in Fig. 5.16 shows that the proportion of packet loss in a topol-
ogy with 200 switches or less is at most 6% in Scenario 3 and virtually
non-existent in Scenarios 1 and 2. Beyond 200 switches, the differences in
packet loss percentage start to appear, which explains why the difference
in latency for the three scenarios is higher beyond a path length of more
than 200 switches. Fig. 5.15 shows the bandwidth for each scenario on
each topology. When the path length increases, the bandwidth decreases
due to the added packet loss.

90

100 200 400 600 800 1000
Path length

0

50

100

150

200

250

300

350

400
Ba

nd
wi

dt
h

(M
b/

s)

Scenario
s1
s2
s3

Figure 5.15: The bandwidth on different single path topologies for each
scenario.

5.4.4 Multiple Destinations

In this subsection, we run several experiments on two topologies with one
source and multiple destinations. The total number of switches in the first
topology is 775, while the total is 774 switches in the second one. The size
of the message sent from the source to the destination varies between 1
KB up to 1024 KB.

Fig. 5.17-(a) shows that the latency increases with the message size.
This was expected since a larger message needs more time to traverse a
path. In scenario 3, the path taken by a message to traverse is longer.
Thus the latency is higher than scenarios 1 and 2.

In Fig. 5.17-(b), we observe that the bandwidth in scenarios 1 and 2
is always higher than scenario 3 regardless of the message size. This is
because a smaller latency means that more individual packets can be sent
from one point to another in a fixed time interval. With scenario 3, the
highest latency and lowest bandwidth are obtained.

With 200 switches in a single path, scenarios 1 and 2 have around
10 to 15% latency and bandwidth improvements compared to scenario 3
due to fewer packet loss as shown in Fig. 5.16. Our second simulation is
performed on a topology with longer paths than the first one. Each one of

91

100 200 300 400 500 600
Path length

0

10

20

30

40

50

60

70
Pa

ck
et

 L
os

s (
%

)
Scenario

s1
s2
s3

Figure 5.16: Percentage of packet loss on different scenarios.

the five paths contains 400 switches. We compute the bandwidth and the
latency for the same configuration as in previous tests. Fig. 5.18-(a) shows
the latency on the updated topology. The difference between scenarios
1,2, and scenario 3 is more than 30% in favor of the former on all different
message sizes. Similarly, in Fig. 5.18-(b), the bandwidth of scenarios 1 and
2 is much higher than scenario 3 in the second topology. The difference
in bandwidth also exceeds 30% here, our approach benefiting from the
widening gap in packet loss on a path length of 400 switches. Regarding
scenarios 1 and 2, the bandwidth loss worsens in similar proportions with
the path’s size as shown in Fig. 5.17-(b) and Fig. 5.18-(b). This is to be
expected, as these scenarios introduce almost identical packet loss as in
Fig. 5.16.

Our experiments show that the two-tier strategy minimizes the latency
and increases the bandwidth compared to approaches where all switches
have to be traversed between source and destination. This approach can be
fruitful in other scenarios, where we can introduce several FoS, each one
being dedicated to a specific application (VOIP, streaming, etc.). This
strategy can also be used to prioritize a flow based on its importance or
to prioritize some security applications by using FoS with an adequate
security level for each type of flow.

92

1 2 4 8 16 32 64 128 256 512 1024
Msg size

0

1000

2000

3000

4000

5000

6000

7000
La

te
nc

y
(u

s)
Scenario

s1
s2
s3

(a)

1 2 4 8 16 32 64 128 256 512 1024
Msg size

0

100

200

300

400

500

Ba
nd

wi
dt

h
(M

b/
s)

Scenario
s1
s2
s3

(b)

Figure 5.17: The latency and bandwidth using a topology with path
lengths equal to 200 switches.

93

1 2 4 8 16 32 64 128 256 512 1024
Msg size

0

2500

5000

7500

10000

12500

15000

17500

20000
La

te
nc

y
(u

s)

Scenario
s1
s2
s3

(a)

1 2 4 8 16 32 64 128 256 512 1024
Msg size

0

100

200

300

400

500

600

Ba
nd

wi
dt

h
(M

b/
s)

Scenario
s1
s2
s3

(b)

Figure 5.18: The latency and bandwidth using a topology with path
lengths equal to 400 switches.

94

5.5 Rulesets Update Strategy

This section will introduce our update strategy to handle changes in the
initial ruleset, i.e., adding, removing, or modifying a rule. A modification
can be done to maintain the topology up to date, add more functionality,
improve performance, add more links and paths to the network, or en-
able/block a specific flow. Updating a network can be done by adding or
removing hardware equipment like switches and routers or updating the
data like ACLs or forwarding rules inside existing equipment.

Security policies are constantly evolving and modifying the behavior to
adopt towards some destination or origin addresses. An update needs to be
deployed quickly before any security breach appears. Blocking suspicious
traffic or routing the traffic to a firewall is a way to avoid a network
policy violation. Implementing forward rules can be challenging, as it
creates dependencies between switches. Any error in an R rule action can
be reflected on all forward rules linked to R and can block most traffic,
making the following switches useless.

The example in Fig. 5.19 shows how blocking a malicious traffic from IP
address 192.168.100.1 will affect rules in next switches where forward rules
had been installed before. Those rules need to be deleted since they are
redundant. Deleting rules from switches minimize the consumed memory,
giving space for future rules addition.

192.168.100.1

Internet

192.168.100.1 accept

192.168.100.1 fw

192.168.100.1

Internet

192.168.100.1 deny

192.168.100.1 fw

192.168.100.1 fw

192.168.100.1 fw

Figure 5.19: Blocking a malicious traffic from already allowed source.

Fig. 5.20 shows us how not updating a network after denying a host
can lead to a security breach where an attacker can use old rules stored in
switches.

The two examples show that a modification may affect all the network
and must be handled carefully. In our work, we will focus on updating rules
in series-parallel networks. In this type of network, a rule modification will
affect all parallel paths previously enforced.

In a switch, rules are stored in a table and matched according to their
priorities (e.g., given by their position in the table). In this case, adding,
removing, or modifying a rule can affect all rules below the affected one and

95

Internet

192.168.100.1 fw

192.168.100.1 fw

192.168.100.1

Internet

192.168.100.1 fw

192.168.100.1 fw

192.168.100.1 fw

192.168.100.1 fw

192.168.100.1

Internet

192.168.100.1 fw

192.168.100.1 fw

192.168.100.1 fw

user leave

Figure 5.20: Illustration of malicious host gaining network access by using
initially installed rules.

occur in the following switches. Some approaches like OBS [86] introduce
forward rules in switches to represent rules added in previous switches, so
a packet can only be applied one action and then forwarded to the desti-
nation. However, an update can then change the semantics of the filtering
policy and create a security issue by allowing unwanted traffic to traverse
the network. In this case, the administrator needs to run the decomposi-
tion and distribution algorithm from scratch on the entire network, which
is costly, especially if updates are frequent. In our approach, we improve
the performance of the update phase by only modifying partially the net-
work rule tables.

5.5.1 Update Strategy With Generated Forward Rules

The easiest way to handle an update would be to re-run our distribution
algorithm Algo 6 with the new ruleset. This solution is not efficient since
many switches might not be affected by the modifications in the ruleset.
Our approach permits that only switches concerned by adding, removing,
or modifying a rule are considered. As a consequence, the time needed
to perform the update is generally shorter. Moreover, our distribution
algorithm can be applied almost directly by carefully selecting the affected
subnetwork and rules as inputs.

Let Ri be a rule in the ruleset with priority i. We assume that the
priority of Ri is higher than Rj if i < j. Let Sj represent Switch j. In the
distribution phase, the controller maintains the locations where each rule
has been added to the network. This information is specified by a couple

96

(R,S) where R is a rule and S is the set of switches where R is installed.
To add a new rule R in a ruleset D, one must ensure that this rule will

be installed on every path leading from the source node to the destination.
First, we need to determine the set of switches where R needs to be in-
stalled. Based on the priority of R, we can determine the position of this
rule in the distributed ruleset. If R needs to be installed between rules
Rk and Rk+1, and based on (Rk,S), the set of switches that may be af-
fected by the update are the elements of S and all the switches that can
be reached from them. S will be called affect set and denoted by ASet.
In series-parallel graphs, each series component has one source and one
destination node. To optimize the updating process, we only need to start
the decomposition algorithm on the source switch of the minimal series
component that contains ASet.

For instance, let ASet = {Sk, Sm, Sq} be the affect set when adding a
rule Rk as shown in Fig. 5.21 and let Ci be the smallest series component
that contains ASet.

Si

Sj Sk

Sm

Sn Sq

Ci

Figure 5.21: The smallest component Ci containing ASet.

We can find Ci as shown in Fig. 5.22 by running a preorder search in
the binary tree representation of the network till we find the first node
rooting a subtree that contains ASet. From this node, we can extract the
first switch Si, which will be a common switch of all paths from the source
to the destination of Ci as shown in Fig. 5.21. Algo. 6 will be applied only
to the (maximal) subnetwork with source Si. We can now compute D

′ ,
which contains the subset of D that can be encountered from the first rule
inside Si plus the new rule R, which is placed in the correct location based
on its priority. After computing Ci and D

′ , we run Algo. 6 to decompose
and distribute the updated ruleset over the affected part of the network.

97

The algorithm will take as the first argument (N) the parent of Ci in the
binary tree to decompose and distribute D

′ over all components starting
from Ci to the last one.

s

Ci-1 s

sCi

sCi+1

 { ..., Sk ,Sm ,Sq ,...}

 { ..., Sk ,Sm ,Sq ,...}

 { ..., Sk ,Sm ,Sq ,...}

Figure 5.22: Search the binary tree of the topology for Ci.

When deleting a rule Ri, its action field determines the update oper-
ations. For example, if Ri has a "Deny" action, no forward rule has been
generated for it, so removing Ri from its switches is the only necessary
operation.

