Thèse soutenue

Fils conducteurs composites (microfils d'argent - cuivre) pour application en champs magnétiques intenses
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Simon Tardieu
Direction : Geert RikkenChristophe Laurent
Type : Thèse de doctorat
Discipline(s) : Sciences et Génie des Matériaux
Date : Soutenance le 23/11/2020
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École Doctorale Sciences de la Matière (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire national des champs magnétiques intenses (Grenoble ; Toulouse ; 2009-....) - Centre Inter-universitaire de Recherche et d’Ingénierie des Matériaux (Toulouse ; 1999-....)

Résumé

FR  |  
EN

Le LNCMI-Toulouse produit les champs magnétiques non-destructifs pulsés parmi les plus puissants du monde (98,8 T). Les fils conducteurs utilisés dans les bobines qui génèrent ces champs magnétiques nécessitent une contrainte à la rupture élevée afin de résister aux forces de Lorentz. De plus, pour obtenir une durée d'impulsion la plus longue possible, ces conducteurs doivent avoir une résistivité électrique la plus proche possible de celle du Cu pur. Le LNCMI et le CIRIMAT explorent la conception et la préparation de fils nano-composites à matrice Cu par une combinaison de métallurgie des poudres, de frittage SPS et de tréfilage. Les poudres composites à faibles teneurs en Ag (< 10 % vol. Ag) sont préparées en dispersant des microfils d'Ag (diamètre 200 nm, longueur 30 µm) synthétisés au CIRIMAT dans une poudre commerciale de Cu sphérique (diamètre 0,5-1 µm). Les poudres ainsi obtenues sont consolidées par SPS sous forme de barreaux. Ceux-ci sont étirés sans rupture, jusqu'à l'obtention de fils fins (diamètre 1 - 0,2 mm) dont la microstructure est sous la forme de grains ultrafins de Cu (200 - 400 nm) allongés sur plusieurs micromètres dans le sens de l'étirage. Les microfils d'Ag sont dispersés le long des joints de grains du Cu. La mesure de la résistivité électrique et de la contrainte à la rupture des fils (à 293 K et 77 K) a permis de déterminer que les fils contenants seulement 1 % vol. Ag présentent le meilleur compromis contrainte à la rupture / résistivité (1100 MPa / 0,49 µÔmega.cm à 77 K). La formation d'un alliage Cu/Ag lors du frittage SPS a pour conséquence une augmentation notable de la résistivité électrique des fils et doit donc être évitée. Une matrice de Cu avec une distribution bimodale de la taille des grains permet de réduire la résistivité électrique tout en conservant une haute contrainte à la rupture (1080 MPa / 0,45 µÔmega.cm à 77 K). Les fils nano-composites Ag-Cu présentent une contrainte à la rupture équivalente à celle des fils d'alliage Cu/Ag contenant environ 20 fois plus d'Ag élaborés par fusion et solidification, mais présentent une résistivité électrique environ 1,5 fois plus faible.