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Abstract 

Drilling of bone is a fundamental surgical skill in specialties such as orthopedics, dentistry, and 

neurosurgery. Facing the aged society of our time, the number of surgical operations is estimated to 

increase along the enlargement in the proportion of elderly people. In order to fulfill the drastically 

growing demands of medical care, it is necessary to permit high-efficiency surgical training of doctors 

and development of performant medical devices. Bone biomodels are indispensable for surgical 

training and mechanical tests of medical devices, having their advantages in the ease of handling and 

consistency of material properties. However, a bone biomodel produced under the standard 

specification was reported to show different drilling characteristics compared to those of natural bone.  

In order to develop bone biomodels that cover drilling characteristics of natural bone, the 

objective of this thesis was to find out the relationship among drilling and mechanical properties, and 

tactile feedback during drilling. This is based on the assumption that drilling can be characterized by 

drilling properties described by cutting forces and cutting temperature, and those drilling properties 

are affected by mechanical properties of work materials, and likewise affects tactile feedback during 

drilling. In this study we fabricated composite materials consisting of acrylic resin and ceramic 

additives, and looked into the effects of additives on mechanical and drilling properties, and tactile 

feedback of composite materials. Drilling tests were carried out with the composite materials and 

controls such as natural bone and Sawbones🄬 test materials. Drilling were performed under both 

constant feed rate and constant thrust force. Besides, mechanical tests such as bending tests, 

microindentation tests, and fracture toughness tests were performed. Furthermore, tactile feedback 

during drilling was obtained by manual drilling of experienced surgeons. 

The experimental results suggested that additives can alter both drilling and mechanical 

properties. This effect becomes larger with the increase in additive amount up to 40 wt%. Acrylic 

composite materials including 20 wt% of alumina cement exhibit the good similarity to natural bone 

in tactile feedback during drilling. This result is considered to be attributed to equivalent thrust force 

during manual drilling, which is brought by the changes of mechanical properties of the acrylic resin 

owing to additives. Thrust force can be more dominant rather than torque in tactile feedback because 

the magnitude of applied force in vertical axis is one-hundred times larger than in lateral axis in drilling. 

Keywords: bone drilling, bone biomodel, biomechanical test material, acrylic resin, additive, 

composite material, thrust force, torque, cutting temperature, cutting chips 
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Résumé 

Le perçage d’os est une compétence chirurgicale fondamentale dans les spécialités telles que 

l’orthopédie, la dentisterie et la neurochirurgie. Face à la société vieillissante de notre époque, le 

nombre d'opérations chirurgicales devrait augmenter avec l'élargissement de la proportion de 

personnes âgées. Afin de répondre aux exigences de plus en plus fortes des soins médicaux, il est 

nécessaire de permettre une formation chirurgicale adaptée des médecins et le développement de 

dispositifs médicaux performants. Les biomodèles d’os sont indispensables pour la formation 

chirurgicale et les essais mécaniques des dispositifs médicaux, avec leurs avantages dans la facilité de 

manipulation et la cohérence des propriétés des matériaux. Cependant, un biomodèle d’os produit 

selon les spécifications présenterait des caractéristiques de perçage différentes de celles de l'os naturel. 

Afin de développer des biomodèles d’os qui couvrent les caractéristiques de perçage de l'os 

naturel, l'objectif de cette thèse a été de découvrir les relations parmi les propriétés mécaniques, et les 

propriétés de perçage et la rétroaction tactile. Ce travail est basé sur l'hypothèse que le perçage peut 

être caractérisé par des propriétés de perçage décrites par les forces de coupe et la température de 

coupe et que ces propriétés de perçage sont affectées par les propriétés mécaniques des matériaux de 

travail qui affectent également la rétroaction tactile pendant le perçage. Dans cette étude, nous avons 

fabriqué des matériaux composites constitués de résine acrylique et d'additifs céramiques et nous 

avons examiné les effets des additifs sur les propriétés mécaniques et de perçage, ainsi que le retour 

tactile. Des essais de perçage ont été effectués avec les matériaux composites, de l'os naturel et du 

Sawbones🄬. Le perçage a été effectué à la fois à vitesse d'avance constante et à force de poussée 

constante. En outre, des essais mécaniques tels que des essais de flexion, des essais de micro-

indentation et des essais de ténacité ont été effectués. De plus, des mesures de rétroaction tactile 

pendant le perçage ont été effectuées par perçage manuel de chirurgiens expérimentés. 

Les résultats suggèrent que les additifs peuvent modifier à la fois les propriétés de perçage et 

les propriétés mécaniques. Cet effet devient plus important avec l'augmentation de la quantité d'additif 

jusqu'à 40% en poids. Les matériaux composites acryliques comprenant 20% en poids de poudre 

d'alumine présentent une bonne similitude avec l'os dans la rétroaction tactile pendant le perçage. Ce 

résultat est considéré comme étant attribué à une force de poussée équivalente lors du perçage manuel, 

qui est due aux changements des propriétés mécaniques de la résine acrylique dus aux additifs. La 

force de poussée peut être plus dominante que le couple dans la rétroaction tactile car la magnitude de 

la force appliquée dans l'axe vertical est cent fois plus grande que dans l'axe latéral lors du perçage. 

Mots-clés: perçage d’os, biomodèle d’os, matériau d'essai biomécanique, résine acrylique, additif, 

matériau composite, force de poussée, couple, température de coupe, copeaux de coupe 
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Chapter 1: Bibliography Synthesis 

This chapter presents the state of the art in drilling of bone biomodels, by reviewing the 

literatures concerning biomodel, bone, and drilling, followed by the description of the objective 

of this study and the research approach toward improvement of bone biomodels. 
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1.1. Introduction 

Drilling of bone is one of the common surgical steps. Surgical treatment results are largely 

influenced by the surgical skills of surgeons and the performance of medical devices. Then, it is 

important especially in Japan, the most super-aged society in the world, that surgical training of doctors 

and development of high-performance medical devices should be carried out efficiently. 

Biomodels can function to meet the rapidly increasing demands for medical resources. Bone 

biomodel is one of the biomodels that replicate human tissue, and known for its usage in surgical 

training for doctors or mechanical tests of medical devices. 

A number of bone biomodels are currently available in the market, but the reproducibility of 

drilling of bone has little been paid attention and barely been in the research scope up until today. 

Therefore, conventional bone biomodels cannot fully reproduce the unique drilling behavior of natural 

bones. Besides, evaluation items among physical and mechanical properties of biomodels toward the 

replication of drilling of bone is uncertain.  

Replication of drilling includes both drilling properties such as thrust force and torque, and 

tactile feedback during drilling. These aspects should be influenced by physical and mechanical 

properties of work materials. In order to improve the conventional bone biomodels, it is necessary to 

fabricate the alternative materials based on understanding of the correlation among mechanical and 

drilling properties, and tactile feedback during drilling. 

Then, the objective of this study is to find out the relationship between mechanical and drilling 

properties, and also drilling properties and tactile feedback during drilling for the development of bone 

biomodels that cover drilling characteristics of natural bone. 

To accomplish this objective, the present study adopts the fabrication of composite materials to 

look into the effects of additives on mechanical and drilling properties, and tactile feedback during 

drilling. Contrary to the conventional approach that relied on the tactile feedback of doctors, where 

there were a lot of trials and errors for improvement, quantitative characterization of mechanical and 

drilling properties from the standpoint of engineering are applied to drilling of bone biomodels as well 

as natural bones and conventional bone substitute materials. 

In this chapter, backgrounds and literature studies focusing on biomodel, bone, and drilling are 

summarized, including the current limitations and challenges in the development of bone biomodels. 

The research objectives and approaches to achieve the objectives are also described as well as the 

outline of this thesis. 
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1.2. Biomodel 

1.2.1. The role of biomodel to fulfill medical resources 

In 2007, Japan has entered the “super-aged society”, which is defined by the World Health 

Organization (WHO). The WHO defines the “aging rate” as the proportion of a society’s population 

for those aged 65 or older. If a society has the aging rate more than 7%, the society is an “aging society”. 

If the rate exceeds 14%, it is an “aged society”, and a “super-aged society” in case that the rate 

surpasses 21%. Fig. 1-1 shows a demographic change in Japan from 1990 to 2065 as illustrated in the 

statement on the social welfare renovation by the Ministry of Health, Labour and Welfare [1]. 

Although it has been stressed for a long time since the Japan faced the super-aged society, the aging 

rate at the year of 2016 in Japan is about 27.3% as reported in the White Paper on Aging Society [2]. 

Moreover, according to the 15th estimated population reported in 2017 by the National Institute of 

Population and Social Security Research [3], the elderly over 65 years old can account for about 30% 

of the whole Japanese population in 2025, and almost 40% in 2065. 

 

 

Fig. 1-1 Demographic change in Japan (Reprinted and translated from [1]) 
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The advancement of the super-aged society holds problematic potentialities especially in 

medical and welfare support systems. A larger number of orthopaedic surgeries has been performed 

along the drastic increase in the proportion of the elderly. For example, the number of total joint 

replacement of hip, knee, and shoulder operated from April 2017 to March 2018 reached 220,000, 

which is 28.3% larger than that of the previous year period [4]. This trend is not only the case in Japan, 

but also in other developed countries. In the U.K., the number of joint replacement operations for hips, 

knees, ankles, shoulders, and elbows performed in 2018 statically came up to 240,163, marking 9.5% 

increase compared to 2017 as reported in the annual reports by the National Joint Registry (NJR) [5,6]. 

Also in the U.S., the number of primary total knee arthroplasty (TKA) performed from 2012 to 2017 

was 650,674 according to the 5th annual report in 2018 by the American Joint Replacement Registry 

[7], and the number of such operation is estimated to increase by 3.48 million per year by 2030 [8]. 

As just described, the number of orthopedic operations is undoubtedly keep increasing all over 

the world in the future. To meet this rapidly increasing demands for medical care, the society is 

required to rapidly fulfill medical resources such as a sufficient number of skillful doctors, and good-

quality medical devices. To do so, the joint effort has been made between the industry, government, 

and academia for enhancement of medical educational system, research and development of high-

performance medical devices, and establishment of appropriate testing standards of medical devices 

or test materials for facilitation of evaluation procedure.  

Biomodel is an attractive material that steadily supports the progress of medical technology in 

all the aspects mentioned above; enhancement of educational system, development of medical devices, 

and establishment of test standards. The use of biomodels will be detailed in the next sessions. 

 

1.2.2. Definition and applications of biomodel 

According to Lohfeld et al. [9], “A biomodel is an entity that replicates the geometry or 

morphology of a biological structure, which can be realized in either a computer-based form or a solid 

physical form.” Based on this definition, there are two kinds of biomodels available; a computer-based 

biomodel and a physical biomodel. Computer-based biomodel covers not only a virtual biomodel, but 

also a computational biomodel [9]. A virtual biomodel shall be created for the purpose of visualization 

of biological structures, such as a skeletal model based on 3D computer-based images generated from 

computed tomography (CT) scans, normally used for preoperative planning. A computational 

biomodel indicates a finite element (FE) model of skeletal structure for the purpose of biomechanical 
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analysis on a biological structure, often used for determination of stress and strain distributions in 

reality [10].  

A physical model is a biomodel in a solid physical form that can be fabricated by engineering 

technologies such as computerized numerical control (CNC) milling, injection molding, or rapid 

prototyping (RP) technologies [11,12]. Fig. 1-2 shows several examples of a physical model [13–15] 

mainly replicating the geometry or morphology of biological structures respectively. As far as 

engineering technology permits, all the parts of soft and hard physiological tissue can be generated. 

Recently, 3D printing technology is also applied in development of biomodel widely from blood 

vessels to bones [16–20]. 

 

Fig. 1-2 Examples of physical biomodel. (a) A Prosthetic Restoration Jaw Model [13], (b) A Drilling 

Training Model [14], and (c) A blood vessel model [15]. 
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Biomodel is used for a wide range of applications. Representative application is, for example, 

preoperative planning [21–23], surgical training [16,24–26], and mechanical tests as laboratory study 

for evaluation of medical devices [27–30]. The efficacy of preoperative explanation of surgical 

procedure using biomodel is also regarded as helpful to obtain informed consent about operation [11]. 

For each application, the intended role of biomodel is different. That is to say, the desired ability 

that biomodel has to exhibit should be well determined. For the purpose of preoperative explanation 

to patients, the realistic appearance of target tissue with its anatomical accuracy should be of its high 

priority, rather than its similarity of tactile feedback or physical properties. This application is relevant 

to the definition of biomodel in [9]. On the other hand, tactile feedback as well as anatomical structure 

should have high priority for surgical training, while physical and mechanical responses related to 

target function should be reproduced for the mechanical tests of medical devices. In these applications, 

the functional behavior of living tissue is more requested rather than the geometry or morphology of 

the biological structure over the conventional definition of biomodel. The functional characteristics of 

biomodel is the recently emerging aspect that should be replicated in the use of physical models, which 

used to be out of the scope of its use. 

 

1.2.3. Biomodel in development of medical devices 

In Japan, sales and production of medical devices are regulated by the Pharmaceuticals and 

Medical Devices Law (PMDL). Under the PMDL, the Pharmaceuticals and Medical Devices Agency 

(PMDA) is in charge of evaluation of medical devices in terms of quality, efficacy, and safety taking 

into account the current scientific and technological standards. In the U.S., these services are under 

the jurisdiction of the Food and Drug Administration (FDA). Fig. 1-3 shows the overview of PMDA’s 

reviews and related services during product development procedure consisted of several stages; 

research and development, non-clinical tests, clinical trials, filing of application, approval, and 

marketing [31]. The PMDA provides various services at each stage of the procedure, such as 

consultation in relation to regulatory submission, compliance assessments focusing on Good 

Laboratory Practice (GLP), Good Clinical Practice (GCP), and Good Post-marketing Study Practice 

(GPSP) to ensure the submitted data shall be in accordance with the ethical and scientific standards, 

and inspections in terms of Good Manufacturing Practice (GMP), Quality Management System (QMS), 

and Good Gene, Cellular, and Tissue-based Products Manufacturing Practice (GCTP) in order to 

ensure the quality management of the manufacturing facility for the pending products.  
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As illustrated in Fig. 1-3, one of the characteristics in development of medical devices before 

distribution to a customer in comparison of other industrial products is the presence of clinical trials 

to obtain the approval. Since the intended purpose of medical devices is to help health care providers 

diagnose, prevent, and treat sickness or disease of their patients, with often influencing patients’ 

anatomical structure or physiological function, clinical trials have been regarded as indispensable in 

Japan. What is essential in clinical trial is to see whether an emerging device has the capability to 

fulfill the intended purpose, balancing the benefits and the risks on patients’ body. Therefore, newly 

developed medical devices are tested using living tissue either in vivo or in vitro. 

 

 

Fig. 1-3 Services of PMDA at each stage of product development (Reprinted from [31]) 
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It is unsurprising that performing clinical trial is not easy. As developers of medical device, 

there are several steps to overcome, in order to obtain the approval. In addition to a number of 

administrative works, developers have to recreate the intended usage environments (e.g. a number of 

intact vascular systems surrounded by human soft tissue and bones), and prepare a sufficient number 

of test specimens and subjects. No matter what kind of living tissue is required, obtaining live 

specimens of acceptable sample size and quality, from the limited stock, within a reasonable time 

period, before environmental deterioration like dehydration or biological decay affects and alters the 

specimens [32,33], is a complicated and complex work. Besides, individual variance in material 

properties also make it difficult to obtain statically reliable data due to animal species, gender, 

anatomic location, food history, and the presence of disease [34,35] 

Then, the use of inanimate biomodel can play a role as alternative materials to living tissue, 

somehow to mitigate these limitations and predict the biomechanical testing results. Compared to 

living tissue from cadavers or animals, the use of biomodel has two major advantages; ease of handling 

(biomodel does not require any special storage methods, licenses, or approvals from ethical committee 

and do not carry the risk of infection), and reproducibility (biomodel can provide statically reliable 

testing outcomes owing to the consistence of material composition, density, and geometry). Thanks to 

those advantages, the use of biomodel attracts more and more attentions over the world. 

 

1.2.4. Biomodel as a standard test material 

Another difficulty for evaluation of medical devices lies in the authorities’ side. In Japan, 

PMDA is in charge of fixing up the testing methodology and requirements in the evaluation items for 

each medical device, but designing valid testing system could take time, especially in case that 

genuinely required evaluation items related to the accomplish of the intended function is not clear. The 

term “medical device” covers a wide range of devices used for health care, in various medical 

specialties. Nowadays, numerous types of medical devices have been invented, and thus evaluation 

methods are diverse. Therefore, PMDA is responsible to study the intended purpose of each medical 

device, and determine the most appropriate evaluation methodology to see if the medical devices can 

exhibit the desired function, taking into account the possibility of securement of a sufficient number 

of subjects, guarantee of long-run capability of products, uncertainty of surgical outcome depending 

on surgeons, and unique usage environments (particularly implantable devices such as artificial joint 

or artificial heart). In this regard, it is academically expected to provide a better understanding of the 
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relationship between the required properties of medical devices and the capacity of the medical devices 

to fulfill the intended function, for facilitation of the development of medical devices by helping to 

establish evaluation items composed of the bare minimum requirements. 

Standards development is one of the services of PMDA as illustrated in the Fig. 1-3. In this 

service, testing methodology valid for evaluation of medical devices are established as standards. 

Standards are reviewed and protected by the International Organization for Standardization (ISO) and 

ASTM International (ASTM; American Society for Testing and Materials) over the world, and by the 

Japanese Industrial Standards (JIS) in Japan. Hundreds of standards have been already defined for 

medical devices, for example, about the implants for surgery [36–43]. By following the ASTM 

standard designated such as F543 [40], metallic bone screws for bone plates in orthopedics were 

evaluated by researchers [44–46], and comparable among the screws. Specification by the standards 

covers not only terminology and testing methodology, but also materials both for medical devices and 

test materials as well as their fabrication methods. The use of bone biomodel, which is made of 

polyurethane foam, is regulated by the specification F1839 [47], for determination of the axial pullout 

strength of metallic bone screws [40]. 

SawbonesⓇ is one of bone biomodels commercially available around the world (Fig. 1-4) [48]. 

Among the products of Sawbones🄬, solid rigid polyurethane foam is defined as a standard test material 

(Fig. 1-5) [47]. Taking into account the specification, researchers have studied its static physical and 

mechanical properties [49–51]. However, as Hausmann described, obtaining clinically relevant data 

is limited for cases of biomechanical testing, due to the essential difference in mechanical properties 

compared to those of genuine bone, whereas the use of Sawbones🄬 as a test material for comparable 

study between a series of identical devices can be agreeable [52]. Nevertheless, it is also true that there 

is still lack of quantitative information available regarding machining characteristics, such as cutting 

forces and cutting temperatures during drilling, whose information are essential for the assessment of 

orthopedic or other specialties dealing bone and prosthesis. Among limited literatures, Cseke reported 

that there is a large difference in machining characteristics between natural bones and Sawbones🄬 test 

materials [53]. Therefore, only a comparable study between bone drills, bars, and prosthesis can be 

possible using the current bone biomodels. In order to improve the use of bone biomodel to evaluate 

the machining functions of medical devices, enhanced biomodel that can reproduce the machining 

properties of natural bone should be developed. 

