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Résumé

Les câbles de communication optique transcontinentale constituent un maillon essentiel
dans les communications modernes. Ils permettent de faire transiter des volumes impor-
tants de données à grande distance, tout en induisant une faible latence de transmission.
L’amélioration de leurs performances est un enjeu pour la société d’aujourd’hui, la so-
ciété numérique et connectée. Les précédentes évolutions de la communication optique
ont été majoritairement liées à l’amélioration en termes du traitement du signal, comme
par exemple le multiplexage par division de polarisation, qui a pratiquement multiplié par
dix le débit de transmission. Le moment est venu de revoir la conception des codes
correcteurs et des modulations numériques dans la chaine de communication optique.

L’objectif de cette thèse est d’étudier la conception des codes correcteurs et des mod-
ulations codées pour la transmission optique tout en s’appuyant sur le concept des codes
en graphes sur GF (q), q = 2m. L’originalité de notre approche par rapport à l’état de
l’art se trouve dans le fait qu’on se positionnera sur les tailles des alphabets modérées,
notamment GF (4) et GF (8), ce qui nous permettrait, sans grande augmentation de com-
plexité, de s’approcher de la capacité de canal et de réduire la taille de l’entrelaceur entre
le démodulateur et le décodeur.

Le travail effectué se résume en trois contributions principales. La première contribu-
tion concerne le schéma de Symbol Interleaved Coded Modulation (SICM) basée sur les
modulations de type M -QAM: il est démontré que la QAM-SICM avec q > 2 se comporte
mieux que la Bit Interleaved Coded Modulation (BICM) et que, dans le cas de q =

√
M , la

SICM atteint la capacité du canal AWGN. La deuxième contribution concerne les codes
LDPC réguliers sur GF (q) utilisés dans le schéma QAM-SICM : pour les rendements de
code élevés, les codes LDPC 3-réguliers avec des valeurs modérées de q offrent des
meilleurs performances que les autres codes LDPC réguliers, considérés dans le cadre
de la transmission optique. Finalement, la troisième contribution réside dans la construc-
tion d’une nouvelle famille des codes LDPC doublement généralisées surGF (q), appelés
les codes RPP (Repeatition-Parity-Parity), efficaces pour des rendement de code élevés
à la fois en terme du seuil asymptotique et de la distance minimale.





Abstract

Transcontinental optical-fiber communication cables play an essential role in data net-
working. They enable to transmit huge amount of data at large distances, while respect-
ing low-latency transmission constraints. Their design upgrade is an important challenge,
given that the optical networks are the backbone of modern Internet. The main evolution
in the optical-fiber transmission in the past has been mainly related to the improvement of
the signal-processing part of the communication chain, for example the introduction of the
polarization division multiplexing technique has increased the transmission throughput by
a factor of ten. Nowadays, it became relevant to reconsider the design of error-control
and modulation parts of the optical communication chain.

The main goal of this thesis is to investigate the design of error-control codes and
coded modulations for optical communication by using the concept of non-binary graph
codes over GF (q), q = 2m. The novelty of the approach with respect to the state of art
lies in the fact that we are going to consider the codes over moderate alphabet sizes such
as GF (4) and GF (8). This would allow us to approach to the channel capacity and to
reduce the size of the interleaver between the demodulator and the decoder, at cost of a
reasonable complexity growth.

Our work has lead to three following contributions. The first contribution relates to the
scheme of Symbol Interleaved Coded Modulation (SICM) based onM -QAM modulations:
it has been demonstrated that the QAM-SICM scheme with q > 2 behaves better than
the traditional Bit Interleaved Coded Modulation (BICM), and that, in the case of q =

√
M ,

the SICM scheme achieves the AWGN capacity. The second contribution is focused on
regular LDPC codes over GF (q) used within the QAM-SICM scheme: in the context of
high-rate codes, 3-regular LDPC codes with moderate values of q offer better Bit-Error
Rate (BER) performances than other regular LDPC codes, considered for optical trans-
mission. Finally, the third contribution consists in a design of a new non-binary Doubly-
Generalized LDPC (DG-LDPC) code family, called RPP (Repetition-Parity-Parity) codes,
showing remarkable performances both in terms of the asymptotic decoding threshold
and average minimum, in the interval of high code rates.
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List of abbreviations

The most frequently used abbreviations in this manuscript are listed below.

Abbreviation Meaning
LDPC Low Density Parity Check

DG-LDPC Doubly-Generalized Low Density Parity Check
RPP Repetition Parity Parity

NB-LDPC Non-Binary Low Density Parity Check
AWGN Additive White Gaussian Noise
BEC Binary Erasure Channel
BICM Binary Interleaved Coded Modulation
SICM Symbol Interleaved Coded Modulation
QAM Quadrature Amplitude Modulation
PAM Pulse-Amplitude Modulation
BER Bit Error Rate
LLR Log Likelihood Ratio
CN Check Node
VN Variable Node

EGL Ensemble over the General Linear group





List of notations

The most frequently used notations are listed below.

Symbol Meaning
C a linear error-correcting code
K initial message length (in bits), K ∈ N∗
N binary codelength of a code C, N ∈ N∗
q cardinality of a Galois field
m number of bits in a symbol in GF(q), in case of q = 2m, m ∈ N∗
n symbol codelength of a code, n = N

m , n ∈ N∗
M cardinality of a QAM modulation, M ∈ N∗
r code rate r = K

N
η Gaussian noise η ∼ N (0, σ2)
σ2 Gaussian noise variance, σ ∈ R+

A modulation constellation, M = |A|
ai symbol of the constellation A
bj j-th bit of a Grey labeling for a M -QAM symbol
H parity-check matrix of a code C
(a, d) LDPC ensemble of regular LDPC codes of VN degree a and CN degree d
(a, d,m) LDPC ensemble of regular LDPC codes over GF(2m)
dmin Hamming minimum distance
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1.1 Background and motivation 17
1.2 Structure of this manuscript 18

1.1 Background and motivation
Our work is motivated by optical-fiber data transmission applications.

The evolution of the optical communication in the 90s has been marked by such ad-
vances as design of Erbium-doped fiber amplifiers (EDFAs) [1] and introduction of wave-
length multiplexing (WDM) techniques [2]. In early 2000s, the commercialisation of the
WDM allowed to reach transmission throughputs up to 10Gb/s. During the last decade,
the deployment of the coherent detection [3] together with digital signal processing meth-
ods has contributed a lot to the deployment of transoceanic optical-fiber systems with
high spectral efficiency (from 100Gb/s up to 400 Gb/s per wavelength). It is expected
that upcoming, next-generation long-haul systems will be flexible and may support even
higher data rate depending on the use cases.

The most recent works in optical communication are focused on modulation and error-
control coding techniques. In terms of the modulations, classical Quadrature-Amplitude
Modulation (QAM) and Pulse-Amplitude Modulation (PAM) schemes are always consid-
ered, but in the context of the so called probabilistic shaping [4–18]. As for the error-
control coding designs, the design of non-binary algebraic code construction such as
short BCH codes [19, 20] have been further replaced by the design of 2-regular non-
binary LDPC codes [21, 22] and (binary) spatially-coupled LDPC codes [23–31]. The
relevance of using spatially-coupled codes in optics has been studied in [25, 26]. In both
papers the authors show that spatially-coupled codes can have good performance, par-
ticularly in terms of capacity approaching and low error rates. However, the decoding
complexity and the latency induced by their practical implementation (in terms of power
consumption and throughput) is barely mentioned. Which in itself can be a limitation in
the use of such codes in optics. In [26], the authors point out that this is a open research
problem, in the use of spatially-coupled codes in optics.

This manuscript is aligned in a continuation of development of coding and modulation
techniques for optics. Our main objective is to suggest a class of efficient and practical
coding-modulation schemes for the optical channel. Although in the today’s state of the
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art a lot of codes and modulations from wireless communications standards have been
mapped to the optical transmission, these schemes (almost) never consider practical
implementation constraints which makes them completely non-operational under optical
transmission constraints on high-throughput, low latency and parallelized implementa-
tion. In particular, most coded modulation designs are based on the well-known Binary
Interleaved Coded Modulation (BICM) scheme [32], which makes latency constraints dif-
ficult to meet in practice. It would be interesting to overcome this issue and to suggest an
alternative solution to the BICM.

Designing a joint coded modulation scheme first goes through a judicious choice of
separately code and modulation type. Given that the most popular signal constellation
in practice is the M-ary QAM lattice used on each polarization for each wavelength, the
approach taken in this manuscript will combine a M-QAM modulation and Non-Binary
Low Density Parity Check (NB-LDPC) codes. It is to note that, even if high-throughput
non-binary codes have been already considered for optics in the past [33], the overall
scheme did not exploit the symbol representation of the transmitted data. When consid-
ering non-binary codes, one should respond to some fundamental questions in optical
communications such as how to achieve capacity by increasing the symbol alphabet,
while considering the transmission over a Gaussian communication channel.

In this work, we are therefore focusing on design of NB-LDPC codes over a Gaussian
channel with M-ary QAM modulation schemes. NB-LDPC codes have been proposed by
Gallager in his PhD thesis in 1963 [34]. In 1998, Davey and MacKay [35] have shown that
NB-LDPC codes achieve better performance than binary LDPC codes, over the binary
symmetric channel and the binary-input Gaussian channel. The application of NB-LDPC
codes to optical communication has been studied in [33, 36, 37]. In the latter work, the
authors simply replaced binary LDPC codes by non-binary ones, while only considering
BICM models or simple one-to-one mappings of code symbols to modulation ones.

Our tools, used in the manuscript, are density evolution and calculation of average
weight enumerators and of the growth rate [38]. When put together, they give a good es-
timation of the NB-LDPC performance in asymptotic and finite-length region. Our perfor-
mance region of interest is the region of low Bit Error Rates (BER), ideally BER < 10−12.
Moreover, the code constructions aimed for use in the optical communications should
enjoy high code rates r (around r ' 0.8). Finally, they should be easy to encode and
decode as decoding complexity and latency of optical transceivers is bounded. Thus,
the code design framework that is considered is the design of high-rate codes of low
encoding/decoding complexity, able to achieve low BERs over a Gaussian channel.

1.2 Structure of this manuscript
Let us give an idea of the structure of the manuscript. Next Chapter 2 describes a state
of the art and some notation used in the rest of the document. Chapter 3, considers
coded modulation aspects. A motivating example is given there in order to show why it
is pertinent to reconsider usual coded modulation designs. Then, the Symbol Interleaved
Coded Modulation (SICM) model is presented and compared to the BICM. Chapter 4
studies the performance of high-rate NB-LDPC ensembles with regular degrees, in the
context of very low BERs, large codelengths (N >= 32000 bits) and high code rates
r (0.8 ≤ r ≤ 0.9). The example of regular code ensembles allows to determine more
precisely the range of code parameters and alphabet sizes that might be interesting to
consider for our goals. Chapter 5 introduces a new code construction, called RPP. The
RPP code family is a non-binary code family that outperforms regular LDPC codes in
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the interval of high-code rates, both in asymptotic and finite-length regimes. Chapter 6
contains conclusions and further perspectives.
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This chapter introduces all basic notions needed for reading of next chapters. In particular
it revises communication chain, channel model and non-binary LDPC codes that will be
mentioned through all the document, as well as some fundamental analysis tools for
graph-based codes.

2.1 Important notions from the digital communication theory
Let us start with a brief introduction of notions from digital communications.

2.1.1 Communication chain with an AWGN channel
All the results, further introduced in this manuscript, are developed in the framework of
the communication scheme depicted in Figure 2.1.

Decoder Soft Detector / 
Demodulator 

ModulatorEncoder

AWGN 
channel

c x

yw

K bits

K estimated 
bits

n coded 

symbols

L modulation 

symbols

L received

 symbols

n LLR
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Figure 2.1: AWGN Communication chain.

Let us describe the communication chain step by step. For simplicity of explanation,
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let us assume the use of binary error-correcting codes. Starting from a message m
(where m is a binary vector of length K, m = (m1, . . . ,mK), mi ∈ {0, 1}), the encoder
generates a codeword c of symbol code-length n (binary length N ) c = (c1, . . . , cn),
ci ∈ GF (q). Code symbols are mapped to modulation symbols: each subpacket of L
bits (L is the modulation symbol size in bits, it depends on N and the modulation symbol
size M , L = N

log2M
) is mapped to one modulation symbol. Thus, the modulator outputs

a vector x = (x1, . . . , xL), defined over the modulation alphabet A = (a1, .., aM ) with
ai ∈ R2, which implies that xi ∈ A. The modulation mapping usually belongs to the class
of Gray labeling [39]. The obtained modulation symbols are further sent through the
Additive White Gaussian Noise (AWGN) channel. Therefore, if the output vector of the
AWGN channel is denoted by y = (y1, . . . , yL), each symbol yi from this vector belongs
to R2 and it is expressed as [40]

yi = xi + η. (2.1)

where In the equation above, η ∼ N (0, σ2I2) is the uncorrelated AWGN noise of zero
mean and of variance σ2, σ ∈ R+.

R Remark 1: The communication scheme, described above, is the one based
on M -ary modulation and binary codes. It will further be extended to non-
binary coding schemes and will give rise to the SICM model (see Section
3.2).

R Remark 2: Note that there exist several channel models to describe the op-
tical channel transmission, like 2x2 MIMO AWGN model [41]. However if
the optical system operates in a linear amplification regime its functioning is
well approximated by the classical Gaussian model (2.1). Moreover it was
argued in [42] that one can transform an efficient coded modulation scheme
over the AWGN channel into the one over the AWGN channel with the polar-
ization dependent rate loss.

R Remark 3: For simplicity of analysis, some theoretical results of this work will
be derived while assuming the transmission over the Binary Erasure Channel
(BEC). In the BEC model, bit can either be correctly received, with probability
1−p, or erased with probability p (Fig. 2.2). In the BEC communication chain,
the modulator function is the equality function, thus both modulator and de-
modulator may be omitted. An important observation to note from [38] is the
following: if a family of graph-based codes show good performance over the
BEC, it will also have a good performance over the AWGN channel, as these
both channel models belong to the same class of discrete memoryless input
symmetric channels.
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Figure 2.2: BEC model.

