Thèse soutenue

Rôle de l'organisation 3D de la chromatine dans la réparation des cassures double-brin de l'ADN

FR  |  
EN
Auteur / Autrice : Coline Arnould
Direction : Gaëlle LegubeThomas Clouaire
Type : Thèse de doctorat
Discipline(s) : Biologie cellulaire
Date : Soutenance le 17/12/2020
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Biologie Santé Biotechnologies (Toulouse)
Partenaire(s) de recherche : Laboratoire : Unité de biologie moléculaire, cellulaire et du développement (Toulouse ; 2021-....)

Résumé

FR  |  
EN

La réparation des cassures double-brin de l'ADN (DSB) est essentielle pour préserver l'intégrité du génome. Suite à l'apparition de DSB dans le génome, la PI3K kinase ATM permet la phosphorylation du variant d'histone H2AX sur un large domaine chromatinien de l'ordre du mégabase, qui constituera ainsi un foyer de réparation. La façon dont ces foyers sont assemblés aussi rapidement pour établir un environnement nucléaire favorable à la réparation n'est pas encore connue. Les TAD (Topologically Associated Domains) correspondent à des régions chromatiniennes organisées en 3D dans le noyau et sont déjà connus comme étant impliqués dans des processus cellulaires tels que la transcription ou la réplication. Cependant leur rôle dans la réparation de l'ADN n'est pas encore connu à ce jour. Nous avons ainsi pu montrer que les TAD sont des unités fonctionnelles de la réponse cellulaire aux dommages à l'ADN puisqu'ils servent de matrice à la formation des foyers de réparation. En effet, nous avons montré que la phosphorylation de H2AX sur un TAD entier est permise grâce à un processus d'extrusion de boucle de chromatine dépendant des cohésines et ayant lieu de part et d'autre de chaque DSB. Ces travaux ont permis de montrer le rôle majeur de la conformation des chromosomes dans la maintenance de l'intégrité du génome tout en mettant en évidence pour la première fois un exemple de modification de la chromatine grâce au processus d'extrusion de boucle de chromatine. D'autre part, nous avons montré que les TAD du génome entier sont renforcés en réponse aux DSB et jouent un rôle majeur dans la répression transcriptionnelle qui a lieu en cis des DSB. Enfin, nous avons démontré que des TAD entiers contenant une DSB sont capables de se déplacer au sein du noyau pour se regrouper entre eux en G1. De façon importante, nous avons montré que ce regroupement des TAD endommagés peut conduire à la formation de translocations, évènement pouvant mener à l'apparition de cancers.