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E rằng chỉ trong vài dòng ngắn ngủi này, với sự hạn hẹp của lời nói sẽ không thể nào kể được
hết những sự nhiệt tình giúp đỡ, động viên, và thật nhiều tình cảm của mỗi người mà mình đã gặp
gỡ ở Pháp và cả những người bạn yêu quý ở Việt Nam vẫn luôn luôn dõi theo trong suốt thời gian
qua. Tuy vậy, xin dành một vài lời dưới đây cho những người bạn mà mình đã gặp gỡ ở Pháp và
đươc họ giúp đỡ rất nhiều trong khoảng thời gian từ khi bắt đầu cho đến khi hoàn thành công việc
này:

Em/ tớ xin cảm ơn sự quan tâm và chia sẻ của các anh chị trong nhóm Mirabeau. Cảm ơn thật
nhiều ’tình thương mến thương’ và chân thành của mọi người- điều khiến em luôn cảm thấy được
đối xử như một người em út trong một gia đình vui vẻ và luôn giúp đỡ lẫn nhau.

Em/tớ/chị xin cảm ơn các anh chị, các bạn, và các em trong nhóm Toán vì thật nhiều những
sự giúp đỡ trong những nhu cầu cuộc sống hàng ngày, những lời động viên an ủi và những cơ hội
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được chia sẻ và tâm sự cùng nhau về Toán cũng như thật nhiều điều vụn vặt và thú vị khác. Sự
gắn kết và yêu mến luôn luôn hiện hữu mỗi khi gặp gỡ và nói chuyện cùng với mỗi người và điều
đó rõ ràng đã an ủi chị/em/tớ rất nhiều trong thời gian vừa qua. Một lời cảm ơn đặc biệt xin được
dành cho Thọ, Dương, Thương vì rất nhiều những sự nhiệt tình chỉ dẫn về latex hay về giấy tờ để
chị/tớ có thể hoàn thành tốt hơn công việc này. Cảm ơn Dương vì nhiều sự quan tâm và sẵn sàng
giúp đỡ mọi lúc. Cảm ơn Thọ vì không những luôn sát cánh cùng tớ trong những ngày đầu tiên ở
Pháp mà còn giúp tớ quen biết thêm một ’Hảo Hảo’ dễ thương tốt bụng và nhiệt tình.

Nếu được dông dài hơn một chút, xin được gửi lời cảm ơn tới những người bạn tuy không sống
ở Rennes nhưng đã luôn động viên và chia sẻ cùng mình. Em xin cảm ơn các anh chị cùng Cô trong
lớp Cao học, nơi mà em luôn thấy và nhận được sự nhiệt thành cùng rất nhiều niềm vui và kỉ niệm
trong mỗi chuyến đi chơi với nhau. Và đặc biệt là cảm ơn ba ngừời chị tốt bụng trong lớp đã yêu
mến, luôn quan tâm, động viên em khi cần và cảm thông khi em mắc lỗi. Cảm ơn chị Thanh và
các bạn Trang-Tứ, tuy ở xa nhưng luôn động viên và chia sẻ khi em/tớ gặp khó khăn hay cần một
vài lời khuyên.

Và cuối cùng, có những người bạn, người thân yêu tuy không được nhắc đến trong những lời
cảm ơn này nhưng luôn luôn ở bên cạnh sẵn sàng lắng nghe, chia sẻ, nâng đỡ trong mỗi bước đi
bằng rất nhiều bao dung và sự chân thành. Đối với họ luôn là những tình cảm và sự biết ơn mà
không thể diễn đạt hết bằng lời.
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Chapter 1

Introduction

Version en français

La catégorie des D-modules cohérents (équations différentielles) sur une variété complexe ana-
lytique lisse X est un objet classique. Parmi ses variantes applications, nous nous intéressons au
théorème de localisation de Beilinson-Bernstein qui établit une correspondence entre les représentations
d’une C- algèbre de Lie semi-simple g et les D-modules (quasi-cohérent) sur la variété de drapeaux
associée à g (voir [8]). De nombreuses representations remarquables (par example, les modules
de Verma et leurs constituants simples [15]) correspondent ainsi à des D-modules holonomes. Un
D-module non nul M est dit holonome si la dimension de sa variété caractéristique Char(M) est
égale exactement à dimX. Notons qu’en général, on a dim(Char(M)) ≥ dimX. Cette inégalité
est appelée inégalité de Bernstein. Une définition équivalente fait intervenir le foncteur de dualité

D : D−(DX) −→ D+(DX)op, M . 7→ RHomDX (M .,DX)⊗OX Ω⊗−1
X [dimX]

sur la catégorie dérivée D−(DX). Un module M est holonome si et seulement si H i(D(M)) = 0
pour tout i 6= 0.

Dans le contexte arithmétique, on fixe un corps complet non-Archimédien K de caractéristique
mixte (0, p). Soit X une variété analytique rigide lisse sur K. Dans [1, 7] Ardakov-Wadsley ont

introduit un faisceau d’opérateurs différentiels d’ordre infini ÙDX sur X et une catégorie abélienne
CX des ÙDX-modules coadmissibles. Ceci est analogue à la catégorie des D-modules cohérents com-
plexes. Le faisceau ÙDX est en fait une certaine complétion de Fréchet du faisceau usuel d’operateurs
différentiels d’ordre fini DX. Notons que dans le cadre d’une variété de drapeaux (analytique rigide)

X, le faisceau associé à ÙDX sur l’espace de Zariski-Riemann de X a été introduit par Huyghe-Patel-
Schmidt-Strauch dans [27, 16], où il est noté par D∞.

Dans la théorie des D-modules sur les variétés analytiques rigides, la notion de la variété car-
actéristique d’un D-module est compliquée et n’est pas encore développée. Afin de définir une
notion d’holonomie dans ce contexte, Ardakov-Bode-Wadsley ont introduit dans [4] une théorie de

dimension pour les ÙD-modules coadmissibles, en considérant le grade homologique d’un module
comme étant sa co-dimension. Ceci est basé sur le fait suivant. Si X est une variété affinoide dont
l’espace tangent T (X) est libre (sur O(X)), alors ÙD(X) est ”prèsque ” d’Auslander-Gorenstein, ce

qui signifie que ÙD(X) est la limite d’un système projectif des K-algèbres d’Auslander-Gorenstein
de dimension injective bornée. Ils ont montré l’inégalité de Bernstein dans ce contexte qui aide
à caractériser l’holonomie faible comme étant de dimension minimale. Cette définition permet de
former la sous-catégorie abélienne CwhX ⊂ CX des modules faiblement holonomes. Cependant, cer-
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CHAPTER 1. INTRODUCTION

taines propriétés de finitude ne sont pas satisfaits et la catégorie CwhX joue le rôle d’une première
approche à la théorie (d’où l’adjective ”faible”).

Récemment, K. Ardakov a introduit dans [2] la catégorie des DX-modules équivariants coadmis-
sibles sur une variété analytique rigide X équipée d’une certaine action de groupe. Plus précisément,
soit G un groupe de Lie p-adique (GLn(Qp) par example) qui agit continûment sur X1. Un DX-
module G-équivariant coadmissible sur X est, grosso-modo, un DX-module G-équivariant (dans le
sens usuel) qui satisfait certaine condition additionnelle de finitude (la coadmissibilité). Ces modules
forment une catégorie abélienne CX /G. Au cas où le groupe G est trivial, on retrouve la catégorie CX
des ÙDX-modules coadmissibles. Inspiré par ces resultats, dans ce travail, nous développons une no-
tion de l’holonomie faible dans le cas équivariant. Notre but sera donc de définir une sous-catégorie
abélienne CwhX /G ⊂ CX /G, au moins dans le cas des variétés de drapeaux analytiques rigides, qui est

analogue à la catégorie CwhX (sans action de groupe). Un résultat principal est le théorème suivant
(chapitre 4):

Théorème 1 (L’inégalité de Bernstein pour les variétés de drapeaux analytiques rigides):
Soit G un groupe algébrique connexe, simplement connexe, semi-simple et déployé sur K. Posons
G := G(K) l’ensemble des K-points, X l’analytification de la variété de drapeaux de G munie d’une
action naturelle de G. Alors l’inégalité de Bernstein est vraie pour tout DX-module G-équivariant
coadmissible M 6= 0. Plus précisément

dim(M) ≥ dim X, ∀M 6= 0 ∈ CX /G.

Notons notamment que les techniques utilisées dans la preuve du théorème 1 peuvent être
appliquées à plusieurs autres cas, à savoir pour les polydisques, les espaces affines (analytiques
rigides) avec actions de groupes appropriées, ou bien pour les variétés projectives G-équivariantes,
ceux qui sont les sous-espaces fermés de Pn,anK (par rapport à la topologie de Zariski) qui sont stables
par l’action de G sur Pn,anK .

Donnons maintenant un aperçu du contenu des différents chapitres qui composent cette thèse.
Dans le deuxième chapitre, nous rappelerons quelques notions et propriétés de la géométrie analy-
tique rigide et de la théorie des groupes de Lie p-adique. Ensuite, nous résumerons la théorie des
D-modules équivariants coadmissibles introduite par K. Ardakov dans [2]. Les deux chapitres suiv-
ants sont pour but de développer une théorie de la dimension pour les DX-modules G-équivariants
coadmissibles. L’outil essentiel est la proposition suivante. Supposons que X est affinoide et G est
compact tels quel (X, G) est ”petit” (voir le contenu du texte ou [2] pour une définition précise de

cette condition technique). Alors nous pouvons formuler une K-algèbre de Fréchet-Stein ÙD(X, G)
qui peut être considérée comme une complétion de l’algèbre D(X)oG. Ici, D(X)oG est un anneau
qui contient D(X) comme sous-anneau unitaire et G comme sous-groupe du groupe des éléments
inversibles (D(X) oG)×.

Proposition: Soient X un espace affinoide lisse de dimension d, G un groupe de Lie p−adique
compact qui agit continûment sur X tel que (X, G) est petit. Alors l’algèbre de Fréchet-SteinÙD(X, G) est isomorphe à la limite projective lim←−nDG,n, où chaque DG,n est un anneau d’Auslander-
Gorenstein de dimension injective au plus 2d.

Cette proposition nous permet de suivre le cas non-équivariant (sans action de groupe) et de

définir la fonction de dimension sur la catégorie CÙD(X,G)
des ÙD(X, G)-modules coadmissibles en

considérant le grade d’un module M ∈ CÙD(X,G)
comme étant sa co-dimension. Par conséquent,

1voir [2, Section 3.1].
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CHAPTER 1. INTRODUCTION

nous pouvons définir correctement la dimension d’un DX-module G-équivariants coadmissible sur
X via un recouvrement admissible de X par des ouverts affinoides.

Après avoir introduit la théorie de la dimension sur la catégorie CX /G, nous montrons dans
la séconde partie du quatrième chapitre que l’inégalité de Bernstein est vraie sur les variétés de
drapeaux analytiques rigides (théorème 1). Le point majeur est que, si l’inégalité de Bernstein
est vraie sur une variété analytique rigide X, nous pouvons alors définir la notion d’un module
équivariant faiblement holonome sur X, ainsi que la sous-catégorie abélienne CwhX /G de CX /G des
modules équivariants faiblement holonomes.

Comme expliqué auparavant, sur une variété algébrique complexe lisse X, la restriction du
foncteur de dualité sur la catégorie des modules holonomes est isomorphe au foncteur

ExtdimX
DX (−,DX)⊗OX Ω⊗−1

X .

Dans le contexte analytique rigide, un foncteur dérivé de dualité n’a pas encore été introduit, nous
sommes donc amenés à établir, pour tout entier naturel non nul i, un foncteur analogue au foncteur
’Ext’ classique: Ei : CX /G −→ CrX /G, ici CrX /G désigne la catégorie des DX-modules G-équivariants
coadmissibles à droite. Plus précisément, si M ∈ CX /G, en utilisant le foncteur de localisation

Loc
ÙD(X,G)
X (−) introduit dans [2], le faisceau Ei(M) est localement défini de la manière suivante.

Pour chaque ouvert affinoide U de X tel que l’espace tangent T (U) admet un réseau de Lie libre,
alors

Ei(M)(U) := lim
H
ExtiÙD(U,H)

(M(U), ÙD(U, H)),

ici H est parcouru sur l’ensemble des sous-groupes ouverts compacts de G tels que (U, H) est petit.
Nous montrons dans la première partie du chapitre 4 que la limite existe et que tous les morphisms
de transition sont bijections. De plus, nous montrons le théorème suivant:

Theorem 2: Soit i ∈ N. Pour tout DX-module G-équivariant coadmissible à gauche M ∈
CX /G, Ei(M) est un faisceau de DX-modules G-équivariant coadmissible à droite.

Nous définissons alors l’endofoncteur

E i : CX /G −→ CX /G

pour tout i ≥ 0 en prenant la composition du foncteur Ei et du foncteur HomOX
(ΩX,−). En effet,

ceci est un analogue du foncteur classique (sur C) ExtiDX (−,DX)⊗OX Ω⊗−1
X . On peut vérifier sans

difficulté que une fois l’inégalité de Bernstein est vraie pour la catégorie CX /G, le faisceau E i(M)
s’annule pour tout M∈ CX /G et i 6= d = dim X. Par ailleurs

Theorem 3: Le foncteur
D := Ed|Cwh

X /G

induit un endofoncteur sur la catégorie CwhX /G des modules équivariants faiblement holonomes sat-

isfaisant D2 = id.

Par conséquent, le foncteur D est un analogue au foncteur de dualité classique. On l’appelle
foncteur de dualité sur la catégorie CwhX /G.

Il s’agit dans le dernier chapitre de donner quelques exemples concrètes des modules équivariants
faiblement holonomes. Nous supposons tout au long de ce chapitre que l’inégalité de Bernstein est
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CHAPTER 1. INTRODUCTION

valable sur la catégorie CX /G. Une idée naturelle est de construire des objets de CwhX /G via les DX-

modules G-équivariants (cohérents) qui sont de dimension minimale. Nous définissons le foncteur
EX /G de la catégorie des DX-modules G-équivariants qui sont cohérents sur OX (connections
intégrables équivariants) vers la catégorie CX /G et montrons ensuite qu’il préserve l’holonomie
faible. Rappelons qu’en cas des variétés algébriques complexes, tous les connections intégrables
sont holonomes. Dans le contexte analytique rigide, si le groupe G est trivial, ceci est encore
valable. Le point majeur est que, pour tout ouvert affinoide U ⊂ X tel que T (U) admet un réseau
de Lie libre, on a le suivant:

1. L’action de D(U) sur M(U), ici M est une connection intégrable, s’etend naturellement à

une action de ÙD(U) par rapport à laquelle M(U) est un ÙD(U)-module coadmissible,

2. Le morphism d’anneaux D(U) −→ ÙD(U) est fidèlement plat.

Quand le groupe G n’est pas trivial, nous devons imposer une condition additionnelle appelée
fortement G-équivariant (Proposition 5.1.4)). En particuler, nous montrons que le faisceau struc-
tural OX est un module équivariant faiblement holonome.

Nous présentons dans la séconde partie du chapitre 5 une classe des D-modules équivariants
faiblement holonomes sur les variétés de drapeaux analytiques rigides. Soient X l’analytification de
la variété de drapeaux associée à un groupe algébrique connexe, simplement connexe, semi-simple
et déployé G sur K, P un sous-groupe parabolique, g, p les algèbres de Lie de G et P respec-
tivement. Posons G := G(K), P := P(K). Dans [2], l’auteur a prouvé une version analytique
rigide du théorème de localisation de Beilinson-Bernstein. Plus précisément, il a construit l’algèbreÙU(g, G) comme certaine Fréchet complétion de l’algèbre U(g) o G. Au cas où le groupe G est
compact, cette algèbre est un fait une K-algèbre de Fréchet-Stein, ce qui nous permet de localiser
les ÙU(g, G)-modules coadmissibles et le foncteur de localisation est une équivalence de catégories

entre les ÙD(g, G) avec caractère central trivial et la catégorie CX /G. L’intéressante remarque est

basée sur le fait que la K-algèbre ÙU(g, G) est en bijection avec l’algèbre D(G,K) des distribu-
tions localement analytiques construite par Schneider-Teitelbaum dans [29, 30], où ils ont traduit
l’étude des représentation localement analytiques p-adique à la théorie des D(G,K)-modules (qui
est purement algébrique). Nous s’intéressons donc au foncteur d’Orlik-Strauch FGP (−)′ ([23]) de la
BGG catégorie parabolique Op

0 vers les modules coadmissibles sur l’algebra D(G,K). Nous mon-
trons alors que la localisation d’un module obtenue via le foncteur d’Orlik-Strauch est faiblement
holonome.

Théorème 4: La localisation Loc
ÙU(g,G)
X (FGP (M)′) est un DX-module G-équivariant faiblement

holonome pour tout U(g)-module M ∈ Op
0.
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CHAPTER 1. INTRODUCTION

English version

The category of coherent DX -modules (differential equations) on a smooth C-analytic variety
X is a classical object. Among its many applications to representation theory, we mention the
Beilinson-Bernstein theorem, which relates the representations of a given semi-simple complex
Lie-algebra to D-modules on its flag variety (see [8]). Many interesting representations (such
as Verma modules and their simple constituents [15]) correspond thereby to so-called holonomic
modules and satisfy many finiteness properties. We recall that a non-zero coherent DX -module
M is called holonomic if the dimension of its associated characteristic variety Char(M) is exactly
dimX (note that one always has dim(Char(M)) ≥ dimX, which is known as Bernstein’s inequality
[14, Corollary 2.3.2] ). An equivalent definition makes use of the duality functor

D : D−(DX) −→ D+(DX)op, M . 7→ RHomDX (M .,DX)⊗OX Ω⊗−1
X [dimX]

on the derived category D−(DX). A module M is then holonomic if and only if H i(DM) = 0, for
all i 6= 0.

In the arithmetic setting, let K be a complete non-Archimedean field of mixed characteristic
(0, p). Let X be a smooth rigid-analytic variety over K. In [7, 1] Ardakov-Wadsley introduced

a certain sheaf of infinite order differential operators ÙDX on X and used it to define the abelian
category CX of coadmissible ÙDX-modules. It is an arithmetic analogue of the category of coherent
complex-analytic D-modules. The sheaf ÙDX is in fact a certain Fréchet completion of the sheaf
of usual finite order (algebraic) differential operators DX. We note that in the case of the rigid
analytic flag variety X of a connected split reductive algebraic group G, the sheaf on the Zariski-
Riemann space of X associated with the sheaf ÙDX were independently introduced and studied by
Huyghe-Patel-Schmidt-Strauch in [16, 25], where it is called D∞.

In the context of D-modules on smooth rigid analytic varieties, the notion of characteristic vari-
ety is much more complicated and not yet developed. In order to define a notion of holonomicity forÙD-modules, the authors in [4] introduced a dimension theory for coadmissible ÙD-modules by using
the homological grade of a module as its codimension. This is based on the key fact that whenever
X is affinoid with free tangent module T (X), then ÙD(X) is almost Auslander-Gorenstein (it is
a well-behaved inverse limit of Auslander-Gorenstein K-algebras). They then proved Bernstein’s
inequality in this setting and characterize weak holonomicity as being of minimal dimension. It
should be pointed out that the abelian subcategory CwhX ⊂ CX of weakly holonomic modules does
not yet satisfy all desired finiteness properties and serves only as a first well-behaved approximation
(hence the adjective ’weak’).

Recently, K. Ardakov introduced in [2] the category of coadmissible equivariant DX-modules
on smooth rigid analytic spaces endowed with suitable group actions. Let us explain briefly what
the equivariant setting is. Let X be a smooth rigid K-analytic variety and G a p-adic Lie group
(such as GLn(Qp)) which acts continuously on X 2. A coadmissible G-equivariant DX-module on
X is, vaguely speaking, a G-equivariant DX-module (in the usual sense) which satisfies additional
finiteness conditions. These modules form an abelian category CX /G. If the group G = 1 is trivial,

we recover the category CX of coadmissible ÙDX-modules, which is introduced in [7].

Motivated by these results, the aim of this thesis is to develop a notion of weak holonomicity
in this equivariant setting, i.e. to define an equivariant analogue of the category CwhX , at least in
the case of rigid analytic flag varieties. The main result is the following theorem, which is proved

2see [2, Section 3.1] for a precise definition.
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in chapter 4:

Theorem 1 (Bernstein’s inequality for rigid analytic flag varieties):
Let G be a connected, simply connected, split semi-simple algebraic group over K and let G :=
G(K). Let X be the rigid analytification of the flag variety of G, endowed with its natural G-
action (by conjugating Borel subgroups of G). Then Bernstein’s inequality holds for any non-zero
coadmissible G-equivariant D-module M∈ CX /G, i.e. dim(M) ≥ dim X.

We emphasize that the arguments used in the proof of this theorem can in fact be applied to
larger classes of spaces, for example, poly-discs, affine spaces (with suitable actions of compact
Lie groups) or G-projective varieties (Zariski-closed stable subspaces of analytic projective space
Pn,anK ). This establishes Bernstein’s inequality in all these cases. We hope to extend this results in
the near future in order to include even more spaces.

In chapter 2 we recall some basic notions and properties of rigid analytic geometry and of p-
adic Lie groups, then we summarize the theory of coadmissible equivariant D-modules developed
by K.Ardakov in [2]. Chapter 3 and chapter 4 are dedicated to the development of a dimension
theory for coadmissible G-equivariant DX-modules. The main point is the following key proposi-
tion. In order to formulate it, we assume that X is affinoid and G is compact such that (X, G)
is small (see [2, Definition 3.1.8] or the main body of the dissertation for a precise definition of

this technical condition). There is a K-Fréchet-Stein algebra ÙD(X, G), which can be viewed as a
certain completion of the skew-group K-algebra D(X) o G. Here, D(X) o G is a certain crossed
product which contains D(X) as a subring and G as a subgroup in the group of invertible elements
(D(X) oG)×.

Key proposition: Let X be a smooth affinoid variety of dimension d and G be a compact p-adic
Lie group acting continuously on X such that (X, G) is small. Then the Fréchet-Stein K-algebraÙD(X, G) is isomorphic to the inverse limit lim←−nDG,n, where each DG,n is an Auslander-Gorenstein
ring of self-injective dimension at most 2d.

The proposition allows us to follow the non-equivariant setting and obtain the grade as a codi-
mension function. This leads to a well-behaved definition of dimension for coadmissible ÙD(X, G)-
modules. Then we can define correctly the dimension for coadmissible G-equivariant DX-modules
on a general rigid analytic variety X using globalization via admissible affinoid coverings.

After having introduced the dimension theory on the category CX /G, we then study the question
whether Bernstein’s inequality holds for all coadmissible G-equivariant D-modules of CX /G. If it
is satisfied, we can define the notion of an equivariant weakly holonomic module on X, and hence
form the subcategory CwhX /G of CX /G of equivariant weakly holonomic modules.

As noticed above, on a complex smooth algebraic variety X, the restriction of the (derived) dual
functor D to the category of holonomic modules is isomorphic to

ExtdimX
DX (−,DX)⊗OX Ω⊗−1

X .

Even if a full derived dual functor in the rigid-analytic setting has not yet been defined, we go on
and construct, for all non negative integers i ∈ N, analogous ’Ext’-functors Ei : CX /G → CrX /G,
where CrX /G denotes the category of coadmissible G-equivariant right DX-modules. Let us explain

briefly their definition. Let M ∈ CX /G. Using the localisation functor LocX(−)
ÙD(X,G) from [2],
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the sheaf Ei(M) is defined, locally, as follows (cf. 4.2.6). For each U in the set B of affinoid
subdomains of X such that the tangent O(U)-module T (U) admits a free Lie lattice, then

Ei(M)(U) := lim
H
ExtiÙD(U,H)

(M(U), ÙD(U, H)),

where H runs over the set of all open compact subgroups of G such that (U, H) is small. We will
prove in the first part of chapter 4 that this is well-defined, which means that the limit exists and all
transition maps are bijections. Furthermore, we will prove the following result (cf. Theorem 4.2.23):

Theorem 2: For every i ∈ N, Ei(M) is a sheaf of coadmissible G-equivariant right DX-module
for every coadmissible G-equivariant left D-module M∈ CX /G.

We then define the functors
E i : CX /G −→ CX /G

for i ≥ 0 by composing Ei with the side-changing functor HomOX
(ΩX,−). Note that E i is an

analogue of the classical Ext-functor ExtdimX
DX (−,DX)⊗OX Ω⊗−1

X . We then easily verify that once

Bernstein’s inequality holds for CX /G, E i(M) = 0 for every equivariant weakly holonomic DX-

module M∈ CwhX /G and every i 6= d = dim X. Furthermore

Theorem 3: The functor
D := Ed|Cwh

X /G

induces an auto-equivalence of the category CwhX /G of G-equivariant weakly holonomic modules which

satisfies D2 = id.

The functor D can therefore be regarded as the correct analogue of the classical duality functor.
We call it the duality functor on the category CwhX /G.

In the last chapter, we will give some concrete examples of equivariant weakly holonomic mod-
ules. Throughout we always assume that Bernstein’s inequality is valid for the category CX /G.

We first present a natural way to construct objects CwhX /G via an extension functor EX /G from

G-equivariant (coherent) DX-modules of minimal dimension to CX /G, and then prove that this
functor preserves equivariant weak holonomicity. We recall here that in the classical theory over
complex algebraic varieties, all integrable connections are actually holonomic. In our setting, and
if G = 1 is trivial, all integrable connections on a smooth rigid-analytic space X are known to be
weakly holonomic [4]. The point is that, for any affinoid subdomain U such that T (U) admits a
free Lie lattice:

1. The D(U)-action on M(U), where M is an integrable connection, extends naturally to aÙD(U)-action under which M(U) becomes a coadmissible ÙD(U)-module.

2. The ring homomorphism D(U) −→ ÙD(U) is faithfully flat.

When working with a non-trivial p-adic group G 6= 1, to have a ÙD(X, G)-action on a G-
integrable equivariant connection extending its given (D − G)-structure, needs a real condition,
which we call ’strongly equivariant’ (cf. Proposition 5.1.4).

We conclude the chapter 5 by constructing a large class of weakly holonomic equivariant D-
modules on rigid flag varieties. Let X be the rigid flag variety associated to a connected, simply
connected, split semi-simple algebraic group G over K. Let P be a parabolic subgroup of G. Let g, p
be the Lie algebras of G and P, respectively. Let G := G(K) and P := P(K). In [2], K.Ardakov has

9
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proved an analogue of the Beilinson-Bernstein theorem for trivial character in this p-adic setting.
More precisely, he defined the K-algebra ÙU(g, G),which is, roughly speaking, a certain completion
of the skew-group algebra U(g) o G. It should be pointed out that when G is compact, thenÙU(g, G) is indeed a Fréchet-Stein K-algebra 3. He then proved that the localization functor on the

category of coadmissible ÙU(g, G)0-modules is an equivalence of categories with the category CX /G.
In [22, 23], Orlik-Strauch constructed a functor M 7→ D(G,K) ⊗D(g,P ) M from the parabolic

BGG category Op
0 to coadmissibe modules over the locally analytic distribution algebra D(G,K).

These modules are locally analytic globalizations of the classical Verma modules and their simple
constituents. We show that Orlik-Strauch modules localize to G-equivariant DX-modules which
are weakly holonomic.

Theorem 4: The localization Loc
ÙU(g,G)
X (D(G,K)⊗D(g,P ) M)) is a G-equivariant weakly holo-

nomic module for any U(g)-module M ∈ Op
0.

Notation:

• Throughout this paper, we fix a complete non-Archimedian field K of mixed characteristic
(0, p) with valuation ring R. We also fix a non-zero non-unit element π ∈ R. and residue
field k. Its algebraic closure will be denoted by K

• If M is an R-module, its π-adic completion lim←−nM/πnM will be denoted by M̂ .

• For any ring R, all R-modules, if not further specified, are left modules.

3More precisely, the K-algebra ÙU(g, G) acts on X compactibly with G in the sense of [2, Definition 3.4.9], which

allows us to localize ’coadmissible’ ÙU(g, G)-modules.
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Chapter 2

Background material

2.1 Rigid analytic varieties

We begin by collecting some notions and standard results about rigid analytic varieties. We refer
to [10, 9] for quite complete and systematic treatments on the theory. Conrad’s note [12] will be
an interesting reference for those who want a brief overview.

2.1.1 Affinoid K-spaces and affinoid subdomains

Let (K, | . |) be a complete non-Archimedean field. Note that the absolute value | . | of K extends
uniquely to K and we still denote it by | . |.

Definition 2.1.1. The Tate algebra in n-variables Tn := K〈x1, ..., xn〉 is the K-algebra of all formal
power series ∑

ν∈Nn aνx
ν ∈ KJx1, ..., xnK, aν ∈ K such that lim|ν|−→0 | aν |= 0,

where xν = xν11 ...x
νn
n and | ν |= ν1 + ...+ νn for all n-tuples ν = (ν1, ..., νn) ∈ N.

We may consider Tn as the K-algebra of convergent power series on the n-dimensional unit ball
Bn(K) = {x ∈ K̄ : |x| ≤ 1}. We equip Tn with a norm as follows. Let f(x) =

∑
ν aνx

ν ∈ Tn, then

| f |:= max
ν
| aν |<∞.

This norm is called the Gauss norm and it is well-known that Tn is a Banach K-algebra with
respect to the Gauss norm. Here, by Banach K-algebra, we mean a normed K-algebra which is
complete with respect to the induced topology.
Concerning the algebraic properties, the Tate algebras Tn are noetherian. Similarly to the ring of
polynomials in n-variables over field, each Tn is of Krull dimension n.