The use of biomodel as a standard test material caught the attention in a decade. However, 
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current technology for fabrication of biomodel permits only comparable studies among the same type 

of medical devices such as screws or pins. To take a further step, biomodel that equips with the realistic 

properties of natural bone, related to the assessment of intended purpose for each medical device is 

necessary. 

 

Fig. 1-4 SawbonesⓇ biomechanical test materials [48] 

 

Fig. 1-5 Standard specification for rigid polyurethane foam regulated by the ASTM international 

[47] 
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1.2.5. Biomodel in surgical training 

Surgical outcomes can be largely influenced by a user of medical devices or instruments, even 

though highly-performant products have been newly developed. In case that surgeons lack their 

knowledge and/or operational capability of surgical devices, medical accidents can possibly occur. In 

orthopedic surgery, surgeons would manually cut and remove patients’ skins and other tissues using 

surgical knife and electric scalpel in order to expose the target inner organs. Here, surgeons are 

required to have a good command of surgical instruments to properly conduct operations as initially 

planned.  

Regarding this point, there are certain surgical skills that are complicated and take time for 

mastery, such as clipping of aneurysms [54] or drilling of bone [55]. Drilling of bone is one of a series 

of surgical steps in dentistry or orthopedics, and often performed during dental implant surgery or 

artificial joint replacement. Therefore, dentists and surgeons are required to acquire the skill of drilling. 

In this regard, the surgeons are expected to accurately and steadily handle the surgical tool with 

controlling their level of force along the progress of drilling displacement depending on the bone 

structure and the individual difference of bone’s characteristics, in order to avoid severe risks to their 

patients.  

Medical and dental students can learn the basic knowledge about frequently occurring diseases 

and disorders, and their treatment methods. They have a chance to practice surgeries using actual 

instruments on dummies, and work as doctor-in-training in hospital under senior doctor at various 

specialties. In this manner, the students learn to conduct surgeries by following a proper procedure. In 

fact, however, the students do not have many chances to train themselves on living tissue while in 

school, because of the difficulty in handling as well as the limited accessibility. Besides, during 

internship, the students often only observe the surgeries and have less chance to give treatment [56]. 

The progress in medical technology has extended the surgical knowledge, and as a result increased the 

students’ burden. The industry, government, and academia have been somehow responding to this 

trend by developing educational materials and increasing learning opportunities [57,58]. 

Basically surgical training for amateur doctors are performed in operating rooms in a hospital, 

but the currently increasing medical demands in our society require a number of experienced doctors 

and therefore amateur doctors are expected to do supplementary training away from hospital. 

Workshop using cadavers or animal models has been traditionally performed since long years, but 

nowadays clinical practice is becoming more and more difficult, because of the less tolerance of our 
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society against the use of cadavers or animals in medical research and education [59]. As alternative 

training methods, the advancement in technology brought computer-based training systems [60–62] 

and virtual reality (VR) simulators [63,64]. Although these emerging training systems show high 

efficiency in educational performance and have great advantages, the technology still has some room 

for improvement and also not many hospitals can introduce the systems because of its initial and 

maintenance cost [58].  

For the purpose of surgical training, the use of biomodel has high potential. Similarly, as the 

use in mechanical tests of medical devices, inanimate biomodels possess strong advantages in ease of 

obtaining, conserving, and handling as well as reliability for repeated times of use over a long-duration. 

In a wide field of specialties, biomodel for surgical training has been developed. For biomodels of 

bone, there are many sorts of biomodels already available. One of the bone biomodels, made of acrylic 

resin and wood flour (Exsurg🄬, Tecno Cast Co., Ltd.) (Fig. 1-6) [65], has relatively better reputation 

among the existing models, but the reputation is by no means based on quantitative evaluation. Widely 

as for the evaluation of biomodels, there has been no specific criteria to determine a good biomodel 

except the perceptual feedback by doctors. Therefore, development of biomodel has been a series of 

trials and errors without concrete direction for improvement.  

To address this situation, researchers aware of the gap between human tissue and conventional 

biomodels have been working on reproducing more realistic biomodels [66–69]. Recently, a bionic 

humanoid was invented in Japan in a framework of research and development program driven by the 

Japanese government [70–72]. The invented humanoid consisted of artificial living tissues and 

equipped with a series of sensors that enabled tactile force measurements of operators. Using this 

model, surgical training can be possible with quantitatively monitoring mechanical parameters and 

simultaneously assessing the surgical skill of the operator. However, the development of human bone 

tissue that can reproduce the realistic drilling haptics has no yet been its scope and no quantitative 

research can be found for the assessment of the tactile perception during drilling based on mechanical 

criteria. 
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Fig. 1-6 An example of mandibular biomodels for surgical training [65] 

 

1.3. Bone 

1.3.1. Physiological functions 

Bone is one of human hard tissues, accounting for around 18% of the weight of our human body. 

Bone constitutes the skeletal system and six main functions are displayed in Table 1-1. In a 

microscopic level of view, bone, or osseous tissue, contains an abundant extracellular matrix that 

surrounds widely isolated cells. Those extracellular matrixes are composed of about 25% water, 25% 

collagen fibers, and 50% crystallized mineral salts [73]. The richest mineral salt is calcium phosphate, 

and it combines with another mineral salt, calcium hydroxide [Ca(OH)2], to form crystals of 

hydroxyapatite [Ca10(PO4) 6(OH)2]. Those crystals combine with other mineral salts, such as calcium 

carbonate, and ions such as magnesium, fluoride, potassium, and sulfate. Those mineral salts are 

generally embedded on the collagen fibers of the extracellular matrix, and the crystalizing process, 

which hardens the bone tissue, is called calcification. 

Bone is not completely solid but has many small spaces between its cells and extracellular 

matrix components. Several spaces work as vascular channels which provide nutrients to bone cells. 

Other spaces function as storage area for red bone marrow. Bone is categorized as compact (or cortical) 

and spongy (or cancellous) bone, according to the size and distribution of the spaces. About 80% of 

the skeletal system is cortical bone and 20% is cancellous bone. 

Fig. 1-7 shows an overview of both compact and spongy bones [73]. Compact bone, also called 

cortical bone, has strong and dense form of bone tissue. Cortical bone tissue forms the outer layer of 
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every bone and provides protection and support and endures the stresses induced by weight and 

movement. Blood vessels, lymphatic vessels, and nerves from the periosteum run through cortical 

bone inside perforating canal, often referred to as Volkmann’s canals, and they connect with those of 

medullary cavity, periosteum, and central or Haversian canals. The central canals run longitudinally 

through the bone. Cortical bone tissue is composed of several repeating units called osteons or 

Haversian systems. Each osteon has a Haversian canal surrounded by several parts of lamellae, lacunae, 

osteocytes, and canaliculi. Osteons in cortical bone tissue are arranged in a parallel way to the lines of 

stress. The distribution of osteons is not settled and osteons remodel their structure according to the 

physical needs of the skeleton.  

On the other hand, spongy bone, also called cancellous bone, tissue is light and has porous 

structure literally similar to sponge. Cancellous bone tissue forms interior part of bone, normally 

surrounded by cortical bone for protection. The bone tissue is composed of trabeculae, lamellae 

distributed in a random lattice of thin columns. Distribution of trabeculae appears to be arranged 

randomly, but in fact they are optimized precisely along lines of stress; the distribution helps bones 

endure and propagate stresses without breaking. The empty spaces between the trabeculae are often 

filled with red bone marrow. 

 

Table 1-1 Functions of bone and the skeletal system [73] 
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Fig. 1-7 Osteons (Haversian systems) in compact bone and trabeculae in spongy bone [73] 

 

1.3.2. Biomechanical aspects 

Biomechanics of bone have been widely studied since the middle of 20th century. The previous 

studies have shown the macroscale to microscale of mechanical properties of bone about tensile, 

compressive, and shear strength and elasticity or fracture and fatigue behavior with categorizing the 

anatomical location in both cortical and cancellous bone [33,74–81]. Particularly, Currey found that 

the stiffness of bone increases drastically with the mineral density of bone [74], while Bonfield et al. 

found the anisotropy of stiffness of bone using ultrasonic measurement technique [76]. It was the early 

days of the study of bone from the standpoint of material engineering. 

The recent progress in measurement technique and the further research interests about bone in 

these three decades brought deeper understanding of bone [82]. Most famously, nanoindentation 

technique enabled researchers to measure the mechanical properties of bone precisely at nano-scale. 

Focusing on the effects of anisotropy of bone with distinguishing at the scale of osteons [83–88], the 

anisotropy in mechanical properties at the level of osteons was confirmed as the longitudinal moduli 

is higher than the transverse moduli [87,88]. General mechanical properties of bone such as tensile 

strength and elastic modulus are listed in Table 1-2 [32,49,75,83,89–91]. Human cortical bone shows 
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elastic modulus from 17.6 to 23.5 GPa in longitudinal direction, which is slightly higher in comparison 

with that of traverse direction as an anisotropic material. As shown in Table 1-2, cortical bone is 

superior to cancellous bone in mechanical properties. There is also difference in mechanical properties 

depending on animal types. 

Moreover, research interests have been expanded to dominant factors on mechanical properties 

such as not only the effects of mineral contents [85,92] or experimental parameters as represented by 

strain rate [93,94], but also specimen size, wet or dry conditions [95,96], and conservation methods 

[97–100]. Taken together, bone specimen is recommended to preserve frozen rather than in chemical 

liquids in order to maintain its mechanical properties.  

Numerical simulation by finite element method (FEM) also supports the biomechanical aspects 

of bone, as firstly introduced, for example, by Richmond et al. [101]. Currently, combining with 

scanning images at high resolution using CT, stress distribution of bone in a realistic geometry can be 

obtained [102,103]. The advance in computer processor made it possible to analyze numerically as far 

as the machining of bone [104,105].  

 

Table 1-2 Mechanical properties of bone from [83]a, [89]b, [49]c, [32]d, [75]e, [90]f, and [91]g 
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1.3.3. Bone among engineering materials 

Bone can be regarded as a composite material consisting of organic (collagen) and inorganic 

(hydroxyapatite) tissues, having unique characteristics among engineering materials widely applied in 

industry. Fig. 1-8 shows the comparison of stress-strain curves for four representative engineering 

materials with different elasticities, such as steel, glass, bone, and rubber [106]. It indicates that bone 

exhibits higher stiffness rather than that of rubber, but lower than steel and glass, locating the curve of 

bone between those of rubber and glass. To the authors’ knowledge, there is no such alternative 

materials that can show the similar mechanical response to that of bone.  

 

 

Fig. 1-8 Stress-strain curves of representative engineering materials [106] 

 

On the other hand, development of new materials such as engineering plastics and fine ceramics 

have been undertaken in last decades in order to expand the area of use from plastics and ceramics 

respectively. In the fields of ceramics, the development of fine ceramics has enthusiastically 

progressed thanks to the advance in technique that allowed the accomplishment of highly refined 

materials and the control of resultant composition and geometry. In the early 20th century, fine ceramics 
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gradually came into practical realization as represented by the vehicle engines and semiconductors. 

Besides, the application for medical purpose caught attention at the late 20th century, though the 

primary use started even the late 18th century in dentistry and the late 19th in orthopedics for bone 

filling [107]. After that, the improvement in toughness and strength of fine ceramics, such as alumina 

(Al2O3) and zirconia in particular, led to the use into implantable devices. Eventually since 1990, a 

tremendous number of joint replacement, using alumina components and zirconia femoral heads, has 

been implanted across the world [107]. In addition to these “bioinert” ceramics consisted of alumina 

and zirconia, “bioactive” ceramics, mainly from hydroxyapatite (HAP) or tricalcium phosphate (TCP) 

because of the similarity of their compositions to the mineral part of bone, is known for the clinical 

use. 

Reinforced plastics was also keenly developed since 1960s along the rapid industrial growth of 

petroleum chemistry for various applications. Glass or carbon fiber reinforced plastics (GFRP or 

CFRP) are the two representative products, having such characteristics in specific strength and specific 

stiffness, where epoxy resin and polyester have been mostly chosen for the majority of the matrix in 

previous studies [108]. CFRP is particularly applied to the constructional materials in aircrafts or 

vehicles as well as sports goods due to its advantage. 

These fiber-reinforced plastics (FRPs) are categorized as composite materials. Not only for the 

improvement of mechanical properties of a matrix, but also for the adjustment of target characteristics, 

composite materials are fabricated. Exsurg🄬 [65], one of the bone biomodel presented at the section 

2.5, is also a composite material, which consists of acrylic resin as a matrix and wood flour as fillers. 

According to the inventors’ patent, the inclusion of wood flour was intended for the adjustment of 

tactile perception during drilling to give the similarity to that of natural bone [109]. Like this case, 

polymeric (sometimes composite) materials are often used to replace human tissue. 

 

1.4. Drilling 

1.4.1. Environments surrounding drilling in industry 

Drilling is one of the machining techniques for material removal similarly to milling or grinding, 

which is usually performed as finishing process in order to obtain the desired geometry of engineering 

materials. A drill bit is used to make a hole of circular cross-section in any solid materials such as 

wood, metal, ceramics, plastics, and composites. Rotated at a certain rate of revolutions per minute, 
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the drill bit is pressed against a work piece at a voluntary feed rate. The force conveyed through the 

drill bit makes the cutting chips from the drilled hole along the penetration of drill bit. Although the 

remarkable advancement in engineering technology brought the various machining methodology, the 

drilling process continuously stays as an indispensable technique for material removal in 

manufacturing. 

Development of machining tool for drilling dates back to the time of ancient Egypt, but it is 

only since the late 18th century in England that the machining tool was renovated during the industrial 

revolution. Basic knowledge about cutting theory of our time was widely obtained in the middle of 

20th century [110–114]. After that, machining tools became numerically controlled by a computer, 

making automatic machining possible for mass production with high precise machinability and 

productive efficiency. Cutting tools have been developed in response to the appearance of new 

materials such as strengthened alloy, reinforced plastics, and fine ceramics. A tremendous number of 

research works on drilling have been done along the increasing demands of improvement in 

machinability and due to the complexity of processing mechanism of emerging materials. 

Contrary to the simple purpose of drilling, making a hole, drilling is known as a complex 

mechanical phenomenon because of various factors affecting the resultant outcome. Focusing on FRPs, 

both GFRP and CFRP show low machinability due to additives. In both cases, enhanced strength of 

the composite materials makes cutting tools difficult to penetrate and subsequently the used tools show 

short useful life, resulting in the increase in manufacturing cost. A number of researchers have been 

struggling to address the low machinability of FRPs [108,115–117]. In this regard, most of literatures 

are focusing on the accomplishment of good finish surface or drilled hole quality, by optimizing 

machining parameters such as spindle speed, feed rate and geometry of a cutting tool [118–125].  

To investigate drilling outcomes, the correlation between those machining parameters and 

drilling responses such as thrust force, torque, temperature rise, and cutting chips morphology is often 

characterized for the analysis of drilling. However, it is barely quantitatively mentioned the 

relationship between drilling characteristics and mechanical properties of work materials, such as 

surface roughness, hardness, and strength, which are known dominant [114] 

 

1.4.2. Surgical drilling for operations 

Drilling performs a practical role for medical purpose. Surgical drilling on natural bone is often 

performed in several specialties such as dentistry, orthopedics, and neurosurgery. This section 
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summarizes case examples of bone drilling in operations and risks on human body carried by drilling. 

Previous findings on drilling of bone are also summarized. 

Fig. 1-9 shows an example of typical surgical process in dental implant surgery [126]. Drilling 

is performed on maxillary or mandibular bone to make a pilot hole for dental prosthesis. After 

determination of drilling site, several kinds of drill bits are used with gradually increasing the diameter 

of drill bits before implantation of dental prosthesis. In orthopedics, bone pins, screws, and plates can 

be inserted as traumatic injury treatments wherever the anatomical location is (e.g. distal femur and 

proximal humerus as shown in Fig. 1-10 [127]). According to the surgical procedure manual for the 

insertion of NCB🄬 bone screws as illustrated in Fig. 1-11, drilling shall be performed to make guide 

holes for bone screws [128]. The insertion of bone screws and plates is a fundamental procedure also 

for joint replacement and spine surgery. In neurosurgery, surgeons deal with diseases or disorders 

related to the nervous system including the brain, spinal cord, peripheral nervous system, and 

cerebrovascular system. Hence, neurosurgical treatments on the brain or cerebrovascular system 

accompany craniotomy procedure to reach the inner system through the skull, which makes drilling a 

mandatory step. As stated so far, various types of surgical operations require drilling technique. 

It is obvious that drilling technique is an essential and still fundamental skill for surgeons, but 

drilling carries a large risk on patients’ body:  

- Firstly, there is a possibility that failure of implanted devices or bone fractures can 

accidentally occur in case of inappropriate fastening. As shown in Fig. 1-12, Natali et al. 

reported breakage of drill bit left inside bone tissue resulting from overloaded drilling [129]. 

Motoyoshi et al. suggested recommended values of fixation torque for tightening an 

orthodontic mini-implant to avoid failure of implant devices [130]. 

- Second risk is the accidental damages to the surrounding tissue because of the error in 

position of drilling site or in drilling depth. Especially when drill bits are penetrated deeper 

than needed, serious damage can occur in bone tissue as well as in nerves or vascular 

channels adjacent to bone tissue, which may bring medical accidents such as excessive 

bleeding, paralysis, or abnormality of sensation.  

- Thirdly, bone necrosis, often referred as osteonecrosis, can be caused due to either exposure 

of excess force or high temperature attributed to drilling. Since osteonecrosis is regarded 

as a serious risk on mother body, due to not only delaying the regeneration of bone cells 

but also facilitating bone fracture, the effects of drilling on temperature elevation have been 
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extensively studied. After it was turned out as early as 1984 by Eriksson et al. that bone 

temperature must not be more than 47℃ for 1 min to avoid osteonecrosis [131–133], 

various aspects such as machining parameters [134–139], machining tools [140,141], and 

cooling methods [136,142–144] were the major scope of research topics. There are still 

rooms left for further research about the effects of application of surface coating or textile 

on drill bits and the improvement of numerical modelling of temperature rise during bone 

drilling [132,133,145]. 

Considering these risks, surgical education as well as mechanical tests of medical devices are 

important since surgical outcomes are strongly dependent on operators’ command of medical devices. 

The advancement of information technology also offers significant benefits on surgeons, such as robot-

assisted drilling systems [146–149] or remote controlled robots for surgery [150,151].  

 

 

Fig. 1-9 Diagrams of surgical sequence using a bur and drill bits in dental implant placement [126]  
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Fig. 1-10 Postoperative radiographs after the insertion of orthopedic plates (Reprinted from [127]) 
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Fig. 1-11 Procedure manual of the insertion of cortical screws (Reprinted from [128]) 
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Fig. 1-12 An example of failure of drill bit left in situ [129] 

1.4.3. Quantitative aspects in drilling 

1.4.3.1. Geometry of a drill bit 

Above all, a drill bit is an indispensable tool for drilling procedure. Fig. 1-13 illustrates a sketch 

of a drill bit, consisted of a shank, flutes, and cutting edges [152]. The shank is used to connect to a 

piece to a chuck of a hand-drill or a machining system. Material removal takes place by the cutting 

edge. Cutting chips and debris are extracted along the flutes in response to penetration of a drill bit. 