When Ri has a "Forward" action, we need to delete every obsolete
forward rule generated for Ri. The packets previously matching Ri are
then handled by the rule Rj , Rj >: Ri in the original ruleset excluding
generated forward rules. Let Rk be the closest parent of Ri being an
accepting rule. Two cases are possible:

• We have Rk >: Ri and there are no additional forward rules with
Ri’s prefix (as they would be unnecessary), so we delete Ri and stop
there.

• Some "Deny" rules D = {d | Rk > d > Ri}, Rj ∈ D exist. They
create conflicts with the rules A = {a | Ri >: a ∧ Action(a) =
”Forward”}. A contains several elements if Ri is a single rule sum-
marising higher-priority accepting rules as shown in Fig. 4.4. Let
the generated rules F = {f | Action(f) = ”Forward” ∧ (Pref(f) =

98

Pref(Ri)∨Rk > f > Ri)}. If A is empty, every member of F is obso-
lete and must be removed from its switch. If A has only one element
a, then a must replace every rule of F . Finally, when A contains
several elements, each of them embodies a new forward rule. Thus,
these elements of A must be handled via the adding strategy after
removing the rules belonging to F from their respective switches.

We note that when no new forward rules must be added, the network
is only affected between the switches, respectively containing Ri and Rk.

The modification of Ri’s action follows a similar process. The directly
related forward rules must be removed when switching from "Forward" to
"Drop". Switching from "Drop" to "Forward" is analog to adding a rule
because of the need to create forward rules, so the adding strategy will be
applied. If the prefix of Ri changes, Ri would be deleted and then added
with the new prefix.

5.5.2 Update Strategy With Two-Tier Approach

In the two-tier approach presented before, no forward rules are being gen-
erated. This means that the ruleset in Si does not have dependency re-
lations with the previous ones. This is particularly helpful in our update
strategy to reduce the time needed to add, update or remove a rule from
the ruleset.

If all the switches in ASet have some space left when adding a new
rule, the new rule can be added to these switches. In that case, there is no
need to apply Algo. 6. If there is a switch in ASet that cannot allocate
space to this new rule, then one needs to call for Algo. 6.

When a rule modification occur, if the priority i of a rule R has been
changed to j, and if i > j, ASet will be computed from the new position
of R, else if i < j, ASet start from the initial position of R. In these two
cases Algo. 6 must be used. This is because changing the priority of R
will affect the order of all rules in the ruleset. Finally, removing a rule
from the ruleset does not affect rules in other switches since we do not use
forward rules. It can be done without the need to apply Algo. 6.

5.5.3 Evaluation

We evaluate the performance of the update strategy on series-parallel
graphs while adding a new rule. The graphs are generated by varying
the number of series components, the number of parallel paths in a com-
ponent, the number of switches in a path, and the capacity of each switch.
In the experiments, we compare the performance of our update approach,
which relies on Algo. 6, with two strategies: Strategy 1 explores the whole

99

network, while Strategy 2 explores only the part of the network affected
by the update.

Rules added in switches are generated with ClassBench [128]. Each
experiment is launched 50 times on each strategy with the same added rule
and a different random priority. Experiments are conducted on a machine
with AMD Ryzen 5 3600XT 3.79-GHz CPU, 16 GB of RAM, and running
Windows 10 Pro. In our first experiment, the number of components in
series varies from 10 to 50 with a set of 10k rules. Fig. 5.23 shows that
Strategy 2 is always better than Strategy 1 with an update time reduction
of up to 90% in some cases. When the priority of a new rule is low, the
number of affected components is small, as well as the input binary tree
of Algo. 6, resulting in a fast update.

10 20 30 40 50
Component size

0

500

1000

1500

2000

Up
da

te
 ti

m
e

(m
s)

Strategy
s1
s2

Figure 5.23: Update time using different series-parallel topologies size.

Fig. 5.24 shows the update time between respectively the two strategies
of the update strategies while increasing the number of parallel paths in
components. When the number of parallel paths increases, so does the size
of the binary tree, which affects the time needed by the update algorithm.
Since our approach uses a smaller binary tree, the update time will be
smaller than Strategy 1.

In Fig. 5.25 we show the effect of the capacity of switches varying
from 20 to 50 on the update time for each strategy. This experiment uses a

100

3 6 9 12 15 18 21
Parallel path number

0

200

400

600

800

1000

Up
da

te
 ti

m
e

(m
s)

s1
s2

Figure 5.24: Update time of the two update strategies while increasing
parallel path number.

topology with 30 components and three parallel paths, each containing five
switches. When the capacity of switches increases, the time of the update
also increases. Moreover, we rely on Algo. 6 to perform the changes in
the switch tables. However, this algorithm uses a decomposition algorithm
(Line 2 in Algo. 6) that needs more time to run if switches store more
rules in their tables. As Strategy 1 recomputes every rule location, the
time for the update will be higher than Strategy 2.

Updating a ruleset may require to remove some rule r. In the FoS
approach, there will be no forward rules representing r. In this case, we
only need to remove r from all rule tables in ASet. In the other approaches
with forward rules, we need to apply our update strategy shown above on
all affected parts of the network.

5.5.4 Network Topology Update

An update of the network topology can be done by adding or removing
a switch in the network. Assuming that the modification preserves the
series-parallel graph nature of the network, it triggers an update of the
binary tree linked to that topology. A simple updating method would be
to apply Algo. 6 with the same ruleset on the new binary tree. However,

101

20 30 40 50
Switch capacity

0

500

1000

1500

2000

Up
da

te
 ti

m
e

(m
s)

Strategy
s1
s2

Figure 5.25: Update time of the two update strategies while increasing
switch capacity.

with the same strategy as in subsection 5.5.1, we need only to apply the
distribution algorithm to the smallest component where the modification
occurs, and with a new ruleset not containing the rules stored in switches
occurring before the first switch of that component.

5.6 Summary

In this chapter, we start by introducing our rule distribution algorithm
for parallel series graphs. This algorithm handles any rules strategy and
can work with existing decomposition algorithms like OBS [86]. Next,
we generalize our distribution approach to work with all st-dags graphs,
and we test our techniques on a real network called memorex. We then
introduce a TWO-TIER approach for rule decomposition and distribution
that uses two types of switches and does not generate additional rules.
This approach is complementary to our distribution algorithm. Both can
be used together to distribute rules over any st-dags without any additional
rules. Next, we evaluate the performance of our TWO-TIER approach and
compare the result with existing techniques. Since we do not generate or
duplicate rules, the overhead of our approach is close to null. Furthermore,

102

we introduce an update strategy for series-parallel graphs that rely on the
network’s affected part by an update instead of the whole network. Finally,
we evaluate the performance of our update technique using our distribution
algorithm. The results show a reduction of up to 90% in update time.

103

104

Chapter 6

General Conclusion

With the growth of users, connected devices, and data sizes on the inter-
net, efficient rules management is necessary. Incorrect or neglected man-
agement can cause millions of dollars in loss, leading to a security breach
or delay sensitive information. In addition, this growth leads to increased
demand for resources like memory capacity, process power, electricity, etc.,
for network devices. Moreover, the number of entries in network devices
has been increasing rapidly. As seen in Fig. 1.1, the number of entries has
reached 1 million in BGP tables and keeps growing.

For an network management process, Software-Defined networks have
been proposed. This technique decouples the control layer from the data
layer and offers a global view of the network for easy management. How-
ever, the increase in the number of entries makes the classification process
a bottleneck. Moreover, some SDN switches rely on TCAMs memory to
store rules. Although TCAMs permit a high-speed classification process,
they are expensive and suffer from high power consumption leading to
heat problems affecting the performance. On the other side, the controller
decides the position of rules for any new flow of data based on rulesets
already defined. Minimizing the size of these rule sets will accelerate the
classification process and make rule management easier. For that, we need
a new representation for addresses fields. This new encoding has to work
for all types of intervals like port or IP ranges leading to higher compres-
sion in entry tables, blacklists, intrusion detection systems, etc. . .

However, the compression technique cannot always be efficient. For
example, sometimes switch capacity is too small, and the compression ra-
tio is not sufficient. In this case, the set of rules needs to be decomposed
over multiple switches. Then, the compression technique can be applied
to the subset of rules in each of the switches. However, we need first to de-
compose the original set into multiple subsets of rules and distribute them
alongside the network. In addition, and since rules depend on each other,
and the priority plus the order of rules installed in switches play a crucial
role in handling incoming packets, suitable decomposition techniques need

105

to be developed. These techniques have to respect the semantics of the
original set. Many solutions and propositions have been developed in the
literature, but they suffer from high overhead, security concerns, hardware
modification cost, and thus affecting the performance of the classification
process.

The problem of rule distribution, on the other hand, needs to be tack-
led. With the complex topologies nowadays, the position of each switch
can have a significant impact on the rule placement. Switches belonging
to multiple paths have to store the proper rules for each path. However,
with the storage limitation of these devices, suitable techniques have to
be developed to ensure that each rule is installed in the proper position.
These problems can take advantage of the SDN network facilities by im-
plementing solutions on the controller side for an easy global management.

6.1 Achievements

This thesis proposes several contributions to solve the rules management
problem by relying on rules compression and distribution.

State of the art in Chapter 2 showed that the proposed approaches
presented to resolve TCAMs problem could be improved to achieve better
performance. For example, solutions regarding range expansion can benefit
from replacing the standard ternary format with a new representation of
port range.

Double Mask notation for IP addresses and/or ports range allows one
to minimize the number of entries in rulesets. We have developed a linear
algorithm that generates all masks covering a range. We have then showed
by simulations that the Double Mask approach could indeed increase the
compression ratio, especially when the number of exceptions is high. Next,
we have developed a real SDN testbed with an OpenFlow-enabled Zodiac-
FX switch and with a RYU controller. We have implemented Double
Mask in Openflow protocol. We have also extended the matching function
to handle rules with Double Mask. Our experiments show that the extra
cost of matching Double Mask patterns is balanced by the gain in rulesets
size reduction. Moreover, the gain in the controller response time could
be more than 80% with a compression ratio of 83%, leading to faster
installation of new flows in switches.