2.1.2 Modulation
In this work, we mainly use M -ary (M ∈ N∗) Quadrature Amplitude Modulation (QAM).

Let us define the QAM in a more formal way.

Definition 2.1.1 — Pulse-Amplitude Modulation (PAM) [40]. Pulse amplitude mod-
ulation (PAM) is the transmission of data by varying the amplitude of a series of signal
pulses, in a regularly timed sequence.

Definition 2.1.2 — Gray labeling [39]. Gray labeling is an ordering of the binary
numeral system such that two successive values differ in only one bit.

Definition 2.1.3 — Quadrature Amplitude Modulation (QAM) [43]. QAM is a sig-
nal in which two carriers shifted in phase by 90 degrees (i.e. sine and cosine) are
modulated and combined.

The resulting QAM signal consisting of the combination of both carriers contains of
both amplitude and phase variations. In view of the fact that both amplitude and phase
variations are present it may also be considered as a mixture of amplitude and phase
modulation.

It is to note that a M -ary QAM can be seen as a combination of two P -ary PAMs. If
a Gray labeling is used for each of the P -PAM modulations, then the obtained M -QAM
symbols are also labeled by Grey labeling. The reader is referred to Chapter 3 for an
example (Figure 3.1).

2.1.3 Soft detection and demodulation
Once the signal y is received at the output of the AWGN channel, there is a Maximum
A Posteriori (MAP) detection phase that allows to estimate which modulation symbol has
been sent.

Two types of detectors are possible in the optical communication scheme: hard de-
tector and soft detector. For each received symbol y from y, a hard detector outputs
symbols the most likely modulation symbol a ∈ A. while soft detectors outputs a vector
of probabilities or Log-Likelihood Ratios (LLR), for all possible values of a from A. In
what follows, the soft detection strategy will be used. Therefore, we will be using the LLR
notation. Let us define it below.
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Definition 2.1.4 — Log-Likelihood Ratio (LLR) over modulation symbols. Given
the modulation alphabet A = {a1, . . . , aM} with a1 = 0 and a received symbol yi
(1 ≤ i ≤ L), the Log-Likelihood Ratio is a vector

L(yi) , {L1(yi), L2(yi), . . . , LM−1(yi)},

where

Lj(yi) = log

(
P (aj |yi)
P (a1|yi)

)
, (2.2)

for 2 ≤ j ≤M .

Let us come back to the communication chain in Figure 2.1. Given the received
vector y = (y1, . . . , yL) and taking into account the definition above, the soft detector
outputs a matrix v of size L × (M − 1), the (i, j)-th element of it being a LLR estimation
Lj(yi). Futhermore, the soft demodulator in Figure 2.1 outputs a vector v’ of length N ,
v’ = (v′1, . . . , v

′
N ), where the i-th element v′i of the vector is a LLR estimate of the i-th

coded bit ui, defined below.
Definition 2.1.5 — Log-Likelihood Ratio (LLR) over coded bits. Given a codeword
u and its associated received vector y, the Log-Likelihood Ratio is a coded bit ui is
defined as

L(ui|y) = log

(
P (ui = 1|y)

P (ui = 0|y)

)
, (2.3)

for 1 ≤ i ≤ N .

Note that there exist a following link between Lj(yk) and L(ui|y):

Proposition 2.1.1 Assume a binary codeword u of length N and a costellation A =
{a1, . . . , aM} of modulation symbols. Let j = b i−1

log2M
c + 1 and k = i − (j − 1) log2M .

Denote by R0 (resp. R1) the subset of symbols ai from A such that their k-th label bit
equals to 0 (resp. to 1). Then,

L(ui|y) = log

∑
a`∈R1

eL`(yj)∑
as∈R0

eLs(yj)
, for 1 ≤ i ≤ N. (2.4)

Moreover, the following useful result also holds:

Proposition 2.1.2 Given a binary codeword u of lengthN and a costellationA of equiprob-
able QAM symbols, assume the transmission over an AWGN channel of channel variance
σ2. Let y = (y1, . . . , yL) be the received vector, associated to the transmission of u. Then,
the LLR estimate L(ui|y) for 1 ≤ i ≤ N is computed as

L(ui|y) = log
(∑

a`∈R1
e−

1
2σ2

((Re(yj)−Re(a`))2−(Im(yj)−Im(a`))
2)
)

− log
(∑

ak∈R0
e−

1
2σ2

((Re(yj)−Re(ak))2−(Im(yj)−Im(ak))2)
)
, (2.5)

where j = b i−1
log2M

c+ 1, R0 (resp. R1) is the set of symbols ai from A such that their j-th
label bit equals to 0 (resp. to 1). Re(·) and Im(·) denote real and imaginary parts of a
symbol.
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2.2 Notions from the coding theory
The decoder operation in Figure 2.1 depends on the type of the error-correcting code
used during the transmission. In what follows, let us define some notions from the coding
theory. They will further be used in order to define the class of Low-Density Parity-Check
(LDPC) codes and their iterative decoding algorithm. Thus, in this work, the decoder in
Figure 2.1 is considered to be an iterative decoder, that outputs the estimated message
m′ of binary length K given LLR estimates of coded bits in the codeword u.

Definition 2.2.1 — Code [38]. A code C of length n and cardinality F over a field
GF (q) ∈ {0, 1, ..., q − 1} is a collection of F elements from Fn, i.e.,

C(n, F ) = {x[1], . . . , x[F ]}, x[F ] ∈ Fn, 1 ≤ f ≤ F. (2.6)

The elements of the code are called codewords. The parameter n is called the block-
length of the code. In case when q = 2m, one has n = N

m , where N is the binary
codelength of the code.

Definition 2.2.2 — Linear code. A code C is a linear code if a linear combination over
GF(q) of any two codewords remains a codeword:

∀x1, x2 ∈ C, ∀α1, α2 ∈ Fn : α1x1 + α2x2 ∈ C (2.7)

A linear code C can be described by a parity-check matrix.
The focus of our work is a class of codes called Low-Density-Parity-Check (LDPC)

codes, introduced by Gallager [34] during his thesis in Massachusetts Institute of Tech-
nology in 1963:

Definition 2.2.3 — Low-Density-Parity-Check (LDPC) codes [34]. LDPC codes are
codes having a sparse parity-check matrix H, when the number of non-zero elements
in H per row/column is upper bounded by a constant.

2.2.1 Tanner graph representation of H

A parity check matrix H can also be represented by a bipartite graph, as it has been first
pointed out by Tanner [44].

The rows of the parity check matrix correspond to variable nodes (VN) of the Tanner
graph, and the columns to the check nodes (CN). Each non-zero element of the matrix
corresponds to an edge connecting the i-th variable node with a j-th check node.

� Example 2.1 As an example, a parity check matrix is given below on the left, and its
associated Tanner graph on the right.

H=



0 1 1 0
1 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0
1 0 0 1


VN: 1 2 3 4 5 6

CN: 1 2 3 4

Tanner Graph

�
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In the q-ary case, the non-zero elements of the matrix are labeled by a mapping f,
f : GF (q) → GF (q), f is an m ×m invertible matrix (m = log2(q), m ∈ N∗), and the zero
elements are all zero matrix, for the Ensemble over the General Linear group (EGL). Also,
f can be defined as f(x) = ωx, where ω ∈ GF (q) \ {0}, for the Ensembles over Finite
Field (EGF).

� Example 2.2 Here is an example of the Tanner graph representation in the EGF q-ary
case.

H=



0 f2 f1 0
f1 0 f4 0
0 0 0 f1

f4 0 f3 0
0 f3 0 0
f2 0 0 f4


VN: 1 2 3 4 5 6

1 2 3 4CN:

f2f1 f4 f3

�

Definition 2.2.4 — Regular and irregular code. One says that a code is (a, d) regu-
lar if:

• each column of its parity check matrix H contains exactly a non-zero elements,
and

• each row contains d nonzero elements.
Otherwise the code is said to be irregular.

2.2.2 Decoding for LDPC codes for transmission over the AWGN channel

In order to decode the received message, one need to use a decoding algorithm. An
optimal decoding algorithm is the Maximum-Likelihood decoding algorithm defined below
by using the notatoin from Figure 2.1.

Definition 2.2.5 — Maximum-Likelihood (ML) [45]. Consider a transmission over a
noisy channel. Let U be a random vector on its input and let V’ be a random vector
on its output. We assume that V’ depends on U via a conditional probability den-
sity function PU|V’(u|v’). Given a received vector v’ = (v′0, . . . , v

′
N−1) , the most likely

transmitted codeword is the one that maximizes PU|V’(u|v’). If the channel is memory-
less and each of the codewords are equally likely, then this reduces to the codeword
u = (u0, . . . , uN−1) which maximizes PV’|U(v’|u). This is known as maximum likelihood
(ML) estimate of the transmitted codeword and is written as follows

m’ = û = arg max
u∈C

PV’|U(v’|u).

When the message is encoded using a LDPC code, a suboptimal yet low-complexity
iterative decoding algorithm is used. Among all possible version of iterative decoding, let
us cite message passing decoding [34], sum product decoding [46] or belief propagation
(BP) decoding [47]. In what follows, let us assume the use of the LLR-based sum product
decoding algorithm, as it is adapted to the decoding while the transmission takes place
over the AWGN channel. The sum-product algorithm is detailedly described in Algorithm
1) below.
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input : r - LLR values of coded symbols, (after demodulation),
r = (r1, ..., rN), ri ∈ R
G - Tanner graph with VNs and CNs, associated with H
Imax - maximal number of iterations

output : L - output LLR vector of coded symbols L = (L1, ..., LN), Li ∈ R
m’ - hard decisions on coded symbols

/* I - the iteration step, I ∈ {0, ..., Imax} */
1 I = 0;
/* N - binary codelength */

2 for i=1:N do
/* µ - number of nodes at check node side */

3 for j=1:µ do
/* Int - the intrinsic matrix is initialized with channel
informations */

4 Intj,i = ri
5 end
6 end
7 while I < Imax and convergence(Int) 6= 1 do

/* Passing LLRs from CNs to VNs */
8 for j=1:µ do

/* Bj is the set of VN connected to the CN j. */
9 for i ∈ Bj do

/* Ext - the extrinsic matrix */
/* the indexes j, i under Int and Ext refers to the edge
between the CN j and the VN i. */

10 Extj,i = log

(
1+Πi′∈Bj,i′ 6=i

tanh

(
Intj,i′

2

)
1−Πi′∈Bj,i′ 6=i

tanh

(
Intj,i′

2

)
)

11 end
12 end

/* Passing LLRs from VNs to CNs */
13 for i=1:N do

/* Ai is the set of CN connected to the VN i. */
14 for j ∈ Ai do
15 Intj,i =

∑
j′∈Ai,j′ 6=j Extj′,i + ri ;

16 end
17 end
18 I = I+1;
19 end
20 for i=1:N do

/* L is the final LLR, it provides a soft output */
21 Li =

∑
j∈Ai Extj,i + ri

22 end
/* Hard decision output */

23 if Li > 0 then
24 m′i = 0
25 end
26 else
27 m′i = 1
28 end

Algorithm 1: Sum product algorithm for decoding a binary LDPC code.
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Let us describe some main steps of Algorithm 1. It takes as input a vector r which
is the vector of LLRs obtained after the demodulation operation. It also serves of the
structure of the associated Tanner graph of the code (or equivalently of the structure of
H). Imax is the parameter that denotes the maximum number of iterations. The algorithm
is based on two main operations:

1. Extrinsic message calculation: calculation of LLR messages sent from CNs to VNs,
using the single-parity check structure associated to CNs;

2. Intrinsic message calculation: calculation of LLR messages sent from VNs to CNs,
using the repetition structure associated to VNs as well as input LLRs values of the
algorithm.

Both operations above are repeated alternatively until a maximal number of iteration
Imax or the algorithm convergence is achieved. At the final step, the algorithm provides a
soft LLR decision L(bi|y) for each bit of in the codeword. Out of the soft decision, a hard
decision value for each bit might be obtained as:

m′i =

{
1, L(bi|y ≤ 0
0, L(bi|y > 0

(2.8)

R The decoding algorithm above is defined for binary LDPC codes for the sim-
plicity of explanation. Its extension to NB-LDPC codes is given in [35]. We
will constantly use it in further sections.

2.2.3 Non binary LDPC ensembles
In this work, a focus is made on the average performance of a code ensemble. The
reason for this is that it is much easier to design an efficient LDPC or LDPC-like code
ensemble with a concentration property and to pick at random a code from the ensemble
[38], than to design an efficient code by itself.

Let us define such a code ensemble for NB-LDPC codes, which will be our codes
of interest. NB-LDPC codes were already proposed by Gallager in his PhD thesis. In
1998, Davey and MacKay [35] have shown that NB-LDPC codes achieve superior perfor-
mance than the binary codes for binary symmetric channel and binary Gaussian chan-
nel.

Definition 2.2.6 — Regular NB-LDPC ensemble over the general linear group. An
ensemble of (a, d)-regular NB-LDPC codes of binary codelength N is defined over the
finite field of cardinality q = 2m and is further denoted by CLDPC(a, d,m, n). A code
from this ensemble has a Tanner graph representation with n = N

q variable nodes of
degree a and a number r of check nodes of degree d. Each edge of the graph is
labeled by a bijective linear mapping f : GF (q) → GF (q). The code ensemble of
our consideration is in one-to-one correspondence to the ensemble of Tanner graphs,
obtained over all possible invertible matrices and over all possible edge labels.

2.3 Analysis tools for NB-LDPC ensembles
In this section, the analysis tools that are used in this work are presented. Density Evo-
lution (DE) analysis [48] is used in the limit of large codelenghts (asymptotic regime).
Moreover, the minimum distance and asymptotic growth rate analysis are our main tools
for finite codelengths.



