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Chapter 1

Introduction

Ma thèse est dédiée à deux questions di↵érentes, toutes les deux liées aux
problèmes des systèmes dynamiques aléatoires.

Dans le Chapitre 2 j’étudie le comportement des grands tableaux de
Young gauches. Particulièrement, la description de leur comportement local
se révèle être liée à une châıne de Markov topologique, à savoir le processus
TASEP modifié sur le cercle, et sa mesure d’entropie maximale.

Chapitre 3 est dédié à l’étude des mesures stationnaires pour des systèmes
dynamiques aléatoires non-symétriques sur la droite réelle et aux propriétés
asymptotiques de la dynamique inversée dans le temps.

Les deux prochaines sections sont dédiées à la description detaillée du
contexte historique de ces domaines et aux résultats obtenus.

Je voudrais remercier Vadim Gorin, Alexey Bufetov, Leonid Petrov, Greta
Panova, Alejandro Morales, Igor Pak, Sara Bro↵erio and Grigory Merzon
pour leur interêt et les discussions fructueuses.

1.1 Les formes limites des grands tableaux

de Young gauches et une modification du

TASEP

1.1.1 Aperçu du problème

Les diagrammes de Young (YD) et certaines notions reliées étaient étudiées
depuis longtemps (par exemple, voir les travaux de Feit, Carlitz-Riordan,

5
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Figure 1.1: Standard Young Tableau

De Concini, Edelman et Berele-Regev [18, 11, 12, 17, 4]). Ces études ont
été motivées par des raisons combinatoires (YD de taille n correspond aux
partitions du nombre n) ainsi que par la théorie des représentations (YD de
taille n dénombre les représentations irreductibles du groupe symétrique Sn).
On note Yn l’ensemble de tous de YD de taille n.

Le graphe de Young est un graphe orienté dont des sommets sont les
diagrammes de Young et dont les arêtes vont d’un YD à tous les YD qu’on
obtient en ajoutant une cellule au diagramme initial. En langue de la théorie
des représentations, � 2 Yn est jointe à tous µ 2 Yn+1 contenus dans la
représentation induit de Sn+1, ou, ce qui est le même, si la représentation
⇢� est contenue dans la restriction de la représentation correspondante ⇢µ
à Sn. Ceci avec le fait que la multiplicité d’une telle inclusion n’excède
pas 1 implique que la dimension dim� d’une représentation irréductible ⇢�,
associée à l’YD �, est égale au nombre de chemins dans le graphe de Young
qui joignent le diagramme vide (ou unicellulaire) à �.

Un chemin dans le graphe de Young, commençant au diagramme vide,
peut être encodé en écrivant dans chaque cellule le numéro du pas auquel
elle a été ajoutée, donc la correspondence bijective avec un tableau de Young
standard est réalisée. Cette correspondence, par définition, est une façon
de mettre les nombres {1, . . . , n} dans les cellules d’YD du taille n de telle
manière que les nombres croissent dans chaque rangée et dans chaque colonne,
et chaque nombre ne se retrouve qu’une seule fois. (La construction similaire
avec un chemin commençant d’une YD non-vide conduit à la notion de tableau
de Young gauche.)

La théorie des représentations motive l’étude de la mesure de Plancherel;
cette dernière est une mesure µn de probabilité sur l’ensemble Yn des tableaux
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de Young de taille fixée n, définie par

µn({�}) =
dim2 �

n!
.

Le fait que cette mesure soit de probabilité provient de la relation classique
X

�2Yn

dim2 � = n!

Cette mesure donne lieu à une mesure centrale µ̄ sur les chemins du
graphe de Young. La notion d’une mesure centrale en général est définie de
la manière suivante. Soit un graphe G avec un ensemble gradué de sommets
V =

F
n Vn, dont les arêtes joignent les sommets de Vn aux sommets de

Vn+1. Par définition, la mesure de probabilité sur l’ensemble de chemins
! = {!n}1n=0, !n 2 Vn, est centrale si pour chaque n et chaque v 2 Vn

la partie initiale !0,!1, . . . ,!n�1,!n du chemin conditionnée à !n = v est
distribuée uniformément sur tous les chemins qui arrivent à v au n-ième pas.

Il est facile de voir qu’une mesure centrale est nécessairement Markovi-
enne (le futur est indépendant du passé). Aussi, des mesures marginales µn

qui donnent la loi de !n sont en accord l’une à l’autre: pour tout m < n,
la loi µm de !m est obtenue si on prend la loi du m-ième élément !m d’un
chemin allant vers un v 2 Vn, et on moyennise ces distributions par rapport
à la loi µn pour v. Inversement, une suite des mesures µn définit une mesure
centrale, dès qu’ils sont en accord. L’un des exemples basiques de mesures
centrales est celui des mesures de Bernoulli: un chemin aléatoire (xn, yn), où
xn et yn sont respectivement le nombre du piles et faces après avoir lancé
une pièce de Bernoulli n fois. En e↵et, conditionnés au nombre k = xn des
réussites après n lancerts d’une pièce, tous les

�
n
k

�
placements possibles de

ces réussites sont équiprobables — quelque soit la probabilité p de réussite.
Comme nous l’avons mentionné, il est connu (mais pas évident) que les

mesures de Plancherel µn sur les ensembles Yn sont en accord l’une avec
l’autre, et donc donnent lieu à la mesure centrale sur l’ensemble des chemins
dans le graphe de Young. Cette mesure a la probabilité de transition de
� 2 Yn�1 à �0 2 Yn

p�%�0 =
dim�0

n dim�
.

Il est facile de vérifier que ces probabilités définissent une châıne de Markov
avec les loi marginales µn en temps n, donc donnent la probabilité de tran-
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sition à l’envers

P(!n�1 = � | !n = �0) =
dim�

dim�0
(1.1)

(où !0 = ;,!1,!2, . . . est un chemin choisi au hasard par rapport à cette
mesure) et donc satisfont la définition de la mesure centrale (la relation (1.1)
implique que la distribution sur les segments initiaux des chemins allant vers
� 2 Yn est uniforme).

Le paradigme général des combinatoires asymptotiques est qu’un objet
combinatoire large satisfait souvent une “loi des grands nombres” : si on
le rééchelonne proprement, il ressemble a une “forme” déterminée. Il y a
plusieurs exemples de tels résultats (pour exemple voir [41, 45, 3]). Parmi
ceux liés aux YD, le premier que nous voudrions mentionner est le théorème
de forme limite, découvert indépendamment en 1970’s par Versik et Kerov
en USSR et par Logan et Shepp aux États-Unis. À savoir: soit � 2 Yn une
YD aléatoire (en notation française), on le comprime 1p

n fois, et on le tourne
de 45� dans le sens anti-horaire. Cela donne une figure aléatoire Fn d’aire
unitaire, place entre les rayons y = |x|. On considère sa bordure externe,
prolonge par y = |x| en dehors le diagramme, comme une graphique d’une
fonction 1-Lipshitz f�.

Théorème 1.1.1 (Vershik, Kerov [46], Logan, Shepp [31]). f� converge en
probabilité dans la C0-topologie vers la fonction limite ⌦(x), définie par

⌦(x) =

(
2
⇡ (
p
2� x2 + x arcsin xp

2
), |x| 

p
2,

|x|, |x| �
p
2.

Ainsi, le chemin dans le graphe de Young !0 % !1 % · · · % !n peut être
transformé: en le comprimant 1/

p
n fois, on obtient une famille croissante

de figures d’aire ↵ = 0, 1
n , . . . , 1; en tournant ces figures de 45�, on considére

leurs bordures externes (prolonges) comme les graphiques des fonctions 1-
Lipschitz F↵(x). Cela, avec la définition de la mesure centrale, motive les
deux questions suivantes:

Question 1.1.1. Que on peut dire d’un chemin typique entre ø et un grand

diagramme de Young donné �?

Question 1.1.2. Que on peut dire d’un chemin choisi au hasard entre un
grand diagramme de Young donné �1 et un autre grand diagramme de Young
donnée �2 � �1?
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Dans ces deux cas, on peut aussi s’intéresser à l’asymptotique du nombre
de ces chemins, l’estimation de type “grandes déviations” pour le nombre de
chemins non typique inclus.

La première question a déjà obtenu sa réponse par les méthodes de la
théorie des représentations ( [42]). La seconde a été étudie avec les méthodes
du principe variationnel par plusieurs auteurs: Morales, Pak et Panova [36]
via des diagrammes excites et la formule de Naruse, et par Sun [43] via
les pavages de dominos et le modèle de perles. Toutefois, il est intéressant
d’approcher ces questions avec l’utilisation les autres méthodes, et c’est le
point de départ du Chapitre 2.

Avant cela, nous voudrions mentionner des cas, où la Question 1.1.1 peut
être attaquée par des méthodes simples combinatoires. On a déjà constaté
que la mesure µ̄ est centrale. Cela implique que si on choisit d’abord un
diagramme � 2 Yn par rapport à la mesure de Plancherel et après un chemin
; = !0,!1, . . . ,!N = � dans le graphe de Young uniformément au hasard,
alors le diagramme !j qu’on obtient à chaque pas j sera distribué par rapport
à la mesure µj correspondante. Donc, l’application du théorème de Vershik-
Kerov-Logan-Shepp donne que le chemin F↵(x) correspondant converge en
probabilité vers celui obtenu par rééchelonnement de la forme ⌦,

h↵(x) =
p
↵⌦(

xp
↵
).

Donc, le chemin aléatoire vers un diagramme de Young Plancherel-aléatoire
(et donc presque de forme⌦) est donn par le rééchellement d’⌦.

Puis, un chemin entre un diagramme vide et un diagramme de forme
carré ou réctangulaire � peut être décrit par les mêmes méthodes que dans
la théorème de Vershik-Kerov-Logan-Shepp, ce qu’ont fait Pittel et Romik
dans [39]. À préciser : le nombre de chemins qui traverse un diagramme �0

de taille j est un produit du nombre de chemins entre ; et �0 et du nombre
de chemins entre �0 et �. Le premier peut être calculé via la formule de
crochets, et après une transformation logarithmique en une fonctionnelle de
type “entropy” évalué sur �0. L’argument de Pittel et Romik dit qu’on peut
calculer le dérnier de la même manière, car le diagramme de Young gauche
�/�0 (qui est la di↵érence � \ �0), tournée 180�, devient un diagramme de
Young simple. Donc, on peut estimer le nombre de chemins traversant �0, et
en maximisant la fonctionnelle d’entropie correspondant on trouve la forme
limite désirée du chemin; voyez Fig. 1.1.1.

Ces arguments conduisent aussi à la question de nombre de chemins entre
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Figure 1.2: YT aléatoire, correspondant à l’YD carré 100⇥ 100.
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un diagramme de Young et l’autre, ou, ce qui revient au même, à la question
du nombre de Tableaux de Young standard gauches de la forme �/�0 indiquée
(qui est la façon d’énumérer des cellules de � \ �0 en ordre d’apparence au
long du chemin : décroissant dans chaque rangée et chaque colonne).

Elle est étudiée dans les travaux récents de Morales, Pak, Panova et
Tassy [32, 33, 34, 35, 36], en utilisant la formule de Naruse (la formule des
crochets modifiée [37]) et la notion d’YD excitée. Ces auteurs ont conjec-
turé ([35, Conjecture 1]) et ils ont prouvé ([36]) que si les grands diagrammes
�N et �0N ont les formes asymptotiques L� et L�0 respectivement (c’est à dire,
les diagrammes comprimés convergent), le nombre de chemins f�N/�0N de �0N
à �N a une asymtotique de la forme

logF �N/�0N =
1

2
nN log nN + nN · c(L�0 , L�) + o(nN),

où nN = |�N/�0N | et c est une fonctionnelle. (Aussi, pour �0 beaucoup plus
petite que � cette question est étudiée dans [16], avec des méthodes de théorie
des représentations.)

1.1.2 Des formules explicites

Dans le Chapitre 2 nous présentons les arguments qui nous permettent de
deviner la formule explicite de cette fonctionnelle.

Définition 1.1.1. À un grand YT gauche de forme �/�0 de taille n (le
nombre des cellules) nous mettons en correspondance une fonction g(t, x) :
[0, 1] ⇥ R ! R+, définie de la manière suivante. Pour j = 0, 1, . . . , n, soit
g( jn , x) une fonction dont le graphe est le borde externe du diagramme com-
posé des premières j cellules de YT, tourné par 45 dégrés et contracté

p
n

fois. Cette fonction-là est prolongée sur chaque intervalle t 2 [ jn ,
j+1
n ] en

manière a�ne.

Définition 1.1.2. Soit �N/�0N une famille des YD gauches de tailles nN ,
tels que 45�-tournés 1p

nN
-rééchelonnés, ces YDs sont uniformément délimité

et convergent vers une forme asymptotique L/L0. On dit que la fonction
g(t, x) définit la forme asymptotique du YT correspondant à cette série si
les fonctions gN(t, x) correspondantes aux YTs gauches aléatoires des formes
�N/�0N convergent en probabilité vers g(t, x).
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Conjecture 1.1.1. • La fonction g(t, x) qui définit la forme asympto-
tique d’un YT gauche de la forme L/L0, maximise la fonctionnelle

L[g] =
Z 1

0

Z

R
g0t(� log g0t + log cos

⇡g0x
2

) dx dt� log
⇡p
2
. (1.2)

avec les valeurs limites g(0, x) et g(1, x) données par les formes de L
et L0 respectivement. La constante additive n’est pas nécessaire pour
le problème de maximisation, mais elle est importante pour les autres
conclusions.

• Le nombre F �N/�0N de tels tableaux se comporte comme

logF �N/�0N =
1

2
nN log nN + nNL[g] + o(nN), (1.3)

où nN = |�N/�0N | est le nombre de cellules (on rappelle que g est choisi
d’avoir l’aire unitaire).

En plus, soit g0(t, x) une autre fonction continue et presque partout lisse,
satisfaisant les mêmes conditions limites et les restrictions d’aire

8t 2 [0, 1]

Z

R
(g0(t, x)� g0(0, x)) dx = t.

Pour chaque N on peut considérer le nombre F
�N/�0N
",g0 de tels YT que la

fonction g correspondante est "-proche (en C0-topoligie) à la fonction g0.
En fait, la fonctionnelle L devrait décrire l’asymptotique du nombre de ces
chemins pour chaque g0, et c’est la raison elle apparâıt dans la conjecture
précedente.

Conjecture 1.1.2. Le nombre F
�N/�0N
",g0 d’YT de la forme �N/�0N et "-proche

de la forme g0 se comporte asymptotiquement comme

logF
�N/�0N
",g0 =

1

2
nN log nN + nN · L[g0] + o(nN)

quand nN ! 1 et "! 0. On a plus précisément :

lim
"!0

lim sup
N!1

1

nN

✓
logF

�N/�0N
",g0 � 1

2
nN log nN + nN · L[g0]

◆
= 0.
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Remarque 1.1.1. Avec une notion de proximité entre les YDs gauches et
leurs formes limites un peu plus forte (le bord de forme limite doit être dans
const fois la taille d’une cellule), ces conjectures découlent de ce que Sun
a prouvé dans sa prépublication : voir Définition 5.4, Théorèmes 7.1, 7.15
et 9.1 dans [43]. Mais nous croyons qu’on peut a↵aiblir ces hypothèses ;
aussi, on peut trouver intéressant qu’on peut obtenir ces prédictions avec
une approche directe et pas compliquée.

Remarque 1.1.2. Il est à noter qu’on peut choisir une autre échelle pour
la renormalisation de la fonction g. Supposons que l’on ait choisi la nor-
malisation d’aire égale à 2; formellement, on considère g̃(t, x) =

p
2 g(t, xp

2
).

Cette normalisation vient de considération des diagrammes de maya, voyez
Remarque 2.1.1. Ici, la fonctionnelle L se réécrit sous la forme :

L[g] = eL[g̃] := 1

2

Z 1

0

Z

R
(� log

⇡g̃0t
2

+ log cos
⇡g̃0x
2

) g̃0t dx dt. (1.4)

Le facteur 1
2 provient du changement d’aire, et la constante log ⇡p

2
disparâıt

grace au remplacement de log g0t par log
⇡g̃0t
2 = log ⇡g0tp

2
.

C’est intéressant de noter que dans (1.4) les dérivées dans les deux direc-
tions de g̃ sont multipliées par ⇡

2 , suggérant, peut être, que
⇡g̃
2 soit un objet

plus “naturel” dans un sens à préciser.

Remarque 1.1.3. Un autre rééchelonnement par le facteur n, mène à G̃(t, x) :=p
n g̃( t

n ,
xp
n), donne la figure d’aire 2n. Ainsi, la partie droite de (1.3) (sauf

le terme-erreur) peut être écrit comme

L̂[G̃] =
1

2

Z

R

Z n

0

(� log
⇡G̃0

t

2
+ log cos

⇡G̃0
x

2
) G̃0

t dx dt. (1.5)

1.1.3 La modification de TASEP et le calcul de son

entropie

On note qu’on peut regarder les diagrammes de Young gauches standards
(ou, ce qui revient au même, les chemins dans le graphe de Young) comme
une sorte spéciale de pavages de dominos sur une partie spéciale du réseau
hexagonal. En plus, en passant à la limite dans cette construction, on peut
éliminer les conditions sur les dominos, car ceux qui ne les satisfont pas ont
une mesure asymptotique nulle. C’est fait dans la Section 2.1.
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Ce point de vue, même s’il est simple, donne les conclusions intéressantes.
On obtient une forte évidence pour la loi des grandes nombres pour le chemin
entre deux grands diagrammes : il devrait y avoir une forme asymptotique du
chemin, car il y en a une pour les pavages de dominos. Cela nous permet de
prédire la fonctionnelle d’entropie que ce chemin maximise, et donc motive
l’introduction de la modification du TASEP suivante.

On considère un cercle muni d’emplacements (trous) et les pierres placées
dans certains d’entre eux. À chaque pas une des pierres se déplace dans le
trou placé à droite. Dans le modèle TASEP classique, toutes les pierres qui
peuvent se déplacer, le font équiprobablement. Dans notre cas, au contraire,
les probabilités correspondantes sont di↵érentes et elles dépendent de “degré
de liberté” du mouvement de la pierre. C’est à dire, on choisit les probabilités
de sauts de sorte que l’entropie du processus soit maximale. L’explication
profonde se trouve dans Section 2.3, avec le

Théorème 1.1.2. Pour le cercle de longueur L (c’est à dire, le nombre des
trous) et avec N pierres, l’entropie de la châıne de Markov correspondante est

égal à log
sin ⇡N

L
sin ⇡

L
. Les probabilités des états pour la mesure d’entropie maxi-

male sont données par la mesure déterminantale dont le noyau de corrélation
est décrit par la projection sur N harmoniques consécutives de Fourier (parmi
L).

Ce processus se trouve être intéressant pour lui-même : sa mesure sta-
tionnaire est déterminantale, et en passant à la limite elle donne une intuition
pour le processus sinus qui apparâıt sur le bord de grands YD aléatoires (Re-
marque 2.3.1) et pour la formule précise de la fonctionnelle dans le théorème
de Morales-Pak-Panova-Tassy (Conjecture 1.1.1).

En fait, on peut aussi deviner la fonctionnelle avec un argument très
simple en utilisant les équations di↵erentielles (Section 2.2.2), qui conduit,
naturellement, vers la même réponse, cristallisée dans les Conjectures 1.1.1
et 1.1.2.

