Thèse soutenue

Dynamique et statistiques de particules allongées et flexibles dans des écoulements turbulents

FR  |  
EN
Auteur / Autrice : Sofia Allende
Direction : Jérémie Bec
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 04/03/2021
Etablissement(s) : Université Côte d'Azur
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : Laboratoire : École nationale supérieure des mines (Paris ; 1783-....) - Centre de mise en forme des matériaux (Sophia Antipolis, Alpes-Maritimes)
Jury : Président / Présidente : Mireille Bossy
Examinateurs / Examinatrices : Jérémie Bec, Mireille Bossy, Gautier Verhille, Stefano Musacchio, Lydia Bourouiba, Olivia Du Roure, Francisca Guzman-Lastra, Dario Vincenzi
Rapporteurs / Rapporteuses : Gautier Verhille, Stefano Musacchio

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse analyse la dynamique de petits objets complexes immergés dans des environnements turbulents. Les champs turbulents peuvent être vus comme des champs aléatoires très fluctuants, dont les statistiques sont en général fortement non-Gaussiennes et se caractérisent par la présence de fluctuations très violentes. En pratique, la turbulence est le mécanisme dominant régissant le transport et le mélange de matière. Dans leurs détails, les propriétés statistiques du transport turbulent dépendent de la nature des particules considérées. Ici, nous nous concentrons sur le transport de petites particules complexes, qui sont caractérisées par une interaction non triviale entre leur masse, leur forme et leur rhéologie. Notre objectif est d’acquérir une compréhension physique de la façon dont les fluctuations turbulentes prescrivent la dynamique de ces particules complexes, et se manifestent au travers à la fois des phénomènes collectifs comme la concentration préférentielle, ou des phénomènes individuels allants de la déformation de particules jusqu’à leur fragmentation. Ces manifestations physiques de la turbulence ont des conséquences tant au niveau industriel que du développement durable. Par exemple, le transport atmosphérique de cendres volcaniques a des conséquences dans le secteur aéronautique commercial, ainsi que la floraison de méduses ou de phytoplancton dans les océans a des conséquences à la fois sur la maintenance des circuits de refroidissement des centrales thermiques, et sur la thermodynamique de la Terre.Nos recherches s'appuient sur des simulations numériques massives et systématiques basées sur l'intégration directe des équations de Navier-Stokes incompressibles, ce pour générer une turbulence isotrope homogène à très haut nombre de Reynolds. À partir de ces simulations, nous analysons les statistiques de différents types de particules tels que des sphéroïdes inertiels ou des fibres flexibles. Pour les sphéroïdes, nos travaux montrent que les dynamiques translationnelles et rotationnelles sont essentiellement découplées. Alors que le mouvement de translation se rattache à celui d’une sphère avec une masse effective, la dynamique de l'orientation présente des caractéristiques plus complexes. Cette complexité se reflète dans les statistiques du taux de rotation et dans les propriétés de concentration. Ainsi, la dynamique de rotation n'est pas universelle et dépend de la forme spécifique des particules.Pour les fibres nous constatons que leur dynamique est, la plupart du temps, qualitativement très semblable à celle d’une tige rigide. En des occasions très rares et intermittentes les fibres flambent violemment, et ces événements se corrèlent aux fortes compressions locales exercées par le fluide turbulent. En outre, les statistiques de l'orientation des fibres diffèrent sensiblement des statistiques de tiges parfaitement rigides, même en dehors de ces événements de flambages. Ces déviations peuvent être comprises comme des « anomalies d'alignement » causées par la flexibilité. Notre observation principale est le fait que le couplage entre les fibres et la turbulence peut se modéliser en termes de différents processus d’activation, qui rendent compte à la fois des statistiques du flambage et des anomalies de l'alignement. Nous étudions enfin la fragmentation des fibres dues à la turbulence. À cette fin, nous implémentons dans nos codes numériques deux mécanismes de rupture : flexion et tension. Nous esquissons un cadre stochastique de tels événements catastrophiques, qui justifie l'usage d'équations cinétiques du type Smoluchowski pour la description statistique de la fragmentation en temps long, et ce malgré la présence des corrélations temporelles non triviales dans les fluctuations turbulentes Lagrangiennes. Cette description ouvre des perspectives pour mieux quantifier la fragmentation des matériaux fragiles dans les codes utilisés pour la prévention des risques dans des cadres industriels.