2.3 Analysis tools for NB-LDPC ensembles 33

2.3.1 Asymptotic analysis: density evolution
Consider the ensemble CLDPC(a, d,m, n) in the limit of large codelengths n → ∞ and
denote it by CLDPC(a, d,m). Also, let the average bit error rate after iterative decoding be
denoted as P C(a,d,m)

b . The main parameter of CLDPC(a, d,m) ensemble in the asymptotic
regime is an asymptotic iterative threshold. The definition of the threshold might differ
from one communication model to another. Let us give the most popular definitions for
the BEC and the AWGN models.

Definition 2.3.1 — Asymptotic threshold over BEC [48]. Consider CLDPC(a, d,m)
over the BEC with erasure probability ε. Then the asymptotic iterative threshold ε∗ is
the lowest value of ε such that P C(a,d,m)

b > 0.

Definition 2.3.2 — Asymptotic iterative threshold over the AWGN channel [49,
50]. Consider CLDPC(a, d,m) over the AWGN with signal-to-noise ratio Eb

N0
, in decibels

(dB). Then the asymptotic iterative threshold
(
Eb
N0

)∗
is defined as the highest value of

Eb
N0

such that P C(a,d,m)
b > 0.

The value of the asymptotic threshold for the CLDPC(a, d,m) ensemble has been first
derived in [48], in case of the BEC, with the help of the so called density evolution ap-
proach. Let us detail it below.

Definition 2.3.3 — Density evolution over the BEC and ε∗ [48]. Assume transmis-
sion over the BEC of probability ε. Let E be the probability vector of length m + 1
(m is the number of bits in a code symbol of cardinality q, m = log2(q), m ∈ N∗)
corresponding to channel input messages, the i-th element of which is

E(i) ,

(
m

i

)
εi(1− ε)m−i, i = 0 . . .m.

Let x(`) and y(`) be probability vectors of lengthm+1, each of them associated with de-
coding messages of particular type at decoding iteration `. Then the density evolution
is defined by {

x(`) , E �
(
�c−1y(`−1)

)
y(`) , �d−1x(`)

(2.9)

where y(0) = (0, . . . , 0, 1) and the upperscript k at �e or �e denotes the recursive
application of the corresponding operation e times. For two probability vectors a and b
of length m+ 1, the operations a� b and a� b are defined as

a�k b ,
m∑
i=k

m+k−i∑
j=k

Gi,kGm−i,j−k2
(i−k)(j−k)

Gm,j
(2.10)

a�k b ,
k∑
i=0

k∑
j=k−i

Gm−i,m−kGi,k−j2
(k−i)(k−j)

Gm,m−j
, (2.11)

where k = 0, ...,m and Gm,k is the Gaussian binomial coefficient,
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Gm,k =

[
m
k

]
=


1, if k = m or k = 0

Πk−1
l=0

2m−2l

2k−2l
, if 0 < k < m

0, otherwise

(2.12)

which gives the number of different subspaces of dimension k of GF(2m).
Finally, given (5.6), the asymptotic decoding threshold of the CLDPC(a, d,m) en-

semble is the lowest value of ε such that x(∞)(0) < 1.

R Note that DE can also be performed over the AWGN channel by an ap-
proximation, obtained with Monte-Carlo density evolution [51–53]. Where
Monte-Carlo method is used to simulate an infinite LDPC code in order to
investigate the properties of the decoding algorithm.

2.3.2 Finite-length analysis: minimum distance and asymptotic growth rate calculation

Consider a NB-LDPC ensemble of some finite-length n. The bit error probability of a
code from the ensemble is usually approximated by the average bit error probability of the
ensemble P

CLDPC(a,d,m,n)
b , which in its turn, is lower bounded by the bit error probability

Pb,ML under Maximum-Likelihood (defined on definition 2.2.5) decoding. In the case of
the transmission over the AWGN, upper and lower bounds on the ML decoding probability
were presented by Sason and Shamai [54], where the authors derive a Gallager-like
upper bound on the decoding error probability under ML decoding. These work has been
followed by a multitude of results derived under different code/transmission models. For
binary LDPC codes, the most recent papers refer to bounds for decoding over the BEC
[55] and the BSC [56] Nonbinary regular LDPC codes and AWGN channel are addressed
in [57].

It is to note that all the aforementioned bounds heavily depend on the average weight
distribution of the considered code ensemble. Let us give some important definitions
below and explain what weight properties a NB-LDPC code ensemble should have in
order to have good decoding performance and is able to attain very low bit error rates in
the optical communication setting. First, let us start with the Hamming distance, defined
by Richard Hamming in the fifties.

Definition 2.3.4 — Hamming weight (distance) [38]. The Hamming weight (dis-
tance) d(u, v) of a pair of vectors (u, v) with the elements in GF (q) is the number
of positions in which u differs from v.

Definition 2.3.5 — Minimum distance [38]. The minimum distance dmin of a code C
is defined as

dmin = min{d(u, v) : u, v ∈ C, u 6= v}.

With some abuse of notation one also denotes by dmin the average Hamming minimum
distance of some code ensemble C.

Given the average minimum Hamming distance of a non-binary LDPC ensemble C,
one can lower bound its average ML decoding probability and thus the desired error
probability P CLDPC(a,d,m,n)

b . In particular, for erasure channels of erasure probability ε one
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can conclude from [55] that

P
CLDPC(a,d,m,n)
b ≤ O(εdmin),

as well as, for binary-input memoryless symmetric channels [58]

P
CLDPC(a,d,m,n)
b ≤ O(Ddmin),

where D =
∑

y

√
P (y|0)P (y|1) is a Bhattacharyya channel parameter. As for the bounds

developed in the AWGN case, their expressions can be found in [59] and [60].
Given the bounds above and the fact that, for optical communications, one desires to

use code ensembles able to achieve extremely low BERs, a special focus should be given
to asymptotically good code ensembles, i.e., code ensembles whose minimum distance
grows linearly in the codelength n. Note that the estimation of dmin properties of NB-
LDPC is well studied in the state of the art. For regular NB-LDPC codes with a > 2, it is
known from [34] that dmin grows linearly with n. Moreover, NB-LDPC codes with a = 2
have logarithmically growing minimum distance.

R The weight distribution of a NB-LDPC can be defined symbolwise as above
and in [61], or bitwise, see [62] for instance. As both symbol Hamming mini-
mum distance and binary Hamming minimum distance of an ensemble have
the same growth with respect to the codelength n, the two approaches are
equivalent for our purposes. In what follows, the symbol minimum distance
is considered.

In order to estimate whether the dmin growth is linear, a possible approach is to use
the asymptotic growth rate of the C(a, d,m) ensemble [61, 63]. Let us define it here for
further use.

Definition 2.3.6 — Asymptotic growth rate. The growth rate of the CLDPC(a, d,m, n)
ensemble is defined as

Gm(ω) , lim
n→∞

1

n
logAbnωc, 0 < ω < 1,

where Āt is the average number of codewords of Hamming weight t in the ensem-
ble, 0 ≤ t ≤ n.
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In the previous chapter, a QAM-based communication chain with binary encoding/decoding
has been introduced for transmission over the AWGN channel. Moreover, a class of NB-
LDPC codes has been defined.

In this chapter, let us focus on a communication chain based both on a channel code
over GF (q) and M -QAM modulation scheme, while the transmission is still assumed to
take place over the AWGN channel. Such a setup motivates us to investigate us two
following questions:

• what is the best value of q with respect to M ;
• for fixed q and M , what matching between q-ary coded symbols and M -ary modu-

lation symbols would give the lowest error probability after decoding.
Note that, even though there exist a number of numerical results for such a matching in
the optics community, it seems that there is no explicit result on this subject.

The chapter starts with a motivating numerical example that illustrates the relevance
of considering different mapping of coded symbols to modulation symbols. Inspired by
the example, a Symbol Interleaved Coded Modulation (SICM) scheme is further defined,
and its performance is studied.

3.1 Our motivating example: M = 16 and q = 2; 4; 16

Let us consider a particular example of the 16-QAM modulation and of a regular NB-
LDPC code over GF (q).

3.1.1 Bit-level LLRs after demodulation

Our first observation is on bit-level LLR estimations after the demodulation process. We
are going to show on an example of 16-QAM that some bits are more reliably estimated
than the other.

Proposition 3.1.1 Let the 16-QAM modulation be seen as the Kronecker product of two
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4-PAM modulations, each using a Gray labeling . Therefore, a label (b0, b1, b2, b3) of each
QAM symbol is a concatenation of labels (b0, b1) and (b2, b3) of two respective 4-PAM
symbols. Let ∆ be the half of the distance between two closest QAM symbols and let
modulation symbols be equiprobable.

Let y be the received value, when a 16-QAM symbol has been sent though an AWGN
channel of variance σ2. Then the LLRs of label bits b0 and b1 are approximated as follows:

L(b0|y) ≈

{
−2∆Re(y)−4∆2

σ2 if Re(y) < 0
2∆Re(y)−4∆2

σ2 otherwise.
(3.1)

L(b1|y) ≈


−4∆Re(y)−4∆2

σ2 if Re(y) < −2∆
−2∆Re(y)

σ2 if − 2∆ ≤ Re(y) < 2∆
−4∆Re(y)+4∆2

σ2 otherwise.

(3.2)

Moreover, the LLRs L(b2|y) and L(b3|y) for label bits b2 and b3 are expressed by (3.1)-
(3.2), if one replaces Re(y) with Im(y).

Figure 3.1: Construction of 16-QAM modulation from two 4-PAMs (red one and
blue one).

Proof. An illustration to the setup of the lemma is given in Figure 3.1). It depicts two 4-
PAM modulations (vertical axis with blue points and horizontal axis with red points), and
the resulting 16-QAM modulation. Note that, as 4-PAMs use Gray labeling, the symbols
of the 16-QAM have a Gray labeling as well.
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Consider the k-th bit in the Gray label of a 16-QAM symbol. Denote byRk0 andRk1 two
subsets of A such that their k-th label bit equals to 0 and 1 respectively. Using Definition
2.1.5) and that P (bk = b|y) =

∑
aj∈Rkb

P (aj |y),

L(bk|y) = log

(∑
aj∈Rk1

P (aj |y)∑
aj∈Rk0

P (aj |y)

)
(3.3)

= log

(∑
aj∈Rk1

P (y|aj)∑
aj∈Rk0

P (y|aj)

)
, (3.4)

where at the last step it was used that the modulation symbols are equiprobable. Given
that y = x+n where x = ai and n ∼ N (0, σ2I2) is the AWGN noise sample, one has that
y ∼ N (ai, σ

2I). Therefore

L(bk|y) = log

 ∑
a`∈Rk1

e
−(Re(y)−Re(a`))

2

2σ2
− (Im(y)−Im(a`))

2

2σ2


− log

 ∑
a`′∈Rk0

e
−(Re(y)−Re(a`′ ))

2

2σ2
−

(Im(y)−Im(a`′ ))
2

2σ2

 , (3.5)

and one obtains an expression similar to the one in Proposition 2.1.2. With the use of the
max-log approximation [64] log

(∑
j e

aj
)
≈ max

j
(aj), one obtains that

L(bk|y) ≈ 1

2σ2

[
min
aj∈Rk1

((Re(y)−Re(aj))2 + (Im(y)− Im(aj))
2)

− min
aj∈Rk0

((Re(y)−Re(aj))2 + (Im(y)− Im(aj))
2)
]

(3.6)

Let us consider two first bits labels b0 and b1 (red labels in Figure 3.1). They are
provided by the first 4 − PAM and play their role in the real part of 16 −QAM symbols.
Therefore, it is sufficient to consider exclusively Re(y). Given 4-PAM labeling as shown
in Figure 3.2 and the k-th bit label (k = 0; 1), denote by āk0(y) ( resp. āk1(y)) the 4-PAM
symbol, closest to Re(y) and which k bit label equals to 0 (resp. 1). Then, for k = 0; 1 one
has that

L(bk|y) ≈ 1

2σ2

[
(Re(y)− āk1(y))2 − (Re(y)− āk0(y))2

]
, (3.7)

=
1

2σ2

[
2Re(y)(āk0(y)− āk1(y)) + (āk1(y))2 − (āk0(y))2

]
. (3.8)

Similarly to [65] where the bit-level LLR calculation has been done for PAM modula-
tions, let us split 4-PAM bit labels into two parts: the Least Significant Bits (LSB) part and
the Most Significant Bits (MSB) part, and to consider them separately. See Figure 3.2 for
illustration if the LSB/MSB splitting.

1. LSB case:
Let us distinguish Re(y) ≥ 0 and Re(y) < 0.
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Figure 3.2: Dividing a 4-PAM bit label into LSB ans MSB parts.

a) For Re(y) < 0, ā0
0(y) = −3∆ and ā0

1(y) = ∆, thus

L(b0|y) =
1

2σ2

[
2Re(y)(−3∆ + ∆) + (−∆)2 − (−3∆)2

]
,

=
−2∆Re(y)− 4∆2

σ2

b) For Re(y) ≥ 0, as ā0
0(y) = 3∆ and ā1

1(y) = ∆,

L(b0|y) =
1

2σ2

[
2Re(y)(3∆−∆) + (∆)2 − (3∆)2

]
,

=
2∆Re(y)− 4∆2

σ2

By putting the cases a) and b) together, one obtains (3.1).
2. MSB case: Let us distinguish Re(y) < −2∆, −2∆ ≤ Re(y) < 2∆, and Re(y) ≥ 2∆:

a) For Re(y) < −2∆, ā1
0(y) = −3∆ and ā1

1(y) = 1∆

L(b1|y) ≈ 1

2σ2

[
2Re(y)(−3∆−∆) + (∆)2 − (−3∆)2

]
,

=
−4∆Re(y)− 4∆2

σ2

b) For −2∆ ≤ Re(y) < 2∆, we have ā1
0(y) = −∆ and ā1

1(y) = ∆, and thus

L(b1|y) =
1

2σ2

[
2Re(y)(−∆−∆) + (∆)2 − (−∆)2

]
,

=
−2∆Re(y)

σ2
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Figure 3.3: Comparison of results of Lemma 3.1.1 with numerical simulations.

c) For Re(y) ≥ 2∆, ā1
0(y) = −∆ and ā1

1(y) = 3∆

L(b1|y) =
1

2σ2

[
2Re(y)(−∆− 3∆) + (3∆)2 − (−∆)2

]
,

=
−4∆Re(y) + 4∆2

σ2

By putting together the cases a), b) and c) above, one obtains (3.2).
The calculation for b2 and b3 is similar. �

Using Lemma 3.1.1 above, one can compare approximated bit LLR values in the case
of LSB and MSB. Figure 3.3 compares L(b0|y) (blue curve) and L(b1|y) (red curve) ap-
proximations for different values of Re(y), as well as their exact LLR values (two black
curves). One can see that the red and blue approximations capture pretty well the be-
haviour of exact LLRs. Also, note that L(b0|y) and L(b1|y) behave differently with Re(y).
This is the point which further be used in the chapter. Moreover, let us define the average
LLR value as follows:

Definition 3.1.1 Given L(b0|y and L(b1|y, let the average LLR expression LBICM be
defined as

LBICM (y) =
1

2
[L(b0|y) + L(b1|y)].

