Thèse soutenue

Etude des mécanismes de la différenciation sexuelle chez la levure fissipare Schizosaccharomyces pombe

FR  |  
EN
Auteur / Autrice : Vedrana Andric
Direction : Mathieu Rougemaille
Type : Thèse de doctorat
Discipline(s) : Sciences de la vie et de la santé
Date : Soutenance le 17/12/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Structure et dynamique des systèmes vivants (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de biologie intégrative de la cellule (Gif-Sur-Yvette, Essonne ; 2015-....) - Institut Jacques Monod (Paris ; 1997-....) - Laboratoire de biochimie (Palaiseau, Essonne)
référent : Faculté des sciences d'Orsay
Jury : Président / Présidente : Daniel Gautheret
Examinateurs / Examinatrices : Alain Jacquier, Céline Morey, Lionel Bénard
Rapporteurs / Rapporteuses : Alain Jacquier, Céline Morey

Résumé

FR  |  
EN

Chez la levure fissipare Schizosaccharomyces pombe, un sous-ensemble de gènes méiotiques est transcrit de manière constitutive au cours de la mitose. Afin d’éviter l'expression prématurée du programme méiotique et l'initiation de la différenciation sexuelle, les cellules ont développé un système de dégradation de l'ARN qui élimine sélectivement les transcrits méiotiques correspondants. Ce processus nécessite la protéine de liaison à l'ARN Mmi1 (à domaine YTH), qui reconnaît en cis les molécules d'ARN (motifs UNAAAC) et les cible pour la dégradation par l'exosome nucléaire. Au début de la méiose, Mmi1 est séquestrée au sein d’une particule ribonucléoprotéique composée de la protéine de liaison à l'ARN Mei2 et du long ARN non-codant (lncRNA) meiRNA, permettant ainsi l'expression des gènes méiotiques et le déroulement de la méiose. Mon travail de thèse a consisté à étudier les mécanismes par lesquels Mmi1 assure la dégradation des transcrits méiotiques et qui régulent son activité au cours des cycles mitotiques et méiotiques. Pendant la croissance végétative, Mmi1 s'associe étroitement à la protéine conservée Erh1 pour former le complexe hétérotétramérique Erh1-Mmi1 (EMC) qui est essentiel pour la dégradation des transcrits méiotiques. Par des approches de biologie structurale et de biochimie, nous avons montré qu'Erh1 s'assemble en homodimère in vitro et in vivo, en accord avec des analyses récentes. Des mutations qui empêchent l'homodimérisation d'Erh1 mais préservent son interaction avec Mmi1 entraînent l'accumulation de transcrits méiotiques en raison d'un défaut de liaison de Mmi1 à ses cibles ARN. L'homodimérisation d’Erh1 est également nécessaire pour séquestrer Mmi1 dans le complexe Mei2-meiRNA et assurer la progression de la méiose. Ainsi, l'assemblage d’EMC est essentiel pour la reconnaissance et la dégradation des transcrits méiotiques par Mmi1 dans les cellules mitotiques et contribue à l'inactivation de cette dernière au début de la méiose. Des travaux antérieurs ont montré que, pendant la croissance végétative, Mmi1 recrute le complexe Ccr4-Not pour ubiquitinyler et limiter l’accumulation de son propre inhibiteur Mei2, maintenant ainsi son activité dans la dégradation des ARNs méiotiques. Nous avons identifié un lncRNA, différent de meiRNA et appelé mamRNA (Mmi1- and Mei2-associated RNA), qui sert de plateforme à Mmi1 pour cibler Mei2 vers le complexe Ccr4-Not. Réciproquement, lorsque cette régulation négative de Mei2 est défectueuse, mamRNA est nécessaire pour l'inactivation de Mmi1 par les niveaux élevés de Mei2. Des expériences d’hybridation in situ par fluorescence en molécules uniques (smFISH) ont également montré que mamRNA est localisé dans un corps nucléaire contenant Mmi1, suggérant que le contrôle mutuel de Mmi1 et Mei2 est confiné dans l’espace. mamRNA peut également relayer meiRNA pour inhiber Mmi1 et favoriser la progression de la méiose. mamRNA apparait donc comme un régulateur critique des activités de Mmi1 et Mei2 pour ajuster la dégradation des ARNs méiotiques et modeler la transition de la mitose vers la méiose.