We have also tackled the rules distribution problem for LPM strategy
for one dimension rulesets. Although we rely on forward rules as previous
approaches, our solution leverages the action field of rules to reduce the
number of required forward rules. For instance, we have observed that
deny rules do not need to be represented in the following switches. If all
rules have the same action field "deny", no forward rules will be generated.
Moreover, if the action field for all rules is "accept", forward rules can be

106

merged in the following switches to reduce the number of generated rules,
also leading to a smaller overhead.

We have then developed a general ruleset distribution algorithm for
series-parallel graphs. We have extended this algorithm to st-dags graph.
In the next step, we have introduced Two-Tier approach for rule distribu-
tion. This simpler approach does not generate any forward rules nor deci-
sion tree, reducing by that the overhead plus the distribution time since.
In simulations the Two-Tier approach has the lowest overhead compared
to the literature and does not modify any packet unlike a close competitor.
The simulations also show that the Two-Tier approach has lower latency
and higher bandwidth than standard approaches, since a packet does not
need to traverse all the networks to the destination. Finally, we introduce
an update strategy that allows one to minimize the modification to the
switches’ memory. The simulations show that the update time can be
reduced by more than 90%.

Table. 6.1 summarizes all developed solutions for the rule distribution
problem with two rule strategy LPM and Priority.

Dimension LPM Priority

1 Apply Algo. 5
with forward rulesSingle

Path >1 N/A (Overlapping rules/
No decision can be made)

Two-Tier

Algo. 6

Either Or1

Algo. 6
+Modified version of Algo. 5

without forwad rules
+Two-TierSt-Dags

>1 N/A (Overlapping rules
/No decision can be made)

OBS/Palette
With forward rules

Two-Tier
Without

forward rules

Table 6.1: Summary of all rule distribution solutions proposed in this
thesis.

6.2 Limitations

A Double Mask rule can both accept and deny addresses with mask1 and
mask2 respectively. If no address is denied, mask2 gets useless, and Double
Mask is reduced to a simple mask. In this case, no compression can be
expected. Moreover, since matching a simple mask is faster than with a
Double Mask, it is simpler to stick to simple masks.

As for our distribution algorithm, we show that we can simplify an

107

st-dag graph to a series-parallel graph up to merging some vertices of the
st-dag graph. However, with some complex topologies where the degree of
nodes is significant, the simplification needs many merging phases. In this
case, the simplified graph will not resemble the initial one, and this entails
a lower quality for the distribution solutions derived from the simplified
graph.

In addition, as seen from Table. 6.1, no satisfying LPM strategy for
multiple dimensions has been developed. This is due to the overlapping
fields in rules. For example, let Rule R1 have a more specific source field
(resp. destination) and Rule R2 with a more specific destination field
(resp. source). In LPM, a packet matches the more specific field each
time. However, in this example, the packet will match one field from each
rule, and no decision can be made.

6.3 Future Work

This thesis opens to more improvements in rule management for software-
defined networks. Furthermore, we can identify multiple research direc-
tions to overcome the limitations of the proposed solutions in this work.

First, we can extend our compression solution with Double Mask to
port ranges and IPv6 addresses since they can also be represented as binary
strings. By changing the length of the string in the input, our algorithm
can quickly generate the corresponding masks. In addition, this repre-
sentation can be enhanced by computing Double Masks for the union of
ranges to achieve a higher level of optimization in routing tables. Our cur-
rent technique compute masks for each of the ranges independently of the
others. However, in some cases, Double Masks can be extended to cover
multiple ranges simultaneously as discussed in Subsection 3.6. In addition,
we can apply our approach alongside other techniques to remove redundant
or shadowed rules. Thus reducing the original ruleset and accelerating the
computation of Double Masks with our algorithm.

Regarding the distribution part of this thesis, we can automatize all
the processes. For instance, we can rely on machine learning techniques
to infer communication patterns and generate accordingly the required
filtering rules to be distributed by our proposed algorithms. Moreover, our
Two-Tier approach can be extended to multiple FoS switches for a specific
application. For example, security applications can rely on switches with
enforced security protocols, while for streaming applications FoS switches
with fewer security requirements are sufficient. In this case, FiS switches
will decide where to forward a matched packet based on the application.

This thesis can be extended by employing (deep) reinforcement learn-
ing for distributing rules. These techniques have been already applied to
multiple network optimisation problems and could be good candidates for

108

rules placement and distribution. Thus using both inference techniques
to mine the required filtering policies from the network behavior and a
reinforcement learning mechanism to enforce such policies will close the
loop of an autonomous filtering function.

109

110

Bibliography

[1] Internet of things (iot) and non-iot active device connec-
tions worldwide from 2010 to 2025. Accessed : 2021-06-15.
[Online]. Available: https://www.statista.com/statistics/1101442/
iot-number-of-connected-devices-worldwide/

[2] Data never sleeps. Accessed : 2021-06-15. [Online]. Available:
https://www.domo.com/solution/data-never-sleeps-6

[3] How much data is generated each day? Accessed : 2021-06-15.
[Online]. Available: https://www.weforum.org/agenda/2019/04/
how-much-data-is-generated-each-day-cf4bddf29f/

[4] The value of a millisecond: Finding the optimal speed
of a trading infrastructure. Accessed : 2021-06-15.
[Online]. Available: https://research.tabbgroup.com/report/
v06-007-value-millisecond-finding-optimal-speed-trading-infrastructure

[5] Cost of a data breach. Accessed : 2021-07-15. [Online]. Available:
https://www.venafi.com/yahoo-cost-of-data-breach

[6] H. Hammouchi, O. Cherqi, G. Mezzour, M. Ghogho, and
M. El Koutbi, “Digging deeper into data breaches: An exploratory
data analysis of hacking breaches over time,” Procedia Computer
Science, vol. 151, pp. 1004–1009, 2019.

[7] A. Niakanlahiji, M. M. Pritom, B.-T. Chu, and E. Al-Shaer, “Pre-
dicting zero-day malicious ip addresses,” 11 2017, pp. 1–6.

[8] The 768k or another internet doomsday? heres how to deal with the
tcam overflow at the 768k boundary. Accessed : 2021-06-22. [Online].
Available: https://www.noction.com/blog/768k-day-512k-tcam

[9] Active bgp entries. Accessed : 2021-06-22. [Online]. Available:
https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%
2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%
20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%
28FIB%29&with=step

111

https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.domo.com/solution/data-never-sleeps-6
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://research.tabbgroup.com/report/v06-007-value-millisecond-finding-optimal-speed-trading-infrastructure
https://research.tabbgroup.com/report/v06-007-value-millisecond-finding-optimal-speed-trading-infrastructure
https://www.venafi.com/yahoo-cost-of-data-breach
https://www.noction.com/blog/768k-day-512k-tcam
https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%28FIB%29&with=step
https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%28FIB%29&with=step
https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%28FIB%29&with=step
https://www.cidr-report.org/cgi-bin/plota?file=%2fvar%2fdata%2fbgp%2fas2.0%2fbgp%2dactive%2etxt&descr=Active%20BGP%20entries%20%28FIB%29&ylabel=Active%20BGP%20entries%20%28FIB%29&with=step

[10] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an opera-
tional ip backbone network,” IEEE/ACM Transactions on Network-
ing, vol. 16, no. 4, pp. 749–762, 2008.

[11] A. Abboud, R. Garcia, A. Lahmadi, M. Rusinowitch, and
A. Bouhoula, “Efficient distribution of security policy filtering rules
in software defined networks,” in 2020 IEEE 19th International Sym-
posium on Network Computing and Applications (NCA), 2020, pp.
1–10.

[12] A. Abboud, R. Garcia, A. Lahmadi, M. Rusinowitch, and
A. Bouhoula, “R2-d2: Filter rule set decomposition and distribution
in software defined networks,” in 2020 16th International Confer-
ence on Network and Service Management (CNSM). IEEE, 2020,
pp. 1–4.

[13] A. Abboud, A. Lahmadi, M. Rusinowitch, M. Couceiro,
A. Bouhoulal, and M. Avadi, “Double mask: An efficient rule en-
coding for software defined networking,” in 2020 23rd Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN),
2020, pp. 186–193.

[14] A. Abboud, A. Lahmadi, M. Rusinowitch, M. Couceiro, and
A. Bouhoula, “Poster: Minimizing range rules for packet filtering
using a double mask representation,” in 2019 IFIP Networking Con-
ference (IFIP Networking). IEEE, 2019, pp. 1–2.

[15] P. Gupta and N. McKeown, “Algorithms for packet classification,”
IEEE Network, vol. 15, no. 2, pp. 24–32, 2001.

[16] C. R. Meiners, A. X. Liu, and E. Torng, “TCAM razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” in 2007
IEEE International Conference on Network Protocols, Oct 2007, pp.
266–275.

[17] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain
routing (CIDR): An address assignment and aggregation strategy,”
United States, 1993.

[18] F. Yu and R. Katz, “Efficient multi-match packet classification with
tcam,” in Proceedings. 12th Annual IEEE Symposium on High Per-
formance Interconnects, 2004, pp. 28–34.

[19] F. Yu, T. Lakshman, M. Motoyama, and R. Katz, “Ssa: a power
and memory efficient scheme to multi-match packet classification.”
01 2005, pp. 105–113.

112

[20] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat,
“Optimal in/out tcam encodings of ranges,” IEEE/ACM Transac-
tions on Networking, vol. 24, no. 1, pp. 555–568, 2015.

[21] B. Schieber, D. Geist, and A. Zaks, “Computing the minimum DNF
representation of boolean functions defined by intervals,” Discrete
Applied Mathematics, vol. 149, no. 1, pp. 154 – 173, 2005.

[22] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for advanced packet classification with ternary cams,”
in Proceedings of the 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications,
ser. SIGCOMM ’05. New York, NY, USA: Association for
Computing Machinery, 2005, p. 193204. [Online]. Available:
https://doi.org/10.1145/1080091.1080115

[23] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification us-
ing extended TCAMs,” in 11th IEEE International Conference on
Network Protocols, 2003. Proceedings., Nov 2003, pp. 120–131.