1.1.4 Les relations aux modèles dimère et perles

On encode l’évolution du TASEP modifié dans un certain modèle dimère
sur le graphe planaire correspondant (plutôt hexagonal). En introduisant un
“impôt” sur les arêtes d’une des directions on “gèle” le modèle ; en combinant
cela à un rééchellement du temps, on trouve un processus limite “diagonal”
non-trivial.
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D’une part, un tel processus peut être décrit explicitement à l’aide de la
châıne de Markov m-TASEP originale:

Théorème (Théorème 2.3.1). Ce processus limite est obtenu par couplage
de la mesure d’entropie maximale pour la châıne de Markov topologique in-
versible et d’un processus de Poisson sur R d’intensité constante, fournissant
les temps des sauts. L’intensité du processus Poisson est égale à eh, où h est
l’entropie de la châıne de Markov (donnée par Théorème 1.1.2).

D’autre part, en utilisant la théorie de Kasteleyn [28, 29], on voit qu’on
peut le décrire par une formule de type déterminantal, et obtenir une de-
scription explicite pour son noyau de corrélation:

Théorème (Théorème 2.3.2). Pour le processus limite dans le Théorème 2.3.1,
la probabilité que les pierres soient présentes aux positions k1, . . . , kn aux mo-
ments t1, . . . , tn est égale au déterminant

det(K̃(ta � tb, ka � kb)a,b=1,...,n),

ou le noyau K̃ est donné par (2.29), (2.30).

Cela propose une preuve alternative au Théorème 1.1.2 (voyez le corol-
laire 2.3.2). Nous obtenons aussi la description similaire pour le processus
de saut :

Théorème (Théorème 2.3.3). Pour le processus limite dans le Théorème 2.3.1,
la densité commune de la probabilité pour les sauts en (k1, t1), . . . , (kn, tn) est
égale au déterminant

det(K̃(ta � tb, ka � kb � 1)a,b=1,...,n) (1.6)

pour N impair
det(!K̃(ta � tb, ka � kb � 1)a,b=1,...,n) (1.7)

pour N pair.

Et c’est une point de vu alternatif sur le modèle des perles consideré par
Boutillier [7] et Sun [43], surtout pour son noyau de corrélation.

Finalement, les relations entre les sauts de pierres et le modèle dimère
o↵rent une explication immédiate sur le fait que la “poissonisation” de la
mesure de Plancherel est déterminantale. À préciser, cette Poissonisation
peut être vu aussi via des pavages de dominos sur le réseau hexagonal (en
passant à la limite), et ces derniers sont connus pour être déterminantaux.
C’est fait dans Section 2.4.
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1.2 Systèms dynamiques aléatoires sur la droite

réelle

1.2.1 Aperçu du problème

Chapitre 3 est dédié à l’étude des systèmes dynamiques aléatoires (SDA)
sur la droite réelle. C’est à dire, soit f1, . . . , fk 2 Homeo+(R) un ensem-
ble fini d’homéomorphismes qui conservent l’orientation avec les probabilités
p1, . . . , pn de leur application, p1+· · ·+pk = 1. À chaque pas on applique une
de ces applications, choisies de manière indépendantes, selons les probabilités
p1, . . . , pn; le lecteur trouvera les précisions dans Section 3.1 à dessous.

Ce travail est motivé par l’article de Deroin et al. [15], où les auteurs
ont consideré le cas de dynamiques symétriques, c’est à dire, on applique
chaque application et son inverse avec la même probabilité. Ils ont démontré
que dans le cas symétrique, sauf dans des situations dégénérées, il n’y a pas
de mesure stationnaire de probabilité, mais il en existe de masse infinie. En
même temps, la dynamique symétrique est toujours récurrente : il existe un
intervalle compact tel que toute orbite aléatoire, commençant n’importe où,
visite cet intervalle presque certainement une infinité de fois. Néanmoins, la
symétrie était utilisée dans [15] de manière indispensable, et donc il était par-
ticulièrement intéressant d’étidier tous les types de comportement possibles
quand on supprime cette hypothèse.

Il est à noter qu’un changement des coordonnées transforme R dans
l’intervalle (0, 1). La dynamique sur l’intervalle a été étudie par plusieurs
auteurs, y compris Guivarc’h, Le Page [23], Deroin, Navas, Parwani [15],
Ghaeraei, Homburg [20], Bro↵erio, Buraczewski, Damek, Szarek, Zdunik,
Czudek, Czernous, [10, 9, 44, 13], Alsedà, Misiurewich [2], Kan [27], Boni-
fant, Milnor [5], Ilyashenko, Kleptsyn, Saltykov [24], et autres.

Les auteurs ont souvent étudié SDA sur (0, 1) avec des hypothèses de
lissage (et de minimalité) additionnelles : par exemple, dans [20, 27, 24]
on suppose que la dynamique est lisse partout, dans [44, 14] — aux points
d’extrémité. Cette hypothèse de lissage permet l’utilisation de la technique
des exposants de Lyapunov pour décrire le comportement aux points d’extrémité.

Notamment, il est naturel d’attendre — et les auteurs mentionnés au-
dessus, l’ont prouvé — que les exposants de Lyapunov aléatoires positifs
aux points d’extrémité implique la “répulsion aléatoire” et donc la mesure
stationnaire de probabilité a son support à l’intérieur de l’intervalle. D’autre
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part, des exposants de Lyapunov negatifs impliquent que les trajectoires
tendent vers les points d’extrémité presque certainement. Finalement, le cas
des exposants nuls est proche du cas “positif” : une orbite aléatoire part
presque certainement d’un voisinage d’une d’extrémité, mais cela prend un
temps infini.

Les deux premiers types de comportements sont duaux l’un de l’autre de
la manière suivante. Soit µ la mesure discrète de probabilité sur Homeo+(R)
qui définit la dynamique (c’est à dire µ({fi}) = pi), et soit µ̂ son image quand
toutes les applications sont replacés par leur inverse, donc µ̂(f) = µ(f�1).
Nous appelons la première la dynamique avant, la dernière inverse. Si pour
la dynamique avant les exposants de Lyapunov sont positifs, pour l’inverse ils
sont negatifs. De plus, un exposant nul pour la dynamique avant implique la
même proprieté pour la dynamique inverse (et vice-versa). Cela nous permet
de classer les comportements possibles pour les dynamiques avant et inverse
en un petit nombre de cas.

1.2.2 Résultats principaux

Dans le Chapitre 3 on montre que les conclusions comme au-dessus (et la
dualité entre les dynamiques avant et inverse) peuvent être établies sans
tous hypothèse de lissage, par l’application directe de méthodes purement
topologiques. Le premier resultat, Théorème 1.2.1 ci-dessous indique que
pour une SDA sur R les comportements des dynamiques avant et inverse
sont de quatre types di↵érents.

Théorème 1.2.1. Soit une SDA sur R, définie par une mesure avec un
support fini µ sur Homeo+(R) est telle que

8x 2 R 9f, g 2 suppµ : g(x) < x < f(x).

Puis, quitte à changer µ en µ̂ et quitte à renverser par x 7! (�x), l’action
est de précisément l’un des types suivants:

1. en dynamique avant tous les points vont vers +1 presque certainement,
en dynamique inverse tous les points vont vers �1 presque certaine-
ment;

2. en dynamique avant tous les points vont vers +1 presque certainement,
la dynamique inverse est récurrente (tous les points presque certaine-
ment reviennent dans un intervalle compact une infinité de fois);
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3. les deux dynamiques (avant et inverse) sont récurrentes;

4. en dynamique avant tous les points tendent avec une probabilité non
nulle vers chaque infini, la dynamique inverse est récurrente.

Actuellement, l’hypothèse de “support fini” peut être a↵aiblie par celle
de “déplacements compacts” (voir Définition 3.1.2). En plus, une partie des
conclusions subsiste si on l’omet complétement (Théorème 3.1.1). Mais la
dynamique dans le cas infini peut se comporter beaucoup plus méchamment.
À préciser, dans Section 3.4 on construit un “exemple monstre” qui illustre
une dynamique non-récurrente, mais qui ne tend individuellement ni vers
+1, ni vers �1.

Notre deuxième résultat est dédié à la description des mesures station-
naires (Radon) dans les parties récurrentes de ces cas. La preuve de leur
existence suit essentiellement de la construction de [15], mais ici ces mesures
peuvent être finies, infinies ou semi-infinies selon le comportement des dy-
namiques. Aussi, il est à noter que sous une hypothèse additionnelle de prox-
imité de l’action (c’est à dire, un intervalle de longeur arbitraire peut être
contracté dans un intervalle donné), un résultat récent de Bro↵erio, Bu-
raczewski et Szarek [10, Théorème 1.1] implique que la mesure stationnaire
de Radon est unique.

Théorème 1.2.2. Soit µ une mesure de probabilité avec un support fini sur
Homeo+(R), satisfaisant les hypothèse de Théorème 1.2.1. Selon l’appartenance
à l’une des quatre classes décrites dans Théorème 1.2.1 le SDA satisfait les
propriétés suivantes:

1. Les dynamiques avant et inverse sont non-récurrentes.

2. La dynamique avant est non-récurrente. La dynamique inverse est
récurrente et elle admet une mesure stationnaire semi-infinie de Radon
: la mesure en +1 est finie, mais la mesure en �1 ne l’est pas. Cette
mesure peut être construite en utilisant les probabilités à frapper pour
la dynamique avant.

3. Les dynamiques avant et inverse sont récurrentes et admettent une
mesure stationnaire infinie de Radon, mais pas de probabilité, ni semi-
infinie (c’est la même conclusion que dans le cas symétrique) ;
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4. La dynamique avant est non-récurrente ; il y a une mesure stationnaire
de probabilité pour la dynamique inverse, sa fonction de distribution est
la probabilité d’aller vers +1 pour un point.

En regroupant les conclusions des Théorèmes 1.2.1 et 1.2.2, on obtient le
Tableau 1.1.

no. Dynamique avant Dynamique inverse
1 Tout tend vers +1 Tout tend vers �1
2 Tout tend vers +1 La dynamique est récurrente et admet

une mesure stationnaire semi-infinie
3 La dynamique est récurrente et admet La dynamique est récurrente et admet

une mesure stationnaire infinie une mesure stationnaire infinie
4 Chaque point tend vers +1 ou �1 La dynamique est récurrente et admet

avec des probabilités positives une mesure stationnaire de probabilité

Table 1.1: Les cas possibles pour les dynamiques

1.2.3 Plan du Chapitre 3

Nous introduisons les notations et rappelons les définitions dans Section 3.1.
Après, dans la Section 3.2, on étudie les proprietés des fonctions �+ et ��,
donnant les probabilités que l’orbite d’un point initial x converge vers +1
et �1 respectivement. Dans la Section 3.3 on utilise ces fonctions pour
étudier les comportements possibles simultanés pour les dynamiques duaux.
La Section 3.4 est consacrée à construction d’exemple monstre avec les points
s’échappant vers infinie, mais oscillant entre plus et moins l’infini. Finale-
ment, la Section 3.5 est consacrée aux constructions et à l’étude des mesures
stationnaires.
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Chapter 1

Introduction

My thesis is devoted to the study of two di↵erent questions, both of which
are related to the problems of random dynamics.

In the Chapter 2 I study the behaviour of large random (skew) Young
tableaux. The description of their local behaviour, in particular, turns out
to be related with a specific topological Markov chain, the modified TASEP
process on the circle, and with its measure of maximal entropy.

The Chapter 3 is devoted to the study of stationary measures for the non-
symmetric random dynamical systems on the real line, and their relation to
the asymptotic properties of the time-reversed dynamics.

The next two sections are devoted to the detailed description of the gen-
eral background of these domains and the results obtained.

The author would like to thank Vadim Gorin, Alexey Bufetov, Leonid
Petrov, Greta Panova, Alejandro Morales, Igor Pak, Sara Bro↵erio and Grig-
ory Merzon for their interest to the work and helpful discussions.

1.1 Limit shapes of large skew Young tableaux

and a modification of the TASEP process

1.1.1 General background and overview of the prob-

lem

The Young diagrams (YD for short) and notions, related to them, have been
studied for a long time (for instance, see works of Feit, Carlitz-Riordan, De
Concini, Edelman and Berele-Regev [18, 11, 12, 17, 4]). This study was

21
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Figure 1.1: Standard Young Tableau

motivated both by the combinatorial reasons (YD of size n correspond to
partitions of number n) and by the representation theory (YD of size n
enumerate irreducible representations of the symmetric group Sn). We denote
the set of all Young diagrams of size n by Yn.

The Young graph is an oriented graph that has Young diagrams as its
vertices, and whose edges go from each YD to all YD’s that can be obtained
by adding a cell to the initial diagram. On the language of the representation
theory, � 2 Yn is joined to all µ 2 Yn+1 that are contained in the induced
representation of Sn+1, or equivalently, if the representation ⇢� is contained
in the restriction of the corresponding representation ⇢µ to Sn. The latter
(together with the fact that the multiplicity of such an inclusion never exceeds
one) implies that the dimension dim � of the irreducible representation ⇢�,
associated to the YD �, is equal to the number of paths in the Young graph
that join the empty (or one-cell) diagram with �.

A path in the Young graph, starting at the empty diagram, can be en-
coded by writing in each cell the number of step at which it is added, thus
putting it into a bijective correspondence with a standard Young tableau. The
latter, by definition, is a way of putting numbers {1, . . . , n} in cells of the
YD of size n in such a way that the numbers are increasing in each row and
column, and that each number is used exactly once. (Similar construction
with path going from some non-empty YD to another leads to the notion of
a skew Young tableau.)

The representation theory then motivates the study of the Plancherel
measure: one has

X

�2Yn

dim2 � = n!,



1.1. LARGE SKEW YT 23

and hence the measure µn on Yn, defined by µn({�}) = dim2 �
n! , is a probability

one.
This measure gives rise to a central measure µ̄ on the paths on the Young

graph. The central measures in general are defined in the following way.
Assume that one is given a graphG with the graded set of vertices V =

F
n Vn,

with edges joining vertices from Vn to the vertices from Vn+1. By definition, a
probability measure on the paths ! = {!n}1n=0, !n 2 Vn, is central if for any
n and any v 2 Vn conditional to !n = v the initial part !0,!1, . . . ,!n�1,!n

of the path is distributed uniformly on all the paths that end at v at the
moment n.

It is easy to see that a central measure is necessarily Markovian (the future
is independent from the past). Also, its marginal measures µn defining the
law of !n should agree with each other: for any m < n, considering the
law of !m in a uniformly chosen path leading to vVn and averaging with v
distributed w.r.t. µn, we are getting µm. Vice versa, a sequence of measures
µn defines a central measure (for which they serve as marginals), provided
that they agree. One of the basic examples of such measures are Bernoulli
ones: a random path (xn, yn), where xn and yn are respectively the number
of heads and tails after tossing of a Bernoulli coin n times. Indeed, given
the number k = xn of successes after tossing a coin n times, all the

�
n
k

�

possible placements of these successes are equiprobable — whichever was the
probability p of a success.

As we have mentioned, it is known (though not evident) that Plancherel
measures µn on sets Yn agree with each other and hence give rise to a central
measure on the set of paths in the Young graph. This measure has forward
transition probability from � 2 Yn�1 to �0 2 Yn

p�%�0 =
dim�0

n dim�
.

It is easy to check that these probabilities define a Markov chain with marginal
laws µn at time n, giving the backward transition probability

P(!n�1 = � | !n = �0) =
dim�

dim�0
(1.1)

(where !0 = ;,!1,!2, . . . is a path randomly chosen w.r.t. this measure) and
hence satisfying a definition of a central measure (the relation (1.1) easily
implies that the distribution on the starting segments of paths coming to
� 2 Yn is uniform).
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A general paradigm of asymptotic combinatorics is that a large random
combinatorial object often satisfies some kind of the “law of large numbers”:
if properly rescaled, it looks like a deterministic one. There are many ex-
amples of such results (for example see [41, 45, 3]). Of the ones related to
YD, the first that we would like to mention here is the limit shape theorem,
independently discovered in late 1970’s by Versik and Kerov in the USSR
and Logan and Shepp in the United States. Namely: take a random diagram
� 2 Yn (in French notation), contract it 1p

n times, and rotate it 45� coun-
terclockwise. This gives a random figure Fn of unit area, placed between the
rays y = |x|. Consider its outer boundary, extended by y = |x| outside the
diagram, as a graph of some 1-Lipshitz function f�.

Theorem 1.1.1 (Vershik, Kerov [46], Logan, Shepp [31]). f� converges in
probability in C0-topology to the limit function ⌦(x), defined by

⌦(x) =

(
2
⇡ (
p
2� x2 + x arcsin xp

2
), |x| 

p
2,

|x|, |x| �
p
2.

Now, a path in the Young graph !0 % !1 % · · · % !n can be also
transformed in this way: rescaling it 1/

p
n times, we get an increasing family

of figures of area ↵ = 0, 1
n , . . . , 1; again, rotating these figures by 45�, we can

consider their (extended) outer boundaries as graphs of 1-Lipschitz functions
F↵(x). This, together with the definition of the central measure, motivates
the following two questions:

Question 1.1.1. What can be said about a typical path from ø to a given
large Young diagram �?

Question 1.1.2. What can be said on a random path from a given large
Young diagram �1 to a given large Young diagram �2 � �1?

To both these questions one can add the question of the asymptotics of the
number of such paths, as well as the one of establishing large deviations-type
estimate for the number of paths of a “non-typical” shape.

The first question is already answered by the representation theory meth-
ods (see [42]). The second one was attacked (with variational principle meth-
ods) by several authors: by Morales, Pak and Panova [36] via the excited
diagrams and Naruse’s formula, and by Sun [43] via the dimer covers and
bead models. However, it is interesting to approach these questions with
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Figure 1.2: Random YT, corresponding to the 100⇥ 100 square YD.

yet another methods, and this is the starting point for our considerations in
Chapter 2.

Before proceeding, we would like to mention a few cases in which the
Question 1.1.1 can be attacked by simple combinatorial methods. As we
have already mentioned, the measure µ̄ is central. This implies that if we
first choose a diagram � 2 Yn w.r.t. the Plancherel measure and then pick a
path ; = !0,!1, . . . ,!N = � in the Young graph uniformly at random, then
at each step j (with ↵j equal to the area of corresponding !j) the diagram !j

will be distributed w.r.t. the corresponding measure µj. An application of
the Vershik-Kerov-Logan-Shepp theorem then gives that the corresponding
path F↵(x) converges in probability to the one given by rescaling of the shape
⌦,

h↵(x) =
p
↵⌦(

xp
↵
).

Thus, a random path to a Plancherel-random (and hence almost ⌦-shaped)
Young diagram is given by rescaling of ⌦.

Next, a path, going towards a square- or rectangular-shaped Young di-
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agram �, can be described via the same methods as Vershik-Kerov-Logan-
Shepp theorem, and it was done by Pittel and Romik in [39]. Namely: the
number of paths that pass through some diagram �0 of size j is a product of
number of paths from ; to �0 and of number of paths from �0 to �. The former
can be calculated via the hook formula, and then its logarithm transformed
(approximatively) into an entropy-type functional evaluated on �0. And the
argument of Pittel and Romik says that the latter can also be calculated in
this way, as the skew Young diagram �/�0 (that is, the set-theoretical dif-
ference � \ �0), rotated 180�, becomes again simply a Young diagram. Thus,
one can estimate the number of paths that go through �0, and maximizing
the corresponding entropy functional, one finds the desired limit shape of the
path; see Fig. 1.1.1.

The above arguments also lead to the question of study of the number
of paths from one Young diagram to the other, or, which is the same, the
number of standard skew Young tableaux of a given shape �/�0 (that is, ways
of enumerating cells of �\�0 in order as they appear in the path: enumeration
that is increasing in each row and in each column).

It was studied in recent works by Morales, Pak, Panova and Tassy [32,
33, 34, 35, 36], using Naruse’s modified hook-length formula ([37]) and the
notion of exited YD. They have conjectured (see [35, Conjecture 1]) and
proved ([36]) that if the large diagrams �N and �0N have asymptotic shapes
L� and L�0 respectively (that is, the rescaled diagrams converge), then the
number of paths f�N/�0N from �0N to �N has the asymptotics of the form

logF �N/�0N =
1

2
nN log nN + nN · c(L�0 , L�) + o(nN),

where nN = |�N/�0N | and c is some functional. (Also, for �0 much smaller
than � this question was studied in [16], again, by the methods of the repre-
sentation theory.)

