UNIVERSITE DE%

RENNES 1

5 THESE DE DOCTORAT DE

Rapporteurs avant soutenance :

Konstantin ARDAKOV  Professeur, Université d’Oxford
Daniel CARO Professeur, Université de Caen

Composition du Jury :

Examinateurs :  Christine HUYGUE Professeur, Université de Strasbourg
Gabriel DOSPINESCU Chargé de Recherche CNRS, ENS de Lyon
Michel GROS Chargé de Recherche CNRS, Université de Rennes 1
Daniel CARO Professeur, Université de Caen

Konstantin ARDAKOV  Professeur, Université d’Oxford
Dir. de thése :  Tobias SCHMIDT Professeur, Université de Rennes 1






Université de Rennes 1
Institut de Recherche Mathématique de Rennes
X kX

WEAK HOLONOMICITY FOR EQUIVARIANT
‘D-MODULES ON RIGID ANALYTIC SPACES

by

THr MiNnH PHUONG VU

A thesis presented for the degree of
Doctor of Philosophy

Rennes, France 2020






Contents

1 Introduction
2 Background material
2.1 Rigid analytic varieties . . . . . . . . L L
2.1.1 Affinoid K-spaces and affinoid subdomains . . . .. ... ... ... ... ..
2.1.2 Rigid analytic varieties . . . . . . . . . . L
2.1.3 Coherent sheaves on rigid analytic spaces . . . . . .. ... ... ... ....
2.1.4 Construction of rigid analytic spaces . . . . . . . ... ...

2.2 Crossed products . . . . . . . . . e
2.3 Review on p-adic Lie groups . . . . . . . . .. e
2.4 Equivariant sheaves on rigid analytic spaces . . . . . . . . . ... ... ...

24.1
2.4.2
2.4.3
244

Group actions on rigid analytic spaces . . . . . . .. ... L.
The completed skew-group algebra 5(X, G) o o
Localisation of coadmissible 5(X, G)-modules and the category Cx /¢

Side-changing operators . . . . . . .. .. L L oL

Dimension theory for coadmissible ﬁ(X, G)-modules

3.1 Review on Auslander-Gorenstein rings . . . . ... ... o oL
3.2 Dimension theory for coadmissible D(X,G)-modules . . . . . .. .. ... ... ...
3.3 Left-right comparison . . . . . . . . .. e

Dimension theory for coadmissible equivariant D-modules

4.1 Modules over the sheaf of rings Q . . . . . . . . . ... L o L
4.2 The 'Ext-functor’ on the category Cx /g - - - - - -« o« o oo
4.3 Weakly holonomic equivariant D-modules . . . . . . .. ... ... ... ... ..

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

Examples

Dimension theory for coadmissible equivariant D-modules . . . . . . . . . ..
Dimension and the pushforward functor . . . . . ... .. .. ... ... ...
Bernstein’s inequality for rigid flag varieties . . . . . . . . .. ... ... ...
The category C)“éf;G .................................
Extension . . . . . . . . L

5.1 A class of equivariant weakly holonomic D-modules . . . . . .. .. ... ... ....
5.2  Examples of weakly holonomic D-modules on rigid analytic flag varieties . . . . . . .

5.2.1
5.2.2

Induction functor . . . . . . . ...
The result . . . . . . .

iii

11
11
11
13
14
15
17
20
20
21
22
27
30

33
33
39
41

43
43
46
68
68
69
71
73
75



CONTENTS

v



CONTENTS

Remerciements

Tout d’abord, je voudrais remercier mon directeur de these, Tobias Schmidt, qui m’a initié &
la théorie des D-modules lorsque j’étais étudiante en master 2. Je tiens a te remercier de m’avoir
donné cette opportunité; de tes idées en Mathématiques; de ta patience et de tes encouragements
pendant mes trois ans de doctorat. Je te remercie également pour les lecons de vie, qui sont parfois
difficiles a apprendre pour moi. Pout tout cela, je te suis immensément reconnaissante.

Ensuite, je voudrais remercier les membres du jury d’avoir accépté d’étre examinateurs de
mon travail. En particulier, je tiens a remercier sincierement le professeur Konstantin Ardakov
et le professeur Daniel Caro pour toutes leurs remarques qui m’ont aidé a améliorer ma these.
J'exprime également ma gratitude au professeur Christine Huyghe pour son intérét a mon travail
et pour ses conseils lors de mon dernier exposé en juin.

Je tiens a remercier le centre Henri Lebesgue et 'TRMAR de m’avoir donné de toutes les
conditions nécéssaires pour étudier dans notre laboratoire. Je me suis toujours sentie chancheuse
d’étre membre de ’équipe de Géométrie Arithmétique ainsi que du séminaire des doctorants en
géométrie Pampers, ou j’ai appris beaucoup de choses en écoutant les éxposés et en échangeant avec
les autres. Je me souviens toujours d’une gentile dame Xhenxila Lachambre. Elle m’a beaucoup aidé
depuis ma premiere arrivée en France et pendant le temps ou j’étudiais et travaillais & 'TRMAR.
Je la remercie profondément pour tout. J’exprime également ma gratitude & Marie-Aude Verger
pour sa gentillese et son soutien dans toutes les procédures adnimistratives.

Je voudrais aussi adresser ces jolis mots a mon grand frere mathématicien Andrés qui est
vraiment gentil avec sa petite soeur. Il est toujours disponible quand j’ai besoin d’aide et quand
j’ai des questions en Mathématiques. Je suis vraiment admirée par son enthousiasme et sa patience
pour lire et de corriger mes petites fautes de frappe dans la thése. Je remercie également Yuliang
pour nos discusions mathématiques. Andrés et Yuliang m’ont donnés beaucoup d’inspiration pour
continuer mon chemin. Un trés grand merci & Arame et David qui sont, avec Andrés, mes premiers
amis en France. Je ne me rapplle plus le nombre de fois ou j’ai mangé en ville avec eux. Cela me
faisait toujours du bien. Merci encore Arame de m’avoir encouragée dans des moments difficiles de
nos vies de thésarde.

Finalement, je réserve cette derniere partie pour parler quelques mots en ma chere langue
maternelle a mes amis vietnamiens:

E rang chi trong vai dong ngan ngti nay, v6i su han hep ctia 16i néi sé khong thé nao ké dugc
hét nhitng sy nhiét tinh gitp d&, dong vién, va that nhiéu tinh cdm clia mdi ngudi ma minh da gap
gd & Phap va cd nhitng ngudi ban yéu quy ¢ Viet Nam van luon luon doéi theo trong sudt thoi gian
qua. Tuy vay, xin danh mot vai 16i duéi day cho nhiing ngusi ban ma minh da gap gé ¢ Phap va
duoc ho gitip d6 rat nhiéu trong khoang thai gian tit khi bat dau cho dén khi hoan thanh cong viéc
nay:

Em/ t6 xin cdm on sy quan tam va chia sé ctia cac anh chi trong nhém Mirabeau. Cam on that
nhiéu ’tinh thuong mén thuong’ va chan thanh clia moi ngudi- diéu khién em luén cdm thay duge
ddi xt nht mot ngudi em it trong mot gia dinh vui vé va luon gitp dé 1an nhau.

Em/t6/chi xin cdm on cac anh chi, cic ban, vA cac em trong nhém Toan vi that nhiéu nhitng
sy gitp dé trong nhitng nhu cau cudc song hang ngay, nhitng 16i dong vién an i va nhitng co hoi



CONTENTS

dugc chia sé va tam sy cling nhau vé Toan ciing nhu that nhiéu diéu vun vit va tha vi khac. Su
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Chapter 1

Introduction

Version en frangais

La catégorie des D-modules cohérents (équations différentielles) sur une variété complexe ana-
lytique lisse X est un objet classique. Parmi ses variantes applications, nous nous intéressons au
théoreme de localisation de Beilinson-Bernstein qui établit une correspondence entre les représentations
d’une C- algebre de Lie semi-simple g et les D-modules (quasi-cohérent) sur la variété de drapeaux
associée a g (voir [8]). De nombreuses representations remarquables (par example, les modules
de Verma et leurs constituants simples [15]) correspondent ainsi & des D-modules holonomes. Un
D-module non nul M est dit holonome si la dimension de sa variété caractéristique Char(M) est
égale exactement & dim X. Notons qu’en général, on a dim(Char(M)) > dim X. Cette inégalité
est appelée inégalité de Bernstein. Une définition équivalente fait intervenir le foncteur de dualité

D: D (Dx) — D" (Dx)?, M+ RHomp, (M-, Dx) R0, Q% *[dim X]

sur la catégorie dérivée D~ (Dx). Un module M est holonome si et seulement si H(D(M)) = 0
pour tout 7 # 0.

Dans le contexte arithmétique, on fixe un corps complet non-Archimédien K de caractéristique
mixte (0,p). Soit X une variété analytique rigide lisse sur K. Dans [1, 7] Ardakov-Wadsley ont
introduit un faisceau d’opérateurs différentiels d’ordre infini 23)( sur X et une catégorie abélienne
Cx des 5X-modules coadmissibles. Ceci est analogue a la catégorie des D-modules cohérents com-
plexes. Le faisceau IADX est en fait une certaine complétion de Fréchet du faisceau usuel d’operateurs
différentiels d’ordre fini Dx. Notons que dans le cadre d’une variété de drapeaux (analytique rigide)
X, le faisceau associé a 5}( sur 'espace de Zariski-Riemann de X a été introduit par Huyghe-Patel-
Schmidt-Strauch dans [27, 16], ol il est noté par Z.

Dans la théorie des D-modules sur les variétés analytiques rigides, la notion de la variété car-
actéristique d’un D-module est compliquée et n’est pas encore développée. Afin de définir une
notion d’holonomie dans ce contexte, Ardakov-Bode-Wadsley ont introduit dans [4] une théorie de
dimension pour les D-modules coadmissibles, en considérant le grade homologique d’un module
comme étant sa co-dimension. Ceci est basé sur le fait suivant. Si X est une variété affinoide dont
I'espace tangent 7(X) est libre (sur O(X)), alors D(X) est "presque 7 d’Auslander-Gorenstein, ce
qui signifie que 5(X) est la limite d’un systeme projectif des K-algebres d’Auslander-Gorenstein
de dimension injective bornée. Ils ont montré 'inégalité de Bernstein dans ce contexte qui aide
a caractériser 'holonomie faible comme étant de dimension minimale. Cette définition permet de
former la sous-catégorie abélienne C)“(’h C Cx des modules faiblement holonomes. Cependant, cer-
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CHAPTER 1. INTRODUCTION

taines propriétés de finitude ne sont pas satisfaits et la catégorie C)“(’h joue le role d’une premiere
approche a la théorie (d’ou I'adjective ”faible”).

Récemment, K. Ardakov a introduit dans [2] la catégorie des Dx-modules équivariants coadmis-
sibles sur une variété analytique rigide X équipée d’une certaine action de groupe. Plus précisément,
soit G un groupe de Lie p-adique (GL,(Q,) par example) qui agit continiment sur X'. Un Dx-
module G-équivariant coadmissible sur X est, grosso-modo, un Dx-module G-équivariant (dans le
sens usuel) qui satisfait certaine condition additionnelle de finitude (la coadmissibilité). Ces modules
forment une catégorie abélienne Cx ;. Au cas ot le groupe G est trivial, on retrouve la catégorie Cx

des Dx-modules coadmissibles. Inspiré par ces resultats, dans ce travail, nous développons une no-
tion de I’holonomie faible dans le cas équivariant. Notre but sera donc de définir une sous-catégorie
abélienne C)“g;G C Cx /G, au moins dans le cas des variétés de drapeaux analytiques rigides, qui est

analogue a la catégorie C)“(’h (sans action de groupe). Un résultat principal est le théoréme suivant
(chapitre 4):

Théoréme 1 (L’inégalité de Bernstein pour les variétés de drapeaux analytiques rigides):
Soit G un groupe algébrique connexe, simplement connexe, semi-simple et déployé sur K. Posons
G := G(K) 'ensemble des K-points, X I'analytification de la variété de drapeaux de G munie d’une
action naturelle de G. Alors I'inégalité de Bernstein est vraie pour tout Dx-module G-équivariant
coadmissible M # 0. Plus précisément

Notons notamment que les techniques utilisées dans la preuve du théoreme 1 peuvent étre
appliquées & plusieurs autres cas, a savoir pour les polydisques, les espaces affines (analytiques
rigides) avec actions de groupes appropriées, ou bien pour les variétés projectives G-équivariantes,
ceux qui sont les sous-espaces fermés de ]P’}L(’a" (par rapport a la topologie de Zariski) qui sont stables

5 . 7,aMn
par 'action de G sur P

Donnons maintenant un apergu du contenu des différents chapitres qui composent cette these.
Dans le deuxieme chapitre, nous rappelerons quelques notions et propriétés de la géométrie analy-
tique rigide et de la théorie des groupes de Lie p-adique. Ensuite, nous résumerons la théorie des
D-modules équivariants coadmissibles introduite par K. Ardakov dans [2]. Les deux chapitres suiv-
ants sont pour but de développer une théorie de la dimension pour les Dx-modules G-équivariants
coadmissibles. L’outil essentiel est la proposition suivante. Supposons que X est affinoide et G est
compact tels quel (X, G) est "petit” (voir le contenu du texte ou [2] pour une définition précise de
cette condition technique). Alors nous pouvons formuler une K-algebre de Fréchet-Stein ﬁ(X, G)
qui peut étre considérée comme une complétion de 'algebre D(X) x G. Ici, D(X) x G est un anneau

qui contient D(X) comme sous-anneau unitaire et G comme sous-groupe du groupe des éléments
inversibles (D(X) x G)*.

Proposition: Soient X un espace affinoide lisse de dimension d, G un groupe de Lie p—adique
compact qui agit continiment sur X tel que (X, ) est petit. Alors l'algebre de Fréchet-Stein

D(X, G) est isomorphe & la limite projective l&nn D¢ 5, ou chaque D¢ ,, est un anneau d’Auslander-
Gorenstein de dimension injective au plus 2d.

Cette proposition nous permet de suivre le cas non-équivariant (sans action de groupe) et de
définir la fonction de dimension sur la catégorie CB(X ) des D(X, G)-modules coadmissibles en

considérant le grade d’'un module M € CB( comme étant sa co-dimension. Par conséquent,

X,Q)

Yvoir [2, Section 3.1].
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nous pouvons définir correctement la dimension d'un Dx-module G-équivariants coadmissible sur
X via un recouvrement admissible de X par des ouverts affinoides.

Apres avoir introduit la théorie de la dimension sur la catégorie Cx /i, nous montrons dans
la séconde partie du quatrieme chapitre que l'inégalité de Bernstein est vraie sur les variétés de
drapeaux analytiques rigides (théoréme 1). Le point majeur est que, si 'inégalité de Bernstein
est vraie sur une variété analytique rigide X, nous pouvons alors définir la notion d’un module
équivariant faiblement holonome sur X, ainsi que la sous-catégorie abélienne C)Ué}}c de Cx /g des
modules équivariants faiblement holonomes.

Comme expliqué auparavant, sur une variété algébrique complexe lisse X, la restriction du
foncteur de dualité sur la catégorie des modules holonomes est isomorphe au foncteur

gl‘tdping(—, Dx) Rox Q?}fl.

Dans le contexte analytique rigide, un foncteur dérivé de dualité n’a pas encore été introduit, nous
sommes donc amenés a établir, pour tout entier naturel non nul ¢, un foncteur analogue au foncteur
‘Ext’ classique: E': Cx ;¢ — Cx ex ici Cy e désigne la catégorie des Dx-modules G-équivariants
coadmissibles a droite. Plus précisément, si M € Cx /g, en utilisant le foncteur de localisation

Loc)[é(xﬂ)(—) introduit dans [2], le faisceau E*(M) est localement défini de la maniere suivante.
Pour chaque ouvert affinoide U de X tel que I'espace tangent 7 (U) admet un réseau de Lie libre,
alors

E{(M)(U) :=lim Batls . . (M(U), D(U, ),

(U,H)(

ici H est parcouru sur l’ensemble des sous-groupes ouverts compacts de G tels que (U, H) est petit.
Nous montrons dans la premiere partie du chapitre 4 que la limite existe et que tous les morphisms
de transition sont bijections. De plus, nous montrons le théoreéme suivant:

Theorem 2: Soit ¢ € N. Pour tout Dx-module G-équivariant coadmissible a gauche M €
Cx /G E*(M) est un faisceau de Dx-modules G-équivariant coadmissible & droite.

Nous définissons alors ’endofoncteur
EiZCX/G—>Cx/G

pour tout i > 0 en prenant la composition du foncteur E et du foncteur Homey (2x, —). En effet,
ceci est un analogue du foncteur classique (sur C) Sxt%x (—,Dx) ®oy Q?}_l. On peut VériﬁerA sans
difficulté que une fois I'inégalité de Bernstein est vraie pour la catégorie Cx /¢, le faisceau £°(M)
s’annule pour tout M € Cx ;g et ¢ # d = dim X. Par ailleurs

Theorem 3: Le foncteur
]D) = gd‘cwh

X /G
induit un endofoncteur sur la catégorie C)“(’};G des modules équivariants faiblement holonomes sat-
isfaisant D? = id.

Par conséquent, le foncteur D est un analogue au foncteur de dualité classique. On 'appelle
foncteur de dualité sur la catégorie C')“(’@G.

Il s’agit dans le dernier chapitre de donner quelques exemples concretes des modules équivariants
faiblement holonomes. Nous supposons tout au long de ce chapitre que 'inégalité de Bernstein est
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valable sur la catégorie Cx /. Une idée naturelle est de construire des objets de C)“(’};G via les Dx-
modules G-équivariants (cohérents) qui sont de dimension minimale. Nous définissons le foncteur
Ex /¢ de la catégorie des Dx-modules G-équivariants qui sont cohérents sur Ox (connections
intégrables équivariants) vers la catégorie Cx g et montrons ensuite qu’il préserve I’holonomie
faible. Rappelons qu’en cas des variétés algébriques complexes, tous les connections intégrables
sont holonomes. Dans le contexte analytique rigide, si le groupe G est trivial, ceci est encore
valable. Le point majeur est que, pour tout ouvert affinoide U C X tel que 7 (U) admet un réseau
de Lie libre, on a le suivant:

1. L’action de D(U) sur M(U), ici M est une connection intégrable, s’etend naturellement a

—_

une action de D(U) par rapport & laquelle M(U) est un D(U)-module coadmissible,
2. Le morphism d’anneaux D(U) — ﬁ(U) est fidelement plat.

Quand le groupe G n’est pas trivial, nous devons imposer une condition additionnelle appelée
fortement G-équivariant (Proposition 5.1.4)). En particuler, nous montrons que le faisceau struc-
tural Ox est un module équivariant faiblement holonome.

Nous présentons dans la séconde partie du chapitre 5 une classe des D-modules équivariants
faiblement holonomes sur les variétés de drapeaux analytiques rigides. Soient X ’analytification de
la variété de drapeaux associée a un groupe algébrique connexe, simplement connexe, semi-simple
et déployé G sur K, P un sous-groupe parabolique, g,p les algebres de Lie de G et P respec-
tivement. Posons G := G(K), P := P(K). Dans [2], 'auteur a prouvé une version analytique
rigide du théoreme de localisation de Beilinson-Bernstein. Plus précisément, il a construit ’algebre
U(g,G) comme certaine Fréchet complétion de D'algébre U(g) x G. Au cas ou le groupe G est
compact, cette algebre est un fait une K-algebre de Fréchet-Stein, ce qui nous permet de localiser
les ﬁ(g, G)-modules coadmissibles et le foncteur de localisation est une équivalence de catégories
entre les ﬁ(g, G) avec caractere central trivial et la catégorie Cx /a- L'intéressante remarque est

basée sur le fait que la K-algebre ﬁ(g,G) est en bijection avec l'algebre D(G, K) des distribu-
tions localement analytiques construite par Schneider-Teitelbaum dans [29, 30], ou ils ont traduit
I’étude des représentation localement analytiques p-adique a la théorie des D(G, K)-modules (qui
est purement algébrique). Nous s’intéressons donc au foncteur d’Orlik-Strauch F§(—)" ([23]) de la
BGG catégorie parabolique (98 vers les modules coadmissibles sur ’algebra D(G, K). Nous mon-
trons alors que la localisation d’un module obtenue via le foncteur d’Orlik-Strauch est faiblement
holonome.

Théoréme 4: La localisation Loc;]((g’G) (FS(M)") est un Dx-module G-équivariant faiblement
holonome pour tout U(g)-module M € Of.
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English version

The category of coherent Dx-modules (differential equations) on a smooth C-analytic variety
X is a classical object. Among its many applications to representation theory, we mention the
Beilinson-Bernstein theorem, which relates the representations of a given semi-simple complex
Lie-algebra to D-modules on its flag variety (see [8]). Many interesting representations (such
as Verma modules and their simple constituents [15]) correspond thereby to so-called holonomic
modules and satisfy many finiteness properties. We recall that a non-zero coherent Dx-module
M is called holonomic if the dimension of its associated characteristic variety Char(M) is exactly
dim X (note that one always has dim(Char(M)) > dim X, which is known as Bernstein’s inequality
[14, Corollary 2.3.2] ). An equivalent definition makes use of the duality functor

D: D™ (Dx) — DT (Dx)®, M+ RHomp, (M, Dx) @0, Q% *[dim X]

on the derived category D~ (Dx). A module M is then holonomic if and only if H*(DM) = 0, for
all i # 0.

In the arithmetic setting, let K be a complete non-Archimedean field of mixed characteristic
(0,p). Let X be a smooth rigid-analytic variety over K. In [7, 1] Ardakov-Wadsley introduced
a certain sheaf of infinite order differential operators 73)( on X and used it to define the abelian
category Cx of coadmissible 5X—m0dules. It is an arithmetic analogue of the category of coherent
complex-analytic D-modules. The sheaf ﬁx is in fact a certain Fréchet completion of the sheaf
of usual finite order (algebraic) differential operators Dx. We note that in the case of the rigid
analytic flag variety X of a connected split reductive algebraic group G, the sheaf on the Zariski-
Riemann space of X associated with the sheaf 13)( were independently introduced and studied by
Huyghe-Patel-Schmidt-Strauch in [16, 25], where it is called Zw.

In the context of D-modules on smooth rigid analytic varieties, the notion of characteristic vari-
ety is much more complicated and not yet developed. In order to define a notion of holonomicity for
D-modules, the authors in [4] introduced a dimension theory for coadmissible D-modules by using
the homological grade of a module as its codimension. This is based on the key fact that whenever
X is affinoid with free tangent module 7(X), then 5(X) is almost Auslander-Gorenstein (it is
a well-behaved inverse limit of Auslander-Gorenstein K-algebras). They then proved Bernstein’s
inequality in this setting and characterize weak holonomicity as being of minimal dimension. It
should be pointed out that the abelian subcategory C)“éh C Cx of weakly holonomic modules does
not yet satisfy all desired finiteness properties and serves only as a first well-behaved approximation
(hence the adjective 'weak’).

Recently, K. Ardakov introduced in [2] the category of coadmissible equivariant Dx-modules
on smooth rigid analytic spaces endowed with suitable group actions. Let us explain briefly what
the equivariant setting is. Let X be a smooth rigid K-analytic variety and G a p-adic Lie group
(such as GL,(Q,)) which acts continuously on X 2. A coadmissible G-equivariant Dx-module on
X is, vaguely speaking, a G-equivariant Dx-module (in the usual sense) which satisfies additional
finiteness conditions. These modules form an abelian category Cx /. If the group G =1 is trivial,

we recover the category Cx of coadmissible 5X—m0dules, which is introduced in [7].
Motivated by these results, the aim of this thesis is to develop a notion of weak holonomicity

in this equivariant setting, i.e. to define an equivariant analogue of the category C)“(’h, at least in
the case of rigid analytic flag varieties. The main result is the following theorem, which is proved

%see [2, Section 3.1] for a precise definition.
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in chapter 4:

Theorem 1 (Bernstein’s inequality for rigid analytic flag varieties):
Let G be a connected, simply connected, split semi-simple algebraic group over K and let G :=
G(K). Let X be the rigid analytification of the flag variety of G, endowed with its natural G-
action (by conjugating Borel subgroups of G). Then Bernstein’s inequality holds for any non-zero
coadmissible G-equivariant D-module M € Cx g, i.e. dim(M) > dim X.

We emphasize that the arguments used in the proof of this theorem can in fact be applied to
larger classes of spaces, for example, poly-discs, affine spaces (with suitable actions of compact
Lie groups) or G-projective varieties (Zariski-closed stable subspaces of analytic projective space
IP’?(’W). This establishes Bernstein’s inequality in all these cases. We hope to extend this results in
the near future in order to include even more spaces.

In chapter 2 we recall some basic notions and properties of rigid analytic geometry and of p-
adic Lie groups, then we summarize the theory of coadmissible equivariant D-modules developed
by K.Ardakov in [2]. Chapter 3 and chapter 4 are dedicated to the development of a dimension
theory for coadmissible G-equivariant Dx-modules. The main point is the following key proposi-
tion. In order to formulate it, we assume that X is affinoid and G is compact such that (X, G)
is small (see [2, Definition 3.1.8] or the main body of the dissertation for a precise definition of
this technical condition). There is a K-Fréchet-Stein algebra D(X,G), which can be viewed as a
certain completion of the skew-group K-algebra D(X) x G. Here, D(X) x G is a certain crossed

product which contains D(X) as a subring and G as a subgroup in the group of invertible elements
(D(X) x G)*.

Key proposition: Let X be a smooth affinoid variety of dimension d and G be a compact p-adic
Lie group acting continuously on X such that (X, G) is small. Then the Fréchet-Stein K-algebra

D(X, @) is isomorphic to the inverse limit I&nn D¢, where each Dg, is an Auslander-Gorenstein
ring of self-injective dimension at most 2d.

The proposition allows us to follow the non-equivariant setting and obtain the grade as a codi-
mension function. This leads to a well-behaved definition of dimension for coadmissible ﬁ(X, G)-
modules. Then we can define correctly the dimension for coadmissible G-equivariant Dx-modules
on a general rigid analytic variety X using globalization via admissible affinoid coverings.

After having introduced the dimension theory on the category Cx ¢, we then study the question
whether Bernstein’s inequality holds for all coadmissible G-equivariant D-modules of Cx /q. If it
is satisfied, we can define the notion of an equivariant weakly holonomic module on X, and hence
form the subcategory C)“é};G of Cx /g of equivariant weakly holonomic modules.

As noticed above, on a complex smooth algebraic variety X, the restriction of the (derived) dual
functor D to the category of holonomic modules is isomorphic to

gxtdpi)n(nX(_, Dx) ROy Q?é_l.