Definition 2.1.2. Let A be a K-algebra. Then A is called an affinoid K-algebra if there is an
epimorphism of K-algebras

α : Tn −→ A for some n ∈ N.

An affinoid K-space is a set Sp(A) consisting of the maximal ideals in an affinoid K-algebra A.
Let x ∈ Sp(A), we let mx denote the corresponding maximal ideal in A.
Note that each element f ∈ A can be considered as a function on Sp(A) in the following way. For
any x ∈ Sp(A) , then f(x) is the residue class of f in A/mx, which is a finite extension field of K.

11
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After embedding A/mx in to an algebraic closure K̄ of K, we may consider f(x) as an element of
K. Therefore, to every f ∈ A one associates the following function:

Sp(A) −→ R≥0

x 7−→ |f(x)|.

There is a natural (Zariski) topology on Sp(A) generated by the subsets of the form

Df = {x ∈ Sp(A) : f(x) 6= 0}, with f ∈ A.

When studying sheaves on an affinoid K-space or more generally on a rigid-analytic space, it is
much more convenient to introduce a ’new topology’ namely the Grothendieck topology rather than
to work with the Zariski topology. We will explain this more precisely in the next subsection.

Definition 2.1.3. Let X = Sp(A) be an affinoid K-space. By affinoid subdomain of X, we mean a
subset U ⊂ X such that there is a morphism of affinoid K-spaces ι : X′ −→ X such that ι(X′) ⊂ U
and which satisfies the following universal property:
For any morphism of affinoid K-spaces ϕ : Y −→ X satisfying ϕ(Y) ⊂ U, there exists a unique
morphism ϕ′ : Y −→ X′ such that the diagram

Y X′

X

ϕ′

ϕ
ι

is commutative. We then say that the morphism ι : X′ −→ X represents U.

The set of all affinoid subdomains of X is denoted by Xw. It is proved that if U ∈ Xw, then
the morphism ι : X′ −→ X representing U is a bijection between X′ and U, so that U is equipped
with a structure of affinoid K-space inherited from X′.
Below we have some examples of (special) affinoid subdomains of X:

Example 2.1.4. ([10, Definition 3.7, Proposition 3.11])
Let X = Sp(A) and f0, f1, ..., fr, g1, ..., gs ∈ A. For every d ∈ N, we denote

A〈ξ〉 = A〈ξ1, ..., ξd〉 = {
∑
ν

aνξ
ν : aν ∈ A, lim

|ν|→∞
|aν | = 0}

the algebra of restricted power series in ξ with coefficients in A.

1. Weierstrass subdomain

X(f1, ..., fr) = {x ∈ X : |fi(x)| ≤ 1}.

Then X(f1, ..., fr) ∼= Sp(A〈f〉) with A〈f〉 is the affinoid K-algebra

A〈f〉 := A〈ξ1, ..., ξr〉/(ξ1 − f1, ..., ξr − fr).

2. Laurent subdomain

X(f1, ..., fr, g
−1
1 , ..., g−1

s ) = {x ∈ X : |fi(x)| ≤ 1, |gj(x)| ≥ 1}.

Then X(f1, ..., fr, g
−1
1 , ..., g−1

s ) = Sp(A〈f, g−1〉) with A〈f, g−1〉 is the affinoid K-algebra

A〈f, g−1〉 := A〈ξ1, ..., ξr, ζ1, ..., ζs〉/(ξ1 − f1, ..., ξr − fr, 1− g1ζ1, ..., 1− gsζs).

12
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3. Rational subdomain
Suppose that f0, ..., fr has no common zeros. We define

X

Å
f1

f0
, ...,

fr
f0

ã
= {x ∈ X : ∀i, |fi(x)| ≤ |f0(x)|}.

Then X
Ä
f1
f0
, ..., frf0

ä
∼= Sp(A〈 ff0 〉) with A〈 ff0 〉 is the affinoid K-algebra

A〈 f
f0
〉 := A〈ξ1, ..., ξr〉/(f1 − f0ξ1, ..., fr − f0ξr).

2.1.2 Rigid analytic varieties

Definition 2.1.5. A Grothendieck toplology T consists of a category CatT and a set CovT of
families (Ui −→ U)i∈I of morphisms in CatT, called coverings, such that the following conditions
hold:

(i) If Φ : U −→ V is an isomorphism in CatT, then (Φ) ∈ CovT.

(ii) If (Ui −→ U)i∈I and (Vij −→ Ui)j∈Ji belong to CovT for all i, then so is the composition
(Vij −→ Ui −→ U)i∈I,j∈J .

(iii) If (Ui −→ U)i∈I is in CovT and V −→ U is a morphism in CatT, then the fiber product
Ui ×U V exists in CatT and (Ui ×U V −→ V )i∈I is in CovT.

An ordinary topology on a set X is a first (and natural) example of Grothendieck topology.
Indeed, if X is a set and CatT is a category of certain subsets in X with inclusion morphisms, then
the first condition in the definition is trivial while the last two conditions can be interpreted as

(ii) If U = ∪i∈IUi and Ui = ∪j∈JiVij are coverings in CatT, then so is U = ∪i,jVij .

(iii) If U = ∪i∈IUi is a covering and V ↪→ U is an inclusion, then V ∩ Ui ∈ CatT for all i and
V = ∪i∈IV ∩ Ui is a covering.

A set X which is equipped with a Grothendieck topology T is called G-topological space. If
U ∈ CatT, then U is called an admissible open. If (Ui −→ U)i∈I is an element of CatT, then it is
called an admissible covering.

Let X be an affinoid K-space. Then the weak Grothendieck topology on X is the Grothendieck
topology given by the category CatT of affinoid subdomains of X with inclusions as morphisms
and the set CovT consisting of finite families (Ui −→ U) of inclusions of affinoid subdomains
in X such that U = ∪i Ui. The strong Grothendieck topology on the affinoid K-space X is the
Grothendieck topology induced from the weak Grothendieck topology by adding more admissible
open sets (not only affinoid subdomains) and more admissible coverings (not only finite coverings)
in a certain way. More generally, we allow ourselves to give the definition of a strong Grothendieck
topology as follows. A Grothendieck topology on a set X is called strong if it satisfies the following
conditions:

(G0) ∅ and X are admissible open.

(G1) If (Ui)i∈I is an admissible covering of an admissible open subset U ⊂ X and V ⊂ U is a
subset such that V ∩ Ui is admissible open for any i ∈ I, then V is admissible open in X.
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(G3) If (Ui)i∈I is a covering of an admissible open subset U ⊂ X by admissible open subsets Ui ⊂ U
such that (Ui)i∈I admits an admissible covering of U as refinement. Then (Ui)i∈I itself is an
admissible covering.

(see [10, Definition 5.1.4] for more details).

Let X be a G-topological space. As usual, there are notions of presheaves and sheaves on X.
Ignoring the technical tricks, the main diffirence here is that instead of working with open subsets
and coverings in an ordinary topology, we work with admissible open subsets and admissible cov-
erings in a Grothendieck topology. Then the basic definitions and properties stay the same.

Let us now describe the structure sheaf OX on an affinoid K-space X. For any affinoid sub-
domain U ⊂ X, let O(U) denote the affinoid K-algebra corresponding to U. If V ⊂ U is another
affinoid subdomain of X, then there is a canonical morphism of affinoid K-algebras (which is called
a restriction map)

rUV : O(U) −→ O(V).

Then OX is a presheaf of affinoid functions on X such that for any x ∈ X the stalk

OX,x := lim−→
x∈U
O(U),

where U runs over the set of affinoid subdomains of X containing x, is a local ring with maximal
ideal mxOX,x ([10, Proposition 4.1.1]). Moreover:

Theorem 2.1.6. (Tate) The presheaf OX of affinoid functions on the affinoid K-space X is a
sheaf with respect to the weak Grothendieck topology. Furthermore, any finite covering U of X by
affinoid subdomains is acyclic with respect to OX.

The structure sheaf OX on X together with the weak Grothendieck topology extends in a
natural way to a sheaf on X together with the strong Grothendieck topology by [10, Corollary
5.2.5].
The notion of (locally) ringed K-spaces and morphisms between them can be naturally adapted to
G-topological spaces.
A trivial example to us will be the affinoid K-space (X,OX) with the strong Grothendieck topology.
We can now state the definition of rigid analytic K-spaces as follows.

Definition 2.1.7. A rigid analytic K-space is a locally G-ringed K-space (X,OX) such that

(i) The Grothendieck topology on X is a strong Grothendieck topology.

(ii) X admits an admissible covering (Ui)i∈I , where the space (Ui,OX|Ui) is an affinoid K-space
for every i.

A morphism of rigid K-spaces (X,OX) −→ (Y,OY) is a morphism between locally G-ringed K-
spaces.

2.1.3 Coherent sheaves on rigid analytic spaces

Let X = Sp(A) be an affinoid K-space and M be an A-module. Then we define

M̃ := OX ⊗AM.
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This is a sheaf of OX-modules on X and we call it the OX-module associated to M . The func-
tor (̃.) is exact, fully faithful from the category of A-modules to OX-modules ([10, Proposition 6.1]).

Now let X be a rigid analytic space. As usual, we say that an OX-module M on X is quasi-
coherent if for any x ∈ X there exists an admissible open subset U such that there is an exact
sequence

OIU −→ OJU −→M|U −→ 0.

An OX-module M is called coherent if and only if there exists an admissible affinoid covering
U = (Ui)i∈I of X such that M|Ui is an OUi-module associated to a finitely generated O(Ui)-
module for all i ∈ I. More precisely, we then say that M is U-coherent.

Theorem 2.1.8. (Kiehl) Let X = Sp(A) be an affinoid K-space and M is an OX-module. Then
M is coherent if and only if M is associated to a finitely generated A-module.

Let Xw denote the set of all affinoid subdomains of a rigid analytic space X. Unlike in the
case of affinoid K-spaces, Xw does not define a Grothendieck topology on X. However, Xw forms
a basis for the given Grothendieck topology on X. Being a basis for the Grothendieck topology
on X means that every admissible open subset has an admissible covering by elements in Xw. In
general, there is a natural way to construct a sheaf on X from a sheaf defined on a certain basis of
(the Grothendieck topology) on X. We state the following theorem:

Theorem 2.1.9. ([7, Theorem 9.1]) Let B be a basis for the Grothendieck topology on X. Then
the restriction functor is an equivalence of categories between the category of sheaves on X and the
category of sheaves on B.

2.1.4 Construction of rigid analytic spaces

We explain in this section two ways of defining a rigid analytic variety from a scheme of locally
finite type over K (which is known as the analytification functor or GAGA Serre’s functor in the
complex setting) and from a formal R-scheme.
First, let us recall the construction of the analytificaltion functor in the rigid analytic setting. This
is a functor which associates to each K-scheme X of locally finite type a rigid analytic K-space
Xan (in [10, 5.4] it is denoted by Xrig).
Let X = SpecK[ξ1, ..., ξn]/a be an affine scheme with an ideal a ⊂ K[ξ1, ..., ξn]. For all i ∈ N, there
is an inclusion of affinoid K-spaces

Sp
Ä
T (i)
n /(a)

ä
↪−→ Sp

Ä
T (i+1)
n /(a)

ä
,

where for some scalar c ∈ K such that |c| > 1, T
(i)
n denotes the Tate algebra T 〈c−iξ1, ..., c

−iξn〉
. It is worth pointing out that this K-algebra contains all power series converging on the closed

n-dimensional ball of radius |ci|. Each affinoid K-space Sp
Ä
T

(i)
n /(a)

ä
is contained in X. Now

define:

Xan =

∞⋃
i=0

Sp
Ä
T (i)
n /(a)

ä
.

Then the set Xan can be equipped with a structure of locally G-ringed K-space such that the
natural morphism

ρ : Xan −→ X

15



CHAPTER 2. BACKGROUND MATERIAL

is a bijection of Xan onto the subset of closed points of X. In particular when X = AnK , then Xan

is the union of all the n-dimensional balls of radius |c|i.

More generally, we have the following theorem:

Theorem 2.1.10. ([10, Definition and Proposition 5.4.3])
Let (X,OX) be a K-scheme of locally finite type. Then there is a rigid analytic K-space (Xan,OXan)
together with a morphism of locally G-ringed K-spaces

(ρ, ρ∗) : (Xan,OXan) −→ (X,OX)

satisfying the following universal property: For any rigid analytic K-space (Y,OY) and any mor-
phism of locally G-ringed K-spaces (Y,OY) −→ (X,OX), there exists an unique morphism of rigid
analytic K-spaces (Y,OY) −→ (Xan,OXan) such that the following diagram is commutative:

(Y,OY) (Xan,OXan)

(X,OX)

(ρ,ρ∗)

Recall that the morphism ρ : Xan −→ X induces a functor

ρ∗ : Mod(OX) −→Mod(OXan)

M 7−→ OXan ⊗ρ−1OX ρ
−1M.

The following result is due to [5, Proposition 2.2.1]

Proposition 2.1.11. (i) The functor ρ∗ is exact and faithful.

(ii) If X is proper, then one has

H i(Xan, ρ∗M) = H i(X,M)

for all i ≥ 0 and all quasi-coherent OX-modules M.

Now, we look at the construction of rigid analytic spaces from formal schemes. Recall that
the valuation ring R of K is π-adically complete. We may define the R-algebra R〈ξ1, ..., ξn〉 of
restricted power series in the variables ξ1, ..., ξn as the subalgebra of the R-algebra R[[ξ1, ..., ξn]] of
formal power series consisting of all power series

∑
ν cνξ

ν with coefficients cν ∈ R constituting a
zero sequence in R. Note that R〈ξ1, ..., ξn〉 is noetherian( [10, Remark 7.3.1]). Furthermore

R〈ξ1, ..., ξn〉 ∼= lim←−
n

R[ξ1, ..., ξn]/(πn).

Definition 2.1.12. (i) A topological R-algebra is called of topologically finite type if it is iso-
morphic to an R-algebra of the form R〈ξ1, ..., ξn〉/I with an ideal I of R〈ξ1, ..., ξn〉.

(ii) A formal R-scheme X is called locally of topologically finite type if there is an open
affine covering (Ui)i∈I of X with Ui = SpfAi, where each Ai is an R-algebra of topologically
finite type.
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Let X be a formal R scheme of locally of topologically finite type. Then there is a rigid analytic
K-variety Xrig associated to X , which is defined locally as follows. Suppose that X = Spf(A),
where A = R〈ξ1, ..., ξn〉/I. Then A⊗R K is an affinoid K-algebra ([10, 7.4]. In fact

A⊗R K ∼= K〈ξ1, ..., ξn〉/IK〈ξ1, ..., ξn〉.

We define

Xrig := Sp(A⊗R K).

If ϕ : Spf(A) −→ SpfB is a morphism of affine formal R-scheme. Then it is induced from a unique
R-homomorphism ϕ∗ : B −→ A and the corresponding generic fiber

ϕ∗rig : B ⊗R K −→ A⊗R K

determines a morphism of affinoid K-varieties

ϕrig : Sp(A⊗R K) −→ Sp(B ⊗R K).

More generally

Proposition 2.1.13. ([10, Proposition 7.4.3]) The functor A 7−→ A ⊗R K on the category of R-
algebras of topologically finite type gives rise to a functor X 7−→ Xrig from the category of formal
R-schemes that are locally of topologically finite type to the category of rigid analytic K-varieties.

Given a rigid analytic K-variety X. A formal R-scheme of locally topologically finite type X
is called a formal R-model of X if Xrig = X. When X = Sp(A) is an affinoid K-variety. An
R-algebra of topologically finite type is called an affine formal model in A if A⊗R K = A.

2.2 Crossed products

Since we will usually be working with the notion of a crossed product, this subsection is devoted to
recalling some basic facts concerning its definition and its properties. For more details, the reader
is recommended to take a look at [24], [20] and also [2].

All rings appearing in this subsection are supposed to be unital. For a ring R, we let R× de-
note the set of all units in R.

Definition 2.2.1. Let R be a ring and G be a group. A crossed product R ∗ G of R and G is a
ring containing R as a subring and a set of units Ḡ = {ḡ, g ∈ G} ⊂ (R ∗G)× which is in bijection
with G such that:

(i) R ∗G is free as a right R-module with basis Ḡ with 1̄G = 1R,

(ii) ḡ1R = Rḡ1 and ḡ1ḡ2R = g1g2R for all g1, g2 ∈ G.

Let R ∗G be a crossed product. Thanks to (ii), the ring R ∗G is also free as a left R-module.
Given a crossed product R ∗ G of R and G, there are associated maps σ : G −→ Aut(R) and
τ : G×G −→ R×, defined as follows:

σ(g)(r) := ḡ−1rḡ and τ(g1, g2) := (g1g2)−1ḡ1ḡ2, for all r ∈ R and g1, g2 ∈ G.
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These maps yield the following properties:

(2.1) τ(g1g2, g3)τ(g1, g2)σ(g3) = τ(g1, g2g3)τ(g2, g3)

and

(2.2) σ(g1)σ(g2) = σ(g1g2)η(g1, g2),

where η(g1, g2) ∈ Aut(R) denotes the multiplication by τ(g1, g2) on R and τ(g1, g2)σ(g3) denotes
the right action of σ(g3) ∈ Aut(R) on τ(g1, g2) ∈ R.

Conversely, given two maps σ : G −→ Aut(R) (which is not necessary a group homomorphism)
and τ : G×G −→ R× satisfying (2.1) and (2.2), then we may define a crossed product as follows.
Choose an unit u ∈ R×. For each g ∈ G, we denote by ḡ := σ(g)(u) ∈ R×, the image of u via the
R-automorphism σ(g) ∈ Aut(R). Then the ring R ∗G is formally defined by

R ∗G := {
∑
finite

ḡrg | g ∈ G, rg ∈ R}.

The addition is defined as usual and the multiplication law is determined by the following rules:

(2.3) ḡ1ḡ2 = g1g2τ(g1, g2)

and

(2.4) rḡ1 = ḡ1σ(g−1
1 )(r)

for all r ∈ R and g1, g2 ∈ G.

A first example of a crossed product will be the group ring R[G] of G over R. In that case
the maps σ and τ are both trivial, which means that σ(g1) = 1 and τ(g1, g2) = 1 for all g1, g2 ∈ G.

Another important example to us is when σ is a homomorphism of groups (thus the group G
acts on R via σ) and τ is trivial, we obtain the skew product R o G. By definition, it is the free
right R-module with basis G:

RoG = {ḡ0r0 + ...+ ḡnrn, ri ∈ R, gi ∈ G,n ∈ N}

Now the equalities (2.1) and (2.2) become

ḡ1ḡ2 = ¯g1g2 and rḡ1 = ḡ1σ(g−1
1 )(r).

By consequence, we can drop the overbars of ḡ ∈ R and write it simply by g ∈ G. It follows that
R oG contains G as a subgroup of the group of units (R oG)×. For g ∈ G, r ∈ R, in the sequel,
we let g.r (resp. r.g) denote the image of r under σ(g) (resp. σ(g−1)). This corresponds to the left
(resp. right) action of G on R. The multiplication in RoG is then described by:

(g1r1)(g2r2) = (g1g2)((g−1
2 .r1)r2)

for any r1, r2 ∈ R and g1, g2 ∈ G. The ring RoG naturally contains R as a subring. Furthermore
one has the following relation in RoG:

grg−1 = g.r, for any g ∈ G, r ∈ R.

18
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Remark 2.2.2. If we consider the right action of the group G on R, we see that the skew group ring
RoG can be also considered as a free left R-module with basis G. More precisely, each element in
RoG has a unique representation

∑
g∈G rgg, where rg ∈ R is zero for all but finitely many g ∈ G.

Indeed, the relation grg−1 = g.r implies that

sg = gg−1sg = g(g−1sg) = g(g−1.s).

Under this representation, one can rewrite the multiplication on RoG as follows:

(rg)(r′g′) = (r(g.r′))(gg′).(2.5)

Note that in [2, 2.2], the author has considered RoG as a free left R-module with basis G. Hence
he defined its multiplication by using (2.5).

Recall [2, Definition 2.2.1] that a trivialisation (of the skew-group ring R o G) is a group ho-
momorphism β : G −→ R× such that

β(g)rβ(g)−1 = g.r for all g ∈ G and r ∈ R.

Note that whenever there is a trivialisation β : G −→ R×, the skew-group ring R oG is naturally
isomorphic to the group ring R[G] [2, Lemma 2.2.2]. The isomorphism is explicited by

β̃ : R[G] −→ RoG

r 7−→ r

g 7−→ β(g)−1g

for any r ∈ R and g ∈ G.

Definition 2.2.3. Let N be a normal subgroup of G and β : N −→ R× be a trivialisation of RoN .
We define

RoN G = Roβ
N G :=

RoG

(RoG)(β̃(N)− 1)
.

It is proved (loc.cit Lemma 2.2.4) that when β is G-equivariant, which means that β(gng−1) =
g.β(n) for every n ∈ N and g ∈ G, then R oN G is an associative ring containing R as a subring
and there is a natural group homomorphism G −→ (RoN G)× by definition.

The following lemma will be useful for the next chapters. This is due to [27, Lemma 2.2]

Lemma 2.2.4. Let R,A be two rings and ϕ : R −→ A be a morphism of rings such that ϕ is also
left (resp. right) flat and that it factors through

R −→ R ∗G −→ A,

where R ∗ G is a crossed product of a group G over R. Then the morphism R ∗ G −→ A is left
(resp. right) flat.
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2.3 Review on p-adic Lie groups

Similarly to real (or complex) Lie groups, a Lie group over a non-archimedean field K (or p-adic Lie
groups) is, rougly speaking, a manifold over K which admits a group structure compatible with its
’analytic structure’. In this subsection we recall some basic definitions and properties that may be
used in the future. For more details, the reader are recommended to take a look at [28], [11] and [13].

Definition 2.3.1. Let U ⊂ Kn be an open subset, a map f : U −→ Kn is called locally analytic
if it is locally given by a convergent power series around each point in U . More precisely, if for
any x0 ∈ U , there exists a ball Br(x0) = {x ∈ Kn : |x − x0| ≤ r} ⊂ U and a power series
F (X) =

∑
α vαX

α satisfying lim|α|←0 |vα|r|α| and such that f(x) = F (x− x0) for any x ∈ Br(x0).

We can define an n-dimensional (locally analytic) manifold over K in the usual way, namely a
Hausdorff topological space M equipped with a (maximal) atlas A consisting of homomorphisms
from open subsets of M onto open subsets of Kn such that the transition map ϕ ◦ φ−1 is locally
analytic for all ϕ, φ ∈ A.
Analytic mappings between (locally analytic) manifolds are defined as usual (by checking analytic-
ity on local charts). The set Can(M,K) of all locally analytic functions f : M −→ K is a K-vector
space with respect to pointwise addition and scalar multiplication and is functorial in M . Further-
more, Can(M,K) can be equipped with the structure of topological vector space. In particular, if
M is compact, then Can(M,K) is a locally convex inductive limit of K-Banach spaces ([29, Lemma
2.1]).

Definition 2.3.2. A p-adic Lie group is a manifold over K which carries a structure of a group
such that the multiplication

mG : G×G −→ G

(g, h) 7−→ gh

and inverse map

iG : G −→ G

g 7−→ g−1

are locally analytic.

Any p-adic Lie group is a totally disconnected locally compact topological group.

Definition 2.3.3. Let G be a p-adic Lie group over K. Then the strong dual

D(G,K) := Can(G,K)′b,

of the locally convex K-vector space Can(G,K) is called the (locally convex) vector space of K-valued
distributions on G.

It is proved ([29, Proposition 2.3] that D(G,K) can be equipped with a structure of an asso-
ciative K-algebra. Furthermore, if G is compact, then D(G,K) is a Fréchet K-algebra (i.e the
underlying topology is Fréchet which is compatible with the K-algebra structure).

2.4 Equivariant sheaves on rigid analytic spaces

This section is devoted to the theory of equivariant D-modules on rigid analytic spaces.
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2.4.1 Group actions on rigid analytic spaces

Let X be a rigid analytic space over K. The spirit of the theory of equivariant sheaves on X is
exactly the same as usual (when working on usual topological spaces). Let X,Y be rigid analytic
spaces. Let us recall below some essential definitions. Fix an abstract group G with unit element
1. Then G acts on X if there is a group homomorphism ρ : G −→ Homeo(X) from G to the group
Homeo(X) of continuous bijections on X. In this case, each g gives rise to a pair (ρ(g)∗, ρ(g)∗) of
equivalences of categories from the category of abelian sheaves on X to itself. More precisely, if F
is a sheaf on X then (ρ(g))∗(F) is the sheaf whose local sections are defined by (ρ(g))∗(F)(U) =
F(gU) for all admissible open subsets U ⊂ X. Similarly, the sheaf ρ(g)∗(F) is defined locally as
ρ(g)∗(F)(U) := F(g−1 U) for every admissible open subset U ⊂ X (here we denote gU the image
of U via the bijection ρ(g) for all g ∈ G). In the sequel, we write g∗ and g∗ instead of ρ(g)∗ and
ρ(g)∗ for short.
We recall the following definition from [2, Section 2.3]:

Definition 2.4.1. (i) Let R be a ring and F be a sheaf (of groups, of R-algebras, of R-modules,etc)
on X. Then F is called G-equivariant if for each g ∈ G, there is an isomorphism of
sheaves (of groups, of R-algebras, of R-modules,etc) gF : F−̃→g∗F such that 1F = Id and
(gh)F = h∗(gF ) ◦ hF for any g, h ∈ G.

(ii) Let A be a G-equivariant sheaf of R-algebras on X. A G-equivariant sheaf of R-modules M
is called G-equivariant sheaf of A-modules if for any g ∈ G, a ∈ A, one has

gM(a.m) = gA(a).gM(m), (resp. gM(m.a) = gM(m).gA(a)).

Remark 2.4.2.

(i) Let A be a G-equivariant sheaf of R-algebras and U be a G-stable admissible open subset of X.
Then there is a left (resp. right) action of G on A(U) determined by

g.a := gA(a) (resp. a.g := (g−1)A(a))

for any g ∈ G and a ∈ A(U).

(ii) Suppose that V ⊂ U are G-stable admissible subsets of X, then the restriction map A(U) −→
A(V) is left (resp. right) G-equivariant.

The notion of equivariant sheaves of algebras on X is related to the notion of skew-group rings
in the following way. Let A be a G-equivariant sheaf of R-algebras on X. We can form the skew-
group ring A(U) o G for any G-stable admissible open subset U of X. The following proposition
is just restated from [2, Proposition 2.3.5] but is also applied to G-equivariant right A-modules.

Proposition 2.4.3. [2, Proposition 2.3.5] Let X be a rigid analytic space and G be a group which
acts on X. If X is an admissible open subset with respect to the G-topology on X. Then the functor
of global sections Γ(X,−) sends G-equivariant left (resp. right) A-modules to left (resp. right)
A(X) oG-modules.

Suppose for the moment that X is quasi-compact and quasi-separated. Then there is a Hausdorff
topology on the group AutK(X,OX) of K-linear automorphisms of X which is described as follows.
First, following [10, Theorem 4.1] there exists a formal model X for X, which means that X is a
quasi-compact admissible formal scheme over R such that X = Xrig, where rig is the functor
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which associates to each admissible formal scheme its generic fibre. Next, consider the group
G(X ) := AutR(X ,OX ). For each n ≥ 0, the n-th congruence subgroup of GX is

Gπn(X ) := ker[G(X ) −→ AutRn(Xn,OXn)],

where Rn := R/πnR and Xn := X ⊗R Rn. These subgroups are normal in G(X ) and form a
descending filtration of the group G(X ), which will equip G(X ) with a topological group structure.
Since

⋂
n Gπn(X ) = 0, G(X) is indeed Hausdorff. This topology induces a Hausdorff topology on

AutK(X,OX) via the injective homomorphism of groups G(X ) −→ AutK(X,OX) which is induced
by the functor rig and we have the following theorem:

Theorem 2.4.4. Let X be a quasi-compact quasi-separated rigid analytic variety over K. Then
for any formal model X of X, the congruence subgroups

Gπn(X )rig for all n ≥ 0

generate a Hausdorff topology on AutK(X,OX) such that AutK(X,OX) is a topological group.
Furthermore, this topology is independent of the choice of a formal model X of X.

Proof. [2, Theorem 3.1.5]

Now let G be a topological group and X be a (general) rigid analytic space over K. The
following definition is due to [2, Definition 3.1.8].

Definition 2.4.5. We say that G acts continuously on X if there is a group homomorphism ρ :
G −→ AutK(X,OX) such that for every quasi-compact quasi-separated admissible open subset U
of X, the following conditions hold:

(a) The stabiliser GU of U is open in G,

(b) The induced group homomorphism ρU : GU −→ AutK(U,OU) is continuous with respect to
the induced topology on GU and the topology on AutK(U,OU) defined in Theorem 2.4.4

The following example is due to [5, Proposition 3.1.12]:

Example 2.4.6. Let X be a flat R-scheme of finite presentation and G be a R-group scheme which
acts on X via ρ : G −→ Aut(X). Let X be the formal completion of X and X := X rig be its generic
fibre. Write G := G(R). Then G acts continuously on X.