[24] V. Ravikumar, R. Mahapatra, and L. N. Bhuyan, “Easecam: an
energy and storage efficient tcam-based router architecture for ip
lookup,” IEEE Transactions on Computers, vol. 54, no. 5, pp.
521–533, 2005.

[25] Y. Ma and S. Banerjee, “A smart pre-classifier to reduce power
consumption of tcams for multi-dimensional packet classification,”
SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, p. 335346, Aug.
2012. [Online]. Available: https://doi.org/10.1145/2377677.2377749

[26] W. Li, D. Li, X. Liu, T. Huang, X. Li, W. Le, and H. Li, “A
power-saving pre-classifier for tcam-based ip lookup,” Computer
Networks, vol. 164, p. 106898, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128618311927

[27] B. Agrawal and T. Sherwood, “Modeling tcam power for next gener-
ation network devices,” in 2006 IEEE International Symposium on
Performance Analysis of Systems and Software, 2006, pp. 120–129.

[28] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite
cacheflow in software-defined networks,” HotSDN 2014 - Proceedings
of the ACM SIGCOMM 2014 Workshop on Hot Topics in Software
Defined Networking, 08 2014.

[29] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” in Proceedings of the ACM SIGCOMM 2011

113

https://doi.org/10.1145/1080091.1080115
https://doi.org/10.1145/2377677.2377749
https://www.sciencedirect.com/science/article/pii/S1389128618311927
https://www.sciencedirect.com/science/article/pii/S1389128618311927

Conference, ser. SIGCOMM ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 254265. [Online]. Available:
https://doi.org/10.1145/2018436.2018466

[30] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix
approach to compressing packet classifiers in TCAMs,” IEEE/ACM
Transactions on Networking, vol. 20, no. 2, pp. 488–500, April 2012.

[31] A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete
redundancy removal for packet classifiers in tcams,” in IEEE INFO-
COM 2008 - The 27th Conference on Computer Communications,
2008, pp. 111–115.

[32] K. Kannan and S. Banerjee, “Compact tcam: Flow entry compaction
in tcam for power aware sdn,” in International conference on dis-
tributed computing and networking. Springer, 2013, pp. 439–444.

[33] P. Gupta, “Packet classification using hierarchical intelligent cut-
tings,” 1999.

[34] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
classification using multidimensional cutting,” in Proceedings of the
2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, ser. SIGCOMM ’03. New
York, NY, USA: Association for Computing Machinery, 2003, p.
213224. [Online]. Available: https://doi.org/10.1145/863955.863980

[35] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in IEEE INFOCOM 2009,
2009, pp. 648–656.

[36] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “Efficuts:
Optimizing packet classification for memory and throughput,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, p. 207218, Aug.
2010. [Online]. Available: https://doi.org/10.1145/1851275.1851208

[37] W. Li, X. Li, H. Li, and G. Xie, “Cutsplit: A decision-tree combin-
ing cutting and splitting for scalable packet classification,” in IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications,
2018, pp. 2645–2653.

[38] W. Lu and S. Sahni, “Packet classification using two-dimensional
multibit tries,” in 10th IEEE Symposium on Computers and Com-
munications (ISCC’05), 2005, pp. 849–854.

[39] Y. Sun and M. S. Kim, “Tree-based minimization of TCAM entries
for packet classification,” in 2010 7th IEEE Consumer Communica-
tions and Networking Conference, Jan 2010, pp. 1–5.

114

https://doi.org/10.1145/2018436.2018466
https://doi.org/10.1145/863955.863980
https://doi.org/10.1145/1851275.1851208

[40] H. Liu, “Efficient mapping of range classifier into ternary-cam,” in
Proceedings 10th Symposium on High Performance Interconnects,
Aug 2002, pp. 95–100.

[41] A. Bremler-Barr and D. Hendler, “Space-Efficient TCAM-Based
Classification Using Gray Coding,” IEEE Transactions on Comput-
ers, vol. 61, no. 1, pp. 18–30, Jan 2012.

[42] C. R. Meiners, A. X. Liu, and E. Torng, “Topological transformation
approaches to optimizing tcam-based packet classification systems,”
in Proceedings of the Eleventh International Joint Conference
on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’09. New York, NY, USA: Association for
Computing Machinery, 2009, p. 7384. [Online]. Available: https:
//doi.org/10.1145/1555349.1555359

[43] J. van Lunteren and T. Engbersen, “Fast and scalable packet classifi-
cation,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 4, pp. 560–571, 2003.

[44] D. Pao, P. Zhou, B. Liu, and X. Zhang, “Enhanced prefix inclusion
coding filter-encoding algorithm for packet classification with ternary
content addressable memory.”

[45] H. Che, Z. Wang, K. Zheng, and B. Liu, “Dres: Dynamic range en-
coding scheme for tcam coprocessors,” IEEE Transactions on Com-
puters, vol. 57, no. 7, pp. 902–915, 2008.

[46] N. B. Neji and A. Bouhoula, “Naf conversion: An efficient solution
for the range matching problem in packet filters,” in 2011 IEEE
12th International Conference on High Performance Switching and
Routing, July 2011, pp. 24–29.

[47] B. Leng, L. Huang, C. Qiao, H. Xu, and X. Wang, “Ftrs: A mech-
anism for reducing flow table entries in software defined networks,”
Computer Networks, vol. 122, pp. 1 – 15, 2017.

[48] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary cams can be smaller,” SIGMETRICS Perform.
Eval. Rev., vol. 34, no. 1, p. 311322, Jun. 2006. [Online]. Available:
https://doi.org/10.1145/1140103.1140313

[49] A. X. Liu and M. G. Gouda, “Complete redundancy removal for
packet classifiers in tcams,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 21, no. 4, pp. 424–437, 2010.

[50] R. McGeer and P. Yalagandula, “Minimizing rulesets for tcam im-
plementation,” in IEEE INFOCOM 2009, 2009, pp. 1314–1322.

115

https://doi.org/10.1145/1555349.1555359
https://doi.org/10.1145/1555349.1555359
https://doi.org/10.1145/1140103.1140313

[51] M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. Lopez-Pacheco,
J. Moulierac, and G. Urvoy-Keller, “Too many sdn rules? compress
them with minnie,” in 2015 IEEE Global Communications Confer-
ence (GLOBECOM), 2015, pp. 1–7.

[52] A. X. Liu, E. Torng, and C. R. Meiners, “Firewall compressor: An
algorithm for minimizing firewall policies,” in IEEE INFOCOM 2008
- The 27th Conference on Computer Communications, April 2008,
pp. 176–180.

[53] M. Yoon, S. Chen, and Z. Zhang, “Reducing the size of rule set in
a firewall,” in 2007 IEEE International Conference on Communica-
tions, June 2007, pp. 1274–1279.

[54] A. Bouhoula, Z. Trabelsi, E. Barka, and M. Anis Benelbahri, “Fire-
wall filtering rules analysis for anomalies detection,” IJSN, vol. 3,
pp. 161–172, 01 2008.

[55] M. Casado, Architectural support for security management in enter-
prise networks. Citeseer, 2007, vol. 68, no. 09.

[56] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:
Enabling innovation in campus networks,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 2, p. 6974, Mar. 2008. [Online].
Available: https://doi.org/10.1145/1355734.1355746

[57] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, 2015.

[58] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Communications Magazine,
vol. 51, no. 2, pp. 114–119, 2013.

[59] H. Song, “Protocol-oblivious forwarding: Unleash the power of
sdn through a future-proof forwarding plane,” in Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 127132. [Online].
Available: https://doi.org/10.1145/2491185.2491190

[60] M. Smith, R. E. Adams, M. Dvorkin, Y. Laribi, V. Pandey,
P. Garg, and N. Weidenbacher, “OpFlex Control Protocol,”
Internet Engineering Task Force, Internet-Draft draft-smith-
opflex-03, Apr. 2016, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-smith-opflex-03

116

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2491185.2491190
https://datatracker.ietf.org/doc/html/draft-smith-opflex-03

[61] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
Programming platform-independent stateful openflow applications
inside the switch,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 2, p. 4451, Apr. 2014. [Online]. Available: https://doi.org/10.
1145/2602204.2602211

[62] E. B. Pfaff, B. Davie, “The open vswitch database management
protocol,” 2013. [Online]. Available: https://www.hjp.at/doc/rfc/
rfc7047.html

[63] B. Belter, A. Binczewski, K. Dombek, A. Juszczyk, L. Ogrodowczyk,
D. Parniewicz, M. Stroiñski, and I. Olszewski, “Programmable ab-
straction of datapath,” in 2014 Third European Workshop on Soft-
ware Defined Networks, 2014, pp. 7–12.

[64] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding at-
tack detection using nox/openflow,” in IEEE Local Computer Net-
work Conference, 2010, pp. 408–415.

[65] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
openflow/nox architecture,” in 2011 19th IEEE International Con-
ference on Network Protocols, 2011, pp. 7–12.

[66] N. Handigol, M. Flajslik, S. Seetharaman, N. McKeown, and R. Jo-
hari, “Aster* x: Load-balancing as a network primitive,” in 9th
GENI Engineering Conference (Plenary), 2010, pp. 1–2.

[67] C. A. Macapuna, C. E. Rothenberg, and M. F. Maurício, “In-packet
bloom filter based data center networking with distributed openflow
controllers,” in 2010 IEEE Globecom Workshops. IEEE, 2010, pp.
584–588.

[68] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine
grained traffic engineering for data centers,” in Proceedings of
the Seventh COnference on emerging Networking EXperiments and
Technologies, 2011, pp. 1–12.

[69] M. V. Neves, C. A. De Rose, K. Katrinis, and H. Franke, “Pythia:
Faster big data in motion through predictive software-defined net-
work optimization at runtime,” in 2014 IEEE 28th International
Parallel and Distributed Processing Symposium. IEEE, 2014, pp.
82–90.