1.1.2 Explicit formulae

In Chapter 2 we present arguments that allow to guess the explicit form of
this functional. To state this question formally, let us give the following

Definition 1.1.1. To a given large skew YT of the shape �/�0 and consisting
of some number n of cells, put in correspondence the function g(t, x) : [0, 1]⇥
R ! R+, defined in the following way. For j = 0, 1, . . . , n, let g( jn , x) be the
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function such that its graph is the outer boundary of the first j cells of the
YT, rotated by 45 degrees and contracted by the factor

p
n, and let us extend

this function on each of the intervals t 2 [ jn ,
j+1
n ] in an a�ne way.

Definition 1.1.2. Consider a sequence of skew YD �N/�0N of sizes nN , such
that the 45�-rotated 1p

nN
-rescaled images of these skew YD are uniformly

bounded and converge to some asymptotic shape L/L0. Say that the function
g(t, x) defines an asymptotic shape of the YT corresponding to this sequence
if the functions gN(t, x) corresponding to random skew YT of the shapes
�N/�0N converge in probability to g(t, x).

Conjecture 1.1.1. • The function g(t, x), defining the asymptotic shape
of a skew YT of a shape L/L0, maximizes the functional

L[g] =
Z 1

0

Z

R
g0t(� log g0t + log cos

⇡g0x
2

) dx dt� log
⇡p
2
. (1.2)

with the boundary values g(0, x) and g(1, x) given by the shapes L and L0

respectively. The additive constant here is surely irrelevant for the pur-
poses of the maximization problem, but it is important for the other
conclusions.

• The number F �N/�0N of such tableaux behaves as

logF �N/�0N =
1

2
nN log nN + nNL[g] + o(nN), (1.3)

where nN = |�N/�0N | is the number of cells (recall that g is chosen to
be scaled to the area 1).

Moreover, take any other continuous and almost everywhere smooth func-
tion g0(t, x), satisfying the same boundary conditions, as well as the area
restrictions

8t 2 [0, 1]

Z

R
(g0(t, x)� g0(0, x)) dx = t.

Then for any N one can consider the number F
�N/�0N
",g0 of the YT such that the

corresponding function g is "-close (in the C0-topology) to the function g0.
And actually, the functional L should describe the asymptotics of number
such paths for any g0, and this is the reason why it appears in the previous
conjecture:
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Conjecture 1.1.2. The number F
�N/�0N
",g0 of YT of the shape �N/�0N and

"-close to the form g0 has the asymptotic behaviour

logF
�N/�0N
",g0 =

1

2
nN log nN + nN · L[g0] + o(nN)

as nN ! 1 and as " ! 0, in the sense that the double limit for the error
term vanishes:

lim
"!0

lim sup
N!1

1

nN

✓
logF

�N/�0N
",g0 � 1

2
nN log nN + nN · L[g0]

◆
= 0.

Remark 1.1.1. With a slightly stronger notion of closeness for the skew
Young diagrams to their limit forms (the limit shape boundary should be
within const times the size of a cell), these statements follow from what
is established in Sun’s preprint [43]: see Definition 5.4, Theorems 7.1, 7.15
and 9.1 therein. However, we believe that these assumptions can be weak-
ened; it seems also interesting to us that these predictions can be found by
a straightforward and not too technically complicated approach.

Remark 1.1.2. Note that we can choose another scaling normalization for
the function g, not necessarily choosing it to be spanned area 1. Let us pass
to the total area 2 normalization; formally speaking, we consider g̃(t, x) =p
2 g(t, xp

2
). This normalization comes out of maya diagram consideration,

see Remark 2.1.1. In this normalization, the functional L can be rewritten
as

L[g] = eL[g̃] := 1

2

Z 1

0

Z

R
(� log

⇡g̃0t
2

+ log cos
⇡g̃0x
2

) g̃0t dx dt. (1.4)

The factor 1
2 here is due to the area change, while the constant log ⇡p

2
disap-

pears due to the replacement of log g0t by log ⇡g̃0t
2 = log ⇡g0tp

2
.

It is interesting to note that in (1.4) the derivatives in both directions of
g̃ are multiplied by ⇡

2 , possibly suggesting that ⇡g̃
2 might be in some sense a

more “natural” object.

Remark 1.1.3. A further rescaling by a factor of n, that is, consideration
of G̃(t, x) :=

p
n g̃( t

n ,
xp
n), gives a figure of area 2n, spanned during the time

n. In these terms, the right hand side of (1.3) (except for the error term)
can be written as

L̂[G̃] =
1

2

Z

R

Z n

0

(� log
⇡G̃0

t

2
+ log cos

⇡G̃0
x

2
) G̃0

t dx dt. (1.5)
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1.1.3 Modification of TASEP and computation of its

entropy

We note that the standard skew Young diagrams (or, what is the same,
paths on the Young graph) can be seen as a special kind of domino tiling
on the (special part of a) hexagonal lattice. Moreover, adding a limit to
this construction, one can remove the conditioning on the tiles (those not
satisfying the condition have asymptotic measure zero). This is done in
Section 2.1.

This point of view, though simple, leads to interesting conclusions. It
gives a strong evidence for the law of large numbers for the path between
two large diagrams: there should be an asymptotic shape of a path, because
there is one for the domino tilings. It allows to predict the entropy func-
tional maximized by this path, and for that motivates an introduction of the
following modified version of TASEP.

Consider a circle with holes on it and stones placed in some of them. Every
step one of the stones moves into the next hole to its right. In the classical
TASEP model, all the stones which can move, do so with equal probabilities.
In our case, however, the corresponding probabilities are di↵erent and depend
on how freely a stone can move. Namely, we choose the probabilities of jumps
in order for the entropy of the process to be maximal. We explain this in
Section 2.3, and prove the following result

Theorem 1.1.2. For a circle of length L with N stones on it, the entropy

of the corresponding topological Markov chain is equal to log
sin ⇡N

L
sin ⇡

L
. The

probabilities of states for the measure of maximal entropy are given by a
determinantal measure whose correlation kernel is given by the projection on
(any) N consecutive Fourier harmonics (out of L).

This process turns out to be interesting in its own: its stationary measure
is determinantal, and passing to the limit it gives a handwaving explanation
for the sine-process appearing on the boundary of the random large Young
diagram (see Remark 2.3.1) and finding the precise formula for the functional,
appearing in Morales-Pak-Panova-Tassy theorem (see Conjecture 1.1.1).

In fact, we note that such a functional can also be guessed by a very
simple di↵erential equations argument (see Section 2.2.2), naturally (and
quite encouragingly), leading to the same answer, yielding Conjectures 1.1.1
and 1.1.2.
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1.1.4 Relation to the dimer and beads models

We encode the evolution of the modified TASEP process into a certain dimer
model on the corresponding planar (mostly hexagonal) graph. Introducing
a “tax” on edges of one of the directions “freezes” the model; joining it with
the time rescaling, we find a nontrivial “diagonal” limit process.

On one hand, such process can be explicitly described in terms of the
original m-TASEP Markov chain:

Theorem (Theorem 2.3.1). This limit process is given by coupling a max-
imal entropy measure for the two-sided topological Markov chain and of a
Poisson process on R of constant intensity, providing the jump moments.
The intensity of the Poisson process is equal to eh, where h is the entropy of
the Markov chain (given by Theorem 1.1.2).

On the other, using Kasteleyn theory [28, 29], we see that it can be
described by a determinantal-type formula, and get an explicit description
for its correlation kernel:

Theorem (Theorem 2.3.2). For the limit process in Theorem 2.3.1, the prob-
ability that the stones are present at positions k1, . . . , kn at times t1, . . . , tn
is equal to the determinant

det(K̃(ta � tb, ka � kb)a,b=1,...,n),

where the kernel K̃ is given by (2.29), (2.30).

This proposes an alternate way of establishing Theorem 1.1.2 (see Corol-
lary 2.3.2). We also get a similar description for the jumping process:

Theorem (Theorem 2.3.3). For the limit process in Theorem 2.3.1, the com-
mon density of the probability for the jumps at (k1, t1), . . . , (kn, tn) is equal
to the determinant

det(K̃(ta � tb, ka � kb � 1)a,b=1,...,n) (1.6)

for odd N and to the determinant

det(!K̃(ta � tb, ka � kb � 1)a,b=1,...,n) (1.7)

for even N .
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This provides with an alternate viewpoint on the beads model considered
by Boutillier [7] and Sun [43], and especially on its correlation kernel.

Finally, the relations between the jumping of stones and the dimer model
also allows to provide an immediate (non-computational) explanation, why
the Poissonization of the Plancherel measure is a determinantal one. Namely,
this Poissonization can also be seen via the (passage to the limit in the)
domino tilings on the hexagonal lattice, and the latter are known to be
determinantal. This is done in Section 2.4.

1.2 Random dynamical systems on the real

line

1.2.1 General background

Chapter 3 is devoted to the study of random dynamic systems (RDS) on
the real line. That is, we are given a finite number of orientation-preserving
homeomorphisms f1, . . . , fk 2 Homeo+(R) together with the probabilities
p1, . . . , pn of their application, p1 + · · ·+ pk = 1. On each step we apply one
of these maps, chosen independently in accordance to these probabilities; the
reader will find precise details in Section 3.1 below.

This work was motivated by the paper of Deroin et al. [15], where the
authors have considered the case of symmetric dynamics, that is, applying
any map with the same probability as its inverse. They have shown that
in the symmetric case, except for some degenerate situations, there is no
probability stationary measure (we recall the definition below), though there
is an infinite Radon one. At the same time, the symmetric dynamics is
always recurrent: there exists a compact interval such that a random orbit,
starting from any point, almost surely visits this interval infinitely many
times. However, the symmetry in [15] was used in an essential way and it is
interesting to study all the possible types of behavior when this assumption
is omitted.

Note, that a change of coordinates transforms R into the interval (0, 1).
The dynamics on the interval and on the real line was studied by many
authors, including Guivarc’h, Le Page [23], Deroin, Navas, Parwani [15],
Ghaeraei, Homburg [20], Bro↵erio, Buraczewski, Damek, Szarek, Zdunik,
Czudek, Czernous, [10, 9, 44, 13], Alsedà, Misiurewich [2], Kan [27], Bonifant,
Milnor [5], Ilyashenko, Kleptsyn, Saltykov [24], and many others.
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In many of these works, their authors have studied RDS on (0, 1) under
additional smoothness (and minimality) assumptions: e.g. in [20, 27, 24]
it is assumed that dynamics is smooth everywhere, in [44, 14] — at the
endpoints. This smoothness assumption has allowed to invoke the technique
of the Lyapunov exponent to describe the behaviour at the endpoints.

Namely, it is quite natural to expect — and the authors, mentionned
above, have shown it – that positive random Lyapunov exponents at the
endpoints imply the “random repulsion” and thus a probability stationary
measure, supported inside the interval. On the other hand, negative Lya-
punov exponents imply that the trajectories almost surely tend to endpoints.
Finally, zero Lyapunov exponents are somewhat close the the positive ones:
a random orbit almost surely leaves the neighborhood such an endpoint, but
the expectation of time to do so is infinite.

The first two types of behaviour are dual to each other in the following
sense. Let us denote by µ the discrete probability measure on Homeo+(R)
defining the dynamics (that is µ({fi}) = pi), and by µ̂ its image when all
the maps are replaced by their inverses, so µ̂(f) = µ(f�1). We call the
former forward dynamics, the latter inverse. If for the forward dynamics the
Lyapunov exponents are positive, then for the inverse one they are negative.
Also, the inverse dynamics to the one with zero Lyapunov exponent also has
zero Lyapunov exponent at that endpoint. This allows to describe possible
behaviours for the forward and backward dynamics, grouping these in quite
a few classes.

1.2.2 Main results

In this Chapter, we show that that such conclusions (and a duality between
forward and backward dynamics) can be established with no smoothness
assumptions at all, by direct application of purely topological methods. In
the first result, Theorem 1.2.1 below, we show that for a random dynamical
system on R the behaviours of forward and inverse dynamics fall into one of
four “dual” classes.

Theorem 1.2.1. Assume that RDS on R, defined by a finitely supported
measure µ on Homeo+(R) is such that

8x 2 R 9f, g 2 suppµ : g(x) < x < f(x).

Then, possibly upon interchanging µ and µ̂ and (or) reversing the orientation
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by a space symmetry x 7! (�x), the action falls in exactly one of the following
classes:

1. in forward dynamics all the points almost surely tend to +1, in inverse
dynamics all the points almost surely tend to �1;

2. in forward dynamics all the points almost surely tend to +1, the in-
verse dynamics is recurrent (all the points almost surely return to some
compact infinitely many times);

3. both forward and inverse dynamics are recurrent;

4. in forward dynamics all the points tend with positive probability to each
of +1 or �1, the inverse dynamics is recurrent.

Actually, the “finitely supported” assumption can be weakened to the
“compact displacements” one (see Definition 3.1.2). Moreover, part of the
conclusions survive if we drop it completely (see Theorem 3.1.1). How-
ever, the dynamics in the infinitely supported case can behave much nastier.
Namely, in Section 3.4 we construct a monster, illustrating non-recurring
dynamics, that does not tend individually neither to +1, nor to �1.

Our second result is devoted to the description of (Radon) stationary
measures in the recurrent parts of these cases. The existence part essentially
follows the construction in [15], however the interesting part is that these
measures might be finite, infinite or semi-infinite — as well as their relation to
the dynamics. Also, note that under an addition assumption of proximality of
the action (that is, an arbitrary large interval can be contracted inside a given
one), a recent result of Bro↵erio, Buraczewski and Szarek [10, Theorem 1.1]
implies that the Radon stationary measure is unique.

Theorem 1.2.2. Let µ be a finitely supported probability measure on Homeo+(R),
satisfying the assumptions of Theorem 1.2.1. Depending on into which of the
four classes, described in Theorem 1.2.1 does it fall, we have one of the fol-
lowing corresponding conclusions:

1. Both forward and backward dynamics are non-recurrent.

2. The forward dynamics is non-recurrent. The backward dynamics is
recurrent and admits a semi-infinite Radon stationary measure: the
measure of half-rays to +1 is finite measure, of half-rays to �1 is
not. This measure can be constructed using hitting probability for the
forward dynamics.
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3. Both forward and backward dynamics are recurrent and admit an infi-
nite Radon stationary measure and do not admit neither a probability,
nor a semi-infinite one (the same conclusion as in the symmetric case);

4. The forward dynamics is non-recurrent; there is a probability station-
ary measure for the backward dynamics, its distribution function is the
probability for a point to tend to +1.

Grouping the conclusions of Theorems 1.2.1 and 1.2.2, we get Table 1.1.

no. Forward dynamics Backward dynamics
1 Everything tends to +1 Everything tends to �1
2 Everything tends to +1 The dynamics is recurrent and admits

a semi-infinite stationary measure
3 The dynamics is recurrent and admits The dynamics is recurrent and admits

an infinite stationary measure an infinite stationary measure
4 Every point tends to +1 or to �1, The dynamics is recurrent and admits

to both with positive probabilities a probability stationary measure

Table 1.1: Possible cases for the dynamics

1.2.3 Plan of Chapter 3

We introduce the notations and recall the definitions in Section 3.1. Then,
in Section 3.2, we study the property of the functions �+ and ��, giving
the probability for the images of the initial point x to tend to +1 and �1
respectively. We then apply it in Section 3.3 to study the possible behaviours
for forward and backward dynamics simultaneously. Section 3.4 is devoted
to the construction of the monster example with points evading to infinity
while oscillating between plus and minus infinities. Finally, Section 3.5 is
devoted to the constructions and study of stationary measures.



Chapter 2

Limit shapes of large skew

Young tableaux and a

modification of the TASEP

process

2.1 Points of view: maya diagrams, dominos,

beads

In this section we present di↵erent models, equivalent to a path in Young
graph.

We start with recalling the classical maya diagram. Consider the real
line with the holes at the points of Z + 1

2 . In these holes (pictured here as
white circles) black stones can be placed, each hole containing no more than
one stone.

Then one can encode the outer boundary of a YD (drawn in the Russian
notation) in the following way: if the edge goes down (reading it from left to
right), one places a black stone in the corresponding hole, leaving the hole
empty otherwise. See Fig. 2.1.

One can easily see that the “addition of a cell (provided that it can
be added)” operation in terms of YD corresponds to “moving the stone to
the next hole on its right (provided that it is empty)” in maya diagrams’
evolution. Indeed, under the addition (or removal) of a cell, the adjacent
’up’ and ’down’ edges on the YD border are interchanging, thus moving the

35
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Figure 2.1: Transforming a Young diagram into a maya one; an addition of
a new cell (filled square) corresponds to a jump of one of the stones (shown
by an arrow).

corresponding stone into the empty hole next to it on the right. (See Fig. 2.1
and Fig. 2.2, bottom left.)

Remark 2.1.1. Note that the YD here naturally has cells of area 2, instead
of 1 (so that their edges project to length 1 intervals on the x axis), and the
YD itself has area equal to 2n. This explains why the formulae (1.4) and
especially (1.5) become nicer in the corresponding normalizations.

Another classical object is stacked Young diagrams. Given a path in
the Young graph, one can stack the complements to the corresponding YDs,
putting each of them on the top of the previous one, and considering them
to be made of unit cubes instead of unit squares. This provides a 3D object,
whose 3D projection gives a lozenge tiling by lozenges corresponding to the
three possible faces of the cubes; see Fig. 2.2, top right. Lozenge tilings have
also appeared in the works of Morales, Pak, Panova and Tassy [32, 33, 34,
35, 36], as they used an approach based on the excited diagrams, but as
this is not the one we are going to use, we will not go into further details.

Still classically, a lozenge tiling can also be seen as a dimer configura-

tion on the corresponding bipartite graph (a subset of the hexagonal lattice),
and thus such tilings can be counted with help of the Kasteleyn theorem via
the corresponding determinant. However, this approach for counting YTs
has two disadvantages: first, not all the lozenge tilings correspond to the
paths (one can add none or many cells on the same level), and its upper and
lower boundaries depend on the shape of the skew YD that is studied (that
is somewhat inconvenient).
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Figure 2.2: A Young Tableau (top left) and its encodings: maya diagram
evolution (bottom left), stacked YD and lozenge tiling (top right), dimer
configuration (bottom middle), beads model (bottom right).
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To address the second issue, we thus will return back to the evolution
of maya diagrams. We note that each such evolution can be encoded (in
a di↵erent way!) by dimer configuration on a graph on a hexagonal lattice.
Namely, the evolution of a maya diagram happens on a square lattice with the
space and time coordinates x and t respectively. Consider all these points
as black vertices, and inside each square let us add a white one. We will
connect the white vertex in the square {n, n+ 1}⇥ {t, t+ 1} to the vertices
(n, t), (n, t+ 1) and (n+ 1, t+ 1); see Fig. 2.3.

In terms of the encoding, using the first of these edges means that there
is no stone at (n, t), the second one is that a stone is present and stays at this
moment where it was, and the last one that the stone that was present at
(n, t) has jumped at this moment to the next hole. This process is illustrated
on the bottom middle of Fig. 2.2 (red color corresponds to the edges where a
stone jumps, and thus a cell is added, green edges encode empty holes, blue
ones the non-jumping stones).