The cutting edges function to produce a series of slices as the drill bit progresses. 

The cutting face can be divided into several parts, as shown in Fig. 1-13 (b). The chisel edge 

contributes seldom to cutting but largely to the axial thrust force of the drill bit. This is because of a 

relatively slow rotating velocity in the center of the drill bit and the rake angle nearly zero, meaning 

the cutting edge almost perpendicular to the work surface.  

The point angle is the angle on the tip of the drill bit formed by both cutting chips (Fig. 1-14). 

Optimal point angles in the orthopedics for bone surface is recommended such as 90° and 118° by the 

literature [152]. Hillery et al. reported that there seems no significant difference in temperature 

elevation in bovine and cadaveric bone in vitro in their experiments investigating the effects of point 

angles between 70°, 80°, and 90° [135]. Similarly, Augustin et al. found trivial effects on drilling 

temperature using 2-fluted drill bits with 80°, 100°, and 120° [153]. Therefore, point angle has little 

effect on the increase in temperature during drilling. 

The helix angle is the angle between the longitudinal axis of the drill bit and a tangent to the 

leading edge of the land. Surgical twist drill bits are often slow-spiral, which means the helix angle is 

relatively small. This small helix angle was assumed ideal for the drilling of bone [154].  
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Fig. 1-13 Sketch of a drill bit. (a) Overview, (b) Point geometry, and (c) Relief and helix angles 

[152] 

 

Fig. 1-14 Comparison of point angles between two drill bits [152] 
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1.4.3.2. Mechanism of drilling in bone 

Drilling requires the mechanical input for the rotational motion (rpm) and torque (N・m), where 

torque means the moment of lateral force that is required for material removal by drill bits. These input 

are often exerted by the hand-drill or the machining system. Axial thrust force (N) is also loaded 

vertically to work material for material removal, which is applied manually by the operator or 

automatically by the machining device under numerical control (NC). The moving velocity of the drill 

bit through the work material is defined as the feed rate (mm/s).  

In industrial manufacturing, a constant feed rate is normally applied under NC systems whereas 

in the clinical circumstances, a quasi-constant axial thrust force is applied to the hand-drill by the 

surgical operators. This distinction of the two drilling system is considered to be of crucial importance 

especially for the studies on surgical drilling of cortical bone. 

The literature seems to suggest that drill bit diameter is an important variable that determines 

the magnitude of thrust force, in addition to the bone quality of drilling site as another contributing 

factor. Allotta et al. found the linear relationship between drill bit diameter and axial thrust force to 

produce a given feed rate [155]. Hobkirk et al. found the mean values applied during oral surgery 

between 4 and 19 N [156], and likewise Natali measured a maximum of between 10 and 20 N in case 

of 2.5-mm diameter drilling [129]. On the other hand, as much as 110-N mean thrust force was applied 

on drilling 3.2-mm diameter holes in cortical bone [157]. Altogether, previous studies focusing on 

dentistry generally applies axial thrust force no larger than 25 N [137], while orthopedic studies has a 

range between 20 and as much as 120 N [137,152,158,159]. 

An idealized illustration of the oblique cutting mechanism is shown in Fig. 1-15. The removal 

of bone at the cutting face takes place by the cutting edges that remove a certain thickness, t, with each 

rotation as they spiral through the bone, following a helical path. The work material being cut is 

associated with a unique cutting force, and this determines the optimal rake angle, which is around 25 

to 35° for cortical bone [154]. Moreover, the unique anisotropy of bone gives a complexity to drilling 

characteristics because the cutting resistance vector is continuously changing along the rotation of the 

drill bit [53]. This dependency of the cutting process on the osteon direction in cortical bone was firstly 

demonstrated by Jacobs et al., as the cutting forces were greatest when cutting perpendicularly to the 

longitudinal direction of osteon [154]. Based on this work related to the orthogonal cutting in bone, it 

was established that a rake angle of 45° was recommended because of the markedly reduced cutting 

force, regardless of the osteon direction.  
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Heat generation inevitably occurs during drilling. According to Fig. 1-15 [152], the primary 

heat sources pertain to shear deformation of work material (1), friction between the cutting chips from 

work material and the rake face of cutting tool (2), and friction between cutting edge and under surface 

of work material touching the relief face of the cutting tool (3). Secondary, indirect heat sources are 

driven purely by friction involving cutting chips, especially between bone chips and flutes, bone chips 

and drilled wall of work material when travelling the flute. In case of drilling of metals, almost 60 to 

70% of the total heat are transferred to cutting chips [160]. In case of drilling of bone, approximately 

60% of the heat energy generated during drilling can be converted to bone chips [152], transferring 

the rests to the surrounding tissues as well as the drill bit itself. Numerical and mathematical models 

have been currently developed for the analysis of heat generation and transfer during drilling of bone 

[104,105,161–164]. 

Thermal conductivity is a thermodynamic parameter that determines an ability of materials to 

conduct heat. Cortical bone has a relatively poor heat conductivity as a composite material. Recently, 

Feldmann et al. determined the thermal conductivity of cortical bone to be 0.64 W/mK for bovine, 

0.68 W/mK for human [165], whereas that of surgical-grade stainless steel, often used to drill bits, is 

around 16.3 W/mK. Specific heat is also known as another material property that influences the 

temperature rise during drilling [165]. 

 

Fig. 1-15 Mechanism of material removal by a drill bit at the rake angle of oblique cutting, with regions 

of primary heat generation indicated; (1) shear deformation of the bone, (2) friction between the bone 

chip and cutting tool, and (3) friction between the tangential surface and cutting tool. (b) Rake and 

relief angles [152].  
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A relief angle is designed in cutting tools to relieve thermal dissipation and mechanical damages 

due to the friction between cutting tools and the emerging surface of work materials. Chacon et al. 

reported the significant effects of relief angle on the scale of the temperature elevation during drilling 

of bone [166]. 

 

1.4.3.3. Characterization of drilling in bone 

Drilling behavior is the outcome deriving from variables such as cutting tools, machining 

conditions, and mechanical, thermal, and chemical properties of work materials. Drilling behavior can 

be characterized by cutting forces (thrust force and torque) and resultant temperatures. Under constant 

thrust force drilling, drilling time and feed rate are another key properties describing drilling. Drilling 

behavior can also be characterized by the cutting tool life observed in wear of cutting edge, quality of 

drilled holes seen in surface roughness and dimension accuracy, and cutting chips generated during 

drilling. Since these aspects cannot be directly converted from the mechanical properties of materials, 

drilling tests shall be carried out for the characterization of drilling behavior.  

 Cutting forces 

Thrust force and torque have been reported as the mechanical outputs in drilling to describe 

drilling characteristics of bone since as early as 1970s [154,167]. Until now, a large number of 

researchers have worked to find out the haptic aspects on drilling of bone [133,152,168–170]. Wang 

et al. reported the effects of rotation speed, feed rate and drill bit diameter on thrust force and torque 

under constant feed rate drilling, describing the decreased force and torque along the increase in 

rotation speed, and increased force and torque in case of increase in feed rate and drill bit diameter 

[171]. This trend is in a good agreement with other researchers [133,167,170]. Tuijthof et al. compared 

the thrust force between different surgical machining tools such as twist drill bits, round burrs, and 

kirschner wire in bones of pig and goat [172].  

 Cutting temperature 

Temperature elevation during drilling can be measured mainly by two major methods; thermal 

images obtained from infrared camera, or thermocouples placed in bone [173]. Both methods have 

advantage and drawback. In case of using the infrared camera, what can be obtained is thermal images 

on the very surface of work piece during drilling, thus temperature rise inside the drilled hole can be 

more accessible in case of using thermocouples. However, as cortical bone usually has a thickness of 

less than 5 mm in radial direction, placing thermocouples in cortical bone is not always appropriate 
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due to the limitation of spaces. It is important to distinguish the measurement purpose and select the 

suitable method. 

Recently, a lot of researchers carry out experimental analysis of bone drilling as a validation 

method of their numerical models [174–177]. Lugnmani et al. particularly established a numerical 

model to predict thrust force and torque that were in a good accordance with obtained experimental 

results [176]. Feldmann et al. even established a numerical model that predicts temperature elevation 

during bone drilling [145]. 

 Cutting chips 

Chip formation is another important factor in the characterization of drilling in bone. The 

morphology of cutting chips indicates fracture behavior of work specimens. There are certain 

literatures focusing on bone chips formation during drilling [178–180]. Apparently, bone often exhibits 

crack-typed cutting chips in drilling possibly due to its brittleness, which was different from those of 

synthetic materials, as flow-typed chips was observed for cutting epoxy-based bone biomodels [180]. 

In addition to the nature of bone, the progress of machining process accompanies temperature increase 

in bone, which consequently change the fracture mode of bone chips alternating the morphology of 

cutting chips from flow-typed to crack-typed [178,179] 

 Wear of cutting tools 

A repeated contact of the cutting edge on the emerging surface of work pieces causes wear and 

dulling of cutting edges, which subsequently requires the application of a higher thrust force for the 

progress of drill bit. Wear of cutting tools can cause defective cutting usually with higher elevation 

of temperature, and the initiation of vibration due to an increase in surface roughness of the cutting 

edges. Observation of cutting edges using optical microscope or Scanning Electron Microscope 

(SEM) is the imaging methodology to analyze wear of cutting edges. Literatures report that abrasive 

wear as well as plastic deformation can occur to alter the geometry of the chisel and cutting edges, 

and the rake face of the drill bit [181,182]. Allan et al. investigated the effects of various magnitude 

of wear on maximum temperature elevation in cortical bone in vitro. Three types of drill bits (1.5 

mm diameter, 2-fluted Leibinger) were compared which were fresh, used in the drilling of 600 holes 

in porcine mandibular bone, and provided from operating theatres after the use for several months 

with measuring maximum temperatures during drilling tests [181]. They revealed that 600 holes was 

statistically sufficient to cause significant temperature rise compared to fresh drill bits with showing 

the images of three drill bits as shown in the Fig. 1-16.  
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There seems a large number of information available on drilling of bone, but in most cases 

machining parameters such as rotation speed, feed rate, tool geometry, animal species, and anatomical 

positions are diverse and those reported results cannot be always comparable. Therefore, in order to 

study the drilling characteristics of bone toward development of biomodel, it should be necessary to 

determine the information of target bone and machining conditions respectively. 

 

 

Fig. 1-16 Images of three drill bitsfrom side view and tip. Upper row: fresh, Middle row: used in the 

drilling of 600 holes, Bottom row: Drill bit from theatre [181]. 
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1.4.3.4. Drilling of bone biomodels 

Drilling characteristics of bone biomodels have not yet been reported until Cseke et al. reported 

the drilling of bone and SawbonesⓇ test materials in comparison [53]. They described that drilling 

properties such as thrust force and torque of Sawbones🄬 test materials under constant feed rate drilling 

are quite lower than those of porcine and bovine bones [53], implying a discrepancy under surgical 

training or evaluation of medical devices. No other literatures on drilling of Sawbones🄬 test materials 

can be found at this moment. 

Nonetheless, Tawara et al. pointed out the difference of mechanical properties between human 

bone and conventional bone biomodels and so manufactured a new bone biomodel made of 

polyurethane, whose drilling characteristics not yet available experimentally but pull-out strength 

[183,184]. Tai et al. developed a plaster-based material that showed the same order to bone in thrust 

force and torque under constant feed rate drilling, still having limitations in replicating cutting chips 

morphology [20,21]. In addition, there are two patents available for bone biomodels; acrylic-based 

composite materials with ceramic additives [186], and acrylic-based composite materials with wood 

fibers [109]. However, drilling characteristics of those models are not available in the patents but 

describing the accomplishments of good sensory feedback from doctors, thus lacking scientific 

grounds. 

Bone biomodels are often made of plastics, ceramics, or composites of plastics and ceramics. 

Therefore, there should be the knowledge in those materials currently available that can be applied to 

drilling of bone biomodel. Drilling of plastics maybe especially applicable that has been studied along 

the development of FRPs for the components of industrial products [108,113,116–118,187–189]. 

Conventionally, thermoset polymers such as epoxies and polyesters are on the main scope of research 

works [116], but the usage of thermoplastic polymers is recently getting more and more attention for 

FRPs (CFRTP for carbon fiber-reinforced thermoplastic polymer, and GFRTP for glass fiber-

reinforced thermoplastic polymer), thanks to their recyclability based on the thermoplasticity. Among 

thermoplastic polymers, polypropylene (PP), polycarbonate (PC), polyvinylchloride (PVC), and nylon 

(polyamide) are the main matrices often studied and applied to composite materials [188,190–193]. 

Regardless of the registration of patents as bone model, poly(methylmethacrylate) (PMMA) has not 

yet been a main focus of literatures. Since polymers show distinct material properties each other and 

thus different machinability, drilling characteristics of polymers shall be studied respectively for 

polymer species [188].  
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Among limited literatures, Kobayashi studied the three-dimensional drilling characteristics of 

PMMA [113], although studied machining conditions cannot necessarily be applied to surgical drilling. 

Apart from drilling, two-dimensional cutting, single point diamond turning (SPDT), on PMMA was 

reported for the frequent application of PMMA to optical lenses [194], but likewise, the cutting theory 

in two-dimensions cannot be always applicable in three-dimensional machining. 

PMMA is known for its use as bone cement or teeth fixation in medical applications. Acrylic-

based composite materials including ceramic additives can be found in literatures [195–197], but those 

acrylic composite materials are used for fixation of prosthesis or restoration of teeth, not yet intended 

for drilling. Thus, drilling characteristics of acrylic-based composite materials with ceramic additives 

have not yet been quantitatively studied. 

 

1.5. Research scopes and objectives 

In this chapter, backgrounds and literatures focusing on biomodel, bone, and drilling are studied, 

including the current limitations and challenges in the development of bone biomodels. After a vast 

literature review, the research background can be summarized as follows: 

1. Bone biomodels are useful particularly in surgical training and for mechanical tests of 

medical devices, 

2. Polyurethane foam from Sawbones🄬 is one of the standard bone biomodels for cancellous 

bone defined in a test standard, while no biomodels are referred for cortical bone, 

3. Bone drilling is one of the fundamental surgical steps in dentistry or orthopedics, but the 

replication of bone drilling has been out of research scope, 

4. Thus, no quantitative evaluation items are currently available for the development of bone 

biomodels, except for perceptual feedback of surgeons. 

Therefore, there have been many trials and errors for the development of bone biomodels. This 

study will address this situation by quantitatively studying drilling characteristics of bone biomodels. 

As stated above, contrary to a wide range of options possible for materials and machining conditions, 

there are only a limited number of previous studies related to drilling characteristics of bone biomodels 

available, resulting in the lack of understanding in drilling properties of bone biomodels. This study 

chooses to perform drilling tests under surgical machining conditions, focusing on acrylic composite 

materials with ceramic additives as well as bones and Sawbones🄬 test materials. Drilling 

characteristics are dependent on various dominants. This study focuses on mechanical properties of 
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work materials, acrylic composite materials. The authors aim to control drilling characteristics by 

altering the mechanical properties that shall be controlled in response to the material composition. 

Through controlling the material properties, the objectives of this study are as follows: 

1. Apply engineering standpoints into surgical drilling of bone biomodels, by quantitatively 

measuring drilling properties such as thrust force, torque, and temperature rise during 

drilling. 

2. Understand the drilling characteristics of acrylic resin and acrylic composite materials 

under surgical drilling conditions toward the use application as bone biomodels. 

3. Elucidate the effects of additives on mechanical and drilling properties of the matrix by 

controlling the composition of composite materials. 

4. Elucidate also the effects of drilling properties on tactile feedback of surgeons. 

5. Obtain the future direction of the development of bone biomodels through understanding 

of the relationships between material compositions, mechanical and drilling properties, and 

perceptual properties during drilling. 

 

1.6. Organization of the thesis 

In consideration of research motivations and objectives as stated above, the contents of this 

thesis are outlined as follows: 

Chapter 1: backgrounds and literature reviews on this study focusing on biomodel, bone, and 

drilling are summarized, including the use application of bone biomodels, the current knowledge of 

drilling of natural bone and bone biomodels. The current limitations and challenges in the development 

of bone biomodels led to the research objectives. 

Chapter 2: drilling tests of natural bone and Sawbones🄬 test materials are preliminarily 

performed to understand the discrepancy of drilling characteristics and the current limitations of bone 

biomodels. Machining parameters are selected to reproduce realistic surgical drilling. 

Chapter 3: drilling of acrylic resin are studied as a matrix toward fabrication of acrylic 

composite materials. The effects of cutting parameters and temperature elevation during drilling are 

investigated. 

Chapter 4: Acrylic composite materials are fabricated using ceramic additives, and then their 

drilling properties are studied for the replication of drilling of bone.  

Chapter 5: The relationship between drilling response and mechanical properties of work 
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materials, such as hardness, stiffness and viscoelasticity were examined through several mechanical 

tests. Additionally, the effect of additives on mechanical properties is studied. 

Chapter 6: The relationship between drilling properties and tactile feedback of surgeons is 

studied to elucidate the dominants affecting tactile sense during drilling. 

Chapter 7: Concluding remarks of this study from the obtained results and an outlook for the 

prospectus research works toward the development of future bone biomodels are described.  



 

 

 

 

 

 

 

 

Chapter 2: Characterization of 

drilling in bone and Sawbones🄬 

test materials 

This chapter presents the experimental and analytical methods for drilling tests under 

constant thrust force and constant feed rate using natural bone and Sawbones🄬 test materials. 

Characterization of drilling includes measurements of drilling properties such as thrust force, 

torque, and temperature rise during drilling, and observation of cutting chips generated 

during drilling. The difference of drilling behavior between natural bone and Sawbones🄬 

test materials is discussed with taking into account the effect of rotation speed, feed rate, 

and thrust force. 
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2.1. Introduction 

There are a lot of literature works available concerning drilling of bone, but drilling properties 

reported in their experimental results are not directly comparable due to the wide options possible for 

the material properties of bone and machining conditions. This chapter presents the characterization 

of drilling behavior in natural bone and Sawbones🄬 test materials, which is intended to obtain the 

target values of drilling properties of natural bones, and understand the discrepancy of drilling 

behavior between natural and synthetic bones toward development of bone biomodel. It also 

introduces the test rig for drilling testing, where drilling is performed in consideration of machining 

conditions in surgical operations. The effects of machining parameters such as applied thrust force, 

rotation speed, and feed rate are taken into account. After drilling tests, cutting chips were observed 

using optical microscope and scanning electron microscope (SEM), in order to characterize the 

fracture behavior in material removal during drilling. 

 

2.2. Test materials 

2.2.1. Bone 

Natural bones were obtained for this study. As stated at the section 2.3 in chapter 1, natural bone 

is known to show a large variance in material properties due to animal species, anatomic position, and 

dry condition, as well as conservation history. In terms of bone mineral density, which is tied to 

mechanical properties of bone [74,198], Aerssens et al. reported that canine and porcine bone shows 

similarities to human bone among a variety of animal bones [34,35]. Then, considering the similarity 

in bone mineral density, canine and porcine bone were provided by Prof. Viguier (VetAgro Sup, 

University of Lyon, France). The obtained anatomical position was mandibular part. The mandibular 

bases were taken out, and periosteum on the surface was removed to expose bone tissue. The bone 

specimen was then kept in 99.9% of ethanol for 24 hours to reduce the risk of infection. The authors 

estimated that the storage in ethanol has no significant effect on mechanical response in drilling as it 

had been reported that the storage in ethanol did not change the elastic properties of trabecular bone 

[199]. Likewise, porcine femoral bone was obtained from local butcher. Bone shaft was extracted and 

skins and bone marrow inside the shaft were removed, and subsequently conserved in ethanol.  