2.4.2 The completed skew-group algebra ÙD(X, G)

We begin this section by recalling the notion of Lie-Rinehart algebras and its enveloping algebras,
as introduced in [7]. Let R be a commutative ring and A be a commutative R-algebra. A R-Lie
algebra L is called Lie-Rinehart algebra or an (R,A)-Lie algebra if it is also an A-module equipped
with an A-linear Lie algebra homomorphism ρ : L −→ DerR(A) such that

[x, ay] = a[x, y] + ρ(x)(a)y

for all x, y ∈ L and a ∈ A. Let (L, ρ) be an (R,A)-Lie algebra. The enveloping algebra of L is the
unique associative R-algebra U(L) which comes equipped with the canonical homomorphisms

iA : A −→ U(L) and iL : L −→ U(L)
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satisfying the following universal property: Let S be an associative R-algebra with an R-algebra
homomorphism jA : A −→ S and an R-Lie algebra homomorphism jL : L −→ S such that
jL(ax) = jA(a)jL(x) and [jL(x), jA(a)] = jA(ρ(x)(a)) for any a ∈ A, x ∈ L. Then there is a unique
R-algebra homomorphism ϕ : U(L) −→ S such that ϕ ◦ iA = jA, and ϕ ◦ iL = jL.

Note that if L is smooth over A, which means that L is finitely generated projective as an A-
module, then the morphisms iA and iL are injective. We can therefore identify A and L with its
images in U(L) via these morphisms.

A natural example of an (R,A)-Lie algebra is when L = DerR(A) and ρ is the identity.

It is proven in [26] that if A is a noetherian ring and L is a finitely generated A-module, then
U(L) is a (left and right) noetherian ring.

If ϕ : A −→ B is a morphism of R-algebras, we say that the action of L on A lifts to B if
there exists an A-linear Lie algebra homomorphism σ : L −→ DerR(B) such that for every x ∈ L,
the diagram

A A

B B

ρ(x)

ϕ ϕ

σ(x)

is commutative. If this is the case, then we obtain that (B ⊗A L, 1 ⊗ σ) is an (R,B)-Lie algebra
([7, Lemma 2.2]).

Now, let X be an affinoid K-variety and G be a compact p-adic Lie group which acts continu-
ously on X. Let us fix a G-stable affine formal model A in A := O(X). Let L := DerK(A) denote
the (K,A)-Lie algebra of K-derivations endowed with the natural action of G. An A-submodule L
of L is called G-stable A-Lie lattice in L if it is a finitely presented A-module which spans L as a
K-vector space and is stable under the G-action and the Lie bracket on L.

For such a G-stable A-Lie lattice L, we denote by ’U(L) the π-adic completion of the envelopping

algebra U(L) and write ’U(L)K := ’U(L) ⊗R K. It is proved in [7] that ’U(L)K is an associative
K-Banach algebra.

In the sequel, we suppose in addition that L is smooth as an A-module. This extra condition

ensures that the unit ball of the K-Banach algebra ’U(L)K is isomorphic to ’U(L).

The G-action on L extends naturally on U(L), hence on it π-adic completion ’U(L) and on◊�U(L)K . Thus we may form the skew product ’U(L)K oG. Now, since A is G-stable, the morphism
ρ : G −→ Aut(A) is of image in Aut(A) ⊂ Aut(A). Write

GL := ρ−1(exp(pεL)) ⊂ G.(2.6)

Here ε = 1 of p = 1; ε = 2 if p > 2 and ρ : G −→ Aut(A). Then it is proved ([2, Theorem 3.2.12]
that there is a G-equivariant trivialisation

βL : GL −→’U(L)
×
K
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of the GL-action on ◊�U(L)K . This implies that for any open normal subgroup H of G which is

contained in GL, we may form the quotient ◊�U(L)K oH G as defined in Definition 2.2.3. That is
why we need the following definition (see [2, Definition 3.2.13] for more details):

Definition 2.4.7. Let A be a G-stable affine formal model in A. Then a pair (L, J) is called an
A-trivialising pair if L is a G-stable A-Lie lattice in L and J is an open normal subgroup of G
contained in the subgroup GL of G (which generally depends on L).

The set I(A, ρ,G) of all A-trivialising pairs is a directed poset with respect to the following
order:

(L1, N1) ≤ (L2, N2) iff L2 ⊂ L1 and N2 ⊂ N1.

At this point we can form the completed skew-group algebraÙD(X, G) = lim←−
(L,J)

’U(L)K oJ G,

where (L, J) runs over the set I(A, ρ,G) of A-trivialising pairs.

It is proved in [loc.cite] that this definition is independent of the choice of the formal model A
in A and ÙD(X, G) is equipped with a structure of K-Fréchet algebra.

Since we want to equip ÙD(X, G) with a structure of two-sided Fréchet-Stein algebra, it is necessary
to recall the following definitions:

Definition 2.4.8. ([30, 3]) Let U be a K- Fréchet algebra. Then U is called a (two-sided) Fréchet-
Stein algebra if for any non-negative integer n ≥ 0, there exists a Banach K-algebra Un which is
(two-sided) noetherian together with K-algebra morphisms Un+1 −→ Un such that

(i) The morphisms Un+1 −→ Un are (left and right) flat.

(i) U ∼= lim←−n Un as Fréchet K-algebras.

The following definition will also be necessary:

Definition 2.4.9. Let X be a rigid analytic variety. A pair (U, H) is called small if:

(a) U is an affinoid subdomain of X,

(b) H is an open compact subgroup of the stabilizer GU = {g ∈ G : gU ⊂ U} of U,

(c) T (U) = DerK(O(U)) admits a H-stable free A-Lie lattice for some H-stable formal model
A of O(U).

Here is an example:

Example 2.4.10. Assume that K is algebraically closed. Let us consider the analytification P1,an
K

of the projective K-scheme P1
K . One has that P1,an

K = U0 ∪ U∞, where

U0 = Sp
(
K〈 tw 〉

)
' {x ∈ K, |x| ≤ 1} and U∞ = Sp

(
K〈wt 〉

)
' {y ∈ K : |y| ≤ 1}.

The group G = SL2(K) acts on P1,an
K byÅ

a b
c d

ã
.x = ax+b

cx+d and

Å
a b
c d

ã
.y = c+dy

a+by .
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with a, b, c, d ∈ K, ad− bc = 1, x ∈ U0, y ∈ U∞.
Let I+ be the Iwahori subgroup of G, which is defined as the preimage of the standard Borel subgroup
of SL2(k) in SL2(R) ⊂ G. More precisely

(2.7)

Å
a b
c d

ã
∈ I+ ⇐⇒ a, b, c, d ∈ R, ad− bc = 1, c̄ = 0 ∈ k.

Then

∗ The open affinoid subset U0 is I+-stable. Indeed, let

Å
a b
c d

ã
∈ I+. The condition (2.7) tells

us that a, d ∈ R× and c ∈ mR. So for x ∈ U0, we have cx + d ∈ mR + R× implying that
|cx+ d| = 1. Thus

|ax+ b| ≤ max{|ax|, |b|} ≤ 1 = |cx+ d|.

By consequence, |ax+b
cx+d | ≤ 1, so every element of I+ stablizes U0.

∗ The pair (U0, I
+) is small.

First, we note that I+ ⊂ SL2(R) is an open compact subgroup of SL2(K). We also see that

I+ stabilizes the affine formal model R〈x〉 of O(U0) = K〈x〉. To see this, let

Å
a b
c d

ã
∈ I+

and x ∈ U0, we compute

ax+ b

cx+ d
=

ax+ b

d(d−1cx+ 1)
=
ax+ b

d
.

Ñ∑
i≥0

(−1)i(d−1cx)i

é
.

Here d ∈ R×, as

Å
a b
c d

ã
∈ I+. Thus, ax+b

cx+d ∈ R〈x〉. So for each g ∈ I+ such that g−1 =Å
a b
c d

ã
∈ I+ and f(x) =

∑
i≥0 aix

i ∈ R〈x〉, we obtain that

(gf)(x) = f(g−1x) =
∑
i≥0

ai

Å
ax+ b

cx+ d

ãi
∈ R〈x〉.

This prove that R〈x〉 is a I+-stable affine formal model of O(U0) = K〈x〉.

Next, we note that T (U0) = DerK(O(U0)) = K〈x〉[∂x] and R〈x〉[∂x] is a free R〈x〉- Lie lattice
of T (U0). Let g ∈ I+ and f ∈ R〈x〉, then (g.∂x)(f) = g∂x(g−1f) ∈ R〈x〉 (here ∂x(g−1f)
is a function of R〈x〉, since I+ stabilizes R〈x〉). This proves that R〈x〉[∂x] is I+-stable and
(U0, I

+) is small.

Similarly, one has that the subgroup I− := wI+w with w =

Å
0 1
1 0

ã
∈ SL2(K) stabilizes U∞

and the pair (U∞, I
−) is small.

Definition 2.4.11. Le X be affinoid, A be a G-stable affine formal model in O(X) and L be a
G-stable A-Lie lattice in T (X). A chain (Jn)n∈N of open normal subgroups of G is called a good
chain for L if each pair (πnL, Jn) is an A- trivialising pair for every n ≥ 0.
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Now if (X, G) is small, then the fact that ÙD(X, G) is a Fréchet-Stein K-algebra is guaranteed

and is described as follows. Note that when L is free as a A-module, then the ring ’U(L)K is
noetherian [2, Corollary 4.1.10] (in fact, only the smoothness of L is required here ). Furthermore:

Theorem 2.4.12. [2, Lemma 3.3.4, Theorem 3.4.8] Suppose that (X, G) is small. Then there
exists a G-stable affine formal model A of O(X) and G-stable free A-Lie lattice L such that for
every good chain (Jn) for L, there is a canonical isomorphism of K-algebrasÙD(X, G) ' lim←−

n

ÿ�U (πnL)K oJn G,

where the family {Ÿ�U(πnL)K oJn G}n of noetherian K-Banach algebras gives a Fréchet-Stein struc-

ture on ÙD(X, G).

Remark 2.4.13. Let D(X) = U(O(X)) = U(L)⊗RK be the ring of (global) differential operators
of finite order on X. It follows that there is a canonical group homomorphism

γ : G −→ (ÙD(X, G))×

and a canonical K-algebra homomorphism

ι : D(X) −→ ÙD(X, G).

These are defined as the inverse limit of

γn : G −→ ◊�U(πnL)K oJn G

and of

ιn : D(X) ∼= U(πnL)⊗R K −→ ◊�U(πnL)K oJn G

respectively. Thus, these define a morphism

ιo γ : D(X) oG −→ ÙD(X, G).

Remark 2.4.14. When G is trivial, we obtain the Fréchet-Stein K-algebraÙD(X) = lim←−
n

◊�U(πnL)K

which is introduced in [7].

Notation: Let X be a smooth affinoid variety. Write T = DerK(OX). We denote Xw(T )
the set of all affinoid subdomains of X such that T (U) admits a free A-Lie lattice for some affine
formal model A in O(U).

The correspondence U ∈ Xw(T ) 7−→ ÙD(U, H), with (U, H) small, does not give rise to a sheaf
of K-algebras on the smooth affinoid variety X (except for G trivial, we then obtain the sheafÙDX of infinite order differential operators on X, which is defined in [7]). However, it may de-
fine a presheaf on certain Grothendieck topologies which are generally coarser than the (strong)
Grothendieck topology on X. In order to see this later, we first recall from [2] some important
classes of affinoid subdomains of X.
Let U be an affinoid subdomain of X together with the natural morphism of K-algebras rXU :
O(X) −→ O(U). Fix an affine formal model A of O(X) and an A-Lie lattice L in T (X).
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Definition 2.4.15. (i) An affine formal model B in O(U) is called L-stable if rXU(A) ⊂ B and
the action of L on A lifts to B. If U admits an L-stable affine formal model, then U is said
to be L-admissible.

(ii) Suppose that U is rational. Then U is L-accessible in n-steps if U = X for n = 0 and for
n > 0, there is a chain U ⊂ Z ⊂ X such that

� Z ⊂ X is L-accessible in (n− 1)-steps,

� U = Z(f) or Z(1/f) for some non-zero f ∈ O(Z),

� there is a L-stable affine formal model C ⊂ O(Z) such that L.f ⊂ πC.

(iii) An affinoid subdomain (not necessary rational) U of X is called L-accessible if it is L-
admissible and there is a finite covering U = ∪ri=1 Ui, where each Ui is a L-accessible rational
subdomain of X.

We denote by Xw(L, G) and Xac(L, G) the sets of G-stable affinoid subdomains of X which
are also L-admissible and L-accessible respectively (note that Xac(L, G) ⊂ Xw(L, G)). These sets,
together with the trivial notion of coverings, are Grothendieck topologies on X. If N is a subgroup
of G such that (L, N) is an A-trivialising pair, then following [2, Section 4], we may construct the

presheaf ’U(L)K oN G on Xw(L, G) as follows.

Definition 2.4.16. Let U ∈ Xw(L, G). Then for any choice of a G-stable L-stable affine formal
model B of O(U), we set:

(’U(L)K oN G)(U) := ¤�U(B ⊗A L)K oN G.

It is proved ([2, Proposition 4.3.9]) that this definition is independent of the choice of B and is
a sheaf on the Grothendieck topology Xac(L, G). Furthermore

Proposition 2.4.17. ([2, Theorem 4.3.14]) If L is smooth as an A-module and U ∈ Xac(L, G) is

L-accessible, then the (noetherian) ring (’U(L)KoNG)(U) is (left and right) flat as a ’U(L)KoNG-
module.

This nice property will be important in the next sections of this dissertation. It is also worth
pointing out that given an affinoid subdomain U of X, we may rescale the Lie lattice L, which
means that we may replace L by some πnL for n sufficiently large, so that U becomes a L-accessible
subdomain of X.

2.4.3 Localisation of coadmissible ÙD(X, G)-modules and the category CX /G

First of all, we collect here some basic notations and properties related to coadmissible modules
over Fréchet-Stein algebras.
Let U ∼= lim←−K Un be a Fréchet-Stein K-algebra.

Definition 2.4.18. A left (resp. right) U -module M is called coadmissible if M = lim←−nMn

satisfying the following conditions:

(i) For each n ≥ 0, Mn is a finitely generated left (resp. right) Un-module.

(ii) The natural morphism Un ⊗Un+1 Mn+1 −→Mn is an isomorphism of Un-modules for all n.
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We denote CU (resp. CrU ) the category of coadmissible left (resp. right) U -modules. Remark
that CU is an abelian subcategory of Mod(U) which is stable under extensions (hence is a Serre
subcategory). The same assertion holds for CrU . Below we recall a result which will be used several
times in the next chapters of the thesis:

Proposition 2.4.19. ([30, Lemma 8.4]) Let M be a coadmissible U -module. Then for every i ≥ 0,
the right U -module ExtiU (M,U) is coadmissible and we have the following isomorphism of right
U -modules:

ExtiU (M,U)−̃→ lim←−
n

ExtiUn(Un ⊗U M,U).

Proposition 2.4.20. ([7, Lemma 7.3]
Let U ∼= lim←−n Un and V ∼= lim←−n Vn be Fréchet-Stein K-algebras. Suppose that U −→ V is a con-
tinuous homomorphism. Then for any coadmissible left U -module M = lim←−nMn and coadmissible
right U -module N = lim←−nNn, we have

VÙ⊗UM := lim←−n Vn ⊗U M
∼= lim←−n Vn ⊗Un Mn

and

NÙ⊗UV := lim←−nN ⊗U Vn
∼= lim←−nNn ⊗Un Vn

are coadmissible left and right V -modules and they define completed tensor products of M , N and
V over U , respectively.

Let X be a smooth affinoid K- variety and G be a compact p-adic Lie group acting continuously
on X such that (X, G) is small. Since ÙD(X, G) is a Fréchet-Stein algebra, there is a category

CÙD(X,G)
(resp. CrÙD(X,G)

) of coadmissible left (resp. right) ÙD(X, G)-modules. It is possible to localize

coadmissible (left or right) ÙD(X, G)- modules to obtain G-equivariant sheaves on X ([2, 3.5]). More

concretely, let M ∈ CÙD(X,G)
be a coadmissible left ÙD(X, G)- module, we define a presheaf on the set

Xw(T ) of affinoid subdomains U of X such that T (U) admits a free A-Lie lattice for some affine
formal model A in O(U). Recall ([7, Lemma 9.3] ) that Xw(T ) is a basis for the Grothendieck
topology on X. For each U ∈ Xw(T ), we set

M(U, H) := ÙD(U, H)Ù⊗ÙD(X,H)
M ,

By definition, this is a coadmissible (left) ÙD(U, H)-module. When H runs over the set of open
subgroups of G such that (U,H) is small, all M(U, H) are in bijection and we may form the limit

PX(M)(U) := lim←−
H

M(U, H).

Note that the correspondence PX(M) : U ∈ Xw(T ) 7−→ PX(M)(U) defines a presheaf on Xw(T ).
The G-action on PX(M) is defined as follows. Let g ∈ G. There is a continuous isomorphism of
K- Fréchet algebras ÛgU,H : ÙD(U, H)−̃→ÙD(gU, gHg−1)

which is uniquely defined from the isomorphism of K-algebras

D(U) oH−̃→D(gU) o gHg−1, ah 7−→ gDU(a)ghg−1.
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Here gDU denotes the morphism of K-algebras D(U) −→ D(gU) (the sheaf D is naturally a G-
equivariant sheaf of K-algebras ). This isomorphism together with the group homomorphism γ in
Remark 2.4.13 determines the following isomorphism:

gMU,H : M(U, H) −→M(gU, gHg−1)

aÙ⊗m 7−→ ÛgU,H(a)Ù⊗γ(g)m,

which is linear relatively to ÛgU,H . We then see that there is a G-equivariant structure on PX(M)
which is locally determined by the inverse limit of the maps gMU,H when H runs over all the open
subgroups H of G such that (U, H) is small. Furthermore, one has the following theorem:

Theorem 2.4.21. ([2, Theorem 3.5.8, Theorem 3.5.11])

Let M be a coadmissible left ÙD(X, G)-module. Then PX(M) is a G-equivariant sheaf of DX-modules
on Xw(T ), where DX is the sheaf of algebraic differential operators on X of finite order.

In particular, PX(M) can be extended to a unique sheaf on X, which is denoted by Loc
ÙD(X,G)
X (M),

or simply LocX(M) if there is no ambiguity.

The functor LocX(−) on CÙD(X,G)
is similar to the localisation functor in the classical theory

of DX-modules on complex varieties (see, for example, [14]). It is proved that LocX(−) is indeed
an equivalence of categories between CÙD(X,G)

and the category CX /G of coadmissible G-equivariant

DX-modules, which will be defined below:

Definition 2.4.22. [2, Definition 3.6.7]
Let X be a smooth rigid analytic variety and G be a p-adic Lie group acting continuously on X.

(a) A G-equivariant left DX-module M on X is called locally Fréchet if for each U ∈ Xw(T ),
M(U) is equipped with a K-Fréchet topology and the maps gM(U) :M(U) −→M(gU) are
continuous for any U ∈ Xw(T ) and g ∈ G. Morphisms of G-equivariant locally Fréchet DX-
modules are morphisms of G-equivariant DX-modules whose local sections are continuous with
respect to the Fréchet topologies on the source and the target. The category of G-equivariant
locally Fréchet left DX-modules is denoted by Frech(G−D).

(b) A G-equivariant locally Fréchet DX-module M is called coadmissible if there exists a Xw(T )-
covering U of X satisfying that for every U ∈ U , there is an open compact subgroup H of G
stabilising U and a coadmissible ÙD(U, H)-module M such that one has an isomorphism

LocU (M) 'M |U

of H-equivariant locally Fréchet DU-modules.
The category of coadmissible G-equivariant DX-modules is denoted by CX /G. This is a full
subcategory of Frech(G−DX).

Theorem 2.4.23. [2, Theorem 3.6.11] Suppose that (X, G) is small. Then the functor

LocX : CÙD(X,G)
−→ CX /G

is an equivalence of categories.

Note that the category CrX /G of coadmissible G-equivariant right DX-modules can also be de-
fined similarly and the above theorem still holds for the category CrÙD(X,G)

of coadmissible right
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CHAPTER 2. BACKGROUND MATERIALÙD(X, G)-modules, whenever the functor rLocX(−) on CrÙD(X,G)
is defined. More precisely, let M be

a coadmissible right ÙD(X, G)-module. For each open affinoid subset U ∈ Xw(T ), choose an open
subgroup H ≤ G such that (U, H) is small. Then similarly as above, we define

rPX(M)(U) := lim←−
H

(MÙ⊗ÙD(X,H)
ÙD(U, H)),

where the inverse limit is taken over the set of open compact subgroups H of G such that (U, H)
is small.
By using the same arguments as in [2], we can see that rPX(M) extends to a G-equivariant coad-
missble right DX-module, which is denoted by rLocX(M). The group G acts (locally) on rLocX(M)
as follows: if g ∈ G and (U,H) is small, then g produces an isomorphism of K-modules

gMU,H : MÙ⊗ÙD(X,H)
ÙD(U, H)−̃→MÙ⊗ÙD(X,gHg−1)

ÙD(gU, gHg−1)

mÙ⊗a 7−→ mγ(g−1)Ù⊗ÛgD(a).

Theorem 2.4.24. If (X, G) is small, then the localisation functor rLocX(−) is an equivalence

of categories between the category of coadmissible right ÙD(X, G) modules to the category of G
equivariant coadmissible right DX-modules.

Proof. The proof of [2, Theorem 3.6.11] remains true when applied to the functor rLocX(−).

2.4.4 Side-changing operators

This section is devoted to introducing the side-changing functors. The construction of these func-
tors for coadmissible G-equivariant DX modules is contained in [3]. We are allowed to state here
some important results without giving any explicit proofs.

Recall that in the classical theory of D-modules ([14]), when we work on a smooth complex variety
X of dimension d, the functors

ΩX ⊗OX − and HomOX (ΩX ,−),

were ΩX =: HomOX (∧dOXTX ,OX) is the canonical sheaf on X, are mutually inverse equivalences
between the category of (coherent) left DX -modules and the category of (coherent) right DX -
modules. In the setting of the theory of equivariant D-modules on rigid analytic varieties, we also
want to prove that these functors remain equivalences of categories between left and right coad-
missible equivariant modules.

We first suppose that X = Sp(A) is a smooth affinoid variety of dimension d and G is a com-
pact p-adic group which acts continuously on X such that (X, G) is small. Write L := T (X) and
suppose in addition that L admits a G-stable free A-Lie lattice L for some affine formal model A in
A. The action of G on A defines naturally an action on the right A-module ΩL = HomA(

∧d
A L,A)

as follows. For ω ∈ ΩL and g ∈ G, then ω.g ∈ ΩL is defined by

(2.8) (ω.g)(x1 ∧ ... ∧ xd) = g−1. (ω(gx1 ∧ ....gxd)) .

There is a structure of right U(L)-module on ΩL given by

(2.9) (ω.x)(x1 ∧ .... ∧ xd) = −x(ω(x1 ∧ ... ∧ xd)) +
d∑
i=1

(−1)iω(x1 ∧ ... ∧ [x, xi] ∧ ... ∧ xd)
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where ω ∈ ΩL and x, x1, ..., xd ∈ L.
If M is a left U(L) oG-module. Then there is a structure of right U(L) oG-module on ΩL ⊗AM
which is defined by

(2.10) (ω ⊗m).x = ωx⊗m− ω ⊗ xm

and

(2.11) (ω ⊗m).g = ωg ⊗ g−1m

for all ω ∈ Ω,m ∈ M,x ∈ L and g ∈ G. Similarly, if N is a right U(L) o G-module, then
HomA(ΩL, N) is a left U(L) oG-module determined by the following rules:

(2.12) (x.f)(ω) = f(ωx)− f(ω)x.

and

(2.13) (g.f)(ω) = f(ωg)g−1.

The action of G (2.8) and of U(L) (2.9) on ΩL induce a structure of right U(L)oG-module on ΩL

([3, Lemma 4.1.1]). This action extends naturally to a right action of ’U(L) o G on ΩL, since ΩL

is finitely presented as an A-module, so is π-adically complete. Furthermore, this ’U(L)oG-action

factors through its quotient ’U(L) oH G for any choice of open normal subgroup H of G which is

contained in GL. Therefore, ΩL is a right ’U(L)oHG-module ([3, Lemma 4.1.6]). As a consequence,
it follows that

Ω(X) := HomA(
d∧
A

L,A) ∼= ΩL ⊗K

is a right-’U(L)K oH G-module for every open normal subgroup H ≤ GL of G.

If M is a left ’U(L)K oH G-module and N be a right ’U(L)K oH G-module. Then the right (resp.
left) U(L) o G-module structure on Ω(X) ⊗A M (resp. HomA(Ω(X), N)) induces a right (resp.

left) ’U(L) oH G-module structure on it. Furthermore

Theorem 2.4.25. ([3, Theorem 4.1.12] The functors Ω(X)⊗A− and HomA(Ω(X),−) are mutually
quasi-inverse equivalence of categories between the categories of finitely generated left and right’U(L)K oH G-modules.

Now, let M be a coadmissible ÙD(X, G)-module. Choose a good chain (Jn) for L such thatÙD(X, G) ∼= lim←−
n

◊�U(πnL)K oJn G

Thus M ∼= lim←−nMn, where Mn := (◊�U(πnL)K oJn G) ⊗ÙD(X,G)
M . Since each Ω(X) ⊗A Mn is a

right ◊�U(πnL)K oJn G-module for all n, it is showed that Ω(X) ⊗A M ∼= lim←−n Ω(X) ⊗A Mn and

that Ω(X) ⊗A M is a coadmissible right ÙD(X, G)-module. Similarly, if N is a coadmissible rightÙD(X, G)-module, then HomA(Ω(X), N) is also a coadmissible left ÙD(X, G)-module. In this way,
the functors Ω(X)⊗A − and HomA(Ω(X),−) are equivalences between CÙD(X,G)

and CrÙD(X,G)
- the

categories of coadmissible left and right ÙD(X, G)-modules, respectively.

The result is still true in general and is contained in the following theorem. Let X be a smooth
rigid analytic variety of dimension d and G be a p-adic Lie group which acts continuously on X.
Let
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ΩX = HomOX
(
∧d
OX
T ,OX)

denote the canonical sheaf on X. This is an invertible sheaf of OX-modules.

Theorem 2.4.26. [3, Theorem 4.1.14, 4.1.15]

(i) The functors ΩX ⊗OX
− and HomOX

(ΩX,−) are mutually quasi-inverse equivalences of cat-
egories between CX /G and rCX /G.

(ii) If (X, G) is small. Then the functors Ω(X) ⊗O(X) − and HomO(X)(Ω(X),−) are mutually

inverse equivalences of categories between the category of coadmissible left ÙD(X, G)- modules

and the category of coadmissible right ÙD(X, G) modules. Furthermore, for any coadmissible

left ÙD(X, G)-module M and coadmissible right ÙD(X, G)-module N , there are isomorphisms
of coadmissible G-equivariant DX-modules

rLoc(Ω(X)⊗O(X) M) ' ΩX ⊗OX
Loc(M)

and
Loc(HomO(X)(Ω(X), N)) ' HomOX

(ΩX,
rLoc(N)).
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Chapter 3

Dimension theory for coadmissibleÙD(X, G)-modules

3.1 Review on Auslander-Gorenstein rings

At this point we recall from [17, 19] the notion of an Auslander-Gorenstein ring. Let A be a ring.
Then A is said to be an Auslander-Gorenstein ring (or an AG ring) if it is a two-sided noetherian
ring and satisfies the following conditions:

(AG1) For any noetherian left (or right) A-module M and any i ≥ 0, one has jA(N) ≥ i whenever
N is a right (resp. left) submodule of ExtiA(M,A), where

jA(M) := min{i : ExtiA(M,A) 6= 0}

denotes the grade of M .

(AG2) A has finite left and right injective dimension.

Here the injective dimension of A is defined by the smallest integer n ≥ −1 with the property that
En+1
A (M,A) = 0 for every left (resp. right) A-module M .

Example 3.1.1. The enveloping algebra U(L) of a finite dimensional K-Lie algebra L is Auslander-
Gorenstein of dimension at most dimK L. More generally, it is proved [4, Lemma 4.3] that if L is
a (K − A)-Lie algebra of rank r with A n-Gorenstein (i.e A is of finite self-injective dimension),
then U(L) is Auslander-Gorenstein of dimension at most dimA+ r.

The dimension of a finitely generated module over an AG ring is defined as follows:

Definition 3.1.2. ([17, Section 2]) let R be an AG ring of self-injective dimension n. For any
finitely generated R-module M , the dimension of M is

d(M) := n− j(M)

Motivated by [4, Section 5], in the next section we also want to formulate a dimension theory

for coadmissible ÙD(X, G)-modules. In order to do it, we need to prove that ÙD(X, G) is coadmissibly
Auslander-Gorenstein in the sense of [4, Definition 5.1]. First, let us consider the following lemma,
which is indeed a mild generalisation of [30, Lemma 8.8] to the non-noetherian case but it will play
an important role in the next chapter.
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Lemma 3.1.3. Let R0 −→ R1 be a unital homomorphism of unital rings. (these rings are not
supposed to be noetherian). Suppose that there are units b0 = 1, b1, ..., bm ∈ (R1)× which form a
basis of R1 as a left R0-module and which satisfy:

(i) biR0 = R0bi for any 1 ≤ i ≤ m.

(ii) for any 0 ≤ i, j ≤ m, there is a natural integer k with 0 ≤ k ≤ m such that bibj ∈ bkR0.

(iii) For any 0 ≤ i ≤ m, there is a a natural integer l with 0 ≤ l ≤ m such that b−1
i ∈ blR0.

Then for any (left or right ) R1-module M and (left or right) R0-module N , we have an isomorphism
of R0-modules

HomR1(M,R1 ⊗R0 N)−̃→HomR0(M,N)

f 7−→ p ◦ f,

where p : R1 −→ R0 is the projection map onto the first summand in the decomposition

R1 =

m⊕
i=0

biR0 =

m⊕
i=0

R0bi.

In particular, this induces an isomorphism of (right or left) R0-modules.

ExtiR1
(M,R1 ⊗R0 N) ' ExtiR0

(M,N).

for any integer i ≥ 0.

