Thèse soutenue

Conception d’une interface fonctionnelle permettant la communication de neurones artificiels et biologiques pour des applications dans le domaine des neurosciences

FR  |  
EN
Auteur / Autrice : Dimitri Henniquau
Direction : Virginie HoelChristel Vanbesien-Mailliot
Type : Thèse de doctorat
Discipline(s) : Electronique, microélectronique, nanoélectronique et micro-ondes
Date : Soutenance le 14/12/2021
Etablissement(s) : Université de Lille (2018-2021)
Ecole(s) doctorale(s) : École doctorale Sciences de l’ingénierie et des systèmes (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie
Jury : Président / Présidente : Jean-Pierre Vilcot
Examinateurs / Examinatrices : Alexis Vlandas, Serge Bernard, Marc Pananceau
Rapporteurs / Rapporteuses : Cécile Delacour, Sylvie Renaud

Résumé

FR  |  
EN

L’ingénierie neuromorphique est un nouveau champ disciplinaire en plein essor qui fait appel à des compétences en électronique, mathématiques, informatique et en ingénierie biomorphique dans le but de produire des réseaux de neurones artificiels capables de traiter les informations à la manière du cerveau humain. Ainsi, les systèmes neuromorphiques offrent non seulement des solutions plus performantes et efficientes que les technologies actuelles de traitement de l’information mais permettent également d’envisager le développement de stratégies thérapeutiques inédites dans le cadre de dysfonctionnements cérébraux pathologiques. Le groupe Circuits Systèmes Applications des Micro-ondes (CSAM) de l’Institut d’Electronique, de Microélectronique et de Nanotechnologies (IEMN) dans lequel ces travaux de thèse ont été effectués a contribué à l’émergence de ces systèmes neuromorphiques en développant une boîte à outils complète de neurones et synapses artificiels. Pour intégrer l’ingénierie neuromorphique dans la prise en charge de dysfonctionnements neuronaux pathologiques, il convient d’interfacer les neurones artificiels et les neurones vivants afin d’assurer une communication réelle entre ces différents composants. Dans ce contexte, et en utilisant les outils innovants développés par le groupe CSAM, l’objectif de ce travail de thèse a été de concevoir et réaliser une interface fonctionnelle permettant d’établir une boucle de communication bidirectionnelle entre des neurones artificiels et des neurones vivants. Les neurones artificiels développés par le groupe CSAM sont réalisés en technologie CMOS et capables d’émettre des signaux électriques biomimétiques. Les neurones vivants sont issus de cellules PC12 différenciées. Une première étape de ce travail a consisté à modéliser et à simuler cette interface entre neurones artificiels et vivants ; une deuxième partie de la thèse a été dédiée à la fabrication et à la caractérisation d’interfaces neurobiohybrides, ainsi qu’à la croissance et à la caractérisation de neurones vivants, avant d’étudier leur capacité à communiquer avec des neurones artificiels. Ainsi, un modèle de membrane neuronale représentant un neurone vivant interfacé avec une électrode métallique planaire a été développé. L’exploitation de ce modèle a permis de montrer qu’il est possible de stimuler des neurones vivants en utilisant les signaux biomimétiques issus du modèle de neurones artificiels tout en conservant des tensions d’excitation faibles. L’utilisation de faibles tensions d’excitation permettrait d’améliorer l’efficacité énergétique des systèmes neurobiohybrides intégrant des neurones artificiels et d’amoindrir le risque d’endommager les tissus vivants. Ensuite, le neurobiohybride permettant d’interfacer les neurones vivants et les neurones artificiels a été conçu et réalisé. Une caractérisation expérimentale de cette interface a permis de valider l’approche consistant à exciter un neurone vivant au travers d’une électrode métallique planaire. Enfin, des cellules neuronales vivantes issues de cellules PC-12 ont été cultivées et différenciées dans les neurobiohybrides. Une preuve expérimentale de la capacité des signaux électriques biomimétiques produits par les neurones artificiels a ainsi pu être apportée par la technique d’imagerie calcique. En conclusion, les travaux présentés dans ce manuscrit établissent clairement la preuve de concept de l’excitation de neurones vivants par un signal biomimétique dans nos conditions expérimentales et étayent ainsi la première partie de la boucle de communication bidirectionnelle entre neurones artificiels et neurones vivants.