In order to firmly fix the bone specimens for drilling tests, a flat surface was required for each 
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sample. Considering the complicated geometry of bone samples, the upper side of extracted 

mandibular bases that included teeth, were embedded in epoxy resin in a plastic box with a flat bottom 

surface, so that the mandibular bone embedded in epoxy resin can be fixed on the work stage, and the 

bottom side of mandibular bases can be drilled. Femoral bone specimens are fixed on a work stage 

with a clay. 

 

Fig. 2-1 Bone specimens; (a) obtained mandibular bone, (b) obtained femoral bone, (c) cutting of 

mandibular bases, (d) mandibular bases embedded in epoxy resin for drilling tests 

2.2.2. Sawbones🄬 test materials 

Sawbones🄬 test materials were obtained to measure drilling properties of conventional bone 

biomodels. Three types of conventional bone biomodels were prepared in this study. One is a cortical 

bone model (Composite sheets #3401-06, Pacific Research Laboratories, Inc., Vashon, WA, USA [48]) 

(called as Saw-EP below) made of epoxy resin and glass fiber (Fig. 2-2 (a)). The two are cancellous 

bone models (Solid Rigid Polyurethane Foam Block 20 pcf #1522-03, and 50 pcf #1522-27 [48]) 

(called as Saw-PU20 and Saw-PU50 below) made of polyurethane foam with different values of 

density (Fig. 2-2 (b)). Sawbones🄬 test materials were processed into cubic pieces from the bulk of 

products for drilling tests. 
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Fig. 2-2 Sawbones🄬 test materials: (a) Saw-EP, and (b) Saw-PU20 and Saw-PU50 

 

2.2.3. Comparison of general properties 

Table 2-1 lists the general properties such as tensile strength and elastic modulus for bone and 

Sawbones🄬 test materials. Saw-PU20 and Saw-PU50 replicates the properties of cancellous bone, 

showing relatively lower stiffness compared to both Saw-EP and bones. Saw-EP displays its stiffness 

within the values exhibited by bones. However, even though mechanical properties such as tensile 

strengths and elastic modulus are equivalent, drilling properties such as thrust force and torque 

reported by the literature are different [53]. Therefore, it can be possible that not only the stiffness but 

also other mechanical properties are important to determine the drilling properties. 

 

Table 2-1 Comparison of general properties between animal bone and Sawbones🄬 test materials, 

referred from [48]a, [75]b, [90]c, [32]d, [91]e 
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2.3. Drilling test methods 

Drilling tests carried out in this study includes both drilling under constant thrust force and 

under constant feed rate in order to obtain the target properties presented by thrust force, torque, and 

feed rate. Drilling by surgeons is supposed to be performed manually under a quasi-constant axial 

thrust force [152]. However, previous works focusing on constant thrust force drilling for a comparison 

of natural bone and Sawbones🄬 test materials cannot be found. Thus, this study provides the 

information of constant thrust force drilling in Sawbones🄬 test materials under surgical machining 

conditions.  

On the other hand, not a few literatures can be found about drilling of bone under constant feed 

rate in search for reference values of drilling properties. However, a vast number of combinations of 

machining conditions as well as tested bone types prevent the present study from directly referring to 

reported drilling properties. For the purpose of making a comparison of drilling properties of natural 

bones, Sawbones🄬 test materials, and composite materials developed in this study, drilling tests under 

constant feed rate were also performed in advance of fabrication of composite materials. 

2.3.1. Experimental apparatus and methods 

 Drilling under constant thrust force 

Drilling tests were performed on a test rig, displayed in Fig. 2-3, developed in Laboratoire de 

Tribologie et Dynamique des Systèmes (LTDS), Ecole Centrale de Lyon, based on a spindle 

Electrobroche SD 5084, Precise, France. A drill bit was fixed to a chuck of the spindle, whose rotation 

was numerically operated by a spindle control system. Work pieces were pasted on a work table with 

double faced adhesive tape for mandibular bone samples and Sawbones🄬 test materials, and with clay 

for femoral bone samples. The height of the work table was controlled by deadweights attached to a 

double pulley system, and a stopper fixed on a nearby bar. The height of the work table was adjustable 

in response to the height of deadweights. The axial thrust force was applied to the drill bit when the 

work piece contacted the drill bit under the applied constant load. In advance of each drilling test, the 

drill bit was hold on the surface of work materials having a space of a piece of filter paper, and the 

penetration of the drill bit was finished when the working table reached the stopper. The drilling 

displacement was controlled by a spacer that was put between the working table and the stopper. The 

length of the spacer was corresponding to the desired penetration depth. When the spacer was removed, 
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the work table moved up along the decrease in height of the deadweights, and subsequently drilling 

took place in the contact between the drill bit and the work specimens.  

The test rig also included a strain gauge, a displacement sensor, and an infrared camera to obtain 

the measurements during drilling. Torque was measured using a strain gauge that was connected to 

the working table through an arm. The strain gauge transfers the measurements through the amplifier 

which can be acquired in the acquisition system based on LabVIEW software. A magnetic 

displacement sensor was mounted on the bar, in order to measure the penetration displacement of the 

drill bit. Having the constant drilling distance, the drilling feed rate can be calculated for each drilling 

test. Thermal images during drilling were taken using an infrared camera (FLIR SC7000), which 

observes perpendicularly to work pieces. In addition to acquisition of the drilling properties, cutting 

chips generated during drilling were collected after the drilling tests toward the morphological 

observation. 

 

 

Fig. 2-3 Experimental apparatus of drilling test rig 
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 Drilling under constant feed rate 

Drilling tests were performed using a CNC tapping center (Tapping center BROHTER TC-22A, 

Brother Industries, Ltd.) for drilling under constant feed rate. Fig. 2-4 shows an example of global 

view of experimental set-up. As depicted in Fig. 2-5, the tapping center was equipped with a working 

area including a spindle and a dynamometer (Kistler Type 9125A). The dynamometer was mounted 

on the spindle for measurement of drilling haptics. Thermal images were taken with an infrared camera 

(Infrared thermography FSV-2000, Apiste Corporation) during drilling. Specimens were clamped on 

a working table.  

Under constant feed rate drilling context, drill bit was lowered toward work specimens 

automatically by the CNC tapping center at the specific feed rate. Axial thrust force and torque 

required for drilling were recorded. After reaching a desired displacement, the drill bit was 

immediately extracted from work piece meaning the end of drilling. Cutting chips on the drill bit was 

wiped after every 1 hole of drilling test. More than 3 holes were drilled for each specimen.  

 

2.3.2. Test measurements 

Between two types of loading methods available for drilling, different measurements can be 

obtained. In the characterization of drilling behavior, this study focuses on cutting forces (thrust force 

and torque), temperature rise, and feed rate for drilling properties as key factors.  

In case of drilling tests under constant thrust force, torque, temperature rise, and feed rate can 

be obtained as drilling properties, where constant thrust force is applied as one of the machining 

parameters. Drilling feed rate varies depending on work materials under same machining conditions, 

which can be calculated by drilling time required for drilling until the specific displacement. 

In case of drilling tests under constant feed rate, instead of thrust force as one of the parameters 

in machining conditions, the feed rate is set constant meaning that the drilling time required to 

penetrate the specific distance is corresponding regardless of work materials. 
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Fig. 2-4 CNC tapping center used for constant feed rate drilling 

 

 

Fig. 2-5 Working area of the tapping center 
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2.3.3. Test conditions 

Variable parameters affecting drilling tests are summarized in this section. After reviewing the 

parameters, test conditions were determined to reproduce surgical drilling under constant thrust force 

(Table 2-2) and under constant feed rate (Table 2-3). 

 

Table 2-2 Machining conditions for drilling tests under constant thrust force. ○ indicates the used 

combinations of machining parameters 

 

 

Table 2-3 Machining conditions for drilling tests under constant feed rate. ○ indicates the used 

combinations of machining parameters 
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 Cutting tools 

A large variety of cutting tools available for drilling tests. The variety is coming from the wide 

options in tool geometry including point angle, helix angle, and number of flutes. This study used 

surgical twist drill (Nobel Biocare Japan Co., Ltd) (Fig. 2-6). The drill bit was made of the type 316L 

stainless steel with a diameter of 2 mm, a point angle of 80° and a helix angle of 12°. The tips of the 

prospective drill bits were scrutinized in advance of the drilling tests to reject inferior products with 

shape defects, tears, or cracks. The drill bit is normally used for material removal by creating a hole 

of the required depth to insert an implant device, after determining of the drilling position. The same 

drill bits were repeatedly used for the same machining conditions and work specimens. When 

machining conditions or work specimens were changed, a fresh drill bit was used. 

 

Fig. 2-6 Twist drill bit used for a series of drill tests 

 Rotation speed 

The rotation speed represents the number of rotation of the spindle per minute. The developed 

test rig for constant thrust force drilling is capable to provide as much as 20,000 rpm for rotation speed 

of the spindle. According to the literatures, in the majority of the research cases the rotation speed less 

than 3,000 rpm was applied [169] although the application example of even 20,000 rpm for drilling of 

bone can be found [200]. For the clinical operation, the rotation speed less than 1,500 rpm is 

recommended by the surgical drill provider [201]. Then, this study adopted 700, 1,000, and 1,500 rpm 

of rotation speed for a series of drilling tests. 

 Thrust force 

According to the bibliography, thrust force from 1.9 N to 120 N were applied in previous studies, 

where less than 25 N for dentistry and between 20 N and 120 N for orthopedics [137,152,158,202]. In 

this study, thrust force of 15, 20, and 25 N was adopted under constant thrust force drilling. Under 

constant feed rate context, thrust force was obtained as a resistance force of work specimens against 

penetration of drill bit depending on materials under equivalent machining conditions. 
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 Feed rate 

Under constant thrust force drilling, the feed rate depends on the applied thrust force. 

Regardless of work specimens, the much applied thrust force is, the much the feed rate is. The average 

drilling feed rate can be calculated in response to the drilling time required to reach the specific depth. 

Under constant feed rate drilling, the values of feed rate vary among researchers [170],  where the 

feed rate at 1 mm/s seems realistic as suggested by orthopedic surgeons according to [180]. 

 Penetration depth 

Considering the length of screws or prosthesis required for insertion, usually less than 10 mm 

of drilling depth was applied in the clinical circumstances. In this study, the penetration depth was 

determined as 5 mm. This is because the actual thickness of canine and porcine cortical bone was often 

3 to 4 mm, and 5 mm-depth was considered enough to obtain cutting forces with the drill tip fully 

engaged in penetration. 

 Sampling rate 

The sampling rate indicates the frequency of the data acquisition. For any sort of experiments, 

sampling rate has to be determined to catch the global picture of the phenomena within the acceptable 

data capacity. In consideration of the rotation of the drill bit, 200 Hz was selected for the sampling rate 

of cutting forces and displacement. In case of 1,000 rpm of the rotation speed, which was estimated to 

accumulate the sufficient number of data amounts (12 times of data acquisition per rotation of the drill 

bit). On the other hand, thermal images were taken at the maximum sampling rate of infrared cameras 

respectively, 10 Hz for FLIR SC7000 and 5 Hz for FSV-2000. 

 Number of drill tests 

Previous studied often performed at least three times of drilling for each sample. In 

consideration of individual and location variance of material properties especially for bone samples, 

at least five times of measurements were performed, while three times for Sawbones🄬 test materials. 

 Test environment 

The realistic surgery often accompanies the irrigation in drilling of bone. Besides, natural bone 

is always stored under wet conditions in mother bodies. Therefore, the ideal conditions for performing 

drilling of bone in surgical training or mechanical tests of medical devices is under wet conditions. 

However, it is not always easy for researchers and amateur doctors to prepare test or training system 

with the presence of liquid. This study preliminary concentrates on drilling of bone under dry 

conditions. 
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2.4. Analysis methods 

2.4.1. Processing of acquired data during drilling tests  

 Drilling under constant thrust force 

Torque and displacement were acquired using LabVIEW software. A moving average filter was 

applied to smooth noise effects on the obtained data. 

MATLAB R2018a was used to read the thermal images. The programming codes included 

several steps; definition of the spatial resolution, selection of a zone of interest, and illustration of the 

temperature fields. As depicted in Fig. 2-7, a zone of interest (ZOI) was selected to record the 

maximum temperature during drilling, which covers both the drill-bit and the specimen. Since the 

working stage moves upward as the drill bit penetrates the specimen, a cylindrical marker was put 

aside the stage for the programming of position tracking. ΔT is the temperature variation defined by 

ΔT=T-T0 (where T is the maximum temperature measured in the ZOI and T0 the equilibrium 

temperature at the beginning of the tests). To analyze the drilling tests, torque, displacement and 

temperature variation were plotted as functions of time. 

 

 

Fig. 2-7 An example of thermal images taken from drilling tests. ZOI is shown. The color is related to 

the temperature as indicated by the bar on the right axis. 
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 Drilling under constant feed rate 

The cutting forces were acquired using the dynamometer as a function of time. A moving filter 

was also applied to smooth the obtained thrust force and torque. A series of recorded images were 

analyzed using a software (FSV-S2000, Apiste Corporation) with selecting a zone of interest including 

the drill bit and work specimen in the manner shown in Fig. 2-8. Maximum temperature in the selected 

zone was read to obtain ΔT as is similarly defined under constant thrust force drilling. 

 

 

Fig. 2-8 Analysis procedure of obtained thermal images using the infrared camera 

 

2.4.2. Observation by optical microscope 

Both geometry of cutting chips and wear of drill bits were observed using the optical digital 

microscope (Keyence VHX-6000). Since chip formation was a non-negligible factor in understanding 

the drilling characteristics, cutting chips were collected after the drilling tests and observed in macro 

scale to precisely identify their morphology. There are various types of cutting chips possible to 

generate depending on the machining conditions, work materials, and cutting tool. Similarly, the 

geometry of drill bits before and after drilling tests was observed to take into account the degree of 

frictional damages depending on work specimens focusing on cutting and chisel edges, and rake face. 

2.4.3. Observation by Scanning Electron Microscopy (SEM) 

The observation of the cutting chips in micro scale was also performed, using SEMs (MIRA3, 

Tescan Orsay Holding a.s. and XL30 ESEM-FEG, Philips). For non-conducting materials such as bone 

and polymeric materials, gold/palladium alloy was sputtered to form a thin conductive layer to be 

prepared for observation with the SEM. 
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2.5. Results and discussions 

2.5.1. Drilling properties 

 Drilling under constant thrust force 

 Comparison of representative curves between Sawbones🄬 test material and porcine bone 

Fig. 2-9(a) represents the typical evolution of torque, ΔT, and displacement as a function of 

time when drilling in Saw-PU50 under 20 N and 1,000 rpm. Drilling in Saw-PU50 takes about 2 

seconds for 5-mm depth. This time length before the end of penetration is hereafter called as drilling 

time having different values for every work material. Displacement stays constantly at 5 mm after 

reaching the end of penetration, where no more penetration but the spindle still active for rotation. 

Torque increases along the penetration of the drill bit and reaches its maximum value slightly before 

the maximum depth at 5 mm, and keeps its value until the end of penetration. After the penetration, 

torque continuously decreases with a specific gradient.  

ΔT increases drastically at the beginning of drilling firstly until about 50℃ and then increases 

again until about 120℃ around the end of drilling. Taking a look at thermal images taken during 

drilling tests as shown in Fig. 2-10(a), it turns out that maximum temperature was obtained from 

cutting chips evacuating through the drill bit, not from the bulk of work specimen. Considering 

possible thermal sources during drilling, it can be illustrated as shown in Fig. 2-11, indicating plastic 

deformation of work material due to creation of cutting chips, deformation of cutting chips evacuating 

through the flute of drill bit also having friction due to the contact with the flute and borehole wall, 

where drill bit similarly has friction with borehole wall both at the lateral and bottom surfaces. Along 

the progress in penetration of drill bit, the effects of deformation of cutting chips due to rotational 

motion, and friction among cutting chips, the flute of drill bit, and borehole wall of work material can 

become large. This effect is thought to be seen in the second peak of ΔT, as the cutting chips evacuating 

at 2 seconds after the beginning of drilling shows the maximum temperature possibly because the 

cutting chips travelled longer distance with exposed to deformation and friction for longer time than 

the firstly emerging cutting chips. 

Fig. 2-9(b) illustrates the typical evolution of drilling properties in porcine mandible specimen 

under the same machining conditions. Note that the time scale is different from Fig. 2-9(a), in order 

to clarify the details of each evolution. Drilling takes about 10 seconds to reach 5 mm with increase in 

torque and temperature. There is a sudden increase in torque when the drill bit penetrates through the 
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cortical thickness at around 3 mm. After the penetration of cortical bone, the drill bit progressed 

through a hollow cavity without any material removal. After the peak attributed to the penetration, 

torque decreases to zero immediately, having the only contact between drill bit and work material for 

the cortical thickness.  

ΔT increases drastically at the beginning, and then keeps the maximum value until the end of 

penetration. After the end of penetration, temperature decreases gradually. The increase in temperature 

is likewise considered to be associated to plastic deformation and friction during drilling. Contrary to 

drilling in Saw-PU50, discontinuous cutting chips were generated in drilling in porcine mandible, 

having the maximum ΔT around 50℃ (Fig. 2-10(b)). The magnitude of temperature rise is smaller in 

drilling in porcine bone rather than in Saw-PU50. Several reasons can be described. Firstly, 

considering the drilling feed rate, drilling in Saw-PU50 is much faster, implying that the volume of 

material removal per unit of time is larger in Saw-PU50 rather than in bone specimen. Assuming that 

the degree of ΔT is related to the volume of materials removed by plastic deformation, the more the 

material removal occurs, the higher the ΔT can be. Secondly, the difference of thermal conductivity 

might be dominant. Supposing the thermal conductivity of porcine cortical bone to be 0.64 W/mK as 

well as that of bovine bone as stated at the section 4.3.2. in the chapter 1 [165], while approximately 

0.034 W/mK for polyurethane foam [203], the bone specimens would show more than ten times higher 

in thermal conductivity, meaning less resistance against heat transfer. Thus, generated heat can more 

easily diffuse to the air in bone specimens, reducing the effect of heat accumulation in cutting chips. 

In this regard, the powdery shape of cutting chips in bone specimen may facilitate the heat diffusion 

rather than in continuous chips, due to the increase in contact of surface area with the air. Thirdly, the 

difference of frictional behavior in Saw-PU50 and bone specimen should be considered. Since a 

portion of thermal energy derives from the friction involving work materials, the degree of heat 

generation depends on the friction properties of work material. 

