Thèse soutenue

Manipulation de l’aimantation par un courant de spin et par pulse laser ultra-rapid[e]

FR  |  
EN
Auteur / Autrice : Jiaqi Wei
Direction : Stéphane ManginFrançois MontaigneWeisheng Zhao
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 15/06/2021
Etablissement(s) : Université de Lorraine en cotutelle avec Beihang university (Pékin)
Ecole(s) doctorale(s) : École doctorale C2MP - Chimie mécanique matériaux physique (Lorraine)
Partenaire(s) de recherche : Laboratoire : Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz)
Jury : Président / Présidente : Bert Koopmans
Examinateurs / Examinatrices : Stéphane Mangin, François Montaigne, Weisheng Zhao, Liliana-Daniela Buda, Weiwei Lin, Na Lei
Rapporteurs / Rapporteuses : Liliana-Daniela Buda, Weiwei Lin

Résumé

FR  |  
EN

La manipulation de l’aimantation est un des sujets de recherche les plus étudiés dans le domaine de l’électronique de spin. Différentes méthodes de manipulations peuvent exciter les propriétés dynamiques de l’aimantation à différentes échelles de temps. Parmi les phénomènes dynamiques, la précession de l’aimantation et la désaimantation ultrarapide ont suscité un intérêt particulier. La fréquence de précession de l’aimantation est de l’ordre du GHz et correspond à une période de centaines de picosecondes. Cette précession est le mécanisme à l’œuvre dans les nano-oscillateurs à transfert de spin (NOTS), un nouveau type de dispositif microonde présentant des avantages sur l’oscillateur commandé en tension (OCT) conventionnel en termes de taille, de consommation d’énergie et d’adaptabilité de la fréquence. La désaimantation ultrarapide a été observé pour la première fois dans du nickel en quelques centaines de femtosecondes. Le renversement tout optique (RTO), nécessitant la désaimantation ultrarapide, a ensuite été démontré expérimentalement. Le RTO est bien plus rapide que tout autre retournement de l’aimantation par couple et est donc prometteur pour construire des mémoires magnétiques ultrarapides. Bien que de nombreuses études sur ces deux phénomènes existent, plusieurs problèmes se doivent d’être résolus avant de pouvoir passer à l’étape de production industrielle. Les NOTS sont censés être utilisés pour la modulation par déplacement d’amplitude (MDA) ou la modulation par déplacement de fréquence (MDF), mais les conditions optimales pour ces deux types de modulation microondes n’ont pas encore été assez investiguées. Quant au RTO, l’influence des paramètres du laser tels que la fluence ou la durée de l’impulsion et des propriétés du matériau tels que le composition et l’épaisseur n’a pas fait l’objet d’études systématique. Dans ce manuscrit, ces deux types de manipulation de l’aimantation sont étudiés en détail. En ce qui concerne la précession de l’aimantation, nous démontrons qu’un champ magnétique accru permet d’obtenir une plus large plage de fréquence possible alors qu’un champ magnétique plus faible résulte en une plage d’amplitude possible élargie. Ainsi ces deux scenarii sont applicables au MDF et MDA, respectivement, et posent les bases d’une utilisation des NOTS en modulation microonde. Dans la deuxième étude, nous démontrons que le RTO dépends fortement des caractéristiques de l’impulsion laser. Pour cela nous avons construit un diagramme d’état pour le GdFeCo et le Co/Pt, deux matériaux typiques respectivement du retournement tout optique indépendant de l’hélicité (RTO-IH) et du retournement tout optique dépendant de l’hélicité (RTO-DH). Ces résultats permettent une meilleure compréhension du mécanisme fondamental régissant la dynamique de l’aimantation induite par exposition à un laser.