Even if a full derived dual functor in the rigid-analytic setting has not yet been defined, we go on
and construct, for all non negative integers i € N, analogous 'Ext’-functors E° : Cx a — Cx et
where Cy e denotes the category of coadmissible G-equivariant right Dx-modules. Let us explain

briefly their definition. Let M € Cx /g. Using the localisation functor Locx(—)ﬁ(X’G) from [2],

8
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the sheaf E'(M) is defined, locally, as follows (cf. 4.2.6). For each U in the set B of affinoid
subdomains of X such that the tangent O(U)-module 7 (U) admits a free Lie lattice, then

E'(M)(U) = lim Exti; (M(U),D(U, H)),

(U,H)
where H runs over the set of all open compact subgroups of G such that (U, H) is small. We will
prove in the first part of chapter 4 that this is well-defined, which means that the limit exists and all
transition maps are bijections. Furthermore, we will prove the following result (cf. Theorem 4.2.23):

Theorem 2: For every i € N, E*(M) is a sheaf of coadmissible G-equivariant right Dx-module
for every coadmissible G-equivariant left D-module M € Cx /-

We then define the functors A
& :CX/G’ —>CX/G

for i > 0 by composing E' with the side-changing functor Homoy (Q2x,—). Note that £ is an
analogue of the classical Ext-functor Ext%ing (—,Dx) ®oy Q?}fl. We then easily verify that once
Bernstein’s inequality holds for Cx /q, £'(M) = 0 for every equivariant weakly holonomic Dx-
module M € C)“éh/G and every ¢ # d = dim X. Furthermore

Theorem 3: The functor
]D = gd‘cwh

X /G

induces an auto-equivalence of the category C)Ué};(; of G-equivariant weakly holonomic modules which
satisfies D? = id.

The functor I can therefore be regarded as the correct analogue of the classical duality functor.
We call it the duality functor on the category C;’}G.

In the last chapter, we will give some concrete examples of equivariant weakly holonomic mod-
ules. Throughout we always assume that Bernstein’s inequality is valid for the category Cx /q-
We first present a natural way to construct objects C)“(’};G via an extension functor Fx ;g from
G-equivariant (coherent) Dx-modules of minimal dimension to Cx /i, and then prove that this
functor preserves equivariant weak holonomicity. We recall here that in the classical theory over
complex algebraic varieties, all integrable connections are actually holonomic. In our setting, and
if G =1 is trivial, all integrable connections on a smooth rigid-analytic space X are known to be
weakly holonomic [4]. The point is that, for any affinoid subdomain U such that 7(U) admits a
free Lie lattice:

1. The D(U)-action on M(U), where M is an integrable connection, extends naturally to a
D(U)-action under which M(U) becomes a coadmissible D(U)-module.

2. The ring homomorphism D(U) — 23(U) is faithfully flat.

When working with a non-trivial p-adic group G # 1, to have a ﬁ(X, G)-action on a G-
integrable equivariant connection extending its given (D — G)-structure, needs a real condition,
which we call ’strongly equivariant’ (cf. Proposition 5.1.4).

We conclude the chapter 5 by constructing a large class of weakly holonomic equivariant D-
modules on rigid flag varieties. Let X be the rigid flag variety associated to a connected, simply
connected, split semi-simple algebraic group G over K. Let IP be a parabolic subgroup of G. Let g, p
be the Lie algebras of G and P, respectively. Let G := G(K) and P := P(K). In [2], K.Ardakov has

9
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proved an analogue of the Beilinson-Bernstein theorem for trivial character in this p-adic setting.
More precisely, he defined the K-algebra ﬁ(g, G),which is, roughly speaking, a certain completion
of the skew-group algebra U(g) x G. It should be pointed out that when G is compact, then
ﬁ(g, @) is indeed a Fréchet-Stein K-algebra . He then proved that the localization functor on the
category of coadmissible ﬁ(g, G)o-modules is an equivalence of categories with the category Cx /-
In [22, 23], Orlik-Strauch constructed a functor M + D(G,K) ®@p(gpy M from the parabolic
BGG category (98 to coadmissibe modules over the locally analytic distribution algebra D(G, K).
These modules are locally analytic globalizations of the classical Verma modules and their simple
constituents. We show that Orlik-Strauch modules localize to G-equivariant Dx-modules which
are weakly holonomic.

Theorem 4: The localization Loc;]((g’G) (D(G, K) ®p(g,p) M)) is a G-equivariant weakly holo-
nomic module for any U(g)-module M € Of.

Notation:

e Throughout this paper, we fix a complete non-Archimedian field K of mixed characteristic
(0,p) with valuation ring R. We also fix a non-zero non-unit element 7 € R. and residue
field k. Its algebraic closure will be denoted by K

e If M is an R-module, its m-adic completion @n M /7™M will be denoted by M.

e For any ring R, all R-modules, if not further specified, are left modules.

3More precisely, the K-algebra ﬁ(g, G) acts on X compactibly with G in the sense of [2, Definition 3.4.9], which
allows us to localize ’coadmissible’ U(g, G)-modules.

10



Chapter 2

Background material

2.1 Rigid analytic varieties

We begin by collecting some notions and standard results about rigid analytic varieties. We refer
to [10, 9] for quite complete and systematic treatments on the theory. Conrad’s note [12] will be
an interesting reference for those who want a brief overview.

2.1.1 Affinoid K-spaces and affinoid subdomains

Let (K,|.|) be a complete non-Archimedean field. Note that the absolute value | . | of K extends
uniquely to K and we still denote it by | . |.

Definition 2.1.1. The Tate algebra in n-variables T,, := K(x1, ..., xy) is the K-algebra of all formal
POWET SEeTies

Y venn i’ € K[w1, .., 2,], ay € K such that lim), g | ay |= 0,
where x¥ = x*..xlm and | v |=v1 + ... + vy for all n-tuples v = (v1,...,v,) € N.

We may consider T), as the K-algebra of convergent power series on the n-dimensional unit ball
B"(K) ={z € K : |z| <1}. We equip 7}, with a norm as follows. Let f(z) =3, a,z” € T, then

| f |:==max | a, |< 0.
v

This norm is called the Gauss norm and it is well-known that 7, is a Banach K-algebra with
respect to the Gauss norm. Here, by Banach K-algebra, we mean a normed K-algebra which is
complete with respect to the induced topology.

Concerning the algebraic properties, the Tate algebras T}, are noetherian. Similarly to the ring of
polynomials in n-variables over field, each T, is of Krull dimension n.

Definition 2.1.2. Let A be a K-algebra. Then A is called an affinoid K-algebra if there is an
epimorphism of K-algebras

a:T, — A for somen € N.

An affinoid K -space is a set Sp(A) consisting of the maximal ideals in an affinoid K-algebra A.
Let z € Sp(A), we let m, denote the corresponding maximal ideal in A.
Note that each element f € A can be considered as a function on Sp(A) in the following way. For
any x € Sp(A) , then f(z) is the residue class of f in A/m,, which is a finite extension field of K.

11
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After embedding A/m, in to an algebraic closure K of K, we may consider f(r) as an element of
K. Therefore, to every f € A one associates the following function:

Sp(A) — Rxo
z— [ f(z)].
There is a natural (Zariski) topology on Sp(A) generated by the subsets of the form
Dy ={x e Sp(A) : f(x) # 0}, with f € A.

When studying sheaves on an affinoid K-space or more generally on a rigid-analytic space, it is
much more convenient to introduce a 'new topology’ namely the Grothendieck topology rather than
to work with the Zariski topology. We will explain this more precisely in the next subsection.

Definition 2.1.3. Let X = Sp(A) be an affinoid K -space. By affinoid subdomain of X, we mean a
subset U C X such that there is a morphism of affinoid K -spaces v : X' — X such that «(X') C U
and which satisfies the following universal property:

For any morphism of affinoid K-spaces ¢ : Y — X satisfying p(Y) C U, there exists a unique
morphism ¢' : Y — X' such that the diagram

Y#X'

X
is commutative. We then say that the morphism 1 : X' — X represents U.

The set of all affinoid subdomains of X is denoted by X,,. It is proved that if U € X,,, then
the morphism ¢ : X’ — X representing U is a bijection between X’ and U, so that U is equipped
with a structure of affinoid K-space inherited from X'.

Below we have some examples of (special) affinoid subdomains of X:

Example 2.1.4. ([10, Definition 3.7, Proposition 3.11])
Let X = Sp(A) and fo, fi, .., frsg1,-.-,9s € A. For every d € N, we denote

AlE) = Ay, &0 = (D ar€” 1ay € A, lim |a] = 0}

the algebra of restricted power series in & with coefficients in A.

1. Weierstrass subdomain

X(f1, s fr) = {2 € X1 [fi(2)] < 1},
Then X(f1, ..., fr) = Sp(A(f)) with A(f) is the affinoid K -algebra

A(f) == A, -0 &) (61 = fry e & — fr)-

2. Laurent subdomain

X(frs oo frogr s g5 ) = {2 € X2 | fi(w)] < 1, ]gj(2)| > 1}
Then X(f1, .y frr g1 s s g3 1) = Sp(A(f, g7 1)) with A{f,g~') is the affinoid K -algebra

A<f7 gil> = A<§17 "‘7€T7C17 7<8>/(€1 - f17 '”751” - fT’7 - glgla ey 1 — gSCS)'

12
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3. Rational subdomain
Suppose that fo, ..., fr has no common zeros. We define

X(ﬁ f) — {2 € X : Y4, |fy(@)| < |fola)]}.

fo 7 fo
Then X(%, - %) = Sp(A(%» with A(%) is the affinoid K-algebra
A = Al &)/ = fubas o s = 1)

2.1.2 Rigid analytic varieties

Definition 2.1.5. A Grothendieck toplology ¥ consists of a category Cat¥ and a set CovT of
families (U; — U)ier of morphisms in CatX, called coverings, such that the following conditions
hold:

(1) If ®: U — V is an isomorphism in CatT, then (P) € Cov¥.

(i1) If (Ui — U)ier and (Vij — Uj)jey, belong to Cov¥ for all i, then so is the composition
(Vij — Ui —> U)icr,jeJ-

(13i) If (Ui — U)jer is in CovT and V. — U is a morphism in Cat¥, then the fiber product
U; xy V exists in Cat¥ and (U; Xy V. — V)er is in Cov¥.

An ordinary topology on a set X is a first (and natural) example of Grothendieck topology.
Indeed, if X is a set and C'at¥ is a category of certain subsets in X with inclusion morphisms, then
the first condition in the definition is trivial while the last two conditions can be interpreted as

(17) If U = UjerU; and U; = Uje, Vij are coverings in CatT, then so is U = U; ;Vi;.

(7i7) If U = U;erU; is a covering and V' < U is an inclusion, then V N U; € Cat¥ for all ¢ and
V = UiV NU; is a covering.

A set X which is equipped with a Grothendieck topology ¥ is called G-topological space. If
U € Cat¥, then U is called an admissible open. If (U; — U);er is an element of CatT, then it is
called an admissible covering.

Let X be an affinoid K-space. Then the weak Grothendieck topology on X is the Grothendieck
topology given by the category Cat¥ of affinoid subdomains of X with inclusions as morphisms
and the set Cov¥ consisting of finite families (U; — U) of inclusions of affinoid subdomains
in X such that U = U; U;. The strong Grothendieck topology on the affinoid K-space X is the
Grothendieck topology induced from the weak Grothendieck topology by adding more admissible
open sets (not only affinoid subdomains) and more admissible coverings (not only finite coverings)
in a certain way. More generally, we allow ourselves to give the definition of a strong Grothendieck
topology as follows. A Grothendieck topology on a set X is called strong if it satisfies the following
conditions:

(Go) 0 and X are admissible open.

(G1) If (U;)ier is an admissible covering of an admissible open subset U € X and V C U is a
subset such that V N U; is admissible open for any ¢ € I, then V is admissible open in X.

13
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(G3) If (U;)ier is a covering of an admissible open subset U C X by admissible open subsets U; C U
such that (U;);er admits an admissible covering of U as refinement. Then (Uj;);er itself is an
admissible covering.

(see [10, Definition 5.1.4] for more details).

Let X be a G-topological space. As usual, there are notions of presheaves and sheaves on X.
Ignoring the technical tricks, the main diffirence here is that instead of working with open subsets
and coverings in an ordinary topology, we work with admissible open subsets and admissible cov-
erings in a Grothendieck topology. Then the basic definitions and properties stay the same.

Let us now describe the structure sheaf Ox on an affinoid K-space X. For any affinoid sub-
domain U C X, let O(U) denote the affinoid K-algebra corresponding to U. If V C U is another
affinoid subdomain of X, then there is a canonical morphism of affinoid K-algebras (which is called
a restriction map)

ry - O(U) — O(V).
Then Ox is a presheaf of affinoid functions on X such that for any x € X the stalk
OX@ = hﬂ O(U),
zeU

where U runs over the set of affinoid subdomains of X containing x, is a local ring with maximal
ideal m;Ox , ([10, Proposition 4.1.1]). Moreover:

Theorem 2.1.6. (Tate) The presheaf Ox of affinoid functions on the affinoid K-space X is a
sheaf with respect to the weak Grothendieck topology. Furthermore, any finite covering U of X by
affinoid subdomains is acyclic with respect to Ox.

The structure sheaf Ox on X together with the weak Grothendieck topology extends in a
natural way to a sheaf on X together with the strong Grothendieck topology by [10, Corollary
5.2.5].

The notion of (locally) ringed K-spaces and morphisms between them can be naturally adapted to
G-topological spaces.

A trivial example to us will be the affinoid K-space (X, Ox) with the strong Grothendieck topology.
We can now state the definition of rigid analytic K-spaces as follows.

Definition 2.1.7. A rigid analytic K-space is a locally G-ringed K -space (X, Ox) such that
(i) The Grothendieck topology on X is a strong Grothendieck topology.

(i7) X admits an admissible covering (U;);er, where the space (U;, Ox|u,) is an affinoid K-space
for every 1.

A morphism of rigid K-spaces (X,0x) — (Y,Oy) is a morphism between locally G-ringed K -
spaces.

2.1.3 Coherent sheaves on rigid analytic spaces

Let X = Sp(A) be an affinoid K-space and M be an A-module. Then we define
M := Ox @4 M.

14
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This is a sheaf of Ox-modules on X and we call it the Ox-module associated to M. The func-
tor (.) is exact, fully faithful from the category of A-modules to Ox-modules ([10, Proposition 6.1]).
Now let X be a rigid analytic space. As usual, we say that an Ox-module M on X is quasi-
coherent if for any « € X there exists an admissible open subset U such that there is an exact
sequence

ol — 0 — My —o.

An Ox-module M is called coherent if and only if there exists an admissible affinoid covering
U = (U,)ier of X such that M|y, is an Oy,-module associated to a finitely generated O(U;)-
module for all 4 € I. More precisely, we then say that M is U-coherent.

Theorem 2.1.8. (Kiehl) Let X = Sp(A) be an affinoid K-space and M is an Ox-module. Then
M is coherent if and only if M is associated to a finitely generated A-module.

Let X,, denote the set of all affinoid subdomains of a rigid analytic space X. Unlike in the
case of affinoid K-spaces, X,, does not define a Grothendieck topology on X. However, X,, forms
a basis for the given Grothendieck topology on X. Being a basis for the Grothendieck topology
on X means that every admissible open subset has an admissible covering by elements in X,,. In
general, there is a natural way to construct a sheaf on X from a sheaf defined on a certain basis of
(the Grothendieck topology) on X. We state the following theorem:

Theorem 2.1.9. ([7, Theorem 9.1]) Let B be a basis for the Grothendieck topology on X. Then
the restriction functor is an equivalence of categories between the category of sheaves on X and the
category of sheaves on B.

2.1.4 Construction of rigid analytic spaces

We explain in this section two ways of defining a rigid analytic variety from a scheme of locally
finite type over K (which is known as the analytification functor or GAGA Serre’s functor in the
complex setting) and from a formal R-scheme.

First, let us recall the construction of the analytificaltion functor in the rigid analytic setting. This
is a functor which associates to each K-scheme X of locally finite type a rigid analytic K-space
X9 (in [10, 5.4] it is denoted by X").

Let X = SpecK[¢1,...,&y]/a be an affine scheme with an ideal a C K¢y, ..., &,]. For all ¢ € N, there
is an inclusion of affinoid K-spaces

Sp (T /(a)) — Sp (T /(w)) ,

where for some scalar ¢ € K such that |¢] > 1, 7" denotes the Tate algebra T{c™%¢, ..., %)
. It is worth pointing out that this K-algebra contains all power series converging on the closed

n-dimensional ball of radius |c!|. Each affinoid K-space Sp (T ) / (a)) is contained in X. Now
define:

o0
x =] Sp(T9/(a)).
i=0
Then the set X" can be equipped with a structure of locally G-ringed K-space such that the
natural morphism

p: X" — X
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is a bijection of X" onto the subset of closed points of X. In particular when X = A%, then X"
is the union of all the n-dimensional balls of radius |c|".

More generally, we have the following theorem:

Theorem 2.1.10. ([10, Definition and Proposition 5.4.3])
Let (X, Ox) be a K-scheme of locally finite type. Then there is a rigid analytic K-space (X, Oxan)
together with a morphism of locally G-ringed K -spaces

(P, p*) + (X*,Oxan) — (X, Ox)

satisfying the following universal property: For any rigid analytic K-space (Y, Oy) and any mor-
phism of locally G-ringed K -spaces (Y,Oy) — (X, Ox), there exists an unique morphism of rigid
analytic K-spaces (Y,Oy) — (X, Oxan) such that the following diagram is commutative:

(Y, OY) _—> (Xan’ OXan)
(p,p")

(X, 0x)
Recall that the morphism p : X% — X induces a functor
p*: Mod(Ox) — Mod(Oxan)
M — Oxaen @ ,-10, p~ M.

The following result is due to [5, Proposition 2.2.1]

Proposition 2.1.11. (i) The functor p* is exact and faithful.

(13) If X is proper, then one has
HY(X™ p*M) = H'(X, M)

for all i > 0 and all quasi-coherent Ox-modules M.

Now, we look at the construction of rigid analytic spaces from formal schemes. Recall that
the valuation ring R of K is m-adically complete. We may define the R-algebra R ({1, ...,&,) of
restricted power series in the variables &1, ..., &, as the subalgebra of the R-algebra R[[¢1, ..., ]| of
formal power series consisting of all power series ), ¢, with coefficients ¢, € R constituting a
zero sequence in R. Note that R(&1,...,&,) is noetherian( [10, Remark 7.3.1]). Furthermore

R<£1a 7511) = @R[gla 7£n]/(7rn)

Definition 2.1.12. (i) A topological R-algebra is called of topologically finite type if it is iso-
morphic to an R-algebra of the form R(1, ..., &) /1 with an ideal I of R({1, ..., &n).-

(7i) A formal R-scheme X is called locally of topologically finite type if there is an open
affine covering (U;)icr of X with U; = SpfA;, where each A; is an R-algebra of topologically
finite type.
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Let X be a formal R scheme of locally of topologically finite type. Then there is a rigid analytic
K-variety X;, associated to X, which is defined locally as follows. Suppose that X = Spf(A),
where A = R({1,...,&,) /1. Then A ®g K is an affinoid K-algebra ([10, 7.4]. In fact

Aer K = K<§17 ---7§n>/IK<§17 ---a§n>‘

We define
Xrig = SP(A QOR K)

If o : Spf(A) — SpfB is a morphism of affine formal R-scheme. Then it is induced from a unique
R-homomorphism ¢* : B — A and the corresponding generic fiber

prig: Bor K — Aer K
determines a morphism of affinoid K-varieties
Orig : SP(A@r K) — Sp(B g K).
More generally

Proposition 2.1.13. ([10, Proposition 7.4.3]) The functor A — A ®@r K on the category of R-
algebras of topologically finite type gives rise to a functor X —— X,y from the category of formal
R-schemes that are locally of topologically finite type to the category of rigid analytic K-varieties.

Given a rigid analytic K-variety X. A formal R-scheme of locally topologically finite type X
is called a formal R-model of X if X,;; = X. When X = Sp(A) is an affinoid K-variety. An
R-algebra of topologically finite type is called an affine formal model in A if Az K = A.

2.2 Crossed products

Since we will usually be working with the notion of a crossed product, this subsection is devoted to
recalling some basic facts concerning its definition and its properties. For more details, the reader
is recommended to take a look at [24], [20] and also [2].

All rings appearing in this subsection are supposed to be unital. For a ring R, we let R* de-
note the set of all units in R.

Definition 2.2.1. Let R be a ring and G be a group. A crossed product R+ G of R and G is a
ring containing R as a subring and a set of units G = {g, g € G} C (R G)* which is in bijection
with G such that:

(i) R* G is free as a right R-module with basis G with 1g = 1g,
(it) iR = Rg1 and g1g2R = gigaR for all g1,92 € G.

Let R * G be a crossed product. Thanks to (ii), the ring R * G is also free as a left R-module.
Given a crossed product R * G of R and G, there are associated maps o : G — Aut(R) and
7:G x G — R*, defined as follows:

a(g)(r) =g 'rg and 7(g1,92) := (9192) '1g2, for all7 € Rand g1,92 € G.
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These maps yield the following properties:

(2.1) (9192, 93)7(91, 92)°9) = (g1, 9293)7 (92, 93)
and
(2.2) o(g1)o(g2) = o(g9192)n(91, 92),

where 7(g1, g2) € Aut(R) denotes the multiplication by 7(g1,g2) on R and 7(g1, g2)?\93) denotes
the right action of o(g3) € Aut(R) on 7(g1,92) € R.

Conversely, given two maps o : G — Aut(R) (which is not necessary a group homomorphism)
and 7 : G x G — R* satisfying (2.1) and (2.2), then we may define a crossed product as follows.
Choose an unit u € R*. For each g € G, we denote by g := o(g)(u) € R*, the image of u via the
R-automorphism o(g) € Aut(R). Then the ring R * G is formally defined by

R*G::{Zgrg\geG,rgeR}.

finite

The addition is defined as usual and the multiplication law is determined by the following rules:

(2.3) 192 = 91927(91, 92)
and
(2.4) rgi = qio(gy )(r)

for all r € R and g1, 92 € G.

A first example of a crossed product will be the group ring R[G] of G over R. In that case
the maps o and 7 are both trivial, which means that o(g1) = 1 and 7(g1, g2) = 1 for all g1, g2 € G.

Another important example to us is when o is a homomorphism of groups (thus the group G
acts on R via o) and 7 is trivial, we obtain the skew product R x G. By definition, it is the free
right R-module with basis G:

RxG={goro+ ...+ gnrn, i € R,g9; € G,n € N}
Now the equalities (2.1) and (2.2) become
gig2 = gig2 and g = gio(gy )(r).

By consequence, we can drop the overbars of § € R and write it simply by g € G. It follows that
R x G contains G as a subgroup of the group of units (R x G)*. For g € G,r € R, in the sequel,
we let g.r (resp. r.g) denote the image of r under o(g) (resp. o(g~1)). This corresponds to the left
(resp. right) action of G on R. The multiplication in R x G is then described by:

(g171)(g2r2) = (9192)((g5 "-r1)72)

for any 71,72 € R and ¢1,g2 € G. The ring R x GG naturally contains R as a subring. Furthermore
one has the following relation in R x G:

grg~' =g.r, forany g€ G,r € R.
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Remark 2.2.2. If we consider the right action of the group G on R, we see that the skew group ring
R % G can be also considered as a free left R-module with basis G. More precisely, each element in
R x G has a unique representation deg rqg, where vy € R is zero for all but finitely many g € G.

1

Indeed, the relation grg= = g.r implies that

1

sg=g9 'sg=g(g”"

sg) = glg~".s).

Under this representation, one can rewrite the multiplication on R x G as follows:
(2.5) (rg)(r'g’) = (r(g-r"))(99")-

Note that in [2, 2.2], the author has considered R x G as a free left R-module with basis G. Hence
he defined its multiplication by using (2.5).

Recall [2, Definition 2.2.1] that a trivialisation (of the skew-group ring R x G) is a group ho-
momorphism 3 : G — R* such that

B(g)rB(g)~t =g.rforall g€ G and r € R.

Note that whenever there is a trivialisation 5 : G — R*, the skew-group ring R x G is naturally
isomorphic to the group ring R[G] [2, Lemma 2.2.2]. The isomorphism is explicited by

B:R[G] — RxG
r—r

g B(9) "'y
for any r € R and g € G.

Definition 2.2.3. Let N be a normal subgroup of G and f: N — R* be a trivialisation of Rx N.
We define

. Jéj L RNG
RxnyG=RxyG:= (RNG)(B(N)—l)'

It is proved (loc.cit Lemma 2.2.4) that when 3 is G-equivariant, which means that 3(gng=') =
g.B(n) for every n € N and g € G, then R xy G is an associative ring containing R as a subring
and there is a natural group homomorphism G — (R Xy G)* by definition.

The following lemma will be useful for the next chapters. This is due to [27, Lemma 2.2]

Lemma 2.2.4. Let R, A be two rings and ¢ : R — A be a morphism of rings such that ¢ is also
left (resp. right) flat and that it factors through

R— R+xG — A,

where R x G is a crossed product of a group G over R. Then the morphism Rx G — A is left
(resp. right) flat.
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2.3 Review on p-adic Lie groups

Similarly to real (or complex) Lie groups, a Lie group over a non-archimedean field K (or p-adic Lie
groups) is, rougly speaking, a manifold over K which admits a group structure compatible with its
"analytic structure’. In this subsection we recall some basic definitions and properties that may be
used in the future. For more details, the reader are recommended to take a look at [28], [11] and [13].

Definition 2.3.1. Let U C K" be an open subset, a map f: U — K" is called locally analytic
if it is locally given by a convergent power series around each point in U. More precisely, if for
any xo € U, there ezists a ball By(xg) = {z € K" : |z — x| < r} C U and a power series
F(X) = >, vaX® satisfying lim|q | [va|rl®l and such that f(x) = F(x — x0) for any x € B,(x0).

We can define an n-dimensional (locally analytic) manifold over K in the usual way, namely a

Hausdorff topological space M equipped with a (maximal) atlas A consisting of homomorphisms
from open subsets of M onto open subsets of K" such that the transition map ¢ o ¢! is locally
analytic for all p,¢ € A.
Analytic mappings between (locally analytic) manifolds are defined as usual (by checking analytic-
ity on local charts). The set C*" (M, K) of all locally analytic functions f : M — K is a K-vector
space with respect to pointwise addition and scalar multiplication and is functorial in M. Further-
more, C*"(M, K) can be equipped with the structure of topological vector space. In particular, if
M is compact, then C**(M, K) is a locally convex inductive limit of K-Banach spaces ([29, Lemma
2.1)).

Definition 2.3.2. A p-adic Lie group is a manifold over K which carries a structure of a group
such that the multiplication

mg: GxG— G
(g, h) — gh
and inverse map
iq:G— G
gr—97"
are locally analytic.
Any p-adic Lie group is a totally disconnected locally compact topological group.
Definition 2.3.3. Let G be a p-adic Lie group over K. Then the strong dual
D(G,K) := C"(G, K)j,

of the locally convex K -vector space C*(G, K) is called the (locally convex) vector space of K -valued
distributions on G.

