Thèse soutenue

Étude théorique des corrélations quantiques et des fluctuations non-linéaires dans les gaz quantiques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Mathieu Isoard
Direction : Nicolas Pavloff
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 10/09/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique théorique et modèles statistiques (Orsay, Essonne ; 1998-....)
référent : Faculté des sciences d'Orsay
Jury : Président / Présidente : Chris Westbrook
Examinateurs / Examinatrices : Matteo Conforti, Patrik Öhberg, Elisabeth Giacobino, Sandro Stringari
Rapporteurs / Rapporteuses : Matteo Conforti, Patrik Öhberg

Résumé

FR  |  
EN

Cette thèse est dédiée à l’étude des phénomènes non-linéaires dans deux fluides quantiques qui partagent de nombreuses similitudes : les condensats de Bose-Einstein et les “fluides de lumière”. Dans une première partie, nous étudions les analogues soniques des trous noirs. Il est possible de créer une configuration stationnaire d’un condensat de Bose-Einstein en écoulement d’une région subsonique vers une région supersonique. Ce fluide transsonique joue alors le rôle d’un trou noir puisque les ondes sonores ne peuvent s’échapper de la région supersonique. En outre, en quantifiant le champ sonore, il est possible de montrer qu’un rayonnement de Hawking analogue émerge des fluctuations quantiques du vide. Dans cette thèse, nous montrons que la prise en compte des “modes zéros” – omis jusqu’alors dans le contexte de la gravité analogue – est essentielle pour obtenir une description précise du processus de Hawking, menant alors à un excellent accord avec les résultats expérimentaux. Enfin, nous étudions l’intrication entre les différentes excitations quantiques et montrons que notre système crée de l’intrication tripartite. Dans un second temps, nous étudions la propagation des fluides non-linéaires grâce à une approche hydrodynamique et à des méthodes mathématiques développées par Riemann et Whitham. Nous étudions la structure oscillante et la dynamique des ondes de chocs dispersives qui se forment à la suite d’un déferlement. Notre approche permet de trouver des expressions analytiques simples qui décrivent les propriétés asymptotiques du choc. Cela donne accès à des paramètres d’intérêt expérimental, comme le temps de déferlement, la vitesse de l’onde de choc ou encore le contraste de ses franges.