Thèse soutenue

Étude numérique de la micro et nano structuration laser de matériaux poreux nanocomposites

FR  |  
EN
Auteur / Autrice : Hongfeng Ma
Direction : Tatiana Govorykha Itina
Type : Thèse de doctorat
Discipline(s) : Laser interaction avec les matériaux, Optique, Photonique
Date : Soutenance le 15/01/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Sciences Ingénierie Santé (Saint-Etienne)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Jean Monnet (Saint-Étienne ; 1969-....)
Laboratoire : Laboratoire Hubert Curien (Saint-Etienne ; 1995-....)
Jury : Président / Présidente : Natalia Del Fatti
Examinateurs / Examinatrices : Andrei Kabashin, Nathalie Destouches, François Goutaland
Rapporteurs / Rapporteuses : Emilio Mariotti, Guillaume Duchateau

Résumé

FR  |  
EN

Cette thèse porte sur les simulations numériques de l’interaction laser avec des matériaux poreux. Une possibilité de traitement bien contrôlé est particulièrement importante pour la microstructuration laser du verre poreux et le nano-usinage de matériaux poreux semiconducteurs en présence de nanoparticules métalliques. La modélisation auto-cohérente se concentre donc sur une étude détaillée des processus impliqués. En particulier, pour comprendre les structures des micro-vides périodiques produits à l’intérieur du verre poreux par des impulsions laser femtoseconde, une analyse thermodynamique numérique détaillée a été réalisée. Les résultats des calculs montrent la possibilité de contrôler le micro-usinage laser en volume de SiO2 . De plus, les dimensions des structures densifiées par laser sont examinées pour différentes conditions de focalisation à de faibles énergies d’impulsion. Les dimensions caractéristiques obtenues à partir des structures sont corrélées avec les résultats expérimentaux. Comparés au verre poreux, les films mésoporeux TiO2 chargés d’ions Ag et de nanoparticules supportent des ré- sonances plasmoniques localisées. Les films nanocomposites obtenus sont capables de transférer des électrons libres et d’absorber l’énergie laser de manière résonnante, offrant des possibilités supplémentaires pour contrôler la taille des nanoparticules d’Ag. Pour identifier les paramètres optimaux du laser à onde continue, un modèle multi-physique prenant en compte la croissance des nanoparticules d’Ag, photo-oxydation, réduction a été développé. Les simulations réalisées montrent que la vitesse d’écriture laser contrôle la taille des nanoparticules d’Ag. Les calculs ont également représenté une nouvelle vision selon laquelle les nanoparticules d’Ag se développent devant le centre du faisceau laser du fait de la diffusion de chaleur. Il a été démontré que la croissance rapide activée thermiquement suivie d’une photo-oxydation est la principale raison du changement de taille et de température en fonction de la vitesse d’écriture. Un modèle tridimensionnel a été développé et reproduit les lignes écrites au laser. L’écriture de films mésoporeux TiO2 chargés de nanoparticules d’Ag par un laser pulsé promet également d’offrir des possibilités supplémentaires dans la génération de deux types de nanostructures: les rainures de surface périodiques induites par laser (LIPSS) et les nanogratings Ag à l’intérieur du film TiO2 . Pour mieux comprendre les effets d’un laser pulsé, deux modèles multiimpulsions - un semi-analytique et un autre basé sur une méthode par éléments finis (FEM) - sont développés pour simuler la croissance des nanoparticules d’Ag. Le modèle FEM s’avère précis car il traite mieux la diffusion de la chaleur à l’intérieur des films minces TiO2 . Le modèle pourrait être étendu à l’avenir pour comprendre la formation de nanogratings LIPSS et Ag dans de tels milieux en les couplant avec les migrations de nanoparticules, la fusion de surface et l’hydrodynamique.Les résultats obtenus ont ouvert de nouvelles perspectives sur le microtraitement laser des matériaux poreux et un meilleur contrôle laser sur la nanostructuration dans les films semiconducteurs poreux chargés de nanoparticules métalliques.