It is proved ([29, Proposition 2.3] that D(G, K) can be equipped with a structure of an asso-
ciative K-algebra. Furthermore, if G is compact, then D(G, K) is a Fréchet K-algebra (i.e the
underlying topology is Fréchet which is compatible with the K-algebra structure).

2.4 Equivariant sheaves on rigid analytic spaces

This section is devoted to the theory of equivariant D-modules on rigid analytic spaces.
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2.4.1 Group actions on rigid analytic spaces

Let X be a rigid analytic space over K. The spirit of the theory of equivariant sheaves on X is
exactly the same as usual (when working on usual topological spaces). Let X,Y be rigid analytic
spaces. Let us recall below some essential definitions. Fix an abstract group G with unit element
1. Then G acts on X if there is a group homomorphism p : G — Homeo(X) from G to the group
Homeo(X) of continuous bijections on X. In this case, each g gives rise to a pair (p(g)«, p(g)*) of
equivalences of categories from the category of abelian sheaves on X to itself. More precisely, if F
is a sheaf on X then (p(g))*(F) is the sheaf whose local sections are defined by (p(g))*(F)(U) =
F(gU) for all admissible open subsets U C X. Similarly, the sheaf p(g).(F) is defined locally as
0(9)«(F)(U) := F(g~1 U) for every admissible open subset U C X (here we denote gU the image
of U via the bijection p(g) for all g € G). In the sequel, we write g, and g* instead of p(g). and
p(g)* for short.

We recall the following definition from [2, Section 2.3]:

Definition 2.4.1. (i) Let R be a ring and F be a sheaf (of groups, of R-algebras, of R-modules,etc)
on X. Then F is called G-equivariant if for each g € G, there is an isomorphism of
sheaves (of groups, of R-algebras, of R-modules,etc) g” : F—+g*F such that 17 = Id and
(gh)" = h*(g7) o hF for any g,h € G.

(1) Let A be a G-equivariant sheaf of R-algebras on X. A G-equivariant sheaf of R-modules M
is called G-equivariant sheaf of A-modules if for any g € G, a € A, one has

gM(a.m) = g*(a).g™M(m), (resp. g™ (m.a) = g™ (m).g"(a)).
Remark 2.4.2.

(i) Let A be a G-equivariant sheaf of R-algebras and U be a G-stable admissible open subset of X.
Then there is a left (resp. right) action of G on A(U) determined by

g.a:=g*a) (resp. a.g:=(g7")*a))
for any g € G and a € A(U).

(ii) Suppose that V. C U are G-stable admissible subsets of X, then the restriction map A(U) —
A(V) is left (resp. right) G-equivariant.

The notion of equivariant sheaves of algebras on X is related to the notion of skew-group rings
in the following way. Let A be a G-equivariant sheaf of R-algebras on X. We can form the skew-
group ring A(U) x G for any G-stable admissible open subset U of X. The following proposition
is just restated from [2, Proposition 2.3.5] but is also applied to G-equivariant right .4-modules.

Proposition 2.4.3. [2, Proposition 2.3.5] Let X be a rigid analytic space and G be a group which
acts on X. If X is an admissible open subset with respect to the G-topology on X. Then the functor
of global sections T'(X, —) sends G-equivariant left (resp. right) A-modules to left (resp. right)
A(X) x G-modules.

Suppose for the moment that X is quasi-compact and quasi-separated. Then there is a Hausdorff
topology on the group Autx (X, Ox) of K-linear automorphisms of X which is described as follows.
First, following [10, Theorem 4.1] there exists a formal model X for X, which means that & is a
quasi-compact admissible formal scheme over R such that X = AX;,, where rig is the functor
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which associates to each admissible formal scheme its generic fibre. Next, consider the group
G(X) := Autr(X,Ox). For each n > 0, the n-th congruence subgroup of Gy is

G (X) 1= ker[G(X) — Autr, (X, Ox, )],

where R,, := R/7"R and X,, := X ®r R,,. These subgroups are normal in G(X) and form a
descending filtration of the group G(X), which will equip G(X') with a topological group structure.
Since ,, G (X) = 0, G(X) is indeed Hausdorff. This topology induces a Hausdorff topology on
Aut g (X, Ox) via the injective homomorphism of groups G(X') — Auti (X, Ox) which is induced
by the functor rig and we have the following theorem:

Theorem 2.4.4. Let X be a quasi-compact quasi-separated rigid analytic variety over K. Then
for any formal model X of X, the congruence subgroups

Gan(X)pig for alln >0

generate a Hausdorff topology on Autkx(X,Ox) such that Autix(X,0x) is a topological group.
Furthermore, this topology is independent of the choice of a formal model X of X.

Proof. [2, Theorem 3.1.5] O

Now let G be a topological group and X be a (general) rigid analytic space over K. The
following definition is due to [2, Definition 3.1.8].

Definition 2.4.5. We say that G acts continuously on X if there is a group homomorphism p :
G — Autg (X, O0x) such that for every quasi-compact quasi-separated admissible open subset U
of X, the following conditions hold:

(a) The stabiliser Gu of U is open in G,

(b) The induced group homomorphism py : Gu — Autix (U, Oy) is continuous with respect to
the induced topology on G and the topology on Auti (U, Oy) defined in Theorem 2.4.4

The following example is due to [5, Proposition 3.1.12]:

Example 2.4.6. Let X be a flat R-scheme of finite presentation and G be a R-group scheme which
acts on X via p : G — Aut(X). Let X be the formal completion of X and X := X" be its generic
fibre. Write G := G(R). Then G acts continuously on X.

2.4.2 The completed skew-group algebra 73(X, G)

We begin this section by recalling the notion of Lie-Rinehart algebras and its enveloping algebras,
as introduced in [7]. Let R be a commutative ring and A be a commutative R-algebra. A R-Lie
algebra L is called Lie-Rinehart algebra or an (R, A)-Lie algebra if it is also an A-module equipped
with an A-linear Lie algebra homomorphism p : L — Derg(A) such that

[z, ay] = a[z,y] + p(z)(a)y

for all z,y € L and a € A. Let (L, p) be an (R, A)-Lie algebra. The enveloping algebra of L is the
unique associative R-algebra U(L) which comes equipped with the canonical homomorphisms

ia:A—U(L) and i : L — U(L)
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satisfying the following universal property: Let S be an associative R-algebra with an R-algebra
homomorphism j4 : A — S and an R-Lie algebra homomorphism j; : L. — S such that
jr(ax) = ja(a)jr(z) and [jr(z),ja(a)] = ja(p(z)(a)) for any a € A,z € L. Then there is a unique
R-algebra homomorphism ¢ : U(L) — S such that ¢ 0ig = ja, and g oip = jr.

Note that if L is smooth over A, which means that L is finitely generated projective as an A-
module, then the morphisms ¢4 and iy are injective. We can therefore identify A and L with its
images in U(L) via these morphisms.

A natural example of an (R, A)-Lie algebra is when L = Derg(A) and p is the identity.

It is proven in [26] that if A is a noetherian ring and L is a finitely generated A-module, then
U(L) is a (left and right) noetherian ring.

If p : A — B is a morphism of R-algebras, we say that the action of L on A lifts to B if
there exists an A-linear Lie algebra homomorphism o : L — Derg(B) such that for every x € L,
the diagram

p(x) A

)

R

AN

is commutative. If this is the case, then we obtain that (B ®4 L,1 ® o) is an (R, B)-Lie algebra
([7, Lemma 2.2]).

Now, let X be an affinoid K-variety and G be a compact p-adic Lie group which acts continu-
ously on X. Let us fix a G-stable affine formal model A in A := O(X). Let L := Derg(A) denote
the (K, A)-Lie algebra of K-derivations endowed with the natural action of G. An A-submodule £
of L is called G-stable A-Lie lattice in L if it is a finitely presented .A-module which spans L as a
K-vector space and is stable under the G-action and the Lie bracket on L.

For such a G-stable A-Lie lattice £, we denote by U(L) the m-adic completion of the envelopping

— —

algebra U(L) and write U(L); = U(L) ®r K. It is proved in [7] that U(L), is an associative
K-Banach algebra.

In the sequel, we suppose in addition that £ is smooth as an A-module. This extra condition

o — —

ensures that the unit ball of the K-Banach algebra U(L) is isomorphic to U(L).

—

The G-action on L extends naturally on U(L), hence on it m-adic completion U(L) and on

o —

U(L)k. Thus we may form the skew product U(L), % G. Now, since A is G-stable, the morphism
p: G — Aut(A) is of image in Aut(A) C Aut(A). Write

(2.6) Gr = p Hexp(pL)) C G.

Heree=1ofp=1;e=2if p>2and p: G — Aut(A). Then it is proved (]2, Theorem 3.2.12]
that there is a G-equivariant trivialisation

— X

ﬂg:Gg—)U(ﬁ)K
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of the G-action on U(L)k. This implies that for any open normal subgroup H of G which is

contained in G, we may form the quotient U(L)x Xy G as defined in Definition 2.2.3. That is
why we need the following definition (see [2, Definition 3.2.13] for more details):

Definition 2.4.7. Let A be a G-stable affine formal model in A. Then a pair (L,J) is called an
A-trivialising pair if £ is a G-stable A-Lie lattice in L and J is an open normal subgroup of G
contained in the subgroup Gr of G (which generally depends on L).

The set Z(A, p, G) of all A-trivialising pairs is a directed poset with respect to the following
order:

([,1,N1) < (EQ,NQ) iff EQ C £1 and Ny C Nj.

At this point we can form the completed skew-group algebra

D(X.G) = lim U(L)x s G,
(£,7)
where (£, J) runs over the set Z(A, p, G) of A-trivialising pairs.
It is proved in [loc.cite] that this definition is independent of the choice of the formal model .4
in A and D(X, G) is equipped with a structure of K-Fréchet algebra.

Since we want to equip D(X, G) with a structure of two-sided Fréchet-Stein algebra, it is necessary
to recall the following definitions:

Definition 2.4.8. (/30, 3]) Let U be a K- Fréchet algebra. Then U is called a (two-sided) Fréchet-
Stein algebra if for any non-negative integer n > 0, there exists a Banach K -algebra U,, which is
(two-sided) noetherian together with K -algebra morphisms Uy+1 — Uy, such that

(1) The morphisms Up+1 — Uy, are (left and right) flat.
(i) U™ Wm Uy as Fréchet K-algebras.
The following definition will also be necessary:
Definition 2.4.9. Let X be a rigid analytic variety. A pair (U, H) is called small if:
(a) U is an affinoid subdomain of X,
(b) H is an open compact subgroup of the stabilizer Gy = {g € G: gU C U} of U,

(¢c) T(U) = Derg(O(U)) admits a H-stable free A-Lie lattice for some H-stable formal model
A of O(U).

Here is an example:

l,an

Example 2.4.10. Assume that K is algebraically closed. Let us consider the analytification Py
of the projective K -scheme PL.. One has that ]P’}gm = Uy U U, where

Up=5Sp(K(L)) ~{z e K, |z| <1} and Uss = Sp (K(%)) ~{y € K : |y| < 1}.

The group G = SLy(K) acts on IF’}%“” by

a b ax+b a b _ c+d
<c d) = Gata ol (c d> Y= “+bg'
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with a,b,¢c,d € K,ad —bc= 1,2 € Up,y € U.
Let I'™ be the Twahori subgroup of G, which is defined as the preimage of the standard Borel subgroup
of SLa(k) in SL2(R) C G. More precisely

(2.7) <Z Z)e[+<:>a,b,c,de7z, ad—bc=1,c¢=0¢k.

Then

b
d
us that a,d € R* and ¢ € mg. So for x € Uy, we have cx +d € mp + R>* implying that
|cx +d| =1. Thus

x The open affinoid subset Uy is I -stable. Indeed, let (Ccl > € I't. The condition (2.7) tells

lax 4+ b] < max{|ax|, |b|} < 1= |cx+d|.

az+b

ca:+d| <1, so every element of I'" stablizes Up.

By consequence, |

x The pair (Uy, ") is small.
First, we note that I'™ C SLa(R) is an open compact subgroup of SLy(K). We also see that

I" stabilizes the affine formal model R(z) of O(Uy) = K(z). To see this, let <Z Z) err

and x € Uy, we compute

ar +b ar +b ar +b 1 NG
= = . -1)'(d ’
cx+d d(dtex+1) d ;( Ji{d ex)

Here d € R*, as (a b
c d

) € I'". Thus, gfis € R(z). So for each g € I such that g=! =

(Ccl 2) €I and f(x) = 20 a;x" € R{x), we obtain that

N = S0 = Y a () e ri),

= cr+d

This prove that R{(x) is a I'*-stable affine formal model of O(Up) = K {(x).

Next, we note that T (Uy) = Derg(O(Up)) = K(x)[0s] and R(x)[0s] is a free R(x)- Lie lattice
of T(Up). Let g € I'T and f € R{(x), then (9.0,)(f) = 90.(97'f) € R{(x) (here 0.(g71f)
is a function of R{z), since I stabilizes R{x)). This proves that R{(x)[0,| is It -stable and
(Uo, IT) is small.

0 1

1 0) € SLy(K) stabilizes Uy,

Similarly, one has that the subgroup I~ = wltw with w = <
and the pair (Uso, I ™) is small.

Definition 2.4.11. Le X be affinoid, A be a G-stable affine formal model in O(X) and L be a
G-stable A-Lie lattice in T(X). A chain (Jn)nen of open normal subgroups of G is called a good
chain for L if each pair ("L, Jy,) is an A- trivialising pair for every n > 0.
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Now if (X, G) is small, then the fact that /ﬁ(X, () is a Fréchet-Stein K-algebra is guaranteed

and is described as follows. Note that when L is free as a A-module, then the ring U(L) is
noetherian [2, Corollary 4.1.10] (in fact, only the smoothness of L is required here ). Furthermore:

Theorem 2.4.12. [2, Lemma 3.3.4, Theorem 3.4.8] Suppose that (X, G) is small. Then there
exists a G-stable affine formal model A of O(X) and G-stable free A-Lie lattice L such that for
every good chain (J,) for L, there is a canonical isomorphism of K -algebras

D(X,G) ~ imU (L) x, G,

where the family {U(m" L)k » 1, G}n of noetherian K-Banach algebras gives a Fréchet-Stein struc-
ture on D(X, G).

Remark 2.4.13. Let D(X) =U(O(X)) = U(L) @r K be the ring of (global) differential operators
of finite order on X. It follows that there is a canonical group homomorphism

v:G — (D(X, Q)"
and a canonical K-algebra homomorphism
L D(X) — D(X,G).

These are defined as the inverse limit of

G —U@"L)y %, G
and of

tn : DX)=2U"L) 9r K — U(n"L) g %y, G
respectively. Thus, these define a morphism
L xv:D(X) x G — DX, G).

Remark 2.4.14. When G is trivial, we obtain the Fréchet-Stein K-algebra

D(X) = limU (7" L)

which is introduced in [7].

Notation: Let X be a smooth affinoid variety. Write 7 = Derg(Ox). We denote X, (7)
the set of all affinoid subdomains of X such that 7(U) admits a free A-Lie lattice for some affine
formal model A in O(U).

The correspondence U € X, (T) — D(U, H), with (U, H) small, does not give rise to a sheaf
of K-algebras on the smooth affinoid variety X (except for G trivial, we then obtain the sheaf
Dx of infinite order differential operators on X, which is defined in [7]). However, it may de-
fine a presheaf on certain Grothendieck topologies which are generally coarser than the (strong)
Grothendieck topology on X. In order to see this later, we first recall from [2] some important
classes of affinoid subdomains of X.

Let U be an affinoid subdomain of X together with the natural morphism of K-algebras r% :
O(X) — O(U). Fix an affine formal model A of O(X) and an A-Lie lattice £ in T (X).
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Definition 2.4.15. (i) An affine formal model B in O(U) is called L-stable if ris(A) C B and
the action of L on A lifts to B. If U admits an L-stable affine formal model, then U is said
to be L-admissible.

(ii) Suppose that U is rational. Then U is L-accessible in n-steps if U = X for n = 0 and for
n > 0, there is a chain U C Z C X such that

. Z C X is L-accessible in (n — 1)-steps,
. U=Z(f) or Z(1/f) for some non-zero f € O(Z),
. there is a L-stable affine formal model C C O(Z) such that L.f C wC.

(i1i) An affinoid subdomain (not necessary rational) U of X is called L-accessible if it is L-
admissible and there is a finite covering U = U;_, U;, where each U; is a L-accessible rational
subdomain of X.

We denote by X,,(£,G) and X4.(L,G) the sets of G-stable affinoid subdomains of X which
are also L-admissible and L-accessible respectively (note that X,.(£,G) C X, (L, G)). These sets,
together with the trivial notion of coverings, are Grothendieck topologies on X. If N is a subgroup
of G such that (£, N) is an A-trivialising pair, then following [2, Section 4], we may construct the

—

presheaf U(L); xn G on Xy, (L, G) as follows.

Definition 2.4.16. Let U € X,,(£,G). Then for any choice of a G-stable L-stable affine formal
model B of O(U), we set:

—

UML) N G)(U) :=UBa L) XN G.

It is proved ([2, Proposition 4.3.9]) that this definition is independent of the choice of B and is
a sheaf on the Grothendieck topology X,.(£,G). Furthermore

Proposition 2.4.17. ([2, Theorem 4.3.14]) If L is smooth as an A-module and U € X (L, G) is
L-accessible, then the (noetherian) ring (U(L) - xn G)(U) is (left and right) flat as a U(L) ;o xn G-
module.

This nice property will be important in the next sections of this dissertation. It is also worth
pointing out that given an affinoid subdomain U of X, we may rescale the Lie lattice £, which
means that we may replace £ by some 7" L for n sufficiently large, so that U becomes a L-accessible
subdomain of X.

2.4.3 Localisation of coadmissible 13(X, G)-modules and the category Cx /¢

First of all, we collect here some basic notations and properties related to coadmissible modules
over Fréchet-Stein algebras.
Let U = l'mK U, be a Fréchet-Stein K-algebra.

Definition 2.4.18. A left (resp. right) U-module M is called coadmissible if M = @n M,
satisfying the following conditions:

(i) For each n >0, M, is a finitely generated left (resp. right) U,-module.

(#i) The natural morphism U, QU1 M1 —> My, is an isomorphism of Up-modules for all n.
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We denote Cy (resp. Cj;) the category of coadmissible left (resp. right) U-modules. Remark
that Cyy is an abelian subcategory of Mod(U) which is stable under extensions (hence is a Serre
subcategory). The same assertion holds for Cj;. Below we recall a result which will be used several
times in the next chapters of the thesis:

Proposition 2.4.19. (/30, Lemma 8.4]) Let M be a coadmissible U-module. Then for everyi > 0,
the right U-module Ea:tiU(M, U) is coadmissible and we have the following isomorphism of right
U-modules:

Bzty(M,U)—= lim Bxty, (U, @u M, U).

Proposition 2.4.20. ([7, Lemma 7.3]
Let U = mn U, and V = l&nn Vi, be Fréchet-Stein K-algebras. Suppose that U — V is a con-
tinuous homomorphism. Then for any coadmissible left U-module M = @n M,, and coadmissible
right U-module N = @n N, we have

VeuM = lim V, @y M =lim V, ®u, My
and
N@UV = lglnN Ru Vn = LiLnn Nn ®Un Vn

are coadmissible left and right V-modules and they define completed tensor products of M, N and
V' over U, respectively.

Let X be a smooth affinoid K- variety and G be a compact p-adic Lie group acting continuously
on X such that (X,G) is small. Since D(X,G) is a Fréchet-Stein algebra, there is a category

—_

Cﬁ(X,G) (resp. C5 (X,G)) of coadmissible left (resp. right) D(X, G)-modules. It is possible to localize

coadmissible (left or right) D(X, G)- modules to obtain G-equivariant sheaves on X ([2, 3.5]). More
concretely, let M € Cﬁ(x, ) be a coadmissible left ﬁ(X, G)- module, we define a presheaf on the set
Xw(T) of affinoid subdomains U of X such that 7(U) admits a free A-Lie lattice for some affine
formal model A in O(U). Recall ([7, Lemma 9.3] ) that X,,(7) is a basis for the Grothendieck
topology on X. For each U € X,,(7), we set

M(U,H) :=D(U,H)®=

D(X,H)M )

By definition, this is a coadmissible (left) ﬁ(U,H )-module. When H runs over the set of open
subgroups of G such that (U, H) is small, all M (U, H) are in bijection and we may form the limit

Px (M)(U) = lim M(U, H).
H

Note that the correspondence Px (M) : U € X,,(T) — Px(M)(U) defines a presheaf on X,,(7).
The G-action on Px (M) is defined as follows. Let g € G. There is a continuous isomorphism of
K- Fréchet algebras

gu.n :D(U,H)-D(gU,gHg ™)

which is uniquely defined from the isomorphism of K-algebras
D(U) x H=D(gU) x gHg™ ', ah+— g5(a)ghg™'.
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Here g5 denotes the morphism of K-algebras D(U) — D(gU) (the sheaf D is naturally a G-
equivariant sheaf of K-algebras ). This isomorphism together with the group homomorphism ~ in
Remark 2.4.13 determines the following isomorphism:

90 g M(UH) — M(gU,gHg™")

a®@m — gu, i (a)@y(g)m,

which is linear relatively to gu m. We then see that there is a G-equivariant structure on Px (M)
which is locally determined by the inverse limit of the maps g{\J/[ g When H runs over all the open
subgroups H of G such that (U, H) is small. Furthermore, one has the following theorem:

Theorem 2.4.21. ([2, Theorem 3.5.8, Theorem 3.5.11])
Let M be a coadmissible left D(X, G)-module. Then Px (M) is a G-equivariant sheaf of Dx -modules
on X (T), where Dx is the sheaf of algebraic differential operators on X of finite order.

In particular, Px(M) can be extended to a unique sheaf on X, which is denoted by Loc)’é(x’G) (M),
or simply Locx (M) if there is no ambiguity.

The functor Locx(—) on Cﬁ(x@) is similar to the localisation functor in the classical theory
of Dx-modules on complex varieties (see, for example, [14]). It is proved that Locx(—) is indeed
an equivalence of categories between Cﬁ(X,G) and the category Cx /¢ of coadmissible G-equivariant
Dx-modules, which will be defined below:

Definition 2.4.22. [2, Definition 3.6.7]
Let X be a smooth rigid analytic variety and G be a p-adic Lie group acting continuously on X.

(a) A G-equivariant left Dx-module M on X is called locally Fréchet if for each U € X,,(T),
M(U) is equipped with a K-Fréchet topology and the maps g™ (U) : M(U) — M(gU) are
continuous for any U € X, (T) and g € G. Morphisms of G-equivariant locally Fréchet Dx -
modules are morphisms of G-equivariant Dx -modules whose local sections are continuous with
respect to the Fréchet topologies on the source and the target. The category of G-equivariant
locally Fréchet left Dx-modules is denoted by Frech(G — D).

(b) A G-equivariant locally Fréchet Dx-module M is called coadmissible if there exists a X, (T)-
covering U of X satisfying that for every U € U, there is an open compact subgroup H of G
stabilising U and a coadmissible D(U, H)-module M such that one has an isomorphism

Locy(M) ~ M |y

of H-equivariant locally Fréchet Dy-modules.
The category of coadmissible G-equivariant Dx-modules is denoted by Cx q. This is a full
subcategory of Frech(G — Dx).

Theorem 2.4.23. [2, Theorem 3.6.11] Suppose that (X, G) is small. Then the functor

Locx : C=

px.c) — Cx/a

is an equivalence of categories.

Note that the category Cyx /G of coadmissible G-equivariant right Dx-modules can also be de-

fined similarly and the above theorem still holds for the category C~

x.0) of coadmissible right
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5(X, G)-modules, whenever the functor " Locx (—) on C%(X )
a coadmissible right ﬁ(X, G)-module. For each open affinoid subset U € X,,(7), choose an open

subgroup H < G such that (U, H) is small. Then similarly as above, we define

is defined. More precisely, let M be

"Px(M)(U) := @(M@ﬁ(xjH)ﬁ(Ua H)),
H

where the inverse limit is taken over the set of open compact subgroups H of G such that (U, H)
is small.

By using the same arguments as in [2], we can see that "Px (M) extends to a G-equivariant coad-
missble right Dx-module, which is denoted by "Locx (M). The group G acts (locally) on " Locx (M)
as follows: if g € G and (U, H) is small, then g produces an isomorphism of K-modules

gUn M35 ;DU H) =M@z o D(gU, gHg ™)

mBa — my(g~ )85 (a).

Theorem 2.4.24. If (X,G) is small, then the localisation functor "Locx(—) is an equivalence

of categories between the category of coadmissible right ﬁ(X, G) modules to the category of G
equivariant coadmissible right Dx-modules.

Proof. The proof of [2, Theorem 3.6.11] remains true when applied to the functor "Locx(—). O

2.4.4 Side-changing operators

This section is devoted to introducing the side-changing functors. The construction of these func-
tors for coadmissible G-equivariant Dx modules is contained in [3]. We are allowed to state here
some important results without giving any explicit proofs.

Recall that in the classical theory of D-modules ([14]), when we work on a smooth complex variety
X of dimension d, the functors

Qx ®o, — and Homoe, (2x,—),

were (x =: Homo, (/\%X Tx,Ox) is the canonical sheaf on X, are mutually inverse equivalences
between the category of (coherent) left Dx-modules and the category of (coherent) right Dx-
modules. In the setting of the theory of equivariant D-modules on rigid analytic varieties, we also
want to prove that these functors remain equivalences of categories between left and right coad-
missible equivariant modules.

We first suppose that X = Sp(A) is a smooth affinoid variety of dimension d and G is a com-
pact p-adic group which acts continuously on X such that (X, G) is small. Write L := 7(X) and
suppose in addition that L admits a G-stable free A-Lie lattice £ for some affine formal model A in
A. The action of G on A defines naturally an action on the right A-module Qy = Hom 4( /\‘i L, A)
as follows. For w € )y and g € G, then w.g € Q1 is defined by

(2.8) (W.g)(x1 A Ag) = g1 (w(gzr A .ogg)) -
There is a structure of right U(L)-module on €, given by

d
(2.9) (wa)(X1 A ee Nag) = —z(w(z1 Ao Ag)) + Z(—l)iw(xl A Nz, 2] Ao A g)

30



CHAPTER 2. BACKGROUND MATERIAL

where w € Qp and z,z1,...,xq4 € L.
If M is aleft U(L) x G-module. Then there is a structure of right U(L) x G-module on Qp ® 4 M
which is defined by

(2.10) (wW@m)rxr=wr@m—we®am
and
(2.11) (w@m).g=wg®g 'm

for all w € Q,m € M,x € L and g € G. Similarly, if N is a right U(L) x G-module, then
Hom (e, N) is a left U(L) x G-module determined by the following rules:

(2.12) (z.f)(w) = flwz) — f(w)z.
and
(2.13) (9-f)(w) = flwg)g™".