LBICM is represented by the green curve on Figure 3.3.
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3.1.2 Numerical results with q-ary LDPC codes for q = 2; 4; 16 and 16-QAM
Given the observation on the difference of LLR estimations from the previous section, one
expects to have a different decoding performance for different values of q and different
ways of grouping bit labels into the symbols of the code (i.e. different coded modulation
schemes).

The difference indeed has place. Let us illustrate it on a numerical example of a
regular (3, 6) LDPC code over GF (q) of binary codelength N = 1000 bits. As M = 16 in
our particular example, let us consider the following cases:

• Case q = 2: a coded LDPC symbol corresponds to a bit label in the 16-QAM.The
average bit LLR behaviour is given by the green curve in Figure 3.3.

• Case q = 4: a coded LDPC symbol corresponds to two bit labels in the 16-QAM.
Two choices to form a coded symbols are possible :

(a) a LDPC symbol consists of two bits chosen uniformly at random among all
possible bit labels. Such a mapping will further be defined as a Bit-Interleaved
Coded Modulation (BICM). Not that its average bit LLR behaviour is given by
the green curve in Figure 3.3;

(b) a LDPC symbol consists of two bits that correspond either to the first half
either to the second half of the 16-QAM symbol label. Such a mapping will
further be defined as a Symbol-Interleaved Coded Modulation (SICM). In this
case, the LDPC symbols are partitioned by type : MSB or LSB.

• Case q = 16: a coded LDPC symbol corresponds to four bit labels in the 16-QAM.
Let us again consider two possibilities to form a coded symbol :

(a) in a BICM way, when a LDPC symbol consists of four bits chosen uniformly at
random among all possible bit labels;

(b) in a SICM way, where one 16-QAM symbol is mapped to one 16-ary LDPC
symbol.

Figure 3.4 illustrates the BER performance versus signal-to-noise ration Eb
N0

in dB for
all the five options presented above. Moreover, it also contains the sixth curve (blue with
triangle marks) from the state of the art, for a particular case presented by Schmalen et
al. [33], where q-ary code symbols are converted to bits before modulation, we found that
it was sub-optimal compared to SICM.

By comparing the BER performances in Figure 3.4, we conclude that:
- the decoding performance for q = 4 outperforms q = 2 and q = 16 cases;
- for a fixed value of q, the mapping of modulation symbols to coded symbols matters.

For both q = 4 and q = 16 the SICM way of mapping outperforms the BICM way of
mapping;

- the best BER performance in our example is given by the q = 4 with SICM, and
this for any value of Eb

N0
. This coded modulation scheme outperforms the one with

BICM by 0.25 dB at BER = 10−4.
In order to explain the obtained results, let us define the SICM scheme in a more formal
way and to study its performance. This is the main topic of the following section.

3.2 Symbol Interleaved Coded Modulation (SICM)
This section is devoted to the definition and asymptotic performance analysis of the so
called Symbol Interleaved Coded Modulation .

3.2.1 Definition of SICM
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Figure 3.4: BER performance of a q-ary (3,6) LDPC code of binary codelength
N = 1000 with various coded modulation schemes, assuming the transmission
with 16-QAM and over AWGN channel.

Definition 3.2.1 The SICM scheme (see Figure 3.5) is given by the serial concatena-
tion of an error-control code over GF (q), and of a QAM of order M , separated by a
symbol interleaver that maps one or several code symbols into a modulation symbol.

SICM operations are described as follows.
• Channel encoding. Information symbols are first encoded into a codeword
c = [c1, · · · , cn] ∈ GF (q)n, of binary codelength N = mn bits, m = log2(q).

• Interleaving. The coded symbols are then interleaved using the symbol in-
terleaver. After interleaving and grouping the interleaved coded symbols into
groups of l symbols over GF (q) (l = (log2M)/q), one obtains
C[k] = [c1[k], c2[k], · · · , cl[k]] – a sequence of nonbinary l-tuples for 1 ≤ k ≤ Ns

and Ns = n/l. From all the said above, it follows that symbol interleaver is a
bijective map given by

Symbol interleaver : [1, · · · , n] 7→ [1, · · ·Ns]× [1, · · · l]
k′ (k′′, i) (3.9)

where ck′ ∈ GF (q) is the k′-th coded symbol and ci[k
′′] is the i-th component of

the l-tuple C[k′′]. For the ease of exposition, the time index will be omitted in the
following when the context is clear enough.
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Figure 3.5: SICM model with a q-ary error-control code and M -QAM modulation.
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Figure 3.6: Extended BICM model with a q-ary error-control code and M -QAM
modulation.

• Modulation. A QAM symbol x[k] ∈ A is then selected based on the value of the
symbol labeling C.

• Receiver side. After having observed y, the transmitted symbols are detected by
a soft symbol maximum a posteriori (MAP) demapper, and inverse interleaving
and decoding operations are then performed.

Note that the defined SICM model is an extension of the classical communication
chain presented in Section 2.1.1. To the best of our knowledge, the SICM scheme has not
been yet studied (although the notion of symbol interleaving is not new and first papers
on it refer to 1988 [66], most of symbol interleaving schemes from the state of the art
address the interleaving for OFDM and MIMO transmission protocols). In case of q = 2,
the SICM is equivalent to the classical Bit-Interleaved Coded Modulation (BICM) scheme
with binary codes, considered in [32, 67, 68]. Note that such a BICM is widely used under
various wireless and optical communication scenarios and is very well investigated, see
for instance [69] for the optical-fiber application. The interested in BICM is referred to [70]
for further details.

While considering non-binary channel codes overGF (q), there might be interesting to
extend the BICM definition to this case. In fact, the extension has been already presented
in an implicit way in [71], let us simply reformulate it in the following way:
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Definition 3.2.2 The extended BICM scheme, depicted in Figure 3.6, is given by the
serial concatenation of an error-control code over GF (q), and of a QAM of order M ,
separated by a bit interleaver that interleaves bits in the code symbols and maps them
into into a M -ary modulation symbol.

Note that the BICM cases considered in Section 3.1.2 fall into the framework of Definition
3.2.2.

3.2.2 Asymptotic performance of the SICM scheme parametrized by q and M

Let us compare the asymptotic performance of SICM and (extended) BICM schemes.
Our reference measure will be the coded modulation (CM) capacity :

Definition 3.2.3 For independent and identically and uniformly distributed constrained
inputs, the coded modulation (CM) capacity CCM is defined as CCM = I(X;Y ). More-
over, in our setting (i.e., M -ary modulation of alphabet A and q-ary channel code with
q = 2m, while the transmission takes place over the AWGN channel) it expressed as

CCM = m− E
x,y

[
log2

∑
a∈ANs p(y|a)

p(y|x)

]
. (3.10)

By the chain rule applied to the binary labeling with l = log2M bits, the coded modulation
capacity (3.10) can be rewritten for as follows

CCM = I (c1, . . . , cl;Y )

= I (c1;Y ) +
l∑

k=2

I (ck;Y |c1, . . . , cl−1) (3.11)

where [c1, · · · , cl] is the binary l-tuple associated to the labeling of a M -ary symbol x ∈ A.
From (3.11) it follows that the optimal coded modulation scheme can be seen as the
transmission scheme with l binary channels.

Let us also define SICM and BICM capacities:

Definition 3.2.4 Assuming independent decoding of l symbol channels under the
SICM setting from Definition 3.2.1. Then the SICM capacity CSICM is defined as

CSICM =

l∑
k=1

Cck ,

where Cck = I(Y ; ck) is the capacity of the equivalent symbol-channel associated to
the label index ck.

Definition 3.2.5 The BICM capacity is given by

Cbicm =

log2M∑
k=1

I (ci;Y ) .

It is to note that in general Cbicm ≤ Ccm, due to the gap between
∑l

k=1 I (ci;Y ) and
I (c1, . . . , cl;Y ) in (3.11).

One could expect that, similarly to the BICM case, CSICM ≤ CCM . Moreover, in the
state of the art, it is often argued that nonbinary coding schemes matching to the order
of the QAM constellation (i.e., M = q) are the best choice in order to fill the gap between
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Figure 3.7: CM, SICM and BICM capacities for q2-PAM for q2 ∈ {16, 64, 256} with
Natural binary and Binary Reflected Gray mappings (thus here q =

√
M ).

CBICM and CCM . However we have the following interesting result regarding the SICM
capacity:

Theorem 3.2.1 Consider transmission over the AWGN channel using a SICM scheme
with M -ary QAM modulation and a q-ary channel code, such that:

• the QAM modulation is designed as a direct product of two PAMs, and
• q divides M .

Then, if q =
√
M , CSICM = CCM . Otherwise, for q <

√
M , CSICM≤CCM .

Proof. Let C = [c1, c2] be the resulting nonbinary partitioning of the QAM symbol labeling
into two PAM labeling parts as illustrated in Figure 3.1. Let us denote by Cck = I(Y, ck)
the equivalent nonbinary channel associated to the non-binary label ck. The SICM ca-
pacity is then given by

Csicm = Cc1 + Cc2 . (3.12)
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Figure 3.8: CM, SICM and BICM capacities for 64-QAM and channel codes over
GF(4) (thus here Q <

√
M ).

Now, note that

CCM = I(y; c1) + I(y; c2|c1)

= I(y; c1) + I(y; c2) = CSICM , (3.13)

where that the second equality is due to the orthogonal nonbinary signaling of 2 PAMs.
Also note that Cb0

= Cb1
by symmetry.

In general, I(c2;Y |c1) ≥ I(c2;Y ). One can use this statement to prove CSICM≤CCM ,
for q <

√
M . �

The theorem above suggests that, using M -ary coding schemes with M -QAM modu-
lations is an unnecessarily complex solution. Figure 3.7 illustrates numerical estimations
of capacities of q2-QAM modulations for different values of q, when natural binary and bi-
nary reflected Gray mappings are used. As predicted, CSICM is naturally equal to CCM

for all considered values of q. The BICM capacity is also reported, thus showing the im-
pact of the binary labeling of the constellation symbols. Remind that there is no influence
when non-binary mapping is used for q2-QAM modulations.
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Figure 3.9: CM, SICM and BICM capacities for a 16/64/256-QAM constellation
build by superposition.

Theorem 3.2.1 states that the SICM scheme is no longer optimal if q <
√
M and some

performance loss is expected. For an example, Figure 3.8 shows the SICM capacity for
M = 64 and q = 4 <

√
M . One observes that SICM outperforms BICM at low capacity

rates; the gain up to 0.5 dB can be obtained for the Gray mapping, and even more for the
natural binary mapping. The same result has also been observed for 256-QAM.

R Note that it is also possible to design SICM schemes by the so called su-
perposition [72, 73], also referred sometimes to as hierarchical modulations.
In dshort, this type of QAM constellations is generated based on the linear
superposition in the signal spaces of 4-QAM modulations (so called super-
position layers), following some specific rules when adding a layer to another
the final labeling is a Gray labeling [72, 73]. It can be shown that the SICM
schemes with QAM modulations build by superposition are performing the
same when as the BICM scheme for the same value of q. Indeed, it can
be shown that, when Binary Reflected Gray mapping is used, bit channels
in the twi cases are equivalent up to a permutation of the bit labeling. To
illustrate this point, Figure 3.9 compares CM, SICM and BICM capacities for
various modulation orders, for channel codes over GF(4) and based on the
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modulations defined in the LTE standard [74]. These modulations are Gray
QAM modulations and can be interpreted as superposed QAM modulations.
Rates of respective layers for the optimal CM scheme are also given in the
figure. One can see the SICM behaves similarly to the BICM.

3.3 Conclusion
In this chapter, the following points have been discussed:

• q =
√
M : SICM capacity = CM capacity, if one uses the Gray labeling obtained

from a direct product of 2 q-ary PAM modulations.
• q <

√
M : BICM capacity ≤ SICM capacity ≤ CM capacity. Moreover, in case

of q-ary codes with q < M , it is only possible to achieve the capacity by using a
multi-level coding which would give rise from (3.11). The design by superposition
behaves worse than the design by direct product of PAMs.

• Although the SICM scheme for 2 < q <
√
M is bounded away from the CM

capacity, it still outperforms the extended BICM scheme at low and moderate
values of SNR.
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In the previous chapter we have seen that q-ary error-control codes are a part of the
SICM scheme that might help to obtain a better decoding performance in QAM-based
transmissions over the AWGN channel.

This chapter will be therefore focused of the most known family of NB-LDPC codes
over GF (q) – regular NB-LDPC codes from the CLDPC(a, d,m, n) ensemble, defined in
Chapter 2. The decoding performance of the codes will be considered in the context of
optical transmission, i.e. assuming high code rates r, 0.8 ≤ r ≤ 0.9. It is to note that this
operational point did not receive much attention in the state of the art yet, and thus needs
to be investigated.

