Thèse soutenue

Conversion de la chaleur fatale de bas niveau en énergie électrique par effet magnétocalorique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Smail Ahmim
Direction : Martino Lo Bue
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 09/11/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio-physics and engineering
Partenaire(s) de recherche : référent : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....)
Laboratoire : Systèmes et applications des technologies de l'information et de l'énergie (Gif-sur-Yvette, Essonne ; 2002-....)
Jury : Président / Présidente : Elie Lefeuvre
Examinateurs / Examinatrices : Afef Kedous-Lebouc, Thomas Mazet, Christophe Espanet, Vittorio Basso
Rapporteurs / Rapporteuses : Afef Kedous-Lebouc, Thomas Mazet

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Mes travaux de thèse visent à récupérer, grapiller, la chaleur fatale de bas à très bas niveau pour produire de l'énergie électrique et ainsi alimenter des petits systèmes autonomes (µW à mW). Le générateur développé convertit l'énergie en trois étapes. Tout d'abord l'énergie thermique est convertie en énergie magnétique au travers d'un cycle thermodynamique opéré à l'aide d'un matériau magnétocalorique. Cette première conversion est intimement liée à la seconde, conversion de l'énergie magnétique en énergie mécanique, car le déplacement du matériau magnétocalorique contrôle aussi le champ appliqué et les échanges thermiques avec les réservoirs. C'est l'imbrication de ces deux cycles, thermodynamique et dynamique, qui permet au système d'auto-osciller. L'énergie mécanique du système pseudo-oscillant est finalement convertie en énergie électrique via des éléments piézoélectriques. Mes travaux expérimentaux, théoriques et numériques ont cherché à maximiser l'énergie électrique récupérée tout en assurant l'auto-oscillation de la structure. Les dispositifs développés sont en mesure d'auto-osciller pour des écarts de température de 35 °C tout en produisant de l'énergie électrique. Notre prototype le plus performant présente une énergie de 10,6 μJ par cycle pour une fréquence de 0,41 Hz, soit une puissance de 4,2 μW (240 μW/cm3). Ces travaux mettent l'accent sur les cycles associés à la conversion d'énergie.