The action of G (2.8) and of U(L) (2.9) on Q induce a structure of right U(L) x G-module on Qp

—

([3, Lemma 4.1.1]). This action extends naturally to a right action of U(L) x G on Q, since

is finitely presented as an A-module, so is m-adically complete. Furthermore, this U(L) x G-action

factors through its quotient U(L) x g G for any choice of open normal subgroup H of G which is

contained in G . Therefore, ) is a right U (L) x i G-module ([3, Lemma 4.1.6]). As a consequence,

it follows that .

OX) := Homa(/\ L, A) = Qs 0 K
A

—

is a right-U (L) 5 x g G-module for every open normal subgroup H < G of G.

e —

If M is a left U(L) g G-module and N be a right U(L);; x g G-module. Then the right (resp.
left) U(L) x G-module structure on Q(X) ®4 M (resp. Homa(2(X), N)) induces a right (resp.

left) U(L) x g G-module structure on it. Furthermore

Theorem 2.4.25. ([3, Theorem 4.1.12] The functors Q(X)®4— and Hom(A(X), —) are mutually
quasi-inverse equivalence of categories between the categories of finitely generated left and right

U(L) i ¥ G-modules.
Now, let M be a coadmissible ﬁ(X, G)-module. Choose a good chain (J,) for £ such that

D(X,G) = imU (7" L) x5, G

Thus M = lim M,, where M, := (Im[( X7, G) Rpx.c) M- Since each Q(X) ®4 M, is a
right U(7" L) », G-module for all n, it is showed that Q(X) @4 M = lim Q(X) ®4 M, and
that Q(X) ®4 M is a coadmissible right 5(X, G)-module. Similarly, if N is a coadmissible right

D(X, G)-module, then Hom(2(X), N) is also a coadmissible left D(X,G)-module. In this way,

the functors Q(X) ®4 — and Hom4(Q(X), —) are equivalences between Cﬁ(X,G) and C% X0 the

categories of coadmissible left and right ﬁ(X, G)-modules, respectively.
The result is still true in general and is contained in the following theorem. Let X be a smooth
rigid analytic variety of dimension d and G be a p-adic Lie group which acts continuously on X.

Let
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QX = Homox(/\éx T, Ox)
denote the canonical sheaf on X. This is an invertible sheaf of Ox-modules.

Theorem 2.4.26. [3, Theorem 4.1.14, 4.1.15]

(i) The functors Qx ®oyx — and Homoy (Qx,—) are mutually quasi-inverse equivalences of cat-
egories between Cx ;g and "Cx /q-
1) If (X,G) is small. Then the functors Q(X) Rox) — and Hompx)(Q2(X), —) are mutually
X) X)
inverse equivalences of categories between the category of coadmissible left ﬁ(X, G)- modules

and the category of coadmissible right 73(X, G) modules. Furthermore, for any coadmissible

left 73(X,G)—module M and coadmissible right 5(X,G)—m0dule N, there are isomorphisms
of coadmissible G-equivariant Dx-modules

" Loc(2(X) Xox) M) ~ Qx Rox Loc(M)

and
Loc(Homox)(AX), N)) =~ Homoey (2x," Loc(N)).
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Chapter 3

Dimension theory for coadmissible
D(X, G)-modules

3.1 Review on Auslander-Gorenstein rings

At this point we recall from [17, 19] the notion of an Auslander-Gorenstein ring. Let A be a ring.
Then A is said to be an Auslander-Gorenstein ring (or an AG ring) if it is a two-sided noetherian
ring and satisfies the following conditions:

(AG1) For any noetherian left (or right) A-module M and any i > 0, one has j4(/N) > i whenever
N is a right (resp. left) submodule of Ext’, (M, A), where

ja(M) :=min{i : Ext', (M, A) # 0}
denotes the grade of M.
(AG2) A has finite left and right injective dimension.

Here the injective dimension of A is defined by the smallest integer n > —1 with the property that
ETTH (M, A) = 0 for every left (resp. right) A-module M.

Example 3.1.1. The enveloping algebra U(L) of a finite dimensional K -Lie algebra L is Auslander-
Gorenstein of dimension at most dimg L. More generally, it is proved [/, Lemma 4.3] that if L is
a (K — A)-Lie algebra of rank r with A n-Gorenstein (i.e A is of finite self-injective dimension),
then U(L) is Auslander-Gorenstein of dimension at most dim A + r.

The dimension of a finitely generated module over an AG ring is defined as follows:

Definition 3.1.2. ([17, Section 2]) let R be an AG ring of self-injective dimension n. For any
finitely generated R-module M, the dimension of M 1is

d(M) :=n — j(M)

Motivated by [4, Section 5], in the next section we also want to formulate a dimension theory
for coadmissible 5(X, G)-modules. In order to do it, we need to prove that Y,D\(X, () is coadmissibly
Auslander-Gorenstein in the sense of [4, Definition 5.1]. First, let us consider the following lemma,
which is indeed a mild generalisation of [30, Lemma 8.8] to the non-noetherian case but it will play
an important role in the next chapter.
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Lemma 3.1.3. Let Ry — Ry be a unital homomorphism of unital rings. (these rings are not
supposed to be noetherian). Suppose that there are units by = 1,b1,...,by, € (R1)* which form a
basis of Ry as a left Ry-module and which satisfy:

(i) b;Ro = Rob; for any 1 <i < m.
(i1) for any 0 <i,j < m, there is a natural integer k with 0 < k < m such that bjb; € by Ry.
(i1i) For any 0 < i < m, there is a a natural integer | with 0 <1 < m such that bi_1 € b Ry.

Then for any (left or right ) Ry-module M and (left or right) Ry-module N, we have an isomorphism
of Ro-modules

Homp, (M, Ry ®g, N)—Hompg,(M, N)
fr=pof,

where p : Ry — Ry is the projection map onto the first summand in the decomposition

Ry = ébiRo = Gin%Rgbi.

In particular, this induces an isomorphism of (right or left) Ro-modules.
Exth (M,Ry ®p, N) ~ Exth (M, N).
for any integer i > 0.

Proof. The proof is partly similar to [30, Lemma 8.8]. Note that p is Rp-linear on both sides.
Indeed, if a € Ry and )", a;b; € Ry, one has

- pla. Y g aibi) = p(3o g aaibi) = aag = a.p(37i, aib;)
(g aibi).a) = p(X1g asbia) = p(3-it g aiazh;) = apag = aga = p(3_1"g aibs).a,

here a; € Ry such that a = a{ and bja = a;bNi > 1, since b;Ry = Rpb; from (i). Thus the
morphism:

p: R ®p, N — Ry ®@p, NN
b®n+— p(b) ®n+— p(b)n

is Rg-linear. Now by using a free resolution P of the Rj-module M, which is also a free resolution
of M as a Ryg-module, we see that the map p induces a map

Exthy (M, Ry ®g, N) = h'(Hompg, (P, R ®g, N)) — h'(Homp,(P",N)) = Ext (M, N).
Therefore, it suffices to show that for any N € Mod(Ry) and M € Mod(R;), we have an isomor-

phism
Homp,(M,Ry ®p, N)—Hompg,(M,N).

Take a presentation of M by free Ri-modules:
Rl —w R/ — M —o.
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Since Homp, (—, N) is left exact, we obtain the following commutative diagram:

0 —— Hompg,(M,R; ®g, N) — Hompg,(R{, Ry ®g, N) —— Hompg, (R}, Ry ®g, N)

|

0—— Homp,(M,N) Homp,(R{,N) S Homp,(RL,N)
Hence it is enough to consider the case M = R; and to prove that

D : Hole(Rl,Rl ®R0 N)%HomRO(Rl,N)
Yr—po

This is well-defined since p is Rp-linear.

(1). @ is surjective
If ¢ : Ri — N be an Ry-linear map, one defines:

w R — R ®R0 N
br— > b ® ¢(b;'b)
=0

Then

cpotp(b) = P31 bi @ ¢(b; b)) = S p(bs)p(b; 'b) = p(b), since p(b;) =0 for i # 0.
. Y is Ri-linear. Indeed, if b = Z:'io a;b; with a; € Ry and b’ € Ry, one can compute:

Y(bb) = wa b by = Zzb@wb ta;b;t')
J
5 S ) = 5 )
i A

_ZZajb ® (b 'bt) =) (Zajb 0= @ (b b, b’))
J
= Zaj b (¥) = b(t).
J

Here, thanks to (ii) and (iii), we have ¢(b') = 3", b; @ ¢(b; '0') = 32, b;b; @ ¢(b; 'b,b').
Therefore 9 is Ry-linear. This implies that v € Homp, (Rl, Ry ®pg, N) and ® is surjec-
tive.

(2). ® is injective.
First, let us prove that if ¢ : Ry — R; ®p, N is an Rj-linear map, then

P(b) =Y b @ (o) (b 'b).
=0

Indeed, suppose that ¥(b) = >, b; ® n;, with n; € N for all i. ( recall that Ry ®p, N ~
@i biRy ®r, N ~ @1 b; ® N), then

P(b; 1) = by Mab(b Zb b @n;.
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Thus,
Zb ®@pop(b Zb ®Zp jzzbi@@ni:w(b)
1=0

Consequently, if ®(¢)) =0 <= poy) =0 — (b) = 0 for all b. This implies that & is
injective.

O

Proposition 3.1.4. Let Ry, Ry be two rings which satisfy the assumptions in the above lemma. If
a (left or right) Ri-module N is injective, then N is also injective as Ro-module. Moreover

(1) injdim(Ry) = injdim(R;),
(ii) Exty (N,Ry) ~ Ext} (N,Ro) and jr,(N) = jgy(N),
(iii) If Ry, Ry are noetherian and if Ry is Auslander-Gorenstein, then so is Ry.

Proof. Suppose that IV is an injective Rj-module. By assumption, R; is free over Ry on both sides,
so it is flat as a left and right Rp-module. Moreover,

Homp,(M,N) ~ Hompg,(R1 ®r, M,N)

for any M € Mod(Ry). By consequence, N is also injective as an Rp-module.

Now (ii) is a direct consequence of Lemma 3.1.3 while (iii) can be proved by using (i) and (i), it
remains to prove (7).

If 0 — Ry — I is an injective resolution of Ry , then it follows from Lemma 3.1.3 that if M is
an Ri-module, then Hompg, (M, Ry ®g, I¥) ~ Hompg,(M, I*¥) for any component I* of the complex
I'. Thus R ®R, I is an injective Rj-module for all k. This proves that 0 — R; — Ry ®p, [ is
an injective resolution of Ry by Rj-modules. Therefore

injdim(Ry) < injdim(Ry).

It remains to prove that injdim(Ry) < injdim(R;). Suppose that injdim(R;) = n < oo, so we
need to prove that injdim(Ry) < n. This is equivalent to

Exti (N, Ro) = 0 for any N € Mod(Ry).

Notice that
Ext (N, Ro) ®p, R1 ~ Ext};™ (R1 ®g, N, Ry).

Since n = injdim(R;), one has E:ct}l?jl(Rl @R, N, R1) = 0 implying that Ext%;rl(]\f, Ry)®p,R1 = 0.
On the other hand, R; is a free Rgp-module on both sides, thus R; is faithfully flat over Ry on both
sides. As a result, Ext’g)rl(N, Ry) = 0 which proves that injdim(Ry) < n = injdim(Ry).

O

Now, as an application of the above lemma, let us consider the following example which will
be important for the next chapter. Suppose that X = Sp(A) is a smooth affinoid K-variety for a
K-affinoid algebra A and G is a compact p-adic Lie group which acts continuously on X such that
(X, G) is small. We assume the following extra conditions:

x H is an open normal subgroup of G,
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x A is a G-stable affine formal model in A,
x (L,J) is an A-trivialising pair such that J < H.

Then Lemma 3.1.3 and Proposition 3.1.4 can be partially applied to the case where R; =

E(?)K Xy G and Ry =U(L) x; H as follows:

Lemma 3.1.5. The natural morphism of rings U(L) Xy H — U(L) % G satisfies the conditions
(1), (i), (iii) of Lemma 3.1.3. In particular, this induces a two-sided U (L) x; H linear map

o —

(3.1) Py UL) g xgG—U(L), xy H.

—

Proof. Following [2, Lemma 2.2.6], the ring E(Z)K Xy G is isomorphic to (U(L); Xy H) xg G and
the later is isomorphic to the crossed product (U(L), s H) * G/H ([2, Lemma 2.2.4]). On the

other hand, since G is a compact p-adic Lie group and H (resp. J) is open in G, it follows that
the group G/H is finite. Therefore, if we denote by S = {1 = g1, g2, ..., gm} the representatives of

the right cosets of H in G, then U/(E)K Xy G is freely generated over U(L); Xy H by the image
S={d,...;Gm} of S in U/(E)K x G/J [20, Lemma 5.9(7) ]. In particular, U/(E)K Xy H is a subring
of U(L)y %05 G
Now we check that the injective map IT(Z) Xy H — U/(Z) x XJ G satisfies the conditions
(4), (#), (177) in Lemma 3.1.3. Write Ry = IT(E)K xyg H and Ry = IT(Z)K Xy G. Then R; is
freely generated on Ry by S. By definition of crossed product, one has

(i) giRo = Rogi-

(i) gigjRo = gigjRo. Furthermore, the set G/H is finite whose each element is represented by
an element of S. This implies that there exists k, [ such that g;g; € grRo and g, le g Ro.

—

By consequence, this provides a two-sided (U(L), x; H)-linear map

—

oy UL) g xgG—U(L)y xs H
as claimed. n

Remark 3.1.6. Let H = {1} be the trivial subgroup of G. By the same reason as a above, the

—

ingection U(L) o — U(E) Xy G also satisfies Lemma 3.1.3, since (7(?) Xy G = U( ) *G/J.

Proposition 3.1.7. Suppose that (X, G) is small and H be an open normal subgroup of G. The
ring D(X, G) is freely generated over D(X, H) with basis satisfying the conditions (1), (i), (iii) of
Lemma 3.1.3.

Proof. By taking the inverse limit of the morphisms pé g,y in Lemma 3.1.5 when (L, J) runs over

the set of all A-trivialising pairs , we see that D(X, G) is freely generated as D(X, H) module by
the image S = {§1, g2, .., gm} of S in D(X GG) which defines a two-sided D(X H)-linear map

(3.2) IR D(X,G) — D(X, H)

m
E aigi — ap.
=1
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Corollary 3.1.8. (i) The maps p)G(,H and pé}HJ fit into a commutative diagram

X
DX, q) — 4" D(X, H)

‘ZG,J\L lQH,J

X
R PG, H,J

U(L) g g G 2% U(L) i %y H,

—

where qa.7 : 13(X,G) — E(Z)K xg G and qm,J : 23(X,H) — U(L)x xj H denote the
canonical maps induced from the definition of ﬁ(X, G) and Z3(X7 H) respectively.

(i1) If U € X, (T) is such that (U, G) is small, then the diagram

X
D(X,G) ~%%, D(X, H)

U U
rcl J/TH

D(U, G) D(U, H)

18 commutative.

Proof. The statement (7) is evident from definition. To show (i7), let us fix a G-stable free A-Lie
lattice £ in T(X) for some G-stable affine formal model A of A. By rescaling £ if necessary, we
may assume that U is L-admissible [7, Lemma 7.6]. Under this assumption, [2, Proposition 4.3.6]
showed that £':= B®4 L is a G-stable B-Lie lattice in 7 (U) for any choice of a G stable L-stable
affine formal model B in O(U). This is even free as B-module. Let J < G be an open normal
subgroup of G such that (£,J) and (£',J) are trivialising pairs (this is thanks to [2, Proposition
4.3.6]). By definition, it is enough to show that the diagram

o —

x —_—
U(L) e 5 G 2S48 UL, 0 H

U U
TG,Jl lTH,J

U
N PG, H,J

UL 305 G S T (L, 3 H

is commutative.

Note that J is of finite index in G and in H, so that we can choose a set of representatives 1 =
915925 s Gms -+, gn (M < n) of G modulo J such that G/J = {q1,...,gn} and H/J = {g1, G2, ---9m }-
Therefore

U(L) % G = U(L)y + Gl = {L1 aigi + ai € U(L)c}
and
U(L) g »g H ~ E(E)K « H)J ={}[2 aigi: ai € E(Z)K}
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—

Notice that here we identified each g; € G/J with its image in U(L), * G/J. Furthermore, these
formulas still hold when we replace £ by £’. Thus

n

m
iy o pems (Y aig) = v (Y aig) =Y digi

and
n n m
Pemsore (Y aig) = pem (Y ag) = digi.
=1 =1 =1

— —

Here for each ¢, @; denotes the image of a; in U(L'), via the canonical morphism U(L), —
O

—

U(L') . This proves that the diagram is commutative.
We end this section by giving an important result:

Corollary 3.1.9. Suppose that (X, G) is small with dim X = d and that the A-Lie lattice L is
smooth as an A-module. Then there exist m > 0 such that the ring U(m"L) ;; X1, G is an Auslander-
Gorenstein ring of dimension at most 2d for any n > m and for any open normal subgroup J, of
G which is contained in Grnp.

—

Proof. Following [4, Theorem 4.3], there exists m > 0 such that the ring U(n"L) g is Auslander-
Gorenstein of dimension at most 2d for all n > m. Thanks to Proposition 3.1.4 and Remark 3.1.6

it follows that U(n"L), x s G is Auslander-Gorenstein of dimension at most 2d. O

3.2 Dimension theory for coadmissible D(X,G)-modules

Recall from [4, Section 5.1] that a two-sided Fréchet-Stein algebra U ~ lim Uy is called coadmis-
sibly Auslander-Gorenstein (or c-Auslander-Gorenstein) of dimension at most d if each U, is
an Auslander-Gorenstein ring with self-injective dimension at most d for a non negative integer d.

Theorem 3.2.1. Let X = Sp(A) be a smooth affinoid variety of dimension d and G be a compact
p-adic Lie group acting continuously on X such that (X,G) is small. Then the Fréchet-Stein
K-algebra D(X, G) is coadmissibly Auslander-Gorenstein of dimension at most 2d.

Proof. We may choose a G-stable affine formal model A in A and a G-stable free A-Lie lattice £
in L = Derg(A) and a good chain (J,,) for £ such that

—

D(X,G) ~ lim U (x"L)k %, G-

By Corollary 3.1.9, there exists m > 0 such that the ring U(7"L) g X, G is Auslander-Gorenstein
of dimension at most 2d for each n > m, so that the theorem follows. O

Definition 3.2.2. Let M be a non-zero (left or right) coadmissible 5(X, G)-module. The dimension
of M is defined by:
da(M) :=2d — ja(M),

where jo(M) = min{i | Ea:ti5 (M, D(X,G)) # 0} is the grade of M as a D(X, G)-module.

(X,G)

Convention: If M is zero, we set dg(M) = 0.
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Remark 3.2.3. (i) Choose a G-stable affine model A and a G-stable free A-Lie lattice L as in

"

Theorem 3.2.1. Write D,, := U(x"L)k xj, G. Then for any M € C5

B(x,G) One has that
(Proposition 2.4.19):

Extl o (M, D(X,G)) 2 lim Extp, (Dn ®px ¢ M, D)

(X,Q) )

It follows that there exists n sufficiently large such that jo(M) = jp, (Dn e M) < 2d.
By consequence 0 < dg(M) < 2d.

(ii) If H be an open subgroup of G, then there exists an open normal subgroup N of G which is
contained in H ([2], Lemma 3.2.1). Thus N is of finite index in G. Moreover

D(X,G) ~D(X,N) xy G~ D(X,N)*G/N.

Then the D(X,G)-module M is also coadmissible as D(X, N)-module. Therefore dg(M) =
dn(M) by Proposition 3.1.4(ii). The same assertion holds for H, so that

dg(M) =dg(M) = dy(M).
For this reason, we will write d(M) instead of dg(M) for simplicity.

Proposition 3.2.4. Let
00— M, — My — M3 —0

be an exact sequence of coadmissible 23(X, G)-modules. Then
d(M2> = max{d(Ml), d(Mg)}

Proof. Suppose that
D(X,G) = imU(x"L)k x5, G

n

for a G-stable free Lie lattice £ of Derg(O(X)) and a good chain (J,,) for £. Write D:= 13(X, G)

—

and D, := U(m"L)k X, G. Note that there exists an integer m such that for every ¢ and n > m,
one has that (Remark 3.2.3(7)):

Jp(M;) = jp,(Dn @5 M;)
Since D —» D,, is a flat morphism ([30, Remark 3.2]), it follows that the sequence
0— D, ®z5 My — D ®5 My — Dy, @5 M3z — 0
is exact. Now applying [19, Proposition 4.5(ii)] gives the result. O
Example 3.2.5. The 5(X, G)-module 13(X, G) is of dimension 2d. Indeed

Homs - (D(X,G),D(X,G)) = D(X, Q).

D(X,G)

Hence j(D(X,G)) =0, so that d(D(X,G)) = 2d. Similarly, the free D(X, G)-module D(X,G)" of

rank n > 1 is of dimension 2d.
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A non-trivial example is given by the following proposition:

Proposition 3.2.6. Let X be a smooth affinoid variety of dimension d and P € D(X) be a regular
differential operator (P is not a zero divisor of D(X)). Then the coadmissible left D(X, G)-module

M =D(X,G)/D(X,G)P
is of dimension d(M) < 2d — 1.

Proof. Write D := D(X) and D:= 5(X, G). Choose a G-stable free A-Lie lattice of Derg(O(X))
for somme G-stable affine formal model A in O(X). Then

U(?T",C)K X J, G

Thus there is a n > 0 such that d(M) = d(D,,/D,,P). Furthermore, one has that
D,/D,P = D, @p D/DP.
The ring D,, is flat as a right D-module. It follows that:
Ext,(D/DP, D) ®p Dy, & Extl, (D, ®p D/DP, Dy,).

As a consequence, we obtain the inequality dp, (D, /D,P) < dp(D/DP). Now, since P is regular in
D, the dimension of the left D-module D/DP can not be 2d (otherwise one has that jp(D/DP) = 0,
so Homp(D/DP,D) ={Q € D : PQ = 0} # 0, contradiction). So the proposition follows. O

3.3 Left-right comparison

Let X be an affinoid variety and G a p-adic Lie group acting continuously on X and such that
(X, @) is small. Recall that the functors

Q(X) ®ox) ~: Chx.e) — Chx.a
M — Q(X) ®ox) M

and

HomO(X)(Q(X)v _) : CZD‘(X,G) — Cﬁ(X,G)

N +—> HOTTLO(X) (Q(X), N)

are mutually quasi-inverse equivalences between the categories of left and right coadmissible ﬁ(X, G)-
modules. Having these side-changing operators for coadmissible 13(X, G)-modules at hand, we
can now state the following proposition, which is about preservation of dimension of coadmissible
ﬁ(X7 G)-modules under these functors.
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Proposition 3.3.1. Let M be a coadmissible left 73(X, G)-module. Then there is an isomorphism
of left D(X, G)-modules

Eats . (AX) ®ox) M, D(X,G)) ~ Homox)(AX), Ext%(x’ oM. D(X,G))).

(X,6)
In particular, d(M) = d((X) ®@ox) M).

Proof. The proof uses the same arguments as in [4, Lemma 5.2]. Write A = O(X), Q :=
Q(X), D := D(X,G). Then the left hand side is exactly the i-th cohomology of the complex
RHomz( ®HA M, D), as Q is a projective A-module. Now, the right hand side is the i-th coho-

mology of RHom(S2, RHomz(M, ﬁ)) Now, using the derived tensor-Hom adjunction gives the
first part of the Proposition.
For the second part, note that since € is a finitely generated projective A-module, one has

Homa(Q, Ext's(M, D)) = Q @4 Ext’s(M, D)),
where Q* = Hom 4(2, A) is its dual. Thus, if Hom4(£2, Ext%(M, lA))) = 0, then
Ext's(M, D) = (Q®4 Q%) @4 Eat's(M, D)) = Q®4 Homa(Q, Ext’s(M, D)) = 0.

Here, Q ®4 Q* =2 A, as Q) is an invertible A-module. By consequence, Eazt%(M , ﬁ) = 0 if and only
if Homa (42, Ext%(M, D)) = 0 and hence d(M) = d(Q(X) @ M). O
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Chapter 4

Dimension theory for coadmissible
equivariant D-modules

4.1 Modules over the sheaf of rings O

This section may be considered as a stepping stone to defining the 'Ext functors’ E? in the next
section.

Let X be a smooth affinoid variety of dimension d and G be a compact p-adic Lie group acting
continuously on X. Fix a G-stable affine formal model A in A = O(X), a G-stable A-Lie lattice £
of T(X) = Derg(A) and an open normal subgroup J of G which is contained in G, (which means
that (£, J) is an A-trivialising pair).

Notation: Throughout this section, we will be working under the following notations and as-
sumptions:

* L is a smooth A-module, which means that L is projective and finitely generated over A.

* When H is an open subgroup of G, X,,(7)/H denotes the set of all open affinoid subsets

U € X, (T) such that (U, H) is small. If U € X,,(T)/H, then H is called an U-small
subgroup of G.

x Xy (L, Q) denotes the set of G-stable L-admissible affinoid subdomains of X,
x Xge(L, G) denotes the set of G-stable L-accessible affinoid subdomains of X.

Note that X..(£,G) C X (L, G) are Grothendieck topologies on X with respect to the usual
notion of coverings. Recall from Definition 2.4.16 the presheaf of rings on X, (£, G)

Q(—,G) =U(L) g % G

It is proved (]2, Corollary 4.3.12]) that Q(—,G) is a sheaf on the Grothendieck topology
Xw(L,G). Note that if H < G is an open compact subgroup of G and J is contained in G N H,
then Q(—, H) is also a sheaf on the Grothendieck topology X,,(£, H) containing all the H-stable
L-admissible affinoids subdomains of X. In the sequel, if there is no ambiguity, we denote Q(—, G)
simply by Q whenever the groups G and J are given. The fact that Q is a sheaf on X,.(X, G)
allows us to give the following definitions:
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Definition 4.1.1. Let M be a finitely generated Q(X)-module. Then there is a presheaf Locg(M)
on Xqe(L, G) associated to M which is defined as follows:

Loco(M)(Y) = Q(Y) @gx) M
for all' Y € X4o(L,G).

Following [5, Corollary 4.3.19], under the extra assumption on £ that [£,£] C £ and L.A C
mA, then Locg(M) is a sheaf of Q-modules on X,.(L,G) for every finitely generated Q(X)-module
M.

Definition 4.1.2. Let U be a Xoc(L, G)-covering of X. Then a Q-module M on X,.(L,G) is said
to be U-coherent if for any Y € U, there exists a finitely generated Q(Y)-module M such that

Locgy, (M) = M|y,
where Y := X4 (L,G) NY .