Mentioning thermal effects on surrounding tissue near the borehole, the absolute temperature 

above 47℃ is obtained for both specimens during drilling, which should be avoided taking into 

account the osteonecrosis. However, those high temperatures are obtained not on the surrounding 

tissue, but on the cutting chips according to thermal images. Although the surrounding tissue around 

the borehole is surely exposed to high temperature above 47℃ due to the contact with evacuating 

cutting chips, it is still uncertain how much temperature the adjacent tissue reaches from the 

analyzation of thermal images taken by the infrared camera, because of the temperature gap between 
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measurable lateral surface of test specimens and inside the borehole wall.  

 

 

Fig. 2-9 Representative evolution of drilling properties in (a) Saw-PU50, and (b) Porcine 
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Fig. 2-10 Thermal images for each 0.5 second from the beginning of drilling on (a) Saw-PU50, and 

(b) Porcine mandible. The maximum temperature seems to be extracted from cutting chips generated 

during drilling for both test specimens. 

 

 

Fig. 2-11 Schematic image of possible thermal sources on drilling site during drilling 
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 Comparison of average values among test materials 

Fig. 2-12 shows the comparison of typical evolution of drilling properties for all the six 

specimens including (a) Saw-PU20, (b) Saw-PU50, (c) Saw-EP, (d) Canine mandible, (e) Porcine 

mandible, and (f) Porcine femur. The machining conditions are 20 N for thrust force and 1,000 rpm 

for rotation speed. The trend that torque and ΔT increases along the progress of drilling can be seen 

for every material. The gradient of decrease in torque after the end of penetration seems to depend on 

materials; torque gradually decreases in Saw-PU50 while sharply decreases in mandibular bone 

specimens. The stress relaxation of polymer materials due to the viscoelasticity can be considered to 

have an effect on the gentile decrease of the torque. Bone specimens show drilling time between 10 

and 15 seconds, and Saw-EP shows the corresponding drilling time. Saw-PU20 and Saw-PU50 show 

quite shorter drilling time compared to other specimens, while largest maximum temperature was 

obtained in Saw-PU50 among the tested specimens. 

To characterize the drilling properties depending on materials, the maximum values of torque, 

drilling time, and ΔT was averaged. Fig. 2-13 summarizes the average values of drilling time, 

maximum torque, and ΔT as a function of rotation speed and thrust force focusing on Saw-PU20, Saw-

PU50, Saw-EP, and Porcine mandible. The effects of rotation speed and thrust force on drilling 

properties among four materials will be described. Note that the actual thickness where drilling was 

performed in bone specimens is less than 5 mm contrary to the fixed drilling depth of 5 mm. 

 The effect of rotation speed 

In Saw-PU20 and Saw-PU50, torque and drilling time were crucially lower compared to cortical 

model and bone specimens, while having low ΔT in Saw-PU20 and high ΔT in Saw-PU50. Although 

the usage of these polyurethane foam is commonly suggested as an alternative test material of bone 

specimen in JIS [41,43], it is implied that drilling properties can be different. 

As for the cortical bone model from Sawbones, drilling time and torque often show 

corresponding values under 1,000-rpm and 1,500-rpm rotation speed. Observed temperature also 

shows its similarity in maximum values. However, it takes drastically longer drilling time under the 

machining conditions of 20-N/700-rpm, with the lowest rotation speed. By taking a look at the 

evolution of drilling (Fig. 2-14(h)), it can be observed that the penetration of drilling takes time at the 

initial phase, with little feed rate for penetration. Under the machining conditions of 20-N/700-rpm, 

the penetration stagnates at the surface, almost equal to displacement of zero. From this trend, there is 

a possibility of idle running on the surface of the Saw-EP. This phenomenon cannot be found in bone 
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specimens. 

Bone specimens show almost similar values of drilling properties regardless of the rotation 

speed applied in this experiment. 

 The effect of thrust force 

There is an effect of thrust force on four specimens in terms of torque. This trend can be due to 

the increased force converted for material removal along the increase in thrust force. The increased 

force in material removal results in much materials can be removed per rotation, therefore making 

drilling time shorter, maximum torque larger. Temperature rise is less affected by the increase in thrust 

force. 

Comparing Saw-EP and bone specimens, the closer drilling properties was observed under 

thrust force of 20 and 25 N. However, under 15-N/1,000-rpm, which is the lowest thrust force, drilling 

takes longer time than that of bone specimen. This case also can be resulting from the stagnation of 

drilling at the surface layer of the material (Fig. 2-15(h)). 

As a result, Saw-EP, the cortical bone biomodel from Sawbones, showed the corresponding 

values of drilling properties such as maximum torque, drilling time, and ΔT. However, the discrepancy 

still exists under certain machining conditions such as 20-N/700-rpm and 15-N/1,000-rpm, which are 

with the lowest rotation speed or the lowest thrust force applied in this study. Considering the 

mechanical properties as presented at the Table 2-1, Saw-EP shows the almost corresponding tensile 

strength and elastic modulus. Drilling tests showed that the replication of mechanical properties such 

as strength and elasticity cannot always reproduce the drilling properties. Since Saw-EP especially 

seemed to show the stagnation of drilling penetration at the surface layer that cannot be observed for 

bone, the surface conditions was possibly different between Saw-EP and bone specimens, which 

should be further taken into account for the replication of bone. 
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Fig. 2-12 Drilling properties as a function of time obtained from drilling tests under the machining 

conditions of 20-N thrust force and 1,000-rpm rotation speed. 
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Fig. 2-13 Average values of drilling properties such as drilling time, maximum torque, and ΔT as a 

function of rotation speed for (a), (c), and (e), and thrust force for (b), (d), and (f) 
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Fig. 2-14 Typical evolution of drilling properties for four materials under the machining conditions of 

20 N in thrust force, and 700, 1000, 15000 rpm in rotation speed 
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Fig. 2-15 Typical evolution of drilling properties for four materials under the machining conditions of 

1000 rpm in rotation speed and 15, 20, and 25 N in thrust force   
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 Drilling under constant feed rate 

 Comparison of representative curves between Sawbones🄬 test material and porcine bone 

Fig. 2-16 shows typical evolution of drilling properties such as thrust force, torque, and ΔT 

during drilling under the machining conditions of 1,000-rpm rotation speed and 0.060-mm/rev feed 

rate for porcine mandibular and femoral bone, and Sawbones🄬 test materials. Drilling properties are 

obtained as a function of displacement of the drill bit. Moving filter is applied to smooth the profile of 

thrust force and torque. According to the Fig. 2-16, thrust force globally increases at the beginning of 

the penetration and then stays around the maximum values, while torque and temperature are gradually 

increasing until the end of penetration at the 5-mm depth where the extraction of the drill bit occurs. 

ΔT increases in response to the increase of torque as stated in previous works [53] 

Fig. 2-17 shows an averaged evolution of thrust force until 3-mm depth. As for the comparison 

among bones and Sawbones🄬 test materials, the scale of maximum values of thrust force ranks Saw-

EP, porcine femoral bone, porcine mandible bone, Saw-PU50, followed by Saw-PU20. According to 

this ranking, Saw-EP shows slightly higher thrust force in comparison of natural bones, while Saw-

PU20 and 50 show quite lower values. Lughmani et al. performed drilling tests with bovine femoral 

shaft with average cortical thickness of 7 to 9 mm and measured both thrust force and torque for 

establishing numerical model for predicting drilling forces in bone drilling [176]. They reported that 

the measured force varies between 25 to 75 N, while torque 120 to 160 N·mm, under the spindle speed 

of 800 to 1500 rpm and constant feed rate of 0.05 to 0.1875 mm/rev. They also summarized previous 

studies about drilling of bone from various anatomical positions and animal species, and concluded 

that thrust force varied up to from 0 N up to 70 N and torque 0 N·mm up to 380 N·mm [176]. The 

difference between the experimental measurements comes from the different applied drilling 

conditions depending on researchers, such as the geometry of the drill, rotation speed, feed rate and 

bone type. The obtained results for drilling porcine mandible bone and femoral bone in this study are 

within the reported range, corresponding to the relatively lower data. 

The effects of machining conditions such as rotation speed and feed rate are seen in Fig. 2-18 

and Fig. 2-19 respectively. Globally, there is a trend that both thrust force and torque decrease along 

the increase in rotation speed, and increase along the increase in feed rate, while it seems that both 

rotation speed and feed rate have less impacts on temperature elevation within the machining 

conditions applied in this range. These trend is in good agreements with literatures [133,176].  
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Fig. 2-16 Typical evolution of drilling properties under constant feed rate drilling for porcine bone and 

Sawbones🄬 test materials 

  



 
 

 

Chapter 2: Characterization of drilling of bone and Sawbones🄬 test materials 

 

-62- 

 

 

 

Fig. 2-17 Averaged evolution of (a) thrust force and (b) torque for bone specimens and Sawbones🄬 

test materials 
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Fig. 2-18 Comparison of (a) Thrust force; (b) Torque; and (c) Temperature elevation (ΔT) as a function 

of test specimens under machining conditions with various rotation speed. 
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Fig. 2-19 Comparison of (a) Thrust force; (b) Torque; and (c) Temperature elevation (ΔT) as a function 

of test specimens under machining conditions with various feed rate.   
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2.5.2. Observation of cutting chips 

Cutting chips generated during drilling tests were observed using optical microscope. The 

morphology of cutting chips was compared among tested specimens. Fig. 2-20 shows the optical 

images of cutting chips collected after drilling tests performed under the machining conditions of 20-

N thrust force and 1,000-rpm rotation speed. Each material shows the specific morphology. 

Generally, cutting chips can be classified into four types; flow type, shear type, tear type, and 

crack type [110,204], where chips in flow type can be also categorized as a continuous chips, and shear 

type, tear type and crack type roughly as discontinuous (or segmental) chips [205].  

Cutting chips from bone specimens are shows in Fig. 2-20(a) and (b). Canine mandible 

generated discontinuous shear-typed chips, where chips were torn per rotation, while porcine mandible 

generated continuous flow-typed chips at the beginning of drilling. From the standpoint of the cutting 

theory, the generation of cutting chips is related to shear strength and fracture toughness of the work 

materials [205]. As Fig. 2-21 illustrates the relationship between cutting forces, shear force is applied 

to cutting chips by cutting tools along the rake surface, and fracture toughness is related to the resistant 

force of the cutting chips against the cutting tools. In order to slide on the rake surface without 

fracturing, the work material has to show sufficient resistant force, fracture toughness in other words. 

The difference of chip formation is, therefore, meaning the difference in resistant force of work 

materials between canine and porcine mandible under the same machining conditions. In order to 

obtain the similar typed cutting chips, it is possibly necessary for the work materials to have the 

equivalent mechanical properties that are dominant for chip formation.  

Regarding Saw-EP, both continuous and discontinuous chips are obtained. It implies that 

continuous chips were generated at the beginning of drilling, and then the morphology shifted into 

discontinuous chips. The morphology transition is considered to happen due to the temperature 

elevation during drilling. As stated above, the chip formation pertains to fracture toughness of the work 

material. Since polymeric materials show temperature dependency in their mechanical properties, 

there is a possibility that Saw-EP showed the relatively ductile behavior at the beginning of drilling at 

room temperature, but gradually altered to show feeble toughness along the increase in temperature in 

the work material itself and the drill bit, consequently inducing shear-typed chips.  

Apparently, continuous chips are observed in (b), (c), and (d) having the helical geometry, but 

the detailed geometry such as the whole length, diameter, and pitch of the chips are different 

respectively. These variances can be an outcome of mechanical properties related to chip formation. 
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Fig. 2-20(d)~(f) shows the cutting chips from polyurethane foam with different density. When 

drilling porous material, cutting chips easily get separated to small segments because of the presence 

of hollow spaces in the work material. The decrease in the size of generated segments are obvious 

along the decrease in density. 

 

 

Fig. 2-20 Optical images of cutting chips generated during drilling tests under machining conditions 

of 20-N thrust force and 1,000-rpm rotation speed. 
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Fig. 2-21 Relationship among cutting forces [205] 

 

2.6. Conclusions 

In this chapter, in order to obtain the target drilling properties of natural bone, and also to 

understand the limitation of conventional bone biomodels, drilling tests were performed under both 

constant thrust force and feed rate with taking into account the realistic machining conditions applied 

in surgical operations. Drilling is characterized by properties such as thrust force, torque, drilling time, 

and temperature elevation during drilling. Cutting chips generated during drilling were also observed. 

The experiments brought findings as follows. 

 The cortical bone biomodel from Sawbones generally exhibits the corresponding drilling 

properties of mandible bone in terms of torque, drilling time, and temperature rise during 

drilling under surgical machining conditions except 20-N/700-rpm and 15-N/1,000-rpm 

thrust force/rotation speed. The surface conditions of cortical bone biomodel can impact 

drilling under the such feeble machining conditions.  

 Under constant feed rate drilling, Saw-EP shows relatively higher thrust force rather than 

natural bones. The difference in thrust force during drilling may impact tactile feedback. 

 Temperature elevation during drilling can induce the embrittlement of generating cutting 

chips, thus the morphology of cutting chips altering from continuous to discontinuous 

chips. This effect was observed especially in the Sawbones cortical bone biomodel. 
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 The variance in drilling properties and morphology of cutting chips was observed among 

bone specimens. Since bone shows a range of drilling properties, the target properties shall 

be determined considering the anatomical location, animal species, and mineral contents 

and so on. There is only one type of conventional cortical bone biomodel, possibly not 

covering all the conditions of cortical bone. Therefore, improved fabrication method of 

bone biomodels that can replicate a wide range of drilling characteristics is required. 

 From the point of cutting theory, shear strength and fracture toughness are the dominants 

that can determine chip formation. Toward the replication of drilling in bone, not only the 

stiffness such as tensile strength and elasticity, but also shear strength and toughness shall 

be taken into account. These mechanical parameters can be one of the properties to obtain 

the direction of further development of bone biomodels. 

 

  



 

 

 

 

 

 

 

 

Chapter 3: Characterization of 

drilling in acrylic resin as a 

matrix of composite materials 

This chapter presents the characterization of drilling in acrylic resin in advance of the 

fabrication of acrylic composite materials. Since acrylic resin can show unique drilling 

behavior attributed to its thermoplastic characteristics, drilling properties are discussed 

considering the morphology of cutting chips, and dynamic mechanical analysis (DMA) 

measurement results. 
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3.1. Introduction 

In the chapter 2, drilling of bone and SawbonesⓇ test materials was studied. As a result, in 

order to cover a wide range of drilling properties of natural bone, the methodology that controls 

material properties related to drilling was considered necessary. To develop this method, this study 

focuses on the fabrication of composite materials whose drilling properties can be controlled through 

the modification of mechanical properties based on the material composition. Then, in advance of the 

fabrication of composite materials, this chapter describes the characterization of drilling in acrylic 

resin as a matrix of the composite materials. Drilling tests, observation of cutting chips, and dynamic 

mechanical analysis (DMA) measurements are detailed.  

 

3.2. PMMA as a matrix of composite materials 

3.2.1. PMMA 

Poly(methyl methacrylate) (PMMA), often called acrylic resin, is one of thermoplastic and non-

crystalline polymer materials. Having its transparency and relatively high strength and impact 

resistance among polymers, a variety of applications of PMMA is known in industry; articles for daily 

use, walls at aquariums, and cockpit windows of aircrafts.  

PMMA is also applied in medical fields especially for the replacement of human hard tissue. 

As early as 1950s, Sir John Charnley introduced a self-curing PMMA as an anchorage of femoral 

head prosthesis [206], which was the first example of the application of PMMA in orthopedic surgery. 

The usage of PMMA as bone cement continues up to the moment for the fixation of artificial joint 

(Fig. 3-1 (a)), and is also expanded to other specialties such as dentistry for artificial dentures (Fig. 3-

1 (b)). In addition, as stated in the chapter 1, PMMA is recently getting attentions for the usage of bone 

biomodels thanks to their similarity to bone in tactile feedback during drilling [65,109,186]. 
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Fig. 3-1 Usage examples of PMMA in medical fields: (a) bone cement, (b) acrylic dental resin 

 

3.2.2. Fabrication methods 

PMMA can be formed by radical polymerization, and consists of repeating unit of C5H8O2, as 

shown in Fig. 3-2. There are several polymerization methods available such as heat polymerization, 

ultraviolet (UV) photo polymerization, and self-polymerization. 

Acrylic resin is often composed of monomer liquid and polymer powder. The main component 

of the liquid is methyl methacrylate (MMA), while co-polymers of MMA for the powder. The powders 

are in the shape of small beads fabricated in suspension polymerization (or called pearl 

polymerization). During each polymerization procedure, MMA starts polymerization stimulated by 

heat, UV ray, or polymerization initiator respectively. Here, the monomer liquid often includes 

hydroquinone as polymerization inhibitor for protection, as well as ethylene glycol dimethacrylate as 

cross-linking agent for prevention of bubbles. The polymer powder may contain benzoyl peroxide as 

polymerization initiator, often including colorant for the replication of good appearance in artificial 

dentures. 

PMMA was fabricated by self-polymerization, so-called quick polymerization method in this 

study, because of no requirements of production equipment. The prepared acrylic resin was composed 

of a co-polymer powder component (Miky blue, Nissin Dental Products Inc.) and a monomer liquid 

component (Miky liquid, Nissin Dental Products Inc.), where the liquid included benzoyl peroxide as 

a polymerization initiator. The polymerization reaction began to form solid acrylic blocks after 

adequate time when the powder and the liquid were mixed. 

The entire fabrication procedure of the acrylic specimens is as follows. In advance, the polymer 

powder and the monomer liquid were weighed in a silicone cup and polypropylene (PP) tube, 
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respectively, in the amounts required to obtain the desired geometry of the acrylic specimen. Firstly, 

the polymer powder was added to the monomer liquid in the PP tube, and the mixture of the powder 

and the liquid was manually stirred with a spatula for 30 seconds. The polymer and the monomer were 

consistently mixed with a ratio of 1:1 (weight percentage). Secondly, the acrylic mixture was put in a 

freezer at −20°C for more than 24 hours to complete polymerization. After polymerization, the mixture 

was taken out of the freezer as a solid block. Finally, specimens were cut into a specific shape for a 

series of tests, a cubic shape with 20-mm sides for drilling tests, and a rectangular shape with 

dimensions of 30 × 10 × 3 mm (length × width × thickness) for DMA measurements. 

Note that polymerization reaction accompanied the heat generation. In order to inhibit bubble 

generation inside the acrylic specimens because of the temperature rise during polymerization, the 

mixture was cooled down throughout the fabrication procedure. Beforehand, the powder and liquid 

were stored in the freezer, and the mixture in the PP tube after the mixing step was immersed in ice 

water within the freezer during polymerization. 

 

 

Fig. 3-2 Repeating unit of PMMA 

 

3.3. Experimental methods 

3.3.1. Drilling tests 

Drilling tests were performed using the same test rig presented in the chapter 2. The same 

machining conditions for the drilling in bone and SawbonesⓇ test materials were applied as listed in 

Table 2-2 in the chapter 2. Maximum drilling depth was set at 5 mm, which was almost equivalent to 

the thickness of human cortical bone. Drilling tests were performed at room temperature without any 
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presence of liquid. Three drilling holes were created with a new drill bit under each machining 

condition. Cutting chips were collected and observed using optical microscope. The obtained 

evolution of torque and displacement were plotted. Thermal images were taken using the infrared 

camera, and temperature distribution was obtained through the thermal image analysis.  