Proof. The proof is partly similar to [30, Lemma 8.8]. Note that p is R0-linear on both sides.
Indeed, if a ∈ R0 and

∑m
i=0 aibi ∈ R1, one has

. p(a.
∑m

i=0 aibi) = p(
∑m

i=0 aaibi) = aa0 = a.p(
∑m

i=0 aibi)

. p((
∑m

i=0 aibi).a) = p(
∑m

i=0 aibia) = p(
∑m

i=0 aia
′
ibi) = a0a

′
0 = a0a = p(

∑m
i=0 aibi).a,

here a′i ∈ R0 such that a = a′0 and bia = a
′
ibi∀i ≥ 1 , since biR0 = R0bi from (i). Thus the

morphism:

p̃ : R1 ⊗R0 N −→ R0 ⊗R0 N ˜7−→N
b⊗ n 7−→ p(b)⊗ n 7−→ p(b)n

is R0-linear. Now by using a free resolution P . of the R1-module M , which is also a free resolution
of M as a R0-module, we see that the map p̃ induces a map

ExtiR1
(M,R1 ⊗R0 N) = hi(HomR1(P ., R1 ⊗R0 N)) −→ hi(HomR0(P ., N)) = ExtiR0

(M,N).

Therefore, it suffices to show that for any N ∈ Mod(R0) and M ∈ Mod(R1), we have an isomor-
phism

HomR1(M,R1 ⊗R0 N)−̃→HomR0(M,N).

Take a presentation of M by free R1-modules:

RI1 −→ RJ1 −→M −→ 0.
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Since HomR1(−, N) is left exact, we obtain the following commutative diagram:

0 −−−→ HomR1(M,R1 ⊗R0 N) −−−→ HomR1(RJ1 , R1 ⊗R0 N) −−−→ HomR1(RI1, R1 ⊗R0 N)y y y
0 −−−→ HomR0(M,N) −−−→ HomR0(RJ1 , N) −−−→ HomR0(RI1, N)

Hence it is enough to consider the case M = R1 and to prove that

Φ : HomR1(R1, R1 ⊗R0 N)−̃→HomR0(R1, N)

ψ 7−→ p̃ ◦ ψ

This is well-defined since p̃ is R0-linear.

(1). Φ is surjective
If φ : R1 −→ N be an R0-linear map, one defines:

ψ : R1 −→ R1 ⊗R0 N

b 7−→
m∑
i=0

bi ⊗ φ(b−1
i b)

Then

� p̃ ◦ ψ(b) = p̃(
∑m

i=0 bi ⊗ φ(b−1
i b)) =

∑m
i=0 p(bi)φ(b−1

i b) = φ(b), since p(bi) = 0 for i 6= 0.

� ψ is R1-linear. Indeed, if b =
∑m

i=0 aibi with ai ∈ R0 and b′ ∈ R1, one can compute:

ψ(bb′) =
∑
i

bi ⊗ φ(b−1
i bb′) =

∑
j

∑
i

bi ⊗ φ(b−1
i ajbjb

′)

=
∑
j

∑
i

bi ⊗ φ(a
′
jb
−1
i bjb

′) =
∑
j

∑
i

bia
′
j ⊗ φ(b−1

i bjb
′)

=
∑
j

∑
i

ajbi ⊗ φ(b−1
i bjb

′) =
∑
j

(∑
i

ajbjb
−1
j bi ⊗ φ(b−1

i bjb
′)

)
=
∑
j

ajbjψ(b′) = bψ(b′).

Here, thanks to (ii) and (iii), we have ψ(b′) =
∑

i bi ⊗ φ(b−1
i b′) =

∑
i bjbi ⊗ φ(b−1

i bjb
′).

Therefore ψ is R1-linear. This implies that ψ ∈ HomR1(R1, R1 ⊗R0 N) and Φ is surjec-
tive.

(2). Φ is injective.
First, let us prove that if ψ : R1 −→ R1 ⊗R0 N is an R1-linear map, then

ψ(b) =

m∑
i=0

bi ⊗ (p̃ ◦ ψ)(b−1
i b).

Indeed, suppose that ψ(b) =
∑

i bi ⊗ ni, with ni ∈ N for all i. ( recall that R1 ⊗R0 N '⊕
i biR0 ⊗R0 N '

⊕
i bi ⊗N), then

ψ(b−1
i b) = b−1

i ψ(b) =
∑
j

b−1
i bj ⊗ nj .
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Thus,
m∑
i=0

bi ⊗ p̃ ◦ ψ(b−1
i b) =

m∑
i=0

bi ⊗
m∑
j=0

p(b−1
i bj)nj =

m∑
i=0

bi ⊗ ni = ψ(b).

Consequently, if Φ(ψ) = 0 ⇐⇒ p̃ ◦ ψ = 0 → ψ(b) = 0 for all b. This implies that Φ is
injective.

Proposition 3.1.4. Let R0, R1 be two rings which satisfy the assumptions in the above lemma. If
a (left or right) R1-module N is injective, then N is also injective as R0-module. Moreover

(i) injdim(R0) = injdim(R1),

(ii) ExtiR1
(N,R1) ' ExtiR0

(N,R0) and jR1(N) = jR0(N),

(iii) If R0, R1 are noetherian and if R0 is Auslander-Gorenstein, then so is R1.

Proof. Suppose that N is an injective R1-module. By assumption, R1 is free over R0 on both sides,
so it is flat as a left and right R0-module. Moreover,

HomR0(M,N) ' HomR1(R1 ⊗R0 M,N)

for any M ∈Mod(R0). By consequence, N is also injective as an R0-module.
Now (ii) is a direct consequence of Lemma 3.1.3 while (iii) can be proved by using (i) and (ii), it
remains to prove (i).
If 0 −→ R0 −→ I · is an injective resolution of R0 , then it follows from Lemma 3.1.3 that if M is
an R1-module, then HomR1(M,R1⊗R0 I

k) ' HomR0(M, Ik) for any component Ik of the complex
I .. Thus R1 ⊗R0 I

k is an injective R1-module for all k. This proves that 0 −→ R1 −→ R1 ⊗R0 I
· is

an injective resolution of R1 by R1-modules. Therefore

injdim(R1) ≤ injdim(R0).

It remains to prove that injdim(R0) ≤ injdim(R1). Suppose that injdim(R1) = n < ∞, so we
need to prove that injdim(R0) ≤ n. This is equivalent to

Extn+1
R0

(N,R0) = 0 for any N ∈Mod(R0).

Notice that

Extn+1
R0

(N,R0)⊗R0 R1 ' Extn+1
R1

(R1 ⊗R0 N,R1).

Since n = injdim(R1), one has Extn+1
R1

(R1⊗R0N,R1) = 0 implying that Extn+1
R0

(N,R0)⊗R0R1 = 0.
On the other hand, R1 is a free R0-module on both sides, thus R1 is faithfully flat over R0 on both
sides. As a result, Extn+1

R0
(N,R0) = 0 which proves that injdim(R0) ≤ n = injdim(R1).

Now, as an application of the above lemma, let us consider the following example which will
be important for the next chapter. Suppose that X = Sp(A) is a smooth affinoid K-variety for a
K-affinoid algebra A and G is a compact p-adic Lie group which acts continuously on X such that
(X, G) is small. We assume the following extra conditions:

∗ H is an open normal subgroup of G,
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∗ A is a G-stable affine formal model in A,

∗ (L, J) is an A-trivialising pair such that J ≤ H.

Then Lemma 3.1.3 and Proposition 3.1.4 can be partially applied to the case where R1 =’U(L)K oJ G and R0 = ’U(L)K oJ H as follows:

Lemma 3.1.5. The natural morphism of rings ’U(L)KoJH −→’U(L)KoJG satisfies the conditions

(i), (ii), (iii) of Lemma 3.1.3. In particular, this induces a two-sided ’U(L)K oJ H linear map

(3.1) pXG,H,J : ’U(L)K oJ G −→’U(L)K oJ H.

Proof. Following [2, Lemma 2.2.6], the ring ’U(L)K oJ G is isomorphic to (’U(L)K oJ H)oH G and

the later is isomorphic to the crossed product (’U(L)K oJ H) ∗ G/H ([2, Lemma 2.2.4]). On the
other hand, since G is a compact p-adic Lie group and H (resp. J) is open in G, it follows that
the group G/H is finite. Therefore, if we denote by S = {1 = g1, g2, ..., gm} the representatives of

the right cosets of H in G, then ’U(L)K oJ G is freely generated over ’U(L)K oJ H by the image

S̄ = {ḡ1, ..., ḡm} of S in ’U(L)K ∗G/J [20, Lemma 5.9(i) ]. In particular, ’U(L)K oJ H is a subring

of ’U(L)K oJ G.

Now we check that the injective map ’U(L)K oJ H −→ ’U(L)K oJ G satisfies the conditions

(i), (ii), (iii) in Lemma 3.1.3. Write R0 = ’U(L)K oJ H and R1 = ’U(L)K oJ G. Then R1 is
freely generated on R0 by S̄. By definition of crossed product, one has

(i) ḡiR0 = R0ḡi.

(ii) ḡiḡjR0 = ¯gigjR0. Furthermore, the set G/H is finite whose each element is represented by
an element of S. This implies that there exists k, l such that ḡiḡj ∈ ḡkR0 and ḡ−1

i ∈ ḡlR0.

By consequence, this provides a two-sided (’U(L)K oJ H)-linear map

pXG,H,J : ’U(L)K oJ G −→’U(L)K oJ H

as claimed.

Remark 3.1.6. Let H = {1} be the trivial subgroup of G. By the same reason as above, the

injection ’U(L)K −→’U(L)K oJ G also satisfies Lemma 3.1.3, since ’U(L)K oJ G ∼= ’U(L)K ∗G/J.

Proposition 3.1.7. Suppose that (X, G) is small and H be an open normal subgroup of G. The

ring ÙD(X, G) is freely generated over ÙD(X, H) with basis satisfying the conditions (i), (ii), (iii) of
Lemma 3.1.3.

Proof. By taking the inverse limit of the morphisms pXG,H,J in Lemma 3.1.5 when (L, J) runs over

the set of all A-trivialising pairs , we see that ÙD(X, G) is freely generated as ÙD(X, H) module by

the image S̃ = {g̃1, g̃2, .., g̃m} of S in ÙD(X, G) which defines a two-sided ÙD(X, H)-linear map

pXG,H : ÙD(X, G) −→ ÙD(X, H)(3.2)
m∑
i=1

aig̃i 7−→ a0.
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Corollary 3.1.8. (i) The maps pXG,H and pXG,H,J fit into a commutative diagramÙD(X, G) ÙD(X, H)’U(L)K oJ G ’U(L)K oJ H,

pXG,H

qG,J qH,J

pXG,H,J

where qG,J : ÙD(X, G) −→ ’U(L)K oJ G and qH,J : ÙD(X, H) −→ ’U(L)K oJ H denote the

canonical maps induced from the definition of ÙD(X, G) and ÙD(X, H) respectively.

(ii) If U ∈ Xw(T ) is such that (U, G) is small, then the diagramÙD(X, G) ÙD(X, H)ÙD(U, G) ÙD(U, H)

pXG,H

rUG rUH

pUG,H

is commutative.

Proof. The statement (i) is evident from definition. To show (ii), let us fix a G-stable free A-Lie
lattice L in T (X) for some G-stable affine formal model A of A. By rescaling L if necessary, we
may assume that U is L-admissible [7, Lemma 7.6]. Under this assumption, [2, Proposition 4.3.6]
showed that L′ := B⊗A L is a G-stable B-Lie lattice in T (U) for any choice of a G stable L-stable
affine formal model B in O(U). This is even free as B-module. Let J ≤ GL be an open normal
subgroup of G such that (L, J) and (L′, J) are trivialising pairs (this is thanks to [2, Proposition
4.3.6]). By definition, it is enough to show that the diagram’U(L)K oJ G ’U(L)K oJ H’U(L′)K oJ G ’U(L′)K oJ H

pXG,H,J

rUG,J rUH,J

pUG,H,J

is commutative.
Note that J is of finite index in G and in H, so that we can choose a set of representatives 1 =
g1, g2, ..., gm, ..., gn (m ≤ n) of G modulo J such that G/J = {ḡ1, ..., ḡn} and H/J = {ḡ1, ḡ2, ...ḡm}.
Therefore ’U(L)K oJ G '’U(L)K ∗G/J = {

∑n
i=1 aiḡi : ai ∈’U(L)K}

and ’U(L)K oJ H '’U(L)K ∗H/J = {
∑m

i=1 aiḡi : ai ∈’U(L)K}.
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Notice that here we identified each ḡi ∈ G/J with its image in ’U(L)K ∗ G/J . Furthermore, these
formulas still hold when we replace L by L′. Thus

rUH,J ◦ pXG,H,J(

n∑
i=1

aiḡi) = rUH,J(

m∑
i=1

aiḡi) =

m∑
i=1

ãiḡi

and

pUG,H,J ◦ rUG,J(

n∑
i=1

aiḡi) = pUG,H,J(

n∑
i=1

ãiḡi) =

m∑
i=1

ãiḡi.

Here for each i, ãi denotes the image of ai in ’U(L′)K via the canonical morphism ’U(L)K −→’U(L′)K . This proves that the diagram is commutative.

We end this section by giving an important result:

Corollary 3.1.9. Suppose that (X, G) is small with dimX = d and that the A-Lie lattice L is

smooth as an A-module. Then there exist m ≥ 0 such that the ring ◊�U(πnL)KoJnG is an Auslander-
Gorenstein ring of dimension at most 2d for any n ≥ m and for any open normal subgroup Jn of
G which is contained in GπnL.

Proof. Following [4, Theorem 4.3], there exists m ≥ 0 such that the ring ÷U(πnL)K is Auslander-
Gorenstein of dimension at most 2d for all n ≥ m. Thanks to Proposition 3.1.4 and Remark 3.1.6

it follows that ◊�U(πnL)K oJ G is Auslander-Gorenstein of dimension at most 2d.

3.2 Dimension theory for coadmissible ÙD(X, G)-modules

Recall from [4, Section 5.1] that a two-sided Fréchet-Stein algebra U ' lim←−n Un is called coadmis-
sibly Auslander-Gorenstein (or c-Auslander-Gorenstein) of dimension at most d if each Un is
an Auslander-Gorenstein ring with self-injective dimension at most d for a non negative integer d.

Theorem 3.2.1. Let X = Sp(A) be a smooth affinoid variety of dimension d and G be a compact
p-adic Lie group acting continuously on X such that (X, G) is small. Then the Fréchet-Stein

K-algebra ÙD(X, G) is coadmissibly Auslander-Gorenstein of dimension at most 2d.

Proof. We may choose a G-stable affine formal model A in A and a G-stable free A-Lie lattice L
in L = DerK(A) and a good chain (Jn) for L such thatÙD(X, G) ' lim←−

n

÷U(πnL)K oJn G.

By Corollary 3.1.9, there exists m ≥ 0 such that the ring ÷U(πnL)K oJn G is Auslander-Gorenstein
of dimension at most 2d for each n ≥ m, so that the theorem follows.

Definition 3.2.2. Let M be a non-zero (left or right) coadmissible ÙD(X, G)-module. The dimension
of M is defined by:

dG(M) := 2d− jG(M),

where jG(M) = min{i | ExtiÙD(X,G)
(M, ÙD(X, G)) 6= 0} is the grade of M as a ÙD(X, G)-module.

Convention: If M is zero, we set dG(M) = 0.
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Remark 3.2.3. (i) Choose a G-stable affine model A and a G-stable free A-Lie lattice L as in

Theorem 3.2.1. Write Dn := ÷U(πnL)K oJn G. Then for any M ∈ CÙD(X,G)
, one has that

(Proposition 2.4.19):

ExtiÙD(X,G)
(M, ÙD(X, G)) ∼= lim←−

n

ExtiDn(Dn ⊗ÙD(X,G)
M,Dn).

It follows that there exists n sufficiently large such that jG(M) = jDn(Dn ⊗ÙD(X,G)
M) ≤ 2d.

By consequence 0 ≤ dG(M) ≤ 2d.

(ii) If H be an open subgroup of G, then there exists an open normal subgroup N of G which is
contained in H ([2], Lemma 3.2.1). Thus N is of finite index in G. MoreoverÙD(X, G) ' ÙD(X, N) oN G ' ÙD(X, N) ∗G/N.

Then the ÙD(X, G)-module M is also coadmissible as ÙD(X, N)-module. Therefore dG(M) =
dN (M) by Proposition 3.1.4(ii). The same assertion holds for H, so that

dG(M) = dH(M) = dN (M).

For this reason, we will write d(M) instead of dG(M) for simplicity.

Proposition 3.2.4. Let

0 −→M1 −→M2 −→M3 −→ 0

be an exact sequence of coadmissible ÙD(X, G)-modules. Then

d(M2) = max{d(M1), d(M3)}.

Proof. Suppose that ÙD(X, G) ∼= lim←−
n

÷U(πnL)K oJn G

for a G-stable free Lie lattice L of DerK(O(X)) and a good chain (Jn) for L. Write ÙD := ÙD(X, G)

and Dn := ÷U(πnL)K oJn G. Note that there exists an integer m such that for every i and n ≥ m,
one has that (Remark 3.2.3(i)):

jÙD(Mi) = jDn(Dn ⊗ÙDMi)

Since ÙD −→ Dn is a flat morphism ([30, Remark 3.2]), it follows that the sequence

0 −→ Dn ⊗ÙDM1 −→ Dn ⊗ÙDM2 −→ Dn ⊗ÙDM3 −→ 0

is exact. Now applying [19, Proposition 4.5(ii)] gives the result.

Example 3.2.5. The ÙD(X, G)-module ÙD(X, G) is of dimension 2d. Indeed

HomÙD(X,G)
(ÙD(X, G), ÙD(X, G)) ∼= ÙD(X, G).

Hence j(ÙD(X, G)) = 0, so that d(ÙD(X, G)) = 2d. Similarly, the free ÙD(X, G)-module ÙD(X, G)n of
rank n ≥ 1 is of dimension 2d.
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A non-trivial example is given by the following proposition:

Proposition 3.2.6. Let X be a smooth affinoid variety of dimension d and P ∈ D(X) be a regular

differential operator (P is not a zero divisor of D(X)). Then the coadmissible left ÙD(X, G)-module

M = ÙD(X, G)/ÙD(X, G)P

is of dimension d(M) ≤ 2d− 1.

Proof. Write D := D(X) and ÙD := ÙD(X, G). Choose a G-stable free A-Lie lattice of DerK(O(X))
for somme G-stable affine formal model A in O(X). ThenÙD ∼= lim←−

n

◊�U(πnL)K oJn G

is a Fréchet-Stein structure on ÙD. Write Dn := ◊�U(πnL)K oJn G, then

M ∼= lim←−
n

Dn/DnP.

Thus there is a n ≥ 0 such that d(M) = d(Dn/DnP ). Furthermore, one has that

Dn/DnP ∼= Dn ⊗D D/DP.

The ring Dn is flat as a right D-module. It follows that:

ExtiD(D/DP,D)⊗D Dn
∼= ExtiDn(Dn ⊗D D/DP,Dn).

As a consequence, we obtain the inequality dDn(Dn/DnP ) ≤ dD(D/DP ). Now, since P is regular in
D, the dimension of the leftD-moduleD/DP can not be 2d (otherwise one has that jD(D/DP ) = 0,
so HomD(D/DP,D) = {Q ∈ D : PQ = 0} 6= 0, contradiction). So the proposition follows.

3.3 Left-right comparison

Let X be an affinoid variety and G a p-adic Lie group acting continuously on X and such that
(X, G) is small. Recall that the functors

Ω(X)⊗O(X) − : CÙD(X,G)
−→ CrÙD(X,G)

M 7−→ Ω(X)⊗O(X) M

and

HomO(X)(Ω(X),−) : CrÙD(X,G)
−→ CÙD(X,G)

N 7−→ HomO(X)(Ω(X), N)

are mutually quasi-inverse equivalences between the categories of left and right coadmissible ÙD(X, G)-

modules. Having these side-changing operators for coadmissible ÙD(X, G)-modules at hand, we
can now state the following proposition, which is about preservation of dimension of coadmissibleÙD(X, G)-modules under these functors.
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Proposition 3.3.1. Let M be a coadmissible left ÙD(X, G)-module. Then there is an isomorphism

of left ÙD(X, G)-modules

ExtiÙD(X,G)
(Ω(X)⊗O(X) M, ÙD(X, G)) ' HomO(X)(Ω(X), ExtiÙD(X,G)

(M, ÙD(X, G))).

In particular, d(M) = d(Ω(X)⊗O(X) M).

Proof. The proof uses the same arguments as in [4, Lemma 5.2]. Write A = O(X), Ω :=

Ω(X), ÙD := ÙD(X, G). Then the left hand side is exactly the i-th cohomology of the complex

RHomÙD(Ω ⊗L
A M, ÙD), as Ω is a projective A-module. Now, the right hand side is the i-th coho-

mology of RHomA(Ω, RHomÙD(M, ÙD)). Now, using the derived tensor-Hom adjunction gives the
first part of the Proposition.
For the second part, note that since Ω is a finitely generated projective A-module, one has

HomA(Ω, ExtiÙD(M, ÙD)) ∼= Ω∗ ⊗A ExtiÙD(M, ÙD)),

where Ω∗ = HomA(Ω, A) is its dual. Thus, if HomA(Ω, ExtiÙD(M, ÙD)) = 0, then

ExtiÙD(M, ÙD) ∼= (Ω⊗A Ω∗)⊗A ExtiÙD(M, ÙD)) ∼= Ω⊗A HomA(Ω, ExtiÙD(M, ÙD)) = 0.

Here, Ω⊗A Ω∗ ∼= A, as Ω is an invertible A-module. By consequence, ExtiÙD(M, ÙD) = 0 if and only

if HomA(Ω, ExtiÙD(M, ÙD)) = 0 and hence d(M) = d(Ω(X)⊗M).
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Chapter 4

Dimension theory for coadmissible
equivariant D-modules

4.1 Modules over the sheaf of rings Q

This section may be considered as a stepping stone to defining the ’Ext functors’ Ei in the next
section.

Let X be a smooth affinoid variety of dimension d and G be a compact p-adic Lie group acting
continuously on X. Fix a G-stable affine formal model A in A = O(X), a G-stable A-Lie lattice L
of T (X) = DerK(A) and an open normal subgroup J of G which is contained in GL (which means
that (L, J) is an A-trivialising pair).

Notation: Throughout this section, we will be working under the following notations and as-
sumptions:

∗ L is a smooth A-module, which means that L is projective and finitely generated over A.

∗ When H is an open subgroup of G, Xw(T )/H denotes the set of all open affinoid subsets
U ∈ Xw(T ) such that (U, H) is small. If U ∈ Xw(T )/H, then H is called an U-small
subgroup of G.

∗ Xw(L, G) denotes the set of G-stable L-admissible affinoid subdomains of X,

∗ Xac(L, G) denotes the set of G-stable L-accessible affinoid subdomains of X.

Note that Xac(L, G) ⊂ Xw(L, G) are Grothendieck topologies on X with respect to the usual
notion of coverings. Recall from Definition 2.4.16 the presheaf of rings on Xw(L, G)

Q(−, G) := ’U(L)K oJ G

It is proved ([2, Corollary 4.3.12]) that Q(−, G) is a sheaf on the Grothendieck topology
Xw(L, G). Note that if H ≤ G is an open compact subgroup of G and J is contained in GL ∩H,
then Q(−, H) is also a sheaf on the Grothendieck topology Xw(L, H) containing all the H-stable
L-admissible affinoids subdomains of X. In the sequel, if there is no ambiguity, we denote Q(−, G)
simply by Q whenever the groups G and J are given. The fact that Q is a sheaf on Xac(X, G)
allows us to give the following definitions:
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Definition 4.1.1. Let M be a finitely generated Q(X)-module. Then there is a presheaf LocQ(M)
on Xac(L, G) associated to M which is defined as follows:

LocQ(M)(Y) := Q(Y)⊗Q(X) M

for all Y ∈ Xac(L, G).

Following [5, Corollary 4.3.19], under the extra assumption on L that [L,L] ⊂ πL and L.A ⊂
πA, then LocQ(M) is a sheaf of Q-modules on Xac(L, G) for every finitely generated Q(X)-module
M .

Definition 4.1.2. Let U be a Xac(L, G)-covering of X. Then a Q-module M on Xac(L, G) is said
to be U-coherent if for any Y ∈ U , there exists a finitely generated Q(Y )-module M such that

LocQ|Y (M) ∼=M|Y ,

where Y := Xac(L, G) ∩Yw.

It is proved in [2, Theorem 4.3.21] that if [L,L] ⊂ πL, L.A ⊂ πA, then for any U-coherent
sheaf of Q-modules M, M(X) is a finitely generated Q(X)-module and we have an isomorphism
of Q-modules

LocQ(M(X))−̃→M.

In the following, we fix:

∗ U is a Xac(L, G)-covering of X.

∗ M is a U-coherent sheaf of Q-modules on Xac(L, G).

Proposition 4.1.3. Let H be an open normal subgroup of G. There is an isomorphism of right
Q(X, H)-modules

piG,H(X) : ExtiQ(X,G)(M(X),Q(X, G))−̃→ExtiQ(X,H)(M(X),Q(X, H)).

Furthermore, if H ′ ≤ H is another open normal subgroup of G, then one has

piH,H′(X) ◦ piG,H(X) = piG,H′(X).

Proof. Write M := M(X). The first part of the proposition is in fact a consequence of Lemma
3.1.3 and Lemma 3.1.5. Recall that when i = 0, then

pG,H(X)(f) := p0
G,H(X)(f) = pXG,H ◦ f,

for f ∈ HomQ(X,G)(M,Q(X, G)), where pXG,H is the projection map Q(X, G) −→ Q(X, H) which
is defined in Lemma 3.1.3. For the second part, if H ′ ≤ H are open normal subgroups of G, then
both H and H ′ are of finite index in G and H ′ is of finite index in H (since G is compact). Hence
we can choose a Q(X, H ′)-basis {1 = g1, g2, ..., gm, ..., gn} of Q(X, G) such that {g1, ..., gm} is a
basis of Q(X, H) as a Q(X, H ′)-module. Then by definition

pXG,H′(a1g1 + a2g2 + ...+ amgm + ...+ angn) = a1

and

pXH,H′ ◦ pXG,H(a1g1 + a2g2 + ...+ amgm + ...+ angn) = pXH,H′(a1g1 + a2g2 + ...+ amgm) = a1
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This implies pXG,H′ = pXH,H′ ◦ pXG,H . Therefore pH,H′(X) ◦ pG,H(X) = pG,H′(X), which means that

the assertion is true for i = 0. For i > 0, it follows from the definition of piG,H(X) that after
taking a resolution of M by free Q(X, G)-modules of finite rank, the case i > 0 reduces to the case
i = 0.

Lemma 4.1.4. Let ϕ : A −→ B be a flat morphism of rings and M be a finitely presented A-module.
There is an isomorphism of right B-modules

ExtiA(M,A)⊗AB −→ ExtiB(B⊗AM,B).

Proof. Let P . be a resolution of M by free A-modules of finite rank. Since B is flat over A, one
has that B ⊗A P . is also a resolution of B ⊗A M by free B-modules. So it is enough to consider
the case where i = 0. For this we define

HomA(M,A)⊗AB −→ HomB(B⊗AM,B)

f ⊗ a 7−→ fa.

Here, fa ∈ HomB(B⊗AM,B) is defined as follows: fa(b⊗m) := bϕ(f(m))a ∈ B for any b ∈ B,m ∈
M . This map is an isomorphism when M = A and also for general M since we can apply the Five
lemma using the fact that M is finitely presented as an A-module.

Proposition 4.1.5. Let U ∈ Xac(L, G). There is a morphism of right Q(X, G)-modules

τ iX,U,G : ExtiQ(X,G)(M(X),Q(X, G))→ ExtiQ(U,G)(M(U),Q(U, G)).

Proof. Denote M :=M(X). Then

M(U) ∼= Q(U, G)⊗Q(X,G) M.

Since U is L-accessible, the morphism

Q(X, G) −→ Q(U, G)

is flat (Proposition 2.4.17). Now applying Lemma 4.1.4 gives

ExtiQ(U,G)(M(U),Q(U, G)) ∼= ExtiQ(X,G)(M,Q(X, G))⊗Q(X,G) Q(U, G).

By consequence, we obtain the natural morphism of right Q(X, G)-modules:

τ iX,U,G : ExtiQ(X,G)(M(X),Q(X, G))→ ExtiQ(U,G)(M(U),Q(U, G)).

Proposition 4.1.6. Let H be a normal open subgroup of G and U ∈ Xac(L, G). Then the following
diagram is commutative:

(4.1)

ExtiQ(X,G)(M(X),Q(X, G)) ExtiQ(X,H)(M(X),Q(X, H))

ExtiQ(U,G)(M(U),Q(U, G)) ExtiQ(U,H)(M(U),Q(U, H))

piG,H(X)

τ iX,U,G τ iX,U,H
piG,H(U)
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Proof. Write M :=M(X). Then LocQ(M) ∼=M. It follows that

M(U) ∼= Q(U, G)⊗Q(X,G) M ∼= Q(U, H)⊗Q(X,H) M.