It is proved in [2, Theorem 4.3.21] that if [£, L] C 7L, L.A C ©A, then for any U-coherent
sheaf of Q-modules M, M(X) is a finitely generated Q(X)-module and we have an isomorphism
of O-modules

Loco(M(X))— M.

In the following, we fix:
x U is a Xge(L, G)-covering of X.
% M is a U-coherent sheaf of Q-modules on X,.(L,G).

Proposition 4.1.3. Let H be an open normal subgroup of G. There is an isomorphism of right
Q(X, H)-modules

pe,r(X) : Brtgx o)(M(X), Q(X, G))—=Extyx m(M(X), QX, H)).
Furthermore, if H' < H is another open normal subgroup of G, then one has

PE,H/(X) © Pic:,H(X) = PE,H/(X)-

Proof. Write M := M(X). The first part of the proposition is in fact a consequence of Lemma
3.1.3 and Lemma 3.1.5. Recall that when ¢ = 0, then

pe.u(X)(f) = pOG,H(X)(f) = pé‘(,H o f,

for f € Homgx a) (M, Q(X,G)), where péH is the projection map Q(X,G) — Q(X, H) which
is defined in Lemma 3.1.3. For the second part, if H' < H are open normal subgroups of G, then
both H and H' are of finite index in G and H' is of finite index in H (since G is compact). Hence
we can choose a Q(X, H')-basis {1 = g1,92,.-s Gm, ---» gn} of Q(X,G) such that {g1,...,gm} is a
basis of Q(X, H) as a Q(X, H')-module. Then by definition

P (0191 + 0292 + . + GG + - + Angn) = a1

and

p)é’H/ OpéH(algl + agg2 + ... + mGm + ... + angn) = p)l_%H/(algl + azg2 + ... + amGm) = a1
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This implies p)G( = pﬁ 50 © p)G(’ - Therefore py g/ (X) o pe,u(X) = pe,r(X), which means that
the assertion is true for ¢ = 0. For 7 > 0, it follows from the definition of pia y(X) that after

taking a resolution of M by free Q(X, G)-modules of finite rank, the case i > 0 reduces to the case
i=0. O

Lemma 4.1.4. Let ¢ : A — B be a flat morphism of rings and M be o finitely presented A-module.
There is an isomorphism of right B-modules

Exty (M, A)® B — Extls(Bo M, B).

Proof. Let P be a resolution of M by free A-modules of finite rank. Since B is flat over A, one
has that B ® 4 P- is also a resolution of B ® 4 M by free B-modules. So it is enough to consider
the case where ¢ = 0. For this we define

Homa(M,A)®4B — Homp(B®4M, B)
f®a— fq.

Here, f, € Homp(B® s M, B) is defined as follows: f,(b®@m) := bp(f(m))a € B for any b € B,m €
M. This map is an isomorphism when M = A and also for general M since we can apply the Five
lemma using the fact that M is finitely presented as an A-module. O

Proposition 4.1.5. Let U € X,.(L£,G). There is a morphism of right Q(X, G)-modules

UG Brtgx a(M(X),QX,G)) = Extyy ¢)(M(U), Q(U, Q).
Proof. Denote M := M(X). Then

M(U) = Q(U, G) ®@gox,a) M.
Since U is L-accessible, the morphism
Q(X,G) — 9Q(U,G)
is flat (Proposition 2.4.17). Now applying Lemma 4.1.4 gives
Bztyuy,q)(M(U), Q(U, G)) = Extyxx ¢)(M, Q(X, G) @ox,q) QU,G).

By consequence, we obtain the natural morphism of right Q(X, G)-modules:

UG Brtgx a(M(X), 9(X,G)) = Extywy ¢)(M(U), Q(U,Q)).

O

Proposition 4.1.6. Let H be a normal open subgroup of G and U € X (L, G). Then the following
diagram is commutative:

; Pe g (X) ;
ExtzQ(X,G) (M (X)a Q(X, G)) GL) ExtQ(X’H) (M(X)7 Q(X7 H))
(4.1) v \LT)i(,U,H
piG,H(U)

Bty (M(U), QU. G)) =7 Batly g s (M(U), Q(U, H))
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Proof. Write M := M(X). Then Locg(M) = M. It follows that
M(U) = Q(U,G) ®ox,e) M = Q(U, H) @gx,1) M.

Now take a resolution P~ of M by free Q(X,G)-modules of finite rank. Since U € X,.(L£,G)
is supposed to be L-accessible, the ring Q(U, G) is flat over Q(X,G) (Proposition 2.4.17). This
implies that Q(U,G) ®gx,) P is also a free resolution of Q(U,G) ®gx,q) M = M(U). Hence
it reduces to prove that for any Q(X, G)-module P, the following diagram is commutative:

LH(X)
HomQ(X,G)(Pa Q(X7 G)) e HomQ(X,H) (Pv Q(X7 H))

| |

.=2(U)
Homgu.¢)(Q(U,G) ®gx.c) P, QU, () "5 Homopu iy (Q(U, H) @ gx i) P, Q(U, H)).

This means that the diagram
X

Q(X,G) L&, o(X, H)

I

Q(U, @) 2% Q(U, H)

is commutative, which is already proven in Corollary 3.1.8(ii).

4.2 The ’Ext-functor’ on the category Cx /g

Let X be a smooth rigid analytic space and G be a p-adic Lie group acting continuously on X. For
each non negative integer i € N, we will construct so-called ”Ext-functor” E! from coadmissible G-
equivariant left Dx-modules to coadmissible G-equivariant right Dx-modules. Let M € Cx /¢ be a
coadmissible G-equivariant Dx-module. Then as usual, locally we want E*(M)(U) to be isomorphic
to Ext%(Uﬂ) (M(U),D(U, H)) for every open affinoid subset U € X,,(7) and open subgroup

H < G such that (U, H) is small. As in [2], we would like that this definition is independent of the
choice of the subgroup H. That is why we take into account the following proposition:

Proposition 4.2.1. Suppose that X is a smooth affinoid variety and G is such that (X, Q) is
small and H is an open normal subgroup of G. Then for any left D(X, G)-module M, there is an
isomorphism of right D(X, H)-modules:

Po.u(X) : Ext%(X (M. D(X, G))%Ext%(xj H)(M, D(X, H)).
Furthermore, if H < H is another open normal subgroup of G, then one has

ﬁH,H’ (X)o ﬁé,H(X) = ﬁé,H'(X)-

Proof. Since Lemma 3.1.3 holds for the morphism of rings 5(X,H) — 5(X, G) (Proposition
3.1.7), the proof of this proposition uses exactly the same arguments as in the proof of Proposition
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4.1.3. We just write down here the definition of ﬁ‘G (X). Let P- be a resolution of M by free

ﬁ(X, G)-modules. Then ﬁG p(X) is determined by taking the ¢ — th-cohomology of the following
isomorphism of complexes:

P, D(X,G)) — Homx (P, D(X, H))

D(X,H)

f"—>p)G(,Hof'

Homﬁ(X’G)(

In particular, when ¢ = 0 then for every f € Homﬁ(X G) (M, ﬁ(X, G)), one has

Pa.u(X)(f) = Po.u(X)(f) = p&u o f.

Here we recall that pé g 1s the projection map

pan: D(X,G) — D(X, H)
m
Z a;g; — ao,
1=0

where gy, ..., gm denote the images of the set of cosets G/H (which is finite) in D(X, G). O

—_

Let (X, G) be small as above and M be a coadmissible (left) D(X, G)-module. Suppose that
H < @G is an open normal subgroup of GG. Let us choose a G-stable free A-Lie lattice £ for some
G-stable affine formal model A in O(X) and a good chain (J,,) for this Lie lattice such that J, < H
for any n. Then we may form the sheaves of rings

(4.2) (= G) =U(T"L) e x4, G, and Q,(—, H) =U("L) ;e x5, H
on X4o(L, Q) and X,.(L, H) respectively. Hence
D(X,G) ~ lim Q,(X,G) and D(X, H) ~ lim Q, (X, H).

Thus the projection map (3.2) : pé(,H : ﬁ(X,G) — 5(X,H) is defined as the inverse limit
of the maps (3.1) péHm D On(X,G) — 9Qn(X,H). Suppose that M = Wm M, with M, =
(X, G) D5x,) M, which is finitely generated over 9, (X, G). Then following Proposition 4.1.3
for every n, there is also an isomorphism of D, (X, H)-modules

Pe,1n(X) 0 Baty x o) (Mn, Qu(X, G))—=Eaty x gy(Mn, Qu(X, H)).
We will see right below that ﬁG y(X) is in fact isomorphic to the inverse limit of the morphisms
Lemma 4.2.2. There is a commutative diagram

i

wDx.q) Ler® g M. DX, H
) ( ) ))—> xﬁ(X,H)( ) ( ) ))

| |

pé;,Hyn(X)
Emmd

Bty x ¢)(Mn, Qu(X, G)) Bty x ) (Mn, Qu(X, H)).

Emtlﬁ(x,G) (

In particular, this implies that ﬁGH(X) equals to the inverse limit of the maps pZGHn(X)
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Proof. Note that D(X, G) (which is finitely freely generated as a D(X,H )-module ) is a coadmissible
D(X, H)-module. It follows that M is coadmissbile as a D(X, H)-module, so that

Extiﬁ(x,c) (M,D(X, @) = 1%1 Bty x ¢)(Mn, Qn(X, G))

and

Bats s (M. D(X, H)) = lim Exty, x g1)(Mn, Qu(X, H)).

[30, Lemma 8.4]. These isomorphisms give the definitions of the two vertical arrows of the diagram
in the lemma.

For any D(X,G)-module P (which is not necessary coadmissible), we have an isomorphism of
9, (X, H)-modules

(X, Q) @ x ) P = (Qn(X, H) @55 gy DX, G)) @55 6y P = Qn(X, H) @ gy P

Now, let P~ — M — 0 be a projective resolution of M by free 23(X, G)-modules. Since ﬁ(X, G)
is free over ﬁ(X,H) on both sides, P is also a projective resolution of M in Mod(ﬁ(X, H)).
Moreover, it is proved [30, Remark 3.2] that the canonical maps 13(X,G) — On(X,G) and
ﬁ(X, H) — 9Q,(X,H) are right flat, so that Q,(X,G) ® P and 9,(X,H) ® P are projective
resolutions of Q,(X,G) ® M and Q,(X, H) ® M, respectively. Thus, by definitions of f)’G 1y (X)

and p"G, 1.,(X) it suffices to show that for any 5(X, G) -module P, the diagram

— px‘ o
(P,D(X,Q)) o Homgx )

HOm,ﬁ(X7G) (P7 6(X7 H))

id@—l lid@—
pE 4.0
Hoan(X,G)(Qn(X7 G) ®ﬁ(x7g) P, 9, (X, G)) I Hoan(X,H)(Qn(Xv H) ®5(X,H) P, 9, (X, H))

is commutative. (Note that, for every f € Homﬁ(X G)(P, Y/D\(X, G)), the map
idf € Hoan(X,G)(Qn(Xa G) ®§(X,G) P, Qn(Xv G))

is defined by (id®f)(a ® m) = af(m) with a € Q,(X,G), m € P). This reduces to show that the

diagram
X

DX, q) 247, DX, H)

| |

0.(X, @) 28 o (X, H)

is commutative. Now the proof can be done by applying Corollary 3.1.8(i). O

Now let X be a smooth rigid analytic space, let G be a p-adic Lie group which acts continuously
on X. Let M € Cx /¢ be a coadmissible G-equivariant left Dx-module. Fix an open affinoid subset
U € X, (7). Recall that for any U-small subgroup H < G, one has an isomorphism of coadmissible
H-equivariant Dy-modules:

M|y ~ LOCIDJ(U’H) (M(U)).
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Definition 4.2.3. If (U, H) is small, we define for all i > 0:

E'(M)(U,H) := Exts M(U),D(U, H)).

(U,H)(

This is, in fact, a coadmissible right 5(U, H)-module. Now Proposition 4.2.1 gives the following
result:

Proposition 4.2.4. Let H' < H be U-small open subgroups of G. There is an isomorphism of
right D(U)-modules:

By y(U) : Eatly M(U),D(U, H'))—=>Eatls M(U),D(U, H)).

(U,H/)( (U,H)(

The family (EZ(M)(U,H),FH,H(U)) forms an inverse system when H', H run over the (partially
ordered) set of all U-small subgroups of G.

Proof. Since H' < G is open compact in H, there is an open normal subgroup N of H which
is contained in H' ([2, Lemma 3.2.1]). Hence following Proposition 4.2.1, one has the following
isomorphism:

and

Pun(U): Bats . (M(U),D(U, H)—=Eats . (M(U),D(U,N)).

D(U,H) (U,N)

Now, we define ' ‘ ‘
P p(U) = (ﬁLH,N(U))il o pyr n(U).
By definition ﬁH, ;(U) is an isomorphism of D(U)-modules. Furthermore, this is independent from

the choice of an open normal subgroup N of H. Indeed, if N' < N is an other normal subgroup of
H, then N’ is also normal in NN, thus Proposition 4.2.1 gives

ﬁH’,N'(U) = ﬁﬁ’,N(U) ° ﬁN,N/(U) and ﬁEN/(U) = ﬁﬁ,N(U) © ﬁN,Nf<U)-

Consequently

Remark 4.2.5. If H' is normal in G, then we may choose N = H' in the proof of the above
proposition. Thus

P 1(U) = (P (U))
Thanks to Proposition 4.2.4, we are ready to give the following definition:

Definition 4.2.6. For every open affinoid subset U € X,,(T), we define:

E(M)(U) = lim B (M)(U, H) = lim Eatly (;  (M(U), D(U, H)),
H H

)

where the inverse limit is taken over the set of all U-small subgroups H of G.
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Remark 4.2.7. E‘(M)(U) obviously has a structure of right D(U)-module. Furthermore, we
obtain from Proposition 4.2.1 that the natural map

E'(M)(U) — E'(M)(U, H)
is a bijection for every U-small subgroup H of G.

Lemma 4.2.8. Let U = @n U, V = @n V,, be Fréchet-Stein algebras and U — V be a
continuous morphism of Fréchet-Stein algebras. Suppose that for each n, the induced morphism of
rings U, —> V,, is flat. Then for any coadmissible U-module M, there is an isomorphism of right
V-modules

Exty,(M,U)QyV — Extl,(VRyM,V).

Proof. Since M is coadmissible as U-module, we have the following isomorphism:

M =Z1limU, ®y M = lim M,
o i
with M,, := U, ®y M for every n. Hence V@UM & @n Vi ®u,, My, and this implies that:

Exty (M, U)ayV = LEth (Mp, Un)®uU, Vi

and
Extl, (VRyM,V) = Q_Extv Vo ®u, My, V).

So it reduces to prove that for every n, there is an isomorphism of right V,,-modules
Exty, (M, Up)®u, Vo —>Emtv (Va®u, My, V).
Now apply Lemma 4.1.4 O

Proposition 4.2.9. Suppose that (U, H) is small and V. C U is an open affinoid subset in
Xuw(T)/H, then there is a morphism of right D(U, H)-modules

Tovy: E'(M)(U,H) = E{(M)(V,H).

If W C V C U are open subsets in X,(T)/H, then the diagram

Z
TUVH

E{(M)(U, H) 2% B (M)(V, H)
wH L"VWH

M) (W, H)

18 commutative.

Proof. We choose a free A-Lie lattice £ of 7(U) for some H-stable affine formal model A of O(U)
and a good chain (J,,) for £. By rescaling £, we may assume that V is L-accessible.
Recall the sheaves Q,(—, H) on U,(L, H). Under these assumptions, the morphism

90,(U,H) — 9,(V,H)
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is flat. Thus we can apply Lemma 4.2.8 and obtain:

E'(M)(U, H)® D(V,H) ~ E'(M)(V, H).

D(U,H)
This provides a natural map

EY(M)(U, H) — E{(M)(U, H)® D(V,H) ~ E'(M)(V, H)

D(U,H)
m +— ma1.

If W C V C U are open subsets in X,,(7)/H, then following [7, Corollary 7.4]

E{M)(U, H) B35, DIW, H) = E/(M)(U, H)D

~ B'(M)(V. H)®

D(V, H)®5. ;) D(W, H)
D(W,H) (~ E'(M)(W, H)).

D(U,H)
D(V,H)
Hence the commutative diagram follows. O
Proposition 4.2.10. Let H be an open compact subgroup of G and U,V € X,,(T)/H such that

V C U. Suppose that N < H is another open compact subgroup of G. Then the following diagram
18 commutative:

Py, r(U)

E'(M)(U,N) —— E*(M)(U,H)
(4-3) ?IZ._J,V,N\L J?I?:J,V,H

pNH( )

E(M)(V,N) =—— E'(M)(V,H).

Proof. Firstly, suppose that IV is normal in H. Then following Remark 4.2.5

Py, r(U) = (P x(U)) ™" and py (V) = (B (V)"
We need to prove that:
?IiJ,V,N ° ﬁH,N(U) = ﬁH,N(V) ° ?%J,V,H-
For this we choose a H-stable free A-Lie lattice £ in 7 (U) for some H-stable affine formal model
A of O(U) and a good chain (J,,) for £ such that J, < N for any n. By rescaling £ if necessary,

we may suppose in addition that V is L-accessible, which means that V € U,.(L, H). Consider
the sheaves of rings

Qn(— H) =U(T"L)j x5, H and Q,(—, N) =U(n"L), x5, N.
on Uy (L, H) and U, (L, N) respectively. Since V € Ug,.(L, H), then
D(U,H) =lim Q,(U,H) and D(U,N) = lim Q,(U, N),
D(V,H) = l&nn Q,(V,H) and D(V,N) = l&nn Q,(V,N).

Since all modules appearing in the diagram (4.3) are coadmissible, following Lemma 4.2.2, it suffices
to prove that:

Batly, 5. Qu(U, H) @ M(U), Qu(U, 1) 2 Bty 1 (0,(U, N) & M(U), 0 (U, N))
Bath,  m(Qu(V, H) ®M(V),Qn(V,H))pHN"( )Exﬁ ) (Qu(V.N) @ M(V), Qu(V.N))
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is commutative. Now, applying Proposition 4.1.6 gives the result for the case IV is normal in H.

When N is not normal in H, there is an open normal subgroup N’ of H in N (as H is compact
and N is open). Then

?%J,V,H OﬁN,H(U) = ?IiI,V,H ° (FN’,H(U) ° (ﬁN/,N(U))fl)

rg(V)o ?IiJ,V,N ° (ﬁN',N(U))_l

Il
3
gl

=pna(V)o ?{J,V,N OﬁN’,N(U> ° (ﬁ}v',N(U))fl
= ﬁN,H(V) o ?IZJ,V,N'
Hence the commutativity of (4.3) still holds for N which is not normal in H. t

Proposition 4.2.11. For every U,V € X,,(T) such that V. C U, there is a right D(U)-linear

restriction map . ' '
oy E'(M)(U) — E*(M)(V).

Proof. Let N be a V-small subgroup of G. Then there exists a U-small subgroup H inside Ny-
the stabiliser of U in N-which is normal in N [2, Lemma 3.2.1]. By Proposition 4.2.9, one has a
morphism of right D(U)-modules

v B (M)(U,H) — E'(M)(V,H).

Then we can define a right D(U)-linear morphism

E'(M)(U) — E'(M)(V,N)
as the composition

Bl n (V)
R

E'(M)(U) = lim E{(M)(U, H) — E'(M)(U, H) AN E'(M)(V, H) E'(M)(V,N).
H

If H' is another open U-small subgroup of H in Ny, then Proposition 4.2.4 and Proposition 4.2.10
ensure that this map is independent of the choice of H. It amounts to showing that if N < N is
another V-small subgroup in G, then the following diagram is commutative:

EY(M)(U) —— E(M)(V,N)

(4.4) \ Py (V)

EY{(M)(V,N).

If we take H' := N{; N H, then H’ is a U-small subgroup of N{;. Again by Proposition 4.2.10
and Proposition 4.2.4, it follows that the diagram

A By (V)
e e

E{(M)(U, H') E(M)(V, H) EY(M)(V,N)

J l l

E{(M)(U, H) A E{(M)(V, H) M E{(M)(V,N)

is commutative, so that the triangle (4.4) is commutative. Now, by the universal property of the
inverse limit, this induces a right D(U)-linear map
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E(M)(U) =lim, E'(M)(U, H) — EY(M)(V) = lim, E{(M)(V,N)

im
as claimed.

O]

Remark 4.2.12. Thanks to Proposition 4.2.11, we see that E*(M) is a presheaf of Dx-modules
on the set Xy, (T) (which forms a basis for the Grothendieck topology on X). Furthermore, if
U € X, (T) is an open affinoid of X, then one has that E'(M)|y = E*(M|y).

Let us now define a G-equivariant structure on the presheaf E*(M) of right Dx-modules on
Xw(T). Let g € G and U € X,,(T). Recall that g defines a morphism

g=¢°(U): O(U) — O(gU)
fr—g.f

Here, for any function f € O(U), the function g.f € O(g U) is defined as (g.f)(y) := f(g 'y), Vy €
gU.

This induces an isomorphism of K-Lie algebras
g’ =¢"(U): T(U) — T(gU)
V> govo g_l

which is linear relative to g (U).
Let H be a U-small subgroup of G. Suppose that A is a H-stable formal model in O(U) and L is
a H-stable A-Lie lattice in 7 (U).

Lemma 4.2.13. (i) g(A) is a gHg '-stable formal model of O(gU) and g7 (L) is a gHg '-
stable g(A)-Lie lattice in T(gU). If L is smooth (resp. free ) over A, then g7 (L) is smooth
(resp. free) over g(A).

(ii) If V€ X (T) is an open affinoid subset in U, then V being a L-accessible subdomain of U
implies that gV is a g7 (£)-accessible subdomain of g U.

Proof. (i) Let g € G and f € O(U). Since the morphism g : O(U) — O(gU) is K-linear, then
+ Kg(A) = g(KA) = g(O(U)) = O(g U).

. if h € H then ghg~'(g(A)) = g(hA) C g(A), so that g(A) is gHg '-stable.

Similarly,
- KgT(L£) = g7 (KL) = ¢"(T(U)) = T(gU).

. (ghg DT (g7 (L)) = (gh)T (L) € g7 (L). Hence L is a gHg '-stable Lie lattice in 7 (gU). It
remains to prove that if £ is smooth (resp. free ) over A, then g7 (L) is smooth (resp. free)
over g(A). But this is straighforward in view of the fact that we have the bijection

g7 le: L=g" (L)

which is linear with respect to the (iso)morphism of rings g|4 : A — g(A).
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(ii) Without loss of generality, we may suppose that U = X and V is a rational subset of X.
We prove (i) by induction on n. If V' is L-accessible in 0- step, that means V = X, then
V is gT(L’)—acceSSible in O0- step. Now, suppose that the statement is true for n — 1. Let V
be L-accessible in n-steps. We may assume that there is a chain V C Z C X such that Z is
L—accessible in n — 1-steps, V = Z(f) for some non zero f € O(Z) and there is a L-stable
formal model C C O(Z) such that £.f C 7C. Then

gV ={gy:yeV}

and

(92)(g-1) ={gy : l(g-Ng)| <1, Vy € Z} ={gy : |f (g7 'gy)| = |f(y)| < 1,Vy € V}.

) (
Hence gV = (¢Z)(gf). By assumption gZ C X is g7 (L)-accessible in n — 1-steps. Further-
more, by (i), g(C) is a gHg !-stable formal model of O(gZ) and it is straightforward that
g7 (L).(gf) C 7.(g(C)). This shows that ¢ U is also g7 (£)-accessible in n-steps.

O

Let (U, H) be small. Recall the isomorphism of K —Fréchet algebras
gu.i : D(U,H)~=D(gU,gHg™ ).
and the isomorphism
g0+ M(U) — M(gU)
which is linear with respect to gu m (since M € Cx q)-

Proposition 4.2.14. Suppose that (U, H) is small and g € G. There exists a K-linear map
EY (M i i _
g B MU, H) — E(M)(gU,gHg™)

such that for every a € D(U, H),m € E‘(M)(U, H), we have:

(4.5) 9650 (ma) = g6 50 (m).Gu 1 (a).

Proof. Denote 9H := gHg~'. We construct a map

gIEJfg\A) . Extls (M(U),f?\(U,H)) — Exth M(gU),ﬁ(gUﬂH})

D(U,H) D(g U,QH)(

as follows: Let P- —s M(U) — 0 be a free resolution of M(U) as a D(U, H)-module. Then
by regarding each term of the complex P as a D(g U,9H)-module via the isomorphism of rings
ﬁI_JIH D(gU,9H)—D(U, H), we can also view P- as a free resolution of M(gU) ~ M(U) by

D( U, 9H )-modules and denote it by 9P-. Thus, the map ggl(qM) can be defined by applying the
i-th cohomology functor to the morphism of complexes whose components are morphisms of the
form:

5(gU,9H) (g(Pk)a ﬁ(g U,QH))

f'_> §U,Hof7

$% y  Homz P* D(U,H)) — Hom

D(U, H)(

where 9(PF) denotes the component P* of the complex P viewed as a 13(g U, 9H)-module via
the morphism g, gU -
We need to check the following facts:
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1. gumof e Homzp v ap (9(P*),D(g U,9H)), which means that gu,aofis D(gU,9H)-linear.

Indeed, if b € ﬁ(g U,9H) and m € 9(P*¥), then:

— —

(Gu,u o [)(b-m) = gu,u(f(g~ v u0)m) = gu,u(g~ un0)f(m)) = b(guu o f)(m).

Here the second equality follows from the fact that f is 13(U, H)-linear and the third one is
based on the fact that gy g is a morphism of K-algebras.

2. For any a € ﬁ(U, H) and f € Homﬁ(U H)(Pk,ﬁ(U, H)), we check that:

U.u(fa) = G 5 (fgu,n(a).
Let m € 9(P)*. We compute:
U.x(fa)(m) = gu u(f(m)a) = gu u(f(m)gu ula) = ¢4 4 (f)(m)gu,u(a).

Finally, by definition of g5 5", this implies (4.5). O

Next, we study some properties of the morphisms gglgw) with g € G. Let £ be a H-stable free

A-Lie lattice of T(U) for some H-stable affine formal model A in O(U). Write A" := g(A) and
L= gT(E). Lemma 4.2.13 shows us that there is a bijection between the following G-topologies:

Uue( L, H) — (g U)ac(L, gHg ™)
V—gV.

Furthermore, if J < G is an open normal subgroup of G such that (J, £) is an A-trivialising pair
in H, then (¢gJg=!,L£') is also an A’-trivialising pair in gHg~'. Let (J,), be a good chain for £
and recall the sheaves Q,, from (4.2). If V € U,.(L, H), there is an isomorphism of K-algebras:

99 1 Qu(V, H) — Qu(gV,gHg™).

