Thèse soutenue

Méthodes d'ordre élevé pour des maillages non structurés et glissants

FR  |  
EN
Auteur / Autrice : Gonzalo Sáez Mischlich
Direction : Xavier CarbonneauGilles Grondin
Type : Thèse de doctorat
Discipline(s) : Dynamique des fluides
Date : Soutenance le 30/06/2021
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Equipe de recherche : Équipe d'accueil doctoral Énergétique et dynamique des fluides (Toulouse, Haute-Garonne)
Laboratoire : Institut supérieur de l'aéronautique et de l'espace (Toulouse, Haute-Garonne). Département aérodynamique, énergétique et propulsion
Jury : Président / Présidente : Christian Tenaud
Examinateurs / Examinatrices : Xavier Carbonneau, Gilles Grondin, Christian Tenaud, Paola Cinnella, Michaël Dumbser, Guido Lodato
Rapporteurs / Rapporteuses : Paola Cinnella, Michaël Dumbser

Résumé

FR  |  
EN

Les méthodes numériques d’ordre élevé se sont avérées être un outil essentiel pour améliorer la précision des simulations concernant des écoulements turbulents par la résolution des lois de conservation. Ces écoulements se trouvent dans une grande variété d’applications industrielles et leur prédiction et modélisation est cruciale pour améliorer l’efficacité des procès. Cette thèse met en oeuvre et analyse différents types de schémas de discrétisation spatiale d’ordre élevé pour des maillages non structurés afin d’évaluer et de quantifier leur précision dans les simulations d’écoulements turbulents. En particulier, les méthodes de volumes finis (FVM) d’ordre élevé basées sur les opérateurs de déconvolution des moindres carrés et entièrement contraints sont considérées. De plus, leur précision est évaluée par une analyse analytique et pour des cas linéaires et non linéaires. Une attention spéciale est portée à la comparaison des FVM de second ordre et d’ordre élevé, montrant que la première peut surpasser la seconde en termes de précision et de performance de calcul dans des configurations sous-résolues. Les méthodes d’éléments spectraux (SEM) d’ordre élevé, y compris Spectral Difference (SD) et Flux Reconstruction (FR), sont comparées dans différentes configurations linéaires et non linéaires. De plus, un solveur SD basé sur GPU est développé et ses performances par rapport `a d’autres solveurs basés sur CPU seront discutées, montrant ainsi que le solveur développé basé sur GPU surpasse d’autres solveurs basés sur CPU en termes de performance économique et énergétique. La précision et le comportement des SEM avec de l’aliasing sont évalués dans des cas de test linéaires à l’aide d’outils analytiques. L’utilisation de grilles avec des cellules d’ordre élevé, qui permettent de mieux d’écrire les surfaces d’intérêt des simulations, en combinaison avec le SEM est également analysée. Cette dernière analyse démontre qu’un traitement particulier doit être implémenté pour assurer une précision numérique appropriée lors de l’utilisation de mailles avec ces éléments. Ce document présente également le développement et l’analyse de la méthode Spectral Difference Raviart-Thomas (SDRT) pour les éléments bidimensionnels et tridimensionnels de type produit tensoriel et simplex. Cette méthode est équivalente à la formulation SD pour les éléments de produit tensoriel et peut être considérée comme une extension naturelle de la formulation SD pour les éléments de type simplex. En outre, une nouvelle famille de méthodes FR, équivalente à la méthode SDRT dans certaines circonstances, est décrite. Tous ces développements ont été implémentés dans le solveur open-source PyFR et sont compatibles avec les architectures CPU et GPU. Dans le contexte des simulations d’ordre élevé d’écoulements turbulents trouvés dans les cas d’interaction rotor-stator, une méthode de maillage glissant (qu’implique des grilles non-conformes et le mouvement des maillages) spécifiquement adaptée aux simulations massivement parallèles est implémenté dans un solveur basé sur CPU. La méthode développée est compatible avec FVM et SEM de second ordre et d’ordre élevé. D’autre part, le mouvement de la grille, nécessaire pour simuler les cas d’essai rotor-stator `a cause du mouvement relatif de chaque zone du domaine, est traité à l’aide de la formulation Arbitrary-Lagrangian-Eulerian (ALE). L’analyse de cette formulation montre son influence importante sur la précision numérique et la stabilité des simulations numériques avec du mouvement de maillage.