Rational models optimized exactly for solving signal processing problems

par Arthur Marmin

Thèse de doctorat en Traitement du signal et des images

Sous la direction de Jean-Christophe Pesquet.

Soutenue le 08-12-2020

à université Paris-Saclay , dans le cadre de École doctorale Sciences et technologies de l'information et de la communication , en partenariat avec Centre de vision numérique (Gif-sur-Yvette, Essonne) (laboratoire) , CentraleSupélec (référent) et de OPtimisation Imagerie et Santé (équipe de recherche) .

Le président du jury était Pascal Bondon.

Le jury était composé de Didier Henrion, Bogdan Dumitrescu, Marc Castella, Laurent Albera, Caroline Chaux, Laurent Duval.

Les rapporteurs étaient Didier Henrion, Bogdan Dumitrescu.

  • Titre traduit

    Modèles rationnels optimisés de manière exacte pour la résolution de problèmes de traitement du signal


  • Résumé

    Une vaste classe de problèmes d'optimisation non convexes est celle de l'optimisation rationnelle. Cette dernière apparaît naturellement dans de nombreux domaines tels que le traitement du signal ou le génie des procédés. Toutefois, trouver les optima globaux pour ces problèmes est difficile. Une approche récente, appelée la hiérarchie de Lasserre, fournit néanmoins une suite de problèmes convexes assurée de converger vers le minimum global. Cependant, cette approche représente un défi calculatoire du fait de la très grande dimension de ses relaxations. Dans cette thèse, nous abordons ce défi pour divers problèmes de traitement du signal.Dans un premier temps, nous formulons la reconstruction de signaux parcimonieux en un problème d'optimisation rationnelle. Nous montrons alors que ce dernier possède une structure que nous exploitons afin de réduire la complexité des relaxations associées. Nous pouvons ainsi résoudre plusieurs problèmes pratiques comme la restoration de signaux de chromatographie. Nous étendons également notre méthode à la restoration de signaux dans différents contextes en proposant plusieurs modèles de bruit et de signal. Dans une deuxième partie, nous étudions les relaxations convexes générées par nos problèmes et qui se présentent sous la forme de problèmes d'optimisation semi-définie positive de très grandes dimensions. Nous considérons plusieurs algorithmes basés sur les opérateurs proximaux pour les résoudre efficacement.La dernière partie de cette thèse est consacrée au lien entre les problèmes d'optimisation polynomiaux et la décomposition de tenseurs symétriques. En effet, ces derniers peuvent être tous deux vus comme une instance du problème des moments. Nous proposons ainsi une méthode de détection de rang et de décomposition pour les tenseurs symétriques basée sur les outils connus en optimisation polynomiale. Parallèlement, nous proposons une technique d'extraction robuste des solutions d'un problème d'optimisation poylnomiale basée sur les algorithmes de décomposition de tenseurs. Ces méthodes sont illustrées sur des problèmes de traitement du signal.


  • Résumé

    A wide class of nonconvex optimization problem is represented by rational optimization problems. The latter appear naturally in many areas such as signal processing or chemical engineering. However, finding the global optima of such problems is intricate. A recent approach called Lasserre's hierarchy provides a sequence of convex problems that has the theoretical guarantee to converge to the global optima. Nevertheless, this approach is computationally challenging due to the high dimensions of the convex relaxations. In this thesis, we tackle this challenge for various signal processing problems.First, we formulate the reconstruction of sparse signals as a rational optimization problem. We show that the latter has a structure that we wan exploit in order to reduce the complexity of the associated relaxations. We thus solve several practical problems such as the reconstruction of chromatography signals. We also extend our method to the reconstruction of various types of signal corrupted by different noise models.In a second part, we study the convex relaxations generated by our problems which take the form of high-dimensional semi-definite programming problems. We consider several algorithms mainly based on proximal operators to solve those high-dimensional problems efficiently.The last part of this thesis is dedicated to the link between polynomial optimization and symmetric tensor decomposition. Indeed, they both can be seen as an instance of the moment problem. We thereby propose a detection method as well as a decomposition algorithm for symmetric tensors based on the tools used in polynomial optimization. In parallel, we suggest a robust extraction method for polynomial optimization based on tensor decomposition algorithms. Those methods are illustrated on signal processing problems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : CentraleSupélec. bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.