[70] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, M. Dräxler, R. Gupta,
V. Mancuso, L. Roullet, and V. Sciancalepore, “Crowd: an sdn ap-
proach for densenets,” in 2013 second European workshop on soft-
ware defined networks. IEEE, 2013, pp. 25–31.

117

https://doi.org/10.1145/2602204.2602211
https://doi.org/10.1145/2602204.2602211
https://www.hjp.at/doc/rfc/rfc7047.html
https://www.hjp.at/doc/rfc/rfc7047.html

[71] J. Vestin, P. Dely, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo,
“Cloudmac: torwards software defined wlans,” in Proceedings of the
18th annual international conference on Mobile computing and net-
working, 2012, pp. 393–396.

[72] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto, and H. Sone, “Flex-
ible access management system for campus vlan based on openflow,”
in 2011 IEEE/IPSJ International Symposium on Applications and
the Internet. IEEE, 2011, pp. 347–351.

[73] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “Openroads: Empowering research
in mobile networks,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 1, pp. 125–126, 2010.

[74] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in 2014
IEEE Network Operations and Management Symposium (NOMS).
IEEE, 2014, pp. 1–8.

[75] C. Argyropoulos, D. Kalogeras, G. Androulidakis, and V. Maglaris,
“Paflomon–a slice aware passive flow monitoring framework for open-
flow enabled experimental facilities,” in 2012 European Workshop on
Software Defined Networking. IEEE, 2012, pp. 97–102.

[76] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless:
A low cost network monitoring framework for software defined net-
works,” in 2014 IEEE Network Operations and Management Sym-
posium (NOMS). IEEE, 2014, pp. 1–9.

[77] G. Wang, T. E. Ng, and A. Shaikh, “Programming your network at
run-time for big data applications,” in Proceedings of the first work-
shop on Hot topics in software defined networks, 2012, pp. 103–108.

[78] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “Cloudnaas: a cloud
networking platform for enterprise applications,” in Proceedings of
the 2nd ACM Symposium on Cloud Computing, 2011, pp. 1–13.

[79] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live migration
of an entire network (and its hosts),” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, 2012, pp. 109–114.

[80] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scal-
able and vigilant switch flow management in software-defined net-
works,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, 2013, pp. 413–424.

118

[81] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A security enforcement kernel for openflow networks,” in Proceed-
ings of the first workshop on Hot topics in software defined networks,
2012, pp. 121–126.

[82] K. Giotis, G. Androulidakis, and V. Maglaris, “Leveraging sdn for
efficient anomaly detection and mitigation on legacy networks,”
in 2014 Third European Workshop on Software Defined Networks.
IEEE, 2014, pp. 85–90.

[83] K. Kogan, S. Nikolenko, W. Culhane, P. Eugster, and E. Ruan, “To-
wards efficient implementation of packet classifiers in sdn/openflow,”
in Proceedings of the second ACM SIGCOMM workshop on Hot top-
ics in software defined networking, 2013, pp. 153–154.

[84] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, 2013, pp. 7–12.

[85] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Rules place-
ment problem in openflow networks: A survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 18, pp. 1–1, 12 2015.

[86] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the "one
big switch" abstraction in software-defined networks,” 12 2013, pp.
13–24.

[87] W. Li and X. Li, “Hybridcuts: A scheme combining decomposition
and cutting for packet classification,” in 2013 IEEE 21st Annual
Symposium on High-Performance Interconnects, 2013, pp. 41–48.

[88] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, “Parasplit: A scalable
architecture on fpga for terabit packet classification,” in 2012 IEEE
20th Annual Symposium on High-Performance Interconnects, 2012,
pp. 1–8.

[89] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in 2013 Proceedings IEEE INFOCOM,
2013, pp. 545–549.

[90] P. Chuprikov, K. Kogan, and S. Nikolenko, “How to implement
complex policies on existing network infrastructure,” in Proceedings
of the Symposium on SDN Research, ser. SOSR 18. New York,
NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3185467.3185477

119

https://doi.org/10.1145/3185467.3185477

[91] P. Kannan, M. Chan, R. Ma, and E.-C. Chang, “Raptor: Scalable
rule placement over multiple path in software defined networks,” 06
2017, pp. 1–9.

[92] X. Li and W. Xie, “Craft: A cache reduction architecture for flow
tables in software-defined networks,” in 2017 IEEE Symposium on
Computers and Communications (ISCC), 2017, pp. 967–972.

[93] J.-F. Huang, G.-Y. Chang, C.-F. Wang, and C.-H. Lin, “Heteroge-
neous flow table distribution in software-defined networks,” IEEE
Transactions on Emerging Topics in Computing, vol. 4, no. 2, pp.
252–261, 2016.

[94] A. Marsico, R. Doriguzzi-Corin, and D. Siracusa, “Overcoming the
memory limits of network devices in sdn-enabled data centers,”
in 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2017, pp. 897–898.

[95] H. Li, S. Guo, C. Wu, and J. Li, “Fdrc: Flow-driven rule caching
optimization in software defined networking,” in 2015 IEEE Interna-
tional Conference on Communications (ICC), 2015, pp. 5777–5782.

[96] A. Mimidis-Kentis, A. Pilimon, J. Soler, M. Berger, and S. Ruepp,
“A novel algorithm for flow-rule placement in sdn switches,” in 2018
4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), 2018, pp. 1–9.

[97] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-
based networking with difane,” ACM SIGCOMM Computer Com-
munication Review, vol. 40, no. 4, pp. 351–362, 2010.

[98] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Officer: A
general optimization framework for openflow rule allocation and end-
point policy enforcement,” in 2015 IEEE Conference on Computer
Communications (INFOCOM), 2015, pp. 478–486.

[99] H. Huang, P. Li, S. Guo, and B. Ye, “The joint optimization of
rules allocation and traffic engineering in software defined network,”
in 2014 IEEE 22nd International Symposium of Quality of Service
(IWQoS), 2014, pp. 141–146.

[100] H. Li, P. Li, and S. Guo, “Morule: Optimized rule placement for
mobile users in sdn-enabled access networks,” in 2014 IEEE Global
Communications Conference, 2014, pp. 4953–4958.

[101] W. Li, Z. Qin, K. Li, H. Yin, and L. Ou, “A novel approach to
rule placement in software-defined networks based on optree,” IEEE
Access, vol. 7, pp. 8689–8700, 2019.

120

[102] Latency is everywhere and it costs you sales - how to crush it.
Accessed : 2021-07-5. [Online]. Available: http://highscalability.
com/latency-everywhere-and-it-costs-you-sales-how-crush-it

[103] K. Qiu, J. Yuan, J. Zhao, X. Wang, S. Secci, and X. Fu, “Fastrule:
Efficient flow entry updates for tcam-based openflow switches,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 3,
pp. 484–498, 2019.

[104] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks, ser. HotNets-XII. New York, NY, USA:
Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2535771.2535791

[105] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker, “Abstractions for network update,” in Proceedings of the
ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, ser.
SIGCOMM ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 323334. [Online]. Available: https://doi.org/10.
1145/2342356.2342427

[106] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utilization with
software-driven wan,” in Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, ser. SIGCOMM ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 1526. [Online].
Available: https://doi.org/10.1145/2486001.2486012

[107] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent
updates,” in Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, ser. HotSDN ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
4954. [Online]. Available: https://doi.org/10.1145/2491185.2491191

[108] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zupdate: Updating data center networks with zero loss,” in Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIGCOMM, 2013,
pp. 411–422.

[109] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic mid-
dlebox actions using flowtags,” in Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’14. USA: USENIX Association, 2014, p. 533546.

121

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://doi.org/10.1145/2535771.2535791
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/2491185.2491191

[110] Y.-W. Chang and T.-N. Lin, “An efficient dynamic rule placement
for distributed firewall in sdn,” in GLOBECOM 2020 - 2020 IEEE
Global Communications Conference, 2020, pp. 1–6.

[111] X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang,
and C. Hu, “Ruletris: Minimizing rule update latency for tcam-
based sdn switches,” in 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), 2016, pp. 179–188.

[112] Symantec, Internet Security Threat Report, April 2017. [Online].
Available: https://www.symantec.com/content/dam/symantec/
docs/reports/istr-22-2017-en.pdf

[113] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small for-
warding tables for fast routing lookups,” SIGCOMM Comput. Com-
mun. Rev., vol. 27, no. 4, pp. 3–14, Oct. 1997.

[114] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary cams can be smaller,” SIGMETRICS Perform.
Eval. Rev., vol. 34, no. 1, pp. 311–322, Jun. 2006.

[115] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Po-
rat, “On finding an optimal TCAM encoding scheme for packet clas-
sification,” in 2013 Proceedings IEEE INFOCOM, April 2013, pp.
2049–2057.

[116] A. Bouhoula and N. B. Neji, “Double-masked IP filter,” French
Patent FR3011705, April 2015.

[117] R. Cohen and D. Raz, “Simple efficient TCAM based range clas-
sification,” in 2010 Proceedings IEEE INFOCOM, March 2010, pp.
1–5.

[118] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst
case TCAM rule expansion,” IEEE Transactions on Computers,
vol. 62, no. 6, pp. 1127–1140, June 2013.

[119] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” SIGCOMM Comput. Commun. Rev.,
vol. 28, no. 4, pp. 191–202, Oct. 1998.

[120] D. E. Taylor, “Survey and taxonomy of packet classification tech-
niques,” ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, Sep. 2005.

[121] Ipv4 geolocation. Accessed: 07/01/2020. [Online]. Available:
https://datahub.io/JohnSnowLabs/ipv4-geolocation

[122] NorthboundNetworks, Zodiac Fx switch. [Online]. Available:
https://github.com/NorthboundNetworks/ZodiacFX

122

https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://datahub.io/JohnSnowLabs/ipv4-geolocation
https://github.com/NorthboundNetworks/ZodiacFX

[123] Ryu OpenFlow controller. [Online]. Available: https://osrg.github.
io/ryu/

[124] B. LeCun, T. Mautor, F. Quessette, and M.-A. Weisser, “Bin packing
with fragmentable items: Presentation and approximations,” Theo-
retical Computer Science, 01 2013.