Now take a resolution P . of M by free Q(X, G)-modules of finite rank. Since U ∈ Xac(L, G)
is supposed to be L-accessible, the ring Q(U, G) is flat over Q(X, G) (Proposition 2.4.17). This
implies that Q(U, G) ⊗Q(X,G) P

. is also a free resolution of Q(U, G) ⊗Q(X,G) M ∼=M(U). Hence
it reduces to prove that for any Q(X, G)-module P , the following diagram is commutative:

HomQ(X,G)(P,Q(X, G)) HomQ(X,H)(P,Q(X, H))

HomQ(U,G)(Q(U, G)⊗Q(X,G) P,Q(U, G)) HomQ(U,H)(Q(U, H)⊗Q(X,H) P,Q(U, H)).

pG,H(X)

pG,H(U)

This means that the diagram

Q(X, G) Q(X, H)

Q(U, G) Q(U, H)

pXG,H

pUG,H

is commutative, which is already proven in Corollary 3.1.8(ii).

4.2 The ’Ext-functor’ on the category CX /G

Let X be a smooth rigid analytic space and G be a p-adic Lie group acting continuously on X. For
each non negative integer i ∈ N, we will construct so-called ”Ext-functor” Ei from coadmissible G-
equivariant left DX-modules to coadmissible G-equivariant right DX-modules. LetM∈ CX /G be a
coadmissibleG-equivariantDX-module. Then as usual, locally we want Ei(M)(U) to be isomorphic

to ExtiÙD(U,H)
(M(U), ÙD(U, H)) for every open affinoid subset U ∈ Xw(T ) and open subgroup

H ≤ G such that (U, H) is small. As in [2], we would like that this definition is independent of the
choice of the subgroup H. That is why we take into account the following proposition:

Proposition 4.2.1. Suppose that X is a smooth affinoid variety and G is such that (X, G) is

small and H is an open normal subgroup of G. Then for any left ÙD(X, G)-module M , there is an

isomorphism of right ÙD(X, H)-modules:ÛpiG,H(X) : ExtiÙD(X,G)
(M, ÙD(X, G))−̃→ExtiÙD(X,H)

(M, ÙD(X, H)).

Furthermore, if H ′ ≤ H is another open normal subgroup of G, then one hasÛpiH,H′(X) ◦ ÛpiG,H(X) = ÛpiG,H′(X).

Proof. Since Lemma 3.1.3 holds for the morphism of rings ÙD(X, H) −→ ÙD(X, G) (Proposition
3.1.7), the proof of this proposition uses exactly the same arguments as in the proof of Proposition
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4.1.3. We just write down here the definition of ÛpiG,H(X). Let P . be a resolution of M by freeÙD(X, G)-modules. Then ÛpiG,H(X) is determined by taking the i − th-cohomology of the following
isomorphism of complexes:

HomÙD(X,G)
(P ., ÙD(X, G)) −→ HomÙD(X,H)

(P ., ÙD(X, H))

f . 7−→ pXG,H ◦ f .

In particular, when i = 0 then for every f ∈ HomÙD(X,G)
(M, ÙD(X, G)), one hasÛpG,H(X)(f) := Ûp0

G,H(X)(f) := pXG,H ◦ f.

Here we recall that pXG,H is the projection map

pXG,H : ÙD(X, G) −→ ÙD(X, H)
m∑
i=0

aiḡi 7−→ a0,

where ḡ0, ..., ḡm denote the images of the set of cosets G/H (which is finite) in ÙD(X, G).

Let (X, G) be small as above and M be a coadmissible (left) ÙD(X, G)-module. Suppose that
H ≤ G is an open normal subgroup of G. Let us choose a G-stable free A-Lie lattice L for some
G-stable affine formal model A in O(X) and a good chain (Jn) for this Lie lattice such that Jn ≤ H
for any n. Then we may form the sheaves of rings

(4.2) Qn(−, G) = ◊�U(πnL)K oJn G, and Qn(−, H) = ◊�U(πnL)K oJn H

on Xac(L, G) and Xac(L, H) respectively. HenceÙD(X, G) ' lim←−nQn(X, G) and ÙD(X, H) ' lim←−nQn(X, H).

Thus the projection map (3.2) : pXG,H : ÙD(X, G) −→ ÙD(X, H) is defined as the inverse limit

of the maps (3.1) pXG,H,n : Qn(X, G) −→ Qn(X, H). Suppose that M ∼= lim←−nMn with Mn =
Qn(X, G)⊗ÙD(X,G)

M , which is finitely generated over Qn(X, G). Then following Proposition 4.1.3

for every n, there is also an isomorphism of Dn(X, H)-modules

piG,H,n(X) : ExtiQn(X,G)(Mn,Qn(X, G))−̃→ExtiQn(X,H)(Mn,Qn(X, H)).

We will see right below that ÛpiG,H(X) is in fact isomorphic to the inverse limit of the morphisms

piG,H,n(X).

Lemma 4.2.2. There is a commutative diagram

ExtiÙD(X,G)
(M, ÙD(X, G)) ExtiÙD(X,H)

(M, ÙD(X, H))

ExtiQn(X,G)(Mn,Qn(X, G)) ExtiQn(X,H)(Mn,Qn(X, H)).

ÛpiG,H(X)

piG,H,n(X)

In particular, this implies that ÛpiG,H(X) equals to the inverse limit of the maps piG,H,n(X).
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Proof. Note that ÙD(X, G) (which is finitely freely generated as a ÙD(X, H)-module ) is a coadmissibleÙD(X, H)-module. It follows that M is coadmissbile as a ÙD(X, H)-module, so that

ExtiÙD(X,G)
(M, ÙD(X, G)) ∼= lim←−

n

ExtiQn(X,G)(Mn,Qn(X, G))

and
ExtiÙD(X,H)

(M, ÙD(X, H)) ∼= lim←−
n

ExtiQn(X,H)(Mn,Qn(X, H)).

[30, Lemma 8.4]. These isomorphisms give the definitions of the two vertical arrows of the diagram
in the lemma.
For any ÙD(X, G)-module P (which is not necessary coadmissible), we have an isomorphism of
Qn(X, H)-modules

Qn(X, G)⊗ÙD(X,G)
P ' (Qn(X, H)⊗ÙD(X,H)

ÙD(X, G))⊗ÙD(X,G)
P ' Qn(X, H)⊗ÙD(X,H)

P.

Now, let P . →M → 0 be a projective resolution of M by free ÙD(X, G)-modules. Since ÙD(X, G)

is free over ÙD(X, H) on both sides, P . is also a projective resolution of M in Mod(ÙD(X, H)).

Moreover, it is proved [30, Remark 3.2] that the canonical maps ÙD(X, G) → Qn(X, G) andÙD(X, H) → Qn(X, H) are right flat, so that Qn(X, G) ⊗ P and Qn(X, H) ⊗ P are projective
resolutions of Qn(X, G) ⊗M and Qn(X, H) ⊗M , respectively. Thus, by definitions of ÛpiG,H(X)

and piG,H,n(X) it suffices to show that for any ÙD(X, G) -module P , the diagram

HomÙD(X,G)
(P, ÙD(X, G)) HomÙD(X,H)

(P, ÙD(X, H))

HomQn(X,G)(Qn(X, G)⊗ÙD(X,G)
P,Qn(X, G)) HomQn(X,H)(Qn(X, H)⊗ÙD(X,H)

P,Qn(X, H))

pXG,H◦

id⊗̄− id⊗̄−
pXG,H,n◦

is commutative. (Note that, for every f ∈ HomÙD(X,G)
(P, ÙD(X, G)), the map

id⊗̄f ∈ HomQn(X,G)(Qn(X, G)⊗ÙD(X,G)
P,Qn(X, G))

is defined by (id⊗̄f)(a⊗m) = af(m) with a ∈ Qn(X, G), m ∈ P ). This reduces to show that the
diagram ÙD(X, G) ÙD(X, H)

Qn(X, G) Qn(X, H)

pXG,H

pXG,H,n

is commutative. Now the proof can be done by applying Corollary 3.1.8(i).

Now let X be a smooth rigid analytic space, let G be a p-adic Lie group which acts continuously
on X. LetM∈ CX /G be a coadmissible G-equivariant left DX-module. Fix an open affinoid subset
U ∈ Xw(T ). Recall that for any U-small subgroup H ≤ G, one has an isomorphism of coadmissible
H-equivariant DU-modules:

M|U ' Loc
ÙD(U,H)
U (M(U)).
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Definition 4.2.3. If (U, H) is small, we define for all i ≥ 0:

Ei(M)(U, H) := ExtiÙD(U,H)
(M(U), ÙD(U, H)).

This is, in fact, a coadmissible right ÙD(U, H)-module. Now Proposition 4.2.1 gives the following
result:

Proposition 4.2.4. Let H ′ ≤ H be U-small open subgroups of G. There is an isomorphism of
right D(U)-modules:ÛpiH′,H(U) : ExtiÙD(U,H′)

(M(U), ÙD(U,H ′))−̃→ExtiÙD(U,H)
(M(U), ÙD(U, H)).

The family (Ei(M)(U, H), ÛpiH′,H(U)) forms an inverse system when H ′, H run over the (partially
ordered) set of all U-small subgroups of G.

Proof. Since H ′ ≤ G is open compact in H, there is an open normal subgroup N of H which
is contained in H ′ ([2, Lemma 3.2.1]). Hence following Proposition 4.2.1, one has the following
isomorphism:ÛpiH′,N (U) : ExtiÙD(U,H′)

(M(U), ÙD(U,H ′))−̃→ExtiÙD(U,N)
(M(U), ÙD(U, N))

and ÛpiH,N (U) : ExtiÙD(U,H)
(M(U), ÙD(U, H))−̃→ExtiÙD(U,N)

(M(U), ÙD(U, N)).

Now, we define ÛpiH′,H(U) := (ÛpiH,N (U))−1 ◦ ÛpiH′,N (U).

By definition ÛpiH′,H(U) is an isomorphism of D(U)-modules. Furthermore, this is independent from

the choice of an open normal subgroup N of H. Indeed, if N
′ ≤ N is an other normal subgroup of

H, then N ′ is also normal in N , thus Proposition 4.2.1 givesÛpiH′,N ′(U) = ÛpiH′,N (U) ◦ ÛpiN,N ′(U) and ÛpiH,N ′(U) = ÛpiH,N (U) ◦ ÛpiN,N ′(U).

Consequently

(ÛpiH,N ′(U))−1 ◦ ÛpiH′,N ′(U) = (ÛpiH,N (U) ◦ ÛpiN,N ′(U))−1 ◦ ÛpiH′,N (U) ◦ ÛpiN,N ′(U)

= (ÛpiH,N (U))−1 ◦ ÛpiH′,N (U).

Remark 4.2.5. If H ′ is normal in G, then we may choose N = H ′ in the proof of the above
proposition. Thus ÛpiH′,H(U) = (ÛpiH,H′(U))−1.

Thanks to Proposition 4.2.4, we are ready to give the following definition:

Definition 4.2.6. For every open affinoid subset U ∈ Xw(T ), we define:

Ei(M)(U) := lim←−
H

Ei(M)(U, H) = lim←−
H

ExtiÙD(U,H)
(M(U), ÙD(U, H)),

where the inverse limit is taken over the set of all U-small subgroups H of G.
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Remark 4.2.7. Ei(M)(U) obviously has a structure of right D(U)-module. Furthermore, we
obtain from Proposition 4.2.1 that the natural map

Ei(M)(U) −→ Ei(M)(U, H)

is a bijection for every U-small subgroup H of G.

Lemma 4.2.8. Let U ∼= lim←−n Un, V ∼= lim←−n Vn be Fréchet-Stein algebras and U −→ V be a
continuous morphism of Fréchet-Stein algebras. Suppose that for each n, the induced morphism of
rings Un −→ Vn is flat. Then for any coadmissible U -module M , there is an isomorphism of right
V -modules

ExtiU (M,U)Ù⊗UV −→ ExtiV (VÙ⊗UM,V ).

Proof. Since M is coadmissible as U -module, we have the following isomorphism:

M ∼= lim←−
n

Un ⊗U M = lim←−
n

Mn

with Mn := Un ⊗U M for every n. Hence VÙ⊗UM ∼= lim←−n Vn ⊗Un Mn and this implies that:

ExtiU (M,U)Ù⊗UV ∼= lim←−
n

ExtiUn(Mn, Un)⊗UnVn

and

ExtiV (VÙ⊗UM,V ) ∼= lim←−
n

ExtiVn(Vn⊗UnMn, Vn).

So it reduces to prove that for every n, there is an isomorphism of right Vn-modules

ExtiUn(Mn, Un)⊗UnVn−̃→ExtiVn(Vn⊗UnMn, Vn).

Now apply Lemma 4.1.4

Proposition 4.2.9. Suppose that (U, H) is small and V ⊂ U is an open affinoid subset in

Xw(T )/H, then there is a morphism of right ÙD(U, H)-modulesÛτ iU,V,H : Ei(M)(U, H)→ Ei(M)(V, H).

If W ⊂ V ⊂ U are open subsets in Xw(T )/H, then the diagram

Ei(M)(U, H) Ei(M)(V, H)

Ei(M)(W, H)

Ûτ iU,V,HÛτ iU,W,H Ûτ iV,W,H

is commutative.

Proof. We choose a free A-Lie lattice L of T (U) for some H-stable affine formal model A of O(U)
and a good chain (Jn) for L. By rescaling L, we may assume that V is L-accessible.
Recall the sheaves Qn(−, H) on Uac(L, H). Under these assumptions, the morphism

Qn(U, H) −→ Qn(V, H)
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is flat. Thus we can apply Lemma 4.2.8 and obtain:

Ei(M)(U, H)Ù⊗ÙD(U,H)
ÙD(V, H) ' Ei(M)(V, H).

This provides a natural map

Ei(M)(U, H) −→ Ei(M)(U, H)Ù⊗ÙD(U,H)
ÙD(V, H) ' Ei(M)(V, H)

m 7−→ mÙ⊗1.

If W ⊂ V ⊂ U are open subsets in Xw(T )/H, then following [7, Corollary 7.4]

Ei(M)(U, H)Ù⊗ÙD(U,H)
ÙD(W, H) ' Ei(M)(U, H)Ù⊗ÙD(U,H)

ÙD(V, H)Ù⊗ÙD(V,H)
ÙD(W, H)

' Ei(M)(V, H)Ù⊗ÙD(V,H)
ÙD(W, H) (' Ei(M)(W, H)).

Hence the commutative diagram follows.

Proposition 4.2.10. Let H be an open compact subgroup of G and U,V ∈ Xw(T )/H such that
V ⊂ U. Suppose that N ≤ H is another open compact subgroup of G. Then the following diagram
is commutative:

(4.3)

Ei(M)(U, N) Ei(M)(U, H)

Ei(M)(V, N) Ei(M)(V, H).

ÛpiN,H(U)Ûτ iU,V,N Ûτ iU,V,HÛpiN,H(V)

Proof. Firstly, suppose that N is normal in H. Then following Remark 4.2.5ÛpiN,H(U) = (ÛpiH,N (U))−1 and ÛpiN,H(V) = (ÛpiH,N (V))−1.

We need to prove that: Ûτ iU,V,N ◦ ÛpiH,N (U) = ÛpiH,N (V) ◦ Ûτ iU,V,H .
For this we choose a H-stable free A-Lie lattice L in T (U) for some H-stable affine formal model
A of O(U) and a good chain (Jn) for L such that Jn ≤ N for any n. By rescaling L if necessary,
we may suppose in addition that V is L-accessible, which means that V ∈ Uac(L, H). Consider
the sheaves of rings

Qn(−, H) = ◊�U(πnL)K oJn H and Qn(−, N) = ÿ�U(πnL)K oJn N.

on Uac(L, H) and Uac(L, N) respectively. Since V ∈ Uac(L, H), thenÙD(U, H) = lim←−nQn(U, H) and ÙD(U, N) = lim←−nQn(U, N),ÙD(V, H) = lim←−nQn(V, H) and ÙD(V, N) = lim←−nQn(V, N).

Since all modules appearing in the diagram (4.3) are coadmissible, following Lemma 4.2.2, it suffices
to prove that:

ExtiQn(U,H)(Qn(U, H)⊗M(U),Qn(U, H)) ExtiQn(U,N)(Qn(U, N)⊗M(U),Qn(U, N))

ExtiQn(V,H)(Qn(V, H)⊗M(V),Qn(V, H)) ExtiQn(V,N)(Qn(V, N)⊗M(V),Qn(V, N))

piH,N,n(U)

τ iU,V,H τ iU,V,N
piH,N,n(V)
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is commutative. Now, applying Proposition 4.1.6 gives the result for the case N is normal in H.

When N is not normal in H, there is an open normal subgroup N ′ of H in N (as H is compact
and N is open). ThenÛτ iU,V,H ◦ ÛpiN,H(U) = Ûτ iU,V,H ◦ (ÛpiN ′,H(U) ◦ (ÛpiN ′,N (U))−1)

= ÛpiN ′,H(V) ◦ Ûτ iU,V,N ◦ (ÛpiN ′,N (U))−1

= ÛpiN,H(V) ◦ ÛpiN ′,N (V) ◦ Ûτ iU,V,N ◦ (ÛpiN ′,N (U))−1

= ÛpiN,H(V) ◦ Ûτ iU,V,N ◦ ÛpiN ′,N (U) ◦ (ÛpiN ′,N (U))−1

= ÛpiN,H(V) ◦ Ûτ iU,V,N .
Hence the commutativity of (4.3) still holds for N which is not normal in H.

Proposition 4.2.11. For every U,V ∈ Xw(T ) such that V ⊂ U, there is a right D(U)-linear
restriction map Ûτ iU,V : Ei(M)(U) −→ Ei(M)(V).

Proof. Let N be a V-small subgroup of G. Then there exists a U-small subgroup H inside NU-
the stabiliser of U in N -which is normal in N [2, Lemma 3.2.1]. By Proposition 4.2.9, one has a
morphism of right D(U)-modulesÛτ iU,V,H : Ei(M)(U, H) −→ Ei(M)(V, H).

Then we can define a right D(U)-linear morphism

Ei(M)(U) −→ Ei(M)(V, N)

as the composition

Ei(M)(U) = lim←−
H

Ei(M)(U, H) −→ Ei(M)(U, H)
Ûτ iU,V,H−−−−→ Ei(M)(V, H)

ÛpiH,N (V)
−−−−−→ Ei(M)(V, N).

If H ′ is another open U-small subgroup of H in NU, then Proposition 4.2.4 and Proposition 4.2.10
ensure that this map is independent of the choice of H. It amounts to showing that if N ′ ≤ N is
another V-small subgroup in G, then the following diagram is commutative:

(4.4)

Ei(M)(U) Ei(M)(V, N ′)

Ei(M)(V, N).

Ûpi
N′,N (V)

If we take H ′ := N ′U ∩H, then H ′ is a U-small subgroup of N ′U. Again by Proposition 4.2.10
and Proposition 4.2.4, it follows that the diagram

Ei(M)(U, H ′)
Ûτ i
U,V,H′−−−−−→ Ei(M)(V, H ′)

Ûpi
H′,N′ (V)

−−−−−−→ Ei(M)(V, N ′)y y y
Ei(M)(U, H)

Ûτ iU,V,H−−−−→ Ei(M)(V, H)
ÛpiH,N (V)
−−−−−→ Ei(M)(V, N)

is commutative, so that the triangle (4.4) is commutative. Now, by the universal property of the
inverse limit, this induces a right D(U)-linear map
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Ei(M)(U) = lim←−H E
i(M)(U, H) −→ Ei(M)(V) = lim←−N E

i(M)(V, N)

as claimed.

Remark 4.2.12. Thanks to Proposition 4.2.11, we see that Ei(M) is a presheaf of DX-modules
on the set Xw(T ) (which forms a basis for the Grothendieck topology on X). Furthermore, if
U ∈ Xw (T ) is an open affinoid of X, then one has that Ei(M)|U = Ei(M|U).

Let us now define a G-equivariant structure on the presheaf Ei(M) of right DX-modules on
Xw(T ). Let g ∈ G and U ∈ Xw(T ). Recall that g defines a morphism

g = gO(U) : O(U) −→ O(gU)

f 7−→ g.f.

Here, for any function f ∈ O(U), the function g.f ∈ O(gU) is defined as (g.f)(y) := f(g−1y), ∀y ∈
gU.

This induces an isomorphism of K-Lie algebras

gT := gT (U) : T (U) −→ T (gU)

v 7−→ g ◦ v ◦ g−1

which is linear relative to gO(U).
Let H be a U-small subgroup of G. Suppose that A is a H-stable formal model in O(U) and L is
a H-stable A-Lie lattice in T (U).

Lemma 4.2.13. (i) g(A) is a gHg−1-stable formal model of O(gU) and gT (L) is a gHg−1-
stable g(A)-Lie lattice in T (gU). If L is smooth (resp. free ) over A, then gT (L) is smooth
(resp. free) over g(A).

(ii) If V ∈ Xw(T ) is an open affinoid subset in U, then V being a L-accessible subdomain of U
implies that gV is a gT (L)-accessible subdomain of gU.

Proof. (i) Let g ∈ G and f ∈ O(U). Since the morphism g : O(U) −→ O(gU) is K-linear, then

� Kg(A) = g(KA) = g(O(U)) = O(gU).

� if h ∈ H then ghg−1(g(A)) = g(hA) ⊂ g(A), so that g(A) is gHg−1-stable.

Similarly,

� KgT (L) = gT (KL) = gT (T (U)) = T (gU).

� (ghg−1)T (gT (L)) = (gh)T (L) ⊂ gT (L). Hence L is a gHg−1-stable Lie lattice in T (gU). It
remains to prove that if L is smooth (resp. free ) over A, then gT (L) is smooth (resp. free)
over g(A). But this is straighforward in view of the fact that we have the bijection

gT |L : L−̃→gT (L)

which is linear with respect to the (iso)morphism of rings g|A : A −→ g(A).
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(ii) Without loss of generality, we may suppose that U = X and V is a rational subset of X.
We prove (ii) by induction on n. If V is L-accessible in 0- step, that means V = X, then
V is gT (L)-accessible in 0- step. Now, suppose that the statement is true for n − 1. Let V
be L-accessible in n-steps. We may assume that there is a chain V ⊂ Z ⊂ X such that Z is
L−accessible in n − 1-steps, V = Z(f) for some non zero f ∈ O(Z) and there is a L-stable
formal model C ⊂ O(Z) such that L.f ⊂ πC. Then

gV = {gy : y ∈ V}

and

(gZ)(g.f) = {gy : |(g.f)(gy)| ≤ 1, ∀y ∈ Z} = {gy : |f(g−1gy)| = |f(y)| ≤ 1, ∀y ∈ V }.

Hence gV = (gZ)(gf). By assumption gZ ⊂ X is gT (L)-accessible in n− 1-steps. Further-
more, by (i), g(C) is a gHg−1-stable formal model of O(gZ) and it is straightforward that
gT (L).(gf) ⊂ π.(g(C)). This shows that gU is also gT (L)-accessible in n-steps.

Let (U, H) be small. Recall the isomorphism of K−Fréchet algebrasÛgU,H : ÙD(U, H)−̃→ÙD(gU, gHg−1).

and the isomorphism
gMU,H : M(U) −→M(gU)

which is linear with respect to ÛgU,H (since M∈ CX /G).

Proposition 4.2.14. Suppose that (U, H) is small and g ∈ G. There exists a K-linear map

g
Ei(M)
U,H : Ei(M)(U, H) −→ Ei(M)(gU, gHg−1)

such that for every a ∈ ÙD(U, H),m ∈ Ei(M)(U, H), we have:

(4.5) g
Ei(M)
U,H (ma) = g

Ei(M)
U,H (m).ÛgU,H(a).

Proof. Denote gH := gHg−1. We construct a map

g
Ei(M)
U,H : ExtiÙD(U,H)

(M(U), ÙD(U, H)) −→ ExtiÙD(gU,gH)
(M(gU), ÙD(gU, gH))

as follows: Let P . −→ M(U) −→ 0 be a free resolution of M(U) as a ÙD(U, H)-module. Then

by regarding each term of the complex P . as a ÙD(gU, gH)-module via the isomorphism of ringsÛg−1
U,H : ÙD(gU, gH)−̃→ÙD(U, H), we can also view P . as a free resolution of M(gU) ' M(U) byÙD(gU, gH)-modules and denote it by gP .. Thus, the map g

Ei(M)
U,H can be defined by applying the

i-th cohomology functor to the morphism of complexes whose components are morphisms of the
form:

φgU,H : HomÙD(U,H)
(P k, ÙD(U, H)) −→ HomÙD(gU,gH)

(g(P k), ÙD(gU, gH))

f 7−→ ÛgU,H ◦ f,
where g(P k) denotes the component P k of the complex P . viewed as a ÙD(gU, gH)-module via

the morphism Ûg−1
U,H .

We need to check the following facts:
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1. ÛgU,H ◦f ∈ HomÙD(gU,gH)
(g(P k), ÙD(gU, gH)), which means that ÛgU,H ◦f is ÙD(gU, gH)-linear.

Indeed, if b ∈ ÙD(gU, gH) and m ∈ g(P k), then:

(ÛgU,H ◦ f)(b.m) = ÛgU,H(f(g̃−1
U,H(b)m) = ÛgU,H(g̃−1

U,H(b)f(m)) = b(ÛgU,H ◦ f)(m).

Here the second equality follows from the fact that f is ÙD(U, H)-linear and the third one is
based on the fact that ÛgU,H is a morphism of K-algebras.

2. For any a ∈ ÙD(U, H) and f ∈ HomÙD(U,H)
(P k, ÙD(U, H)), we check that:

φgU,H(fa) = φgU,H(f)ÛgU,H(a).

Let m ∈ g(P )k. We compute:

φgU,H(fa)(m) = ÛgU,H(f(m)a) = ÛgU,H(f(m))ÛgU,H(a) = φgU,H(f)(m)ÛgU,H(a).

Finally, by definition of g
Ei(M)
U,H , this implies (4.5).

Next, we study some properties of the morphisms g
Ei(M)
U,H with g ∈ G. Let L be a H-stable free

A-Lie lattice of T (U) for some H-stable affine formal model A in O(U). Write A′ := g(A) and
L′ := gT (L). Lemma 4.2.13 shows us that there is a bijection between the following G-topologies:

Uac(L, H) −→ (gU)ac(L′, gHg−1)

V 7−→ gV .

Furthermore, if J ≤ GL is an open normal subgroup of G such that (J,L) is an A-trivialising pair
in H, then (gJg−1,L′) is also an A′-trivialising pair in gHg−1. Let (Jn)n be a good chain for L
and recall the sheaves Qn from (4.2). If V ∈ Uac(L, H), there is an isomorphism of K-algebras:

gQnV,H : Qn(V, H) −→ Qn(gV, gHg−1).

These maps satisfy ÛgV,H = lim←−
n

gQnV,H .

LetM be a coadmissible G-equivariant DX-module. For each n, we define the following presheaves.
Let V ∈ Uw(L, H), then:

(4.6) Mn(V) := Qn(V, H)⊗ÙD(U,H)
M(U)

and

(4.7) Mn(gV) := Qn(gV, gHg−1)⊗ÙD(gU,gHg−1)
M(gU).

Note that they defined sheaves of modules on Uw(L, H) and on (gU)w(L′, gHg−1), respectively.
If V ∈ Uw(L, H), the isomorphism

gMV,H :M(V) −→M(gV)

induces an isomorphism

gMn
V,H : Mn(V) −→Mn(gV)

s⊗m 7−→ gQnV,H(s)⊗ gMV,H(m).

We have the following result:
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Proposition 4.2.15. Let g ∈ G. There is an isomorphism

g
Ei(M)
U,H,n : ExtiQn(U,H)(Mn(U),Qn(U, H)) −→ ExtiQn(gU,gH)(Mn(gU),Qn(gU, gH))

such that

1. For any s ∈ Qn(U, H) and m ∈ ExtiQn(U,H)(Mn(U),Qn(U, H)), one has that:

g
Ei(M)
U,H,n (ms) = g

Ei(M)
U,H,n (m).gQnU,H(s).

2. Let V ∈ Uac(L, H). Then the following diagram is commutative:

ExtiQn(U,H)(Mn(U),Qn(U, H))
g
Ei(M)
U,H,n−−−−→ ExtiQn(gU,gH)(Mn(gU),Qn(gU, gH))yτ iH,n yτ igH,n

ExtiQn(V,H)(Mn(V),Qn(V, H))
g
Ei(M)
V,H,n−−−−→ ExtiQn(gV,gH)(Mn(gV),Qn(gV, gH))

.

Here τ iH,n and τ igH,n are restriction maps which are defined in Proposition 4.1.6.

Proof. (1.) We define g
Ei(M)
U,H,n similarly as defining g

Ei(M)
U,H in Proposition 4.2.14. Let P .n −→

Mn(U) −→ 0 be a resolution of Mn(U) by free Qn(U, H)-modules. Then by considering
each term of this resolution as a Qn(gU, gH)-module via the isomorphism of K-algebras
gQnU,H : Qn(U, H) −→ Qn(gU, gH), we see that P .n is also a resolution of Mn(gU) by free

Qn(gU, gH)-modules. Let us denote this by gP .n. Then the morphism g
Ei(M)
U,H,n is determined

by taking the i-th cohomology of the following morphism of complexes:

HomQn(U,H)(P
.
n,Qn(U, H)) −→ HomQn(gU,gH)(

gP .n,Qn(gU, gH))

f 7−→ gQnU,H ◦ f.

Now the required property can be proved similarly as for g
Ei(M)
U,H in proposition 4.2.14.

(2.) Note that

Mn(V) = Qn(V, H)⊗ÙD(V,H)
M(V) ∼= Qn(V, H)⊗Qn(U,H)Mn(U).

Mn(gV) = Qn(gV, gH)⊗ÙD(gV,gH)
M(gV) ∼= Qn(gV, gH)⊗Qn(gU,gH)Mn(gU).