These maps satisfy
gv,u = limgyy.
n
Let M be a coadmissible G-equivariant Dx-module. For each n, we define the following presheaves.
Let V. € U,(L, H), then:

(4.6) Mu(V) = Qu(V, H) @55,y M(U)
and
(4.7) Mu(g V)= Qu(g V. gHg™) @5,y gy M9 U).

Note that they defined sheaves of modules on U, (£, H) and on (g U),(£’,gHg™ "), respectively.
If VeU,(L, H), the isomorphism

G s M(V) — M(g V)
induces an isomorphism
R Ma(V) — Mu(gV)
s@m — g\Q,"H(s) ® g{‘f‘H(m)

We have the following result:
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Proposition 4.2.15. Let g € G. There is an isomorphism

9U,1(H,n) D Baty u,m(Mn(U), Qn(U, H)) — Exty ,uem)(Mn(9U), Qn(9U,7H))
such that
1. For any s € Q,(U,H) and m € EmtiQn(U ) (M (U), 9,(U, H)), one has that:

2.

Ei{(M EY (M "
T6.5 D (ms) = goy e ()97 (5).

Let V € Uyo(L, H). Then the following diagram is commutative:

B (M)
. 9 ,H,n 1
ExtlQH(U7H)(Mn(U)>Qn(U7H)) s Extgn(gUgJH)(Mn(gU%Qn(nggH))
T}I,n 7-;H,n
6o Y

Ewtign(V,H) (Mp(V), Qn(V,H)) —— Emtign(gVVgH) (Mn(gV), Qn(9V,7H))

are restriction maps which are defined in Proposition 4.1.6.

H(M)

i i
Here THon and ToHn

Proof. (1.) We define g ™ similarly as defining g ¢ in Proposition 4.2.14. Let P, —»

M, (U) — 0 be a resolution of M, (U) by free Q,,(U, H)-modules. Then by considering
each term of this resolution as a Q,(¢U,9H )-module via the isomorphism of K-algebras
g%"H : On(U,H) — O,(9U,9H), we see that P, is also a resolution of M,,(gU) by free

Q,(9 U,9H )-modules. Let us denote this by 9P;. Then the morphism ggi%) is determined
by taking the i-th cohomology of the following morphism of complexes:

Homg, u m (P, @n(U, H)) — Homg, (yusm) (P, Qn(9 U, 7 H))
f— g[QfH o f.

Now the required property can be proved similarly as for gf]zgw) in proposition 4.2.14.

Note that
Mn(V) = Qn(V, H) @5y ) M(V) = Qu(V, H) ©g,, u,1) Mn(U).

My(gV) = Qn(9V,’H) ®§(gv,9H) M(gV)=Q,(gV,’H) ©®Q,(gU,9H) Mu(gU).

By taking a projective resolution of M,,(U) by free Q,,(U, H)-modules together with the flat-
ness of the morphisms 9, (U, H) — Q,(V,H) and Q,(¢gU,9H) — Q, (¢ V,9H) (Propo-
sition 2.4.17), it reduces to show the assertion for ¢ = 0, which means that the diagram

Hoan(U,H) (MH(U)v Qn(U> H)) — Hoan(gU,gH) (Mn(gU)a Qn(.g U79H))

Homg, (v,m)(Mn(V), Qn(V, H)) —— Homg, gv,sm)(Mn(gV),Qn(gV, H))

is commutative.

Let f : M,(U) — Q,(U,H) be a Q,(U, H)-linear morphism and write r,, 5 for the
restrictions Q,(U,H) — Q,(V,H) and Q,(¢U,9H) — Q, (g V,9H), respectively. For
a€ Qn(gV,9H), m € My(gU), we have:
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(1&rf 0 (957 o f o (95i) ™)) (a @ m) = arii(ogy (f ((95'5) " (m)))
and

(997 © (1@ 0 ) 0 (6'57) ") (a @) = .G (ra (f(65) ™ ().
So it reduces to prove that for any b € Q,, (¢ V,9H), one has that:

3 (95 (1) = 9375 (ra (b)),

which is a consequence of [2, Definition 3.4.9(c) and Proposition 3.4.10].
O

Notation: In the sequel, whenever V, H are given and whenever there is no ambiguity, we
E{(M) E' (M)
n .

simply write g for gy g and gMn», g9 g .. instead of g{%}f], gng, 9V Iin - respectively.

Proposition 4.2.16. The following diagram is commutative:

EY (M) —

(M(U),D(U, H)) “—  Eaty . (M(gU),D(gU,7H))

l |

EY (M)

Extign(U,H)(Mn(U)a Qn(U> H)) 9n—> Ewtign(gUﬁH)(Mn(g U)a Qn(gUagH))

Exti
D(U,H)

Proof. First, we note that the morphisms

qun:DU,H) — Q,(U,H) and qyu, : P(gU,YH) — Q,(¢U,H)

are flat. By using a resolution P — M(U) — 0 of M(U) by free ﬁ(U,H)—modules, it
reduces to show the commutativity of the above diagram for the case where i = 0. Let f €
Homﬁ( (M(U),D(U, H)), then by definition:

~ —1
g7 M(fy=Go fo(gM) .
Let s € Qn(¢gU,9H) and m € M,,(gU). It follows that

(id@ggun(@o fo (™)) (s@m) = 5.00un @ ((g™) ()

U,H)

and

(99" o (1®qun o f) o (M) ) (s @m) = 5.9% (qua(f((g™) " (m)))).

Now the result follows from the commutativity of the diagram

D(U,H) —% s D(gU,9H)

qU,nl J/Qg U,n

0.(U, H) "5 Q,(gU,7H)

. . . ~_ 1 Qn
which is evident as g = l£1n g=n. O

o7



CHAPTER 4. DIMENSION THEORY FOR COADMISSIBLE EQUIVARIANT D-MODULES

Remark 4.2.17. The above proposition shows that for any g € G , U € X,,(T) and H < G such
that (U, H) is small, the following equality holds:

= limgG 7y

Proposition 4.2.18. If N < H and V is a N-stable subdomain of U in X (T), the diagram

B (M)

EM)(V,N) X2 B(M)(g V. gNg™)
p]‘mw jmmw
, gE M0
E'M)(V,H) ——— E'(M)(gV,gHg™")
~ ~
TTU,V,H TTU,V,H
EY (M)

9u.H _1
)

E'(M)(U,H) ——— E'(M)(gU,gHyg

1s commutative.

Proof. 1t is enough to prove the proposition for the case where N is normal in H, as the general
case can be proved by choosing an open normal subgroup of H which is contained in N.

1. Let us prove the commutativity of the upper square. Take a projective resolution of M (V)
by free modules in Mod(D(V, H)). It is enough to show that for any (left) D(V, H)-module
P, the diagram

— iy —
Homgy 1 (P D(V, H)) —"= Homz oy (9P, D(gV,H))

D(V,H)
ﬁH’N(V)J/ lﬁgH,gN(gV)
—~ ¢%, .
Homgp . N)(P,D(VJV)) BALLN Homzp v ong-1 )( P,D(gV,9N))

is commutative. It means that if f € Homﬁ(V’H)(P, 5(V, H)), then one has :
Poran(9V)(Gv, o f) =gv,n o b n(V)(f).
But this reduces to proving that the diagram

DV, H) 20 DgV,9H)

(4.8) XNl l” Fion
DV, N) 2N, gV, 9N)

=

is commutative. For this, choose a H-stable free A-Lie lattice £ for some H-stable formal
model A of O(V) and a good chain (J,,) for £. Recall from Lemma 4.2.13(i) that £ = g7 (£)
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is a gHg !-stable free g(A)-Lie lattice in T(gU). For a fixed natural integer n € N, we
consider the following diagram:

Qn
gV,H -1
U(mL) g Xy, H ——= U(m"L') ¢ Xgy.0-1 9Hg
p‘lg,N,nl \Lp;/H,gN,n
Qn
v

U(n"L) g Xy, N VN, U(mL) e X gg,g-1 9Ng ™.

Let {g1 = 1,...,9m,-.-,gn} be a set of representatives of cosets of G modulo J,, such that

{01 =1,92,9m, .-, gn} is a basis of U(nm"L) - x5, H and {g1, ..., gm } is a basis of U(7"L) ;c 1,
N over the ring U(n"L)k as a left modules. Then we get a basis of U(7"L') X5 o1

gHg™! (vespectively, of U(m™L), x4, gNg~ ') over the ring U(7"L’)  induced by classes of
{99197, - 99mg ™", -, 99ng ™'} (vespectively, of {gg19™", ..., ggmg ™"} ) modulo g.J,g~"'. This
implies, by definition of the projection maps pg N and pgl}’g ~N.n» that the above diagram is
commutative for each n, which produces the commutivity of (4.8).

2. It remains to show the commutativity of the lower square. We still fix a H-stable free A-Lie
lattice of T(U), a good chain (.J,,) for £ and keep notations as above. Suppose in addition
that V is an £- accessible subdomain of U (by rescaling £). Then gV is an £'- accessible
subdomain of ¢ U by Lemma 4.2.13(ii). Now, since all morphisms of the lower square are
linear maps between coadmissible modules, it is enough to show that the diagram

Eatly y iy(Ma(U), Qu(U, H)) —— Eath i oxMa(9U), Qu(9U,7H))

|

Extign(V7H) (Mp(V), Qn(V,H)) — Extign(gv,g}[)a (Mn(gV),Qn(gV,7H))

is commutative. This is indeed Proposition 4.2.15(2).

Theorem 4.2.19. Let X be a smooth rigid analytic space and G be a p-adic Lie group acting
continuously on X. Let M € Cx ;g, then for alli >0, EY(M) is a G-equivariant presheaf of right
Dx -modules on X, (T).

Proof. Let W C 'V C U be affinoid subdomains of X in X,,(7). By [2, Lemma 3.4.7] there exists
an open compact subgroup H < G such that the pairs (W, H),(V, H), (U, H) are all small. Then
we consider the following diagram:
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EY (M) (W, H)

EH(M)(W)

/N

B (M)(U) ———— E(M)(V)
A e ~
E'(M)(U, H) > E'(M)(V,H)

The three quadrilaterals are commutative by definition. The outer triangle is commutative by
Proposition 4.2.9 and the three arrows connecting the two triangles are bjections by Remark 4.2.7.
Hence the inner triangle is commutative and this proves that E*(M) is a presheaf.

Next, fix g € G and U € X,,(7). We define
g" M) : B (M)(U) — E'(M)(9U)
to be the inverse limit of the maps gﬁi%vi) in Proposition 4.2.14. Then

* By (4.5) (Proposition 4.2.14), it is straightforward to see that g% ) (m.a) = g™ (m).¢P(a)
for any a € D(U) and m € E/(M)(U).

* Assume that V C U are in X,,(7). Let H be a U-small subgroup of Gy N Gy. We consider the
following diagram:

E{(M)(U, H) y EY(M)(gU,9H)

N /

E{(M)(U) — E{(M)(gU)

E{(M)(V) — E{(M)(g V)

/ N

EY{(M)(V,H) » E{(M)(g V,9H)

Note that the outer square is commutative by Proposition 4.2.18, the four trapezia are commutative
by definition and the arrows connecting the two squares are bijections. This proves that the inner
square is commutative. Hence g% M) . Ei(M) — g*(E*(M)) is a morphism of presheaves on
Xu(T).
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* Finally, if g,h € G, we need to show that (gh)Ei(M) = gEi(M) o hE'M), By taking a free
resolution of M(U) by free D(U, H)-modules, it is enough to show that for any D(U, H)-module
P, the diagram

h
U, H

P,D(U,H)) — 2% Homz, v iy ("P: D(hU,hHh 1))

i
\ \Ld)fo,hH

Homg, (" P, D(gh U, ghHh g™ 1))

Homﬁ(uH)(

ghU,ghHh—1g—1)
is commutative. Let f € Homﬁ(U ) (P, ﬁ(U,H)), then

g}JL[Lh]_] © gb][lLH(f) = ¢iU,hH(hU7H © f) = ahU,hH ° h‘U7H o f

while d)%ﬁ = gAhU7 i © f. Hence the commutativity of the diagram follows from the equality

azU,H =Gg,uhp © 77,U7H, which is from [2, Lemma 3.4.3]
0

In the last part of this section, we intend to prove that for any M € Cx /g, the presheaf E{(M)
on X,,(7) is in fact a sheaf and E*(M) can be therefore extended to a G-equivariant sheaf of right
Dx-modules on X. It then turns out that this sheaf in fact defines an object in Cy ez

We first assume that (X, () is small and let M € Cx /; be a sheaf of coadmissible G-equivariant
left Dx-modules.

Lemma 4.2.20. Let U € X,(T) and H be a U-small subgroup of G. Then there is an isomorphism
of right D(U, H)-modules

Oy : Bty (M(X),D(X,G))@5 (M(U),D(U, H)).

5x.) D(U, H)—=Eaxtl;

(X,H) (U,H)

Proof. Recall that M = Locx (M (X)), so that

M(U) ~D(U,H)@~

D(X’H)/\/I(X).

By applying Proposition 4.2.1, we obtain an isomorphism of right ﬁ(X, H)-modules

Hence
(4.10)
Bty o(M(X), D(X,G)®px DU, H) = Eatls y  (M(X), D(X, H))Bpx ) D(U. H).

Finally, apply Lemma 4.2.8 gives:

(4.11) Exts o o (M(X), DX, H)) @5 DU, H)—>Eats . (M(U), D(U, H)).

(X,H) X,H) (U,H)
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Let us explain how the isomorphism @%, g7 looks like when and H is an open normal subgroup
in G. Write &y g := (13% g~ Then

D(U, H)—sHomz,; ,»(M(U),D(U, H)).

Py, g : HOmﬁ(ng)(M(X)aﬁ(XvG))@ D(U,H)

D(X,H)
Let us choose a G-stable Lie lattice £ of T(X) such that U is L-accessible and. Let (.J,,) be a good
chain for £. Then we can take the sheaves Q,, into account and obtain that:

D(X,G) =lim_ Q,(X,G), D(X,H) = lim Q,(X,H) and D(U, H) = lim Q,(U, H).
Write M := M(X) = lim M. Then M (U) = Q,(U, H) ®9, (x,i) Mn -The morphism @y g is
defined as the inverse limit of an inverse system (®v, g, )n of morphisms, where

Qu.Hn : Homg, (x,¢)(Mn, Qu(X, G))®0, x,17)Ln(U, H)——Homg, wu,m)(Mn(U), @n(U, H))

is defined as follows. If f,, : M,, — Q,(X,G) is a Q,(X, G)-linear morphism and a € Q, (U, H),
then applying (4.9), we obtain the 9, (X, H)-linear morphism

p§7H7n ofn: My — Qn(XyH)>

where pé’ 1., is defined in (3.1). Next, (p)G( 1.n0Jn)®a is the image of f, ®a via the isomorphism
(4.10). Finally, by applying the isomorphism (4.11), we get the map

1®((p§,H7n o fn).a): Qun(U,H)® M, — Qn(U, H)
b@m+— b.pG,H(fn(m)).a.

Note that in the above formula, we identify p)G(,Hjn(fn(m)) € Q,(X, H) with its image in Q, (U, H)
via the canonical morphism Q, (X, H) — Q,(U, H). Therefore

(412) q)U,Hm(fn) = Zd@((pé'(,H,n @) fn).a) S Hoan(U,H) (Mn(U), Qn(U, H))

Recall that " Locx (—) denotes the localisation functor on the category C~ of coadmissible right

~ D(X,G)
D(X, G)-modules.

Proposition 4.2.21. Suppose that (X, G) is small. There is an isomorphism of presheaves of right
Dx -modules on X, (T)

®: "Locx(Eats M(X),D(X,G))—=E (M).

(X7G)(

Proof. Write M := M(X) and fix an open affinoid subset U € X,,(7). By Lemma 4.2.20, for any
U-small subgroup H of G, there is an isomorphism of right D(U, H)-modules

By Batlgy o (M(X), D(X, G))@ﬁ(X’H)YfD\(U, H)—= Bty (M(U), D(U, H)).

If H' < H is another U-small subgroup of G, we need to show that

7 “~ o~ b q)iJ,H’ i —
Eats o oM. DX, G)&px y)P(U, H') —= Bty (M(U), DU, H'))

el

H' H

(4.13) l

; — — — Py i ; —_
Bat oM, DX, G)@px yP(U, H) — Bat; ,,(M(U), D(U, H))
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is commutative. It suffices to assume that H' and H are normal in G. Then D'y, (U) is the
inverse of the map pY; ;,(U) (which is defined in Proposition 4.2.1), it is equivalent to show that
the diagram

Bzt (M,D(X, G)@ﬁ(xﬂ,)ﬁ(u, H') — Bty

N /
D(X,G) (U’H,)(M(U),D(U,H ))

| T

(M, D(X,@))®5x s D(U, H) ——— Eat! (M(U),D(U, H))

Exti L
D D(U,H)

(X,@)

9
is commutative.

Fix a G-stable free A-Lie lattice £ in 7(X) for some G-stable affine formal model A of O(X)
and a good chain (J,) for £. By rescaling L if necessary, we may suppose that U is L-accessible.
Recall the sheaves Q,, and M,, in (4.2), (4.6), and (4.7). Then

D(X,G) =lim Q,(X,G), D(U,H) = lim Q,(U, H) and D(U, H') = lim Q,,(U, H').

Thus M = gnn M, with M, := 9,(X, Q) D5x.q)
are linear between coadmissible modules, it is enough to prove that the diagram

M. Since the morphisms in the above square

Extq x c)(Mn, Qn(X, G)) ©g, (x,111) Qu(U, H') — Ety 5 g (Mn(U), Qu(U, H))

n

| T

Extign(XG)(Mn, (X, G)) ®g,x,1) (U, H) —— Extign(u i (Mn(U), Qn(U, H))

is commutative.

Now, by taking a free resolution of M, as a Q,(X,G)-module and by using the flatness of the
morphisms 9, (X, H') — 9,(U, H') and 9, (X, H) — 9,(U, H) (Proposition 2.4.17), it remains
to prove that, for any 9, (X, G)-module P, the diagram

Hoan(X,G)(P’ Qn(X’ G)) ® Qn(Uv Hl) — Hoan(U,H’)(Qn(Ua Hl) ® P, Qn(U’ H,))

| |

Hoan(X,G)(P7 QN(X7 G)) ® Qn(U7 H) B Hoan(U,H)(Qn(U7 H) ® P7 Qn(U’ H))

is commutative.
Let f € Homg, x,c)(P, @n(X,G)) and a € Q,(U, H), then we need to show that:

(4.14) Pim © QW& i 0 £lia) = 18((0F v © fa).

Where, i : Q,(U,H') — 9,(U, H) is the natural inclusion. Let b € Q,, (U, H') and m € P, then
we compute by using (4.12)

it © AOWE . © i) (b ® m) = Pl g1y (008 1.0 (f(m))i(a))

= Wit 110 (PO 110 (F (1))@ = bPi g1 1, © P& 11 (f(M))a = bps g, (f(m))a.
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Thus, the equality (4.14) is proved and so the commutativity of the diagram (4.13) follows. As a
consequence of this, by taking the inverse limit of the maps ®%; , we obtain a right D(U)-linear
isomorphism

®/(U) : "Locx (Eats o . (M(X),D(X,G))(U)—=E (M)(U).

(X,G)
Finally, ®° being a morphism of presheaves amounts to showing that if V C U are open subsets in
Xw(T) and H is an open normal subgroup of G which stabilizes U and V, the following diagram
is commutative:

¢u

i "~ P~ e~ JH i ~
Bty x )M DX, G)®px ) P(U, H) — Extﬁ(UvH)(M(U), D(U, H))

| | |

i ~ fon ~ ¢{/,H i jong
Extﬁ()LG) (M') D(Xa G))@ﬁ(X,H),D(V, H) — Ewtﬁ(V,H) (M (V), D(V, H))

This is indeed a consequence of Proposition 4.2.9, where it is proved that:

Eatls M(V),D(V, H)) = Exts M(U),D(U, H))®p, DV, H).

(V,H)( (UvH)(

O

Corollary 4.2.22. Let M € Cx ;g be a coadmissible G-equivariant Dx-module on X. The presheaf
E{(M) is a sheaf on the basis X,,(T) of the Grothendieck topology on X. In particular, this can be
extended to a sheaf on X4, which is still denoted by E*(M).

Proof. Fix U € X,(T) and let H be a U-small open subgroup of G. Then following Proposition
4.2.21
E'(M)|u ~"Locy (Exts (M(U),D(U, H)).

D(U,H)
Since the right hand side is a sheaf on U, (7 |u), one has that E*(M) |y is also a sheaf on Uy, (T|u).
It follows that the presheaf E*(M) is actually a sheaf on X,,(7) as claimed. O

Theorem 4.2.23. Let M be a coadmissible G-equivariant left Dx-module Then E*(M) is a coad-
missible G-equivariant right Dx -module for every M € Cx ;g and all i > 0.

Proof. First, let us show that E?(M) is a sheaf of G- equivariant locally Fréchet right Dx-modules.
Let U € X,(T) and H be a U-small subgroup of G. Then the bijection

E'(M)(U) ~ E'(M)(U, H) = Ext'(M(U),D(U, H))

from Remark 4.2.7 tells us that E‘(M)(U) can be equipped with a canonical Fréchet topology
transferred from the canonical topology on Ext!(M(U), ﬁ(U, H)). This topology does not depend
on the choice of H, so that E*(M)(U) becomes a coadmissible (right) 13(U, H)-module. It remains
to check that if ¢ € G then each map gEi(M)(U)_ : BY{(M)(U) — EY(M)(gU) is continuous for
any U € X, (7). Indeed, note that the map g ) (U) is a linear isomorphism with respect to
the K- algebras isomorphism gy g : ﬁ(U,H) — 13(9 U,gHg™'). We obtain that gEi(M)(U) is
continuous by [2, Lemma 3.6.5]. Thus E*(M) is in Frech” (G — Dx).
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Next, write M := M(X). In view of Theorem 4.2.19, Proposition 4.2.21 and Corollary 4.2.22,
it remains to prove that when (X, G) is small, the morphism

®': "Locx(Exts y . (M,D(X,G)) — E'(M)

(X,G)

is indeed a G-equivariant morphism.

In the sequel, to simplify the notations, we write

e I /T i
N = E' (M) and N/ := LocX(Extﬁ(Xg)

Let U € X,(7) and g € G. Then by definition, ®*(U) = m ®Y g, it reduces to prove that for
any U-small subgroup H of G which is normal, the diagram

(M, D(X,Q)).

N/
Ju,H

(M,D(X,G))®px 4y P(U, H) —— Ext%(xm(M DX, G))B5x o)

%,Hl l@;u,g},
N

—_ — —_ 90 . H . —_ — —_
(D(U. )@ yyy M. D(U, H)) = Batls o (DlgU,SH)Dpx 11y M. Dlg U, 7H))

—_

] g

Exti
D(U,H)

is commutative. Here recall that g{}/ g and g{}f:H correspond to the G-equivariant structure on the
sheaf A and on N’ respectively.
Choose a Lie lattice £ in 7(X) and a good chain (J,,) for £ such that

D(X,G) = lim 0,(X, G).

n

By rescaling £, we may suppose that U is L-accessible. This implies

D(U, H) = 1im Q,(U, H).

Now, following Lemma 4.2.13, g U is also £’-accessible with £’ := g7 (£). Thus £’ together with
the good chain (g.J,,g~') defines the Frechet-Stein structures
D(X,9H) = lim Qu(X,7H) and D(gU,9H) = lim Q,(gU,H).

Since each map of the above diagram is a linear map between coadmissible modules, they can be
regarded as the inverse limits of systems of morphisms:

(D%J,H = @ln ‘I’ZU,H,n: (I)ZgU,-‘?H = @n ‘I’z U9Hn
N 1 N N 13 N’
JUu.H = l&nn 9U.Hn 9UH = 1&” 9U,Hn

As a consequence, it is enough to prove that the diagram

N/
. g yH,n )
Exty x o)(Mn, Qu(X.G)) © Qu(U, H) —"= Eatly x o(Mn, Qu(X,G)) © Qu(g U, 9H)
. ; |#h

) 9u,H i
Eaty, w,m(@n(U, H) © My, Qu(U, H)) =5 Bty (,1.011)(Qn(9 U, 2H) @ My, Qn(g'U,9H)
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is commutative. Here we assume that M = gnn M,,, with respect to the given Frechet-Stein

structure on ﬁ(X, G). After taking a resolution of M, by free Q, (X, G)-modules, it amounts to
proving the commutativity of the above diagram for the case i = 0, which means that the following
diagram is commutative:

!
a0,

HOan(X,G) (MTM QN(X7 G)) & Qn(U7 H) i> Hoan(X,G) (Mn7 Qn(X7 G)) ® Qn(gUa gH)

(bU,H,ni Jrq)gU,QH,n
N
9U,H,n

Homg, v m(@n(U, H) ® My, Qn(U, H)) —— Homg, (qu.sm)(Qn(9U,7H) & My, Qu(gU, H))

Let f € Homg, x,q)(Mn, Qn(X,G)) and a € Q,(U, H). It is enough to show that:
(I)gU,gH (g{\J/,/H,n (f ® a’)) = gg,H,n (q)U,H,n (f ® a))

Since g{}f:Hm (f®a) = (f’yn(g)).g[QJfH(a) and Py p.(f ®a) = 1®(pg,an(f)).a (which are mor-
phisms in Homg,, (qu,0)(@n(gU,7H) @ My, Qn(gU,7H))), it is equivalent to show that:

18(peoaan((frn(g™))-087% () = 987 © (1&(pe.an(f))-a) o (g7 )5

where

X

ot G — Qu(X, Q)% = (U(W”L)K ", G)

is the canonical group homomorphism from Remark 2.4.13.
Let m € My,,b € Q,(gU,9H), we compute

(1&(pasmn o (f1nlg™)-95%/()) (b ® m) = b.pgamn(f (M)m(g™")) 90 ()

and

(957, © 1@PE 0 0 f)-a) 0 (7 )T (b ©m)

> — Q'VL —_—
=987 © (1P . © £)-a) (g 5 (B) @ (g™ )m)

= 98597 T 1 (0)-9%% (P 110 (f (a9~ ym)a)

= b.98"% (08 1.0 (F (g™ )m)) g8 (a).

Here, we identify the element péH’n(f('yn(g_l)m) € O,(X, H) with its image in 9, (U, H) via the
natural restriction Q,(X, H) — Q,(U, H) and the element pg apn(f(m)yn(g71)) € On(X,9H)
with its image in Q,,(¢ U,9H) via Q,(X,9H) — Q, (g U,9H). Thus, it remains to show that for
any m € My, one has

(4.15) pesma(f(m)1a(97") = 985 (08 1.0 (9" f(m)).
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Consider the following diagram:

0,(X,G) 9, o (X, @)

X
pG,H,nl lpG,gHg_l,n
On
9x,H

(4.16) Q. (X, H) —" Q,(X,gHg ™)

l 98,”1{

0,(U,H) —= Q,(gU,gHg™).