Note that this encoding is actually di↵erent from the one that corresponds
to the stacked YDs. Indeed, though some dimer configuration via a “back-
ward translation” correspond to none or many stones jumping at ones, we
see that a stone here cannot jump farther than to the next hole (a possibil-
ity that appear in stacked YDs lozenge encoding), and the upper and lower
bound are almost horizontal, with only hanging (green) edges describing the
boundary conditions (namely, the placement of empty holes at the initial and
final maya diagrams).

n n+ 1
t

t+ 1

n n+ 1
t

t+ 1

n n+ 1
t

t+ 1

Figure 2.3: Encoding: at the moment t in the hole n there is: no stone
(left), stone that stays in the hole (center), stone that jumps to the next hole
(right).

A way of addressing the first aforementioned issue, the possibility of hav-
ing two or zero jumps on the same level, is by increasing the number of levels.
Namely, instead of the number of levels equal to the number of jumps n, take
it equal to M � n. Then, to any YT corresponds to exactly

�
M
n

�
di↵erent

configurations with at most one jump per level. On the other hand, the num-
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ber of the configurations where at least two jumps happen on the same level
is easily upper bounded by const ·

�
M
n�1

�
, where the constant does not depend

on M . Hence, such configurations’ fraction among all the configurations
tends to 0 as M ! 1.

Contracting the picture const ·M times vertically and passing to the limit
as M ! 1, we get a continuous-time model. On one hand, the above argu-
ments easily describe it in the initial terms: it can be obtained from indepen-
dent pair of a uniform choice of a uniformly distributed YT (describing the
places of the jumps) and a n-point independent choice on the time interval
(describing the [rescaled] moments when these jumps occur).

On the other hand, what we thus get is a [local version of] so-called the
beads model (see Fig. 2.2, bottom right). It was studied in, for instance [43,
7]; its object is a discrete subset of R ⇥ Z, with the property that between
(in the R-direction) any its two consecutive points (“beads”) on the line
R⇥ {n} there are points on both lines R⇥ {n� 1} and R⇥ {n+1}. This is
exactly what we get for the placements of the jump sites: between any two
jumps at the same place there should be the jumps in both neighboring sites;
plus, for the local part of the model, the beads should satisfy the “boundary
conditions”. We will postpone the discussion on this dimer model till its use
in Sec. 2.3.

2.2 Guessing the answer

2.2.1 Cutting the diagram

This section is devoted to a non-rigorous deduction of a general form of the
functional that appears in Conjectures 1.1.1 and 1.1.2.

“Horizontal” cut

The first step is a “horisontal cut” of the diagram. Namely, let YDs �0 ⇢ �
be given. Choose a number k and a sequence of “intermediable sizes” n0 <
n1 < . . . < nk, where |�0| = n0, |�| = nk. Then the total number of paths in
the Young graph from �0 to � can be counted by splitting their set depending
on the YDs passed at these sizes:
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F �/�0 =
X

(�0,...,�k)2A
�/�0
n1,...,nk�1

F �k/�k�1 · . . . · F �1/�0 , (2.1)

where

A�/�0

n1,...,nk�1
= {(�0, . . . ,�k) | �0 = �0 ⇢ �1 ⇢ �2 ⇢ . . . ⇢ �k = �,

8i = 1, . . . , k � 1 : |�i| = ni}.

Now, the sum (2.1) is comparable with its maximum summand as it
di↵ers from the latter by the factor at most the number of summands. This
number, in its turn, can be estimated as

|A�/�0

n1,...,nk�1
| 

Y
|Yni |  exp

⇣k�1X

i=1

⇡

r
2ni

3

⌘
,

where the latter inequality is due to Hardy-Ramanujan formula, |Yn| ⇠
1

4n
p
3
exp
�
⇡
q

2n
3

�
.

Thus, we get

logF �/�0 � log max
(�0,...,�k)2A

�/�0
n1,...,nk�1

F �k/�k�1 · . . . · F �1/�0 2 [0; k
p
nk].

Choose k much smaller than
p
nk =

p
|�| and the sizes n1, . . . , nk�1 to

be “equally spaced” on [n0, nk] (that is, let ni = n0 + [ ik · (nk � n0)]).
It is natural to expect that for a generic skew YD of the form �/�0, its

level curves at these moments slice the (rotated ⇡/4) diagram into long and
thin slices. After rescaling they should be close to the corresponding graphs
y = g(ti, x), where ti =

ni�n0

nk�n0
⇡ i

k . The (total) contribution of the paths
that are “non-optimal” will be neglectable.

We get an approximation (up to o(n)) for logF �/�0 as

kX

i=1

logF �̄i/�̄i�1 ,

where (�̄0, �̄1, . . . , �̄k) is the index corresponding to the maximizing sum-
mand.
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x

Figure 2.4: Left: “horizontal” cut, shapes �i at the corresponding interme-
diate moments ti.
Right: “vertical” cut of a horizontal “slice” �i/�i�1.

The same applies to the setting of Conjecture 1.1.2: given a function g0,

we get an approximation for logF
�N/�0N
",g as

kX

i=1

logF �̄i/�̄i�1 ,

where maximum is now taken over the set of �i with the additional assump-
tion of the (rescaled) outer boundary of �i belonging to the "-neighborhood
of g(ti).

“Vertical” cut

Now, let us cut each “thin” diagram �̄i/�̄i�1 = Di “vertically”, choosing
some points pi,1, . . . , pi,m�1 inside Di. Let R

�
i,j be the set of cells of Di to the

lower left of pi,j, R
+
i,j to the upper right, and Di,0, . . . , Di,m the connected

components of

Di \
m[

j=1

(R�
i,j [R+

i,j) =: D̃i.



42 CHAPTER 2. LARGE SKEW YT

One can also see D̃i as a skew YD:

D̃i = ��i /�
+
i�1, where �+i = �̄i [

[

j

R�
i,j, ��i�1 = �̄i \

[

j

R+
i,j.

Di,j

pi,j
R�

i,j

R+
i,j

Figure 2.5: “Vertical” cut in French notation: the domains Di,j (left), points
pi,j and removed corners R±

i,j (right).

Consider then the map from the set of skew YT of the form Di to those of
the form D̃i: the cells are added in the same order with the parts

Sm
j=1(R

�
i,j[

R+
i,j) ignored. This map is surjective: any order for D̃i can be completed by

first adding all the cells from all R�
i,j, then D̃i itself, then all R+

i,j. On the

other hand, the maximum number of preimages does not exceed n
P

j |R
�
i,j[R

+
i,j |,

as we are loosing
P

j |R
�
i,j [ R+

i,j| numbers that do not exceed n = nk � n0.
Hence, one has

logFDi � logF D̃i 2 [0,
X

j

|R�
i,j [R+

i,j| · log n],

and thus,
X

i

logFDi �
X

i

logF D̃i 2 [0, log n ·
X

i

X

j

|R�
i,j [R+

i,j|]. (2.2)
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For a large k sliced domains Di can be expected to be of width O(
p
n/k),

and thus the cutting regions R±
i,j of area O((

p
n/k)2) = O(n/k2). Taking m

such regions per slice, we get a total e↵ect of O( n
k2 · k ·m · log n) in the right

side of (2.2), and after choosing m = o( k
logn) this error does not exceed o(n).

Note now that the orderings on di↵erent components Di,j of D̃i are com-
pletely independent. That is, let Y TD stay for the (skew) standard YT of
the shape D. Consider the map

Pi : Y T D̃i !
Y

j

Y TDi,j ,

defined by restricting order of appearance of cells in D̃i on each subdiagram
Di,j. It is easy to see that this map is exactly Ri-to-one, where Ri is the
multinomial coe�cient

Ri =

✓
|D̃i|

|Di,1|, . . . , |Di,m|

◆
=

|D̃i|!
|Di,1|! . . . |Di,m|!

.

Hence,

logF D̃i =
X

j

logFDi,j + log
|D̃i|!

|Di,1|! . . . |Di,m|!
.

Meanwhile, from Stirling’s formula we have

log

✓
|D̃i|

|Di,1|, . . . , |Di,m|

◆
=

mX

j=1

|Di,j| ·
✓
� log

|Di,j|
|D̃i|

◆
+ o(|Di|),

(as the sizes of |Di,j| tend to infinity at least as log n); we thus get an ap-
proximation

logF �/�0 =
X

i

X

j


logFDi,j + |Di,j| · (� log

|Di,j|
|D̃i|

)

�
+ o(n). (2.3)

Again, instead of all the paths we can consider only the paths that “re-
semble” a graph of a function g. For such a path �̄1, . . . , �̄k�1, the skew YDs
Di,j look like parallelograms of horizontal length

p
n · (xi,j � xi,j�1) (where

the vertical point pi,j has x-coordinate xi,j) and of width
p
n · g0t(ti, xi,j) and

with the slope tan↵ = g0x(ti, xi,j).
Hence, to transform the formula (2.3) to the desired integral form, we

have to estimate the logarithmic number Z(↵, h, l) = logF⇧↵,h,l of skew YT
in a parallelogram of length l, height h, where 1 ⌧ h log h ⌧ l, going under
a slope tan↵.
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h

l

↵

g0t

Figure 2.6: “Vertical” cuts

Parallelograms approximation

The same arguments as before imply the following two conclusions should
for large l � h log h � 1:

• Z(↵, h1 + h2, l) ⇡ Z(↵, h1, l) +Z(↵, h2, l) — from adding an additional
“intermediate moment”, cutting the parallelogram “horizontally”;

• Z(↵, h, l1 + l2) ⇡ Z(↵, h, l1) +Z(↵, h, l2) + log
�
h(l1+l2)
hl1, hl2

�
— from adding

an additional midpoint, “vertically cutting in independent domains”.

The latter approximation can be further rewritten as

Z(↵, h, l1+l2) ⇡ Z(↵, h, l1)+Z(↵, h, l2)+h(l1+l2) log(l1+l2)�hl1 log l1�hl2 log l2.

Considering the di↵erence Z̃(↵, h, l) := Z(↵, h, l) � hl log l, we see that
it is thus (approximately) additive in both h and l. Hence, it is natural to
expect it to behave like

Z̃(↵, h, l) = A(tan↵)hl + o(hl),
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where A(tan↵) is a constant, depending only on the slope tan↵. Thus, we
get a prediction

Z(↵, h, l) = hl log l + A(tan↵)hl + o(hl). (2.4)

As a concluding remark, note that due to the vertical symmetry (in the
Russian notation) the function A(·) should be even.

Integral formula

Plugging (2.4) back to (2.3), we get an asymptotic expression for the number
of g-shaped skew SYT:

logF �/�0

",g =
X

i,j

|Di,j| ·

log li,j + A(tan↵i,j) + log

|Di|
|Di,j|

�
+ o(n), . (2.5)

Here o(n) is understood in the sense of a double limit as lim"!0 lim supn!1,
we denote by li,j is the (horizontal) length of the “parallelogram” Di,j and
by tan↵i,j = g0x(ti, xi,j) its slope. The height hi,j of Di,j after rescaling byp
n can be approximated as

hi,jp
n
⇡ g0t(ti, xi,j) · (ti � ti�1);

as ti � ti�1 =
ni�ni�1

n , we get

hi,j ⇡ g0t(ti, xi,j) ·
ni � ni�1p

n
.

As |Di,j| ⇡ li,jhi,j, |Di| = ni � ni�1, we can write the expression in the
right hand side of (2.5) as

log li,j + A(↵i,j) + log
|Di|
|Di,j|

⇡

⇡ log li,j + log (ni � ni�1)� log

✓
li,j

ni � ni�1p
n

g0t(ti, xi,j)

◆
+ A(g0x(ti, xi,j)) ⇡

⇡ 1

2
log n� log g0t(ti, xi,j) + A(g0x(ti, xi,j)). (2.6)
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Multiplying by |Di,j| ⇡ (ti � ti�1)(xi,j � xi,j�1) · g0t(ti, xi,j) · n, and adding
up, we finally get the desired

logF �/�0

",g =
X

i,j

|Di,j| ·

1

2
log n� log g0t(ti, xi,j) + A(g0x(ti, xi,j))

�
=

=
1

2
n log n+ n

ZZ
(� log g0t + A(g0x)) · g0t dx dt+ o(1)

�
. (2.7)

This is exactly the statement of Conjecture 1.1.2. Taking the maximum over
the possible shapes g of the skew SYT and referring to the variational prin-
ciple then implies Conjecture 1.1.1. Indeed, if g0 is the maximizing function
for the functional L (it is easy to see that it is concave, so g0 is unique), any
other g will correspond to the exponentially smaller number of paths.

We conclude this paragraph by reminding that all the arguments therein
are non-rigorous, serving as a good motivation for these conjectures, but not
as a rigorous proof.

2.2.2 Di↵erential equation

The discussion on the previous section implies that the number of g-shaped
skew YT of area n should be asymptotically diven by the formula

logF �/�0

",g =
1

2
n log n+ n · L[g] + o(n),

where

L[g] =
1Z

0

Z

R

(�g0t log g
0
t + g0tA(g

0
x)) dx dt, (2.8)

and the function A(·) is yet to be determined. Also, the limit shape of a
skew YT of a given large form should be an extremal of this functional.

Remark 2.2.1. This is not an immediate conclusion, as we have used that
the parameter t corresponds to the part of area filled, and hence the allowed
functions g are only those satisfying 8t 2 [0; 1] :

R
(g(t, x) � g(0, x)) dx = t,

or, equivalently, for su�ciently smooth functions,

8t 2 [0; 1] :

Z
g0t(t, x), dx = 1. (2.9)
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Thus g is immediately an extremum of L only on the space of functions,
given by (2.9). However, for any (increasing in t) function g(t, x) we can
consider its time reparametrization ⌧ = �(t):

�(t) =

Z
R(g(t, x)� g(0, x)) dx,

and the corresponding function g̃(⌧, x) = g(��1(t), x).
It is easy to see that theA-part of the functional L, that is,

RR
A(g0x)g

0
t dx dt

stays unchanged by such a reparametrization. Meanwhile,
ZZ

�g̃0t log g̃
0
t dx dt =

ZZ
�g0t log g

0
t dx dt�

Z
�0 log �0 dt,

and as �
R
�0 log �0 dt � 0, and strictly > 0 for all non-identity � (as �(0) =

0,�(1) = 1 and Jensen inequality), the maximum of L is attained on a
function g with uniform growth.

It turns out that these observations su�ce to reconstruct A(·).
Namely, as we have mentioned in the introduction, a skew YT of a shape

following from Vershik-Kerov-Logan-Shepp asymptotics is given by a family
of its rescalings:

⌦(t, x) =
p
t · ⌦

✓
xp
t

◆
. (2.10)

This is an extremal of a functional L, and thus it should satisfy the
Euler-Lagrange equations:

@

@t
L0
g0t
(g0t, g

0
x) +

@

@x
L0
g0x
(g0t, g

0
x) = 0, (2.11)

where

L(pt, px) = �pt log pt + A(px) · pt. (2.12)

As ⌦(t, x) given by (2.10) is an explicit function, we can plug it in (2.11)
and interpret it as a di↵erential equation for unknown A(·).

Proposition 2.2.1. Let A : [�1, 1] ! R be an even function, C2-smooth on
(�1, 1). Then ⌦(t, x) satisfies the Euler-Lagrange equation for the functional
L[·] if and only if

A(px) = log cos
⇡px
2

+ C,
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where C is a constant.

Proof. Let us first rewrite the Euler-Lagrange equation (2.11) using the ex-
plicit form of the Lagrangian (2.12):

L0
pt = � log pt � 1 + A(px),

L0
px = pt · A0(px),

and thus (2.11) becomes

@

@t
(A(g0x)� log g0t � 1) +

@

@x
(g0tA

0(g0x)) = 0,

and hence
A00(g0x)g

00
xx(g

0
t)

2 + 2A0(g0x)g
00
xtg

0
t � g00tt = 0. (2.13)

Now, for g(t, x) = ⌦(t, x) we have

⌦0
x(t, x) =

2

⇡
arcsin

xp
t
, ⌦0

t(t, x) =

p
t� x2

⇡t
.

Thus xp
t
= sin ⇡⌦x

2 ; substituting this into (2.13), we get

4A00(⌦x)(1� sin2 ⇡⌦x

2
)� 4⇡A0(⌦x) sin

⇡⌦x

2
cos

⇡⌦x

2
�⇡2(2 sin2 ⇡⌦x

2
� 1) = 0.

Finally, making a change of variable ⇠ = ⌦x, we get a linear inhomoge-
neous di↵erential equation

G0(⇠) · 4 cos2 ⇡⇠
2

� 2⇡G⇠ · sin(⇡⇠) + ⇡2 cos (⇡⇠) = 0,

for the derivative G(⇠) = A0(⇠) (that should be odd as A(·) is even). A
straightforward computation then shows that it admits a unique odd solution

G0(⇠) = �⇡
2
tan

⇡⇠

2
,

and integrating it, we get the desired form for an even solution A(·):

A(⇠) = log cos
⇡⇠

2
+ C.

We denote the “constant-free” part by A0(⇠) := log cos ⇡⇠2 .
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2.2.3 Determining the constant

Note that replacing A0 by A0 + C in (2.12) changes the total value of the
functional L by

1Z

0

Z

R

C · g0t dx dt = C ·
Z

R

(g(1, x)� g(0, x)) dx = C,

as we choose the normalisation of g to give the figure of total area 1. This
explains why the constant C is irrelevant to the problem of asymptotic shape:
replacing L by L + C doesn’t change its extremals. However, the value of
C is important for the “total number of paths” asymptotics of Conjecture
1.1.1, and it can be found again with help of VKLS shape ⌦(t, x).

Namely, one has
P

�2Yn
dim2 � = n!. At the same time, the number

of summands grows subexponentially, |Yn|  exp(c ·
p
n). Hence for most

YD � in the sense of the Plancherel measure, dim� is close to
p
n! on the

logarithmic scale:

8r µn

 (
� : dim� 

s
n!

r|Yn|

)!
 1

r
,

hence for YDs with probability at least 1� 1
r

p
n! � F �/ø = dim� �

p
n!p

n|Yn|
.

The asymptotic shape of such diagrams is given by ⌦(x), and of the
corresponding YT by ⌦(t, x). As

log n! =
1

2
n log n� 1

2
n+ o(n)

and

logF �/�0 =
1

2
n log n+ n · L[g] + o(n),

we have

L[⌦(t, x)] = �1

2
.

Calculating the corresponding double integral explicitly (we omit the
straightforward calculations here), one finally gets the value

C = � log
⇡p
2
.
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2.3 Modified TASEP and the discrete sine-

process

In this section we introduce the “local” maya model, briefly described in
§1.1.3, and use it to re-obtain the functional of Conjecture 1.1.1 from a
di↵erent angle of approach.

2.3.1 Markov chain and the discrete sine-process

Namely, consider an analog of maya diagram on the circle instead of a real
line, formed of some number L of holes. The rule “stone jumps to its right”
is then rewritten as “stones jump in the positive direction”; see Fig. 2.7. As
the total number of stones is preserved by a jump, this total number (that
we denote N) is invariant under such a dynamics. Thus, for any L and N
we get a topological Markov chain.

It is quite similar to the TASEP (totally asymmetric process), however,
for the classical TASEP model all the stones that can jump do so equiprob-
ably. We are concerned with the topological entropy of this chain (as we are
interested in counting all the possible trajectories for the YTs). Thus, we are
interested in the measure of maximal entropy for this chain (and the corre-
sponding Markov shift as a dynamical system), thus modifying the jumping
probabilities accordingly. An immediate observation is that the stones are
more likely to jump if this jump does not reduce the number of degrees of
freedom, creating a tightly packed group of stones, as this is likely to reduce
the number of options on the next steps. In particular, the probabilities of
such “crumpled” states will be reduced (contrary to the classical TASEP,
where all the possible states are equiprobable).

Our main (formal) result, Theorem 1.1.2, describes the topological en-
tropy and the maximal entropy measure for this topological Markov chain:

Theorem. For any L,N , the entropy of the topological Markov chain defined
above is equal to

h = log
sin ⇡N

L

sin ⇡
L

.