By taking a projective resolution ofMn(U) by free Qn(U, H)-modules together with the flat-
ness of the morphisms Qn(U, H) −→ Qn(V, H) and Qn(gU, gH) −→ Qn(gV, gH) (Propo-
sition 2.4.17), it reduces to show the assertion for i = 0, which means that the diagram

HomQn(U,H)(Mn(U),Qn(U, H)) −−−→ HomQn(gU,gH)(Mn(gU),Qn(gU, gH))y y
HomQn(V,H)(Mn(V),Qn(V, H)) −−−→ HomQn(gV,gH)(Mn(gV),Qn(gV, gH))

is commutative.
Let f : Mn(U) −→ Qn(U, H) be a Qn(U, H)-linear morphism and write rn, rgn for the
restrictions Qn(U, H) −→ Qn(V, H) and Qn(gU, gH) −→ Qn(gV, gH), respectively. For
a ∈ Qn(gV, gH), m ∈Mn(gU), we have:
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1⊗̄rgn ◦ (gQnU,H ◦ f ◦ (gMn

U,H)−1)
ä

(a⊗m) = a.rgn(gQnU,H(f((gMn
U,H)−1(m))))

and Ä
gQnV,H ◦ (1⊗̄rn ◦ f) ◦ (gMn

V,H)−1
ä

(a⊗m) = a.gQnV,H(rn(f((gMn
V,H)−1(m)))).

So it reduces to prove that for any b ∈ Qn(gV, gH), one has that:

rgn(gQnU,H((b)) = gQnV,H(rn(b)),

which is a consequence of [2, Definition 3.4.9(c) and Proposition 3.4.10].

Notation: In the sequel, whenever V, H are given and whenever there is no ambiguity, we

simply write Ûg for ÛgV,H and gMn , gQn , g
Ei(M)
n ... instead of gMn

V,H , gQnV,H , g
Ei(M)
V,H,n ..., respectively.

Proposition 4.2.16. The following diagram is commutative:

ExtiÙD(U,H)
(M(U), ÙD(U, H))

gE
i(M)

−−−−→ ExtiÙD(gU,gH)
(M(gU), ÙD(gU, gH))y y

ExtiQn(U,H)(Mn(U),Qn(U, H))
g
Ei(M)
n−−−−→ ExtiQn(gU,gH)(Mn(gU),Qn(gU, gH)).

Proof. First, we note that the morphisms

qU,n : ÙD(U, H) −→ Qn(U, H) and qgU,n : ÙD(gU, gH) −→ Qn(gU, gH)

are flat. By using a resolution P . −→ M(U) −→ 0 of M(U) by free ÙD(U, H)-modules, it
reduces to show the commutativity of the above diagram for the case where i = 0. Let f ∈
HomÙD(U,H)

(M(U), ÙD(U, H)), then by definition:

gE
0(M)(f) = Ûg ◦ f ◦ (gM)−1

.

Let s ∈ Qn(gU, gH) and m ∈Mn(gU). It follows thatÄ
id⊗̄qgU,n(Ûg ◦ f ◦ (gM)−1

ä
(s⊗m) = s.qgU,n(Ûg(f((gM)−1(m))))

and (
gQn ◦ (1⊗̄qU,n ◦ f) ◦ (gMn)−1

)
(s⊗m) = s.gQn(qU,n(f((gM)−1(m)))).

Now the result follows from the commutativity of the diagramÙD(U, H) ÙD(gU, gH)

Qn(U, H) Qn(gU, gH)

Ûg
qU,n qgU,n

gQn

which is evident as Ûg = lim←−n g
Qn .
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Remark 4.2.17. The above proposition shows that for any g ∈ G , U ∈ Xw(T ) and H ≤ G such
that (U, H) is small, the following equality holds:

g
Ei(M)
U,H = lim←−

n

g
Ei(M)
U,H,n .

Proposition 4.2.18. If N ≤ H and V is a N -stable subdomain of U in Xw(T ), the diagram

Ei(M)(V, N)
g
Ei(M)
V,N−−−−→ Ei(M)(gV, gNg−1)yÛpiN,H(V)

yÛpiN,H(V)

Ei(M)(V, H)
g
Ei(M)
V,N−−−−→ Ei(M)(gV, gHg−1)xÛτ iU,V,H xÛτ iU,V,H

Ei(M)(U, H)
g
Ei(M)
U,H−−−−→ Ei(M)(gU, gHg−1)

is commutative.

Proof. It is enough to prove the proposition for the case where N is normal in H, as the general
case can be proved by choosing an open normal subgroup of H which is contained in N .

1. Let us prove the commutativity of the upper square. Take a projective resolution of M(V)

by free modules in Mod(ÙD(V, H)). It is enough to show that for any (left) ÙD(V, H)-module
P , the diagram

HomÙD(V,H)
(P, ÙD(V, H)) HomÙD(gV,gH)

(gP, ÙD(gV, gH))

HomÙD(V,N)
(P, ÙD(V, N)) HomÙD(gV,gNg−1)

(gP, ÙD(gV, gN))

φgV,HÛpH,N (V) ÛpgH,gN (gV)

φgV,N

is commutative. It means that if f ∈ HomÙD(V,H)
(P, ÙD(V, H)), then one has :ÛpgH,gN (gV)(ÛgV,H ◦ f) = ÛgV,N ◦ ÛpH,N (V)(f).

But this reduces to proving that the diagram

(4.8)

ÙD(V, H) ÙD(gV, gH)ÙD(V, N) ÙD(gV, gN)

ÛgV,H
pVH,N pVgH,gNÛgV,N

is commutative. For this, choose a H-stable free A-Lie lattice L for some H-stable formal
model A of O(V) and a good chain (Jn) for L. Recall from Lemma 4.2.13(i) that L′ = gT (L)
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is a gHg−1-stable free g(A)-Lie lattice in T (gU). For a fixed natural integer n ∈ N, we
consider the following diagram:◊�U(πnL)K oJn H

ÿ�U(πnL′)K ogJng−1 gHg−1

◊�U(πnL)K oJn N
ÿ�U(πnL′)K ogJng−1 gNg−1.

gQnV,H

pVH,N,n pVgH,gN,n

gQnV,N

Let {g1 = 1, ..., gm, ..., gn} be a set of representatives of cosets of G modulo Jn such that

{ḡ1 = 1, ḡ2, ḡm, .., ḡn} is a basis of ◊�U(πnL)K oJnH and {ḡ1, ..., ḡm} is a basis of ◊�U(πnL)K oJn

N over the ring Ÿ�U(πnL)K as a left modules. Then we get a basis of ÿ�U(πnL′)K ogJng−1

gHg−1 (respectively, of ÿ�U(πnL′)K oJn gNg
−1) over the ring ⁄�U(πnL′)K induced by classes of

{gg1g
−1, ..., ggmg

−1, ..., ggng
−1} (respectively, of {gg1g

−1, ..., ggmg
−1} ) modulo gJng

−1. This
implies, by definition of the projection maps pVH,N,n and pgVgH,gN,n, that the above diagram is
commutative for each n, which produces the commutivity of (4.8).

2. It remains to show the commutativity of the lower square. We still fix a H-stable free A-Lie
lattice of T (U), a good chain (Jn) for L and keep notations as above. Suppose in addition
that V is an L- accessible subdomain of U (by rescaling L). Then gV is an L′- accessible
subdomain of gU by Lemma 4.2.13(ii). Now, since all morphisms of the lower square are
linear maps between coadmissible modules, it is enough to show that the diagram

ExtiQn(U,H)(Mn(U),Qn(U, H)) ExtiQn(gU,gN)Mn(gU),Qn(gU, gH))

ExtiQn(V,H)(Mn(V),Qn(V, H)) ExtiQn(gV,gH), (Mn(gV),Qn(gV, gH))

is commutative. This is indeed Proposition 4.2.15(2).

Theorem 4.2.19. Let X be a smooth rigid analytic space and G be a p-adic Lie group acting
continuously on X. Let M∈ CX /G, then for all i ≥ 0, Ei(M) is a G-equivariant presheaf of right
DX-modules on Xw(T ).

Proof. Let W ⊂ V ⊂ U be affinoid subdomains of X in Xw(T ). By [2, Lemma 3.4.7] there exists
an open compact subgroup H ≤ G such that the pairs (W, H), (V, H), (U, H) are all small. Then
we consider the following diagram:

59



CHAPTER 4. DIMENSION THEORY FOR COADMISSIBLE EQUIVARIANT D-MODULES

Ei(M)(U, H) Ei(M)(V, H)

Ei(M)(W, H)

Ei(M)(U) Ei(M)(V)

Ei(M)(W)

The three quadrilaterals are commutative by definition. The outer triangle is commutative by
Proposition 4.2.9 and the three arrows connecting the two triangles are bjections by Remark 4.2.7.
Hence the inner triangle is commutative and this proves that Ei(M) is a presheaf.

Next, fix g ∈ G and U ∈ Xw(T ). We define

gE
i(M)(U) : Ei(M)(U) −→ Ei(M)(gU)

to be the inverse limit of the maps g
Ei(M)
U,H in Proposition 4.2.14. Then

? By (4.5) (Proposition 4.2.14), it is straightforward to see that gE
i(M)(m.a) = gE

i(M)(m).gD(a)
for any a ∈ D(U) and m ∈ Ei(M)(U).

? Assume that V ⊂ U are in Xw(T ). Let H be a U-small subgroup of GU ∩GV. We consider the
following diagram:

Ei(M)(U, H)

Ei(M)(U) Ei(M)(gU)

Ei(M)(gU, gH)

Ei(M)(gV)Ei(M)(V)

Ei(M)(V, H) Ei(M)(gV, gH)

Note that the outer square is commutative by Proposition 4.2.18, the four trapezia are commutative
by definition and the arrows connecting the two squares are bijections. This proves that the inner
square is commutative. Hence gE

i(M) : Ei(M) −→ g∗(Ei(M)) is a morphism of presheaves on
Xw(T ).
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? Finally, if g, h ∈ G, we need to show that (gh)E
i(M) = gE

i(M) ◦ hEi(M). By taking a free

resolution of M(U) by free ÙD(U, H)-modules, it is enough to show that for any ÙD(U, H)-module
P , the diagram

HomÙD(U,H)
(P, ÙD(U, H)) HomÙD(hU,hHh−1)

(hP, ÙD(hU, hHh−1))

HomÙD(ghU,ghHh−1g−1)
(ghP, ÙD(ghU, ghHh−1g−1))

φhU,H

φghU,H
φg
hU,hH

is commutative. Let f ∈ HomÙD(U,H)
(P, ÙD(U, H)), then

φg
hU,hH

◦ φhU,H(f) = φg
hU,hH

(ÛhU,H ◦ f) = ÛghU,hH ◦ ÛhU,H ◦ f
while φghU,H = ıghU,H ◦ f . Hence the commutativity of the diagram follows from the equalityıghU,H = ÛggU,hH ◦ ÛhU,H , which is from [2, Lemma 3.4.3]

In the last part of this section, we intend to prove that for anyM∈ CX /G, the presheaf Ei(M)
on Xw(T ) is in fact a sheaf and Ei(M) can be therefore extended to a G-equivariant sheaf of right
DX-modules on X. It then turns out that this sheaf in fact defines an object in CrX /G.

We first assume that (X, G) is small and letM∈ CX /G be a sheaf of coadmissible G-equivariant
left DX-modules.

Lemma 4.2.20. Let U ∈ Xw(T ) and H be a U-small subgroup of G. Then there is an isomorphism

of right ÙD(U, H)-modules

Φi
U,H : ExtiÙD(X,G)

(M(X), ÙD(X, G))Ù⊗ÙD(X,H)
ÙD(U, H)−̃→ExtiÙD(U,H)

(M(U), ÙD(U, H)).

Proof. Recall that M∼= LocX(M(X)), so that

M(U) ' ÙD(U, H)Ù⊗ÙD(X,H)
M(X).

By applying Proposition 4.2.1, we obtain an isomorphism of right ÙD(X, H)-modules

(4.9) ÛpiG,H(X) : ExtiÙD(X,G)
(M(X), ÙD(X, G))−̃→ExtiÙD(X,H)

(M(X), ÙD(X, H)).

Hence
(4.10)

ExtiÙD(X,G)
(M(X), ÙD(X, G))Ù⊗ÙD(X,H)

ÙD(U, H)−̃→ExtiÙD(X,H)
(M(X), ÙD(X, H))Ù⊗ÙD(X,H)

ÙD(U, H).

Finally, apply Lemma 4.2.8 gives:

(4.11) ExtiÙD(X,H)
(M(X), ÙD(X, H))Ù⊗ÙD(X,H)

ÙD(U, H)−̃→ExtiÙD(U,H)
(M(U), ÙD(U, H)).
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Let us explain how the isomorphism Φ0
U,H looks like when and H is an open normal subgroup

in G. Write ΦU,H := Φ0
U,H . Then

ΦU,H : HomÙD(X,G)
(M(X), ÙD(X, G))Ù⊗ÙD(X,H)

ÙD(U, H)−̃→HomÙD(U,H)
(M(U), ÙD(U, H)).

Let us choose a G-stable Lie lattice L of T (X) such that U is L-accessible and. Let (Jn) be a good
chain for L. Then we can take the sheaves Qn into account and obtain that:ÙD(X, G) = lim←−nQn(X, G), ÙD(X, H) = lim←−nQn(X, H) and ÙD(U, H) = lim←−nQn(U, H).

Write M := M(X) ∼= lim←−nMn. Then Mn(U) = Qn(U, H) ⊗Qn(X,H) Mn .The morphism ΦU,H is
defined as the inverse limit of an inverse system (ΦU,H,n)n of morphisms, where

ΦU,H,n : HomQn(X,G)(Mn,Qn(X, G))⊗Qn(X,H)Qn(U, H)−̃→HomQn(U,H)(Mn(U),Qn(U, H))

is defined as follows. If fn : Mn −→ Qn(X, G) is a Qn(X, G)-linear morphism and a ∈ Qn(U, H),
then applying (4.9), we obtain the Qn(X, H)-linear morphism

pXG,H,n ◦ fn : Mn −→ Qn(X, H),

where pXG,H,n is defined in (3.1). Next, (pXG,H,n◦fn)⊗a is the image of fn⊗a via the isomorphism
(4.10). Finally, by applying the isomorphism (4.11), we get the map

1⊗̄((pXG,H,n ◦ fn).a) : Qn(U, H)⊗Mn −→ Qn(U, H)

b⊗m 7−→ b.pG,H(fn(m)).a.

Note that in the above formula, we identify pXG,H,n(fn(m)) ∈ Qn(X, H) with its image in Qn(U, H)
via the canonical morphism Qn(X, H) −→ Qn(U, H). Therefore

(4.12) ΦU,H,n(fn) = id⊗̄((pXG,H,n ◦ fn).a) ∈ HomQn(U,H)(Mn(U),Qn(U, H)).

Recall that rLocX(−) denotes the localisation functor on the category CrÙD(X,G)
of coadmissible rightÙD(X, G)-modules.

Proposition 4.2.21. Suppose that (X, G) is small. There is an isomorphism of presheaves of right
DX-modules on Xw(T )

Φ : rLocX(ExtiÙD(X,G)
(M(X), ÙD(X, G))−̃→Ei(M).

Proof. Write M :=M(X) and fix an open affinoid subset U ∈ Xw(T ). By Lemma 4.2.20, for any

U-small subgroup H of G, there is an isomorphism of right ÙD(U, H)-modules

Φi
U,H : ExtiÙD(X,G)

(M(X), ÙD(X, G))Ù⊗ÙD(X,H)
ÙD(U, H)−̃→ExtiÙD(U,H)

(M(U), ÙD(U, H)).

If H ′ ≤ H is another U-small subgroup of G, we need to show that

(4.13)

ExtiÙD(X,G)
(M, ÙD(X, G))Ù⊗ÙD(X,H′)

ÙD(U, H ′) ExtiÙD(U,H′)
(M(U), ÙD(U, H ′))

ExtiÙD(X,G)
(M, ÙD(X, G))Ù⊗ÙD(X,H)

ÙD(U, H) ExtiÙD(U,H)
(M(U), ÙD(U, H))

Φi
U,H′ Ûpi

H′,H

ΦiU,H
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is commutative. It suffices to assume that H ′ and H are normal in G. Then ÛpiH′H(U) is the
inverse of the map ÛpiH,H′(U) (which is defined in Proposition 4.2.1), it is equivalent to show that
the diagram

ExtiÙD(X,G)
(M, ÙD(X, G))Ù⊗ÙD(X,H)

ÙD(U, H) ExtiÙD(U,H)
(M(U), ÙD(U, H))

ExtiÙD(X,G)
(M, ÙD(X, G))Ù⊗ÙD(X,H′)

ÙD(U, H ′) ExtiÙD(U,H′)
(M(U), ÙD(U, H ′))

is commutative.

Fix a G-stable free A-Lie lattice L in T (X) for some G-stable affine formal model A of O(X)
and a good chain (Jn) for L. By rescaling L if necessary, we may suppose that U is L-accessible.
Recall the sheaves Qn and Mn in (4.2), (4.6), and (4.7). ThenÙD(X, G) = lim←−nQn(X, G), ÙD(U, H) = lim←−nQn(U, H) and ÙD(U, H ′) = lim←−nQn(U, H ′).

Thus M ∼= lim←−nMn, with Mn := Qn(X, G) ⊗ÙD(X,G)
M. Since the morphisms in the above square

are linear between coadmissible modules, it is enough to prove that the diagram

ExtiQn(X,G)(Mn,Qn(X, G))⊗Qn(X,H) Qn(U, H) ExtiQn(U,H)(Mn(U),Qn(U, H))

ExtiQn(X,G)(Mn,Qn(X, G))⊗Qn(X,H′) Qn(U, H ′) ExtiQn(U,H′)(Mn(U),Qn(U, H ′))

is commutative.
Now, by taking a free resolution of Mn as a Qn(X, G)-module and by using the flatness of the
morphismsQn(X, H ′) −→ Qn(U, H ′) andQn(X, H) −→ Qn(U, H) (Proposition 2.4.17), it remains
to prove that, for any Qn(X, G)-module P , the diagram

HomQn(X,G)(P,Qn(X, G))⊗Qn(U, H) HomQn(U,H)(Qn(U, H)⊗ P,Qn(U, H))

HomQn(X,G)(P,Qn(X, G))⊗Qn(U, H ′) HomQn(U,H′)(Qn(U, H ′)⊗ P,Qn(U, H ′))

is commutative.
Let f ∈ HomQn(X,G)(P,Qn(X, G)) and a ∈ Qn(U, H), then we need to show that:

(4.14) pUH,H′,n ◦ (1⊗̄(pXG,H,n ◦ f)i(a)) = 1⊗̄((pXG,H′,n ◦ f)a).

Where, i : Qn(U, H ′) −→ Qn(U, H) is the natural inclusion. Let b ∈ Qn(U, H ′) and m ∈ P , then
we compute by using (4.12)

pUH,H′,n ◦ (1⊗̄(pXG,H,n ◦ f)i(a))(b⊗m) = pUH,H′,n(bpXG,H,n(f(m))i(a))

= bpUH,H′,n(pXG,H,n(f(m)))a = bpUH,H′,n ◦ pXG,H,n(f(m))a = bpXG,H′,n(f(m))a.
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Thus, the equality (4.14) is proved and so the commutativity of the diagram (4.13) follows. As a
consequence of this, by taking the inverse limit of the maps Φi

U,H , we obtain a right D(U)-linear
isomorphism

Φi(U) : rLocX(ExtiÙD(X,G)
(M(X), ÙD(X, G))(U)−̃→Ei(M)(U).

Finally, Φi being a morphism of presheaves amounts to showing that if V ⊂ U are open subsets in
Xw(T ) and H is an open normal subgroup of G which stabilizes U and V, the following diagram
is commutative:

ExtiÙD(X,G)
(M, ÙD(X, G))Ù⊗ÙD(X,H)

ÙD(U, H) ExtiÙD(U,H)
(M(U), ÙD(U, H))

ExtiÙD(X,G)
(M, ÙD(X, G))Ù⊗ÙD(X,H)

ÙD(V,H) ExtiÙD(V,H)
(M(V), ÙD(V, H)).

φiU,H

φiV,H

This is indeed a consequence of Proposition 4.2.9, where it is proved that:

ExtiÙD(V,H)
(M(V), ÙD(V, H)) ∼= ExtiÙD(U,H)

(M(U), ÙD(U, H))Ù⊗ÙD(U,H)
ÙD(V, H).

Corollary 4.2.22. LetM∈ CX /G be a coadmissible G-equivariant DX-module on X. The presheaf
Ei(M) is a sheaf on the basis Xw(T ) of the Grothendieck topology on X. In particular, this can be
extended to a sheaf on Xrig, which is still denoted by Ei(M).

Proof. Fix U ∈ Xw(T ) and let H be a U-small open subgroup of G. Then following Proposition
4.2.21

Ei(M)|U ' rLocU(ExtiÙD(U,H)
(M(U), ÙD(U, H)).

Since the right hand side is a sheaf on Uw(T |U), one has that Ei(M) |U is also a sheaf on Uw(T |U).
It follows that the presheaf Ei(M) is actually a sheaf on Xw(T ) as claimed.

Theorem 4.2.23. Let M be a coadmissible G-equivariant left DX-module Then Ei(M) is a coad-
missible G-equivariant right DX-module for every M∈ CX /G and all i ≥ 0.

Proof. First, let us show that Ei(M) is a sheaf of G- equivariant locally Fréchet right DX-modules.
Let U ∈ Xw(T ) and H be a U-small subgroup of G. Then the bijection

Ei(M)(U) ' Ei(M)(U, H) = Exti(M(U), ÙD(U, H))

from Remark 4.2.7 tells us that Ei(M)(U) can be equipped with a canonical Fréchet topology

transferred from the canonical topology on Exti(M(U), ÙD(U, H)). This topology does not depend

on the choice of H, so that Ei(M)(U) becomes a coadmissible (right) ÙD(U, H)-module. It remains
to check that if g ∈ G then each map gE

i(M)(U) : Ei(M)(U) −→ Ei(M)(gU) is continuous for
any U ∈ Xw(T ). Indeed, note that the map gE

i(M)(U) is a linear isomorphism with respect to

the K- algebras isomorphism ÛgU,H : ÙD(U, H) −→ ÙD(gU, gHg−1). We obtain that gE
i(M)(U) is

continuous by [2, Lemma 3.6.5]. Thus Ei(M) is in Frechr(G−DX).
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Next, write M := M(X). In view of Theorem 4.2.19, Proposition 4.2.21 and Corollary 4.2.22,
it remains to prove that when (X, G) is small, the morphism

Φi : rLocX(ExtiÙD(X,G)
(M, ÙD(X, G)) −→ Ei(M)

is indeed a G-equivariant morphism.

In the sequel, to simplify the notations, we write

N := Ei(M) and N ′ := rLocX(ExtiÙD(X,G)
(M, ÙD(X, G)).

Let U ∈ Xw(T ) and g ∈ G. Then by definition, Φi(U) = lim←−H Φi
U,H , it reduces to prove that for

any U-small subgroup H of G which is normal, the diagram

ExtiÙD(X,G)
(M, ÙD(X, G))Ù⊗ÙD(X,H)

ÙD(U, H) ExtiÙD(X,G)
(M, ÙD(X, G))Ù⊗ÙD(X,gH)

ÙD(gU, gH)

ExtiÙD(U,H)
(ÙD(U, H)Ù⊗ÙD(X,H)

M, ÙD(U, H)) ExtiÙD(gU,gH)
(ÙD(gU, gH)Ù⊗ÙD(X,gH)

M, ÙD(gU, gH))

gN
′

U,H

ΦiU,H Φi
gU,gH

gNU,H

is commutative. Here recall that gNU,H and gN
′

U,H correspond to the G-equivariant structure on the
sheaf N and on N ′ respectively.
Choose a Lie lattice L in T (X) and a good chain (Jn) for L such thatÙD(X, G) = lim←−

n

Qn(X, G).

By rescaling L, we may suppose that U is L-accessible. This impliesÙD(U, H) = lim←−
n

Qn(U, H).

Now, following Lemma 4.2.13, gU is also L′-accessible with L′ := gT (L). Thus L′ together with
the good chain (gJng

−1) defines the Frechet-Stein structuresÙD(X, gH) = lim←−nQn(X, gH) and ÙD(gU, gH) = lim←−nQn(gU, gH).

Since each map of the above diagram is a linear map between coadmissible modules, they can be
regarded as the inverse limits of systems of morphisms:

Φi
U,H = lim←−n Φi

U,H,n, Φi
gU,gH = lim←−n Φi

gU,gH,n

gNU,H = lim←−n g
N
U,H,n g

N ′
U,H = lim←−n g

N ′
U,H,n.

As a consequence, it is enough to prove that the diagram

ExtiQn(X,G)(Mn,Qn(X, G))⊗Qn(U, H) ExtiQn(X,G)(Mn,Qn(X, G))⊗Qn(gU, gH)

ExtiQn(U,H)(Qn(U, H)⊗Mn,Qn(U, H)) ExtiQn(gU,gH)(Qn(gU, gH)⊗Mn,Qn(gU, gH))

gN
′

U,H,n

ΦiU,H,n Φi
gU,gH,n

gNU,H,n
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is commutative. Here we assume that M = lim←−nMn, with respect to the given Frechet-Stein

structure on ÙD(X, G). After taking a resolution of Mn by free Qn(X, G)-modules, it amounts to
proving the commutativity of the above diagram for the case i = 0, which means that the following
diagram is commutative:

HomQn(X,G)(Mn,Qn(X, G))⊗Qn(U, H) HomQn(X,G)(Mn,Qn(X, G))⊗Qn(gU, gH)

HomQn(U,H)(Qn(U, H)⊗Mn,Qn(U, H)) HomQn(gU,gH)(Qn(gU, gH)⊗Mn,Qn(gU, gH))

gN
′

U,H,n

ΦU,H,n ΦgU,gH,n
gNU,H,n

Let f ∈ HomQn(X,G)(Mn,Qn(X, G)) and a ∈ Qn(U, H). It is enough to show that:

ΦgU,gH

Ä
gN
′

U,H,n (f ⊗ a)
ä

= gNU,H,n (ΦU,H,n (f ⊗ a))

Since gN
′

U,H,n (f ⊗ a) = (fγn(g)).gQnU,H(a) and ΦU,H,n(f ⊗ a) = 1⊗̄(pG,H,n(f)).a (which are mor-
phisms in HomQn(gU,gH)(Qn(gU, gH)⊗Mn,Qn(gU, gH))), it is equivalent to show that:

1⊗̄(pG,gH,n((fγn(g−1)).gQnU,H(a))) = gQnU,H ◦ (1⊗̄(pG,H,n(f)).a) ◦ (g−1)Mn
U,H

where

γn : G −→ Qn(X, G)× =
(◊�U(πnL)K oJn G

)×
is the canonical group homomorphism from Remark 2.4.13.
Let m ∈Mn, b ∈ Qn(gU, gH), we compute

(1⊗̄(pG,gH,n ◦ (fγn(g−1)).gQnU,H(a)))(b⊗m) = b. pG,gH,n(f(m)γn(g−1))gQnU,H(a)

and

(gQnU,H, ◦ (1⊗̄(pXG,H,n ◦ f).a) ◦ (g−1)Mn
U,H)(b⊗m)

= gQnU,H ◦ (1⊗̄(pXG,H,n ◦ f).a)(g−1Qn
U,H(b)⊗ γn(g−1)m)

= gQnU,H(g−1Qn
U,H(b)).gQnU,H(pXG,H,n(f(γn(g−1)m)a)

= b.gQnU,H(pXG,H,n(f(γn(g−1)m))gQnU,H(a).

Here, we identify the element pXG,H,n(f(γn(g−1)m) ∈ Qn(X, H) with its image in Qn(U, H) via the

natural restriction Qn(X, H) −→ Qn(U, H) and the element pG,gH,n(f(m)γn(g−1)) ∈ Qn(X, gH)
with its image in Qn(gU, gH) via Qn(X, gH) −→ Qn(gU, gH). Thus, it remains to show that for
any m ∈Mn, one has

(4.15) pG,gH,n(f(m)γn(g−1)) = gQnU,H(pXG,H,n(γn(g−1)f(m)).
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Consider the following diagram:

(4.16)

Qn(X, G) Qn(X, G)

Qn(X, H) Qn(X, gHg−1)

Qn(U, H) Qn(gU, gHg−1).

Adγn(g)

pXG,H,n
pG,gHg−1,n

gQnX,H

gQnU,H

By [2, Definition 3.4.9(c) and Propostion 3.4.10], we see that Adγn(g) = gQnX,H on Qn(X, H) ⊂
Qn(X, G) and the commutativity of the lower diagram of the diagram (4.16) follows from loc.cit.
On the other hand, it is proved in the proof of Proposition 4.2.18 that the upper diagram of (4.16)
is commutative. Hence we may compute as follows:

pG,gH,n(f(m)γn(g−1)) = pG,gH,n(γn(g)γn(g−1)f(m)γn(g−1))

= pG,gH,n(gQnX,H(γn(g−1)f(m)))

= gQnU,H(pG,H(γn(g−1)f(m)).

Hence we obtain the commutativity of (4.16) and so the theorem follows.

Definition 4.2.24. Let M∈ CX /G, then we define for any non-negative integer i ≥ 0:

E i(M) := HomOX
(ΩX, E

i(M)).

Proposition 4.2.25. For every i ≥ 0, E i is an endofunctor on the category CX /G of coadmissible
G-equivariant left DX-modules.

