Thèse soutenue

La décomposition de matériaux dans la tomographie spectrale (sCT—spectral computed tomography) par rayons X dans le domaine de l'image
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Bingqing Xie
Direction : Valérie KaftandjianYue Min Zhu
Type : Thèse de doctorat
Discipline(s) : Image processing
Date : Soutenance le 19/03/2020
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : CREATIS - Centre de Recherche et d'Application en Traitement de l'Image pour la Santé (Lyon ; 2007-....) - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé / CREATIS
Jury : Président / Présidente : Pierre-Simon Jouk
Examinateurs / Examinatrices : Valérie Kaftandjian, Yue Min Zhu, Pierre-Simon Jouk, Nicole Vincent, Philippe Duvauchelle
Rapporteurs / Rapporteuses : Valérie Kaftandjian, Nicole Vincent

Résumé

FR  |  
EN

La décomposition de matériaux est un problème fondamental et primordial dans la tomographie spectrale (sCT—spectral computed tomography) par rayons X basée sur des détecteurs à comptage de photons (PCD—photon counting detector). La présente thèse porte sur le développement de méthodes de décomposition de matériaux en utilisant des informations spectrale et morphologique encodées dans des images sCT multi-énergie. Dans ce cadre, trois méthodes ont été développées. Pour la première méthode, en utilisant la densité de masse limitée, la parcimonie conjointe locale, et le faible rang structurel (DSR) dans le domaine de l'image, nous obtenons une décomposition très précise de matériaux tels que le gadolinium, l'iode et le fer. Les résultats sur les données numériques et physiques du fantôme ont démontré que la méthode DSR proposée conduit à une décomposition plus précise que la méthode pseudo-inverse habituelle avec décomposition en valeur singulière (SVD—singular value decomposition) et la méthode de régularisation parcimonieuse courante avec contrainte de norme L1 (lasso). La deuxième méthode opère par région. Elle consiste à optimiser les matériaux de base en se basant sur la segmentation spatio-énergétique des régions d'intérêt (ROI—regions-of-interests) dans les images sCT, à réduire le bruit en faisant le moyennage des images spatiales multi-énergie, et à effectuer une décomposition fine des matériaux impliquant une matrice de décomposition optimisée, une régularisation du débruitage et une régularisation parcimonieuse. Les résultats sur des données numériques et physiques ont montré que la méthode proposée de décomposition des matériaux ROI par ROI (ROI-wise—region-of-interests-wise) présente une fiabilité et une précision nettement supérieures à celles des méthodes de décomposition courantes fondées sur la régularisation de la variation totale (TV) ou de la norme L1. Dans la troisième méthode, nous proposons la notion d'imagerie sCT à super-résolution énergétique (SER—super-energy-resolution), qui est réalisée en établissant la relation entre la simulation et les fantômes physiques au moyen d'un apprentissage par dictionnaire couplé, de manière pixel par pixel. L'efficacité de ces méthodes proposées a été validée sur des données de fantômes numériques, de fantômes physiques et in vivo. Les résultats montrent que, pour la même méthode de décomposition de matériaux utilisant la régularisation par lasso, l'imagerie à super-résolution énergétique proposée présente une précision de décomposition et un pouvoir de détection beaucoup plus élevé que ce que peut fournir la machine sCT actuelle.