The corresponding measure of maximal entropy is a determinantal one; the
correlation kernel, giving the distribution of possible states, is given by the
projection on (any) N consecutive Fourier harmonics on the length L discrete
circle.
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Figure 2.7: TASEP: black stones are allowed to move only in the positive
direction.

Postponing its proof till §2.3.2, let us discuss the relation of this process
to our main theme. Namely, we use it to describe a possible local evolution
over a (large) part of it, that we consider to be winded to the circle, in the
same way as parts of (hexagonal or square) lattices are winded to a torus
(see, e.g. [41]). Thus, for a large YD and the corresponding maya diagram
evolution, a local part of it can be modelled by taking a large circle and filling
it with the same proportion of stones that are observed at this point of space
and time.

Now, the corresponding height function increases by 1 at the stone and
decreases by 1 at each empty hole. Hence, while going around the circle it
increases by N � (L�N) = 2N � L (so, formally speaking, this is a multi-
valued function with a logarithmic monodromy). This corresponds to the
slope of 2N�L

L , that has a meaning of g0x (if this circle is but a small part of a

large YT). Denoting p := N
L the density of the stones, we see that p = g0x+1

2 ,
thus ⇡N

L = ⇡p = ⇡
2 (1 + g0x) and hence that this (“local”) entropy can be

rewritten as

log
sin ⇡N

L

sin ⇡
L

= log cos
⇡g0x
2

� log sin
⇡

L
.

On the other hand, for large L we have sin ⇡
L ⇡ ⇡

L , while
2
L is a speed

at which the height function increases in average per one iteration of the
process (a jump increases it in two cites, see Figure 2.1). Hence sin ⇡

L ⇡ ⇡g0t
2 .

Gluing independent local “circled” pieces together (in the same way as we
did it in Section 2.2.1), we see that the global number of [g-shaped] paths
will be given by an integral of

log cos
⇡g0x
2

� log
⇡g0t
2

.
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That is exactly what is suggested by Conjecture 1.1.2 in the form of (1.5) in
Remark 1.1.3; the coe�cient 1

2 comes from the fact that cells are of area 2,
see Remark 2.1.1).

A concluding — and still informal — remark in this paragraph is that
the consideration of this process leads to a handwaving explanation of the
sine process appearing as the local shape of a (Plancherel)-random Young
diagram (see [6, Theorem 3]). Indeed, it is quite natural to expect that the
local behaviour can be approximated by the corresponding maximal entropy
measure. And there is the following

Remark 2.3.1. As we consider longer and longer circles, filled with a given
limit density of stones Nj

Lj
! a 2 (0, 1), the corresponding maximal entropy

measures converge to the sine process. Indeed, their correlation kernels are
projections on consecutive Nj harmonics out of Lj, and this kernel converges
to the kernel of projection of the Fourier transform to the arc that takes a-th
part of the circle (Fourier-dual to Z). That kernel is exactly the one of the
sine process,

K(k, l; a) = K(k � l, a) =

(
sin⇡a(k�l)
⇡(k�l) , k 6= l

a, k = l.

2.3.2 Proof of Theorem 1.1.2

Let L,N be fixed, and consider the set of states of the topological Markov
chain. Recall that the topological entropy is the logarithm of the spectral
radius of the transition matrix T , and the corresponding eigenvalue is real and
positive. Moreover, if v and u are the corresponding non-negative left and
right eigenvectors, the probabilities of states for a maximal entropy measure
(“Parry measure”, see [40, 38]) are given by the normalization of the vector
with the coordinates usvs.

Consider first the case of N odd (this case is slightly simpler). The states
of the Markov chain are enumerated by

�
L
N

�
possible arrangements of the

stones. Take a space V = RL; for any state of the chain, let k1 < · · · < kN
be the numbers of stone-filled holes on the circle, and put in correspondence
to it the element vk1,...,kN := ek1 ^ · · · ^ ekN 2 ⇤NV .

The transition matrix T then acts on ⇤NV in the following way. Let C be
operator that cyclically permutes the base of V , that is, C(ek) := ek+1 mod L.
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Then

T (ei1^· · ·^eiN ) = C(ei1)^ei2^· · ·^eiN+ei1^C(ei2)^· · ·^eiN+· · ·+ei1^· · ·^eiN�1^C(eiN ).
(2.14)

Indeed, application of C to eik corresponds to a possible jump of this stone;
if the next hole, ik + 1-th, is filled, the jump is forbidden, that corresponds
to the vanishing of the corresponding wedge product in the right hand side.
Finally, as N is odd, even if iN = L and thus the jump of this stone to
the position 1 leads to the cyclic re-enumeration, this doesn’t a↵ect the final
result, as

ei1 ^ ei2 ^ · · · ^ eiN = ei2 ^ · · · ^ eiN ^ ei1 .

The right hand side of (2.14) is simply the operator C^E^ · · ·^E, where
E is the identity operator on V . Hence, its eigenvalues are sums of any N
di↵erent eigenvalues of C, and the eigenvectors are the wedge products of the
corresponding eigenvectors of C. The eigenvalues of C are L-th power roots
of unity �k = exp(2⇡ik/L), and the corresponding eigenvectors are discrete
Fourier harmonics vk =

P
j exp(�2⇡ikj/L)ej.

Among the sums of N = 2m + 1 di↵erent �k’s, the maximal in absolute
value are the ones corresponding to the consecutive (on the circle mod L)
eigenvalues; in particular, the positive and maximal one is

r = ��m + · · ·+ �m =
e2⇡i·(m+ 1

2 )/L � e�2⇡i·(m+ 1
2 )/L

e⇡i/L � e�⇡i/L
=

sin ⇡N
L

sin ⇡
L

.

The topological entropy h is equal to its logarithm, thus proving the entropy
part of the theorem.

Now, consider the corresponding eigenvector. It is given by the product
v�m ^ · · · ^ vm 2 ⇤NV . Moreover, the right eigenvector u has the same
coordinates (replacing of C by C⇤ = C�1 leads to the same answer), though
we prefer to conjugate its elements:

u = v�m ^ . . . vm.

Then, the probabilities of every state k1 < · · · < kN are proportional to

det((vi)kj) i=�m,...,m
j=1,...,N

· det((vi0)kj) i0=�m,...,m
j=1,...,N

= det((K)kj ,kj0 )j,j0=1,...,N , (2.15)

where K =
Pm

i=�m vi · (vi)⇤ is the projection operator on the subspace
hv�m, . . . , vmi ⇢ V . As K is the rank N orthogonal projector, (2.15) implies
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the desired description for the distribution of probabilities for the stationary
measure. (In particular, (2.15) already describes a probability measure, with
no need of normalization.)

Now, for the case of an even N , the only part that changes is that the
length N cycle is now odd. To handle it, we take an L-th power root of
minus unity, ! = exp(⇡i/L), and instead of C consider the operator !C, and
instead of the base ek of V we consider !kek and hence the base

ṽk1,...,kN := !k1+···+kN ek1 ^ · · · ^ ekN .

Then again, the action of !C ^ E ^ · · · ^ E in this base becomes the action
of the transition matrix T ; note that now for the jump from kN = L to 1
one gets two changes of sign, one from the length N cycle, and another from
wL = �1:

!k1+···+kN�1+Lek1 ^ · · · ^ (!C · eL) = !1+k1+···+kN�1e1 ^ ek1 ^ · · · ^ ekN�1 .

Now, the eigenvalues of !C are !�j, thus the spectral radius (and the
maximal real positive eigenvalue) of T is equal to

r = !��m + · · ·+ !�m�1,

where N = 2m. Rewriting it as a sum of a geometric series with the denom-
inator e2⇡i/L = !2, one gets the desired expression for the entropy

eh = r = !
e2⇡i·m/L � e�2⇡i·m/L

!2 � 1
=

sin ⇡N
L

sin ⇡
L

.

The same application of the formula for the Parry measure concludes the
proof.

2.3.3 The relation to the dimer and beads models

Let us now approach the same question from a di↵erent angle, obtaining the
relation to the dimer and beads models.

Freezing the jumps and the beads process

Again, let L,N be fixed. The correspondence that was described in Sec-
tion 2.1 (see Figure 2.1) allows to transform evolution of maya diagrams to
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the dimer covers of the corresponding hexagonal graph. This also applies
to maya evolution on the circle, that is transformed to the dimer covers on
the graph on the cylinder. However, this map is non-surjective: it becomes
bijective if for the maya evolution we authorize (initially forbidden) absence
of jumps and simultaneous jumps.

The vertical extension method that we have used in the end of Section 2.1
to handle the simultaneous jumps would not work anymore in the circle
case, as the total number of jumps in not anymore fixed. So instead we
will use “freezing” techniques, imposing a “tax” on jumping. That is, we
again consider a dimer configuration with a high number of levels (of some
height M), but this time, associate a (small) weight " to the “jump” edges,
leaving all the others with the weight 1. Then, we take the weight of a dimer
configuration to be the product of weights of dimers used, and choose a dimer
cover with the probability proportional to its weight.

Consider first the limit where M is chosen to grow as M ⇠ ⌧
" , where ⌧ is

a constant. In this limit, we have the following

Lemma 2.3.1. Whichever are the boundary (initial and final) conditions,
the probability (that is, the proportion of total weight of configurations) of
two jumps on the same level converges to zero as "! 0.

Before proving it formally, note that for any n all the configurations with
n jumps, all at di↵erent levels, have the same probability (as they have the
same weight "n). In particular, conditioning to a given n gives the choice
of moments of jumps that are uniformly chosen among

�
M
n

�
. In particular,

rescaling the time " times by denoting t := "k 2 [0, "M ] (where k is the
vertical coordinate), we see that this conditioning leads in the limit " ! 0
to the uniform choice of n points on [0, ⌧ ].

We can then consider the bulk limit: make ⌧ go to infinity and shift the
origin to ⌧

2 in the rescaled coordinates. The jump places and (renormalized)
moments then provide a cylinder analogue of the bead process, a random
subset of ZL ⇥ R.

Theorem 2.3.1. This limit process is given by coupling a maximal entropy
measure for the two-sided topological Markov chain and of a Poisson process
on R of constant intensity, providing the jump moments. The intensity of
the Poisson process is equal to eh, where h is the entropy of the Markov chain
(given by Theorem 1.1.2).
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Proof of Lemma 2.3.1. Consider the corresponding partition function Z, that
is the sum of weights of all the configurations, and its part Z0 that is given
by the sum of weights of configurations with no simultaneous jumps. Let Wn

be the number of paths from the initial to the final configuration, consisting
of n jumps. It su�ces to show that as "! 0, both Z and Z0 converge to the
same (positive and finite) limit.

On one hand, we have

Z0 =
X

n

Wn"
n

✓
M

n

◆
. (2.16)

On the other hand, when we authorize configurations with simultaneous
jumps, we can still enumerate them by a non-decreasing sequence of mo-
ments 1  k1  · · ·  kn  M , and the number of such sequences equals�
M+n�1

n

�
. Thus

Z 
X

n

Wn"
n

✓
M + n

n

◆
. (2.17)

Note that for any fixed n

Wn"
n

✓
M

n

◆
⇠ Wn"

nM
n

n!
= Wn

("M)n

n!
��!
"!0

Wn
⌧n

n!
,

and the same applies for the terms of the second series. Hence, both series
coverge termwise as "! 0 to the series

X

n

Wn
⌧n

n!
,

that is convergent (and whose sum is strictly positive). To conclude the
proof, it su�ces thus to check that their convergence is uniform in " in some
neighbourhood of zero, (0, "0). To do so, we will provide an upper estimate
for the terms of these series by a convergent series that does not depend on ".

Indeed, fix R that is larger than the norm of the transition matrix of our
Markov chain, then Wn < Rn for all n. Now, for any " > 0 if n  M , we
have ✓

M + n

n

◆

✓
2M

n

◆
<

(2M)n

n!
,

and the corresponding term does not exceed (once M < 2⌧
" )

Wn"
n

✓
M + n

n

◆
 Rn"n

(2M)n

n!
<

(4⌧R)n

n!
;
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the term in the right hand side provides a convergent series that does not
depend on ". On the other hand, if M < n, we have

�
M+n
n

�
<
�
2n
n

�
< 22n,

and thus

Wn"
n

✓
M + n

n

◆
 Rn"n22n = (4R")n <

1

2n

once " < 1
8R . Hence, both series Z and Z0 for all su�ciently small " > 0 are

bounded termwise by the series
X

n

max(
(4⌧R)n

n!
,
1

2n
),

that is convergent and does not depend on ". Hence, their convergence is
uniform as "! 0, and this concludes the proof of the lemma.

Proof of Theorem 2.3.1. Note first that due to Lemma 2.3.1 the process that
we obtain on [� ⌧

2 ,
⌧
2 ]⇥ZL can be equivalently obtained by passing to the limit

only from the configurations with no simultaneous jumps.
Also from Lemma 2.3.1 and from its proof, for any given ⌧ > 0 this

limiting process can be described in the following way. First, one randomly
chooses a number ⇠ of jumps, in such a way that the probability of ⇠ = n is
proportional to Wn

⌧n

n! . Then, one of W⇠ length ⇠ paths satisfying the bound-
ary conditions is chosen equiprobably, as well as a set of ⇠ independently
chosen points on [� ⌧

2 ,
⌧
2 ], giving the moments, at which (after putting them

in the increasing order) the jumps following the chosen path will occur.
Next, let us describe the “average density” of the jumps: we have the

following lemma.

Lemma 2.3.2. As ⌧ ! 1, the fraction ⇠
⌧ between the (random) number of

jumps ⇠ and the total time ⌧ converges in probability to the constant value eh.

Proof. Let ⇢ stay for the spectral radius of the transition matrix of our topo-
logical Markov chain; then, ⇢ = eh. If we had Wn = ⇢n, then the distribution
of ⇠ would follow exactly the Poisson law with the parameter ⇢⌧ , and the
statement of the lemma would be a mere Law of Large Numbers.

Now, our Markov chain is transitive. If it was also aperiodic, we would
have Wn ⇠ c⇢n for some constant c. However, it is not; it is easy to check
that its minimal period is equal to L, the length of the circle. Thus, for any
chosen boundary conditions there exists a residue n0 such that the number
Wn of Markov chain paths of length n behaves as

Wn ⇠ c⇢n if n ⌘ n0 mod L,
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where c is a constant (depending on the particular choice of the boundary
conditions) and Wn = 0 otherwise. The conclusion of the lemma then can be
deduced from the “pure exponent” case. Indeed, the distribution of ⇠ for a
given ⌧ can be obtained by a series of two operations. First, a Poisson random
variable ⇡(⇢⌧) is conditioned to be congruent to n0 mod L. Then, for the
obtained probability distribution the probability of each n is multiplied by a
bounded factor (corresponding to passing from ⇢n to Wn).

And both these operations do not a↵ect the Law of Large Numbers con-
clusion. Indeed, the first one selects a part of lower-bounded probability
(asymptotically 1/L-th one, as ⌧ ! 1), while the second one can change
the quotient of probabilities of the events only by a bounded factor (and
hence also cannot break the “with probability convergent to 1” statement).
Thus, we have the desired Law of Large Numbers: the quotient ⇠

⌧ converges
to ⇢ in probability as ⌧ ! 1.

Now, selecting n ⇠ ⇢⌧ uniformly distributed independent points on the
interval [� ⌧

2 ,
⌧
2 ] converges as ⌧ ! 1 to the Poisson process on the real line

with the intensity ⇢. Thus the same holds if we average on a set of values of
n that ⇠ takes with the probability convergent to 1, on which ⇠

⌧ ! ⇢.
Now, for any fixed interval [a, b] on the real line consider the number ⇠1

of the jumps on [� ⌧
2 , a]. Note that in probability ⇠1 tends to infinity, while

its residue modulo L is asymptotically uniformly distributed.
For an aperiodic transitive topological Markov chain, the uniform distri-

bution on paths with given boundary conditions in the bulk converges to
the maximal entropy measure. Meanwhile, for a period L transitive Markov
chain the accumulation points of such uniform distributions are the L com-
ponents of the maximal entropy measure that are permuted by the dynamics.
However, as we take here the “observation window” [a, b] that is separated
from the fixed boundary � ⌧

2 by the random number of steps ⇠1 that has all
the residues mod L asymptotically equiprobable as ⌧ ! 1, these permuted
components are being averaged and one gets exactly the maximal entropy
measure.

Bead process’ kernel

We would not go into this alternate approach if it wouldn’t lead to some
interesting connections. Namely, let us study the random dimer covers that
have already appeared in Sec. 2.3.3 via the standard methods, that is, via
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the Kasteleyn theorem.
Again, let ",M be fixed, and we consider a chosen dimer partition of the

corresponding graph of heightM with the weights " on the “jump” edges that
is chosen randomly in such a way that its probability is proportional to the
weight of the configuration (in other words, with respect to the corresponding
Gibbs measure).

Let us recall the statement of the Kasteleyn Theorem [28, 29]. Let a
planar bipartite graph with a weighted adjacency matrix W0 = (wbw) be
given. Fix additional factors (↵bw), such that for any face of the graph,
formed by vertices b1, w1, . . . , bk, wk, one has

↵b1w1↵b2w2 . . .↵bkwk

↵b1w2↵b2w3 . . .↵bkw1

= (�1)k�1; (2.18)

at least one such choice always exists (it follows from the planarity of the
graph). Then for all possible dimer covers (j, �(j)) of the graph the products

sign(�) ·
Y

j

↵j�(j)

take the same value a. This implies that the determinant of the matrix
W = (wbw↵bw) equals to the product a · Z, where Z is the corresponding
statistical sum, as all the dimer covers contribute to the determinant with
their weights times a (and the signs cancel out). Hence the probability of
dimers (b1, w1), . . . , (bk, wk) being chosen for a Gibbs-random configuration
is equal to

P ((bi, wi)i=1,...,k chosen) =
kY

i=1

(↵biwiwbiwi) · det(Kwjbi)i,j=1,...,k, (2.19)

where K = W�1 is the inverse matrix.
We are going to apply this theorem to our graph, that is bipartite and

planar. Indeed, it naturally embeds into a cylinder, which can be sent to
the plane using the polar coordinates. Under this embedding, almost all the
faces of the graph become hexagons. However, there are two exceptions: the
inner and the outer faces, that have 2L + 2(L � N) = 4L � 2N sides each.
The choice of the factors ↵bw will thus depend on the parity of N .

Namely, for odd N we can take all the ↵’s to be equal to 1: all the faces
have number of faces of the form 2(2k + 1). However, it turns out that the
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following choice will simplify the later computations: we take

↵bw =

8
><

>:

1, if bw is a jump edge

1, if it is a “stone stays” edge

�1, if it is a “no stone” edge.

(2.20)

It is easy to check that this choice satisfies the condition (2.18): the fractions
in its left hand side have the same number of (�1)’s in the numerator and
denominator. In the same way, for even N we handle the inner and outer
faces in the most “rotationally symmetric” way, taking

↵bw =

8
><

>:

! = exp(⇡i/L), if bw is a jump edge

1, if it is a “stone stays” edge

�1, if it is a “no stone” edge.

(2.21)

Indeed, for such a choice one gets in the right hand side of (2.18) the fraction
�!
�! = 1 for any hexagonal face, and !L = �1 for the inner and outer ones,
thus satisfying the assumptions of the Kasteleyn theorem.

Now, in our weighted adjacency matrixW0 there are edges of two di↵erent
weights: 1 and ". This (after the application of the Kasteleyn theorem) leads
us to the consideration of two di↵erent possible determinantal-type processes.
Namely, we can consider:

• The presence of stones at given times and positions; in the limit
"! 0, their presence is given by the corresponding “stone stays in the
place” edges (the probability of a jump at any particular time tends
to zero). The product of weights of these edges is equal to 1, and so
the corresponding probability tends to the corresponding minor of the
limit of the matrix K = W�1.