By [2, Definition 3.4.9(c) and Propostion 3.4.10], we see that Ad,, ;) = g%‘H on Q,(X,H) C
9,(X,G) and the commutativity of the lower diagram of the diagram (4.16) follows from loc.cit.
On the other hand, it is proved in the proof of Proposition 4.2.18 that the upper diagram of (4.16)
is commutative. Hence we may compute as follows:

peomn(fm)n(g™") = paotn(m(9) (g™ ) fF(m)m(g™))
= pG,gH,n(Q)Q{:LH('Yn(g_l)f(m)»
= 90" (PG, (g™ f(m)).

Hence we obtain the commutativity of (4.16) and so the theorem follows.

Definition 4.2.24. Let M € Cx /g, then we define for any non-negative integer t > 0:
EYM) == Homoy (Ox, EY(M)).

Proposition 4.2.25. For every i > 0, £ is an endofunctor on the category Cx /G of coadmissible
G-equivariant left Dx-modules.

Proof. Following Theorem 2.4.26 and Theorem 4.2.23, the sheaf £¢(M) is a coadmissible G-equivariant
left Dx-module. Now if f : M — M’ is a morphism of coadmissible G—equivariantAleft Dx-
modules, then for any U € X,,(7") and any U-small subgroup H of G, it follows that the D(U, H)-
linear map f(U) : M(U) — M’(U) induces a morphism
i / N, i N,
Brts gy (M(U), DU, H)) — Batl (M(U), B(U, H))

(U,H)
which is right 5(U, H)-linear. Hence by [2, Lemma 3.6.5], this is a continuous map with respect to
the natural Fréchet topologies on both sides. In this way we obtain a morphism of G-equivariant
locally Fréchet Dxmodules

E'(f): E"(M') — EY(M)
whose local sections are continuous. Now, if g : M’ — M”" is another morphism in Cx ,¢, then it
is straightforward to show that E‘(id) = id and E'(go f) = E'(f) o E'(g), which ensures that E’

is a functor from Cx ;g into Cx /G Finally £ is a composition of two functors, so it is a functor
from Cx g into itself, as claimed. O
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4.3 Weakly holonomic equivariant D-modules

4.3.1 Dimension theory for coadmissible equivariant D-modules

In this section, we fix a smooth rigid analytic K-variety X of dimension d and a p-adic Lie group G
acting continuously on X. We are now ready to introduce the notion of dimension for coadmissible
G-equivariant Dx-modules.

First, recall that the set X,,(7) is a basis for the Grothendieck topology on the rigid analytic
space X.

Definition 4.3.1. Let U be an admissible covering of X by affinoid subdomains in X, (T) and M
be a coadmissible G-equivariant left Dx -module on X. Then the dimension of M with respect to U
is defined as follows:

dy (M) := sup {d(M(U))|U e U},

where d(M(U)) is the dimension of the coadmissible 5(U,H)—module M(U) for some U-small
subgroup H of G.

Proposition 4.3.2. Suppose thatU andV are two admissible coverings of X by elements in X,(T).
Then dy (M) = dy(M).

Proof. We may assume that V is a refinement of &/ and every element of U4 has an admissible
covering by elements of V. Let Uj,...,U, € V be a cover of Uy € U (which is quasi-compact!).
We fix an open compact subgroup H of G such that (U, H) is small and choose a H-stable affine
formal model A in O(Uyp) and a H-stable smooth A-Lie lattice £ in 7 (Ug).Then by [2, Lemma
4.4.1], we may assume that H stabilises A, £ and each member U; in V. By replacing £ by a
sufficiently large m-power multiple, we may also assume that each U; is an L-accessible affinoid
subspace in Ug so that Uy, ..., U € (Up)ac(L, H) and they form an (Ug)q.(L, H)-covering. Recall
the sheaf of rings 9, (—, H) and the sheaf of modules M,, induced by M from Section 4.2. These
are sheaves on the Grothendieck topology X,.(L, H). Then

D(U;, H) ~lim Q,(U;, H) and M(U;) = lim M, (U;) forall i =0,1,.., k.

Each M(U;) is a coadmissible D(U;, H)-module and by Definition 3.2.2, d(M(U;)) = 2d —
ja(M(Uy)) for each i.
Now by [2, Theorem 4.3.14], one has that @F | Q,(U;, H) is a faithfully flat right Q, (U, H)-
module. Thus applying [7, Proposition 7.5(c)] gives that @f’;l ﬁ(Ui,H ) is c-faithfully flat over
13(Ug, H). On the other hand, the completed tensor product commutes with finite direct sum, so
that:

Ea:t%

(U07H) (M(UO)7 5(U07 H>)®’D\(U0,H) @le ,/D\(U“ H)

~ O Bty o (M(Uo), D(Uo, H))®py, 11D (Ui, H)

~ of Exts (M(U,), D(U;, H)).

By consequence, one has
in(M(Uo)) = inf{ju (M(U;)) : M(U;) #0,i=1,2, ..., k},

so the proposition follows immediately. O
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Remark: The above proposition tells us that the dimension of a coadmissible G-equivariant
Dx-module M does not depend on the choice of an admissible covering i/ of X. Hence we can now
ignore the symbol U and denote it simply by d(M). By definition, 0 < d(M) < 2d.

4.3.2 Dimension and the pushforward functor

First, we recall some material from [6] which will be used later. Let I be an ideal in a commutative
R-algebra A and L be a (R, A)-Lie algebra. Then we say that a finite set {x1,...,24} of elements
in L is an I-standard basis if it satisfies the following conditions:

(i) {x1,...,zq} is a basis of L as an A-module (which implies that L is free over A),

(ii) There exists a set F' = {f1,..., fr} C I with r < d which generates I such that
foJ:(;Z] fOraHlS’iSdandlSjST.

Leti: Y = Sp(A/I) — X = Sp(A) be a closed embedding of smooth affinoid varieties and G be
a compact p-adic Lie group which acts continuously on X. We suppose that:

(a) T(X) admits a free A-Lie lattice £ = A0 & ... ® A9, for some affine formal model A C O(X)
and such that [£,L] C 7L, L.A C TA,

(b) {01,...,04} is an I-standard basis with respect to a generating set {f1, ..., fr} C I.
(¢) G preserves Y C X, AC O(X) and £ C T(X).

Definition 4.3.3. Let N be a coadmissible (right) D(Y, G)-module. We define the pushforward

functor iy : C%(Y,G) — C%(X,G) by

i N := N@g(Y’G) (D(X,G)/ID(X,@G)).
Note here that the definition makes sense, since D(X, G)/ID(X, G) (which is isomorphic to O(Y)®ox)
13(X, G))isa ZA)(X, G)-coadmissible (5(Y, G) —5(X, G)) bimodule ([3, Lemma 3.3.8]). Moreover,
the D(X, G)-module structure of i1 N can be describled as follows. Let Z := I N A and set

Ne(Z):={zx e L:2(T) CT}.

Then N := N;(Z)/ZL is a G-stable A/Z-Lie lattice in T(Y) = A/Id) & ... ® A/Idy. Thus, for a
good chain (J,,), of G, we have (note that Gy C G by [3, Lemma 4.3.2] so we can choose a good
chain of G such that each J,, is contained in Gs):

U(mnL) %z, G and D(Y,G) = lim U(m"N) g %, G.

DX, G) = lim jm,

n

Write Sy, := U(m"L) i ¥, G and T, := U (7" N ) %, G, then
it N =2lim N, @r, Su/ISn, with Ny = N @5,y ¢ Tn-

We recall the following result from [4, Proposition 6.1]

69



CHAPTER 4. DIMENSION THEORY FOR COADMISSIBLE EQUIVARIANT D-MODULES

Proposition 4.3.4. Let A, I, F, L be as above and denote by C := Cp(F) = {x € L : z.f =
0 Vf € F} the centraliser of F' in L. Then
I50, U Bk D), M) = J56) . riey, M) T

for every finitely generated U( Vi /FU( ) e -module M

Proposition 4.3.5.

A x.c) 1+ N) = dpy ¢ (N) + dim A — dim A/T

D(X,G) D(Y

for every coadmissible right D(Y G)-module N € CT By .c)

Proof. Since 74 N is a coadmissible 5(X, G)-module, there exists n sufficiently large such that
jﬁ(xg) (Z+N) = JSn (i+N ®§(ng) Sn) = jm}{(iJrN ®§(X,G) Sn)-

Here, the last equality follows from Proposition 3.1.4 and Lemma 3.1.6. Note that:

Z+N ®D(X Q) Sn — Nn ®Tn Sn/ISna
where N = @n N, with N,, = N ®§(Y ) T,,. Furthermore
Ny @1, Sp/IS, = Ny, ® GO o0 U(WWE)K X, G/I({U(T"L) ;e %, G)
~ N, ®U(W7LN)K U(rnL) e /TU (7" L) e -

On the other hand, the A/I Lie lattice 7N of T(Y) is isomorphic to Nynp(Z)/Z(7"L). Tt follows
that U(m"N), = U(C )K/IU( n) > SO we have

Nn ®E(7ﬂ\j\f)[( U(r"L) g /TU (7" L) ¢ = Nn @55 TCx U(nnL) .
Hence applying Proposition 4.3.4 gives
Jgen, N ©5x.6) Sn) = g, N @5y, UE L))

= jmK/FmK(Nn) +r= ]U(TI'"N)K (Nn) +7r

= an (Nn) +r.

Here, the last equality follows from Proposition 3.1.4 and Lemma 3.1.5. Finally, for n sufficiently
large, one has that:

dﬁ(xg) (i+N) =2d — jﬁ(xg) (i+N)
=2d — an (7;+N ®5(Y,G) Sn)
= 2d = (r + jr,(Nn))
=r+(2d —2r — jﬁ(Y,G)(N))

= dﬁ(Y,G)(N) +dimA—dimA/I.
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Now, let i : Y — X be a closed embedding of smooth rigid varieties, G be a p-adic Lie
group which acts continuously on X and which preserves Y. The following result is necessary for
introducing the pushforward functor in the general case:

Theorem 4.3.6. (/6, Theorem 6.2] Let Y — X be a closed embedding of smooth rigid analytic
varieties whose the ideal of definition is T C Ox. Then there is an admissible covering B of X of
connected affinoid subdomains U such that

(1) there is a free A-Lie lattice L = 1A @ ... ® 0g.A for some affine formal model A C O(U)
satisfying (L, L] C m.L and L.A C T A,

(i1) either Z(U) = Z(U)?2, or Z(U) admits a generating set F = {f1,..., fr} with 8;(f;) = 6i; for
everyi=1...,d and j=1,...,r.

Let U € B. By definition, there is a free A-Lie lattice L = 1 AP ... D 9y A for some affine formal
model A C O(U) satisfying the conditions (i) and (i) in Theorem 4.3.6. Following [3, Lemma

4.4.2], there exists a compact open subgroup H of G which stabilies U, A and £. H is then called
U-good.

Let N' € C;}/G be a coadmissible G-equivariant Dy-module. Then the pushforward i N of N
along the closed embedding i can be defined (locally) as follows:

i+ N(U) := lim M[U, H]
H

—_ —_

for any U € B, where M[U, H| := N(UNY)® D(U,H)/Z(U)D(U, H) and H runs over

the set of all U-good subgroups of G.

D(UNY,H)

Proposition 4.3.7. Let i : Y — X be a closed embedding of smooth rigid varieties, G be a
p-adic Lie group which acts continuously on X and which preserves Y. Then for every N € CY, /G

d(izN) =dWN)+dimX —dimY .

Proof. This is a consequence of Proposition 4.3.5 and Theorem 4.3.6. O

4.3.3 Bernstein’s inequality for rigid flag varieties

The objective of the rest of this dissertation is to define the category of equivariant weakly holonomic
modules. In order to do this, we have to gain the so-called Bernstein’s inequality.

Definition 4.3.8. Let X be a smooth rigid analytic variety and G be a p-adic Lie group acting
continuously on X. Then (X, Q) is ‘good’ if Bernstein’s inequality holds for the category Cx q-
More precisely, if d(M) > dim X for any non-zero module M € Cx q-

Even though, we don’t know whether all smooth rigid-spaces (on which a p-adic Lie group G
acts continuously) satisfy this condition, we know some special cases where Bernstein’s inequality
holds, as explaining in the following:

Lemma 4.3.9. Let X = Sp(K(x1,...,24)) be the unit polydisc of dimension d and G be a compact
p-adic Lie group acting continuously on X such that (X, G) is small. Then (X, G) is good.
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Proof. Let M be a non-zero module in Cx /g and M := M(X) € Cﬁ(X,G) be its global section.
Denote by 94, ...,0, the partial derivations with respect to coordinates x1,...,245. Write A :=
R(x1,...,xq) and L := Derg(A) = 1 A® ... 04A. Then A is an affine formal model of O(X) =
K{(x1,...,z4) and L is a free A-Lie lattice in 7 (X). Now, we can choose an open subgroup H of G
which stabilises A and £ ([5, Lemma 4.4.1]. Thus, (X, H) is small and

D(X, H) = limU(n"L) ¢ x5, H

n

for any choice of a good chain (J,),, for £. Note that d (M) =d

D(X,G) (M) (Remark 3.2.3

D(X,H)
(ii)) and there exist n sufficiently large such that

M,,), with M, = (U(x"L) ;c %7, H) @5+ oy M.

150, M) = Jgs oy a1l BX,H)

On the other hand, Proposition 3.1.4 and Lemma 3.1.5 tell us that

jU(w"menH(M”) - jU(ww)K(M")'

Now applying [2, Corollary 7.4] gives jU/(ﬂ'”\E)K(Mn) < d and so d(M) > d as claimed. O

Now let G be a connected, simply connected, split semisimple algebraic group scheme over K.
Let X be the flag variety of G, which is defined as the set of all Borel subgroups of G ([18, I1.1.8].
Then the group G acts on X by conjugation, since any two Borel groups of G are conjugate. Let
X be the rigid analytification of X. Let G := G(K). The G-action on X induces a G-action on X.
Moreover, G acts continuously on X by [2, Theorem 6.3.4]

Theorem 4.3.10. The pair (X, G) of the rigid flag variety X and its induced G-action is good

Proof. Since G is connected split semisimple, there exists a group scheme Gy over R such that
G ~ G xr K. Let By be a closed, flat Borel R-subgroup scheme of Gy and write B := By xg K
Xp := Go/Bg. Then following [5, Proposition 6.4.3], the rigid analytification X of the flag variety
G/B is isomorphic to (3/50)”9— the rigid analytic space associated to the (smooth) formal scheme
§/§\0. We then identify (F/S\O)rig with X.

Let d = dim X and W be the Weyl group. Then the Weyl translates (Uy, )wew of the big cell in Xg

form an affine covering of Xo ([18, I1.1.10], the set {(ﬁ;)”g}wew is then an admissible covering of
X. Now each (Uy))wew is isomorphic to the affine space R[z1, ..., z4] of dimension d ([18, I1.1.7)],
it follows that each ((ﬁ;)rig)wew is isomorphic to the polydisc of dimension d. By choosing an
open compact subgroup H,, of G such that ((ﬁ;)rig), H,) is small, we may apply Lemma 4.3.9 to

the case of ((ﬁ;)rig, H,,) and hence the result follows. O

Remark 4.3.11. 1. The arguments used in Theorem 4.3.10 can be applied to any smooth rigid
analytic space X on which G-acts continuously and which admits an admissible affinoid cov-
ering by unit polydiscs of dimension dim X. The rigid analytification ]P’f{m of the projective
scheme P4 over K with the induced G := G Lgy1(K)-action is such an ezample. More gener-
ally, let G be an an affine algebraic group of finite type over K and V' be a finite-dimensional
G-representation. Let G := G(K) and P(V)*" be the analytification of the algebraic projective
space P(V). Then (P(V)* G) is good.

2. Let X be a smooth rigid analytic variety and G acts continuously on X. If (X, G) is good,
then for every Zariski closed subspace Y of X which is stable under the G-action, (Y,G) is
also good. This is a direct consequence of Proposition 4.3.7 and Proposition 3.3.1.
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4.3.4 The category C)“é’}G

Let X be a smooth rigid analytic variety and G be a p-adic Lie group which acts continuously on
X. We assume from now on to the end of this section that X is good (i.e Bernstein’s inequality
holds for the category Cx /¢)-

Definition 4.3.12. A G-equivariant coadmissible (left or right) D-module M on X is called weakly
holonomic if d(M) < dim X.

It follows from Bernstein’s inequality that d(M) = dim X for every non-zero G-equivariant
weakly holonomic module M.

Proposition 4.3.13. Let
O—>M1—>Mo—>M2—>O

is an exact sequence in Cx ;q. Then My is G-equivariant weakly holonomic if and only of My, Ms
are G-equivariant weakly holonomic.

Proof. Let U be an admissible coverings of X by affinoid subdomains in X,,(7). For every U € U,
it follows from Proposition 3.2.4 that

d(Mo(U)) = max{d(M:(U)), d(M2(U))}.

Then d(M(U)) < d if and only if both d(M;(U)) and d(M32(U)) are not greater than d, so the
result follows. O

The following example is given by Proposition 3.2.6:

Example 4.3.14. Let X be a smooth affinoid variety of dimension 1 and G be a compact p-adic
Lie group which acts continuously on X and such that (X,G) is good. Let M = Locx(M) is
the coadmissible G-equivariant Dx-module associated to the coadmissible ﬁ(X,G)—module M =
1’5(X7 G)/ﬁ(X, G)P, where P € D(X) is a regular differential operator. Then M is G-equivariant
weakly holonomic.

The category of G- equivariant weakly holonomic Dx-modules is denoted by C)“(’};G. This is a
full abelian subcategory of Cx ;¢ and is closed under extension (Proposition 4.3.13).

Theorem 4.3.15. Suppose that X is of dimension d. The functor £ defined in Definition 4.2.24
preserves G-equivariant weakly holonomic left Dx -modules.

Proof. We may suppose that X is a smooth affinoid variety , i.e X = Sp(A) and G is compact such
that (X, G) is small. Write L = Derg(A). Let M € Cx /¢ be a non-zero G-equivariant weakly

holonomic module, then M ~ LocX (M), with M = M(X) is a non-zero coadmissible left

D(X,G)
D(X, G)-module of dimension d. In particular, j(M) = d implying that:

Bt o o (M. D(X,@d)) #0.

By Proposition 4.2.21 and Theorem 2.4.26(ii), one has that:

S0 _
EUM) ~ LocR®9 (Hom(Q, Extd o o (M. D(X,G))).
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On the other hand, thanks to Auslander’s condition, the (non-zero) coadmissible right 73(X, G)-
x G)(M,D(X, G)) has grade j(Ea;t% M,D(X,G))) > d, so that its dimension is
less than d. Now apply Proposition 3.3.1, one has

d
module Bzt (X7G)(

d(Homa(Qu, Bty o (M, D(X,G)))) < d.

This proves that £4(M) is a G-equivariant weakly holonomic Dx-module. O

Remark 4.3.16. Let M € C)“(’};G, then Auslander’s condition together with Bernstein’s inequality
implies that EY(M) = 0 for any i # d.

Definition 4.3.17. The duality functor D on C)“é};G into itself is defined as follows:
D(M) := €7 = Homo(Qx, EY(M))
for any M € C)“(’};G.
Proposition 4.3.18. Let M € C;gh/G. Then there is an tsomorphism in C)“(’};G
D*(M) = M.

Proof. This can be proved along the lines of the proof of [4, Proposition 7.3] for weakly holonomic
Dx-modules. Let M € C;”(;LG. Since X,,(7) is a basis for the G-topology on X, it is enough to
show that

I'(U,D2(M)) ~ T'(U, M),

for any U € X,,(T)). Without loss of generality, we may suppose that U = X, which means that
X is a smooth affinoid of dimension d and that (X, @) is small. Note that 7(X) admits a G-stable
free A-Lie lattice £ for some affine formal model A of O(X). Choose a good chain J,, for £. Then

D:= ﬁ(X, G) ~ im D, with Dy, := U(m"L) e %, G.
Write M :=T'(X, M) = I'&nn My, with My, := D, ®5 M. By Proposition 3.3.1, one has:

(X, D*(M)) = Homa(Q, Exts(Homa(Q, Ext (M, D)), D))

~ Extt(Q @4 Homa(Q, Exts(M, D)), D)

~ Extd(ExtS (M, D), D).
In other words, it remains to prove that:

d d ™ DY
Exts(Exts(M, D), D) ~ M.
Recall that(Lemma 2.4.19) Emt%(M, 5) = lim Emthn(Mn, D,,) implying that:
Extd (Bt (M, D), D)) = lim Ext}, (Ewt}, (My, Dy), D))
n

= lim M,, = M.
% n

Here the second isomorphism follows from [17, Theorem 4]. This proves that D*(M) ~ M as
claimed. O
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4.3.5 Extension

In this subsection, we give a way to construct equivariant weakly holonomic modules. As in [4,
Section 7.2], we are going to define a kind of so-called extension functor. This functor is defined
on the category of G-equivariant coherent Dx-module and takes values in the category Cx /. We
also want to prove that the extension functor preserves weakly holonomicity.

Let X be a smooth affinoid variety and G is a compact p-adic Lie group acting continuously
on X such that (X, G) is good. We first begin by proving the following lemma:

Lemma 4.3.19. Let H be an open subgroup of G. The natural map
D(X7 H) ®D(X)><1H (D(X) A G) — D(Xa G)
s an tsomorphism.

Proof. Following [2, Proposition 3.4.10] there is a bijection
D(X, H) @ K[G) — DX, G).
Furthermore this morphism factors into
D(X, H) @ K[G] — DX, H) @pxyun (D(X) x G) — D(X,G).
The first morphism is surjective, which implies that the second map is an bijection as claimed. [

Corollary 4.3.20. If M is a D(X) x G-module and H is an open subgroup of G. Then the natural
morphism _ .
D(X,H) @pxynag M—D(X,G) @pxyna M
1s bijective.
Proof. Applying Lemma 4.3.19 one has that
D(X,G) @pxyxc M = D(X, H) @px)uu (D(X) X G) @px)yna M = D(X, H) @px)yxu M.
O

Proposition 4.3.21. Let M be a D(X) x G-module wich is coherent as a D(X)-module. Then the
tensor product

—_

M :=D(X,G) @px)nc M
is a coadmissible 13(X7 G)-module.

Proof. Since G is compact, there exists an uniform pro-p subgroup N which is normal in G |2,
Lemma 3.2.1]. So G is topologically finitely generated. As M is finitely presented as a D(X)-module,
it follows that the 5(X, G)-module 5(X, G) ®p(x) M is coadmissible [30, Corollary 3.4(v)]. Now,
let g1, g2,...,g9r be a set of topological generators for the compact p-adic Lie group G, my,...,mg
generate M as a D(X)-module and let I be the 5(X, G)-submodule generated by the finite set
{gi ®mj —1® g;m;}. Then I is a coadmissible D(X, G)-module by [30, Corollary 3.4(iv)]. There
is a surjective map . .
f : D(X, G) ®D(X) M — D(X, G) ®D(X)>4G M

We will show that I is exactly the kernel of this map. Let z € L = T(X). Then g;zg; * = g;.x in
D(X) x G =U(L) x G, so that we can compute as follows:
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g @ xm; — 1 ® giam; = (gizg; )gi @ m; — 1 ® (gizg; gim; = (g:-2)g; @ mj — 1 ® (g5.2)gim; =
(gi-x)(gi @ mj — 1 ® gimy)

Hence I contains all elements of the form g; ® m —1 ® g;m with m € M. Now, let g € G and
(9n) € (g1, .-, gr) such that lim g, = g. Note that the coadmissible module D(X, G) ®@px) M has

a natural Fréchet topology such that the map 13(X, G) — 13(X, G) ®px) M is continuous. This
implies that:
lim(g,@®m—-1®¢g,m)=g@m—1®g.

Here we note that G C 13(X7 ). Combining with the fact that I is a closed subspace of ﬁ(X, G)®p(x)
M [30, Lemma 3.6], we have that g@m —1® gm € I for any g € G and m € M. Thus I = ker(f).
By consequence the D(X, G)-module D(X, () @px)xc M is coadmissible. O

Now let X be a smooth rigid analytic variety and G acts continuously on X. Let M be a G-
equivariant Dx-module which is coherent as a Dx-module. Then we define the presheaf Ex /(M)
on X,,(7) as follows. Let U € X,,(7). Then define

Ex j¢(M)(U) := lim D(U, H) ©p(w).u M(U)
H

where the inverse limit is taken over the set of all U-small subgroups H of G.

Theorem 4.3.22. The presheaf Ex /(M) is a sheaf on Xy (T), thus extends naturally to a coad-
missible G-equivariant Dx-module and we still denote it by Fx jq(M).

Proof. We suppose that (X, G) is small. Denote
M := M(X) and M = D(X,G) @pxyuc M.
Let U € X,(T). Then
D(U,H)®

5(X,H)]\7 =D(U, H)®5(X,H)D(X7 H) ®pxyxg M = D(X, H) @px)xu M.

Furthermore, since M is a coherent Dx-module, one has that

Consequently, M(U) = D(U) @pxy M = D(U) x H @px)xg M. This implies that

—_

Ex ja(M)(U) = ﬁ(U> H) ®@puywn M(U) = 5(U> H) @pxywn M = ﬁ(U, H)@ﬁ(va)M.

This proves that Ex ;q(M) = Locx(]\7 ). So this is a G-equivariant coadmissible Dx-module. []

Remark 4.3.23. Let Coh(G — Dx) be the category of G-equivariant coherent Dx-modules. Then
it is straightforward to verify that the mapping Ex /g : Coh(G — Dx) — Cx /@, which sends M
to Ex ja(M) is a functor.

Recall ([21]) that we can also define the dimension for a finitely generated Dx-module M on the
smooth rigid analytic variety X. The module M is said to be of minimal dimension if its dimension
is not greater than dim X.

Theorem 4.3.24. Let M is a G-equivariant Dx-module of minimal dimension. Then Ex /G(M)
is a G-equivariant weakly holonomic module.
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Proof. Since the question is local, we may assume that X is smooth affinoid and G is compact
such that (X, G) is small. Choose a G-stable free Lie lattice £ and a good chain (Jy), for £ such

that D(X,G) = U(n"L), %y, G. Write D := D(X), D := D(X,G), Dy, := U(n"L)y %, G,
M := M(X) and let d := dim X. Recall that by definition M = D Qpua M.
As M is of minimal dimension, we obtain that dp(M) = d. Now the D-module D ®p M is

coadmissible, there is a n sufficiently large such that jp, (D, ®p M) = jﬁ(f) ®p M). As we know
that D, is flat over D, it follows that

Exth(M, D) ®@p Dy, = Ext, (D, ®p M, Dy,).
Thus jp, (D, ®p M) > jp(M), which implies
d(D®p M) = d(D, ®p M) < d(M) = d.
This also proves that d(]\? ) < d, since we have the following exact sequence
0 — ker(f) —>1A)®DML>]\7—>O.

