Thèse soutenue

Étude d’une protection pour le matériel embarqué du fantassin soumis à des projectiles de type fragment
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Morwan Adlafi
Direction : Vincent GrolleauLaurent MahéoBertrand Galpin
Type : Thèse de doctorat
Discipline(s) : Génie mécanique et matériaux
Date : Soutenance le 16/12/2021
Etablissement(s) : Lorient
Ecole(s) doctorale(s) : Sciences de l'ingénierie et des systèmes (Centrale Nantes)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche Dupuy de Lôme - Institut de Recherche Dupuy de Lôme / IRDL
Jury : Président / Présidente : Franck Lauro
Rapporteurs / Rapporteuses : Salima Bouvier, Philippe Viot

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La protection du matériel électronique embarqué est devenue un enjeu majeur pour assurer la sécurité du combattant. On peut citer divers exemples tels que la protection des piles à hydrogène dans les véhicules ou dans la batterie embarquée d'un soldat. C'est dans ce contexte que s'inscrit la thèse, où une étude est menée sur une protection de type multi-couches, sollicitée par des projectiles de type fragment, de quelques kilogrammes, allant à des vitesses de l'ordre de 10 m/s. Afin d'assurer la mise en service de telles protections, des essais et des simulations doivent être menés sur un large champ de sollicitations. La littérature montre que les structures multi-couches offrent un bon compromis entre capacité à absorber l’énergie d’impact et légèreté. Le complexe étudié pour cette thèse est composé d’une couche métallique, acier ou aluminium, et d’une couche de polymère. La première partie de cette thèse est consacrée à la caractérisation des plaques métalliques étudiées pour cette thèse : acier DP450 et aluminium AA2024-T3. Un nouvel essai de cisaillement séquencé est proposé afin d’identifier le comportement de la tôle en grande déformation. L’essai de traction à déformation plane est adapté pour identifier la déchirure des tôles en dynamique, jusqu’à des vitesses de déformation de l’ordre de 200/s. La deuxième partie est consacrée à l’identification complète d’une nouvelle résine polydicyclopentadiene (PDCPD) appelée Nextene. Dans la dernière partie, différentes structures multicouches sont sollicitées par des impacts à l’aide d’une catapulte qui projette des projectiles de 2.5 kilogrammes à une vitesses de 10 m/s. Leurs comportements respectifs à l’impact sont comparés et simulés numériquement.