• The positions and times of the jumps, in other words, the corre-
sponding bead process. As the jump edges have weight ", for a k-edges
configuration its probability is given by a product

"k · det(Kwjbi)i,j=1,...,k

for odd N (and with an additional !k in front for an even N).The
factor "k corresponds to the density interpretation (we rescale the time
by "), and in the limit " ! 0 we get a continuous-time determinantal
process: the densities are determinants of the corresponding minors of
the matrix K.
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Considering the limit in the second sense, we will see that this jump edges
process converges to a circle-based analogue of the beads process studied
in [43, 7]. Passing then to the limit L ! 1 allows to recover exactly their
beads’ process, providing an alternate viewpoint on its correlation kernel
(see [7, Eq. (9)]).

(j, k) (j, k + 1)

(j + 1, k) (j + 1, k + 1)

(j, k)

Figure 2.8: “No-stone” edge (dashed line), “stone staying” edge (simple line)
and “jumping” edge (bold line), as well as the indices of the corresponding
black and white vertices.

To do all of this rigorously, let us first consider the behaviour of such a
configuration for a fixed ". Let M�,M+ be given, and M� < j  M+ and
1  k  L be the time- and circle-wise coordinates respectively. We will use
the conventions from Section 2.1: a white vertex with the coordinates (k, j)
is joined with the black vertices with the coordinates (k, j), (k, j + 1) and
(k+1, j+1) (see Fig. 2.8). Let us group the vertices into the (size L) blocks
with the same j (time) coordinate. The matrix W then takes the form

W (",M�,M+) =

0

BBBBBB@

�U1 B 0 . . . 0 0
0 �E B . . . 0 0
0 0 �E . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . �E B
0 0 0 . . . 0 �UT

2 ,

1

CCCCCCA
(2.22)

where B = E + "C if N is odd, and B = E + !"C if N is even, and the
matrices U1 and U2 of size L ⇥ (L � N) correspond to the initial and final
boundary conditions (consisting of ones and zeros only).

Now, let us calculate the inverse matrix W (",M�,M+)�1: fix some (k, j)
and consider the vector u = u(j,k) that is send by W (",M�,M+) to the base
vector with the only 1 at the moment j of time at the place k. The above
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block decomposition allows then to write this equation as

0

BBBBBB@

�U1 B 0 . . . 0 0
0 �E B . . . 0 0
0 0 �E . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . �E B
0 0 0 . . . 0 �UT

2

1

CCCCCCA

0

BBBBBBB@

[uM� ]
uM�+1

uM�+2
...

uM+�1

uM+

1

CCCCCCCA

=

0

BBBBBBBB@

0
. . .
0
ek
0
. . .
0

1

CCCCCCCCA

; (2.23)

here [uM� ], uM�+1, . . . , uM+ are the blocks of u, and in the right hand side the
base vector ek is placed at j-th size L block. We denote the first component
[uM� ] (and not by uM�), because it is of size L�N instead of L, and define
uM� := U1([uM� ]) 2 RL.

The block lines other than the the last one of the system (2.23) become
a recurrent relation

(
�ui +Bui+1 = 0, i 6= j, M� < i < M+.

�uj +Buj+1 = ek.
(2.24)

The first and the last lines become the “boundary conditions” uM� 2 V�,
uM+ 2 V+, where V� := U1(RL�N) and V+ := kerUT

2 are L � N and N -
dimensional subspaces respectively. The relation (2.24) implies that

uj = B�(j�M�)uM� , Buj+1 = BM+�juM+ .

Hence we are decomposing the vector ek as a sum ek = �u� + u+, where

u� := uj 2 V�,j := B�(j�M�)V�, u+ := Buj+1 2 V+,j := BM+�jV+. (2.25)

Now, (i, k0)-th element of W�1 is the k0-th coordinate of the vector ui,
that is equal to

ui =

(
Bj�iu�, i  j

B�(i�j)u+, i > j.
(2.26)

Note that the matrix W (",M�,M+) might be degenerate for small M :=
M+�M�, when there are no possible length M paths joining the given initial
and boundary conditions. Actually, the above arguments show that matrix
W is invertible if and only if the subspaces BMV� and V+ are transversal (and
the corresponding L⇥ L determinant is easily seen to be equal to detW ).
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Proposition 2.3.1. For any " su�ciently small, as M� ! �1, M+ !
+1, the elements of the matrix W (",M�,M+)�1 pointwise converge to those
given by K(j, k; j0, k0) = K(j0�j, k, k0), where, considering K(i, ·, ·) as a L⇥L
matrix, one has

K(j, ·, ·) =
(
�B�jP�, j  0,

B�jP+, j > 0.

Here P+ is the projector on the space eV+ spanned by N consecutive Fourier
harmonics, from �m-th to m-th for odd N = 2m+1 and from �m-th to m�1-
th for even N = 2m, and P� = E � P+ is the projector on its orthogonal
complement eV�, spanned by the L�N complementary ones.

Proof. Due to the relations (2.25) and (2.26) it su�ces to show that the
spaces V�,j and V+,j converge in the setting of the proposition respectively

to eV� and eV+. Such a convergence is quite natural to expect, as eV+ is the
span of N eigenvectors of B with the largest in absolute value eigenvalues,
while eV� is the span of L�N smallest ones.

�

��
m

��
�m

1
�

��
m�1

��
�m

1

Figure 2.9: Eigenvalues �0k, separated into groups of N and L � N by their
absolute value for the cases of odd (left) and even (right) N

To show such a convergence formally, we start with the study of Vj,+, and
consider first the case of N odd, N = 2m+1. For the action of B = E+"C on
N -dimensional subspaces of V = RL, let us pass to the Plucker coordinates,
considering the action of ^NB on the space ^NV . Take the base of ^NV
formed by

vk1,...,kN = ek1 ^ · · · ^ ekN , k1 < · · · < kN .
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Then, in the same way as in Section 2.3.2, the action of ^NB in this base is
given by a matrix with non-negative elements, and there exists a su�ciently
large power of ^NB that has all its elements strictly positive. This im-
plies that on the projective space, the ^NB-iterations of all the base vectors
vk1,...,kN converge to the direction of the highest absolute value eigenvector of
this operator.

At the same time, as B commutes with the rotation C, its eigenvectors
(in CL) are the Fourier harmonics

P
k exp(2⇡ikr/L)ek, r 2 ZL, with the

corresponding eigenvalues
�0r = 1 + "⇣r,

where for odd N we denote ⇣r := exp(2⇡ir/L) the eigenvalues of the ro-
tation C. The N largest in absolute values are the ones corresponding to
r = �m, . . . ,m, that are the base of eV+, and we have thus obtained the
desired convergence of V+,j to eV+.

Now, if N is even, N = 2m, again as in Section 2.3.2 we consider the base

e01 = e1, e02 = !e2, e03 = !2e3, . . . , e0L = !L�1eL.

Then one has

!Ce0i =

(
e0i+1, i < L

�e01, i = L

Hence, for B = E + "!C the operator ^NB again acts on the corresponding
base

v0k1,...,kN = e0k1 ^ · · · ^ e0kN , k1 < · · · < kN

as a matrix with non-negative elements (the signs cancel out if e01 occurs out
of e0L), and has a power whose elements are strictly positive.

We thus again get the convergence of directions of ^NB-iterations of
any of the base vectors under the to the direction of the highest weight
eigenvector. The eigenvectors of B are again the Fourier harmonics, with the
eigenvalues

�0r = 1 + "⇣r,

where for the even N we denote by ⇣r := exp(2⇡i(r+1/2)/L) the eigenvalues
of !C. The N = 2m largest in absolute value are �0�m, . . . ,�

0
m�1, and the

corresponding eigenvectors (Fourier harmonics) span the space eV+. We have
obtained the desired convergence of V+,j to eV+.
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Now, in both these cases (N odd or even) the leading eigenvector � of
^NB (that is the Plucker coordinates of eV+) is a vector with all strictly
positive coordinates. This implies that the space eV+ is transversal to any of
the N�L-dimensional coordinate subspaces (spanned by L�N base vectors).
Indeed, for any such subspace the wedge product �^ek1 ^ · · ·^ekL�N is equal
to �k01,...,k0N e1 ^ · · ·^ eL, where k0

1, . . . , k
0
N are the complementary coordinates

to k1, . . . , kL�N , and (as the Plucker coordinate �k01,...,k0N is strictly positive)
thus is nonzero. This transversality implies that for any such coordinate
subspace, in particular, for the space V�, its B�1-iterations will converge to
the space eV� spanned by the L�N eigenvectors of B with the least norm of
the eigenvalues.

Remark 2.3.2. As the matrix B commutes with the circle rotation C, and as
the Fourier transform diagonalizes it with the eigenvalues �0r for the Fourier
harmonic vr = (e�2⇡ikr/L)k2ZL , we can consider the operator K(j; ·, ·) as a
composition of four operators:

• Fourier transform F ;

• Projection that leaves only one of two complementary groups of adja-
cent Fourier coe�cients, of lengthN (that is, �m, . . . ,m or�m, . . . ,m�
1 depending on if N is odd or even) for positive j and of length L�N
(that is, m+ 1, . . . , L� (m+ 1) or m, . . . , L� (m+ 1) depending on if
N is odd or even) for negative j;

• Diagonal operator of multiplication by (�0r)
�j

• Inverse Fourier transform F�1.

Corollary 2.3.1. Again, as the matrix B commutes with the circle rotation
C, we actually have K(j; k, k0) = K(j, k � k0), where

K(j, k) =

(
1
L

Pm
r=�m(�

0
r)

�je�2⇡ikr/L, j > 0

� 1
L

PL�m�1
r=m+1 (�

0
r)

�je�2⇡ikr/L, j  0
(2.27)

for odd N = 2m+ 1 and

K(j, k) =

(
1
L

Pm�1
r=�m(�

0
r)

�je�2⇡ikr/L, j > 0

� 1
L

PL�m�1
r=m (�0r)

�je�2⇡ikr/L, j  0
(2.28)

for even N = 2m.
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Now, let us pass to the limit as " ! 0, with the simultaneous time-
rescaling by considering t = "j. Note that even if this order of limits is
slightly di↵erent from the one in Sec. 2.3.3 (where we passed to the limit first
as "! 0 on the time intervals ⇠ [� ⌧

2" ,
⌧
2" ] and then to the limit as ⌧ ! 1),

we still get the same random process as a limit:

Lemma 2.3.3. Limit of the processes in Proposition 2.3.1 as "! 0 coincides
with the one described in Theorem 2.3.1.

Proof. Let ⌧ be fixed. Then, once M� < � ⌧
2" and M+ > ⌧

2" , due to the
Gibbs property we can consider the random configuration inside [� ⌧

2" ,
⌧
2" ]⇥

ZL as being sampled in two steps: first the boundary conditions on the
levels ± ⌧

2" , and then the inside part as a Gibbs measure conditional to these
boundary conditions. Thus, the restriction of the Gibbs measure on the
domain [� ⌧

2" ,
⌧
2" ] can be seen as a mix of the measures discussed in Sec. 2.3.3

(as the boundary conditions are varied).
Now, as " ! 0, "-rescaled images of all these measures converge to the

same process described in Theorem 2.3.1, and hence the same applies to their
average (whichever were the averaging coe�cients).

We can now pass to the limit either in the probabilities of the stones being
present, or for the position and moments of their jumps. For the stones, as
the probability of their presence is given by an exact determinantal formula
for any fixed " > 0, we have the same kind of formula for their limit:

Theorem 2.3.2. For the limit process in Theorem 2.3.1, the probability that
the stones are present at positions k1, . . . , kn at times t1, . . . , tm is equal to
the determinant

det(K̃(ta � tb, ka � kb)a,b=1,...,n),

where

K̃(t, k) =

(
1
L

Pm
r=�m e�t⇣re�2⇡ikr/L, t > 0

� 1
L

PL�m�1
r=m+1 e

�t⇣re�2⇡ikr/L, t  0
(2.29)

for odd N = 2m+ 1 and

K̃(t, k) =

(
1
L

Pm�1
r=�m e�t⇣re�2⇡ikr/L, t > 0

� 1
L

PL�m�1
r=m e�t⇣re�2⇡ikr/L, t  0

(2.30)

for even N = 2m.
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Corollary 2.3.2. Take all the ti equal. Then, what we get is a distribution of
probabilities for the configurations of stones at a single moment of time, and
Theorem 2.3.2 states that this is a determinantal point process with the kernel
given by the projection operator on N adjacent Fourier harmonics. This re-
proves the statement of Theorem 1.1.2 from the determinantal processes point
of view.

In the same way, consideration of the positions and moments of the jumps
gives

Theorem 2.3.3. For the limit process in Theorem 2.3.1, the common den-
sity of the probability for the jumps at (k1, t1), . . . , (kn, tn) is equal to the
determinant

det(K̃(ta � tb, ka � kb � 1)a,b=1,...,n) (2.31)

for odd N and to the determinant

det(!K̃(ta � tb, ka � kb � 1)a,b=1,...,n) (2.32)

for even N .

Note (see Figure 2.8) that the jump edges join a white vertex with the
coordinates (j, k) to the black one with the coordinates (j+1, k+1), and this
space-shift by 1 leads to the �1 added to the di↵erence of k in (2.31), (2.32).

Next one can remark that the function K̃ given by (2.29) is not perfectly
suitable for the determinantal processes study: its asymptotics allows an
exponential growth to the past or to the future. However, there is again a
freedom in the choice of the gauge (similar to the one that we have already
used for the jump edges): we can conjugate the matrix K that we obtain for
a finite " by the diagonal matrix with the elements (c0)j, where c0 is chosen
so that

|�0m+1| < c0 < |�0m|. (2.33)

This replaces the kernel (2.27) with

Kc0(j, k) =

(
1
L

Pm
r=�m(�

0
r/c

0)�je�2⇡ikr/L, j > 0

� 1
L

PL�m�1
r=m+1 (�

0
r/c

0)�je�2⇡ikr/L, j  0,
(2.34)

that is now exponentially decreasing in both j ! +1 and in j ! �1.
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Now, as we pass to the limit as "! 0, it is natural to take c0 = 1+ "c (so
that its j = t

" -th power tends to the exponent). The condition (2.33) then
becomes

Re ⇣m+1 < c < Re ⇣m, (2.35)

and such a choice of c after passing to the limit leads to the kernel

K̃c(t, k) =

8
><

>:

1
L

P
r: Re ⇣r>c

e�t(⇣r�c)e�2⇡ikr/L, t > 0

� 1
L

P
r: Re ⇣r<c

e�t(⇣r�c)e�2⇡ikr/L, t  0
(2.36)

for the “finite-circle bead process” that exponenitally decreases in both past
and future.

A final remark is that passing to the limit as L ! 1 with N/L ! ⇢
transforms the kernel (2.36) to the one appearing in [7, Eq. (9)] under time
renormalization and change of parametrization. Indeed, as L ! 1, the
eigenvalues ⇣m, ⇣m+1 tend to the common limit g1 := e⇡i⇢, and hence the
limit value of c’s (from passing to the limit in (2.35)) is

c1 := cos⇡⇢.

The sums in the kernel (2.36) tend to the integral over the corresponding
arcs of the unit circle; the limit kernel thus is

J̃beads(t, k) =

(
1
2⇡

R ⇡⇢
�⇡⇢ e

�t(⇣�c1)e�i'(k�1) d', t > 0,

� 1
2⇡

R 2⇡�⇡⇢
⇡⇢ e�t(⇣�c1)e�i'(k�1) d', t  0,

(2.37)

where ⇣ = ei'. Changing the integration variable to ⇣, with d' = d⇣
i⇣ , we get:

J̃beads(t, k) =

(
1

2⇡i

R
I1
e�t(⇣�c1))⇣�k d⇣, t > 0

� 1
2⇡i

R
I2
e�t(⇣�c1))⇣�k d⇣, t  0,

(2.38)

where I1 = exp(i[�⇡⇢, ⇡⇢]) and I2 = exp(i[⇡⇢, 2⇡�⇡⇢]) are two complemen-
tary arcs of the unit circle joining g1 and g1 (see Fig. 2.10).

Now, let ⇢ < 1/2, and hence c1 > 0. The function under the integral is
holomorphic in C\{0}, and hence the integral over the arc I1 can be replaced
with the integral along a straight segment; denoting ⇣ = c1 + i�

p
1� c21

transforms this integral into

p
1� c21 ·

Z

[�1,1]

e�it�
p

1�c21(c1 + i�
p

1� c21)�kd�.
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c1

g1

ḡ1

0

I1I2

Figure 2.10: Integration paths

In the same way, as the function for t < 0 is exponentially decreasing in
the left half-plane, the integral over the arc I2 equals to the integral over
[g1, c1 + i1] [ [c1 � i1, g1], and thus to

�
p

1� c21 ·
Z

R\[�1,1]

e�it�
p

1�c21(c1 + i�
p

1� c21)�kd�.

Taking � := c1 and rescaling the time
p
1� c21 times, we obtain the kernel,

appearing in [7, Eq. (9)].

2.4 Young Through The Looking Glass

The study of the Plancherel measures µn on the spaces Yn in the seminal
paper [6], was based on their poissonization. Namely, for a fixed ✓ > 0,

the authors consider the mixed sum
P

n
e�✓

2
(✓2)n

n! µn that is a measure on the
space of all Young diagrams Y =

F
n Yn. Then, the authors show that these

measures are determinantal ones, with kernels that are explicitly specified.
It is interesting to note, that the perfect matchings encoding allows to ex-

plain, why these measures are determinantal. The author thanks G. Merzon
and V. Kleptsyn for these remarks.

Namely, consider the hexagonal graph corresponding to the encoding of
a path in the Young graph, with some “target diagram” � (see Fig. 2.2).
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Denote this graph ��,M , where M is the height of the graph. The target
diagram is then specified by upper right “green” edges atop of the last row,
being the maya encoding for � (namely, these edges attachments correspond
to the empty holes).

Let us remove these edges, add a mirror image of the same graph, and
join it with the initial one by vertical edges at all the vertices: see Fig. 2.11,
right. Denote this graph by b�M . Then, a perfect matching on the resulting
graph is a pair of length M paths in the maya diagram encodings, heading
towards the same “target” diagram �, encoded by the matched pairs that
cross the mirror, where on each step each stone either stays or jumps forward.
An example of such matching is on Fig. 2.11, right, with the encoded jumps
shown on Fig. 2.11, left.

As earlier, let us equip the “jump” edges with a very small weight ",
while taking the height of this graph to be 2M ⇠ 2

"✓. Then (in the same way
as before), as " ! 0, for a fixed width and growing height graph, the total
probability of a simultaneous jump (that is, of existence of a level at which
two stones jump simultaneously) tends to 0.

For any given n-cell diagram �, the perfect matchings in the graph ��,M ,
that do not encode any simultaneous jumps, are in one-to-one correspondence
with a pair of a path to � in the Young graph (describing the order of the
jumps) and of the set of rows when these jumps (in this order) occur. The
weight of each such matching is "n, there are dim� di↵erent paths towards
� in the Young graph, and hence (as " ! 0 and accordingly M ! 1) their
total weight asymptotically behaves as

✓
M

n

◆
"n · dim� ⇠ (M")n

n!
dim�! ✓n

n!
dim�.