Proof. Following Theorem 2.4.26 and Theorem 4.2.23, the sheaf E i(M) is a coadmissibleG-equivariant
left DX-module. Now if f : M −→ M′ is a morphism of coadmissible G-equivariant left DX-
modules, then for any U ∈ Xw(T ) and any U-small subgroup H of G, it follows that the ÙD(U, H)-
linear map f(U) :M(U) −→M′(U) induces a morphism

ExtiÙD(U,H)
(M′(U), ÙD(U, H)) −→ ExtiÙD(U,H)

(M(U), ÙD(U, H)),

which is right ÙD(U, H)-linear. Hence by [2, Lemma 3.6.5], this is a continuous map with respect to
the natural Fréchet topologies on both sides. In this way we obtain a morphism of G-equivariant
locally Fréchet DXmodules

Ei(f) : Ei(M′) −→ Ei(M)

whose local sections are continuous. Now, if g :M′ −→M′′ is another morphism in CX /G, then it
is straightforward to show that Ei(id) = id and Ei(g ◦ f) = Ei(f) ◦ Ei(g), which ensures that Ei

is a functor from CX /G into CrX /G. Finally E i is a composition of two functors, so it is a functor
from CX /G into itself, as claimed.
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4.3 Weakly holonomic equivariant D-modules

4.3.1 Dimension theory for coadmissible equivariant D-modules

In this section, we fix a smooth rigid analytic K-variety X of dimension d and a p-adic Lie group G
acting continuously on X. We are now ready to introduce the notion of dimension for coadmissible
G-equivariant DX-modules.

First, recall that the set Xw(T ) is a basis for the Grothendieck topology on the rigid analytic
space X.

Definition 4.3.1. Let U be an admissible covering of X by affinoid subdomains in Xw(T ) and M
be a coadmissible G-equivariant left DX-module on X. Then the dimension of M with respect to U
is defined as follows:

dU (M) := sup {d(M(U))|U ∈ U} ,

where d(M(U)) is the dimension of the coadmissible ÙD(U, H)-module M(U) for some U-small
subgroup H of G.

Proposition 4.3.2. Suppose that U and V are two admissible coverings of X by elements in Xw(T ).
Then dU (M) = dV(M).

Proof. We may assume that V is a refinement of U and every element of U has an admissible
covering by elements of V. Let U1, ...,Uk ∈ V be a cover of U0 ∈ U (which is quasi-compact!).
We fix an open compact subgroup H of G such that (U0, H) is small and choose a H-stable affine
formal model A in O(U0) and a H-stable smooth A-Lie lattice L in T (U0).Then by [2, Lemma
4.4.1], we may assume that H stabilises A, L and each member Ui in V. By replacing L by a
sufficiently large π-power multiple, we may also assume that each Ui is an L-accessible affinoid
subspace in U0 so that U1, ...,Uk ∈ (U0)ac(L, H) and they form an (U0)ac(L, H)-covering. Recall
the sheaf of rings Qn(−, H) and the sheaf of modules Mn induced by M from Section 4.2. These
are sheaves on the Grothendieck topology Xac(L, H). ThenÙD(Ui, H) ' lim←−nQn(Ui, H) and M(Ui) ' lim←−nMn(Ui) for all i = 0, 1, .., k.

Each M(Ui) is a coadmissible ÙD(Ui, H)-module and by Definition 3.2.2, d(M(Ui)) = 2d −
jH(M(Ui)) for each i.
Now by [2, Theorem 4.3.14], one has that

⊕k
i=1Qn(Ui, H) is a faithfully flat right Qn(U0, H)-

module. Thus applying [7, Proposition 7.5(c)] gives that
⊕k

i=1
ÙD(Ui, H) is c-faithfully flat overÙD(U0, H). On the other hand, the completed tensor product commutes with finite direct sum, so

that:

ExtiÙD(U0,H)
(M(U0), ÙD(U0, H))Ù⊗ÙD(U0,H)

⊕ki=1
ÙD(Ui, H)

' ⊕ki=1Ext
iÙD(U0,H)

(M(U0), ÙD(U0, H))Ù⊗ÙD(U0,H)
ÙD(Ui, H)

' ⊕ki=1Ext
iÙD(Ui,H)

(M(Ui), ÙD(Ui, H)).

By consequence, one has

jH(M(U0)) = inf{jH(M(Ui)) :M(Ui) 6= 0, i = 1, 2, ..., k},

so the proposition follows immediately.
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Remark: The above proposition tells us that the dimension of a coadmissible G-equivariant
DX-moduleM does not depend on the choice of an admissible covering U of X. Hence we can now
ignore the symbol U and denote it simply by d(M). By definition, 0 ≤ d(M) ≤ 2d.

4.3.2 Dimension and the pushforward functor

First, we recall some material from [6] which will be used later. Let I be an ideal in a commutative
R-algebra A and L be a (R,A)-Lie algebra. Then we say that a finite set {x1, ..., xd} of elements
in L is an I-standard basis if it satisfies the following conditions:

(i) {x1, ..., xd} is a basis of L as an A-module (which implies that L is free over A),

(ii) There exists a set F = {f1, ..., fr} ⊂ I with r ≤ d which generates I such that

xi.fj = δij for all 1 ≤ i ≤ d and 1 ≤ j ≤ r.

Let i : Y = Sp(A/I) −→ X = Sp(A) be a closed embedding of smooth affinoid varieties and G be
a compact p-adic Lie group which acts continuously on X. We suppose that:

(a) T (X) admits a free A-Lie lattice L = A∂1⊕ ...⊕A∂d for some affine formal model A ⊂ O(X)
and such that [L,L] ⊂ πL, L.A ⊂ πA,

(b) {∂1, ..., ∂d} is an I-standard basis with respect to a generating set {f1, ..., fr} ⊂ I.

(c) G preserves Y ⊂ X, A ⊂ O(X) and L ⊂ T (X).

Definition 4.3.3. Let N be a coadmissible (right) ÙD(Y, G)-module. We define the pushforward
functor i+ : CrÙD(Y,G)

−→ CrÙD(X,G)
by

i+N := NÙ⊗ÙD(Y,G)
(ÙD(X, G)/IÙD(X, G)).

Note here that the definition makes sense, sinceÙD(X, G)/IÙD(X, G) (which is isomorphic toO(Y)⊗O(X)ÙD(X, G)) is a ÙD(X, G)-coadmissible (ÙD(Y, G)−ÙD(X, G)) bimodule ([3, Lemma 3.3.8]). Moreover,

the ÙD(X, G)-module structure of i+N can be describled as follows. Let I := I ∩ A and set

NL(I) := {x ∈ L : x(I) ⊂ I}.

Then N := NL(I)/IL is a G-stable A/I-Lie lattice in T (Y ) = A/I∂1 ⊕ ... ⊕ A/I∂d. Thus, for a
good chain (Jn)n of G, we have (note that GN ⊂ GL by [3, Lemma 4.3.2] so we can choose a good
chain of G such that each Jn is contained in GN ):ÙD(X, G) ∼= lim←−n

◊�U(πnL)K oJn G and ÙD(Y, G) ∼= lim←−n
ÿ�U(πnN )K oJn G.

Write Sn := ◊�U(πnL)K oJn G and Tn := ÿ�U(πnN )K oJn G, then

i+N ∼= lim←−nNn ⊗Tn Sn/ISn, with Nn = N ⊗ÙD(Y,G)
Tn.

We recall the following result from [4, Proposition 6.1]
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Proposition 4.3.4. Let A, I, F , L be as above and denote by C := CL(F ) = {x ∈ L : x.f =
0 ∀f ∈ F} the centraliser of F in L. Then

j’U(L)K
(Ŭ(L)K ⊗’U(C)K

M) = j’U(C)K/F’U(C)K
(M) + r.

for every finitely generated ’U(C)K/F’U(C)K-module M

Proposition 4.3.5.
dÙD(X,G)

(i+N) = dÙD(Y,G)
(N) + dimA− dimA/I

for every coadmissible right ÙD(Y, G)-module N ∈ CrÙD(Y,G)
.

Proof. Since i+N is a coadmissible ÙD(X, G)-module, there exists n sufficiently large such that

jÙD(X,G)
(i+N) = jSn(i+N ⊗ÙD(X,G)

Sn) = jÿ�U(πnL)K
(i+N ⊗ÙD(X,G)

Sn).

Here, the last equality follows from Proposition 3.1.4 and Lemma 3.1.6. Note that:

i+N ⊗ÙD(X,G)
Sn = Nn ⊗Tn Sn/ISn,

where N ∼= lim←−nNn with Nn = N ⊗ÙD(Y,G)
Tn. Furthermore

Nn ⊗Tn Sn/ISn = Nn ⊗Ÿ�U(πnN )KoJnG
◊�U(πnL)K oJn G/I(◊�U(πnL)K oJn G)

∼= Nn ⊗Ÿ�U(πnN )K

◊�U(πnL)K/I
◊�U(πnL)K .

On the other hand, the A/I-Lie lattice πnN of T (Y) is isomorphic to NπnL(I)/I(πnL). It follows

that ÿ�U(πnN )K
∼= ÷U(Cn)K/I

÷U(Cn)K , so we have

Nn ⊗Ÿ�U(πnN )K

◊�U(πnL)K/I
◊�U(πnL)K

∼= Nn ⊗÷U(Cn)K

◊�U(πnL)K .

Hence applying Proposition 4.3.4 gives

jÿ�U(πnL)K
(i+N ⊗ÙD(X,G)

Sn) = jÿ�U(πnL)K
(Nn ⊗÷U(Cn)K

◊�U(πnL)K)

= j÷U(Cn)K/F
÷U(Cn)K

(Nn) + r = jŸ�U(πnN )K
(Nn) + r

= jTn(Nn) + r.

Here, the last equality follows from Proposition 3.1.4 and Lemma 3.1.5. Finally, for n sufficiently
large, one has that:

dÙD(X,G)
(i+N) = 2d− jÙD(X,G)

(i+N)

= 2d− jSn(i+N ⊗ÙD(Y,G)
Sn)

= 2d− (r + jTn(Nn))

= r + (2d− 2r − jÙD(Y,G)
(N))

= dÙD(Y,G)
(N) + dimA− dimA/I.
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Now, let i : Y −→ X be a closed embedding of smooth rigid varieties, G be a p-adic Lie
group which acts continuously on X and which preserves Y. The following result is necessary for
introducing the pushforward functor in the general case:

Theorem 4.3.6. ([6, Theorem 6.2] Let Y ↪→ X be a closed embedding of smooth rigid analytic
varieties whose the ideal of definition is I ⊂ OX. Then there is an admissible covering B of X of
connected affinoid subdomains U such that

(i) there is a free A-Lie lattice L = ∂1A ⊕ ... ⊕ ∂dA for some affine formal model A ⊂ O(U)
satisfying [L,L] ⊂ π.L and L.A ⊂ πA,

(ii) either I(U) = I(U)2, or I(U) admits a generating set F = {f1, ..., fr} with ∂i(fj) = δij for
every i = 1..., d and j = 1, ..., r.

Let U ∈ B. By definition, there is a free A-Lie lattice L = ∂1A⊕ ...⊕∂dA for some affine formal
model A ⊂ O(U) satisfying the conditions (i) and (ii) in Theorem 4.3.6. Following [3, Lemma
4.4.2], there exists a compact open subgroup H of G which stabilies U, A and L. H is then called
U-good.

Let N ∈ CrY/G be a coadmissible G-equivariant DY -module. Then the pushforward i+N of N
along the closed embedding i can be defined (locally) as follows:

i+N (U) := lim←−
H

M [U, H]

for any U ∈ B, where M [U, H] := N (U∩Y)Ù⊗ÙD(U∩Y,H)
ÙD(U, H)/I(U)ÙD(U, H) and H runs over

the set of all U -good subgroups of G.

Proposition 4.3.7. Let i : Y −→ X be a closed embedding of smooth rigid varieties, G be a
p-adic Lie group which acts continuously on X and which preserves Y. Then for every N ∈ CrY /G

d(i+N ) = d(N ) + dim X−dim Y .

Proof. This is a consequence of Proposition 4.3.5 and Theorem 4.3.6.

4.3.3 Bernstein’s inequality for rigid flag varieties

The objective of the rest of this dissertation is to define the category of equivariant weakly holonomic
modules. In order to do this, we have to gain the so-called Bernstein’s inequality.

Definition 4.3.8. Let X be a smooth rigid analytic variety and G be a p-adic Lie group acting
continuously on X. Then (X, G) is ’good’ if Bernstein’s inequality holds for the category CX /G.
More precisely, if d(M) ≥ dim X for any non-zero module M∈ CX /G.

Even though, we don’t know whether all smooth rigid-spaces (on which a p-adic Lie group G
acts continuously) satisfy this condition, we know some special cases where Bernstein’s inequality
holds, as explaining in the following:

Lemma 4.3.9. Let X = Sp(K〈x1, ..., xd〉) be the unit polydisc of dimension d and G be a compact
p-adic Lie group acting continuously on X such that (X, G) is small. Then (X, G) is good.
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Proof. Let M be a non-zero module in CX /G and M := M(X) ∈ CÙD(X,G)
be its global section.

Denote by ∂1, ..., ∂n the partial derivations with respect to coordinates x1, ..., xd. Write A :=
R〈x1, ..., xd〉 and L := DerR(A) = ∂1A⊕ ... ⊕ ∂dA. Then A is an affine formal model of O(X) =
K〈x1, ..., xd〉 and L is a free A-Lie lattice in T (X). Now, we can choose an open subgroup H of G
which stabilises A and L ([5, Lemma 4.4.1]. Thus, (X, H) is small andÙD(X, H) ∼= lim←−

n

◊�U(πnL)K oJn H

for any choice of a good chain (Jn)n for L. Note that dÙD(X,G)
(M) = dÙD(X,H)

(M) (Remark 3.2.3

(ii)) and there exist n sufficiently large such that

jÙD(X,H)
(M) = jÿ�U(πnL)KoJnH

(Mn), with Mn = (◊�U(πnL)K oJn H)⊗ÙD(X,H)
M .

On the other hand, Proposition 3.1.4 and Lemma 3.1.5 tell us that

jÿ�U(πnL)KoJnH
(Mn) = jÿ�U(πnL)K

(Mn).

Now applying [2, Corollary 7.4] gives jÿ�U(πnL)K
(Mn) ≤ d and so d(M) ≥ d as claimed.

Now let G be a connected, simply connected, split semisimple algebraic group scheme over K.
Let X be the flag variety of G, which is defined as the set of all Borel subgroups of G ([18, II.1.8].
Then the group G acts on X by conjugation, since any two Borel groups of G are conjugate. Let
X be the rigid analytification of X. Let G := G(K). The G-action on X induces a G-action on X.
Moreover, G acts continuously on X by [2, Theorem 6.3.4]

Theorem 4.3.10. The pair (X, G) of the rigid flag variety X and its induced G-action is good

Proof. Since G is connected split semisimple, there exists a group scheme G0 over R such that
G ' G ×R K. Let B0 be a closed, flat Borel R-subgroup scheme of G0 and write B := B0 ×R K
X0 := G0/B0. Then following [5, Proposition 6.4.3], the rigid analytification X of the flag variety

G/B is isomorphic to (X̂0)rig- the rigid analytic space associated to the (smooth) formal scheme

X̂0. We then identify (X̂0)rig with X.
Let d = dim X and W be the Weyl group. Then the Weyl translates (Uw)w∈W of the big cell in X0

form an affine covering of X0 ([18, II.1.10], the set {(”Uw)rig}w∈W is then an admissible covering of
X. Now each (Uw))w∈W is isomorphic to the affine space R[x1, ..., xd] of dimension d ([18, II.1.7,],

it follows that each ((”Uw)rig)w∈W is isomorphic to the polydisc of dimension d. By choosing an

open compact subgroup Hw of G such that ((”Uw)rig), Hw) is small, we may apply Lemma 4.3.9 to

the case of ((”Uw)rig, Hw) and hence the result follows.

Remark 4.3.11. 1. The arguments used in Theorem 4.3.10 can be applied to any smooth rigid
analytic space X on which G-acts continuously and which admits an admissible affinoid cov-
ering by unit polydiscs of dimension dim X. The rigid analytification Pd,anK of the projective
scheme PdK over K with the induced G := GLd+1(K)-action is such an example. More gener-
ally, let G be an an affine algebraic group of finite type over K and V be a finite-dimensional
G-representation. Let G := G(K) and P(V )an be the analytification of the algebraic projective
space P(V ). Then (P(V )an, G) is good.

2. Let X be a smooth rigid analytic variety and G acts continuously on X. If (X, G) is good,
then for every Zariski closed subspace Y of X which is stable under the G-action, (Y, G) is
also good. This is a direct consequence of Proposition 4.3.7 and Proposition 3.3.1.
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4.3.4 The category CwhX /G

Let X be a smooth rigid analytic variety and G be a p-adic Lie group which acts continuously on
X. We assume from now on to the end of this section that X is good (i.e Bernstein’s inequality
holds for the category CX /G).

Definition 4.3.12. A G-equivariant coadmissible (left or right) D-moduleM on X is called weakly
holonomic if d(M) ≤ dim X.

It follows from Bernstein’s inequality that d(M) = dim X for every non-zero G-equivariant
weakly holonomic module M.

Proposition 4.3.13. Let

0 −→M1 −→M0 −→M2 −→ 0

is an exact sequence in CX /G. Then M0 is G-equivariant weakly holonomic if and only if M1,M2

are G-equivariant weakly holonomic.

Proof. Let U be an admissible coverings of X by affinoid subdomains in Xw(T ). For every U ∈ U ,
it follows from Proposition 3.2.4 that

d(M0(U)) = max{d(M1(U)), d(M2(U))}.

Then d(M0(U)) ≤ d if and only if both d(M1(U)) and d(M2(U)) are not greater than d, so the
result follows.

The following example is given by Proposition 3.2.6:

Example 4.3.14. Let X be a smooth affinoid variety of dimension 1 and G be a compact p-adic
Lie group which acts continuously on X and such that (X, G) is good. Let M = LocX(M) is

the coadmissible G-equivariant DX-module associated to the coadmissible ÙD(X, G)-module M :=ÙD(X, G)/ÙD(X, G)P , where P ∈ D(X) is a regular differential operator. Then M is G-equivariant
weakly holonomic.

The category of G- equivariant weakly holonomic DX-modules is denoted by CwhX /G. This is a

full abelian subcategory of CX /G and is closed under extension (Proposition 4.3.13).

Theorem 4.3.15. Suppose that X is of dimension d. The functor Ed defined in Definition 4.2.24
preserves G-equivariant weakly holonomic left DX-modules.

Proof. We may suppose that X is a smooth affinoid variety , i.e X = Sp(A) and G is compact such
that (X, G) is small. Write L = DerK(A). Let M ∈ CX /G be a non-zero G-equivariant weakly

holonomic module, then M ' LocXÙD(X,G)
(M), with M = M(X) is a non-zero coadmissible leftÙD(X, G)-module of dimension d. In particular, j(M) = d implying that:

ExtdÙD(X,G)
(M, ÙD(X, G)) 6= 0.

By Proposition 4.2.21 and Theorem 2.4.26(ii), one has that:

Ed(M) ' Loc
ÙD(X,G)
X (HomA(ΩL, Ext

dÙD(X,G)
(M, ÙD(X, G)))).
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On the other hand, thanks to Auslander’s condition, the (non-zero) coadmissible right ÙD(X, G)-

module ExtdÙD(X,G)
(M, ÙD(X, G)) has grade j(ExtdÙD(X,G)

(M, ÙD(X, G))) ≥ d, so that its dimension is

less than d. Now apply Proposition 3.3.1, one has

d(HomA(ΩL, Ext
dÙD(X,G)

(M, ÙD(X, G)))) ≤ d.

This proves that Ed(M) is a G-equivariant weakly holonomic DX-module.

Remark 4.3.16. Let M ∈ CwhX /G, then Auslander’s condition together with Bernstein’s inequality

implies that E i(M) = 0 for any i 6= d.

Definition 4.3.17. The duality functor D on CwhX /G into itself is defined as follows:

D(M) := Ed = HomO(ΩX, E
d(M))

for any M∈ CwhX /G.

Proposition 4.3.18. Let M∈ CwhX /G. Then there is an isomorphism in CwhX /G

D2(M) ∼=M.

Proof. This can be proved along the lines of the proof of [4, Proposition 7.3] for weakly holonomic
DX-modules. Let M ∈ CwhX/G. Since Xw(T ) is a basis for the G-topology on X, it is enough to
show that

Γ(U,D2(M)) ' Γ(U,M),

for any U ∈ Xw(T )). Without loss of generality, we may suppose that U = X, which means that
X is a smooth affinoid of dimension d and that (X, G) is small. Note that T (X) admits a G-stable
free A-Lie lattice L for some affine formal model A of O(X). Choose a good chain Jn for L. ThenÙD := ÙD(X, G) ' lim←−nDn with Dn := ◊�U(πnL)K oJn G.

Write M := Γ(X,M) ∼= lim←−nMn with Mn := Dn ⊗ÙDM . By Proposition 3.3.1, one has:

Γ(X,D2(M)) = HomA(Ω, ExtdÙD(HomA(Ω, ExtdÙD(M, ÙD)), ÙD))

' ExtdÙD(Ω⊗A HomA(Ω, ExtdÙD(M, ÙD)), ÙD)

' ExtdÙD(ExtdÙD(M, ÙD), ÙD).

In other words, it remains to prove that:

ExtdÙD(ExtdÙD(M, ÙD), ÙD) 'M.

Recall that(Lemma 2.4.19) ExtdÙD(M, ÙD) ∼= lim←−nExt
d
Dn

(Mn, Dn) implying that:

ExtdÙD(ExtdÙD(M, ÙD), ÙD)) ∼= lim←−
n

ExtdDn(ExtdDn(Mn, Dn), Dn))

∼= lim←−
n

Mn
∼= M.

Here the second isomorphism follows from [17, Theorem 4]. This proves that D2(M) ' M as
claimed.
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4.3.5 Extension

In this subsection, we give a way to construct equivariant weakly holonomic modules. As in [4,
Section 7.2], we are going to define a kind of so-called extension functor. This functor is defined
on the category of G-equivariant coherent DX-module and takes values in the category CX /G. We
also want to prove that the extension functor preserves weakly holonomicity.

Let X be a smooth affinoid variety and G is a compact p-adic Lie group acting continuously
on X such that (X, G) is good. We first begin by proving the following lemma:

Lemma 4.3.19. Let H be an open subgroup of G. The natural mapÙD(X, H)⊗D(X)oH (D(X) oG) −→ ÙD(X, G)

is an isomorphism.

Proof. Following [2, Proposition 3.4.10] there is a bijectionÙD(X, H)⊗K[H] K[G] −→ ÙD(X, G).

Furthermore this morphism factors intoÙD(X, H)⊗K[H] K[G] −→ ÙD(X, H)⊗D(X)oH (D(X) oG) −→ ÙD(X, G).

The first morphism is surjective, which implies that the second map is an bijection as claimed.

Corollary 4.3.20. If M is a D(X)oG-module and H is an open subgroup of G. Then the natural
morphism ÙD(X, H)⊗D(X)oH M−̃→ÙD(X, G)⊗D(X)oGM

is bijective.

Proof. Applying Lemma 4.3.19 one has thatÙD(X, G)⊗D(X)oGM ∼= ÙD(X, H)⊗D(X)oH (D(X) oG)⊗D(X)oGM ∼= ÙD(X, H)⊗D(X)oH M.

Proposition 4.3.21. Let M be a D(X)oG-module wich is coherent as a D(X)-module. Then the
tensor product ıM := ÙD(X, G)⊗D(X)oGM

is a coadmissible ÙD(X, G)-module.

Proof. Since G is compact, there exists an uniform pro-p subgroup N which is normal in G [2,
Lemma 3.2.1]. SoG is topologically finitely generated. AsM is finitely presented as aD(X)-module,

it follows that the ÙD(X, G)-module ÙD(X, G)⊗D(X) M is coadmissible [30, Corollary 3.4(v)]. Now,
let g1, g2, ..., gr be a set of topological generators for the compact p-adic Lie group G, m1, ...,ms

generate M as a D(X)-module and let I be the ÙD(X, G)-submodule generated by the finite set

{gi ⊗mj − 1⊗ gimj}. Then I is a coadmissible ÙD(X, G)-module by [30, Corollary 3.4(iv)]. There
is a surjective map

f : ÙD(X, G)⊗D(X) M −→ ÙD(X, G)⊗D(X)oGM

We will show that I is exactly the kernel of this map. Let x ∈ L = T (X). Then gixg
−1
i = gi.x in

D(X) oG = U(L) oG, so that we can compute as follows:
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gi ⊗ xmj − 1⊗ gixmj = (gixg
−1
i )gi ⊗mj − 1⊗ (gixg

−1
i )gimj = (gi.x)gi ⊗mj − 1⊗ (gi.x)gimj =

(gi.x)(gi ⊗mj − 1⊗ gimj)

Hence I contains all elements of the form gi ⊗ m − 1 ⊗ gim with m ∈ M . Now, let g ∈ G and
(gn) ∈ 〈g1, ..., gr〉 such that lim gn = g. Note that the coadmissible module ÙD(X, G) ⊗D(X) M has

a natural Fréchet topology such that the map ÙD(X, G) −→ ÙD(X, G)⊗D(X) M is continuous. This
implies that:

lim(gn ⊗m− 1⊗ gnm) = g ⊗m− 1⊗ g.

Here we note thatG ⊂ ÙD(X, G). Combining with the fact that I is a closed subspace of ÙD(X, G)⊗D(X)

M [30, Lemma 3.6], we have that g⊗m− 1⊗ gm ∈ I for any g ∈ G and m ∈M . Thus I = ker(f).

By consequence the ÙD(X, G)-module ÙD(X, G)⊗D(X)oGM is coadmissible.

Now let X be a smooth rigid analytic variety and G acts continuously on X. Let M be a G-
equivariant DX-module which is coherent as a DX-module. Then we define the presheaf EX /G(M)
on Xw(T ) as follows. Let U ∈ Xw(T ). Then define

EX /G(M)(U) := lim←−
H

ÙD(U, H)⊗D(U)oHM(U)

where the inverse limit is taken over the set of all U-small subgroups H of G.

Theorem 4.3.22. The presheaf EX /G(M) is a sheaf on Xw(T ), thus extends naturally to a coad-
missible G-equivariant DX-module and we still denote it by EX /G(M).

Proof. We suppose that (X, G) is small. Denote

M :=M(X) and ıM = ÙD(X, G)⊗D(X)oGM .

Let U ∈ Xw(T ). ThenÙD(U, H)Ù⊗ÙD(X,H)
ıM ∼= ÙD(U, H)Ù⊗ÙD(X,H)

ÙD(X, H)⊗D(X)oH M ∼= ÙD(X, H)⊗D(X)oH M.

Furthermore, since M is a coherent DX-module, one has that

M(U) ∼= D(U)⊗D(X) M.

Consequently, M(U) ∼= D(U)⊗D(X) M ∼= D(U) oH ⊗D(X)oH M . This implies that

EX /G(M)(U) ∼= ÙD(U, H)⊗D(U)oHM(U) ∼= ÙD(U, H)⊗D(X)oH M ∼= ÙD(U, H)Ù⊗ÙD(X,H)
ıM.

This proves that EX /G(M) ∼= LocX(ıM). So this is a G-equivariant coadmissible DX-module.

Remark 4.3.23. Let Coh(G−DX) be the category of G-equivariant coherent DX-modules. Then
it is straightforward to verify that the mapping EX /G : Coh(G − DX) −→ CX /G, which sends M
to EX /G(M) is a functor.

Recall ([21]) that we can also define the dimension for a finitely generated DX-moduleM on the
smooth rigid analytic variety X. The moduleM is said to be of minimal dimension if its dimension
is not greater than dim X.

Theorem 4.3.24. Let M is a G-equivariant DX-module of minimal dimension. Then EX /G(M)
is a G-equivariant weakly holonomic module.
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Proof. Since the question is local, we may assume that X is smooth affinoid and G is compact
such that (X, G) is small. Choose a G-stable free Lie lattice L and a good chain (Jn)n for L such

that ÙD(X, G) ∼= ◊�U(πnL)K oJn G. Write D := D(X), ÙD := ÙD(X, G), Dn := ◊�U(πnL)K oJn G,

M :=M(X) and let d := dim X. Recall that by definition ıM = ÙD ⊗DoGM .

As M is of minimal dimension, we obtain that dD(M) = d. Now the ÙD-module ÙD ⊗D M is

coadmissible, there is a n sufficiently large such that jDn(Dn ⊗DM) = jÙD(ÙD ⊗DM). As we know
that Dn is flat over D, it follows that

ExtiD(M,D)⊗D Dn
∼= ExtiDn(Dn ⊗DM,Dn).

Thus jDn(Dn ⊗DM) ≥ jD(M), which implies

d(ÙD ⊗DM) = d(Dn ⊗DM) ≤ d(M) = d.

This also proves that d(ıM) ≤ d, since we have the following exact sequence

0 −→ ker(f) −→ ÙD ⊗DM f−→ ıM −→ 0.

So EX /G(M) is weakly holonomic.
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Chapter 5

Examples

5.1 A class of equivariant weakly holonomic D-modules

Let X be a smooth rigid analytic variety and G be a p-adic Lie group which acts continuously on
X. We assume throughout this section that (X, G) is good, i.e every non-zero module M ∈ CX /G

satisfies Bernstein’s inequality.
In this section, we study a class of equivariant weakly holonomic modules whose each module is
coherent as an OX-module. In particular, we will see that the structure sheaf OX is a weakly
holonomic G-equivariant DX-module.

Recall that an integrable connection on X is a DX-module which is locally free of finite rank
as an OX-module (so it is coherent as a DX-module). In this subsection, all integrable connections
on X will be G-equivariant DX-modules and we call them integrable G-equivariant connections.

Proposition 5.1.1. LetM be an integrable G-equivariant connection on X. ThenM∈ Frech(G−
D).