 

3.3.2. Dynamic Mechanical Analysis (DMA) measurements 

Drilling phenomena usually accompany temperature elevation, which can subsequently affect 

the mechanical properties locally at the drilling site. This thermal effect can be dominant especially in 

case of drilling in thermoplastic materials. However, it is currently unclear how this temperature 

increase impacts drilling. Therefore, DMA measurements were performed to take into account the 

effects of temperature elevation during drilling. 

The dynamic viscoelastic behavior of the acrylic resin was measured using a 50-N 0.1-dB 

Metravib testing machine. Knowing the sample geometry, a complex tensile modulus (E*) was 

obtained based on the equation E* = E’ + iE’’, where E’ is the storage modulus and E” the loss modulus. 

The loss factor (tan δ) is the ratio of the loss modulus to storage modulus, as described by tan δ = 

E”/E’. A dynamic periodic sinusoidal strain was applied to the specimens within a temperature range 

of 25℃-200℃ at a heating rate of 1 ℃/min. The changes in the storage modulus (E’) and loss factor 

were plotted under a tension/compression loading cycle with a measurement frequency of 1 Hz. 

 Acrylic resin was polymerized and processed in accordance with the fabrication methods 

described at the section 3.2.2. Both short sides of the specimens were firmly clamped at the jig on the 

testing machine. 

 

3.4. Results and Discussion 

3.4.1. Characterization of cutting chips 

Fig. 3-3(a) presents a global image of the cutting chips obtained throughout the entire drilling 

process. As exhibited in Fig. 3-3(b)–(d), the morphological characteristics of the chips can be classified 

into three sections: cylindrical helix, waved, and rounded nubby chips, respectively. The drilling 

behavior of acrylic resin can, therefore, be divided into three phases according to the classification of 
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chip generation. Although there is a difference in distance between borders, three-phase morphological 

transitions were consistently observed for other cutting chips obtained from a series of drilling tests. 

Fig. 3-3(b) pictures the tips of cutting chips generated in the first phase of drilling, where 

cylindrical helix chips, defined in [204], are formed. The figure indicates that drilling was performed 

with an efficient clearance of cutting chips under industrially favorable machining conditions. There 

is an increase in the diameter of chips’ tips, and then a constant diameter and length between pitches 

can be observed. The border between the first phase and the second phase roughly corresponds to 

drilling until Nrot equals about 33 rotations of the drill-bit. Assuming that one rotation on the chips 

corresponds to one rotation of the drill-bit, the cutting chips observed during the first phase are likely 

generated up until 2 seconds, as calculated based on the spindle speed (16.7 rev/s).  

In the second phase, continuously waved chips with irregular length between pitches were 

formed, as can be observed in Fig. 3-3(c). This phenomenon can be caused by defective chip 

evacuation. As the drill bit progresses, the constraint force of the drilled walls becomes increasingly 

dominant, which means that the deeper the drill-bit progresses, the more force is required to evacuate 

the chips. Since the thrust force of the drilling system was kept constant, it is possible that the 

evacuation stagnated causing the chips to be folded in layers, which make them appear waved.  

Subsequently in the third phase, the chips’ shape assumes a rounded and nubby form, as 

observed using the optical microscope seen in Fig. 3-3(d). The rounded nubby characteristics of the 

chips likely result from thermal deformation due to melting of the acrylic resin. It is possible that the 

waved chips formed in the second phase receive compressive force from subsequently emerging chips, 

which apply vertical force and increase the contact area to the surrounding surfaces of both the drill 

bit and the drilled wall of the acrylic specimen. During the tests, when the chips receive locally high 

pressure and are continuously exposed to severe friction at the spindle speed of 1,000 rpm, there is a 

chance that the temperature around the chips rises drastically due to friction heat, exceeding the glass 

transition temperature (Tg) of acrylic resin, which is reported between 85 and 165℃ according to 

existing literature [207]. 

The border between the second and third phase cannot be fixed simply by assessing the number 

of rotations because of the inconsistency of one rotation between a drill-bit and the chips caused by 

the defective evacuation. However, it is assumed that temperature rise during drilling is associated 

with the morphological transition of the chips from the second phase to the third phase. Furthermore, 
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since the viscoelastic properties of acrylic resin are dependent on temperature, the change of 

mechanical properties can also influence the evolution of drilling properties.  

 

 

Fig. 3-3 Cutting chips obtained from the drilling tests under machining conditions of 1,000-rpm 

spindle speed and 20-N thrust force. (a) The entire appearance, (b) the tip of the cylindrical helix chips 

generated through the first phase, (c) a part of the waved chips generated in the second phase, and (d) 

a part of the rounded nubby chips generated in the third phase. 

 

3.4.2. Drilling properties related to chip formation 

Fig. 3-4 demonstrates the representative evolution of drilling properties (torque, displacement, 

and ΔT) in the acrylic specimen under machining conditions of 1,000-rpm spindle speed and 20-N 

thrust force. According to the cutting chip classification, drilling in the first phase occurs up until 2 

seconds. The first phase can be further divided into three zones considering the evolution of torque, 

denoted as zone I, II, and III. Zone I indicates the beginning of penetration, with a sharp increase in 

drilling displacement, as the drill-bit cuts into the surface of the specimen with its the chisel edge. 

Zone II includes the continuous penetration of the drill-bit, where initial material removal is observed. 

A gradual rise in torque and displacement occurs, as well as a sharp increase in ΔT. The slow evolution 

of torque correlates with the chisel edge expanding in the cutting area. Zone III consists of steady 
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material removal by the fully engaged drill bit and smooth evacuation of cutting chips, which is also 

indicated by the torque saturation value of about 20 N・mm. ΔT gradually increases up to about 75℃ 

throughout the penetration. The increase in ΔT is likely correlated with the friction heat generated by 

the chips traveling through the flutes of the drill-bit. The deeper the drill bit penetrates, the longer the 

chips are exposed to friction between the drill-bit and the borehole wall, causing the maximum 

temperature to increase over time.  

Drilling in the second and third phases respectively correspond to the early and late stages of 

zone IV, which occurs during drilling from 2 seconds to the end of about 3 seconds. In zone IV, a sharp 

increase in torque occurs, reaching the maximum value, followed by a slight decline. The maximum 

value of ΔT is almost 125℃, after torque peaks. The transition of the cutting chip shapes, as described 

in the section 3.4.1, manifests in zone IV, but the precise time of this transition is unclear because 

temperature measurements using the infrared camera cannot observe the interior of the borehole. Zone 

V compasses the end of drilling after the drill-bit reaches maximum displacement at 5 mm, where no 

more material is removed but the spindle still rotates. Since there is neither more plastic deformation 

due to material removal nor emerging chips traveling through the drill flutes, torque and ΔT gradually 

decrease with time. It is important to note that the penetration rate is constant from zone II to IV (linear 

evolution of displacement with time). 

 

Fig. 3-4 Typical evolution of drilling properties for an acrylic specimen. Torque, ΔT, and displacement 

are plotted over time. Machining conditions are 1,000 rpm for spindle speed and 20 N for thrust force. 

 



 
 

 

Chapter 3: Characterization of drilling of acrylic resin as a matrix of composite materials 

 

-77- 

 

3.4.3. Effects of machining conditions on drilling properties  

Fig. 3-5 presents the drilling properties under various machining conditions for an acrylic 

specimen, plotted with the average values of maximum torque, maximum ΔT, and drilling time. 

Particularly, Fig. 3-5(a) exhibits the effects of thrust force, and Fig. 3-5(b) indicates the effects of 

rotation speed. It can be observed that thrust force impacts maximum torque but not maximum 

temperature. The drilling time it takes to reach a depth of 5 mm decreases as thrust force increases 

from 15 N to 25 N. This result can be explained considering that the drill-bit removes a larger amount 

of material per revolution under larger thrust force. Consequently, as more material is removed and 

displaced, the maximum torque and thrust force both increase. 

As shown in Fig. 3-5(b), in the case of various spindle speeds, maximum torque and drilling 

time decrease while maximum temperature slightly increases. Fig. 3-6 displays the number of rotations 

required for drilling of 5 mm under constant thrust force with different spindle speeds. As can be 

observed, the total number of rotations required for drilling increases as a function of rotation speed, 

which means that less material is removed per revolution as rotation speed increases. This 

phenomenon can be explained possibly by the viscous component of acrylic resin, which could enable 

a shorter length of penetration in a shorter time. The decrease in drilling time along with the increase 

in spindle speed can be explained by how the amount of material removed per unit of time increases 

even if less material is removed per revolution. As for the maximum torque, it is mathematically 

reasonable that torque decreases as distance per unit of time increases assuming the rotational force of 

the spindle is constant. The present results corroborate those obtained by Kobayashi about the 

relationship between torque and rotation speed in polyethylene [113]. For maximum temperature, one 

can assume that the increase in temperature is related to friction behavior intensifying on the cutting 

chips in the contact area between the drilled wall and the drill bit as spindle speed increases from 500 

rpm to 1,500 rpm.  

In the machining industry, the effect of spring back is known to take place during/after drilling. 

This phenomenon means that the borehole walls shrink slightly after the drill bit is removed from the 

material. Spring back behavior is dependent on time, and thus on the viscous component of work 

pieces. With increased spindle speed, drilling can be performed faster and therefore the drill bit 

receives less resistance from the borehole wall due to the spring back effect before reaching maximum 

displacement. This mechanical response can also result in a difference between the maximum values 

of torque. 
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Fig. 3-5 Effects of machining conditions on drilling properties in an acrylic specimen. (a) the effect of 

thrust force, (b) the effect of rotation speed. 

 

 

Fig. 3-6 The number of rotations for drilling tests under various rotation speeds. 
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3.4.4. Thermal effects on mechanical properties and drilling 

Fig. 3-7 displays a plot of the storage modulus and tan δ of an acrylic specimen as a function 

of temperature at 1 Hz. The storage modulus decreases significantly as temperature rises, with only 

about one hundredth its value at 25℃ maintained at 100℃. Two peaks in tan δ can be observed: a 

low-temperature peak around 50℃ associated with β-relaxation and a high-temperature peak after 

reaching around 100℃ associated with α-relaxation. The β-relaxation of acrylic resin has been 

previously reported to result from the molecular rotation of the–COOCH3 group connected to the main 

chain [208,209], while α-relaxation is caused by main chain motions [210]. The glass transition 

temperature (Tg) is known to be related to α-relaxation. The main chains between units of PMMA are 

delinked at Tg, and then the specimen softens and exhibits fluid characteristics. Above Tg, there is a 

chance that an acrylic specimen melts. 

During drilling in the first phase, absolute temperature stays under 100℃ and morphological 

characteristics of melting cannot be observed. Melting of acrylic resin was first observed in the 

rounded nubby cutting chips, as depicted in Fig. 3-3(d), which are formed in the late phase of zone IV. 

This result indicates that cutting chips stagnated in the early phase of zone IV and were eventually 

exposed to temperatures above Tg, at which point the chips started melting and viscoelasticity 

decreased drastically. Based on this mechanism, the morphological transition of the chips at zone IV 

can be explained. A decrease of torque at zone IV in Fig. 3-4 is also considered to be affected by the 

temperature increase. As reported by Wiggins [167], there is a chance of a sudden increase in torque 

when drill flutes become clogged with cutting chips. In the case of drilling in acrylic resin especially, 

torque increases due to clogging, and then decreases slightly after the peak because of the decrease in 

viscoelasticity in the specimen, which in turn reduces the resistance force required for material 

removal by the chisel edge.  

Considering the penetration rate of the drill-bit until a 5-mm depth is reached, the feed rate 

remains constant after the sharp increase at the zone I. This result implies that the decrease of 

viscoelasticity does not occur at the drilling site since the temperature may not reach a high enough 

value to facilitate the penetration process. Schmidt et al. reported that the majority of heat source 

generated in drilling process were transferred to cutting chips [160]. Therefore, temperature rise on 

the bottom surface where a new surface for material removal is created would be small, and then the 

effects on penetration behavior can be mitigated. 
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Fig. 3-7 Evolution of E’ and tan δ as a function of temperature for an acrylic specimen. 

 

3.5. Conclusions 

In this chapter, drilling of acrylic resin was characterized with providing machining information 

about cutting chips and drilling properties (torque, displacement, and temperature rise) when drilling 

acrylic resin. The morphological characteristics of cutting chips and the evolution of drilling properties 

were analyzed considering the effects of temperature rise during drilling. The following conclusions 

can be drawn. 

The drilling of acrylic resin can be classified into three phases based on the morphological 

characteristics of the cutting chips. In the first phase, cylindrical helix chips appear to be generated 

with smooth evacuation of the chips, which are not apparently affected by temperature rise. When 

cutting chips start to stagnate as a sign of defective evacuation, the second phase occurs, and waved 

chips are generated, which cause a drastic increase in torque. When the temperature of the chips 

reaches the glass transition temperature of about 100℃ due to friction heat, the morphological 

characteristics shift to the third phase where melting is observed. At the transition border between 

phase two and three, there is a slight decrease in torque associated with the decrease in viscoelasticity 

of the acrylic resin.  

Although the effects of mechanical changes due to temperature rise in acrylic resin on drilling 

behavior were observed while drilling, the temperature reached during drilling can vary depending on 

machining conditions, and possibly material composition when including additives. Therefore, it is 

necessary to consider the thermoplastic characteristics of acrylic resin as well as the machining 

environment toward developing bone biomodels made of acrylic resin. 



 

 

 

 

 

 

 

 

Chapter 4: Fabrication of acrylic 

composite materials and their 

drilling properties 

This chapter presents the development of acrylic composite materials especially including 

ceramic additives, followed by the drilling test results under constant feed rate and constant 

thrust force. Then, focusing on alumina cement as additive, the effects of additive amount 

on drilling properties are studied. The drilling properties of acrylic composite materials are 

also compared with those of bone and Sawbones🄬 test materials. 
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4.1. Introduction 

Bone biomodels are often made of polymeric and/or ceramic materials. Although acrylic 

composite materials have recently caught attentions for the usage of bone biomodels due to the 

possibility that those biomodels can reproduce the equivalent tactile feedback of bone during drilling 

[65,109,211], literatures on quantitative information of drilling in acrylic composite materials have 

not yet been available. Then, this study aims to provide the drilling characteristics of acrylic composite 

materials including ceramic additives. After studying the drilling of acrylic resin as the matrix in the 

chapter 3, ceramic additives were mixed to acrylic resin for fabrication of composite materials. In 

order to determine the effects of additives on drilling characteristics, drilling tests were carried out.  

This chapter describes the ceramic additives used for the fabrication, and fabrication methods 

of composite materials, and subsequently performed drilling tests. Drilling tests included both constant 

load and constant feed rate drilling. After reviewing the effects of each ceramic material, the effect of 

additive amount was studied to control drilling characteristics of the composites. 

 

4.2. Materials 

4.2.1. Ceramic additives 

Acrylic composite materials hold a potential to reproduce drilling haptics of bone. According 

to the patents for bone models for surgical training [186,211], the usage of ceramic powders are 

proposed as effective additives such as alumina (Al2O3), silicon dioxide (SiO2), zirconia (ZrO2), silicon 

carbide (SiC), titanium carbide (TiC), and hydroxyapatite (HAP), where hydroxyapatite is referred as 

the most preferable additive due to its presence in human bone. Another patent can be found for bone 

model, as Ohta et al. proposed the usage of wood flour as additive to acrylic resin [109]. However, 

Muramoto et al. found that the usage of organic powders such as wood flour, cellulose fibers, and 

cellulose nano-fibers into acrylic resin did not alter torque and drilling time under constant load drilling 

and concluded that other additives such as ceramic powders can be effective to control drilling 

properties [212]. Then, this study consequently adopted the usage of ceramic additives into acrylic 

resin. 

Fig. 4-1(a)~(f) show the appearance of ceramic materials used for fabrication of composite 

materials at macro and micro scale. Six types of additives including alumina cement, silicon dioxide, 
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zirconia, hydroxyapatite, silicon carbide, and titanium carbide were selected among the ceramic 

materials presented in the patent [186].  

 

 

(a) Alumina cement 
 

 

(b) Silicon dioxide  

 

(c) Zirconia  

 

(d) Hydroxyapatite  
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(e) silicon carbide  

  

(f) titanium carbide  

Fig. 4-1 Appearance of ceramic materials used for composite materials. 

 

4.2.2. Fabrication of composite materials 

Acrylic composite materials were produced using acrylic resin as a matrix and ceramic powders 

as additives (Fig. 4-2). Acrylic sample was fabricated by quick polymerization method when mixing 

polymer powder (Miky blue, Nissin Dental Products Inc.) and monomer liquid (Miky liquid, Nissin 

Dental Products Inc.) as presented in the chapter 3.  

Ceramic additives were put together during the mixing process of polymer and monomer, in 

order to develop acrylic composite materials. The mixing ratio of the polymer and the monomer was 

constant at 1:1 of weight percentage in this study. Table 4-1 shows a list of ceramic additives used for 

fabrication of composite materials, including the name of additive, major component, combination 

ratio against pure acrylic resin calculated from (additive)/(total weight), and its notation of composite 

materials. Combination ratio of SiO2 was 5 wt% because of its water absorbability, while 20 wt% for 

other additives. 

Acrylic composite materials as well as pure PMMA were fabricated along the following steps 

as depicted in Fig. 4-3. At first, polymer powder, monomer liquid, and each additive were weighed 

respectively at the required amounts. Then, the monomer liquid and the additive were manually mixed 

in a polypropylene tube, followed by the polymer powder. The mixture was mixed and kept in a freezer 

at -20°C. Both the polymer powder and the monomer liquid were kept beforehand in the freezer, and 
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mixing process took place immediately, in order to avoid an occurrence of bubbles inside the 

specimens as a result of prevention of rapid increase in temperature by delaying the polymerization 

reaction. In the completion of polymerization after more than 24 hours, the mixture was taken out of 

the container as a solid block. Acrylic blocks were then processed to have a flat surface ready for 

drilling tests. 

 

 

Fig. 4-2 Examples of acrylic composite materials fabricated in this study 

 

Table 4-1 List of ceramic additives used for composite materials 

  

 

 

Fig. 4-3 Schematic images of fabrication procedure of acrylic composite materials 

Alumina cement
Al2O3 (54.8%)

CaO (36.0%)
20 wt% AC

Silicon dioxide SiO2 5 wt% SiO2

Zirconia ZrO2 20 wt% ZrO2

Silicon carbide SiC 20 wt% SiC

Titanium carbide TiC 20 wt% TiC

Hydroxyapatite Ca10(PO4)6(OH)2 20 wt% HAP

Base material : Acrylic resin (PMMA)

Name of additive Major component
Combination ratio

(Additive)/(Total weight)
Notation
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4.3. Experimental methods 

4.3.1. Drilling under constant thrust force 

Drilling tests under constant thrust force were performed using a drilling test rig presented at 

the section 2.3.1 in the chapter 2. The machining conditions listed in the table 2-2 was applied. Drilling 

properties of bone, Sawbones test materials, and acrylic resin were also plotted to review the obtained 

results. For each material, the drilling feed rate was calculated from the drilling time. Knowing the 

individual difference of the thickness, the average drilling feed rate was calculated by measuring the 

required time to drill until 3-mm thickness for bone specimens. 