4.1 State of the art: NB-LDPC codes and optical communications
Regular NB-LDPC codes have been first proposed by Gallager in his PhD thesis [34].
Later, Davey and MacKay [35] have shown that NB-LDPC codes achieve better decoding
performance compared to binary codes, over the binary symmetric and the binary-input
AWGN channels. Asymptotic and finite-length of regular NB-LDPC codes has been stud-
ied in many research works, i.e., in [22, 48, 61, 62, 76, 77]. It is however to note that
the main accent in the design of NB-LDPC codes is mostly made on 2-regular NB-LDPC
codes [21, 22, 62, 78], as they show the best improvement in the asymptotic iterative
threshold

(
Eb
N0

)∗
with respect to the alphabet size q (up to q = 64). It is also impor-

tant to note that 2-regular NB-LDPC codes have a logarithmic minimum distance, thus
they might be unable to achieve very low BERs; this point will be illustrated later on in
this chapter. To the best of our knowledge, 2-regular NB-LDPC codes can only achieve
BER = 10−10, and this with a significant alphabet size q, which implies an important
decoding complexity. Other works on NB-LDPC codes [33, 36, 37, 79–83] can also be
mentioned, such as works of Djordjevic et al. [36, 84, 85] on non-binary codes for optical
communication. The most of the works address the complexity issue of decoding of non-
binary codes. For instance, a Min-Max decoding has been suggested in [86], while the
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authors in [87] proposed a version of a Gallager-B decoding algorithm based on symbol
representation of message passing algorithm from [34]. Another version of message-
passing, the so called binary message passing algorithm from [88] has been suggested
for decoding of non-binary codes used for optical channel transmissions.

Given all the said above, regular NB-LDPC codes did not seem to be so good candi-
dates for optical-fiber transmissions because of their poor asymptotic/dmin properties and
higher decoding complexity, and the most of the optical community has recently turned
into the design of so called Spatially-Coupled LDPC (SC-LDPC) codes [89, 90]. SC-
LDPC codes offer good performance at large codelengths and a regular code structure,
which is highly appreciated in the optics community because of implementation reasons.
Their decoder complexity and latency are however a big issue (a SC-LDPC decoder of
window size W runs over a graph with WN bit nodes in order to decode N bits).

In this chapter, let us reconsider regular NB-LDPC codes in the setting of high code
rates r (0.8 ≤ r ≤ 0.9) and to see if there are still some regular NB-LDPC codes that
might be interesting in our setting.

4.2 Performance analysis of high-rate NB-LDPC Codes
In order to an efficient high-rate coded modulation scheme, one needs to choose a code
ensemble having both good asymptotic performance (to guarantee that the BER after
decoding improves even for high levels of channel noise) and good typical minimum dis-
tance (to guarantee that the error probability after decoding does not experience the
"error-floor" effect and therefore achieves very low BER values). In what follows, one
studies which codes within the CLDPC(a, d,m, n) ensemble, defined in Section 2.2.3, are
the most suited from asymptotic and minimum distance considerations.

4.2.1 Asymptotic analysis of NB-LDPC codes over the BEC
First, let us assume the transmission over the BEC with erasure probability ε, and let us
directly apply the density evolution, explained in Section 2.3.1, to the CLDPC(a, d,m, n)
ensemble, and observe the asymptotic threshold behaviour with respect to the code rate
r.

As a result of the density evolution, Figure 4.1 compares thresholds ε∗ (Definition
2.3.1) of three ensembles, CLDPC(2, d,m) (top picture), CLDPC(3, d,m) (middle picture)
and CLDPC(4, d,m) (bottom picture), plotted for different values of d (and thus of r as
r = 1 − a

d ) and q (here q ∈ {2, 4, 8, 16, 64}). Moreover, Figure 4.2 plots threshold values
of the same NB-LDPC ensembles, but per alphabet size q (q = 2; 4; 16). One observes
that:

1) In the region of medium code rates 0.3 ≤ r ≤ 0.6, the threshold of 2-regular NB-
LDPC codes improves a lot with q, while the threshold of 3- and 4-regular NB-LDPC
codes strictly worsens with q.

2) In the region of high code rates (r > 0.75), the threshold behavior of 3- and 4-
regular codes is similar to what have been observed for lower rates but the change
in thresholds for different values of q is much smaller. Indeed, at r = 0.8 the
difference of thresholds of 3-regular codes for q = 2 and q = 4 is only 0.001, which
is negligeable.

The second observation is critical for the high-rate code design: it shows that 3- and
4-regular NB-LDPC codes with moderate values of q do not loose much in ε∗. Figure
4.2 supports even more 3-regular NB-LDPCs: one can see that their thresholds ε∗ are
comparable to the threshold of 2-regular NB-LDPC codes up to q = 16.
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Figure 4.1: ε∗ vs. r for (2, d) (top picture), (3, d) (middle picture) and (4, d) (bottom
picture) NB-LDPC codes. d = a

1−r and εSh is the Shannon capacity.
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Figure 4.3: Thresholds of CLDPC(2, d,m) and CLDPC(3, d,m) over the binary input
AWGN channel, d = a

1−r , m = log2(q) , for rates r = 1/2; 4/5; 9/10 (from bottom to
top).

A similar result can also be reported over the binary-input AWGN channel with the
BPSK signaling. Figure 4.3 shows the approximation of the AWGN thresholds for different
rates r ∈ {1/2, 4/5, 9/10} and 2 ≤ q ≤ 256, obtained with Monte-Carlo density evolution
[51–53]. For any rates of Figure 4.3, an intersection point seem to operate between
q = 8 and q = 16. Before this point, 3-regular NB-LDPC codes outperform and after
this point it is 2-regular NB-LDPC codes. Note that in the high-rate regime, there is no
a strict monotonic degradation of the threshold w.r.t. q for 3-regular NB-LDPC codes,
as it was the case over the BEC. For q = 4 and q = 8, one has even (slightly) better
thresholds of C(3, d,m) in comparison with q = 2. Note that, for q = 4 and q = 8, the
asymptotic threshold of 3-regular NB-LDPC codes outperforms the one of 2-regular NB-
LDPC codes. In fact, one needs to take q ≥ 32 in order to ensure that 2-regular codes
perform sufficiently well. We can also observe that the higher the code rate r is, the more
the gap between the lowest thresholds of 2- and 3-regular LDPC codes become smaller
(e.g. gap of 0.6dB at rate r = 0.5, while a gap of 0.1dB at r = 9

10 ).

4.2.2 Finite-length analysis of NB-LDPC codes using minimum distance approach

By using tools from Section 2.3.2 let us present some results for high-rate NB-LDPC
codes.

For 2-regular NB-LDPC codes, the typical Hamming distance is upper bounded [34]
by

dmin ≤ 2 + 2 logd−1

n

2q
(4.1)
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Figure 4.4: Growth rate Gm(ω) of the (3, 15,m) NB-LDPC ensemble.

which in fact means that dmin of 2-regular codes is logarithmic in the codelength n.
This gives rise to poor values of dmin, as illustrated in Table 4.1 for C(2, d,m, n). For
C(a, d,m, n) with a > 2, it is known [34] that dmin grows linearly with n. One can observe
from Table 4.1 that dmin of 3- and 4-regular ensembles grows fast with q (up to the value
of q around 16 when the number n = N

m of variable nodes in the associated Tanner graph
of the code becomes too restrictive). Table 4.1, i.e. the estimation of dmin, is obtained
using (4.1) when a = 2. For a > 2, dmin ≈ γn, where γ is the value obtained when
Gm(ω) = 0. For instance, γ = 0.0064 for (3, 15) LDPC codes over GF(16). Equation
(4.1), together with Table 4.1 and lower bounds on the ML decoding error probability from
Chapter 2, strongly suggest that 2-regular NB-LDPC codes are not good candidates for
high-rate code applications requiring low BERs after decoding.

(a, d)
q 2 4 8 16 32 64

(2,10) 10 10 9 9 9 9
(3,15) 32 40 46 51 51 49
(4,20) 80 90 83 82 80 71

Table 4.1: Estimation of dmin as a function of q for r = 0.8 and fixed binary code-
length N = 32000.
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Figure 4.5: Minimum distance for (a, d) LDPC codes over GF(q), q = {2, 4, 16}
and d = a

1−r .

Let us investigate how fast dmin grows for NB-LDPC codes. Figure 4.4 illustrates a
known result of the asymptotic growth rate Gm(ω), mentioned in [91]. Denote by γm the
smallest positive value of ω such that Gm(ω) = 0. Then dmin ≈ γmn. Figure 4.4 therefore
shows that dmin quickly grows with q; this trend remains true for all values of a > 2 and
all values of d.

However, in the region of high code rates, γm is not as large. This is illustrated in
Figure 4.5. Figure 4.5 shows the behaviour of γm with respect to the code rate r, for
degrees a = 3; 4 and alphabet sizes q = 2; 4; 16. Given a and r, the degree d is fixed
as d = a

1−r . Figure 4.5 shows that γm (and thus dmin) significantly decreases with r.
Therefore, if one is looking to achieve very low BERs such as BER = 10−15, one should
pay a particular attention to chosen parameters a and q. Note however that increasing a
has an impact in a much higher decoding complexity (at high code rates, d also quickly
increases with a). Fortunately, it is possible to improve γm by increasing q. For instance,
for (3, d) regular NB-LDPC codes one can gain ∆γm = 0.007 at r = 0.7, when passing
from q = 2 to q = 4, or ∆γm = 0.0007 at r = 0.7, when passing from q = 2 to q = 16.

4.3 Simulation results
Let us present some performance results for NB-LDPC, over the AWGN transmission
channel with M -QAM scheme. Given the fact that the SICM always behaves at least as
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good as the BICM, all our numerical results have been obtained in the SICM setup.
Let us fix the code rate r = 0.8 and the binary codelength N = 32000. Figure 4.6

shows the BER of NB-LDPC codes in two cases M = 16 (on the left) and M = 64 (on
the right). Two values of a has been considered: a = 2 and a = 3. Here it is to note that
4-regular codes do not have such a good asymptotic threshold as 2- and 3-regular codes,
so they have been eliminated. Moreover, 4-regular codes are more complex to encode,
which is a big drawback in optical communications. Therefore, Figure 4.6 presents the
BER performance of (2, 10) and (3, 15) NB-LDPC codes. One can observe that (3, 15) NB-
LDPC codes outperform (2, 10) NB-LDPC codes, and thus even when short cycles from
Tanner graphs of 2-regular codes have been removed by the Progressive-Edge Growth
(PEG) algorithm [92]. For M = 16, even the most efficient (2, 10) NB-LDPC codes (over
GF (16)) have an error-floor at BER ≈ 5 · 10−5 due to their logarithmic dmin. As another
reference curve for M = 16, the BER of a binary SC-LDPC code of codelength N has
been also presented. Its code parameters have been chosen to take into account the
termination rate loss and to obtain the code rate r = 0.8001 (we chose a = 3,d = 16,
L = 16 and w = 1 with one-side coupling). One can observe that this curve have good
performance but not better than others curves, less complex to encode.

ForM = 16, a (3, 15) NB-LDPC code overGF (4) behaves the best BER performance.
It has a worse threshold than a (2, 10) NB-LDPC with q = 16, but a better slope of the BER
curve and the absence of the error-floor due to its better minimum distance properties.

4.4 Discussion
The asymptotic threshold of a NB-LDPC ensemble is a measure of how close one can get
to the Shannon limit, under sufficiently large codelengths. Moreover, a sufficiently good
typical dmin is a necessary condition for a code from the ensemble to be able to attain
low values of BER. Note that 2-regular codes have poor values of dmin. This implies that,
in order to achieve low BER, a large value of q together with a tedious optimisation of
edge labels is needed. One observe that 3-regular NB-LDPC codes present a very good
performance tradeoff in terms of

(
Eb
N0

)∗
and dmin, if one considers moderate values of q,

4 ≤ q ≤ 16. Thanks to relatively high values of dmin, there is no need to increase q too
much. Moreover, optimisation of edge labeling is neither really necessary.

Here is a recap table for this chapter:

threshold dmin encoding/decoding complexity

NB-LDPC:
(2, d) good very bad good
(3, d) good medium medium
(4, d) medium good bad

As a conclusion, choosing (3, d) LDPC codes with medium values of q seems to be a
good choice for high-throughput optical communications.
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Figure 4.6: Bit error-rate performance of M -QAM SICM schemes based on (2, 10)
and (3, 15) NB-LDPC codes of r = 0.8 and N = 32000 for M = 16; 64 and q ∈
{2, 4, 8, 16}. Compared to state-of-the-art blue curve: spatially-coupled code.
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In the previous chapter, a choice of the most suitable code parameters for the optical-fiber
transmission has been made, for a family of high-rate NB-LDPC codes. It has been shown
that (3, d) NB-LDPC codes over GF (4) seem to be the best choice, if one is restricted
to a regular code construction. Unfortunately, because of implementation constraints of
optical systems, it is not desirable to make an extension to irregular codes : the code
construction is recommended to be regular or quasi-regular.

This chapter descries our extension of NB-LDPC codes to doubly-generalized NB-
LDPC codes: the so called Repetition-Parity-Parity (RPP) code family. It which would
keep the decoding complexity similar to the usual LDPC construction, but would behave
better in comparison with LDPC counterparts at high code rates. In order to enlarge
our search space, we allow ourselves the use of extended alphabets, but of moderate
alphabet size.

5.1 State of the art: doubly-generalized LDPC codes
In the classical LDPC code design, the Tanner graph is composed of variable nodes (VN)
that correspond to repetition codes, and of check nodes (CN) that correspond to single
parity-check codes. As for Generalised LDPC (GLDPC) codes [94, 95], their CN may
correspond to other component codes, which are not necessarily parity codes. Finally,
Doubly Generalised LDPC (DG-LDPC) codes [96], or Tanner codes [97], can not only
have various types of CN, but they are also allowed to have different component codes
at the VN side. Note that the asymptotic iterative analysis of DG-LDPC codes have been
performed for the Binary Erasure Channel (BEC) [98, 99], as well as over the Gaussian
channel [100, 101]. The asymptotic growth rate analysis has been done in [102].

It is interesting to notice that the most used component codes in GLDPC and DG-
LDPC constructions (excepting repetition and parity-check codes) are Hamming and BCH
codes [103]: they are relatively easy to decode and they enjoy good minimum distance
properties. In general, however, DG-LDPC codes are less known that classical LDPC
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Figure 5.1: Structure of a (a, b, d, α,m) RPP code. Its Tanner graph contains a
fraction α of VN of type A and a fraction 1 − α of VN of type B. © are repetition
component codes, ⊕ – single-parity check codes, and • – coded symbol nodes.

codes, as they are more difficult to handle and more complex to decode.