Proof. Let U ∈ Xw(T ) be an affinoid subdomain. Then M|U is a coherent OU-module, so that
by Kiehl’s theorem, M(U) is a coherent O(U)-module. This implies that M(U) has a canonical
Banach topology by [9, Chapter 3, Proposition 3.7.3.3]. For any g ∈ G, the map

gM(U) :M(U) −→M(gU)

is a bijection which is linear with respect to the continuous morphism of K-Banach algebras gO(U) :
O(U) −→ O(gU). If we consider the O(gU)-module M(gU) as a O(U)-module, then M(gU)
is coherent as an O(U)-module such that the map O(U) ×M(gU) −→ M(gU) is continuous
and gM(U) is an O(U)-linear map. By [9, Chapter 3, Proposition 3.7.3.2], gM(U) is a continuous
mapping between Banach spaces. Since every Banach space is in particular a Fréchet space, this
proves that M∈ Frech(G−D).

Definition 5.1.2. An integrable G-equivariant connectionM is called strongly G-equivariant ifM
together with the topology explained in Proposition 5.1.1 is a coadmissible G-equivariant DX-module.

Proposition 5.1.3. Suppose that X = Sp(A) is affinoid and G is compact. Let M be a D(X)oG-
module which is coherent as an A-module. Let L be a G-stable A-Lie lattice in T (X) = DerK(A)
for some G-stable affine formal model A of A. Then there exists m ≥ 0 such that there is a structure

of Ÿ�U(πnL)K oG-module on M for all n ≥ m which extends the given D(X) oG-action.
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Proof. By assumption M is a coherent A-module. Let S be a generating set of M as an A-module.
Then M := AS is an A-submodule of M which generates M over K. Furthermore, since L is a
A-Lie lattice by assumption, there exists m ≥ 0 such that for all n ≥ m, πnLM ⊂M, forcing M
to be a U(πnL)-module. Now, since A is π-adically complete, M is also π-adically complete and

M∼= ◊�U(πnL)⊗U(πnL)M,

so thatM is also a ◊�U(πnL)-module. Therefore, M ∼= K ⊗M is a ◊�U(πnL)K-module. On the other

hand, we see that the structure of ◊�U(πnL)K-module (which extends the given D(X)-action) on M

is compatible with the G-action. This proves that M is therefore a ◊�U(πnL)K oG-module.

Proposition 5.1.4. We suppose the conditions as in Proposition 5.1.3. Then the D(X)oG-action

on M extends to a coadmissible ÙD(X, G)-module structure if there exists a G-stable free A-Lie
lattice L such that for all n sufficiently large, the following equality holds

(5.1) g.m = βπnL(g)m for all m ∈M and g ∈ GπnL.

Proof. Let L be a G-stable free A-Lie lattice in L = DerK(O(X)). Following proposition 5.1.3, for

n sufficiently large, M is a ◊�U(πnL)K oG-module. Suppose that the condition (5.1) holds. Let (Jn)

be a good chain for L. Then the Ÿ�U(πnL)K o G-action on M factors through a Ÿ�U(πnL)K oJn G-

action, so that M is a Ÿ�U(πnL)K oJn G-module.

Next, we note that the natural morphism i : M −→ ◊�U(πnL)K oG⊗U(L)oGM is an isomorphism.

Indeed, as we see that M is a ◊�U(πnL)K oG-module, there exists a ◊�U(πnL)K oG-linear map

j : ◊�U(πnL)K oG⊗U(L)oGM −→M

a⊗m 7−→ am

such that j ◦ i = idM . Therefore i is injective. For the surjectivity of i, we note that the ring◊�U(πnL)KoG (resp. U(L)oG) consists of elements of the form
∑
aigi, where the sum is finite with

gi ∈ G and ai ∈ ◊�U(πnL)K (resp. ai ∈ U(L)). As a consequence, the map ◊�U(πnL)K ⊗U(L) M −→◊�U(πnL)K oG⊗U(L)oGM is surjective. On the other hand, the map i factors through

M−̃→◊�U(πnL)K ⊗U(L) M −→ ◊�U(πnL)K oG⊗U(L)oGM .

Where the first map is an isomorphism by [6, Lemma 7.2]. Therefore i is surjective, so it is an
isomorphism as claimed.
As a consequence, this proves that the canonical morphism

M −→ ◊�U(πnL)K oJn G⊗U(L)oGM

is an isomorphism of ◊�U(πnL)K oJn G-modules, as M is also a ◊�U(πnL)K oJn G-module.

Now we prove that M is a coadmissible ÙD(X, G)-module as follows. Write Dn := ◊�U(πnL)K oJn G

for all n. Then ÙD(X, G) ∼= lim←−nDn. Consider the following commutative diagram:

M Dn ⊗D(X)oGM

Dn ⊗Dn+1 M Dn ⊗Dn+1 (Dn+1 ⊗D(X)oGM)
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For each n, M has a structure of Dn-module and the natural morphism M −→ Dn ⊗D(X)oG M
is an isomorphism. Hence the horizontal arrows are isomorphisms. The right vertical arrow is
also an isomorphism by the associativity of tensor product. It follows that the left vertical arrow
is isomorphism, so that M = limM is a coadmissible ÙD(X, G)-module which extends the given
D(X) oG-action.

Remark 5.1.5. The above proposition tells us that an integrable connection M is strongly G-
equivariant if there exists a Xw(T )-covering U of X such that for every U ∈ U , there is a U-small
subgroup of G and a H-stable free Lie lattice of T (U) such that the condition (5.1) holds forM(U).

Corollary 5.1.6. The structure sheaf OX is strongly G-equivariant. More generally, the sheaf OnX
is strongly G-equivariant for all integer n ≥ 1.

Proof. Without loss of generality, we may suppose that X is affinoid, G is compact such that (X, G)
is small and consider the case where n = 1. As a consequence of Proposition 5.1.4, it is enough to
show that the module A := O(X) satisfies the condition (5.1).
Let A be a G-stable affine formal model of A and suppose that L is a G-stable A-Lie lattice in
DerK(A). Recall that each g ∈ G acts on A via the morphism of groups ρ : G −→ Aut(A) and on
L via

g.x := ρ(g) ◦ x ◦ ρ(g−1) for all x ∈ L.

Now if g ∈ GL, we can write ρ(g) = exp(pεx) with x ∈ L. Then for a ∈ A,

βL(g).a = exp(pει(x)).a =
∑

n
pεn

n! ι(x)n.a =
∑

n
pεn

n! x
n.a = exp(pεx)(a) = ρ(g)(a) = g.a.

This proves that βL(g)− g acts trivially on A, so that the condition (5.1) holds for A.

Proposition 5.1.7. Let M be a strongly G-equivariant connection. Then the natural morphism

M−→ EX /G(M)

is an isomorphism in CX /G. In particular every strongly G-equivariant connection is weakly holo-
nomic.

Proof. Let M be a strongly G-equivariant connection. We may suppose that X is affinoid, G
is compact and (X, G) is small. Write M := M(X). Then it suffices to show that the natural
morphism

i : M −→ ÙD(X, G)⊗D(X)oGM

m 7−→ 1⊗m.

is an isomorphism. Note that M is a coadmissible ÙD(X, G)-module by assumption. Now it is
straightforward that i is D(X) oG-linear. Combining with the fact that the ring D(X) oG is (of

image) dense in ÙD(X, G), we conclude that i is also ÙD(X, G)-linear. As a consequence

1⊗ am = a⊗m for all a ∈ ÙD(X, G) and m ∈M .

Hence i is surjective.
To see that i is injective, we note that j ◦ i = idM , where j denotes the following morphism:ÙD(X, G)⊗D(X)oGM −→M

a⊗m 7−→ am.
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So i is an isomorphism of coadmissible ÙD(X, G)-modules as claimed.
Finally, as integrable connections are of minimal dimension ([14, 2.3.7]), Theorem 4.3.15, together
with the isomorphism M∼= EX /G(M), implies that M is weakly holonomic.

5.2 Examples of weakly holonomic D-modules on rigid analytic
flag varieties

It is well-known in the classical theory (see [14]), where X is the complex flag variety X ' G/B
associated to a semisimple complex Lie group G whose Lie algebra is denoted by g, that the

localisation functor Loc
U(g)
X (−) is an equivalence of categories between the category Mod(U(g)0) of

U(g)0-modules (resp. coherent U(g)0-modules) and the category Mod(DX) of DX -modules (resp.
coherent DX -modules). Here U(g)0 denotes the quotient ring U(g)/m0U(g) with maximal ideal m0

of the center Z(g) of the enveloping algebra U(g). Moreover, the sheaf associated to a B-equivariant
U(g)0-module is a B-equivariant holonomic DX -module. In this section we study a similar example
of equivariant weakly holonomic module on a rigid analytic flag variety induced from the BGG
category Op for some parabolic subalgebra p of g, via the equivalence of categories in the rigid
analytic setting ([2, Theorem 6.4.8]).

5.2.1 Induction functor

Let X be a smooth rigid analytic space and G be a p-adic Lie group acting continuously on X.
Suppose that P is a closed subgroup of G such that G/P is compact. Note that under this con-
dition, the set of double cosets |H\G/P | is finite for every open subgroup H ≤ G ([5, Lemma 3.2.1]).

We recall from [3, 2.2] the geometric induction functor

indGP : CX /P −→ CX /G

which is locally defined as follows. Let N ∈ CX /P . Let U ∈ Xw(T ) be an affinoid open subset, H
be a U-small subgroup of G and s ∈ G. If J ≤ G is a subgroup, we write sJ = sJs−1, Js = s−1Js.
Then we set

[s]N (s−1 U) := {[s]m : m ∈ N (s−1 U)}.

Note that H is open in G, the subgroup P ∩Hs is also open in P and the pair (s−1 U, P ∩Hs) is

small. Hence N (s−1 U)} is a ÙD(s−1 U, P ∩Hs)-module. So [s]N (s−1 U) can be equipped with a

structure of ÙD(U, sP ∩H)-module via the isomorphism of K-algebras

s−1 : ÙD(U, sP ∩H)−̃→ÙD(s−1 U, P ∩Hs).

This is indeed a coadmissile ÙD(U, sP ∩H)-module [3, Lemma 2.2.3]. By consequence, we may form

the following coadmissible ÙD(U, H)-module:

M(U, H, s) = ÙD(U, H)Ù⊗ÙD(U,sP∩H)
[s]N (s−1 U)

The ÙD(U, H)-module M(U, H, s) only depends on the double coset HsP which contains s ([3,
Proposition 3.2.7]), which means that if t ∈ HsP such that s = h−1th′ with h ∈ H,h′ ∈ P , then

M(U, H, s) ∼= M(U, H, t) as ÙD(U, H)-modules.
This allows us to define for each double coset Z ∈ H \G/P :

M(U, H, Z) := lim
s∈Z

M(U, H, s).

82



CHAPTER 5. EXAMPLES

Note that M(U, H, Z) ∼= M(U, H, s) in CÙD(U,H)
for all s ∈ Z. Since | H \G/P | is finite, we obtain

that

M(U, H) :=
⊕

Z∈H\G/P

M(U, H, Z)

is also a coadmissible ÙD(U, H)-module. If J ≤ H are U-small subgroups of G then there is an

isomorphism of ÙD(U, J)-modules ([3, Proposition 3.2.11]

M(U, J)−̃→M(U, H).

So we can define

indGP (N )(U) = lim←−
H

⊕
Z∈H\G/P

lim
s∈Z

ÙD(U, H)Ù⊗ÙD(U,sP∩H)
[s]N (s−1 U)

= lim←−
H

M(U, H).

Where the inverse limit is taken over the set of U-small subgroups H of G.

By construction, this is a coadmissible ÙD(U, H)-module and is isomorphic to M(U, H) for ev-
ery U-small subgroup H of G. Also, we obtain a presheaf indGP (N ) of DX-modules on Xw(T ).
Moreover, of course, we want to equip indGP (N ) with a G-action such that this becomes a coad-
missible G-equivariant DX-modules. This is a complicated work due to K. Ardakov ([3]). Since we
will not be too interested in this G-equivariant structure, we accept that indGP (N ) ∈ CX /G for any
N ∈ CX /P as a known result without any concrete explanation.

5.2.2 The result

Let X be a smooth rigid analytic space and G be a p-adic Lie group acting continuously on X.
Suppose that P is a closed subgroup of G such that G/P is compact. We prove below that the
induction functor indGP preserves weakly holonomicity.

Proposition 5.2.1. Let N be a P -equivariant weakly holonomic DX-module. Then indGP (N ) is a
G-equivariant weakly holonomic DX-module.

Proof. Since the sum M(U, H) :=
⊕

Z∈H\G/P M(U, H, Z) is finite, one has that

ExtiÙD(U,H)
(M(U, H), ÙD(U, H)) ∼=

⊕
Z∈H\G/P Ext

iÙD(U,H)
(M(U, H, Z), ÙD(U, H)).

In particular, ExtiÙD(U,H)
(M(U, H), ÙD(U, H)) = 0 if and only if

ExtiÙD(U,H)
(M(U, H, Z), ÙD(U, H)) = 0 for all Z ∈ H \G/P .

This shows that

(5.2) j(M(U, H)) = inf{j(M(U, H, Z)) : Z ∈ H \G/P}.

Now let Z ∈ H \G/P . Since M(U, H, Z) ∼= M(U, H, s) in CÙD(U,H)
for any choice of s ∈ Z and the

map ÙD(U, sP ∩H) −→ ÙD(U, H) is faithfully c−flat [3, Lemma 3.5.3] (note that sP ∩H is closed
in H), we obtain
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ExtiÙD(U,H)
(ÙD(U, H)Ù⊗ÙD(U,sP∩H)

[s]N (s−1 U), ÙD(U, H))

∼= ExtiÙD(U,sP∩H)
([s]N (s−1 U), ÙD(U, sP ∩H))Ù⊗ÙD(U,sP∩H)

ÙD(U, H).

This implies that:

(5.3) jÙD(U,H)
(M(U, H, Z)) = jÙD(U,H)

(M(U, H, s)) = jÙD(U,sP∩H)
([s]N (s−1 U)).

Next, the isomorphism of K-algebras ÙD(U, sP ∩H)−̃→ÙD(s−1 U, P ∩Hs) implies that

ExtiÙD(U,sP∩H)
([s]N (s−1 U), ÙD(U, sP ∩H)) ∼= ExtiÙD(s−1 U,P∩Hs)

(N (s−1 U), ÙD(s−1 U, P ∩Hs)).

By consequence,

(5.4) jÙD(U,sP∩H)
([s]N (s−1 U)) = jÙD(s−1 U,P∩Hs)

(N (s−1 U)).

Finally, Since N is P -equivariant weakly holonomic, (5.2), (5.3), (5.4) imply that d(indGP (N )) is at
most dim X, so that indGP (N ) is also G-equivariant weakly holonomic.

Let X be a K-scheme of locally finite type and X = Xan be its analytification. Recall the
morphism of locally ringed G-spaces ([10, Propision 5.4.4])

ρ : X −→ X

and the induced functor

ρ∗ : Mod(OX) −→Mod(OX)

M 7−→ ρ∗M = OX ⊗ρ−1OX ρ
−1M.

In particular, one has that ρ∗DX = DX and so ρ∗ induces a functor from (coherent) DX-modules to
(coherent) DX-modules.

Our next result needs to make use of the following lemma:

Lemma 5.2.2. Let X be a proper smooth K-scheme of dimension d. Suppose that X is DX-affine.
LetM be a coherent DX-module which is holonomic over X. Then ρ∗M is a DX-module of minimal
dimension on X.

Proof. Let M be a coherent DX-module. As X is proper, [5, Proposition 2.2.1] implies that
Γ(X, ρ∗M) = Γ(X,M) := M . In particular Γ(X,DX) = Γ(X,DX) := D, as ρ∗DX = DX by
[5, Proposition 2.2.2(a)]. Now, since X is DX-affine, one has that M ∼= LocX(M) = DX ⊗D M .
Combining with the fact that ρ∗ is an exact and fully faithful functor (Proposition 2.1.11(i)), this
implies that ρ∗M ∼= LocX(M) = DX ⊗D M . Now let U be an open affine subdomain of X and
U = {Ui, i ∈ I} be an admissible covering of ρ−1U by affinoid subdomains of X. As ρ is flat,
we may even suppose that for every i ∈ I, the morphism OX(U) −→ OX(Ui) is flat. The above
argument gives

ρ∗M(Ui) = DX(Ui)⊗DM ∼= DX(Ui)⊗DX(U)M(U).

Now since OX(U) −→ OX(Ui) is flat, we deduce that DX(U) −→ DX(Ui) is also flat. Therefore

ExtnDX(Ui)
(ρ∗M(Ui),DX(Ui)) ∼= ExtnDX(U)(M(U),DX(U))⊗DX(U) DX(Ui).

By consequence
jDX(U)(M(U)) ≤ jDX(Ui)(ρ

∗M(Ui)).

So ifM is holonomic, then jDX(U)(M(U)) = d, which implies that jDX(Ui)(ρ
∗M(Ui)) ≥ d, so that

dDX(Ui)(ρ
∗M(Ui)) ≤ d for every i and ρ∗M is of minimal dimension as claimed.
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Now, let L/Qp be a finite field extension, GL be a connected semisimple algebraic group over L
and PL be a parabolic subgroup of GL which contains a maximal torus TL and a Levi subgroup LL.
Let P ⊂ G denote the corresponding groups of L-valued points. Let L ⊆ K be a complete non-
archimedien extension field such that K is a splitting field for GL. Let G = GL×LK, P = PL×LK,
L = LL ×LK and g, p, l be its Lie algebras respectively. Let X be the algebraic flag variety of the
split algebraic K-group G. Then there is a natural action of G on X given by conjugating the Borel
subgroups of G. We denote by X = Xan the rigid analytification of X, with its induced G-action.
The rest of this subsection is devoted to giving a class of G-equivariant weakly holonomic modules
on the rigid analytic flag variety X. First, let us recall that the BGG category O consists of all
U(g)-modules M satisfying the following conditions:

(1) M is a finitely generated U(g)-module.

(2) M decomposes as a direct sum of one-dimensional t-representations

(3) The action of b on M is locally finite, which means that for every m ∈ M , the subspace
U(b).m ⊂M is a finite-dimensional K-vector space.

We then associate each parabolic subalgebra p of g the subcategory Op of O consisting of all mod-
ules M ∈ O which are locally p- finite. We also denote by Op

0 the subcategory of Op consisting of
all modules M ∈ Op such that m0M = 0 for the maximal ideal m0 = Z(g) ∩ U(g)g of the center
Z(g) of U(g).

Next, let us recall from [3, Section 6.2] that there is a Fréchet-Stein K-algebra ÙU(g, H) associ-
ated to each open compact subgroup H of G, which is defined as follows. For every H-stable Lie

lattice L in g, there exists a normal subgroup HL of g and a morphism HL −→◊�U(L)K
×

which is a

H-equivariant trivialisation. So we can form the ring ◊�U(L)K oN H whenever N is an open normal
subgroup of H contained in HL and we defineÙU(g, H) = lim←−

(L,N)

◊�U(L)K oN H

with the limit is taken over all the pairs (L, N), where H-stable Lie lattice L of g and N be an

open normal subgroup of G contained in HL. So ÙU(g, H) can be viewed as a certain completion of
the skew group ring U(g) oH.

In the sequel, we also make use of the following notions:

∗ D(G,K), D(P,K) are the algebras of K-valued locally L-analytic distributions on G and P
respectively.

∗ D(g, P ) is the K-subalgebra of D(G,K) which is generated by U(g) and D(P,K).

∗ ÙU(g, P ) is an associative K-algebra which is equal to ÙU(g, H)⊗K[H] K[P ] for some choice of
open compact subgroup H of P . Note that this definition does not depend on the choice of
H, meaning that if N ≤ H are open compact subgroups of G, then ÙU(g, N) ⊗K[N ] K[P ] ∼=ÙU(g, H)⊗K[H] K[P ]. Similarly, we have the K-algebra ÙU(g, G).

It is worth pointing out that the K-algebras ÙU(g, P ),ÙU(g, G), D(P,K), D(G,K), are all Fréchet
algebras. If G is compact (so is P ), then they are Fréchet-Stein K-algebras.
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By coadmissible ÙU(g, P )-module, we mean that a ÙU(g, P )-module M which is a coadmissibleÙU(g, H)-module for every open compact subgroup H of P . Following [2], it is possible to localize a

coadmissible ÙU(g, P )-module M to obtain a coadmissible P -equivariant DX-module Loc
ÙU(g,P )
X (M)

on the rigid analytic flag variety X. The construction of Loc
ÙU(g,P )
X (M) is exactly the same as for

Loc
ÙD(X,G)
X (−), when (X, G) small, where we interchange ÙD(X, G) and ÙU(g, P ) in their construction.

(see [2] for more details).

Now let M ∈ Op
0. Then it is proved in [5, Lemma 4.1.2] that M admits a P -action that lifts

the given p-action on it. In the following, we let M denote the module M ∈ Op
0 together with this

P -action in order to distinguish the initial module M (without P -action).

Each M ∈ Op
0 has a structure of D(g, P )-module ([22, 3.4]), so we can form the ÙU(g, P )-moduleıM := ÙU(g, P )⊗D(g,P ) M.

It is shown [5, Proposition 4.2.1] that ıM is a coadmissible ÙU(g, P )-module. Therefore, we may

’localize’ ıM to obtain a P -equivariant coadmissible DX-module Loc
ÙU(g,P )
X (ıM) on X. On the other

hand we may also ’localize’ the coadmissible ÙU(g)-module ıM := ÙU(g) ⊗U(g) M to obtain a coad-

missible ÙDX-module Loc
ÙU(g)
X (ıM).

Proposition 5.2.3. Let M ∈ Op
0. Then Loc

ÙU(g,P )
X (ıM) is a P -equivariant weakly holonomic DX-

module.

Proof. It is proved [5, Proposition 4.4.1] that

Loc
ÙU(g,P )
X (ıM) ∼= Loc

ÙU(g)
X (ıM) ∼= EX ◦ LocU(g)

X (M).

Here

EX : Mod(DX) −→Mod(ÙDX)

M 7−→ ÙDX ⊗DXM

is the extension functor which sends coherent DX-modules to coadmissible ÙDX-modules [4, 7.2] and

Loc
U(g)
X is the composition of the localisation functor

Loc
U(g)
X : coh(U(g)) −→ coh(DX)

and the rigid analytification functor

ρ∗ : Mod(OX) −→Mod(OX)

M−→ OX ⊗ρ−1OX ρ
−1M.

Note that Loc
U(g)
X (M) is a P -equivariant coherent DX-module. Hence by [14, Theorem 11.6.1(i)],

this is a holonomic module. Using Lemma 5.2.2, we then obtain that ρ∗Loc
U(g)
X (M) = Loc

U(g)
X (M) is

a DX-module of minimal dimension. Now, By using [4, Proposition 7.2], we have that Loc
Ŭ(g)
X (ıM) ∼=

EX ◦Loc
U(g)
X (M) is a weakly holonomic ÙDX-module. This can be used to prove the result. Indeed,
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it remains to prove that for any affinoid subdomain U ∈ Xw(T ) and any U-small subgroup H of
P , one has that

dÙD(U)
(Loc

Ŭ(g)
X (ıM)(U)) ≥ dÙD(U,H)

(Loc
ÙU(g,P )
X (ıM)(U)).

Choose a H-stable free A-Lie lattice L for some G-stable affine model A of O(U) and a good chain
(Jn) for L such that ÙD(U, H) ∼= lim←−n Un oJn H and ÙD(U) ∼= lim←−n Un,

where Un := ◊�U(πnL)K for all n ≥ 0. Then

Loc
ÙU(g)
X (ıM)(U) = ÙD(U)Ù⊗ÙU(g)

ıM ∼= lim←−n(Un ⊗ÙU(g)
ıM)

and

Loc
ÙU(g,P )
X (ıM)(U) ∼= ÙD(U, H)Ù⊗ÙU(g,H)

ıM ∼= lim←−n(Un oJn H)⊗ÙU(g,H)
ıM.

Write Nn := Un ⊗Ŭ(g)
ıM and N

′
n := (Un oJn H) ⊗˚�U(g,H)

ıM . As both ÙD(U) and ÙD(U, H) are

c-Auslander Gorenstein, we may assume that Un and Un oJn H are all Auslander-Gorenstein of
dimension at most 2d. Furthermore there exist n sufficiently large such that

dÙD(U)
(Loc

Ŭ(g)
X (ıM)(U)) = dUn(Nn)

and

dÙD(U,H)
(Loc

ÙU(g,P )
X (ıM)(U)) = dUnoJnH(N

′
n) = dUn(N

′
n).

Here, the last equality follows from Proposition 3.1.4. It reduces to prove that dUn(N
′
n) ≤ dUn(Nn) ≤

d (Loc
Ŭ(g)
X (ıM)) is weakly holonomic). For this we note that the natural map

fn : Nn −→ N
′
n

is surjective [5, Proposition 4.4.1], which means that N
′
n = Nn/In for some finitely generated

Un-module In. We then obtain an exact sequence of Un-modules

0 −→ In −→ Nn −→ N
′
n −→ 0.

Now since each Un is Auslander-Gorenstein, we can apply [19, Proposition 4.5] to obtain dUn(Nn) ≥
dUn(N

′
n), so that dUn(N

′
n) ≤ d and the result follows.

Proposition 5.2.4. Let M ∈ Og
0. Then indGP (Loc

ÙU(g,P )
X (ıM)) is a G-equivariant weakly holonomic

DX-module.

Proof. This follows immediately from Proposition 5.2.1 and Propostion 5.2.3.

Here is another point of view. There is also a localization functor Loc
ÙU(g,G)
X (−) which sends

coadmissible ÙU(g, G)-modules to CX /G. Moreover, if we setÙU(g, G)0 = ÙU(g, G)/m0
ÙU(g, G),
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then this functor is an equivalence of categories between the category CÙU(g,G)0
of coadmissibleÙU(g, G)-modules annihilated by m0 and CX /G ([3, Theorem 6.4.8]).

Note that D(G,K) ∼= ÙU(g, G) ([3, Theorem 6.5.1]. We make use of the Orlik-Strauch functor ([23])

FGP (−)′ : Op
0 −→ CD(G,K)0

M 7−→ D(G,K)⊗D(g,P ) M.

Recall that M denotes the module M ∈ Op
0 together with the induced P -action. Then for each

M ∈ Op
0, FGP (M)′ is a coadmissible ÙU(g, G)0-module. Hence we may form the coadmissible G-

equivariant DX-module Loc
ÙU(g,G)
X (FGP (M)′). Now, in [5, Theorem 4.4.2], the authors have proved

that the diagram of functors

OP0 CÙU(g,G)0

CX /P CX /G

FGP (−)′

EX◦Loc
U(g)
X Loc

ÙU(g,G)
X

indGP

is commutative. Then the above proposition is equivalent to:

Proposition 5.2.5. Loc
ÙU(g,G)
X (FGP (M)′) is a G-equivariant weakly holonomic module for any U(g)-

module M ∈ Op
0.
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sentations. J. Amer. Math. Soc., 28(1):99–157, 2015.

[24] Donald S. Passman. Infinite crossed products, volume 135 of Pure and Applied Mathematics.
Academic Press, Inc., Boston, MA, 1989.

[25] Deepam Patel, Tobias Schmidt, and Matthias Strauch. Locally analytic representations of
GL(2, L) via semistable models of P1. J. Inst. Math. Jussieu, 18(1):125–187, 2019.

[26] George S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math.
Soc., 108:195–222, 1963.

[27] Tobias Schmidt. On locally analytic Beilinson-Bernstein localization and the canonical dimen-
sion. Math. Z., 275(3-4):793–833, 2013.

[28] Peter Schneider. p-adic Lie groups, volume 344 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.

[29] Peter Schneider and Jeremy Teitelbaum. Locally analytic distributions and p-adic representa-
tion theory, with applications to GL2. J. Amer. Math. Soc., 15(2):443–468, 2002.

[30] Peter Schneider and Jeremy Teitelbaum. Algebras of p-adic distributions and admissible rep-
resentations. Invent. Math., 153(1):145–196, 2003.

90




	Introduction
	Background material
	Rigid analytic varieties 
	Affinoid K-spaces and affinoid subdomains
	Rigid analytic varieties
	Coherent sheaves on rigid analytic spaces
	Construction of rigid analytic spaces 

	Crossed products
	Review on p-adic Lie groups
	Equivariant sheaves on rigid analytic spaces
	Group actions on rigid analytic spaces
	The completed skew-group algebra (`39`42`"613A``45`47`"603AX,G)
	Localisation of coadmissible (`39`42`"613A``45`47`"603AX,G)-modules and the category C`39`42`"613A``45`47`"603AX/G
	Side-changing operators


	Dimension theory for coadmissible (`39`42`"613A``45`47`"603AX,G)-modules
	Review on Auslander-Gorenstein rings
	Dimension theory for coadmissible (`39`42`"613A``45`47`"603AX,G)-modules
	Left-right comparison

	Dimension theory for coadmissible equivariant D-modules
	Modules over the sheaf of rings Q
	The 'Ext-functor' on the category C`39`42`"613A``45`47`"603AX/G
	Weakly holonomic equivariant D-modules
	Dimension theory for coadmissible equivariant `39`42`"613A``45`47`"603AD-modules
	Dimension and the pushforward functor
	Bernstein's inequality for rigid flag varieties
	The category C`39`42`"613A``45`47`"603AX/Gwh
	Extension


	Examples
	A class of equivariant weakly holonomic D-modules
	Examples of weakly holonomic D-modules on rigid analytic flag varieties
	Induction functor
	The result