 

4.3.2. Drilling under constant feed rate 

Drilling tests under constant feed rate were performed using a CNC tapping center (Tapping 

center BROHTER TC-22A, Brother Industries, Ltd.) as presented at the section 2.3.1 in the chapter 2. 

Thrust force and torque were recorded with a sampling rate of 1000 Hz. Machining conditions listed 

at the table 2-3 was applied for the drilling tests. All the test materials were presented for the 

comparison of drilling properties such as thrust force, torque , and temperature elevation. 

 

4.4. Results and discussion 

4.4.1. The effects of additives under constant load drilling 

Fig. 4-4 shows the results of maximum torque as a function of drilling time for tested specimens. 

It is observed that maximum torque and drilling time can be altered respectively with the inclusion of 

additives in acrylic resin. SiC, TiC, and AC result in lower values of maximum torque and longer 

drilling time meaning that penetration of the drill bit progresses slower than in PMMA, while SiO2 

scores higher values of torque and shorter drilling time meaning faster penetration. Natural bones and 

Saw-EP exhibit the equivalent values for maximum torque and drilling time. Since torque indicates 

the cutting force consumed for material removal, the close value in maximum torque implies the 

cutting force required for material removal by the chisel edge of the drill bit can be equivalent. 

Therefore, in order to develop a material that can reproduce the drilling characteristics of cortical bone, 

it is necessary for the materials to have the similar value in torque and drilling time. Fig. 4-5 shows 
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the relationship between maximum torque and drilling feed rate. The feed rate was calculated from 

drilling time in order to normalize the effect of drilling thickness considering bone specimens. 

Similarly, it can be confirmed the effect of ceramic additives to control the drilling feed rate of PMMA 

closer to that of bone. As the inclusion of certain types of ceramic additives can lead the drilling 

characteristics closer to that of cortical bone, the effects of additive amounts were subsequently studied 

focusing on alumina cement. 

Fig. 4-6 summarizes the results of drilling in AC10 to AC40 in addition to controls. As shown, 

the drilling time for the composite materials tend to slightly increase with additive amount. The effect 

becomes larger along the increase in additive amount up to 40 wt%. The higher the additive amount 

is, the less the materials are removed by the chisel edge to result in lower maximum torque and drilling 

time. When converting drilling time into drilling feed rate, the trend is also obvious as shown in Fig. 

4-7. This trend shall be brought by the alternation of mechanical properties due to the presence of 

alumina cement. It is likely that ceramic additives such as alumina cement can increase the stiffness 

or other mechanical properties of the matrix related to drilling characteristics and the effects of 

alternation can increase with the elevation of additive amount. 

Furthermore, in terms of maximum torque and drilling feed rate, the drilling characteristics in 

AC40 can be similar to that of cortical bones. Having the equivalent drilling feed rate, the amount of 

material removal per rotation can be regarded as equal. Besides, the similar value of torque indicates 

the equivalent cutting force are required for the material removal regardless of material type. It can be 

thus possible that the inclusion of ceramic additives such as alumina cement into acrylic resin, for 

example, makes the drilling characteristics of a matrix controlled depending on its additive amount, 

as similar as the result of canine or porcine mandible bone in terms of torque and drilling feed rate. 

For the imitation of drilling characteristics, mechanical properties related to the material removal 

around the tip of drill bit should be dominant. Focusing on the stiffness, mechanical properties such 

as hardness or elastic modulus is analyzed in the next chapter. 
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Fig. 4-4 Maximum torque as a function of drilling time: comparison of work materials 

 

 

Fig. 4-5 Maximum torque as a function of drilling feed rate: comparison of work materials 
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Fig. 4-6 Maximum torque as a function of drilling time: the effect of additive amount  

 

 

Fig. 4-7 Maximum torque as a function of drilling feed rate: the effect of additive amount  
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4.4.2. The effects of additives under constant feed rate drilling 

Fig. 4-8 shows typical evolution of drilling properties such as thrust force, torque, and ΔT 

during drilling under the machining conditions of 1,000-rpm rotation speed and 0.060-mm/rev feed 

rate for all the materials. Drilling properties are obtained as a function of displacement of the drill bit. 

Moving filter is applied to smooth the profile of thrust force and torque. According to the Fig. 4-8, 

thrust force globally increases at the beginning of the penetration and then stays around the maximum 

values, while torque and temperature are gradually increasing until the end of penetration at the 5-mm 

depth where the extraction of the drill bit occurs. Temperature elevation is in response to the increase 

of torque as stated in previous works [53] 

Fig. 4-9 shows a comparison of evolution of thrust force until 3-mm depth. When taking into 

account the results of acrylic specimens such as PMMA, AC20, and AC40, the three materials show 

thrust force between Saw-EP and Saw-PU covering the results of bone. These results imply that the 

drilling haptics until 3-mm depth can be similar between acrylic specimens and bone. 

When focusing on the evolution of thrust force for Saw-EP, PMMA, AC20, and AC40, each 

curve shows a peak at the depth of around 1.6 mm and then thrust force gradually decreases. This 

trend is considered to pertain to thermal effect during drilling since polymeric materials such as epoxy 

and acrylic resin show feeble atomic forces between atoms along the increase of temperature. Although 

thermal images show low temperature at the depth of 1.6 mm, in fact, there is a temperature gap 

between on the surface where infrared camera can measure the temperature and on the drill tip inside 

the drilled hole. Even though the recorded temperature is still lower than the range of glass transition 

temperature especially for PMMA where thrust force starts to decrease, the effect of temperature on 

thrust force should not be ignored as concluded at the chapter 3. 
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Fig. 4-8 Typical evolution of drilling properties under constant feed rate drilling for all materials 



 
 

 

Chapter 4: Fabrication of composite materials and their drilling properties 

 

-92- 

 

 

Fig. 4-9 Comparison of the evolution of thrust force 

 

4.5. Conclusions 

In this chapter, acrylic composite materials were successfully fabricated using acrylic resin as 

a matrix and ceramic materials as additives. The fabricated composite materials were studied focusing 

on their drilling properties under constant load and feed rate drilling. The effects of ceramic additives 

on drilling properties were quantitatively analyzed under both drilling conditions. 

The drilling test results revealed that the inclusion of ceramic additives are effective to control 

drilling properties presented by thrust force, torque, and drilling feed rate. Focusing on the effects of 

additive amount especially for alumina cement, each drilling property alters gradually in response to 

the additive amount; the drilling feed rate becomes lower under constant load drilling, while the thrust 

force becomes larger under constant feed rate drilling along the increase in included amount of alumina 

cement in acrylic resin. Furthermore, acrylic composite material including 40 wt% of alumina cement 

shows the comparable torque and feed rate under machining conditions applied in this study. It implies 

that drilling characteristics of certain locations and species of natural bone can be reproducible by 

optimizing the suitable material composition. 

The similarity in drilling properties as presented in the drilling feed rate or thrust force can be 
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attributed to the similarity in mechanical properties related to drilling. In order to elucidate the 

relationship between drilling properties and mechanical properties, sorts of mechanical tests are 

carried out in the next chapter. 
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Chapter 5: Relationship between 

drilling and mechanical properties 

This chapter presents the mechanical test results including bending tests, Microindentation 

tests, DMA measurements, and fracture toughness tests, considering the mechanical 

properties related to drilling properties. Acrylic composite materials including acrylic resin 

are used as specimens to see the effects of additive on change of mechanical properties. 

Relationship between drilling and mechanical properties are discussed by combining the test 

results. 
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5.1. Introduction 

The inclusion of ceramic additives in acrylic resin can alter the drilling properties measured in 

thrust force, torque, and drilling feed rate. These changes should be related to the mechanical 

properties dominant on drilling characteristics, but mechanical properties related to the modification 

of drilling properties have not yet been clear. In this chapter, mechanical tests using the pure acrylic 

resin and acrylic composite materials are performed to see the effects of additives on mechanical 

properties. Considering mechanical properties that can influence drilling behavior after the beginning 

of material removal, mechanical tests such as bending tests, fracture toughness tests, microindentation 

tests, and DMA tests were performed to determine each mechanical property. 

5.2. Materials and methods 

5.2.1. Specimens 

Three categories of materials were prepared for a series of mechanical tests. The first category 

was composed of acrylic specimens; pure acrylic resin (PMMA), acrylic composite materials 

including 10 to 40 wt% of alumina cement (notated AC10 for 10 wt% of additives, AC20 for 20 wt%, 

AC30 for 30 wt%, and AC40 for 40 wt%). The second category consisted of Sawbones🄬 test materials; 

Saw-EP, Saw-PU20, and Saw-PU50 as defined at the chapter 2. The last category was bone samples; 

porcine mandibular bone and porcine femoral bone. Each material was processed to the desired 

geometry depending on mechanical testing.  

5.2.2. Bending tests 

The three-point bending tests were conducted using a universal testing machine (EZ-S, 

Shimadzu Corp., Japan), to obtain the flexural strength and modulus of acrylic-based specimens. 

Assuming the samples are homogeneous, the obtained strength and modulus can be equal to tensile 

strength and elastic modulus. Five types of only acrylic specimens including PMMA, AC10, AC20, 

AC30, and AC40 were produced with a geometry of 50 × 10 × 3 mm (length × width × 

thickness). Five samples in the identical geometry were prepared for each composition.  

Bending tests were conducted under the following conditions; 40 mm for the support span, and 

the loading rate of 1 mm/min. The flexural strength and modulus were calculated from the obtained 

stress-strain curves. 
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5.2.3. Fracture toughness tests 

Material removal during drilling can be related to fracture behavior of work piece. Since the 

penetration of drill bit along the evacuation of cutting chips can be affected by fracture behavior of 

work materials, the fracture toughness is considered to have impact drilling properties. Recently, 

Feldmann et al. adopted a new methodology for calculation of fracture toughness and related with 

machining of natural bone [179]. Cortical bone shows a quasi-brittle and not ductile behavior 

compared to metals. Besides, the anisotropy due to osteons provides a high fracture toughness to 

inhibit the crack growth, possibly resulting in larger cutting forces rather than polymeric materials. 

Fracture toughness tests were carried out by applying linear-elastic fracture mechanics fracture 

toughness (KIC) method referring to ASTM test standards [213,214]. Similarly to bending tests, five 

types of acrylic-based specimens including PMMA, AC10, AC20, AC30, and AC40 were prepared. 

Single edge (SE) notched bending samples were produced with a geometry of 50 × 10 × 4 mm 

(length × width × thickness), with a notch of 5-mm length and 2.6-mm width on a long side of 

specimens. The span length, S, was selected to be at least 4 times the width, W. 

Fracture toughness tests were performed using a universal testing machine (EZ-S, Shimadzu 

Corp., Japan), same as bending tests. Strain speed of 0.05 mm/min was applied for all the tests. To 

measure the crack mouth opening displacement (CMOD), the whole tests were recorded by a digital 

camera (RX100 IV, Digital Still Camera Cyber-shot, Sony), and the crack width was calculated using 

an image processing software (Tracker 5.1). 

In order to determine the stress intensity factor KIC, firstly the critical stress-intensity factor, KQ, 

was calculated based on the Eq. (1). 

𝐾𝑄 =
𝑃𝑄・𝑆

𝐵・𝑊3 2⁄
・𝑓 (

𝑎

𝑊
)・・・(1) 

where PQ is a load corresponding to the 5% deviation from linearity, B specimen thickness, f(a/W) is 

the corresponding shape function as defined in the standard, the ASTM E399 [213]. The determination 

of KIC values can be done upon agreement of small-scale yielding, as given in Eq. (2): 

𝑃𝑚𝑎𝑥/𝑃𝑄 < 1.1・・・(2) 

and plain strain conditions (i.e. the plastic zone must be small enough compared to the notch length, 

a, the uncracked ligament, W – a, and the thickness, B), as shown in Eq. (3): 

 𝐵, 𝑎, (𝑊 –  𝑎) >  2.5 (
𝐾𝑄

𝜎𝑦
)

2

・・・(3) 
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5.2.4. Microindentation tests 

The universal nanomechanical tester (ZwickRoell) with a diamond pyramid indenter, 

Berkovich type, of a face angle of 115.12º was used for a series of tests. In microindentation tests, the 

evolution of the applied force during a load/unload mode as a function of the indented depth is 

recorded. By applying the quasi continuous stiffness measurements (QCSM) technique, local 

deformation was generated along a harmonic load oscillation of the indenter during penetration.  

The so-called “continuous stiffness measurement” method consisted in superimposing a small 

harmonic load oscillation of small amplitude (1.5 nm) at 32 Hz frequency. In fact, Young’s modulus 

is generally obtained in the reduced form E’*, which is given in [215] by Eq. (4) 

𝐸′∗ = S/2(
π

𝐴ind
)1/2・・・(4) 

where S is the contact stiffness between the indenter and the specimen and Aind is the indented area, 

which is given by Eq. (5) 

𝐴ind = 35.366(ℎ𝑟
′ + ℎ0)2・・・(5) 

where ℎ𝑟
′  means the plastic indented depth under the tip and ℎ0 indenter shape. The real Young’s 

modulus of tested material can be calculated through Eq. (6) [216] 

1

𝐸′∗
=

(1 − 𝜈2)

𝐸
+

(1 − 𝜈𝑖
2)

𝐸𝑖
・・・(6) 

where E and ν are Young’s modulus and Poisson’s ratio for the specimen and Ei and νi the same 

parameters for the indenter. The elastic properties of the diamond indenter were Ei = 1131 GPa and νi 

= 0.07. In this study, Young’s modulus of both bone and PMMA based materials were calculated. Bone 

was assumed to be an isotropic material with a 0.3 Poisson ratio [86,92]. PMMA is considered to have 

0.3 Poisson’s ratio [217]. 

Using this technique, dynamic hardness and elastic modulus as a function of indentation depth 

were obtained. PMMA, AC20, and AC40 were used. The natural bones and SawbonesⓇ test materials 

were also tested as controls. The polymeric specimens were cut into a thin block of a 5.0-mm height. 

A part of mandible bone was extracted. A surface parallel to the mandible base was located at the 

bottom for mandible bone samples considering the consistency of drilling direction in dental implant 

surgery. All the specimens were embedded in epoxy resin. The specimens were then polished with 

emery paper starting from P800 to 1200, 2400, and 4000, and then with diamond slurry of a diameter 

of 1.0 µm. The indentation was performed perpendicularly to the longitudinal axis of mandible base.  
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The indenter was loaded until 500 mN at the strain rate of 3.0×10-2 s-1. The indenter was 

extracted from the test pieces when reaching the maximum force. Five times of indentations were 

conducted for each specimen. 

 

5.2.5. DMA measurements 

DMA measurements were carried out similarly using the 50-N 0.1-dB Metravib testing machine 

as presented at the section 3.3.2 in the chapter 3. The changes of the storage modulus, loss modulus, 

and the loss factor were plotted as a function of temperature within 25℃-200℃ at the heating rate of 

1 ℃/min with the measurement frequency of 1 Hz. 

 

5.3. Results and discussion 

5.3.1. Bending test results 

The representative stress-strain curve is illustrated in Fig. 5-1. The effect of additive 

concentration is observed; the more additives are put in acrylic composite materials, the less strain is 

required for their fracture. Along the increase in alumina cement, composite materials tend to show 

more brittle fracture mode. The averaged strength and modulus of acrylic resin and composite 

materials are plotted Fig. 5-2. Error bars represent the standard deviation from three measurements. 

The maximum strength exhibits almost constant regardless of the additive amount, while elastic 

modulus displays linear increase until 40 wt% of additive composition, ranging from 1.7 to 4.3 GPa.  

Table 5-1 shows a list of tensile strength and elastic modulus from the literature 

[32,48,49,75,89–91]. It can be seen that acrylic specimens show drastically lower values for elastic 

modulus compared to natural bone, while strength is almost half to the lowest reference data of porcine 

cortical bone. The equivalent modulus and strength to those of arbitrary part of natural bone could be 

obtained by the replacement of acrylic resin with stronger mechanical properties. Although the similar 

values in torque and drilling feed rate were observed under constant load drilling, strength and elastic 

modulus are not directly corresponding between AC40 and natural bone. 
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Fig. 5-1 Typical results of stress-strain curves obtained from bending tests 

 

 

Fig. 5-2 Relationship between composition ratio of alumina cement and (a) flexural strength, and (b) 

flexural modulus 
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Table 5-1 List of mechanical properties from a[48],b[32],c[89],d[49],e[75],f[90],g[91] 

 

 

5.3.2. Fracture toughness tests 

The fracture toughness test results show the linear-elastic conditions as required by the standard 

[213]. Obtaining PQ from bending of SE specimens, KQ was calculated respectively, based on the Eq. 

(1). Then, the calculated KQ values were confirmed as KIC according to the Eq. (3). 

Fig. 5-3 shows the obtained KIC for acrylic specimens as a function of composition ratio of 

alumina cement up to 40 wt%. These obtained values are ranged between 1.18 ± 0.06 and 1.37 ± 0.08 

MPa√m, and nearly corresponding to the values reported in the literatures for acrylic resin for clinical 

applications [218,219]. There seems to be little impacts of composition ratio of alumina cement on 

KIC values of composite materials. From the results of bending tests, the composition ratio does not 

show large impacts on flexural strength. According to the Eq. (1), the KIC values bear a proportionate 

relationship to the strength. Therefore, it can be considered that the KIC values show similar trends as 

a function of additive amounts. 

Table 5-2 shows a list of the KIC values for test specimens in this study with literature data for 

cortical bone [220–222]. Comparing bovine and human bone, human bone relatively shows closer KIC 

values to those of acrylic specimens. However, fracture toughness might have little effects on drilling 

behavior since drilling properties varies among materials with nearly corresponding KIC values. 
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Fig. 5-3 Relationship between composition ratio of alumina cement and stress intensity factor, KIC 

 

Table 5-2 KIC values for tested specimens with references for cortical bone from [221]a, [220] b, [222]c. 

 

5.3.3. Microindentation tests 

Fig. 5-4 shows the averaged hardness and elastic modulus of acrylic specimens as well as 

controls. Error bars represent standard deviation for each property. Hardness shows significant 

difference between polymeric materials and natural bone tissue. Although EP-S shows the equivalent 

value to canine bone in hardness, other materials show drastically lower values in both hardness and 
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elastic modulus. Comparing PMMA, AC20, and AC40, the additives work to increase the stiffness. 

There is a small difference in stiffness found between AC20 and AC40. AC20 and AC40 shows almost 

two times higher values of hardness and elastic modulus compared to those of PMMA, and almost 3 

times of difference in hardness and elastic modulus compared to natural bone. 

The correlation between the drilling feed rate and stiffness is illustrated in Fig. 5-5. Globally, 

the similar trend can be found in Fig. 5-5(a) and (b). Until around 200 MPa of hardness, or 5 GPa of 

elastic modulus, the feed rate decreases along the increase in stiffness. After those values, the feed rate 

seems constant regardless of hardness and elastic modulus between AC40, EP-S, and natural bones. 

 

Fig. 5-4 The averaged hardness and elastic modulus 

 



 
 

 

Chapter 5: Relationship between drilling and mechanical properties 

 

-104- 

 

 

Fig. 5-5 Correlation between feed rate (under constant load drilling) and (a) hardness, and (b) elastic 

modulus 
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5.3.4. DMA measurement results 

Fig. 5-6 shows representative DMA curves for acrylic, bone, and Sawbones specimens. Almost 

similar trend is observed among PMMA and ACs with slight difference in each modulus and tan δ. 