5.2 Repetition-Parity-Parity (a, b, d, α,m, n) construction
Let us introduce a new code family which is a particular case of DG-LDPC codes and
that is called repetition-Parity-Parity (RPP):

Definition 5.2.1 A RPP code is parametrized by (a, b, d, α,m, n). It is a DG-LDPC
code of symbol codelength n defined over GF (2m), with the following structure of its
Tanner graph presented in Figure 5.1:

• a fraction α of its variable nodes (VN) is said to be of type A. These VNs corre-
spond to repetition codes over GF (2m) and of codelength a > 2;

• a fraction (1 − α) of its variable nodes (VN) is said to be of type B. These VNs
correspond to single parity-check codes over GF (2m), of codelength b > 2 and
of dimension b− 1;

• nodes representing coded symbols over GF (2m) are connected both to VN
nodes of type A and B: each A-type VN node is connected to exactly one symbol
node, and each VN node of type B is connected to b− 1 symbol nodes.

• all its check nodes (CN) correspond to single parity-check codes over GF (2m),
of codelength d;

• each edge connecting a variable and a check node is labelled by f : GF (2m)→
GF (2m).

An ensemble of (a, b, d, α,m, n) DG-LDPC codes is defined over all possible edge
permutations and edge labels.

One assumes 0 ≤ α ≤ 1, a < d, b < d and a, b, d ∈ N.
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A binary codelength of the code is, as before, N = mn. Moreover, let a RPP code
have nA variable nodes of type A and nB variable nodes of type B. Then, by construction,
nA and nB satisfy the following:{

nA + (b− 1)nB = n

nA = α(nA + nB)
=⇒

{
nA = αn

(b−1)(1−α)+α

nB = (1−α)n
(b−1)(1−α)+α

(5.1)

The total number of edges ne in the Tanner graph can be computed as

ne = anA + bnB

=
αa+ b(1− α)

(b− 1)(1− α) + α
n (5.2)

R If α = 1, the RPP ensemble corresponds to the (a, d)-regular NB-LDPC
ensemble over GF (2m).

The iterative decoding algorithm of RPP codes is performed over the Tanner graph in
Fig. 5.1 by using a usual decoding scheduling for DG-LDPC codes, including 1) update of
messages at the VN side; 2) update of messages at the CN side. This decoding algorithm
is a slight extension of the sum-product algorithm presented in Section 2.2.

Lemma 5.2.1 The design code rate r of the (a, b, d, α,m, n) RPP ensemble is

r ≥ 1− 1

d
· ab

αb+ a(1− α)(b− 1)
. (5.3)

Proof. For a Tanner code with the average rate of variable nodes (resp. check nodes)
equal to RV N (resp. to RCN ), the design rate is [97]

r≥1− 1−RCN
RV N

.

In the case of a (a, b, d, α,m, n) RPP code,one has

RCN =
d− 1

d
(5.4)

RV N =
α

a
+ (1− α)

b− 1

b
. (5.5)

�

5.3 Asymptotic analysis over the BEC
Assuming the transmission over the binary erasure channel and applying the similar
approach as in [93], we derive the following density evolution (DE) equations for the
(a, b, d, α,m, n) RPP ensemble. Remind that the DE equations are given in terms of
probability mass functions. In the particular case of the BEC, they are probability vectors
of length m + 1. Also, remind that the DE operations are defined with the help of two
elementary operations � and �, that represent correspondingly the convolution at the
repetition nodes and the special convolution at the single parity-check nodes for two in-
put vectors. The reader is referred to equations (2.10) and (2.11) or [93] for more details.
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Figure 5.2: Probability vectors x, y, x̃, ỹ, x̂ and ŷ, associated with different decod-
ing messages over the Tanner graph.

Theorem 5.3.1 Assume transmission over the BEC of probability ε. Let E be the
probability vector of length m + 1 corresponding to channel input messages, the i-th
element of which is

E(i) =

(
m

i

)
εi(1− ε)m−i, i = 0 . . .m.

Let x(`), y(`), x̃(`), ỹ(`), x̂(`) and ŷ(`) be probability vectors of length m+ 1, each of them
associated with decoding messages of particular type at decoding iteration `, as is it
shown in Figure 5.2 and described in [93]. Then,

ỹ(`) = E � y(`−1)

ŷ(`) = y(`−1)

x̃(`) = ŷ(`) �
(
�b−2ỹ(`)

)
x̂(`) = �b−1ỹ(`)

x(`) = γ
(
E �

(
�a−1y(`−1)

))
+ 1−γ

b

(
x̂(`) + (b− 1)(E � x̃(`))

)
y(`) = �d−1x(`)

(5.6)

where y(0) = (0, . . . , 0, 1) and

γ =
αa

αa+ (1− α)b
. (5.7)

Proof. Let us start with a particular case of binary RPP codes below. If one assumes
the binary RPP ensemble characterized by (a, b, d, α, 1), then x(`), y(`), x̃(`), ỹ(`), x̂(`) and
ŷ(`) are erasure probabilities, associated with decoding messages of particular type at
decoding iteration `. Before the start of decoding (` = 0), y(0) = 1. Then, by following the
flow of the decoding messages exchange in Figure 5.2, we obtain the following equations
for a decoding iteration ` > 0:
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ỹ(`) =εy(`−1)

ŷ(`) =y(`−1)

x̃(`) =1− (1− ŷ(`))
(

1− ỹ(`)
)b−2

x̂(`) =1− (1− ỹ(`))b−1

x(`) =γε
(
y(`−1)

)a−1
+

1− γ
b

(
x̂(`) + (b− 1)(εx̃(`))

)
y(`) =1− (1− x(`))d−1

where γ is the fraction of edges between VNs and CNs, connected to VN of type A, it is
given by (5.7).

The extension to a general case of m ≥ 1 is straightforward, when using the approach
described in [93]. �

Definition 5.3.1 The asymptotic iterative threshold ε∗ of the RPP ensemble (a, b, d, α,m, n)
is the smallest value of ε ∈ (0, 1) so that (5.6) has a solution in the limit of decoding
iterations `→∞.

For the observation how ε∗ depends on the RPP code parameters, the reader is
referred to the subsection below.

5.3.1 Numerical DE results
This section presents examples of ε∗, obtained for (a, b, d, α,m, n) ensembles.

Let a = 3 and b = 3. Note that in this case, for a fixed code rate r, the value of d is
fixed and computed as

d =
ab

αb+ a(1− α)(b− 1)
· 1

1− r
=

3

(2− α)(1− r)
.

Tables 5.1 and 5.2 show values of ε∗ for RPP ensembles of rates r = 0.5 and r = 0.8
respectively, for various values of α and alphabet sizes m. For each value of m, the
best value of ε∗ is underlined in bold. Figure 5.3 contains all our obtained results, for
r = 0.5; 0.6; 0.7; 0.8. Dashed lines in Figure 5.3 represent BEC capacity limits εSh = 1−r
for each of the considered code rates. It is also to note that the case of α = 1 corresponds
to the case of (3, d) NB-LDPC ensemble over GF (2m).

Both Tables 5.1 and 5.2 and Figure 5.3 allow us to observe the following:
• ε∗ improves with the decrease of α up to some optimal value (depicted by star in

Figure 5.3), and then it starts to degrade.
For example, the ensemble (3, 3, 5.0.8, 1) has a better threshold than the ensemble
(3, 3, 6, 1, 1) (which is the binary (3, 6)-regular LDPC ensemble). This can be ex-
plained by the fact that, by fixing α < 1, one reduces the degree of CN, and this
has a positive effect on ε∗.

• The threshold improvement becomes even more significant with the code rate r.
This is related to the fact that degrees of CN at high code rates are large, and to
reduce them with a help of α is beneficial.

• The improvement of ε∗ is finally more substantial for larger values of m. The phe-
nomena can be explained with the help of EXIT charts [104]: the shaping of VN
and CN EXIT curves is becomes more and more different with m, which acts in a
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α (d)
m

1 2 3 4 6

0.5 (d = 4) 0.4113 0.4541 0.4684 0.4714 0.4645
0.8 (d = 5) 0.4502 0.4543 0.4496 0.4406 0.4196
1 (d = 6) 0.4294 0.4234 0.4121 0.3988 0.3728

Table 5.1: ε∗ for (3, 3, d, α,m) codes of rate r = 0.5 for α = 0.5; 0.8; 1 and m =
1; 2; 3; 4; 6.

α (d)
m 1 2 3 4 6 8

0.1250 (d = 8) 0.1154 0.1545 0.1731 0.1796 0.1798 0.1756
0.3333 (d = 9) 0.1314 0.1659 0.1781 0.1811 0.1777 0.1718
0.5000 (d = 10) 0.1524 0.1736 0.1800 0.1799 0.1736 0.1663
0.6364 (d = 11) 0.1644 0.1766 0.1789 0.1767 0.1682 0.16
0.7500 (d = 12) 0.1693 0.1763 0.1759 0.1722 0.1622 0.1535
0.8462 (d = 13) 0.1705 0.1742 0.1719 0.1671 0.1562 0.147
0.9286 (d = 14) 0.1696 0.1709 0.1673 0.1617 0.1502 0.1409

1 (d = 15) 0.1675 0.1670 0.1625 0.1564 0.1445 0.1351

Table 5.2: ε∗ for (3, 3, d, α,m) for fixed code rate r = 0.8.

negative way to the value of ε∗. To have α < 1 allows to obtain the shape of the VN
EXIT curve, more similar to the shaping of the CN EXIT curve.

α
m

1 2 4 6

1 1 1 1.2 1.5
0.8 0.9 0.75 0.8 N/A
0.5 1.6 N/A 0.5 0.5

Table 5.3: Eb
N0

∗
in dB for (3, 3, d, α,m) RPP codes overs the AWGN channel, α =

0.5; 0.8; 1 and m = 1; 2; 4; 6, given a fixed code rate r = 0.5.
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Figure 5.3: Thresholds of (3, 3, d, α,m) RPP codes vs. α, for various values of m
and for code rates r = 0.5; 0.6; 0.7; 0.8.
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Some results for the Gaussian channel are also available. Table 5.3 shows simulated
thresholds Eb

N0

∗
(dB) over the AWGN channel for r = 0.5. One observes a similar be-

haviour to BEC: the best AWGN threshold are obtained for α = 0.5 and large values of
m, and the best threshold for α = 0.8 is achieved when m = 2, exactly like on the BEC
case.

Finally, let us see the impact of values of a and b on ε∗. Figure 5.4 depicts the asymp-
totic thresholds of RPP ensembles of code rates 0.5 and 0.8 with respect to α, in the case
of a = b. Note that here, for each value of alpha, one plots the best threshold value, sim-
ulated over 1 ≤ m ≤ 6. (The reader is referred to Appendix 6.2for more detailed results
for a = 4; 5; 6.) One considers 4 numeric values of a: a = 3; 4; 5; 6. One observes that, at
high code rates, there might be beneficial to consider a = 4 and a = 5, in contrast to the
case of r = 0.5 when a = 3 is the most interesting parameter value.

5.4 Finite-length analysis
In the previous section it has been shown that having a non-zero number of VN nodes
of type B (and thus decreasing α) in the RPP structure is beneficial for the asymptotic
iterative threshold for basically all values of m. This section studies how this operation
impacts on the typical dmin of the RPP ensemble. Remind that the initial goal of our work
is to design efficient high-rate channel codes that would be able to attain very low BERs,
and one needs to have a linear minimum distance for this.

Our study on dmin contains two parts. Firstly, a necessary condition on linear mini-
mum distance is formulated in Section 5.4.1. Secondly, the average weight distribution
and the asymptotic growth rate of the (a, b, d, α,m) RPP ensemble are computed in Sec-
tions 5.4.2 and 5.4.2.

5.4.1 Necessary condition on linear minimum distance
Our first result on dmin properties of the RPP ensemble can be stated as following:

Lemma 5.4.1 Let m = 1, consider a code chosen at random from the (a, b, d, α, 1, n)
RPP ensemble. Let a > 2. Then, if the parameters b, d and α are chosen so that
α < α0 then dmin of the code grows sublinearly in the codelength n,

α0 =
(b− 1)d− b

(b− 1)(a+ d)− b
. (5.8)

One can extend to m > 1 using [22]. A cycle of length L in the subgraph implies
a valid RPP codeword of weight L

2 under some condition on the edge labels. Thus, in
general, α0 ≥ αm.

Proof. The proof follows the approach presented in Section II in [105].
Assume a code from the considered RPP ensemble and construct its associated

graph of codewords of weight 2 G as it is defined in [105]. Following the definition of G
in [105] and taking into account that a > 2, the set of nodes of G in our case is the union
of nodes of degree b (variable nodes of type B) and of nodes of degree d (check nodes).
Moreover, the set of edges of G contains all the edges in associated Tanner graph of
the code that connect nodes of degree b with nodes of degree d. Therefore the graph
G contains nB nodes of degree b, ne

d nodes of degree at most d, and it has exactly bnB
edges. Remind that nB and ne are given by (5.1) and (5.2) respectively.
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Moreover, it has been shown in [105] that, if the graph G contains cycles, then the
length of the smallest cycle is proportional to dmin. In the particular case of the RPP
ensemble, there will be always at least one cycle in G of sublinear codelength when
nB(b − 1) > ne

d . Therefore, one deduces that a code from the (a, b, d, α,m, n) ensemble
has a sublinear minimum distance if

(1− α)(b− 1)d > αa(b− 1) + (1− α)b,

which can be rewritten as in (5.8). �

This result implies the following necessary condition on linear dmin:

Corollary 5.4.2 For a RPP ensemble for some fixed parameters a, b and d, one should
satisfy the following conditions in order to possibly have a linear dmin: (1) the degree
a should be larger than 2, and α should satisfy α > α0.

