Thèse soutenue

Méthodes pour la modélisation des injections de fautes électromagnétiques

FR  |  
EN
Auteur / Autrice : Oualid Trabelsi
Direction : Jean-Luc DangerLaurent Sauvage
Type : Thèse de doctorat
Discipline(s) : Réseaux, informations et communications
Date : Soutenance le 01/07/2021
Etablissement(s) : Institut polytechnique de Paris
Ecole(s) doctorale(s) : École doctorale de l'Institut polytechnique de Paris
Partenaire(s) de recherche : Etablissement opérateur d'inscription : Télécom Paris (Palaiseau ; 1977-....)
Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....)
Jury : Président / Présidente : Régis Leveugle
Examinateurs / Examinatrices : Jean-Luc Danger, Laurent Sauvage, Philippe Maurine, Jean-Max Dutertre, Mathieu Lisart, Lirida Alves de Barros Naviner
Rapporteurs / Rapporteuses : Philippe Maurine, Jean-Max Dutertre

Résumé

FR  |  
EN

Les attaques par injection de faute représentent une menace considérable pour les systèmes cyber-physiques. Dès lors, la protection contre ces attaques est une nécessité pour assurer un haut niveau de sécurité dans les applications sensibles comme l'internet des objets, les téléphones mobiles ou encore les voitures connectées. Élaborer des protections demande au préalable de bien comprendre les mécanismes d'attaque afin de proposer des contre-mesures efficaces. En matière de méthodes d'injection de faute, celle par interférence électromagnétique s'est vu être une source de perturbation efficace, en étant moins intrusive et avec une configuration à faible coût. Outre l'ajustement des paramètres d'injection, l’efficacité de cette méthode réside dans le choix de la sonde qui génère le rayonnement électromagnétique. L'état de l'art propose déjà des travaux par rapport à la conception et la caractérisation de ce type d'injecteur. Cependant, les résultats correspondant rapportent une différence entre ceux issus de la simulation et ceux à partir des tests expérimentaux.La première partie de la thèse aborde la question de l'efficacité des sondes magnétiques, en mettant l'accent sur l'implication de leurs propriétés. Afin de comparer les sondes, nous proposons d'observer l'impact des impulsions électromagnétiques au niveau logique, sur des cibles particulières de type FPGA.La caractérisation est aussi établie suivant la variation des paramètres d'injection comme l'amplitude et la polarité de l'impulsion, le nombre d'impulsions ou encore l'instant de l'injection. Ces résultats ont permis de converger sur les paramètres optimaux qui maximisent l'effet des sondes magnétiques. La caractérisation est par la suite étendue au niveau architecture sur des cibles de type microcontrôleur. L'objet de la seconde contribution consiste à présenter une démarche d'analyse, basée sur trois méthodes génériques, qui servent à déterminer les vulnérabilités des microcontrôleurs sur les instructions ou les données. Ces méthodes portent sur l'identification des éléments vulnérables au niveau architecture, l'analyse des modèles de faute au niveau bit, et enfin la définition de l'état des fautes, à savoir transitoire ou semi-persistent.Le travail de dresser les modèles de faute, ainsi que le nombre d'instructions ou données impactées, est un jalon important pour la conception de contre-mesures plus robustes. Concernant ce dernier point, des contre-mesures au niveau instruction ont été proposées contre les modèles de faute logiciels. Actuellement, le mécanisme le plus répandu se résume à appliquer une redondance dans l'exécution du programme à protéger. Toutefois, ce type de contre-mesure est formulé sur l'hypothèse qu'une injection de faute équivaut un seul saut d'instruction. Vis-à-vis de nos observations, ces contre-mesures basées sur de la duplication au niveau instructions présentent des vulnérabilités, que nous identifions, puis corrigeons.