The perfect matching in b�M is a pair of two such matchings with the same
target diagram �, and hence the total weight of matchings corresponding to
a given � asymptotically behaves as

✓
✓n

n!
dim�

◆2

=
✓2n

n!
· dim

2 �

n!
=

(✓2)n

n!
· µn({�}). (2.39)

Thus, normalizing the limiting distribution to the probability one, one
will get the poissonization of the Plancherel measures, restricted to the set of
diagrams that fit to a given width. Finally, as the width tends to the infinity,
one gets exactly the poissonization of all the Plancherel measures.
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Figure 2.11: Domino tiling for the Poissonization of the Plancherel measure

On the other hand, the normalized probability distribution that comes
from a perfect matching on a weighted planar bipartite graph is known to
be determinantal (due to Kasteleyn-type arguments). Moreover, as a side
remark the same argument explains why the width-restricted (on one or on
both sides) poissonizations are also determinantal.
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Chapter 3

Random dynamical systems on

the real line

3.1 Definitions and notation.

Let F = {f1, f2, . . . } be a finite (or infinite) set of “sample” elements of
Homeo+(R) with a probability measure µ on it. Let {gn}1n=1 be a sequence
of i.i.d. random variables, taking values in F and distributed in accordance
with measure µ. In finite (and countable) case it is convenient to have special
notations for elementary probabilities; we’ll denote these

P(gn = fk) = µ(fk) := pk.

Consider the probability space ⌦ := (FN, µ⌦N); in these terms, gn is a
nth coordinate of ! 2 ⌦. Set

Fn = Fn,! = gn � · · · � g1,

the left random walk on group G = hFi. Finally,

Xn(x) = Fn(x)

is the Markov chain, defined for any x 2 R.
All above defines the RDS, to which we would refer as forward from

now on.
The inverse dynamics is defined in the same way for F̂ = {f�1

1 , f�1
2 , . . . },

with the corresponding measure µ̂ defined by

µ̂(f�1
k ) = µ(fk) = pk. (3.1)

73
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It is convenient to add to the considered F the set of all f�1
k (with µ(fk) = 0

for any fk that wasn’t there originally) for it to become more symmetric.
This allows us to rewrite (3.1) as

µ̂(f) = µ(f�1) 8f. (3.2)

Intuitively, we can think of the inverse dynamics in three di↵erent ways.
First is quite direct: instead of each fk we’ve taken its inverse f�1

k , thus it is
indeed inverse dynamics. Second, assuming that the set F already contains
each map together with its inverse, it is not changed by this “inversification”,
but the probabilities are swapped between each fi and f�1

i (thus making it
the dynamics with the same generating set, but with another, “inverted”
measure µ). Thirdly, we may think of the inverse dynamics as of the forward
one with inverted time, thus making it a very natural object to investigate.
However, one must note that if for a fixed time n the law of Fn for the inverse
dynamics coincides with the law of inverse maps of Fn for the forward one,
their evolution does not (as the order is composition is also inverted by the
passing to the inverse).

As noted previously, we do not ask much of any fk. However, we expect
the whole RDS to hold the following property.

Definition 3.1.1. We call the point x 2 R shiftable, if for any a 2 R there’re
exist k 2 N such that probabilities P(Fk(x) < x � a) and P(Fk(x) > x + a)
are non-zero. Commonly speaking, it means that we can move x arbitrarily
far to the left and to the right with non-zero probability in finite amount of
time. We say that RDS has the shiftability property if any point x 2 R is
shiftable.

It is equivalent to the existence of fi1 and fi2 in suppµ for any fixed x
such that fi1(x) < x < fi2(x). In work [10] this is called unboundedness.

Now we prove the following auxiliary result:

Lemma 3.1.1. Let (F , µ) be RDS with shiftability property. Then for any
x 2 R with probability 1 the limits lim supn!1 Fn(x) and lim infn!1 Fn(x)
are infinite.

Proof. Let us show by contradiction that for every finite interval I ⇢ R the
probability that the upper limit lim supn!1 Fn(x) takes value in I is equal
to 0. Indeed, assume the contrary, that for some x 2 R and I = (a, b) the
probability of the event

A = {! 2 ⌦ | lim supFn,!(x) 2 I}
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is strictly positive. Note that A ⇢
S

k Ak, where

Ak = {! | 8n � k Fn(x) < b, and Fn(x) > a infinitely often.}

Hence, for some k the event Ak has a positive probability. We fix such k.
Now, the shiftability property implies that there exists a composition

G = fil � · · · � fi1 such that G(a) > b. Such a composition of length l has a
positive probability p to be applied at every moment, including one of the
moments when the image Fn(x) enters I. The arguments below is a way of
formalising the following idea. At each moment when Fn(x) 2 I, the chance
to apply G is at least p, and if there is an infinity of such moments, there
should be also an infinity of moments when G is applied afterwards, bringing
the image Fn+l(x) = G(Fn(x)) above b.

To proceed formally, consider the conditional probabilities of the event
B = Ak with respect to the growing cylinders generated by the firstm applied
maps g1, . . . , gm,

P(B | g1, . . . , gm). (3.3)

Due to a general statement from the measure theory, the conditional prob-
abilities of an event B w.r.t. a growing family of cylinders generating the
�-algebra converge to 0 or to 1 almost surely, and the probability of tending
to 1 equals to P(B). The convergence follows from the martingale conver-
gence theorem (as such conditional probabilities form a martingale), and the
values 0 or 1 follow from the fact that every event can be approximated by
a cylindrical one up to an arbitrarily small measure. This statement is also
an analogue of the statement that almost every point of a measurable set is
its Lebesgue density point.

However, such conditional probability can never exceed (1 � p). Indeed,
for any m, k let N be the first time the iteration Fn(x) visits (a,+1) with
n � max(m, k). The event implies that N < 1, thus

P(B | g1, . . . , gm) =
X

i�max(m,k)

P(N = i | g1, . . . , gm) ·P(B | g1, . . . , gm, N = i).

(3.4)
But for any N the probability that the next l applied maps correspond to the
map G is at least p, and for every such ! for the image FN+l,!(x) we have

FN+l,!(x) = G(FN,!(x)) > G(a) > b,

and such ! does not belong to B. So all the second factors in the sum (3.4)
do not exceed 1� p, and so does the whole.
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Hence, the conditional probability (3.3) converges to zero almost surely,
and hence P(B) = 0. This contradiction proves that the probability that the
upper limit takes a value in any finite interval vanishes, and thus this limit
is almost surely equal to +1 or �1.

The second statement of the lemma is proved analogously.

In the statements of Theorems 1.2.1 and 1.2.2 we assume the set of gener-
ating maps F to be finite. As we will see in Sec. 3.4, this finiteness assumption
cannot be dropped completely; however, it can be weakened to the following
one (it is easy to see that this is actually the assumption used in their proofs).

Definition 3.1.2. A random dynamical system, generated by a measure µ
on Homeo+(R), has compact displacement property, if for any x 2 R its
image {f(x), f�1(x)|f 2 suppµ} is contained in some compact interval.

Remark 3.1.1. This property holds automatically if µ is supported on some
compact in Homeo+(R), where the space of homeomorphisms is equipped
with the topology of uniform convergence on the compacts of both f and f�1.

The main means to study RDS we’re going to use throughout the first
half of the Chapter 3, is to look at the behaviour of the points. Therefore we
introduce the following functions, which allow us to do it in simpler terms.

Notation 3.1.1. Let us define

�+(x) := P( lim
n!1

Fn(x) = +1),

��(x) := P( lim
n!1

Fn(x) = �1),

�0(x) := 1� �+(x)� ��(x).

The first and the second are the probabilities of the events ’the iterations
of x tends to +1’, ’the iterations of x tends to �1’. The third one is the
probability that the images of x do not tend neither to +1, nor �1, and
due to the Lemma 3.1.1 this is the same as the probability of

lim sup
n!1

Fn(x) = +1, lim inf
n!1

Fn(x) = �1

(oscillation behaviour). For a finitely generated RDS, this is equivalent to
’there exist an interval that Fn(x) visits inifinitely many times’. In the infinite
case it is not true: in Section 3.4 we present a counter-example.

�̂+, �̂� and �̂0 are defined in the same manner for µ̂.
Now we can reformulate Theorem 1.2.1 in terms of �±,0.
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Theorem 3.1.1. For a pair of forward and inverse RDS with shiftability
one of the following is true (perhaps, after the change of coordinate x ! �x
and/or inchanging µ and µ̂):

1. �+ ⌘ 1, �̂� ⌘ 1;

2. �+ ⌘ 1, �̂0 ⌘ 1;

3. �0 ⌘ 1, �̂0 ⌘ 1;

4. �0 ⌘ 0, �+ and �� are not constant, �̂0 ⌘ 1.

Finally, recall the definition of a stationary measure:

Definition 3.1.3. A measure ⌫ on R is called stationary for the RDS hF , µi
with finite F if

⌫ =
kX

i=1

pi(fi)⇤⌫ (3.5)

where f⇤⌫ is the push-forward of the measure ⌫ by the map f (that is,
(f⇤µ)(A) = µ(f�1(A) for all Borel sets A).

This definition is naturally generalized for the random dynamics gener-
ated by some probability measure µ on Homeo+(R):

Definition 3.1.4. A measure ⌫ is stationary for the corresponding RDS, if

⌫ =

Z
(f⇤⌫)dµ(f),

or, equivalently, if for any Borel set A ⇢ R one has

⌫(A) =

Z
⌫(f�1(A)) dµ(f).

This definition is also equivalent to the invariance of the measure µN ⇥ ⌫
for the skew product over the one-sided Bernoulli shift, but we will not use
this here.
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3.2 Properties of �+ and ��

In this section we study properties of functions �+, �� and �0 on their own,
without any relation to inverse dynamics. The reasoning holds for both finite
and infinite RDS with shiftability property.

First, note that �+ and �� are monotonous. Indeed, if for some ! 2 ⌦
Fn(x) goes to +1, then (as all our homeomorphisms preserve orientation)
for any y > x and any n 2 N its image Fn(y) � Fn(x) and thus also tends to
+1. So �+ is non-decreasing. Similarly, �� is non-increasing.

Next proposition states that either every point tends to +1 (or, simi-
larly, �1), or the probability to go there vanishes at �1 (correspondingly,
at +1).

Proposition 3.2.1. If there exists " > 0 such that for all x 2 R : �+(x) > ",
then �+(x) ⌘ 1.

Symmetrically, if for some " > 0 all x 2 R : ��(x) > ", then ��(x) ⌘ 1.

Proof. Consider the event A ⇢ ⌦, stating that the iterations starting from
the initial point x do not tend to +1:

A = {! 2 ⌦ | Fn,!(x) 6! +1, n ! 1}.

Take the conditional probabilities of this event with respect to the growing
cylinders g1, . . . , gm. On one hand, due to the Markovian property such
conditional probability equals to the probability that the iterations of the
image point Fm(x) = gm � · · · � g1(x) do not tend to +1:

P(A | g1, . . . , gm) = 1� �+(Fm(x)) (3.6)

On the other hand, in the same way as in the proof of Lemma 3.1.1, these
probabilities converge to 0 or to 1 almost surely, and the probability of tend-
ing to 1 equals to P(A).

Applying this, we see that the probability P(A | g1, . . . , gm) converges
almost surely to 0 or to 1. However, it cannot converge to 1, as the right
hand side of (3.6) is at most 1 � " due to the assumption. Hence (again,
in the same way as in the proof of Lemma 3.1.1), the limit is almost surely
equal to 0, and thus P(A) = 0 due to the martingale property.
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Until now, we haven’t used shiftability in our reasoning. But the following
statement shows that it is important: due to it, di↵erent points of R cannot
show completely di↵erent behavioral patterns – that is, if one can go to any
of infinities, so do all of them.

Lemma 3.2.1. If there exists x 2 R such that �+(x) > 0, then for every
y 2 R �+(y) > 0. Similarly, if there exists x 2 R such that ��(x) > 0, then
for every y 2 R ��(y) > 0.

Proof. Fix y. Shiftability allows us to move y farther to the right than x
with positive probability, say, p. If y is already greater than x, we can skip
this step and pose p = 1. But any point greater than x goes to infinity with
probability at least �+(x), so

�+(y) � p · �+(x) > 0.

We then have the following

Proposition 3.2.2. If there exists x and y such that �+(x) > 0 and ��(y) >
0, then for every z 2 R �+(z) + ��(z) = 1.

Proof. Applying Lemma 3.2.1, we see that in this case �+(0),��(0) > 0.
Note now, that the function �0(z) is thus bounded away from 1. Indeed, due
to the monotonicity of �± for z � 0 we have �+(z) � �+(0), while for z  0
we have ��(z) � ��(0), thus

8z 2 R �+(z) + ��(z) � min(�+(0),��(0)) =: " > 0,

and hence
8z 2 R �0(z) = 1� ��(z)� �+(z)  1� ". (3.7)

As in the proof of Proposition 3.2.1, take any initial point x 2 R and
consider the conditional probabilities

P( lim
n!1

Fn,!(x) 6= ±1 | g1, . . . , gm).

On one hand, such a conditional probability is equal to �0(Fm(x)) due to
the Markovian property. On the other hand, it should (due to the same
arguments) converge to 0 or 1, converging to 1 with the probability �0(x).
However, due to uniform upper bound (3.7) it cannot converge to 1, hence
�0(x) = 0.
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Now we see, that we do not have much freedom with the behavior of the
random iterations: at least one of the functions �+, �� and �0 must vanish
identically. The next proposition makes this observation even stronger:

Proposition 3.2.3. Either �+(z)+��(z) ⌘ 1, or �+(z)+��(z) ⌘ 0. Equiv-
alently, either �0 ⌘ 0 or �0 ⌘ 1.

Proof. Assume that �+ > 0. As in the proof of Proposition 3.2.1, take any
initial point x 2 R and consider the event A = {Fn,!(x) ! +1} and its
conditional probabilities w.r.t. g1, . . . , gm.

Again due to the same measure theory arguments the conditional proba-
bility

P(A | g1, . . . , gm) = �+(Fm(x)) (3.8)

converges as m ! 1 almost surely to 0 or to 1, and tends to 1 with the
probability equal to �+(x), hence to 0 with the probability 1� �+(x).

Now, due to monotonicity of �+, if �+(Fm,!(x)) ! 0, then Fm,!(x) !
�1. Hence, ��(x) � 1� �+(x), and thus �+ + �� ⌘ 1. The case �� > 0 is
treated analogously, and �+ = �� ⌘ 0 implies �0 ⌘ 1.

3.3 Proof of the Theorem 3.1.1

In the previous section we proved that either one of the functions �+, ��
and �0 is identically equal to 1 (immediately forcing two others to vanish),
or �� = 1 � �+ and both are monotonously approaching 0 and 1, though
never reaching. This section is devoted to the duality arguments, relating
possible behaviours for µ and µ̂.

We start with the following proposition; it is quite natural to expect, if
we think of the inverse dynamics as a dynamics with reverted time.

Proposition 3.3.1. Suppose �+ ⌘ 1. Then �̂+ ⌘ 0. Similarly, if �� ⌘ 1,
then �̂� ⌘ 0.

Proof. Let us prove the first statement of the proposition. Fix x 2 R. As
�+(x) = 1,

8y 2 R P(Fk(x) > y) ! 1, as k ! 1.

Suppose there exists y such that �̂+(y) = p. Then

lim inf
n!1

P(F̂n(y) > z) > p.



3.3. PROOF OF THEOREM 3.1.1 81

Therefore there exists such N 2 N, that

P(x > F̂n(y)) = P(Fn(x) > y) > 1� p

2

and P(F̂n(y) > x) > p/2 simultaneously. This contradiction concludes the
proof.

So, if �+ ⌘ 1 then either �̂� ⌘ 1 or �̂0 ⌘ 1. The first case is illustrated by
asymmetrical random walk (sample functions f1,2(x) = x± 1 with probabili-
ties di↵erent from 1/2). The second case is a little trickier, yet still realizable
by our means (see Fig.3.1). Put

f1(x) =

(
x+ 1, if x < 0;

2x+ 1, if x > 0;
p1 =

1

2
.

and

f2(x) = x� 1, p2 =
1

2
.

Note that the probability that the iterations Fn,!(x) starting with x � 0
tend to +1 is strictly positive. Namely,

0

f1

f2

Figure 3.1: Maps f1 and f2
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Proposition 3.3.2. For the abovementioned RDS

�+|[0,+1) � �+(0) > 0.

Proof. We will show that for some M large enough, there’s a positive proba-
bility of Fn,!(M) tending to infinity without ever reaching 1. The statement
of the proposition then follows automatically, as fM

1 (0) > M , and the prob-
ability of applying f1 M times is (1/2)M > 0.

On [1,+1), we have f1(x) � f̄1(x) := x + 2. Hence, the probability
of the event “f̄1, f2-generated random walk, starting at M , tends to +1
and always stays in [1,+1)” is no smaller than the probability of the event
“f̄1, f2-generated random walk, starting at M , tends to +1 and always stays
in [1,+1)”. Now, the latter defines a drifted random walk Gn(x) = x+ ⇠1+
· · ·+ ⇠n, where ⇠j are i.i.d. random variables, taking values �1 and +2 with
probabilities 1/2.

Denote by Sn the shifting part of this walk, Sn := ⇠1 + · · ·+ ⇠n. Then by
the Law of Large Numbers, almost surely

lim
n!1

Sn

n
= E⇠1 =

1

2
,

hence limn!1 Sn = +1 and in particular almost surely minn Sn > �1.
In particular, there exists M > 0 such that minn Sn > �M + 1 with

positive probability, thus implying the desired

min
n

Gn(M) = M +min
n

Sn > 1.

On (�1, 0] our RDS is just a standard “+1/�1” random walk, and hence
the images of any point x < 0 almost surely reach [0,+1). Applying the
Markov property, we get that �+|(�1,0) � �+(0), and hence the function �+

is bounded away from 0. By Proposition 3.2.1, it implies �+ ⌘ 1.
On the other hand, the trajectories of the inverse RDS almost surely do

not tend to infinity. Indeed, on the negative half-line we still have “+1/�1”
random walk, while +1 (under a change of coordinates z = 1

x) becomes a
positive Lyapunov exponent point.

Case with �� ⌘ 1 becomes the one considered above under the change
of coordinate x ! �x. Similarly, �̂± ⌘ 1 generate the same cases under
the interchange of forward and inverse dynamics. All that rests are “almost”
symmetrical cases:
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1. �0 ⌘ 1, �̂0 ⌘ 1;

2. �+ and �� are not constant, �̂0 ⌘ 1;

3. �+, ��, �̂+ and �̂� are not constant.

Examples for the first two are quite simple to present: classical random
walk (f1,2(x) = x±1 with probabilities 1/2) for the former, and the same ran-
dom walk with additional function f3(x) = 2x with some positive probability
for the latter.

Indeed, as in proposition 3.3.2 we can show that both �+(0) > 0 and
��(0) > 0, which, due to proposition 3.2.2, yields �0 ⌘ 0. The �̂0 ⌘ 1
statement is showed, once again, by a change of coordinates z = 1

x , as both
infinities become negative Lyapunov exponent points.

The third case, as it appears, never realizes.

Proposition 3.3.3. If �+ is not constant, then �̂0 ⌘ 1;

Proof. In order to prove it, consider the following measure:

⌫[x, y] = �+(y)� �+(x). (3.9)

It is easy to check straightforwardly that

�+(x) =
kX

i=1

�+(fi(x)) · pi,

(where k can be infinite). Thus we conclude that ⌫ is stationary for inverse
dynamics. From the definition of �+ and our assumbtions we conclude that
⌫ is stochastical and non-constant.

Let us take an ergodic component ⌫̃ of ⌫; stochastical ergodicity theorem
of Kakutani ([26], [19, Theorem 3.1]) then implies that for almost any starting
point t its random orbit is almost surely (asymptotically) distributed with
accordance with ⌫̃. In particular, it will visit arbitrarily many times a closed
interval with any strictly positive measure. Therefore �̂0(t) = 1, and then
�̂0 ⌘ 1.

Thus we have proved the Theorem 3.1.1.
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3.4 Infinite monster

One of the arguments in the finitely generated RDS case was that if a trajec-
tory almost surely does not tend neither to +1, nor to �1, then it almost
surely endlessly oscillates between the infinities, and thus visits a su�ciently
large interval J infinitely often. This section is devoted to construction of
a “monstrous” example showing that this is no longer the case for infinitely
generated systems.