[125] P. Ferguson and D. Senie, “Network ingress filtering: Defeating
denial of service attacks which employ ip source address
spoofing, bcp 38, rfc 2827,” May 2000. [Online]. Available:
https://www.rfc-editor.org/info/bcp38

[126] J. N. D. Gupta and J. C. Ho, “A new heuristic algorithm for the one-
dimensional bin-packing problem,” Production Planning & Control,
vol. 10, no. 6, pp. 598–603, 1999.

[127] Code for Palette, OBS and OneBit simulations, 2017. [Online].
Available: https://github.com/distributedpolicies/submission

[128] D. E. Taylor and J. S. Turner, “Classbench: A packet classification
benchmark,” IEEE/ACM transactions on networking, vol. 15, no. 3,
pp. 499–511, 2007.

[129] R. Duffin, “Topology of series-parallel networks,” Journal of
Mathematical Analysis and Applications. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0022247X65901253

[130] P. Flocchini and F. L. Luccio, “Routing in series parallel
networks,” Theory of Computing Systems, 2003. [Online]. Available:
https://doi.org/10.1007/s00224-002-1033-y

[131] J. Valdes, R. E. Tarjan, and E. L. Lawler, “The recognition of
series parallel digraphs,” in Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing, ser. STOC 79. New
York, NY, USA: Association for Computing Machinery, 1979, p.
112. [Online]. Available: https://doi.org/10.1145/800135.804393

[132] Reference network. Accessed : 2021-05-25. [Online]. Available:
http://www.av.it.pt/anp/on/refnet2.html

[133] Y. Xia, X. Sun, S. Dzinamarira, D. Wu, X. Huang, and T. Ng, “A
tale of two topologies: Exploring convertible data center network
architectures with flat-tree,” 08 2017, pp. 295–308.

123

https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
https://www.rfc-editor.org/info/bcp38
https://github.com/distributedpolicies/submission
http://www.sciencedirect.com/science/article/pii/0022247X65901253
http://www.sciencedirect.com/science/article/pii/0022247X65901253
https://doi.org/10.1007/s00224-002-1033-y
https://doi.org/10.1145/800135.804393
http://www.av.it.pt/anp/on/refnet2.html

124

List of Figures

1.1 Active BGP entries [9]. 2

2.1 TCAM with a priority encoder. 10
2.2 A 2D distribution of Table 2.3 12
2.3 Example of a decision-tree of Table 2.3 after Cut 1 and Cut 2. 13
2.4 Overview of SDN architecture. 18
2.5 Overview of OpenFlow-based Networking. 19
2.6 Installing rules into a flow table without compression (Ex-

ample 1). 21
2.7 Installing rules in flow table with compression (Example 1). 22
2.8 Installing rules in flow table without compression (Example

2). 23
2.9 Installing rules in flow table with compression (Example 2). 23
2.10 A 2D distribution of Table 2.5 25
2.11 Decomposing the 2D representation of Table 2.5 26
2.12 DIFANE architecture. 29

3.1 Illustration of a perfect Binary Tree. 38
3.2 Typical examples for Cases 1, 2.1 and 2.2 41
3.3 Illustration of the execution of Algorithm 1 41
3.4 Illustration of DoubleMasks strategy. 45
3.5 Number of masks generated respectively by Double Mask

(DM) and Simple Mask (SM) algorithms using the real-
world IP ruleset. 49

3.6 Number of masks generated respectively by Double Mask
(DM) and Simple Mask (SM) algorithms using the synthetic
ruleset. 50

3.7 Compression ratio of Double Mask (DM) and Simple Mask
(SM) using a synthetic ruleset of range fields of length 16bits. 50

3.8 Comparison of compressions ratio between Double Mask
(DM) and Simple Mask (SM) algorithms while varying the
length of a field. 51

3.9 The experimental physical SDN testbed. 52

125

3.10 Illustration of OpenFlow rule sent to the controller through
the REST API. 53

3.11 The rule with Double Mask is inserted in the controller flow
table. 53

3.12 OpenFlow-enabled Zodiac FX switch 54
3.13 Logical representation of the simple matching function for

CIDR notation. 55
3.14 Logical representation of the matching function for Double

Mask. 56
3.15 The flow table of the Zodiac FX after inserting a double-

mask based rule. 57
3.16 The difference in the average time for matching between

using simple or Double Masks with a 30% compression ratio. 58
3.17 The difference in the average time for matching between

using simple or Double Masks with a 5% compression ratio. 59
3.18 Gain in the response time in the controller side when using

Double Masks filters. 60
3.19 Extending Double Mask . 61

4.1 Flow table capacities of switches along a single path. 66
4.2 Compact representation of rules prefixes in a binary tree. . 67
4.3 Illustration of forward rule generation with a ruleset and

two successive switches. 67
4.4 Single-forward rule tree. 68
4.5 Choosing a set of candidate rules from the binary tree to be

placed in a switch. 69
4.6 Effect of action field on overhead OH and Cmin using re-

spectively two different rulesets (fw1 and acl1). 72
4.7 Rule space overhead while distributing a ruleset with a 50%

of rules having Forward actions. 73

5.1 Series composition. 77
5.2 Parallel composition. 77
5.3 S-component. 77
5.4 Tree representation of a series-parallel graph. 78
5.5 Dependency path between subtrees’ labels. 80
5.6 The Braess graph. 82
5.7 Merging of vertices A and B to eliminate Braess components. 82
5.8 Memorex network. 83
5.9 Series-parallel approximation of Memorex network. 84
5.10 Distribution algorithm on the series-parallel approximation

of Memorex network . 84
5.11 A counter-productive example of forward rules generation

applying Section 4.3 approach to multi-field filtering rules. . 86

126

5.12 Network topology with multi-levels switches using FoS and
FiS. 86

5.13 The three scenarios used in the experiments. 88
5.14 The latency on different single path topologies for each sce-

nario. 90
5.15 The bandwidth on different single path topologies for each

scenario. 91
5.16 Percentage of packet loss on different scenarios. 92
5.17 The latency and bandwidth using a topology with path

lengths equal to 200 switches. 93
5.18 The latency and bandwidth using a topology with path

lengths equal to 400 switches. 94
5.19 Blocking a malicious traffic from already allowed source. . . 95
5.20 Illustration of malicious host gaining network access by us-

ing initially installed rules. 96
5.21 The smallest component Ci containing ASet. 97
5.22 Search the binary tree of the topology for Ci. 98
5.23 Update time using different series-parallel topologies size. . 100
5.24 Update time of the two update strategies while increasing

parallel path number. 101
5.25 Update time of the two update strategies while increasing

switch capacity. 102

A.1 Entrées BGP actives [9]. 132

127

128

List of Tables

2.1 Example of an ACL rule table. 9
2.2 Example of a routing table. 9
2.3 Example of a prioritized rule list. 12
2.4 Summary of range encoding techniques. 16
2.5 Prioritized ruleset. 25
2.6 Rules decomposition example for two switches in series. . . 26
2.7 Summary of rule placement techniques. 33

3.1 Employed notation. 37
3.2 All matching outputs from the logical circuit in in Fig. 3.14. 56

4.1 Example of a ruleset in a switch table. 65

5.1 Values of Cmin for different approaches on 12 rulesets with
a single path of 10 switches. 89

6.1 Summary of all rule distribution solutions proposed in this
thesis. 107

129

130

Appendix A

Résumé de la thèse en
français

A.1 Context

La taille et la complexité croissantes des topologies de réseau rendent dif-
ficile la gestion des périphériques réseau. En 2021, par exemple, le nom-
bre estimé de dispositifs IoT embarqués avec des capteurs et des logiciels
pour partager des données sur Internet est d’environ 13,8 milliards dans
le monde. Ce nombre atteindra 30,9 milliards dans seulement quatre ans
[1]. Ce nombre énorme d’appareils connectés génère plus de 2,5 quintil-
lions d’octets de données par jour [2], et d’ici 2025, nous créerons 463
exaoctets de données chaque jour [3]. En outre, le type de données trans-
férées sur Internet est important, et tout retard ou toute faille de sécurité
peut entraîner des pertes de plusieurs millions de dollars. Une étude du
TABB Group montre que si une plateforme de courtage électronique avait
un retard de 5 millisecondes, elle pourrait perdre au moins 4 millions de
dollars par milliseconde [4]. Par ailleurs, une violation des données de Ya-
hoo coûte à l’entreprise environ 4,48 milliards de dollars [5], tandis que la
perte résultant d’un autre piratage est estimée à 444 milliards de dollars
[6] pour la même entreprise. Cela montre à quel point une attaque peut
être grave et coûteuse et incite la communauté scientifique à trouver de
nouvelles solutions pour s’adapter aux nouveaux défis.

Au cours de la dernière décennie, une nouvelle tendance en matière de
réseaux, appelée "réseau défini par logiciel" ou "Software Defined Network"
(SDN), a été développée pour améliorer la gestion des réseaux. Le SDN
découple le plan de contrôle et le plan de données qui communiquent entre
eux grâce au protocole OpenFlow. Grâce à ce découplage, les dispositifs
du réseau sont réduits à de simples dispositifs de transfert, ce qui permet
une classification plus rapide des paquets. Egalement, les tâches de con-
trôle du flux de données sont assignées à une entité appelée le contrôleur.

131

Cette nouvelle approche permet à l’administrateur d’avoir une vue globale
du réseau et de simplifier la mise à jour et la résolution des problèmes,
améliorant ainsi les performances des dispositifs et des contrôleurs com-
patibles avec le SDN.