� Example 5.1 For an example, for a = b = 3, m = 1, one has α0 = 2d−3
2d+3 . Thus, all code

ensembles from Table 5.1 satisfy the necessary condition on dmin. As for the ensembles
mentioned in Table 5.2, only those with α ≥ 0.8462 satisfy the necessary condition. �

5.4.2 Sufficient condition on linear minimum distance
Let us develop a sufficient condition on dmin of RPP ensembles.

Average weight distribution calculation
The following result holds for the average weight distribution of our code construction:

Theorem 5.4.3 Consider the (a, b, d, α,m, n) RPP ensemble of design rate r. Let b ≥ 2
and let the respective number of edges in the Tanner graph be equal to ne. Then, the
average number of codewords of Hamming weight mω in C is given by:

E[N(C, nω] =

ωn∑
τn=0

(
αn

τn

)(
(1− α)n

(ω − τ)n

)(
ne
S

)
(5.9)

· coeff(pm(y)ne/d, yS)

|GLm2 |S
· (2m − 1)nω, (5.10)

where

pm(y) ,
1

2m

[
(1 + |GLm2 |y)d +

(
1− |GL

m
2 |y

2m − 1

)d
(2m − 1)

]
(5.11)

and

S =

{
naω, if τn = ωn

aτn+ L ·A(ω − τ) if 0 ≤ τn < ωn
, (5.12)

while L , nB(b− 1) and
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A(γ) =(2m − 2)

(
1−

b−2∏
i=0

L− γn− i
L− i

)

+ (b− 1)(2m − 1)

(
γn

L
+

γn

L− b− γn

b−2∏
i=0

L− γn− i
L− i

)
(5.13)

The proof of Theorem 5.4.3 is very similar to the one for non-binary LDPC codes in
[106], except the intermediate part related to the calculation of the Hamming weight for
VNs of type B. Let us proceed as following: 1) we define an input-output weight enu-
merator polynomial q(x, z) and prove a simple yet useful result on q(x, z) for a single
parity-check codes; 2) we derive an expression for a certain parameter v that will be
further used in the proof of Theorem 5.4.3; 3) we prove Theorem 5.4.3.

Let us start with the definition of an input-output weight enumerator.

Definition 5.4.1 Given a linear block code C of codelength n and of dimension k, with
a k×n generator matrix G, its input-output weight enumerator (IOWE) is a polynomial
q(x, z) s.t.

q(x, z) ,
k∑
i=0

n∑
j=0

Ai,jx
izi,

where Ai,j= Ai,j(G) is the number of codewords in C that have Hamming weight j
and for which the Hamming weight of input vectors is i.

We are interested in the IOWE of a single-parity check code over GF (2m). Even though
the weight enumerator of a single parity-check code is well-know from the state of the art,
we were not able to find its formulation in the IOWE form. Therefore, let us formulate and
prove the following useful lemma:

Lemma 5.4.4 For a single-parity check code of codelength b, defined over GF (q) with
q ≥ 2,

q(x, z) =
1

q − 1

(
(1 + z(q − 2))[1 + xz]b−1

+ (z − 1) [(b− 1)xz − (q − 2)]
)

(5.14)

Proof. By enumeration,

q(x, z) =1 +

(
b− 1

1

)
xz2 +

1 + (q − 2)z

q − 1

b−1∑
k=2

(
b− 1

k

)
xkzk

Here we have used the fact that, for a non-zero input vector from (GF ∗(2m))b−1, its parity
equals to zero with probability 1

q−1 and it is non-zero otherwise. Finally, by using the
binomial formula, one obtains (5.14) �

Let us continue with the following lemma related to the output Hamming weight of nB
distinct single-parity check codes over GF (q):

Lemma 5.4.5 Assume nB distinct single parity-check codes over GF (q), of codelength



5.4 Finite-length analysis 79

b each, for b ≥ 2. Let an input word of length L = (b− 1)nB and of Hamming weight γn
is encoded by means of these nB codes. Then the resulting output codeword has the
average Hamming weight v,

v =

{
0, if γn = 0,

L ·A(γ) if γn > 0

and A(γ) is given by (5.13).

Proof. Let us prove Lemma 5.4.5.
The IOWE for nB parity check codes over GF (q) equals to q(x, z)nB , where q(x, z) is

the one from Lemma 5.4.4. Let us define the following important quantity:

qγ(z) ,coeff (q(x, z)nB , xnγ) (5.15)

Then the average Hamming weight v at the ouput of nB parity codes, given that their
input Hamming weight is nγ, is computed as follows

v =

(
q′γ(z)

qγ(z)

)∣∣∣∣
z=1

(5.16)

Note that, if γn = 0, v = 0.
Now let γn > 0. We have

qγ(z)|z=1 = coeff (q(x, z)nB , xγn)|z=1 (5.17)

= coeff
(
(1 + x)L, xγn

)
(5.18)

=

(
L

γn

)
. (5.19)

and

q′γ(z)
∣∣
z=1

=

(
d

dz
coeff (q(x, z)nB , xγn)

)∣∣∣∣
z=1

(5.20)

= coeff
((

d

dz
q(x, z)nB

)∣∣∣∣
z=1

, xγn
)

(5.21)

= L · coeff
(
r(x) · (1 + x)L−b+1, xγn

)
, (5.22)

where

r(x) = (q − 2)[(1 + x)b−1 − 1] + (b− 1)x[(q − 1)(1 + x)b−2 + 1] (5.23)

Thus,

q′γ(z)
∣∣
z=1

=L

(
(q − 2)

(
L

γn

)
+ (b− 1)(q − 1)

(
L− 1

γn− 1

)
−(q − 2)

(
L− b+ 1

γn

)
+ (b− 1)(q − 1)

(
L− b+ 1

γn− 1

))
(5.24)
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and

v =L

(
(q − 2)

(
1−

b−2∏
i=0

L− γn− i
L− i

)
+ (b− 1)(q − 1)

(
γn

L
+

γn

L− b− γn

b−2∏
i=0

L− γn− i
L− i

))
(5.25)

This completes the proof of Lemma 5.4.5.
�

Now we are ready to prove Theorem 5.4.3.

Proof. Pick at random a code C from given ensemble. The number of its codewords of
Hamming weight nω is given by

N(C, nω) =
∑
u∈W

1u(C), (5.26)

where W is the set of all the words of length n and of Hamming weight nω over GF (2m).
and 1u(G) is the indicator function (1u(G) = 1 if u is a codeword of C). Then the expec-
tation is

EC [N(C, nω)] =
∑
u∈W

E[1u(C)]. (5.27)

Because of the symmetry in the permutation of edges and due to uniform probability
of all the possible edge labels on every edge, 1u(G) is independent of the word u and
depends only on its weight and on the partition non-zero symbols u between connections
to variable nodes of type A and B. Let τn non-zero symbols of u have been allocated to
coded symbols, connected with variable nodes of type A, and the rest - to coded symbols
connected with variable nodes of type B. Note that, by construction, τ ≤ ω ≤ α. Then,

E[N(C, nω)] =(2m − 1)nω
ω∑
τ=0

(
αn

τn

)(
(1− α)n

(ω − τ)n

)
E(1u(G)|τ), (5.28)

where E(1u(G)|τ) is the expectation that a codeword of codelength n with τn non-zero
symbols of type A and (ω − τ)n symbols of type B is a codeword of randomly chosen
code from the considered ensemble. We have

E(1w(G)|τ) =
number of graphs for which u is a codeword

total number of graphs
(5.29)

The total number of graphs is given by ne!|GLm2 |ne . Let us now compute the number of
graphs for which the word u of weight ωa and with τn symbols of type A is a codeword.

The number of edges in the Tanner graph, carrying non-zero symbols, is

S = v + aτn, (5.30)

where v is given by Lemma 5.4.5. Thus, the total number of graph for which u is a
codeword is

(ne − S)!S!|GLm2 |ne−Scoeff(pm(y)nCN , yS), (5.31)
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where nCN is the number of check nodes of degree d in the graph,

nCN =
ne
d
.

The factorial terms correspond to permuting the edges carrying zero value and non-zero
value. The term |GLm2 |ne−S takes care of the fact that we can put any edge label on the
edges carrying the value zero. The polynomial pm(y) is given as in [45]: first we define
the quantity Fd,

Fd = |{(M1, . . . ,Md) :

d∑
i=1

Mixi = 0,Mi ∈ GLm2 , xi ∈ GFm2 }|;

then

pm(y) = 1 +

d∑
i=1

(
d

i

)
Fiy

i = (5.11)

In Summary,

E(1w(G)|τ) =

(
ne
S

)
coeff(pm(y)nCN , yS)

|GLm2 |S
(5.32)

Substituting (5.32) in the expression for E(N(C, nω)) gives the desired result.
This completes the proof of Theorem 5.4.3. �

Asymptotic growth rate analysis
Following Theorem 5.4.3, let us derive the growth rate Gm(ω) of the RPP ensemble.

Before to start our calculation, we remind the Hayman method from [38] for approxi-
mating the term coeff(f(x)n, xθn) when n→∞, for f(x) being a finite degree polynomial
(satisfying some technical conditions). In particular, we are interested in the well-known
result for the function pm(y), defined in chapter D of [38]:

Lemma 5.4.6 [38] Consider the function pm(y) from (5.11) and two small positive vari-
ables η and θ, i.e. 0 ≤ η, θ ≤ 1. Define

p1(y) =
ηy

pm(y)

dpm(y)

dy
and p2(y) = y

dp1(y)

dy
.

Then, for n→∞,

coeff
(
pm(y)ηn, yθn

)
=

pm(y0)ηn

yθn0

√
2πnp2(y0)

(1 + o(1)),

where the term o(1) converges to 0 and y0 is the unique positive solution of p1(y) = θ.

Corollary 5.4.7 [38] One has that

log coeff
(
pm(y)ηn, yθn

)
= ηn log pm(y0)− θn log y0 + o(n),
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where y0 is the unique positive solution of

(1 + |GLm2 |y)d−1 −
(

1− |GL
m
2 |y

2m−1

)d−1

(1 + |GLm2 |y)d +
(

1− |GL
m
2 |y

2m−1

)d
(2m − 1)

=
θ

ηd|GLm2 |y
. (5.33)

The definition of Gm(ω) has been given in Section 4.2.2. Let us state and prove the
following result for the RPP ensemble.

Theorem 5.4.8 Assume an RPP ensemble of parameters (a, b, d, α,m). Define

K0 =
ne
n

=
αa+ b(1− α)

(b− 1)(1− α) + α
(5.34)

and

K1 =
L

n
=

(b− 1)(1− α)

(b− 1)(1− α) + α
(5.35)

Then the asymptotic growth rate Gm(ω) is given by

Gm(ω) = ω log(2m − 1) + αh
(τ0

α

)
+ (1− α)h

(
ω − τ0

1− α

)
+
K0

d
log(pm(y0))

+K0h

(
θm(τ0)

K0

)
− θm(τ0) log y0 − θm(τ0) log |GLm2 |, (5.36)

where h(x) is the entropy function,

h(x) = −x log x− (1− x) log(1− x),

and,

θm(τ) =aτ +K1(2m − 2)
(

1− (1−K1(ω − τ))b−1
)

+K1(b− 1)(2m − 1)

(
K1(ω − τ) +

K1(ω − τ)

1−K1(ω − τ)

(
1− (1−K1(ω − τ))b−1

))
,

(5.37)

while τ0 and y0 are the unique solutions of (5.38) and (5.33) respectively,

log
α− τ
τ
− log

1− α− ω + τ

ω − τ
+
∂θ

∂τ

(
log

K0 − θ
θ

− log y0|GLm2 |

)
= 0, (5.38)

Proof. Let us denote the summation term of Equation (5.10) corresponding to index τn
by Tτn, i.e.

Tτn =

(
αn

τn

)(
(1− α)n

(ω − τ)n

)(
ne
S

)
coeff(pm(y)ne/d, yS)

|GLm2 |S
· (2m − 1)nω.
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Then the growth rate

Gm(ω) = max

(
lim
n→∞

log T0

n
, lim
n→∞

log Tωn
n

, sup
τ∈(0,ω)

β(ω, τ)

)
, (5.39)

where

β(ω, τ) = lim
n→∞

log Tτn
n

. (5.40)

Using the asymptotic approximation of the binomial coefficient log
(
u
v

)
= u ·h

(
v
u

)1 and the
Hayman approximation mentioned above, one obtains that

β(ω, τ) = lim
n→∞

1

n

{
nω log(2m − 1) + n · h

( τ
α

)
+ n · h

(
ω − τ
1− α

)
+ log

(
ne
S

)
+ log coeff(pm(y)ne/d, yS)− S log |GLm2 |

}
(5.41)

= ω log(2m − 1) + αh
( τ
α

)
+ (1− α)h

(
ω − τ
1− α

)
+K0h

(
θm(τ)

K0

)
+
K0

d
log(pm(y0))− θm(τ) log y0 − θm(τ) log |GLm2 |, (5.42)

where y0 satisfies (5.33) and

θ , lim
n→∞

S

n
.

Remind that S is given by (5.12). As

A∞(γ) , lim
n→∞

A(γ)

=(2m − 2)
(

1− (1−K1γ)b−1
)

+ (b− 1)(2m − 1)

(
K1γ +

K1γ

1−K1γ

(
1− (1−K1γ)b−1

))
,

and τ < ω, one obtains that

θ = θm(τ) = aτ +K1A∞(ω − τ), (5.43)

which results in (5.37).
In order to find supτ β(ω, τ), it is needed to find

∂β(ω, τ)

∂τ
=log

α− τ
τ
− log

1− α− ω + τ

ω − τ
+
∂θ

∂τ

(
log

K0 − θ
θ

− log y0|GLm2 |

)

and we determine τ0 so that

∂β(ω, τ)

∂τ

∣∣∣∣
τ=τ0

= 0.

�

1Remind that h(·) is the entropy function
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Corollary 5.4.9 For a (a, b, d, α, n) RPP ensemble, the sufficient condition on linear
dmin is given by the behaviour of the asymptotic growth rate Gm(ω) from Theorem
5.4.8 for ω → 0+: if Gm(ω) is negative for small positive values of ω, the corresponding
RPP ensemble has a linear minimum distance.

