Thèse soutenue

Propriétés topologiques des systèmes photoniques de Floquet

FR  |  
EN
Auteur / Autrice : Lavi Kumar Upreti
Direction : Pierre Delplace
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 12/06/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (1991-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure de Lyon (2010-...)
Laboratoire : Laboratoire de physique (Lyon ; 1988-....)
Jury : Président / Présidente : David Carpentier
Examinateurs / Examinatrices : Pierre Delplace, David Carpentier, Jérôme Cayssol, Fabrice Mortessagne, Julia Meyer
Rapporteurs / Rapporteuses : Jérôme Cayssol, Fabrice Mortessagne

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Propriétés topologiques de systèmes photoniques non gappés modulés périodiquement. La photonique est une plate-forme où les ondes électromagnétiques (ou photons) se propagent à l'intérieur d'un cristal (comme les ondes de Bloch) formé par les degrés de liberté discrets sous-jacents, par exemple des réseaux de guides d'ondes. Ces ondes ne peuvent pas se propager si la fréquence incidente se situe dans la bande interdite photonique, alors ces ondes sont connues sous le nom d'ondes évanescentes. Ainsi, le cristal se comporte comme un réflecteur de ces ondes. Cependant, s'il existe des modes pour lesquels il existe des ondes limites qui relient la bande interdite, alors ces ondes peuvent exister à la limite sans s'infiltrer dans la masse. Ceci est analogue au mouvement chiral des électrons aux bords du Hall quantique, avec un ingrédient supplémentaire de symétrie d'inversion du temps qui se brise dans les cristaux photoniques via certaines propriétés gyromagnétiques de l'échantillon, ou la dépendance inhérente au temps du système. Dans ce dernier cas, lorsque le système, en particulier, est commandé périodiquement, on peut également observer les phases de non équilibre plus exotiques dans ces réseaux.Dans ce travail, nous explorons les propriétés topologiques de ces réseaux photoniques à commande périodique. Par exemple, comment les symétries fondamentales, par exemple la symétrie particule-trou, peuvent être mises en oeuvre pour concevoir la topologie en 1D. Nous trouvons un lien entre les symétries cristallines et les symétries fondamentales, qui facilitent une telle mise en oeuvre. De plus, une dimension synthétique peut être introduite dans ces treillis qui simulent la physique des dimensions supérieures. La différence entre la dimension synthétique et la dimension spatiale devient apparente lorsqu'une symétrie cristalline spécifique, comme l'inversion, est rompue dans ces systèmes. Cette rupture transforme une bande interdite directe en une bande interdite indirecte qui se manifeste par l'enroulement de bandes dans le spectre de la bande quasi-énergétique. Si elle est rompue dans la dimension synthétique, il en résulte une interaction de deux propriétés topologiques : l'une est l'enroulement des bandes de quasi-énergie, et l'autre est la présence d'états de bord chiraux dans la géométrie finie. Cette ancienne propriété de l'enroulement se manifeste par des oscillations de Bloch des paquets d'ondes, où nous montrons que les points stationnaires de ces oscillations sont liés au nombre d'enroulements des bandes. Cette propriété topologique peut donc être sondée directement dans une expérience par la technologie de pointe. Cependant, si cette symétrie est rompue dans la dimension spatiale, l'enroulement des bandes se manifeste comme une dérive quantifiée de la position moyenne, qui est toujours caractérisée par un nombre d'enroulement des bandes.En outre, nous montrons qu'un régime sans lacune différent peut également être conçu tout en préservant la symétrie d'inversion. Dans ce régime, la topologie peut être saisie en enfermant les dégénérescences dans l'espace des paramètres et en calculant le flux de Berry qui traverse la surface enfermée. Dans ce cas, certaines des dégénérescences peuvent héberger des états chiraux de bord avec d'autres protégés à la même quasi-énergie.