Dans la même optique, la croissance du trafic a un impact sur la taille
des tables de routage qui sont au coeur des routeurs de réseaux définis par
logiciel basés sur OpenFlow. Ces tables visent à acheminer tout paquet
vers la bonne destination. Les listes noires peuvent elles aussi être amenées
à stocker des millions d’adresses IP de sources malveillantes. Certains rè-
gles admettent plus de 250000 instances correspondant à des domaines
malveillants [7] et plus de 5000 nouvelles adresses IP malveillantes sont
découvertes chaque jour. Le 8 août 2014, certains fournisseurs d’accès à
Internet (FAI) ont connu des pannes de routeur provoquant des coupures
de réseau dans le monde entier. Ce problème est apparu quand le nom-
bre d’entrées dans une table de routage BGP globale a augmenté jusqu’à
atteint plus de 512000 entrées, entraînant un problème dans les routeurs
dotés d’une mémoire limitée à 512K entrées [8]. Si 512 000 semble consid-
érable, le nombre d’entrées BGP actives aujourd’hui est de l’ordre de 900
000 et ne cesse d’augmenter avec le temps, comme le montre la figure A.1.

Figure A.1: Entrées BGP actives [9].

Ce nombre croissant d’entrées dans les dispositifs de mise en réseau
peut créer des goulots d’étranglement et affecter les performances et la
qualité de service (QoS). En outre, avec un nombre plus élevé d’entrées, la
probabilité d’erreurs ou de mauvaise configuration est plus élevée. Selon
[10], 20% de toutes les défaillances d’un réseau peuvent être attribuées
à des mises à jour mal planifiées et mal configurées dans le réseau. Par

132

conséquent, la gestion de ces grands ensembles de règles et du flux de don-
nées est complexe. Alors que l’automatisation et l’intelligence artificielle
sont déployées dans de nombreuses applications de nos jours, de nombreux
systèmes dépendent encore de l’administrateur pour le déploiement et la
configuration du réseau, ce qui ajoute des délais supplémentaires et des
sources d’erreurs et d’interruptions dans le réseau.

La réduction de la taille des ensembles de règles est un problème difficile
pour les dispositifs de mise en réseau et les solutions de classification des
paquets qui leur sont associées. De plus, le placement de toute entrée de
règle dans le réseau en fonction de sa priorité est essentiel pour garantir
que chaque flux inoffensif puisse atteindre la destination correcte tandis
que les flux malveillants sont bloqués. Dans cette thèse, notre objectif
principal sera d’aborder ces deux problèmes.

A.2 Problématique

Avec la croissance continue du nombre d’entrées dans les tables stockant
les règles, c’est un grand défi de gérer les problèmes tels que le masquage
des règles, la redondance des règles, les incohérences, etc. Une alternative
à la résolution directe de ces problèmes est de tenter de les atténuer en
s’appuyant sur une approche par compression afin de réduire la taille des
ensembles de règles. CIDR n’est pas efficace pour traiter les ensembles
de règles actuels, surtout lorsque le nombre d’exceptions est élevé. Nous
avons donc besoin d’une nouvelle notation capable de gérer un grand nom-
bre de règles. Cependant, il n’est pas évident de dériver un ensemble de
règles sémantiquement équivalent à l’ensemble initial tout en économisant
de l’espace. Par conséquent, le premier objectif de cette thèse est de min-
imiser les ensembles de règles en concevant une notation succincte pour
compresser de grands ensembles d’adresses IP. Cette notation doit être
généralisée pour fonctionner avec n’importe quel type d’intervalle, d’IP ou
de port. De plus, nous montrons que la traduction entre la représentation
CIDR et la nouvelle notation est rapide et linéaire en la taille des entrées.

Dans certains cas, la taille des routeurs est trop limitée pour contenir
toutes les règles, même après compression. Dans d’autres cas, une appli-
cation exige que les règles soient décomposées et distribuées sur le réseau
au lieu d’être stockées au même endroit. Avec la grande taille des réseaux
actuels et leurs topologies complexes, la distribution des règles est un défi.
Par exemple, les paquets peuvent traverser plusieurs chemins et doivent
être revérifiés avec les mêmes règles sur chaque chemin. Dans d’autres
scénarios, un routeur appartenant à plusieurs chemins doit maintenir des
règles spécifiques pour chacun d’eux, ce qui rend difficile la gestion de la
mémoire du routeur qui est partagée entre les chemins.
La plupart des techniques de décomposition des règles utilisent des règles

133

supplémentaires dans les routeurs pour maintenir la même sémantique.
Par exemple, considérons un routeur avec toutes les règles installées dans
ce routeur. Nous avons deux scénarios: le paquet correspond à une règle,
ou aucune correspondance n’est trouvée. Dans le premier scénario, si nous
devons décomposer le même ensembre de règles sur plusieurs routeurs,
le même paquet doit correspondre à la même règle dans un routeur puis
traverser tous les routeurs suivants sans aucune correspondance. En re-
vanche, dans le second cas, le paquet doit toujours correspondre à la règle
par défaut dans tous les routeurs.

Les techniques de décomposition existantes reposent principalement
sur la réplication des règles et génèrent de nouvelles règles pour préserver
la sémantique. Cependant, l’ajout de règles supplémentaires augmente la
charge des routeurs et affecte les performances du processus de filtrage et
de classification des paquets. Pour surmonter ce problème, nous devons
trouver un moyen de minimiser le nombre de nouvelles règles générées. En
outre, la complexité des topologies de réseau rend la distribution des règles
compliquée. En particulier, les noeuds admettant plusieurs flots entrant,
les capacités des routeurs, la puissance de traitement, etc. doivent être
pris en compte dans toute stratégie de distribution. Par conséquent, le
deuxième objectif de cette thèse concerne principalement la décomposition
et la distribution d’un ensemble de règles dans un réseau SDN tout en
préservant la sémantique générale des ensembles de règles et en respectant
la contrainte de capacité de chaque routeur.

A.3 Notre contribution

La classification des paquets peut être réalisée à l’aide de solutions logi-
cielles ou matérielles. Les dispositifs qui utilisent des mémoires TCAM
sont standard pour la classification des paquets en raison de leur temps de
consultation plus rapide. Cependant, ces dispositifs ont un espace limité
et nécessitent des quantités importantes d’énergie. D’autre part, les ap-
plications logicielles telles que celles fondées sur un arbre de décision sont
plus faciles à mettre en oeuvre mais elles demeurent plus lentes que les
TCAMs. En outre, pour diminuer le temps de classification, le nombre de
règles dans les tables est contraint. Cela permet de réduire la consomma-
tion d’énergie et de rendre la recherche dans une structure de données plus
efficace, ce qui se traduit par un meilleur processus de classification.
Cette thèse apporte deux contributions à la gestion des règles. La première
est une méthode efficace pour réduire le nombre d’entrées dans les tables
en utilisant une nouvelle technique d’encodage d’intervalle qui étend la no-
tation standard CIDR. La deuxième contribution fournit des algorithmes
pour distribuer les règles sur un réseau SDN tout en réduisant le surcharge
dans les routeurs.

134

A.3.1 Compression des règles de filtrage avec Double Mask

Dans cette partie, nous concevons une représentation simple des règles
de filtrage qui permet d’obtenir des tables de règles plus compactes, plus
faciles à gérer tout en gardant leur sémantique inchangée. La construction
des règles est obtenue avec des algorithmes raisonnablement efficaces égale-
ment. Cette représentation s’applique aux adresses IP et aux intervalles
de ports pour atténuer le problème d’expansion des intervalles. Pour cela,
nous exprimons les champs du filtre de paquets avec ce qu’on appelle des
Double Mask [116], où un premier masque est utilisé comme préfixe d’in-
clusion et le second comme préfixe d’exclusion. Cette représentation ajoute
de la flexibilité et de l’efficacité dans le déploiement des politiques de sécu-
rité puisque les règles générées sont plus faciles à gérer. La représentation
Double Mask simplifie les configurations puisque nous pouvons accepter et
exclure des IP au sein d’une même règle. Une règle Double Mask peut être
considérée comme une extension d’une règle de préfixe standard avec des
exceptions. Elle est souvent plus intuitive que les autres représentations et
permet donc d’éviter les erreurs dans les opérations de gestion du réseau.
Notre travail est basé sur une approche logicielle, et repose uniquement
sur des règles acceptées, contrairement à [46; 117; 118] qui utilisent des
approches matérielles. Notre notation peut réduire considérablement le
nombre d’entrées dans les tables de routage. En comparaison, la représen-
tation d’une intervalle de w bits peut nécessiter 2w−2 préfixes [119]. Cette
nouvelle notation a la même limite supérieure de 2w − 4 présentée dans
d’autres articles [21; 41], mais dans certains cas, le nombre peut être réduit
comme le montrent nos résultats expérimentaux.

A.3.2 Gestion des règles

La technique de compression ne peut pas toujours être efficace, soit parce
que le taux de compression est faible, soit parce que la capacité mémoire
des routeurs est faible. Par conséquent, pour faire face à ce problème, nous
pouvons nous appuyer sur les réseaux définis par logiciel (SDN) pour dis-
tribuer les règles sur plusieurs routeurs. Dans SDN, les exigences de filtrage
des applications critiques varient souvent en fonction des changements de
flux et des politiques de sécurité. Le SDN résout ce problème grâce à
une abstraction logicielle flexible, permettant de modifier et de mettre en
oeuvre simultanément et facilement une politique de réseau sur des rou-
teurs basés sur les flux. Cette approche de déploiement en un seul point
constitue une caractéristique essentielle pour les opérations complexes de
gestion de réseau.

Le nombre croissant d’attaques provenant de sources diverses augmente
le nombre d’entrées dans les listes de contrôle d’accès (ACL). Pour éviter
de dépendre des grandes et coûteuses capacités mémoire des routeurs de
réseau, une approche complémentaire à la compression des règles serait

135

de diviser les ACL en plus petites tables de routeur pour appliquer les
politiques de contrôle d’accès. Cela ouvre la voie aux politiques de contrôle
d’accès distribuées, qui ont fait l’objet de nombreuses études antérieures
[86; 89; 90]. Cependant, la plupart des propositions donnent lieu à un taux
élevé de réplication des règles [86; 89]. Certaines propositions nécessitent
même de modifier l’en-tête du paquet [90] pour l’empêcher de correspondre
à une deuxième règle de filtrage dans un routeur suivant.