� Example 5.2 It is verified that the RPP ensembles with a = b = 3 from Tables 5.1 and
5.2, satisfying the necessary condition on dmin, also satisfy the sufficient condition. �

5.5 Simulation results
Let us present some numerical results, illustrating the performance of RPP codes.

Fig. 5.5 shows the BER performance of (3, 3, d, α,m) RPP codes of fixed rate r = 0.5
and of binary codelength N = 36000 bits. The following values of d have been tested:
d = 4; 5; 6, this corresponds to the following values of α: α = 0.5; 0.8; 1. As for the
alphabet sizes, we chose m = 1; 2; 4; 6. As expected from Table 5.1, the codes with
α = 0.5 and m = 2 have the best threshold performance among plotted curves. Note
that they also present a steep waterfall region. Similar behaviour is also observed for the
AWGN channel 5.7, where α = 0.5 and m ∈ {4, 6} have the best threshold performance.
Remind that α = 1 represents the classical NB-LDPC codes case. One observes the
improvement of ∆ε = 0.02 between the best NB-LDPC code and the best RPP code of
rate 0.5.

For code rate r = 0.8, among the BER curves of codes of binary codelength of 36000
bits with a = 3, b = 3, α = 0.8462; 0.9284; 1 and m = 1; 2; 4, the best performance, among
the plotted curve, is observed for α = 0.8462 and m = 2. This also coincides with the
results shown in Table 5.2.

5.6 Conclusion
This chapter introduced a new class of (a, b, d, α,m, n) Repetition-Parity-Parity (RPP)

codes, having a fraction (1 − α) of single parity-check nodes at the variable nodes
side. We argue that, if the fraction of the parity-check nodes is not too large, it is
beneficial for the asymptotic iterative threshold of the ensemble, and it does not change
the behaviour of dmin of the ensemble.

In the work, DE equations for the (a, b, d, α,m) ensemble have been derived; the
DE results are coherent with simulated BER curves. Moreover, both necessary and
sufficient conditions on linear minimum distance have been formulated.

In overall, (a, b, d, α,m) codes seem to be good candidates for medium- and high-
rate applications, and a further investigation on this code ensemble should be contin-
ued.
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Figure 5.5: BER vs. ε for (3, 3, d, α,m) code of rate r = 0.5 and of binary code-
length 36000, with α = 0.5; 0.8; 1 and m = 1, 2, 4, 6.
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Figure 5.6: BER vs. ε for (3, 3, d, α,m) code of rate r = 0.8 and of binary code-
length 36000, with α = 0.8462; 0.9286; 1 and m = 1, 2, 4.

Figure 5.7: BER vs. Eb
n0

for (3, 3, d, α,m) code of rate r = 0.5 and of binary code-
length 36000, with α = 0.5; 0.8; 1 and m = 1, 2, 4, 6.
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6.1 Conclusions
This work is focused on the design of new high-rate channel coding and coded modula-
tion schemes of communication scheme over the AWGN channel, assuming a M -QAM
scheme. Although this transmission model does not take into account polarisation and
non-linearities effects in the optical fiber, it is still the most considered model in optical
communications.

The first part of the thesis was devoted to the coded modulation aspect. In particular,
the SICM model has been investigated, in case of a M -ary QAM modulation and q-ary
sparse-graph codes. It has been shown that the AWGN capacity is attained with SICM
when q =

√
M , and it is bounded from the capacity for q <

√
M . In the latter case the

SICM capacity is still better than BICM capacity. In particular, at lower SNR values, the
SICM capacity for q = 4 is bounded away by 0.5 dB from the AWGN capacity, while the
BICM capacity is 1 dB away. Therefore, even by taking very moderate values of q one
might regain a half of the gap induced by the BICM. Moreover, the SICM modulation
scheme allows to reduce the interleaver size by the factor of log2 q, which is interesting
for high-throughput implementation of next-generation optical communication systems.
From another hand, the use of SICM comes with a higher decoder complexity (by the
factor of log2 q) as the iterative decoder is implemented over GF (q). Finally, our obtained
results show that, among all possible mappings (and Gray mappings) of SICM modulation
symbols, there exist a subset of Gray mappings that induce a higher SICM capacity.

From the point of view of error-correcting coding, we have shown that the asymptotic
threshold for 3-regular LDPC codes over moderate values of q does not change signifi-
cantly at high code rates r (r = 0.75 . . . 0.9) and they can compete with 2-regular LDPC
designs over larger alphabets, suggested in the state of the art. As 3-regular codes also
have a better minimum distance, than 2-regular codes, they also outperform the code at
low bit error rates (always at high code rates).

In addition to the results obtained for regular non-binary LDPC codes of high code
rate, we also designed a new family of (non-binary) RPP codes which have remarkably
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good asymptotic thresholds and enjoy, under some conditions, a linear minimum distance
property. Both necessary and sufficient conditions on the linear minimum distance of a
q-ary RPP ensemble have been derived. Our numerical results show that the new RPP
code family is a good candidate for use at high code rates and that q-ary RPP codes
outperform regular q-ary LDPC codes studied in Chapter 4.

6.2 Perspectives
High-rate, non-binary sparse-graph code designs have not been much studied until now,
although they might be a key for next-generation ultra-high throughput optical communi-
cations. In order to continue the investigation on the feasibility of non-binary LDPC-like
codes for optics, the following topics could further be studied:

1. Further investigations on the SICM
• Low-complexity detector design: The soft detection of q-ary coded symbols

is of high relevance if one intends to implement the SICM scheme.
• An investigation on Grey labelings is needed in order to be able to reduce

the gap to the channel capacity
• Extension to the MIMO AWGN channel model would be of particular inter-

est in order to capture the effect of polarisation-dependant loss (PDL) of the
optical-fiber channel.

• Extension to other techniques considered in the optics community such
as probabilistic shaping, would be interesting to consider.

2. Further investigations on high-rate non-binary RPP codes
For the the new code family presented in this work, the following topics could be
addressed:

• Irregular design of RPP codes: Only regular RPP constructions have been
considered in our work, mainly for the reason of their more efficient hardware
implementation (which is important for optical transceiver design). However, it
would be interesting to extend the RPP construction to the irregular case and
to see whether it is capacity-approaching.

• Asymptotic analysis over the AWGN channel: For the sake of simplicity,
the asymptotic analysis of the RPP ensemble has been performed over the
BEC. Only several AWGN thresholds have been obtained by simulation. One
could extend the existing EXIT chart design for discrete-memoryless symmet-
ric channel from [75] to RPP codes.

• Complexity analysis, hardware implementation and feasibility of linear-
time encoding: It would be interesting to study more intensively the decoding
convergence of RPP codes, as well as to try other iterative decoding algo-
rithms of lower implementation cost (e.g., Min-Sum). It would also be inter-
esting to determine the conditions, under which there exists a low-complexity
encoding algorithm. such as max log max, min sum, etc. To see if one can
have lower implementation costs.

• Imposing a structure on the RPP bipartite graph: In this work, our RPP
code ensembles are random code ensembles. For more efficiency, in particu-
lar in terms of the average minimum distance and/or low-complexity encoding,
it would be interesting to design ensembles with a structured bipartite graph,
like protographs for instance.



Additional DE results for Chapter 5

This appendix presents the obtained values of ε∗ for RPP ensembles with a, b ∈ {4; 5; 6}
and for code rates r ∈ {0.5; 0.8}.

Moreover, one observes that the closest threshold to the Shannon one, among all
rate r = 0.5 tables, is obtained for a = b = 4 (ε∗ = 0.475, α = 0.7,m = 2 on table 1) and
for a = b = 5 at rate r = 0.8 (ε∗ = 0.191, α = 0.57,m = 3 on table 4), the gap to the
Shannon threshold is 0.009.

Two major trends can be noticed:
• The best values of ε∗ are obtained 2 ≤ m ≤ 4.
• The best thresholds ε∗ are observed for medium values of α, 1

3 ≤ α ≤ 0.77.
It is to note that, for all tables, thresholds that do not satisfy the necessary condition

on linear minimum distance (sec. 5.4.1) have been gray-shaded.

α (d)
m 1 2 3 4

0.7 (d = 5) 0.396 0.475 0.47 0.459
0.83333 (d = 6) 0.45 0.438 0.423 0.407
0.92857 (d = 7) 0.415 0.399 0.382 0.364

1 (d = 8) 0.383 0.366 0.347 0.329

Table 1: Asymptotic thresholds ε∗ of (4, 4, d, α,m) for various parameters α and
m for given r = 0.5.
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α (d)
m 1 2 3 4

0.0714 (d = 7) 0.107 0.146 0.167 0.176
0.25 (d = 8) 0.113 0.154 0.174 0.18

0.38889 (d = 9) 0.121 0.163 0.18 0.183
0.5 (d = 10) 0.13 0.174 0.184 0.183

0.59091 (d = 11) 0.142 0.183 0.184 0.18
0.66667 (d = 12) 0.156 0.183 0.18 0.175
0.73077 (d = 13) 0.175 0.18 0.175 0.169
0.78571 (d = 14) 0.178 0.176 0.169 0.162
0.83333 (d = 15) 0.175 0.171 0.164 0.156

0.875 (d = 16) 0.171 0.166 0.158 0.15
0.91176 (d = 17) 0.167 0.161 0.153 0.145
0.94444 (d = 18) 0.162 0.156 0.148 0.14
0.97368 (d = 19) 0.158 0.151 0.143 0.135

1 (d = 20) 0.154 0.147 0.138 0.13

Table 2: Asymptotic thresholds ε∗ of (4, 4, d, α,m) for various parameters α and
m for given r = 0.8. α = 1 corresponds to the (4, 20) LDPC ensemble. Thresholds
that do have a linear dmin for m = 1 have been gray-shaded.

α (d)
m 1 2 3 4

0.77778 (d = 6) 0.363 0.441 0.444 0.425
0.85714 (d = 7) 0.436 0.416 0.396 0.376
0.91667 (d = 8) 0.399 0.378 0.357 0.337
0.96296 (d = 9) 0.368 0.346 0.325 0.306

1 (d = 10) 0.341 0.319 0.299 0.28

Table 3: Asymptotic thresholds ε∗ of (5, 5, d, α,m) for various parameters α and
m for given r = 0.5.
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α (d)
m 1 2 3 4

0.14286(d = 7) 0.104 0.143 0.164 0.173
0.29167(d = 8) 0.108 0.147 0.169 0.178
0.40741(d = 9) 0.112 0.153 0.175 0.184

0.5(d = 10) 0.117 0.159 0.182 0.189
0.57576(d = 11) 0.123 0.167 0.191 0.187
0.63889(d = 12) 0.131 0.176 0.188 0.181
0.69231(d = 13) 0.139 0.187 0.182 0.174
0.7381(d = 14) 0.149 0.183 0.175 0.167

0.77778(d = 15) 0.161 0.177 0.169 0.16
0.8125(d = 16) 0.175 0.172 0.163 0.154

0.84314(d = 17) 0.174 0.166 0.157 0.148
0.87037(d = 18) 0.169 0.16 0.151 0.142
0.89474(d = 19) 0.164 0.155 0.146 0.137
0.91667(d = 20) 0.16 0.15 0.14 0.132
0.93651(d = 21) 0.155 0.145 0.136 0.127
0.95455(d = 22) 0.151 0.141 0.131 0.123
0.97101(d = 23) 0.146 0.137 0.127 0.119
0.98611(d = 24) 0.143 0.133 0.123 0.115

1(d = 25) 0.139 0.129 0.12 0.111

Table 4: Asymptotic thresholds ε∗ of (5, 5, d, α,m) for various parameters α and
m for given r = 0.8. Thresholds that do not have a linear dmin have been gray-
shaded.
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α (d)
m 1 2 3 4

0.17857(d = 7) 0.101 0.138 0.159 0.169
0.3125(d = 8) 0.103 0.141 0.163 0.173
0.41667(d = 9) 0.105 0.144 0.167 0.178

0.5(d = 10) 0.109 0.148 0.172 0.183
0.56818(d = 11) 0.113 0.153 0.178 0.189

0.625(d = 12) 0.117 0.159 0.184 0.19
0.67308(d = 13) 0.122 0.166 0.19 0.181
0.71429(d = 14) 0.128 0.173 0.183 0.173

0.75(d = 15) 0.134 0.181 0.175 0.166
0.78125(d = 16) 0.142 0.179 0.168 0.158
0.80882(d = 17) 0.15 0.172 0.161 0.152
0.83333(d = 18) 0.16 0.166 0.155 0.145
0.85526(d = 19) 0.171 0.16 0.149 0.14

0.875(d = 20) 0.166 0.155 0.144 0.134
0.89286(d = 21) 0.161 0.15 0.139 0.129
0.90909(d = 22) 0.156 0.145 0.134 0.125
0.92391(d = 23) 0.151 0.14 0.13 0.12
0.9375(d = 24) 0.147 0.136 0.126 0.116

0.95(d = 25) 0.143 0.132 0.122 0.113
0.96154(d = 26) 0.139 0.128 0.118 0.109
0.97222(d = 27) 0.135 0.125 0.115 0.106
0.98214(d = 28) 0.132 0.121 0.111 0.103
0.99138(d = 29) 0.129 0.118 0.108 0.1

1(d = 30) 0.125 0.115 0.105 0.097

Table 5: Asymptotic thresholds ε∗ of (6, 6, d, α,m) for various parameters α and
m for given r = 0.8. Thresholds that do not have a linear dmin have been gray-
shaded.

α (d)
m 1 2 3 4

0.82143(d = 7) 0.334 0.411 0.411 0.389
0.875(d = 8) 0.386 0.392 0.369 0.347

0.91667(d = 9) 0.382 0.358 0.335 0.314
0.95(d = 10) 0.353 0.329 0.306 0.286

0.97727(d = 11) 0.328 0.305 0.283 0.263
1(d = 12) 0.307 0.284 0.262 0.244

Table 6: Asymptotic thresholds ε∗ of (6, 6, d, α,m) for various parameters α and
m for given r = 0.5.
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