Thèse soutenue

L’horloge circadienne régule la quantité et l’expression de l’ADN mitochondrial dans le compartiment nucléaire chez Mus musculus

FR  |  
EN
Auteur / Autrice : Hélène Boyer
Direction : Kiran Padmanabhan
Type : Thèse de doctorat
Discipline(s) : Sciences de la vie et de la santé
Date : Soutenance le 08/06/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale de Biologie Moléculaire Intégrative et Cellulaire (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure de Lyon (2010-...)
Laboratoire : Institut de Génomique Fonctionnelle de Lyon (Lyon ; 2007-....)
Jury : Président / Présidente : Urs Albrecht
Examinateurs / Examinatrices : Urs Albrecht, Michalis Averof, Erika Brunet, Béatrice Eymin, Benoît Kornmann
Rapporteurs / Rapporteuses : Michalis Averof, Erika Brunet

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le génome mitochondrial est minimal et la plupart des protéines mitochondriales sont aujourd’hui codées par des gènes nucléaires. Ainsi, bien que les génomes mitochondriaux et nucléaires soient physiquement séparés, ils communiquent via des signaux antérogrades (noyau vers mitochondrie) et rétrogrades (mitochondrie vers noyau), permettant la coordination de la biogenèse mitochondriale avec les besoins énergétiques cellulaires. Ces besoins énergétiques sont cycliques le plus souvent, et les horloges circadiennes régulent de nombreux aspects de la biologie des mitochondries, dont les dynamiques de fusion et fission qui façonnent l’architecture du réseau mitochondrial. Dans les foies de souris, le réseau oscille entre un état fusionné (pendant le jour) et des structures fragmentées (pendant la nuit). Un réseau fusionné est généralement associé à une production d’ATP plus efficace, alors que la fragmentation est associée à des niveaux de ROS et de mitophagie élevés. En d’autres termes, la fission offre à l’ADN mitochondrial une possibilité de s’échapper de son organelle. Des expériences de complémentations en levure ont montré que l’ADN mitochondrial (mtDNA) était capable de s’échapper de la mitochondrie et d’entrer dans le noyau. Chez les cellules humaines (HeLa), le génome mitochondrial entier et intact a été détecté dans le noyau. L’analyse de l’évolution des numts (séquences mitochondriales insérées dans le noyau) a montré que le processus d’intégration de nouvelles séquences mitochondriales dans le génome nucléaire était encore en cours. De plus, de nombreux évènements somatiques de fusion entre ADN mitochondrial et nucléaire (simts) ont été détectés dans des cellules cancéreuses humaines - c’est-à-dire dans un contexte d’instabilité génomique et de rythmes circadiens perturbés. La mitophagie est a priori responsable de la production de vésicules dans le cytoplasme contenant de mtDNA et potentiellement absorbables par le noyau. Puisque les dynamiques du réseau mitochondrial et la mitophagie sont régulés par les horloges circadiennes, nous avons étudié l’accumulation d’ADN mitochondrial dans le compartiment nucléaire en fonction du temps circadien. Cette question a été adressée dans le foie de souris, un tissus mammifère différentié. Nos travaux montrent que l’accumulation d’ADN mitochondrial dans le noyau de foie de souris est régulée par l’horloge circadienne, et atteint son zénith à la fin de la nuit circadienne. Dans le noyau, l’ADN mitochondrial est plus hydroxy-méthylé que dans le cytoplasme. Aussi, nous avons montré que perturber les horloges circadiennes modifiait la phase et l’amplitude des dynamiques d’ADN mitochondrial nucléaire. De plus, l’accumulation d’ARN mitochondrial nucléaire est concomitante à celle d’ADN mitochondrial nucléaire dans la plupart des conditions, et qu’elle est sensible aux challenges nutritionnels. Il est probable que ces dynamiques soient engendrées par le remodelage circadienne du réseau mitochondrial. La présence accrue d’insertions d’ADN mitochondrial dans les génomes nucléaires des tissus cancéreux ou âgés, pour lesquels les horloges circadiennes sont souvent perturbées, est peut-être due à une perte de la régulation des dynamiques de remodelage du réseau mitochondrial.