Distribution des règles sur une topologie à chemin unique

Dans la première partie, nous introduisons un nouvel algorithme de dis-
tribution basé sur le LPM. Comme OBS [86], et Palette [89], nous nous
appuyons sur les relations de dépendance des règles, mais nous générons
moins de règles forward en exploitant la valeur du champ "action". Comme
les travaux précédents, nous abordons le problème de la distribution d’un
ensemble de règles parmi les routeurs du réseau pour répondre à une poli-
tique donnée. Cependant, dans notre approche, nous nous appuyons sur
les propriétés de la stratégie LPM et nous exploitons les informations du
champ d’action pour gérer les règles qui se chevauchent et éviter la répli-
cation dans les tables des routeurs. De plus, contrairement à [90], notre
solution ne nécessite pas de modification des paquets ou des règles.

Notre algorithme génère des règles de forward dans chaque routeur afin
de préserver la sémantique des règles. En outre, l’algorithme est développé
pour des topologies à chemin unique. Cependant, les topologies de réseau
peuvent être plus complexes avec plusieurs chemins qui se chevauchent
ou se croisent. Alors qu’une distribution sur un seul chemin peut être
relativement facile à déployer, dans le cas de scénarios à chemins multiples,
les règles dans les noeuds appartenant à plusieurs chemins doivent être
soigneusement gérées pour les servir tous et limiter les redondances.

Distribution des règles sur un graphe

Dans la deuxième partie, nous présentons notre algorithme de distribution
de règles pour les graphes séries-parallèles. Cet algorithme gère n’importe
quelle stratégie de sélection des règles et peut fonctionner avec des al-
gorithmes de décomposition existants comme OBS [86]. Ensuite, nous
généralisons notre approche de distribution pour qu’elle fonctionne avec
tous les graphes st-dags, et nous testons nos techniques sur un réseau réel
appelé memorex. Nous introduisons ensuite une approche TWO-TIER
pour la décomposition et la distribution des règles qui utilise deux types
de routeurs et ne génère pas de règles supplémentaires. Cette approche est
complémentaire à notre algorithme de distribution. Les deux peuvent être
utilisés ensemble pour distribuer des règles sur n’importe quel st-dag sans
règles supplémentaires. Ensuite, nous évaluons les performances de notre

136

approche TWO-TIER et comparons le résultat avec les techniques exis-
tantes. Comme nous ne générons ni ne dupliquons de règles, le surcharge
de notre approche est proche de zéro.

Stratégie de mise à jour des règles

Dans cette partie, nous présentons notre stratégie de mise à jour pour
gérer les changements dans l’ensemble de règles initial, c’est-à-dire l’ajout,
la suppression ou la modification d’une règle. Une modification peut être
effectuée pour maintenir la topologie à jour, ajouter plus de fonctionnalités,
améliorer les performances, ajouter plus de liens et de chemins au réseau,
ou activer/bloquer un flux spécifique. La mise à jour d’un réseau peut
se faire en ajoutant ou en supprimant des équipements matériels tels que
des routeurs et des routeurs, ou en mettant à jour les données telles que
les listes de contrôle d’accès ou les règles de transfert à l’intérieur des
équipements existants.

Notre stratégie de mise à jour pour les graphes série-parallèle se con-
centre sur la partie du réseau affectée par la modification plutôt que sur
le réseau entier. Enfin, nous évaluons la performance de notre technique
de mise à jour en utilisant notre algorithme de distribution. Les résultats
montrent une réduction jusqu’à 90 % du temps de mise à jour.

A.4 Limitations

Une règle Double Mask peut à la fois accepter et refuser des adresses avec
mask1 et mask2 respectivement. Si aucune adresse n’est refusée, mask2
devient inutile, et le Double Mask se réduit à un simple masque. Dans
ce cas, aucune compression ne peut être attendue avec notre algorithme.
De plus, puisque la correspondance avec un masque simple est plus rapide
qu’avec un Double Mask, il est plus simple de s’en tenir aux masques
simples lorsque le taux de compression est proche de zéro, comme nous
l’avons vu dans nos simulations.

Quant à notre algorithme de distribution, nous montrons que nous pou-
vons simplifier un graphe st-dag en un graphe série-parallèle en fusionnant
certains sommets du graphe st-dag. Cependant, avec certaines topologies
complexes où le degré des noeuds est important, la simplification nécessite
de nombreuses phases de fusion. Dans ce cas, le graphe simplifié ne ressem-
blera pas au graphe initial, ce qui implique une qualité moindre pour les
solutions de distribution dérivées du graphe simplifié.

En outre, aucune stratégie LPM satisfaisante pour des dimensions mul-
tiples n’a été développée. Cela est dû au chevauchement des champs dans
les règles. Par exemple, si la règle R1 avoir un champ source (resp. desti-
nation) plus spécifique et la règle R2 un champ destination (resp. source)

137

plus spécifique, pour un paquet qui correspond aux deux champs les plus
spécifiques chaque règle est éligible et aucune décision ne peut être prise.

A.5 Travaux futurs

Cette thèse peut se prolonger par des améliorations dans la gestion des
règles dans les réseaux SDN. En outre, nous pouvons identifier de multiples
directions de recherche pour surmonter les limites des solutions proposées
dans ce travail:

Premièrement, nous pouvons étendre notre solution de compression
avec Double Mask aux intervalles de ports et aux adresses IPv6 puisqu’elles
peuvent également être représentées comme des chaînes binaires. En modi-
fiant la longueur de la chaîne en entrée, notre algorithme peut rapidement
générer les masques correspondants. De plus, cette représentation peut
être améliorée en calculant des Double Masks pour l’union des intervalles
afin d’atteindre un niveau d’optimisation plus élevé dans les tables de
routage. Notre technique actuelle calcule les masques pour chacune des
intervalles indépendamment des autres. Cependant, dans certains cas, les
Double Masks peuvent être étendus pour couvrir plusieurs intervalles si-
multanément comme discuté dans la sous-section 3.6. En outre, nous pou-
vons appliquer notre approche parallèlement à d’autres techniques pour
supprimer les règles redondantes ou masquées. Cela permet de réduire le
nombre des règles original et d’accélérer le calcul des Double Masks avec
notre algorithme.

En ce qui concerne la partie "distribution" de cette thèse, nous pou-
vons automatiser tous les processus. Par exemple, nous pouvons nous
appuyer sur des techniques d’apprentissage automatique pour déduire les
modèles de communication et générer en conséquence les règles de filtrage
nécessaires à la distribution par les algorithmes proposés. En outre, notre
approche à deux niveaux peut être étendue à plusieurs routeurs FoS cha-
cune pour une application spécifique. Par exemple, les applications de
sécurité peuvent s’appuyer sur des routeurs avec des protocoles de sécurité
renforcés, tandis que pour les applications de streaming, des routeurs FoS
avec moins d’exigences de sécurité sont suffisants. Dans ce cas, les rou-
teurs FiS décideront où transmettre un paquet correspondant en fonction
de l’application.

Cette thèse peut être étendue en utilisant l’apprentissage par renforce-
ment (profond) pour distribuer les règles. Ces techniques ont déjà été
appliquées à de nombreux problèmes d’optimisation de réseau et pour-
raient être offrir de bonnes pistes pour le placement et la distribution des
règles. Ainsi, en utilisant à la fois des techniques d’inférence pour extraire
les politiques de filtrage requises à partir du comportement du réseau et un
mécanisme d’apprentissage par renforcement pour appliquer ces politiques,

138

la boucle d’une fonction de filtrage autonome sera complète.

139

	General Introduction
	Context
	Problem Statement
	Our Contribution
	Thesis Organization
	Publications

	Related work
	Introduction
	Packet Classification Approaches
	A Hardware Based Solution: TCAM
	A Software Based Solution: Decision Tree

	Minimization of Packet Classification Rules
	Range Encoding
	Classifier Minimization

	Software Defined Networking
	SDN Architecture
	OpenFlow Protocol

	Rules Placement
	Rulesets Decomposition and Placement
	Rules Caching and Swapping
	Path Based Rules Placement
	Rules Update

	Summary

	Filtering Rules Compression with Double Masks
	Introduction
	Double Mask Technique
	Preliminaries
	Double Mask Representation

	Double Mask Computation Algorithms
	Naive Algorithm
	Linear Time Algorithm

	Evaluation by Simulation
	Simulation Setup
	Real-world IP Ruleset
	Synthetically Generated Rulesets

	Experimental Evaluation
	Setup and Parameters
	Implementation and Integration
	Experiments and Results

	Discussions
	Summary

	Rules Distribution Over a Single Path Topology
	Introduction
	Problem Statement
	Problem Definition
	Requirements

	Distribution Over a Single Path
	Rules Representation
	Forward Rules Generation
	Distribution Algorithm
	Algorithmic Complexity

	Evaluation
	Simulation Setup
	Simulation Results

	Summary

	Rules Distribution Over a Graph
	Introduction
	Two-Terminal Series-Parallel Graph
	Distribution Algorithm
	Algorithmic Complexity
	Generalization to St-Dags

	Two-Tier Distribution Approach
	Distribution of Multi-Fields Rulesets
	Multi-level Distribution

	Evaluation of Two-Tier Approach
	Experimental Setup
	Overhead
	Bandwidth and Latency
	Multiple Destinations

	Rulesets Update Strategy
	Update Strategy With Generated Forward Rules
	Update Strategy With Two-Tier Approach
	Evaluation
	Network Topology Update

	Summary

	General Conclusion
	Achievements
	Limitations
	Future Work
	Bibliography
	List of Figures

	List of Tables
	Résumé de la thèse en français
	Context
	Problématique
	Notre contribution
	Compression des règles de filtrage avec Double Mask
	Gestion des règles

	Limitations
	Travaux futurs

