Polymères semi-métalliques pour des applications en thermoélectricité
| Auteur / Autrice : | Solène Perrot |
| Direction : | Guillaume Fleury, Georges Hadziioannou |
| Type : | Thèse de doctorat |
| Discipline(s) : | Polymères |
| Date : | Soutenance le 19/02/2021 |
| Etablissement(s) : | Bordeaux |
| Ecole(s) doctorale(s) : | École doctorale des sciences chimiques (Talence, Gironde ; 1991-....) |
| Partenaire(s) de recherche : | Laboratoire : Laboratoire de Chimie des Polymères Organiques (Bordeaux) |
| Jury : | Président / Présidente : Aline Rougier |
| Examinateurs / Examinatrices : Guillaume Fleury, Georges Hadziioannou, Aline Rougier, Sylvie Hebert, Nadjib Semmar, Xavier Crispin | |
| Rapporteurs / Rapporteuses : Sylvie Hebert, Nadjib Semmar |
Mots clés
Mots clés contrôlés
Résumé
Les matériaux thermoélectriques (TE) ont le potentiel de convertir de grandes quantités de chaleur directement en électricité, et par conséquent de réduire la dépendance aux combustibles fossiles. En thermoélectricité, le concept d'un verre de phonons/cristal électronique est souvent utilisé pour décrire un matériau thermoélectrique idéal. Selon ce concept, un bon matériau TE devrait inhiber la conduction de phonons (ayant ainsi une faible conductivité thermique) tout en assurant efficacement une bonne conduction des porteurs de charges (conductivité électrique importante). Afin de quantifier l'efficacité des systèmes TE, la figure de mérite, ZT, est utilisée comme mesure de performance. Récemment, les polymères conducteurs ont gagné de l'élan dans la communauté TE pour des applications à température ambiante. Leur grand avantage est une conductivité thermique intrinsèquement faible à température ambiante (0.2-0.6 W.m-1K-1) qui est complétée par leur facilité de traitement et leur faible coût. Les films minces de dérivés de poly (3,4-éthylènedioxythiophène) (PEDOT) dopés avec des molécules de p-toluènesulfonate (Tos) peuvent présenter un ZT aussi élevé que 0,25 à température ambiante, soulignant ainsi le potentiel élevé de tels systèmes pour les applications futures. Dans cette thèse, nous nous sommes focalisés sur la compréhension des propriétés des films minces de PEDOT:Tos en jouant sur la méthode de polymérisation. Nous avons démontré que la conductivité électrique peut être améliorée en ajoutant des additifs dans la formulation du matériau. De plus, la concentration en p-toluènesulfonate est un paramètre permettant d’influencer la conductivité électrique sans modifier la valeur du coefficient Seebeck. Finalement, l’hybridation des précurseurs de PEDOT:Tos avec des copolymères à blocs a permis de concevoir des structures de PEDOT:Tos à l’échelle nanométrique.