Thèse soutenue

Environnements de réalité augmentée pour l'exploration interactive de données 3D
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Xiyao Wang
Direction : Tobias Isenberg
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 16/12/2020
Etablissement(s) : université Paris-Saclay
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication
Partenaire(s) de recherche : Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020)
référent : Faculté des sciences d'Orsay
Equipe de recherche : Analyse et visualisation (équipe de recherche)
Jury : Président / Présidente : Damien Rohmer
Examinateurs / Examinatrices : Raimund Dachselt, Christophe Hurter, Mehdi Ammi, Jian Chen, Jeanne Vézien
Rapporteurs / Rapporteuses : Raimund Dachselt, Christophe Hurter

Résumé

FR  |  
EN

La visualisation exploratoire des données 3D est fondamentale dans des domaines scientifiques. Traditionnellement, les experts utilisent un PC et s'appuient sur la souris pour ajuster la vue. Cette configuration permet l'immersion par interaction---l'utilisateur peut contrôler précisément la vue, mais elle ne fournit pas de profondeur, qui limite la compréhension de données complexes. La réalité virtuelle ou augmentée (RV/A), en revanche, offre une immersion visuelle avec des vues stéréoscopiques. Bien que leurs avantages aient été prouvés, plusieurs points limitent leur application, notamment les besoins élevés de configuration/maintenance, les difficultés de contrôle précis et, plus important, la séparation des outils d'analyse traditionnels. Pour bénéficier des deux côtés, nous avons donc étudié un système hybride combinant l'environnement RA avec un PC pour fournir des immersions interactives et visuelles. Nous avons collaboré étroitement avec des physiciens des particules afin de comprendre leur processus de travail et leurs besoins de visualisation pour motiver notre conception. D'abord, basé sur nos discussions avec les physiciens, nous avons construit un prototype qui permet d'accomplir des tâches pour l'exploration de leurs données. Ce prototype traitait l'espace RA comme une extension de l'écran du PC et permettait aux utilisateurs d'interagir librement avec chacun d'eux avec la souris. Ainsi, les experts pouvaient bénéficier de l'immersion visuelle et utilisent les outils d'analyse sur PC. Une étude observationnelle menée avec 7 physiciens au CERN a validé la faisabilité et confirmé les avantages. Nous avons également constaté que la grande toile du RA et le fait de se déplacer pour observer les données dans le RA présentaient un grand potentiel. Cependant, la conception de l'interaction de la souris et l’utilisation de widgets dans la RA devaient être améliorés. Ensuite, nous avons décidé de ne pas utiliser intensivement les widgets plats dans la RA. Mais nous nous sommes demandé si l'utilisation de la souris pour naviguer dans la RA est problématique, et nous avons ensuite tenté d'étudier si la correspondance de la dimensionnalité entre les dispositifs d'entrée et de sortie joue un rôle important. Les résultats des études (qui ont comparé la performance de l'utilisation de la souris, de la souris spatiale et de la tablette tangible couplée à l'écran ou à l'espace de RA) n'ont pas montré que la correspondance était importante. Nous avons donc conclu que la dimensionnalité n'était pas un point critique à considérer, ce qui suggère que les utilisateurs sont libres de choisir toute entrée qui convient à une tâche spécifique. De plus, nos résultats ont montré que la souris restait un outil efficace. Nous pouvons donc valider notre conception et conserver la souris comme entrée principale, tandis que les autres modalités ne devraient servir que comme complément pour des cas spécifiques. Ensuite, pour favoriser l'interaction et conserver les informations pendant que les utilisateurs se déplacent en RA, nous avons proposé d'ajouter un appareil mobile. Nous avons introduit une nouvelle approche qui augmente l'interaction tactile avec la détection de pression pour la navigation 3D. Les résultats ont montré que cette méthode pouvait améliorer efficacement la précision, avec une influence limitée sur le temps. Nous pensons donc qu'elle est utile à des tâches de vis où une précision est exigée. Enfin, nous avons résumé tous les résultats obtenus et imaginé un scénario réaliste qui utilise un poste de travail PC, un casque RA et un appareil mobile. Les travaux présentés dans cette thèse montrent le potentiel de la combinaison d'un PC avec des environnements de RA pour améliorer le processus d'exploration de données 3D et confirment sa faisabilité, ce qui, nous l'espérons, inspirera la future conception qui apportera une visualisation immersive aux flux de travail scientifiques existants.