So Ex /(M) is weakly holonomic. O
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Chapter 5

Examples

5.1 A class of equivariant weakly holonomic D-modules

Let X be a smooth rigid analytic variety and G be a p-adic Lie group which acts continuously on
X. We assume throughout this section that (X, ) is good, i.e every non-zero module M € Cx /¢
satisfies Bernstein’s inequality.

In this section, we study a class of equivariant weakly holonomic modules whose each module is
coherent as an Ox-module. In particular, we will see that the structure sheaf Ox is a weakly
holonomic G-equivariant Dx-module.

Recall that an integrable connection on X is a Dx-module which is locally free of finite rank
as an Ox-module (so it is coherent as a Dx-module). In this subsection, all integrable connections
on X will be G-equivariant Dx-modules and we call them integrable G-equivariant connections.

Proposition 5.1.1. Let M be an integrable G-equivariant connection on X. Then M € Frech(G—
D).

Proof. Let U € X,,(T) be an affinoid subdomain. Then M|y is a coherent Oy-module, so that
by Kieh!l’s theorem, M(U) is a coherent O(U)-module. This implies that M(U) has a canonical
Banach topology by [9, Chapter 3, Proposition 3.7.3.3]. For any g € G, the map

gM(U) : M(U) — M(gU)

is a bijection which is linear with respect to the continuous morphism of K-Banach algebras ¢© (U) :
O(U) — O(gU). If we consider the O(g U)-module M(gU) as a O(U)-module, then M(gU)
is coherent as an O(U)-module such that the map O(U) x M(gU) — M(gU) is continuous
and g™ (U) is an O(U)-linear map. By [9, Chapter 3, Proposition 3.7.3.2], g™ (U) is a continuous
mapping between Banach spaces. Since every Banach space is in particular a Fréchet space, this
proves that M € Frech(G — D). O

Definition 5.1.2. An integrable G-equivariant connection M is called strongly G-equivariant if M
together with the topology explained in Proposition 5.1.1 is a coadmissible G -equivariant Dx -module.

Proposition 5.1.3. Suppose that X = Sp(A) is affinoid and G is compact. Let M be a D(X) x G-
module which is coherent as an A-module. Let L be a G-stable A-Lie lattice in T(X) = Derg(A)
for some G-stable affine formal model A of A. Then there exists m > 0 such that there is a structure

of U(m" L)k x G-module on M for all n > m which extends the given D(X) x G-action.
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Proof. By assumption M is a coherent A-module. Let S be a generating set of M as an A-module.
Then M := AS is an A-submodule of M which generates M over K. Furthermore, since L is a
A-Lie lattice by assumption, there exists m > 0 such that for all n > m, #"£LM C M, forcing M
to be a U(n"L)-module. Now, since A is m-adically complete, M is also m-adically complete and

M=ZU(m"L) QU (rnr) M,

so that M is also a U(n"L)-module. Therefore, M = K @ M is a U(n"L) ,-module. On the other
hand, we see that the structure of U(7m"L) -module (which extends the given D(X)-action) on M
is compatible with the G-action. This proves that M is therefore a U(n"L), x G-module. O]

Proposition 5.1.4. We suppose the conditions as in Proposition 5.1.3. Then the D(X) x G-action
on M extends to a coadmissible D(X, G)-module structure if there exists a G-stable free A-Lie
lattice L such that for all n sufficiently large, the following equality holds

(5.1) gm = Bnp(g)m for all m € M and g € Gng.

Proof. Let L be a G-stable free A-Lie lattice in L = Derg(O(X)). Following proposition 5.1.3, for
n sufficiently large, M is a U (7" L) ;; X G-module. Suppose that the condition (5.1) holds. Let (J)
be a good chain for £. Then the m x G-action on M factors through a m X, G-
action, so that M is a U(n"L)g xj, G-module.

Next, we note that the natural morphism i : M — U(7"L) ;- X G @y (ry«e M is an isomorphism.

Indeed, as we see that M is a U(71"L), x G-module, there exists a U(7m"L) ;- % G-linear map

J: U(?Tnﬁ)K X G®U(L)>4G M— M
a@m—am

such that j o ¢ = idy;. Therefore i is injective. For the surjectivity of ¢, we note that the ring
U(m"L) ;e %G (resp. U(L) % G) consists of elements of the form ) a;g;, where the sum is finite with
gi € G and a; € U(n"L) (resp. a; € U(L)). As a consequence, the map U(7n"L)x Qu )y M —

U(m"L) g *x G @y(ryxg M is surjective. On the other hand, the map i factors through

M-—=U(m"L) ;e @u(ry M — U(m"L) i X G @y ryxc M.

Where the first map is an isomorphism by [6, Lemma 7.2]. Therefore ¢ is surjective, so it is an
isomorphism as claimed.
As a consequence, this proves that the canonical morphism

M — U(7"L) e %, G Qu(ryua M

is an isomorphism of U(7"L); %, G-modules, as M is also a U(n"L), X5, G-module.
Now we prove that M is a coadmissible ﬁ(X, G)-module as follows. Write D,, := U(n"L); %, G
for all n. Then D(X,G) = fm D, Consider the following commutative diagram:

M Dy, @p(xysa M

| |

Dn ®Dn+1 M — Dn ®Dn+1 (Dn+1 ®’D(X)><1G M)
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For each n, M has a structure of D,-module and the natural morphism M — D, @px)xa M
is an isomorphism. Hence the horizontal arrows are isomorphisms. The right vertical arrow is
also an isomorphism by the associativity of tensor product. It follows that the left vertical arrow
is isomorphism, so that M = lim M is a coadmissible ﬁ(X,G)—module which extends the given
D(X) x G-action. O

Remark 5.1.5. The above proposition tells us that an integrable connection M 1is strongly G-
equivariant if there exists a Xy (T)-covering U of X such that for every U € U, there is a U-small
subgroup of G and a H-stable free Lie lattice of T (U) such that the condition (5.1) holds for M(U).

Corollary 5.1.6. The structure sheaf Ox is strongly G-equivariant. More generally, the sheaf O%
is strongly G-equivariant for all integer n > 1.

Proof. Without loss of generality, we may suppose that X is affinoid, G is compact such that (X, Q)
is small and consider the case where n = 1. As a consequence of Proposition 5.1.4, it is enough to
show that the module A := O(X) satisfies the condition (5.1).
Let A be a G-stable affine formal model of A and suppose that £ is a G-stable A-Lie lattice in
Derg(A). Recall that each g € G acts on A via the morphism of groups p : G — Aut(A) and on
L via

gx:=p(g)oxop(g™t) foralz e L.

Now if g € G, we can write p(g) = exp(p‘z) with x € L. Then for a € A,

€N €N

Br(9)-a = exp(pe(x)).a = 3, Bru(x)".a =3, Bra™.a = exp(pz)(a) = p(9)(a) = g.a.
This proves that 8z(g) — g acts trivially on A, so that the condition (5.1) holds for A. O

Proposition 5.1.7. Let M be a strongly G-equivariant connection. Then the natural morphism

is an isomorphism in Cx /q. In particular every strongly G-equivariant connection is weakly holo-
nomic.

Proof. Let M be a strongly G-equivariant connection. We may suppose that X is affinoid, G
is compact and (X, G) is small. Write M := M(X). Then it suffices to show that the natural
morphism
i: M — D(X,G) Opxymc M
m— 1®m.
is an isomorphism. Note that M is a coadmissible 5(X, G)-module by assumption. Now it is

straightforward that ¢ is D(X) x G-linear. Combining with the fact that the ring D(X) x G is (of
image) dense in D(X, G), we conclude that i is also D(X, G)-linear. As a consequence

1®am:a®mf0ralla€§(X,G) and m € M.

Hence i is surjective.
To see that 7 is injective, we note that j o i = idy;, where j denotes the following morphism:

D(X,G) Qpxyng M — M

a@m+— am.
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So 7 is an isomorphism of coadmissible 73(X, G)-modules as claimed.
Finally, as integrable connections are of minimal dimension ([14, 2.3.7]), Theorem 4.3.15, together
with the isomorphism M = Ex (M), implies that M is weakly holonomic. O

5.2 Examples of weakly holonomic D-modules on rigid analytic
flag varieties

It is well-known in the classical theory (see [14]), where X is the complex flag variety X ~ G/B
associated to a semisimple complex Lie group G whose Lie algebra is denoted by g, that the
localisation functor Loc%@(—) is an equivalence of categories between the category Mod(U(g)o) of
U(g)o-modules (resp. coherent U(g)o-modules) and the category Mod(Dx) of Dx-modules (resp.
coherent D x-modules). Here U(g)o denotes the quotient ring U(g)/moU(g) with maximal ideal mg
of the center Z(g) of the enveloping algebra U(g). Moreover, the sheaf associated to a B-equivariant
U(g)o-module is a B-equivariant holonomic Dx-module. In this section we study a similar example
of equivariant weakly holonomic module on a rigid analytic flag variety induced from the BGG
category OP for some parabolic subalgebra p of g, via the equivalence of categories in the rigid
analytic setting ([2, Theorem 6.4.8]).

5.2.1 Induction functor

Let X be a smooth rigid analytic space and G be a p-adic Lie group acting continuously on X.
Suppose that P is a closed subgroup of G such that G/P is compact. Note that under this con-
dition, the set of double cosets | H\ G/ P] is finite for every open subgroup H < G ([5, Lemma 3.2.1]).

We recall from [3, 2.2] the geometric induction functor
1ndg : CX/P — CX/G

which is locally defined as follows. Let N € Cx /p. Let U € X,(T) be an affinoid open subset, H
be a U-small subgroup of G and s € G. If J < G is a subgroup, we write *J = sJs™!, J¥ = s~ 1 Js.
Then we set

[SIN(s72U) := {[s]m : m € N (s~ U)}.
Note that H is open in G, the subgroup P N H* is also open in P and the pair (s~ U, PN H*) is
small. Hence NV'(s71U)} is a D(s~1 U, P N H*)-module. So [s]V(s~! U) can be equipped with a
structure of Ys(U7 *P N H)-module via the isomorphism of K-algebras

s :D(U,* PN H)—D(s~ ' U, PN H®).

This is indeed a coadmissile ﬁ(U, *P N H)-module [3, Lemma 2.2.3]. By consequence, we may form
the following coadmissible D(U, H)-module:

M(U, H,s)=D(U, H)®§(U,3PHH)

[sIV (s~ U)

The ﬁ(U,H )-module M (U, H,s) only depends on the double coset HsP which contains s ([3,
Proposition 3.2.7]), which means that if t € HsP such that s = h~'th’ with h € H,h' € P, then
M(U, H,s)= M(U, H,t) as D(U, H)-modules.

This allows us to define for each double coset Z € H \ G/P:

M(U,H,Z) :=lim M(U, H.5).
S
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Note that M (U, H,Z) = M(U, H, s) in Ca( for all s € Z. Since | H\ G/P | is finite, we obtain

that

U,H)

M(U,H):= @ M(UH,Z)
ZeH\G/P

is also a coadmissible 5(U, H)-module. If J < H are U-small subgroups of G then there is an
isomorphism of D(U, J)-modules ([3, Proposition 3.2.11]

M(U,J)—M (U, H).
So we can define

indZ(WV)(U) =lim P lim D(U, H)Epy. pr SNV (s U)
H zen\g/pP

= m M(U,H).
H
Where the inverse limit is taken over the set of U-small subgroups H of G.

By construction, this is a coadmissible D(U, H)-module and is isomorphic to M (U, H) for ev-
ery U-small subgroup H of G. Also, we obtain a presheaf ind%(N) of Dx-modules on X, (7).
Moreover, of course, we want to equip indg(./\/' ) with a G-action such that this becomes a coad-
missible G-equivariant Dx-modules. This is a complicated work due to K. Ardakov ([3]). Since we
will not be too interested in this G-equivariant structure, we accept that indIG; (V) € Cx j¢ for any
N € Cx /p as a known result without any concrete explanation.

5.2.2 The result

Let X be a smooth rigid analytic space and G be a p-adic Lie group acting continuously on X.
Suppose that P is a closed subgroup of G such that G/P is compact. We prove below that the
induction functor ind]Gg preserves weakly holonomicity.

Proposition 5.2.1. Let N be a P-equivariant weakly holonomic Dx-module. Then mdg(/\/') s a
G-equivariant weakly holonomic Dx -module.

Proof. Since the sum M(U, H) := @ ¢\ p M(U, H, Z) is finite, one has that

Extl . (M(U,H),D(U, H)) = @ e\ q/p Bty . (M(U, H,2),D(U, H)).

D(U,H) (U,H)

In particular, Eati (M(U,H), 5(U, H)) =0 if and only if

D(U,H)
Ext%(U’H)(M(U,H, Z),D(U,H))=0forall Z € H\ G/P.
This shows that
(5.2) JIM(U,H))=inf{j(M(U,H,Z)): Z € H\ G/P}.

Now let Z € H\ G/P. Since M(U,H,Z) = M (U, H,s) in Cﬁ(U )

map D(U,*P N H) — D(U, H) is faithfully c—flat [3, Lemma 3.5.3] (note that P N H is closed
in H), we obtain

for any choice of s € Z and the
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Eatss (D(U, H>@5(U,5P0H) sV (s U), D(U, H))

([sIN(s™1U), D(U,*P N H))® D(U, H).

(U.H)

~ ) —
- Emtﬁ(U,SPﬁH) D(U,*PNH)

This implies that:

(5-3) (M(U,H, Z)) = jpu.mMU, H,5)) = j5y. pr [V (s7U)).

jﬁ(U,H) (U,H)

Next, the isomorphism of K-algebras ﬁ(U, SPNH );ﬂf?\(s_l U, PN H?®) implies that

Eutl (SN (s~ U), D(U,°P 1 H)) = Eat’s V(s U) D(s~' U, P A H)).

(U,sPNH) (s—1U,PNH?)

By consequence,
(5.4) 330 priny (SN (™ 0)) = s 1 pogrey W (571 ).

Finally, Since A is P-equivariant weakly holonomic, (5.2), (5.3), (5.4) imply that d(ind%(N)) is at
most dim X, so that ind%(N\) is also G-equivariant weakly holonomic. O

Let X be a K-scheme of locally finite type and X = X% be its analytification. Recall the
morphism of locally ringed G-spaces ([10, Propision 5.4.4])

p: X —X
and the induced functor
p*: Mod(Ox) — Mod(Ox)
M p*M = O0x @10, p ' M.

In particular, one has that p*Dx = Dx and so p* induces a functor from (coherent) Dx-modules to
(coherent) Dx-modules.

Our next result needs to make use of the following lemma:

Lemma 5.2.2. Let X be a proper smooth K-scheme of dimension d. Suppose that X is Dx-affine.
Let M be a coherent Dx-module which is holonomic over X. Then p* M is a Dx-module of minimal
dimension on X.

Proof. Let M be a coherent Dx-module. As X is proper, [5, Proposition 2.2.1] implies that
N'X,pM) = T'(X, M) := M. In particular I'(X,Dx) = I'(X,Dx) := D, as p*Dx = Dx by
[5, Proposition 2.2.2(a)]. Now, since X is Dx-affine, one has that M = Locx(M) = Dx ®@p M.
Combining with the fact that p* is an exact and fully faithful functor (Proposition 2.1.11(i)), this
implies that p*M = Locx(M) = Dx ®p M. Now let U be an open affine subdomain of X and
U = {U;,i € I} be an admissible covering of p~'U by affinoid subdomains of X. As p is flat,
we may even suppose that for every i € I, the morphism Ox(U) — Ox(U;) is flat. The above
argument gives
p*M(U;) = Dx(U;) ®p M = Dx(U;) @py ) M(U).
Now since Ox(U) — Ox(U;) is flat, we deduce that Dx(U) — Dx(U;) is also flat. Therefore
Extp ) (p"M(U), Dx(Uy)) = Extp, ) (M(U), Dx(U)) @py ) Dx (Us).

By consequence

Iy (M(U)) < Jpy uy) (P M(Uy)).
So if M is holonomic, then jp, (/) (M(U)) = d, which implies that jp, (u,)(p*M(U;)) > d, so that
dpy (U (P*M(U;)) < d for every i and p*M is of minimal dimension as claimed. O
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Now, let L/Q, be a finite field extension, G, be a connected semisimple algebraic group over L
and Py, be a parabolic subgroup of G, which contains a maximal torus Ty, and a Levi subgroup L.
Let P C G denote the corresponding groups of L-valued points. Let L C K be a complete non-
archimedien extension field such that K is a splitting field for Gr. Let G = Gy x K, P =P xp K,
L =1Lz xz K and g, p, [ be its Lie algebras respectively. Let X be the algebraic flag variety of the
split algebraic K-group G. Then there is a natural action of G on X given by conjugating the Borel
subgroups of G. We denote by X = X% the rigid analytification of X, with its induced G-action.
The rest of this subsection is devoted to giving a class of G-equivariant weakly holonomic modules
on the rigid analytic flag variety X. First, let us recall that the BGG category O consists of all
U(g)-modules M satisfying the following conditions:

1) M is a finitely generated U(g)-module.

3

(1)
(2) M decomposes as a direct sum of one-dimensional t-representations
3)

The action of b on M is locally finite, which means that for every m € M, the subspace
U(b).m C M is a finite-dimensional K-vector space.

We then associate each parabolic subalgebra p of g the subcategory O of O consisting of all mod-
ules M € O which are locally p- finite. We also denote by (’)S the subcategory of OF consisting of
all modules M € OF such that mgM = 0 for the maximal ideal mg = Z(g) N U(g)g of the center
Z(g) of U(g)

Next, let us recall from [3, Section 6.2] that there is a Fréchet-Stein K-algebra U(g, H) associ-
ated to each open compact subgroup H of G, which is defined as follows. For every H-stable Lie

X
lattice £ in g, there exists a normal subgroup H, of g and a morphism Hy — U(L)x which is a

H-equivariant trivialisation. So we can form the ring U (L) Xy H whenever N is an open normal
subgroup of H contained in H; and we define

f]\(g,H) = ILD UL)xk »y H
(L,N)

with the limit is taken over all the pairs (£, N), where H-stable Lie lattice £ of g and N be an

open normal subgroup of G contained in Hz. So ﬁ(g, H) can be viewed as a certain completion of
the skew group ring U(g) x H.

In the sequel, we also make use of the following notions:

x D(G,K),D(P,K) are the algebras of K-valued locally L-analytic distributions on G and P
respectively.

x D(g, P) is the K-subalgebra of D(G, K) which is generated by U(g) and D(P, K).

* ﬁ(g, P) is an associative K-algebra which is equal to ﬁ(g, H) @) K[P] for some choice of
open compact subgroup H of P. Note that this definition does not dgpend on the choice of
H, meaning that if N < H are open compact subgroups of G, then U(g, N) @y K[P] =
ﬁ(g, H) @ gy K[P]. Similarly, we have the K-algebra ﬁ(g, G).

It is worth pointing out that the K-algebras ﬁ(g,P),f]\(g, G),D(P,K),D(G, K), are all Fréchet
algebras. If G is compact (so is P), then they are Fréchet-Stein K-algebras.
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By coadmissible ﬁ(&P)—module, we mean that a ﬁ(g,P)—module M which is a coadmissible

—_

U (g, H)-module for every open compact subgroup H of P. Following [2], it is possible to localize a
coadmissible ﬁ(g, P)-module M to obtain a coadmissible P-equivariant Dx-module Locg((g’P) (M)
on the rigid analytic flag variety X. The construction of Loc)U((g’P) (M) is exactly the same as for

LOCQ(X’G)(—), when (X, G) small, where we interchange ﬁ(X, G) and U(g, P) in their construction.
(see [2] for more details).

Now let M € O}. Then it is proved in [5, Lemma 4.1.2] that M admits a P-action that lifts
the given p-action on it. In the following, we let M denote the module M € (’)8 together with this
P-action in order to distinguish the initial module M (without P-action).

Each M € O} has a structure of D(g, P)-module ([22, 3.4]), so we can form the ﬁ(g, P)-module

—_— o~

M :=U(g,P) ®p(g,r) M

It is shown [5, Proposition 4.2.1] that M is a coadmissible ﬁ(g,P)—module. Therefore, we may

"localize’ ﬂ to obtain a P-equivariant coadmissible Dx-module Loc;]((g’P) (M) on X. On the other
hand we may also 'localize’ the coadmissible U(g)-module M := U(g) @y g M to obtain a coad-

missible Dx-module Loc)U((g) (]\7 ).
Proposition 5.2.3. Let M € O}. Then Loc;]((g’P) (ﬂ) s a P-equivariant weakly holonomic Dx -
module.

Proof. Tt is proved [5, Proposition 4.4.1] that

Loc;]((g’P) (M) = Locg((g)(]\?) =~ Fxo Locg((g) (M).

Here
Ex : Mod(Dx) — Mod(Dx)

M+ Dx @p, M

is the extension functor which sends coherent Dx-modules to coadmissible Dx-modules [4, 7.2] and
Locgj((g) is the composition of the localisation functor

Locg(g) : coh(U(g)) — coh(Dx)
and the rigid analytification functor
p*: Mod(Ox) — Mod(Ox)
M — Ox @10, p M.

Note that Locg(g)(M ) is a P-equivariant coherent Dx-module. Hence by [14, Theorem 11.6.1(4)],

this is a holonomic module. Using Lemma 5.2.2, we then obtain that p*Locg (0) (M) = Locg((g)(M ) is

12

a Dx-module of minimal dimension. Now, By using [4, Proposition 7.2], we have that Loc;]((g) (]\7 )
Exo Loc)U((g)(M ) is a weakly holonomic Dx-module. This can be used to prove the result. Indeed,
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it remains to prove that for any affinoid subdomain U € X,,(7) and any U-small subgroup H of
P, one has that

— —_

A5 ) (Lock® (M)(U)) > dg ;1 (Locx ™" (M) (U)).

D(U) (U,H)

Choose a H-stable free A-Lie lattice £ for some G-stable affine model A of O(U) and a good chain
(Jyn) for £ such that

D(U,H) = lim U, », H and D(U) = lim U,

—_—

where U, := U(n"L) for all n > 0. Then

Locy'™ (M)(U) = D(U)&g,, M = lim (U, @5, M)

and

Ug,P) ~ R = TF o KV
LOCX(g )(M)(U) =~ D(U, H)@g(g,H)M = 1gln(Un x5, H) ®ﬁ(g7H) M.

Write N,, := U, ®@ M and N, := (U, %, H) ®m M. As both D(U) and D(U, H) are

c-Auslander Gorenstein, we may assume that U, and U, x; H are all Auslander-Gorenstein of
dimension at most 2d. Furthermore there exist n sufficiently large such that

A1) (Lo ® (RD)(U)) = dur, (V)

and

U(g,P) /271 , ,
45,1 (Locy®P) (31)(U)) = v, 1(Ny) = du, (N,).

Here, the last equality follows from Proposition 3.1.4. It reduces to prove that dy, (N,;) <dy,(N,) <
d (Loc;]((g) (M )) is weakly holonomic). For this we note that the natural map

fn: N, — N,

is surjective [5, Proposition 4.4.1], which means that N;L = N, /I, for some finitely generated
U,-module I,,. We then obtain an exact sequence of U,-modules

0—>In—>Nn—>N;l—>0.

Now since each U, is Auslander-Gorenstein, we can apply [19, Proposition 4.5] to obtain dy,, (V) >

dy, (N, so that dy, (N,) < d and the result follows. O

Proposition 5.2.4. Let M € Of. Then mdg(Loc)U((g’P) (M)) is a G-equivariant weakly holonomic
Dx -module.

Proof. This follows immediately from Proposition 5.2.1 and Propostion 5.2.3. 0
U(s,G
X(g )(_)

Here is another point of view. There is also a localization functor Loc which sends

coadmissible ﬁ(g, G)-modules to Cx ;. Moreover, if we set
U(g,G)o = U(g,G)/moU(g. ),
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then this functor is an equivalence of categories between the category Cﬁ( of coadmissible

—

U(g, G)-modules annihilated by mg and Cx ¢ ([3, Theorem 6.4.8]).

—_

Note that D(G, K) = U(g, G) ([3, Theorem 6.5.1]. We make use of the Orlik-Strauch functor ([23])

ng)O

FE(=) : Of — Cpc.i),
M— D(Gv K) ®D(g,P) M.

Recall that M denotes the module M € (’)8 together with the induced P-action. Then for each
M € Of, FS(M) is a coadmissible ﬁ(g,G)g—module. Hence we may form the coadmissible G-

equivariant Dx-module Loc)U((g’G) (F§(M)"). Now, in [5, Theorem 4.4.2], the authors have proved
that the diagram of functors

U(Q»G)O

EXoLocgj((wl lLOC)ﬁég’G)
ind}G;.

CX/P — CX/G

G(_\/

is commutative. Then the above proposition is equivalent to:
Proposition 5.2.5. Loc)U((g’G) (FS(M)') is a G-equivariant weakly holonomic module for any U(g)-
module M € O},
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Résumé : Lobjectif de la thése est d'éta-
blir une notion d’holonomie faible pour les
D-modules équivariants coadmissibles sur
quelques classes d’espaces rigides analy-
tiques, dont les variétés de drapeaux ana-
lytiques rigides. Plus précisément, on deve-
lope une théorie de dimension pour la caté-
gorie des D-modules équivariants coadmis-
sibles, puis on montre l'inégalité de Bernstein
pour le cas des variétés de drapeaux analy-

tiques rigides . Ce résultat nous permet donc
de définir la notion d’holonomie faible pour les
D-modules équivariants coadmissibles et de
construire un foncteur de dualité sur la ca-
tégorie des modules équivariants faiblement
holonomes. La derniére partie de cette thése
est consacrée a donner quelgues examples ty-
piques qui sont généralisés de la théorie clas-
sique.

Title: "Weak holonomicity for equivariant D-modules on rigid analytic spaces."

Keywords: Rigid analytic spaces, equivariant D-modules, weak holonomicity, duality functor.

Abstract: The aim of the dissertation is to
define the notion of weak holonomicity for
coadmissible equivariant D-modules on some
classes of rigid analytic spaces, including rigid
analytic flag varieties. More precisely, we de-
velope a dimension theory for the category
of coadmissible equivariant D-modules, then
we prove the so-called Bernstein’s inequality

for some specific classes of rigid analytic vari-
eties, such as rigid analytic flag varieties. This
result allow us to define weak holonomicity for
coadmissibles equivariant D-modules and to
construct the duality functor on the category of
weakly holonomic equivariant D-modules. The
last section is devoted to give some typical ex-
amples generalized from the classical theory.
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