Thèse soutenue

Accélération laser de particules chargées et génération de forts champs associés à des courants de décharge induite par laser : une étude sur les faisceaux d’ions issues de l'interaction laser-plasma et de leur transport vers l'application dans des expériences de physique à haute densité d’énergie

FR  |  
EN
Auteur / Autrice : Michael Ehret
Direction : Joao Jorge SantosMarkus Roth
Type : Thèse de doctorat
Discipline(s) : Astrophysique, Plasmas, nucléaire
Date : Soutenance le 09/07/2021
Etablissement(s) : Bordeaux en cotutelle avec Université de sciences appliquées de Darmstadt
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)
Partenaire(s) de recherche : Laboratoire : Centre Lasers Intenses et Applications (Bordeaux ; 1999-....)
Jury : Président / Présidente : Gernot Alber
Examinateurs / Examinatrices : Joao Jorge Santos, Markus Roth, Gernot Alber, Alessandro Flacco, Ulrich Schramm, Fabrizio Consoli
Rapporteurs / Rapporteuses : Alessandro Flacco, Ulrich Schramm, Fabrizio Consoli

Résumé

FR  |  
EN

Ce travail comprend à la fois une étude de faisabilité expérimentale sur l'accélération des ions par laser, ainsi que l'étude de la source, des limites et de l'utilité des courants électriques générés par laser pour la mise en forme spatiale et spectrale des faiseaux d'ions. Les prédictions théoriques conceptuelles et numériques existantes sont comparées à des découvertes expérimentales, et soutenues par de nouvelles simulations PIC et des modèles heuristiques. Les résultats comprennent (I) une démonstration de l'accélération des ions hélium par un laser ultrarelativiste à partir des cibles gazeuses proches de la densité critique à l'aide de buses de choc, (II) une exploration plus approfondie des mécanismes générateurs de champ dans les lentilles électromagnétiques applicable aux faisceaux de particules chargées, à la fois dans un régime quasi-statique piloté par des lasers ns et également en régime transitoire piloté par des lasers sub-ps, et (III) études sur le transport de faisceaux d'ions accélérés par laser dans des champs électromagnétiques et magnétiques.La source d'ions hélium génère des énergies maximales de 55MeV à une densité de particules de plusieurs 1e8/MeV pour les ions avec 22(2)MeV. Cette gamme d'énergie est adaptée à la production d'isotopes dans le cadre de la thérapie alpha. La destruction des buses de choc dans l'environnement experimentale violente et la perspective d'un fonctionnement avec un taux de répétition élevé soulignent le besoin de buses fabriqué par une production de masse avec échange de buses automatisé et de puissants systèmes de vide.Les plates-formes de lentilles electromagnetiques pilotées par des lasers ns montrent une intensité de courant comparable dans le plasma et la boucle consommateur, ce que la modélisation théorique de la plate-forme en tant que diode plasma peut le mieux interpréter. Pendant l'irradiation avec le laser, le plasma en expansion crée de forts effets de charge d'espace au voisinage de la lentille magnétique, qui font obstacle à un guidage efficace des faisceaux d'ions par une telle lentille. Une géométrie de la plate-forme est présentée qui réduit ces effets.La décharge de solides par de courtes impulsions laser conduit à une propagation pulsée du potentiel électrique le long de la surface. Ce travail montre qu'un courant de décharge pulsé originaire de la terre suit cette impulsion de décharge électromagnétique. Les deux transportent des courants dans la gamme de kA. Des observations expérimentales de la dynamique d'impulsion de décharge pendant plusieurs dizaines de ps indiquent la présence d'un plasma de surface chaude. La température et la densité électronique du plasma de surface sont des paramètres de contrôle prometteurs pour la dispersion des impulsions de décharge. La branche supérieure de la relation de dispersion est responsable d'une vitesse de groupe différente de la vitesse de la lumière. Les solutions sur la branche inférieure correspondent à des modulations observées du potentiel en dimension spatiale et en taux de croissance temporelle.Des études expérimentales et numériques des plates-formes pilotées par de courtes impulsions laser montrent leur applicabilité à la mise en forme spectrale des faisceaux ioniques, en particulier la faisabilité de la compression temporelle grâce à la post-accélération efficace des parties à faible énergie du spectre. L'étude expérimentale d'une géométrie à double bobine et l'étude numérique d'une bobine hélicoïdale sont présentées.Les expériences futures qui nécessitent des faisceaux d'ions accélérés par laser avec un taux de répétition élevé motivent la connexion des approches présentées. Une application possible est la production d'isotopes et les recherches fondamentales possibles vont des études sur les effets collectifs de la perte d'énergie des particules dans la matière et la génération de matière chaude et dense à une source de particules optimisée pour d'allumage dans des expériences de fusion.