The idea is quite natural: if we want to make such a system whose orbits
avoid any compact interval after some initial amount of time, we need the
absolute value of x to tend to 1 and also allow su�ciently large “jumps”,
so the orbit could avoid getting “caught” in a finite interval. In order to do
so, we consider a sequence of maps, each of which shifts much stronger than
the previous one:

fk(x) = x+ (�1)kDk, k = 1, 2, . . . , (3.10)

where
Dk = ee

k
, (3.11)

taken with su�ciently slowly decreasing probabilities

pk =
1

k
� 1

k + 1
=

1

k(k + 1)
, k = 1, 2, . . . . (3.12)

Theorem 3.4.1. The trajectories of the RDS, defined by (3.10)–(3.12), al-
most surely visit any compact interval only finitely many times. The same
holds if we replace the maps fk by any maps

f̃k = x+ (�1)kD̃k(x) (3.13)

such that the di↵erence D̃k(x)�Dk is bounded uniformly in k and x.

Proof. Let us call k in fk, f̃k, Dk and D̃k its rank ; let kn be the (random)
sequence of ranks, and let Kn denote the maximal rank appearing up to the
n-th iteration:

Kn := max
jn

kj.

From the choice of probabilities pk we have the following lower estimate for
the growth of these maximal ranks:

Lemma 3.4.1. Almost surely for all n su�ciently large one has Kn >
p
n.
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Proof. The event {Kn <
p
n} coincides with the event {k1 <

p
n, . . . , kn <p

n}, and thus (due to the choice (3.12) of probabilities pk) has the probability

P(Kn <
p
n) = (1� 1

[
p
n]
)n < e�

p
n.

The application of Borel–Cantelli Lemma thus concludes the proof.

Now, once Kn >
p
n and n is su�ciently large, it is immediate from the

definition (3.10) that the highest rank maps (and there is at least one of
them) overpower at most n� 1 lower ranking ones. Namely,

fkn � · · · � fk1(x) = x+
nX

j=1

(�1)kjDkj .

The sum in the right hand side contains at least one (and maybe more) sum-
mand equal to (�1)KnDKn , corresponding to the application of the highest
rank map fKn . Meanwhile, the sum of all the summands corresponding to
the lower ranking maps does not exceed in absolute value

X

jn,
kj<Kn

Dkj  nDKn�1.

Meanwhile, for all su�ciently large k due to the choice (3.11) of Dk we have

Dk > 2k2Dk�1,

and as Kn > [
p
n], this implies

DKn > 2nDKn�1.

Hence, almost surely for all n su�ciently large we have

|x� fkn � · · · � fk1(x)| >
1

2
DKn >

1

2
D[

p
n],

and this lower bound tends to +1 as n ! 1.
Finally, assume that the RDS is given by (3.13), and there exists C > 0

such that
8k, 8x 2 R |D̃k(x)�Dk| < C.
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Then one has

|x� f̃kn � · · · � f̃k1(x)| > DKn � nC �
X

jn,
kj<Kn

Dkj >

> DKn � nC � nDKn�1 >
1

2
DKn � nC >

1

3
DKn (3.14)

once Kn > [
p
n] and n is su�ciently big, and the right hand side of (3.14)

tends to infinity.

The example above is asymmetric. However, it can be modified to become
symmetric. Namely, take the maps

f±
k (x) = x±Dk, n 2 N. (3.15)

and associate them with the probabilities

p±k =
1

2
pk =

1

2
·
✓
1

k
� 1

k + 1

◆
, k = 1, 2, . . . , (3.16)

where Dk and pk are given by (3.11) and (3.12) respectively. In particular,
one can take f�

k = (f+
k )

�1, thus making the system symmetric.

Theorem 3.4.2. The trajectories of the RDS, defined by (3.15) and (3.16),
almost surely visit any compact interval only finitely many times. The same
holds if we replace the maps f±k by any maps f̃±k such that the di↵erence
f̃±k(x)� f±k(x) is bounded uniformly in k and x.

Proof. Let k1, k2, . . . be i.i.d. random variables with P(kj = k) = pk, and
�1, �2, . . . i.i.d. random variables taking values in {+,�} with

P(�j = +) = P(�j = �) = 1/2.

As before, let us call k the rank of the maps f±
k , and let Kn denote the

highest rank among the maps chosen on the first n steps,

Kn := max
jn

kj.

The key point is the following lemma.
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Lemma 3.4.2. Almost surely, for all n su�ciently large, there is only one
map of the highest rank present in the composition of the first n maps:

#{j  n | kj = Kn} = 1. (3.17)

Proof. Note first that in the same way as in Lemma 3.4.1, we have

P(Kn < n2/3) = (1� 1

[n2/3]
)n < e�n1/3

.

As the series
P

n e
�n1/3

converges, almost surely for all n su�ciently large we
have Kn > n2/3.

Now, consider the events Bn := {kn+1 = Kn}. It su�ces to show that
almost surely only finitely many of these events take place: once (3.17) holds
for a given n, the only way for it to be broken is for Bn0 to hold for some
n0 > n. Meanwhile, (3.17) holds for an infinite number of values of n, as
Kn ! 1.

Now, note, that conditionally to k1, . . . , kn, the probability of the event
Bn is equal to pKn . Hence, the probability of the event Bn is equal to the
expectation

P(Bn) = EpKn =
X

k

pk · P(Kn = k).

Let us decompose this sum into two parts: for Kn < n2/3 and for Kn � n2/3:

P(Bn) =
X

k<n2/3

pk · P(Kn = k) +
X

k�n2/3

pk · P(Kn = k)

The former sum in the right hand side does not exceed P(Kn < n2/3) < e�n1/3
,

while the latter is at most pdn2/3e <
1

(n2/3)2
= 1

n4/3 . Hence,

P(Bn) < e�n1/3
+

1

n4/3
,

and the series
P

n P(Bn) converges. By Borel–Cantelli Lemma, almost surely
only finitely many events Bn take place, and this concludes the proof.

Now we can conclude in the same way as in the proof of Theorem 3.4.2.
Namely, for every n for which (3.17) holds, we have

|x� f̃�nkn
� · · · � f̃�1k1

(x)| > DKn � Cn�
X

jn,
kj<Kn

Dkj ,
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and (as in (3.14)) the right hand side is at least 1
3DKn once Kn >

p
n and n

is su�ciently big.

3.5 Proof of Theorem 1.2.2

Let us first recall that a recurrent RDS on the real line (and, actually, on
any other �-compact metric space) admits a (possibly, Radon) stationary
measure. On one hand, this statement is contained in [30, Theorem 5.1],
where the function g therein should be taken to be identically equal to 1 on
the compact that is almost surely visited infinitely often by orbits starting
at any initial point. On the other, we would like to note that it can be seen
by adapting an argument from [15, Theorem 5.1].

Proposition 3.5.1. A recurrent RDS on the R admits a Radon stationary
measure.

Proof. Let J ⇢ R be an interval such that for any initial point x its ran-
dom images Fn(x) almost surely visit J infinitely often. Take a compactly
supported smooth function  : R ! [0, 1], such that  |J ⌘ 1, and consider
a random process of iterations that is stopped on each step at the point xn

with the probability  (xn). That is, one iteration of this process starting at
some point x0 is constructed in the following way:

• Take a random image x1 = fw1(x0). With the probability  (x1) the
process stops here, and we take x1 to be the image.

• If the process wasn’t stopped on the previous step, take a random image
x2 = fw2(x1). With the probability  (x2) the process stops here, and
we take x2 to be the image.

• If the process wasn’t stopped on the previous step, take a random image
x3 = fw3(x2). With the probability  (x3) the process stops here, and
we take x3 to be the image.

• Etc.

Denote by mx the distribution of the stopping point for the process start-
ing at the point x; then mx depends continuously on x. Hence, this process
admits, via the usual Krylo↵–Bogolyubov procedure, a probability stationary
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measure ⌫ , that is by construction supported on supp . Namely, denote
by P the associated di↵usion operator, acting on the space of probability
measures on supp ,

P ⌫ :=

Z

R
mx d⌫(x).

This action is continuous due to the continuous dependence of mx on the
point x. Then, fix any initial measure ⌫ and consider the sequence of time
averages of its images:

⌫̄n :=
1

n

n�1X

j=0

P j
 ⌫.

Any weak accumulation point of ⌫̄n (that exists due to the compactness of
supp ) is a P -invariant measure.

Now, fix a compactly supported function  0, taking values in [0, 1], with
 0|J ⌘ 1. For any  �  0 denote by M the space of (non-probability)
P -stationary measures ⌫, normalized to

R
 0d⌫ = 1.

Finally, take a sequence of functions  k such that supp k ⇢ { k+1(x) =
1} and that

S
k{ k(x) = 1} = R. From now on, the idea is to “widen” the

support of measures ⌫ to the full real line by considering the measures that
are stationary w.r.t. the corresponding P n and passing to the limit. This
can be achieved by several di↵erent ways, that we present here to compare
(as it seems that such a comparison may also present an interest for the
reader).

The most straightforward way is to note that the stationarity relation
“inside” the intervals where P n ⌘ 1 is exactly the stationarity relation for
our dynamical system. Moreover, for any fixed interval J 0 the measures ⌫(J 0)
are uniformly bounded for ⌫ 2 M n :

Lemma 3.5.1. For any interval J 0 � J there exists a constant C such that
for any  satisfying  |J 0 = 1 and any ⌫ 2 M one has ⌫(J 0) < C.

Proof. Let such (closed) interval J 0 be fixed. Any its point can be shifted
by the RDS to reach J ; due to the compactness of J 0, there exists a uniform
constant N such that any point x of J 0 can be mapped to J in at most N
iterations:

8x 2 J 0 9n, g1, . . . , gn 2 F : gn � · · · � g1(x) 2 J.

Hence, if for an initial point x 2 J 0 the first n random maps applied are
g1, . . . , gn, then in at most n  N steps of P -process this point will reach J .
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On the other hand, the probability of any composition g1� · · ·�gn is bounded
from below by a constant (mini pi)N . Thus, for any ⌫ 2 M one has

(N + 1)⌫(J) = (⌫ + P ⌫ + · · ·+ PN
 ⌫)(J) � (min

i
pi)

N⌫(J 0).

On the other hand,

⌫(J) 
Z
 0d⌫ = 1,

thus getting a uniform upper bound

⌫(J 0)  N + 1

(mini pi)N
.

Now, take a sequence ⌫k of P k
-stationary measures. Due to Lemma

3.5.1, for any interval J 0 the sequence ⌫k(J 0) is bounded, and hence one can
extract a convergent subsequence.

On the other hand, if for some function  and the corresponding station-
ary measure ⌫ some interval J 0 is “well inside” the “immediate stopping”
{ = 1} zone, that is, if

J 0 ⇢ {x |  (x) = 1} \
\

f2suppµ

f�1({x |  (x) = 1}),

then the stationarity of ⌫ implies that on restriction to J 0, the measures ⌫ 
and

P
j pj(fj)⇤⌫ coincide (as the  -process makes exactly one step there).

Hence, as the zones { k = 1} were chosen to be larger and larger, on any
interval J 0 we have the relation

⌫ k
|J 0 = (

X

j

pj(fj)⇤⌫ k
)|J 0

once k is su�ciently large, and passing to the limit, we see that the limit
measure ⌫ is a (Radon) stationary measure for our dynamical system.

The above argument completes the proof of Proposition 3.5.1. However,
it is interesting to note that the measures corresponding to di↵erent functions
 can be related to each other. Namely, first note the following
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Lemma 3.5.2. Let  1, 2 be two continuous compactly supported functions
taking values in [0, 1], such that supp 1 ⇢ { 2 = 1}. Then for any ⌫ 2 M 2

one has  1⌫ 2 M 1.

Proof. Consider a one-sided skew product � acting on X := R⇥FN⇥ [0, 1]N

by the rule

�(x, (gn)
1
n=1, (cn)

1
n=1) = (g1(x), (gn+1)

1
n=1, (cn+1)

1
n=1).

Consider also a subset A ⇢ X,

A := {(x, (gn)1n=1, (cn)
1
n=1) | c1   (x)}.

In these terms, one step of the  -process, starting at a point x, consists of
completing it second and third coordinates, randomly chosen with respect
to µN ⇥ LebN, and taking a �-first return to the set A . Indeed, the skew
product structure corresponds to the µ-random dynamics, while the first
return corresponds to the stopping condition. The x-coordinate x0 of the
resulting first return is distributed w.r.t. mx, the second is independent from
it and is distributed w.r.t. µN, and all the components of the third one are
distributed w.r.t. the Lebesgue measure, except for c1 that is conditioned
to be on [0, (x0)]. This implies that the measure ⌫ is stationary for the
 -stopped process if and only if the measure ⌫̂ is invariant for this first
return map, where the measure ⌫̂ on X is obtained in the following way:
its (gn)n�1- and (cn)n�2-coordinates are independent and distributed with
respect to µ and Leb respectively, its x-coordinate is distributed w.r.t. ⌫,
and conditionally to any its value x the c1-coordinate is distributed uniformly
on [0, (x)].

Now, taking a smaller function  1   2 corresponds to the smaller set
A 1 ⇢ A 2 . If a (non-probability) measure ⌫̂2 on A 2 is invariant for the
�-first return map on A 2 , its restriction to the subset A 1 is invariant for
the �-first return on this subset as well. Now, it is a straightforward check
that

⌫̂2|A 1 = ⌫̂1,

where ⌫1 =
 1(x)
 2(x)

⌫2 (the factor comes from integration over the c1-coordinate),
thus concluding the proof.
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This allows to repeat the previous construction in the following way: we
have a sequence of maps

· · · ! M n ! · · · ! M 2 ! M 1 ,

where the map from M n+1 to M n is given by ⌫ 7!  n⌫.
Each set M is a compact, thus by standard projective limit construction

there exists an agreeing (in the sense of these maps) family ⌫n 2 Mn. More
precisely, for any fixed k the sequence of images of Mn inside Mk (under the
corresponding projection) is a decreasing sequence of non-empty compacts,
hence providing a non-empty compact intersection M0

k. These new compact
sets project to each other surjectively (by construction), and hence any point
⌫1 2 M0

1 can be lifted to such an agreeing chain.
As the measures ⌫n agree with each other in the sense of projections,

their restrictions on any interval J 0 stabilize once J 0 becomes contained in
{ n = 1}, and they are thus of the form ⌫n =  n⌫ for some measure ⌫ on
the real line. This measure ⌫ is the desired stationary measure (again, as the
stationarity condition for our RDS coincides with P n-stationarity inside the
domain { n ⌘ 1}).

This concludes the second way of proving Proposition 3.5.1.
Finally, we remark that the skew product construction in the proof of

Lemma 3.5.2 allows to show that any measure ⌫1 2 M 1 is actually of the
form  1⌫2 for some ⌫2 2 M 2 . Indeed, both dynamics of P 1 and P 2 are asso-
ciated to taking the first return to two di↵erent sets, A 1 and A 2respectively.
However, given a (non-probability) invariant measure for the first return map
to a smaller set, one can extend it to a (non-probability) invariant measure
for the first return map to a larger set (by iterating it until the first return
happens in a Kakitani tower-like construction). However, as we do not need
this remark for further study, we do not enter into further technical details
here.

Remark 3.5.1. The constructed measure is not guaranteed to be fully sup-
ported or non-atomic. Actually, taking three maps

f1(x) = x+ 1, f2(x) = x� 1, f3(x) = x+
1

10
sin 2⇡x

with equal probabilities, one gets the dynamics for which Radon stationary
measures will be supported on Z.



3.5. PROOF OF THEOREM 1.2.2 93

The above argument allows to construct a stationary measure in the case 3
of Theorem 1.2.2. Now, to distinguish this case from the cases 2 and 4, we
will need the following two propositions. The first of them handles the case 4:

Proposition 3.5.2. Assume that the inverse dynamics of RDS is recurrent.
Then there exists a finite stationary measure for the inverse dynamics if and
only if for the forward dynamics both functions �+,�� do not vanish (in other
words, that all the points tend to each of ±1 with positive probability).

The second one handles the case 2:

Proposition 3.5.3. Assume that the inverse dynamics of RDS is recurrent.
Then there exists a semi-infinite stationary measure for the inverse dynamics
µ̂, such that µ̂([x,+1) < 1, if and only if for the forward dynamics the
function �+ ⌘ 1 (in other words, that all the points tend to +1).

Proof of Proposition 3.5.2. The construction is much more straightforward.
Namely, if the function �̂+ (and hence �̂�) is non-constant, then (as was done
in Section 3.3) one can take

⌫̂((�1, x]) = �+(x+ 0) 8x 2 R.

In the other direction, assume that there exists a probability stationary
measure µ̂ for the inverse dynamics. Then let us consider the function '(x) :=
µ̂((�1, x]). The stationarity relation (3.5) implies that

'(x) = µ̂((�1, x]) =
X

pi(f
�1
i )⇤'((�1, x]) =

X
pi'(fi(x)),

hence the sequence '(Fn(x)) forms a martingale. This martingale thus con-
verges almost surely. Moreover, this martingale is bounded, hence the ex-
pectation of the limit is equal to its initial value. On the other hand, the
only possible limit values are 0 and 1, as both upper and lower limit of the
sequence of random iterations can be only �1 and +1 (see Lemma 3.1.1).
Hence, both probabilities of tending to �1 and to +1 are positive, and this
concludes the proof.

Proof of Proposition 3.5.3. Assume first that �+ ⌘ 1. Then, the random
trajectory Fn(x) of every initial point x almost surely tends to +1, and
thus the minimum minn Fn(x) is almost surely finite.
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Now, for every y 2 R consider the probability

 y(x) := P(9n � 0 : Fn(x) < y) = P(min
n�0

Fn(x) < y).

Note that for every x > y it satisfies the full probability relation

 y(x) =
X

i

pi y(fi(x)), (3.18)

while for x < y it is identically equal to 1.
Consider now the measure ⌫̂y, defined by

⌫̂y([x,+1)) =  y(x).

This measure satisfies the inverse dynamics stationarity relation on the sub-
sets of (y,+1).

Now, normalize this measure so that the measure of [0,+1) is equal to 1:
take

µ̂y :=
1

 y(0)
⌫̂y.

Note that this family of measures is uniformly bounded on any fixed interval.
Indeed, we have

8x, y, 8i  y(x) � pi y(fi(x)),

what implies an upper bound  y(x0)  1
pi
 y(f

�1
i (x0)). Due to the shiftability

property the point 0 can be moved arbitrarily far to the left: for any x0

there exists a composition F such that F�1(0) < x0, and thus  y(x0) is upper
bounded by 1

p , where p is the probability of its application. This implies a
uniform bound for any right ray [x0,+1).

Now, the relation (3.18) implies that

⌫y|(y,+1) = (
X

i

pi(f
�1
i )⇤⌫y)|(y,+1). (3.19)

As the family of measures ⌫y is uniformly bounded on any interval, consider
any weak accumulation point µ̂ of µ̂y as y ! �1. Passing to the limit
of (3.19), we see that any such limit point will be a stationary measure for
the inverse dynamics, by construction finite on [0,+1).

In the other direction, if there exists a semi-finite stationary measure µ̂
for the inverse dynamics, let us consider the function  (x) = µ̂([x,+1)).
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This function again leads to a positive martingale  (Fn(x)), that is now
unbounded due to infiniteness of µ̂.

However, a positive martingale still converges almost surely, and now the
only its possible limit is 0 (as upper and lower limits of Fn(x) can be only
+1 or �1, and the function  tends to infinity at �1). Hence,  (Fn(x))
converges to 0 almost surely, and thus almost surely Fn(x) ! +1. Thus
�+ ⌘ 1.
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