Among acrylic specimens as shown in the Fig. 5-6(a)~(e), both E’ and E’’ gradually decreases along 

the increase in temperature. There can be little effects of additive inclusion on the temperature 

dependency of mechanical properties.  

As studied in the chapter 3, DMA curves for acrylic specimens are attributed to α-relaxation 

and β-relaxation. Likewise, the relaxation behavior can take place in polyurethane and epoxy resin, 

although the temperature that shows α-relaxation varies among polymers. According to the Fig. 5-6(f) 

and (g), polyurethane shows α-relaxation at about 145℃, while epoxy at about 75℃. On the other 

hand, bone shows the temperature-independent mechanical properties as is known. 

Fig. 5-7 shows a comparison of the E’ among acrylic specimens. The effect of additive amount 

on the E’ as a function of temperature can be studied. Apparently, the E’ continuously scores higher 

values along the increase in additive amount. It can be considered that alumina cement mixed in the 

acrylic matrix surrounds the polymer units inside the composite materials. Therefore, in addition to 

the enhancement in stiffness that can be brought by the alumina cement powder itself, the alumina 

cement powders consistently prevent the movement of molecules even at high temperature, resulting 

in high elasticity. The effect of the prevention of movements of acrylic molecules can get more 

dominant along the increase in additive amount, and so the composite materials have higher E’ as the 

more additives are mixed. 
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Fig. 5-6 Representative DMA curves 
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Fig. 5-7 Comparison of the E’ curve depending on additive amount 

 

5.4. Conclusions 

In this chapter, mechanical tests using acrylic composite materials were performed in order to 

provide the effects of ceramic additives on mechanical properties. Mechanical properties that can be 

related to drilling properties were measured, such as strength, elasticity, hardness, and fracture 

toughness. Since drilling causes temperature elevation during drilling, the effects of additives on the 

temperature dependency of mechanical properties were also studied. A series of mechanical tests 

revealed findings as follows: 

 The inclusion of alumina cement in acrylic resin causes higher hardness and elasticity, where 

the effects become larger along the additive amount up to 40 wt%. Instead of enhancing the 

stiffness, the composite materials tend to show more brittle fracture mode. The additives have 

little effects on alternation of flexural strength and fracture toughness. 

 The presence of alumina cement in composite materials can prevent the movement of 

molecules at any temperature within 25℃-200℃. The additive amount has little effects on 

temperature dependency of the mechanical properties. 

 Acrylic composite material including 40 wt% of alumina cement can show the comparable 

torque and feed rate under constant load drilling, but the stiffness of the composite materials 

is still lower than that of cortical bone. Thus, other mechanical properties rather than hardness 

or elasticity shall be dominant for determining drilling characteristics. 
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Chapter 6: Relationship between 

drilling properties and tactile 

feedback in drilling by surgeons 

This chapter presents drilling experiments performed by surgeons. Using acrylic composite 

materials as well as natural bone and Sawbones🄬 test materials, measurements of drilling 

properties such as thrust force and torque are carried out. Combining the measurement 

results of drilling properties and tactile feedback during drilling interviewed after drilling of 

test specimens, relationship between drilling properties and tactile feedback is discussed.  
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6.1. Introduction 

The inclusion of ceramic additives in acrylic resin shows alternation of drilling properties with 

changes of mechanical properties such as hardness and elasticity as revealed in the previous chapters. 

These changes of mechanical and drilling properties are considered to affect resultant tactile feedback 

during drilling. The objective of this chapter is to see the relationship between drilling properties and 

tactile feedback. To do so, drilling experiments were performed by experienced surgeons using acrylic 

composite materials with controls of natural bone and Sawbones🄬 test materials. During drilling by 

surgeons, drilling properties such as thrust force and torque were obtained using measurement system. 

After drilling of test specimens, tactile feedback was interviewed to surgeons, and the order of tactile 

sense of hardness during drilling was obtained using the ranking method. Combining the measurement 

results of drilling properties and the tactile feedback given by the surgeons, the relationship between 

drilling properties and the tactile feedback is studied. 

 

6.2. Materials  

For measurements of drilling properties, three categories of test materials were prepared as used 

in drilling tests, including natural bone, Sawbones🄬 test materials, and acrylic composite materials. 

Seven kinds of specimens were selected; porcine femoral and mandible bone, Saw-PU50, Saw-EP, 

PMMA, AC20, and AC40. The same specimens as drilling tests under constant thrust force were used 

for drilling experiments by surgeons. 

 

6.3. Experimental and analytical methods 

Manual drilling tests were carried out by surgeons in both orthopedics and dentistry with more 

than 20-year career that required surgical operations including drilling of bone. Test specimens and 

measurement systems were brought to surgeons. Drilling was performed with recording cutting forces 

of thrust force and torque. Three measurements were performed for each test material. After drilling 

tests, tactile feedback for each material was interviewed, focusing on the similarity of tactile feedback 

compared to human cortical bone of men aged 30s to 40s as persona.  

The tactile sense of hardness during drilling was ranked among Saw-PU50, Saw-EP, PMMA, 

AC20, and AC40. using the ranking method of the sensory analysis [223]. The ranking method is 

effective to qualitatively evaluate the magnitude of attributes among a small number (around six) of 
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specimens [224]. According to the rule of JIS Z 9080 [224], the preferable number of assessors is 

defined more than two for experts, while more than five for selected assessors, and more than ten for 

training assessors. In this test, we determined the bare minimum number of subjects is two, regarding 

the involved surgeons as experts considering the developed competence in drilling of bone. In advance 

of the drilling experiments, mutual understanding of the evaluation term of “the tactile sense of 

hardness during drilling” that describes the attribute of the resistance force to overcome drilling during 

material removal was obtained between the examiner and the assessors. Based on the questionnaire, 

the ranking of the attribute was obtained. Considering the number of participating subjects, the 

statistical test is not applied.  

Fig. 6-1 shows an overview of experimental set-up for manual drilling tests. Drilling was 

performed on test specimens using surgical drill (Colibri II, DePuySynthes) and twist drill (Nobel 

Biocare Japan Co., Ltd.). A fresh drill bit was used for each test material. The measurement systems 

included a 6-axis sensor (CFS018CA101U, Leptrino), and a data loger (LGR101U, Leptrino). Drilling 

was performed on an epoxy plate on the sensor, and the cutting forces were recorded through a 

software (Virtual COM Port driver, ver1.3.1, STMicroelectronics) on a PC. The whole experiments 

were recorded by a camera (RX100 IV, Digital Still Camera Cyber-shot, Sony). Machining conditions 

such as 1,500 rpm of rotation speed were applied after the beginning of material removal. Penetration 

was performed until 10 mm of displacement in order to obtain full engagement of drill bit for material 

removal. Thrust force and torque were averaged from the maximum values after full engagement of 

drill bit. No irrigation was applied during drilling. For the statistical analysis of the difference among 

test specimens on thrust force and torque, the unpaired one-tailed Student’s t-test was applied on 

Microsoft Excel 2016 (Microsoft Corp., Redmond, WA). The variance of results was considered 

significant at p<0.05. 
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Fig. 6-1 Experimental set-up for drilling experiments by surgeons 

 

6.4. Results and discussions 

 Tactile feedback and subjective evaluation ranking by surgeons 

Table 6-1 lists the comments given by surgeons after drilling of test materials. The comments 

by orthopedist and dentist are globally corresponding. Saw-PU50 and PMMA are commented to be 

softer in drilling compared to cortical bone, while Saw-EP and AC40 are relatively harder than bone. 

Among the test specimens, AC20 is reviewed to show good similarity to cortical bone in tactile 

feedback during drilling. Comparing PMMA and AC20, the surgeons commented that the specimens 

show hard tactile feedback at the beginning of drilling process, and gradually becomes softer along 

the progress of drilling process. The transition of tactile feedback can be influenced by the changes of 

dynamic viscoelasticity as revealed in the chapter 3, which is considered to happen also during drilling 

of AC20. Regarding the transition of tactile feedback, the dentist commented that the gap of tactile 

feedback between at the beginning and during drilling was less in AC20 compared to PMMA, and the 

gap was not obviously seen in drilling AC40. It is considered that the increase in additive amount in 

acrylic resin changed the tactile feedback during drilling.  

Besides, the order of tactile sense of hardness during drilling among test materials based on the 

subjective evaluation of two surgeons are ranked as follows: 
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Saw-PU50<PMMA<AC20<AC40<Saw-EP 

where the calculation of confidence interval between each material requires more numbers of subjects. 

According to the ranking, the inclusion of alumina cement can change the tactile feedback during 

drilling, to the direction that enhance tactile sense of hardness during drilling. It is assumed that the 

tactile feedback of natural bone locates either between PMMA and AC20, or AC20 and AC40 in the 

ranking, based on the comments by surgeons. 

 

Table 6-1 Comments of surgeons after drilling of test specimens. 

 

 

 Measurement of drilling properties during drilling by surgeons 

Fig. 6-2 shows typical evolutions of thrust force and torque during manual drilling by the 

orthopedist. Both Fig. 6-2(a) and (b) shows that thrust force increases at the beginning of drilling to 

reach full engagement of drill bit, and then saturates at the specific value. This trend is similar to the 

results of drilling tests under constant feed rate. As described by Bertollo et al. [152], drilling by 

surgeon is thought to be quasi-constant thrust force after full engagement of drill bit, where the surgeon 

is considered to keep the constant value of thrust force. On the other hand, torque keeps increasing 

from the beginning of drilling until the end of drilling. The increase of torque is related to not only 

material removal by the tip of drill bit but also evacuation of cutting chips, and so torque is increased 

along the penetration depth meaning the much cutting chips are travelling through the drill flutes, the 

longer the penetration distance becomes. The trend of torque is also close to the typical evolution of 

torque under constant feed rate. The evolution of thrust force and torque was repeatable among test 

specimens, showing similar trend regardless of test materials with difference of magnitude of cutting 

forces. 

Fig. 6-3 shows the average values of (a) thrust force and (b) torque for test specimens from the 

Materials Orthopedist Dentist

Saw-PU50 ・Easy to drill ・Easy to drill

PMMA
・Soft to drill from the beginning.

・Softer than cortical bone.

・Hard at the first contact, but soft to drill inside specimen.

・Softer than cortical bone.

AC20

・Hard at the first contact, but gradually becomes soft

during drilling.

・Good similarity to cortical bone.

・Hard at the first contact, but soft when drilling inside

specimen. This gap is less in AC20 compared to PMMA.

・Relatively equivalent to human cortical bone, or possibly

a little bit harder than cortical bone.

AC40

・Hard at the first contact, and stays hard throughout the

drilling process.

・Relatively harder than cortical bone.

・Hard to drill throughout the cutting process; at the first

contact, at the beginning of drilling, and during drilling.

・Harder than cortical bone.

Saw-EP
・Very hard to drill. However, softer than the way it looks.

・Harder than cortical bone.

・Too hard to drill.

・Much harder to cortical bone.
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drilling by the orthopedist. The order of x-axis is based on the ranking of tactile sense of hardness 

during drilling, where bone specimens are located after dot lines as reference values. Note that the 

highest peak of torque at the moment of penetration of drill bit through cortical bone was excluded for 

the extraction of maximum value in porcine bone specimens including mandibular and femoral bone. 

As for thrust force, Saw-PU50 and PMMA shows around 10 N, AC20 around 15 N, and AC40 and 

Saw-EP shows around 20 N for their maximum values. Bone specimens show between 10 and 15 N 

for thrust force. The measurement results imply that the inclusion of alumina cement in acrylic resin 

increases the applied force necessary for drilling, which can be estimated by the results of drilling tests 

under constant feed rate. PMMA and Saw-PU50 requires less force rather than porcine bones for 

drilling, while AC40 and Saw-EP requires relatively much force than bone specimens. Although Saw-

PU50 and PMMA show the equivalent values, it turns out that the ascending order of thrust force 

among polymeric materials is corresponding to the ranking of tactile sense of hardness. It is considered 

that along the increase in the sense of hardness during drilling, the surgeon would put much thrust 

force for penetration of cutting tool. As for torque, bone specimens show relatively lower values 

between 10 and 20 N・mm, followed by Saw-EP around 20 N・mm, then acrylic-based materials and 

Saw-PU50 nearly more than 40 N・mm. Given that torque is related to tactile sense of hardness during 

drilling, the much the surgeon feels the tactile sense of hardness, the much torque would be applied. 

This trend is not observed for polymeric materials in the order of obtained ranking, implying that there 

is possibly little correlation between torque and tactile sense of hardness during drilling. 

Fig. 6-4 shows the measurement results from drilling by the dentist. In the same manner to the 

drilling by the orthopedist, the required thrust force increase with the increase of additive amount as 

is seen in PMMA and acrylic composites. The ranking of tactile sense of hardness during drilling is 

corresponding to the ascending order of thrust force, except between Saw-PU50 and PMMA. It implies 

that the tactile sense cannot always be in response to thrust force applied during drilling. Less torque 

is required for Saw-EP and bone specimens, while much torque required for polymeric specimens 

especially for PMMA and Saw-PU50. Based on the hypothesis that much torque should be required 

for surgeons to feel much tactile sense of hardness during drilling, the measured values of torque is 

not corresponding to the order of the ranking, as torque is descending. Therefore, considering the 

dominant factors influencing tactile sense of hardness of surgeons, thrust force rather than torque is 

more likely to trigger surgeons’ sense. 
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Fig. 6-2 Typical evolution of thrust force and torque during drilling: (a) AC20, (b) Porcine femur 
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Fig. 6-3 (a) Thrust force and (b) torque (mean ±SD) in manual drilling tests by orthopedist.  

 

Fig. 6-4 (a) Thrust force and (b) torque (mean ±SD) in manual drilling tests by dentist.  
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 Relationship between drilling properties and tactile feedback 

Combining the subjective evaluation ranking of the tactile sense of hardness during drilling 

with the measurement results of drilling properties during drilling by surgeons (Fig. 6-3 and Fig. 6-4), 

the evaluation ranking almost corresponds to the ascending order of thrust force except between 

PMMA and Saw-PU50 by dentist. However, according to both Fig. 6-3 and Fig. 6-4, there is no 

significant difference observed in thrust force between PMMA and Saw-PU50, indicating the 

equivalent magnitude of thrust force can be applied during drilling by surgeons. Thus, it could be 

estimated that the interval between PMMA and Saw-PU50 in the subjective evaluation ranking can be 

ignorable. The evaluation ranking is considered also partially equivalent to the descending order of 

torque. However, there are conflicts in the order of measurement results by surgeons both between 

PMMA and Saw-PU50, and AC20 and AC40, so the consideration of the relation of torque would 

require more numbers of subjects for the validation of the order of ranking. Taken together, it might 

be possible that thrust force rather than torque is more dominant on the determination of the subjective 

evaluation of the tactile sense of hardness during drilling. 

Considering the vertical force applied by the surgeon is between 10 and 25 N, whereas lateral 

force applied by the surgeon to overcome drilling torque is almost 0.10 to 0.50 N, which can be 

calculated according to Fig. 6-3 and Fig. 6-4, assuming that the distance between the center of rotation 

of the power tool and the position of surgeon’s hands was nearly 200 mm. Since the lateral force is 

almost double digits of magnitude lower than the applied vertical force, surgeons are likely to feel 

differences in thrust force rather than in torque. Therefore, it can be hypothesized that thrust force 

rather than torque can be dependent in describing the tactile feedback during drilling. 

 

6.5. Conclusions 

In this chapter, drilling experiments by skillful surgeons from both orthopedics and dentistry 

were performed in order to see the relationship between drilling properties and tactile feedback during 

drilling. The measurement of drilling properties was carried out while obtaining the tactile feedback 

by the surgeons. The results brought findings that the subjective difference in tactile feedback among 

synthetic materials can be resulting from the changes of thrust force rather than those of torque in 

drilling properties. This is implied by the fact that vertical force applied for drilling is almost one-

hundred times larger the lateral force applied to overcome torque. In order to change the magnitude of 

thrust force applied by surgeons, the inclusion of ceramic additives such as alumina cement can be 
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effective in acrylic resin. The effect to modify the applied thrust force and torque becomes larger with 

the composition ratio up to 40 wt% of alumina cement. Toward development of bone biomodels that 

reproduce the similar tactile feedback to natural bone, the modification of thrust force during drilling 

can be one of the development approaches. 
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Bone biomodel is often used for surgical training of doctors or mechanical tests of medical 

devices. Along the progress of the super-aged society of our time, the usage of bone biomodels as the 

alternative practice or test materials instead of natural bone has caught more and more attentions 

especially for the specialties performing drilling of bone; orthopedics, dentistry, and neurosurgery. 

Compared to natural bones, bone biomodels have various merits such as the ease of handling, 

accessibility, and reproducibility. Although the usage of the bone biomodels are promising, previous 

studies revealed that Sawbones test materials, which are defined as the standard test materials in the 

standard specification in ASTM International F1839, cannot always show neither equivalent 

mechanical properties nor drilling characteristics. Therefore, there is a risk that surgeons or researchers 

are carrying out the surgical training or evaluation of medical devices under different situations from 

the realistic environments. 

To overcome this situation, those who are aware of the gap between natural bone and 

conventional bone biomodels have been struggling to develop better bone biomodels. However, there 

has been a series of trials and errors in the development of bone biomodels because there used to be 

no reliable evaluation items except the perceptual evaluation of doctors.  

Then, the main purpose of this study is to obtain the concrete direction toward future 

development of bone biomodels for the replication of drilling characteristics. To do so, this study 

applies the quantitative measurements of drilling properties of bone biomodel from the standpoint of 

engineering, in order to find out the relationship among mechanical and drilling properties, and tactile 

feedback during drilling. Assuming that drilling properties such as cutting forces, temperature 

elevation, machining conditions, or cutting chip morphology of work materials can be an outcome of 

mechanical properties that are related to drilling characteristics, this study adopts the development of 

composite materials. The effects of additives on both mechanical properties, the resultant drilling 

properties, and furthermore the perceptual feedback during drilling are studied. 

The chapter 1 describes the research backgrounds and literature reviews concerning 

development of bone biomodels for drilling. The chapter 2, 3, and 4 describe the drilling aspects of 

natural bone, Sawbones bone biomodels, acrylic resin as a matrix, and then acrylic composite materials 

including ceramic additives. For the elucidation of the effects of additives on mechanical properties, 

a series of mechanical test results were reported in the chapter 5. Subsequently, the relationship 

between drilling properties and tactile feedback obtained during drilling by surgeons was studied in 

the chapter 6.  
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The chapter 2 describes the drilling characteristics of natural bone and Sawbones🄬 test materials 

in order to obtain the target drilling properties of bone. Drilling tests were preliminarily performed 

under constant load machining conditions assuming that surgeons perform manual drilling under 

quasi-constant load in surgical operation, followed by drilling under constant feed rate. Drilling 

properties such as thrust force, torque, drilling time, and temperature elevation were recorded as well 

as the observation of cutting chips for the purpose of characterization of drilling in each material. 

Drilling tests provided the target information of drilling properties of mandibular and femoral bone, 

and revealed that Sawbones cortical model covers their drilling properties under the limited machining 

conditions. Since there is a wide range of material properties are available for cortical bone due to 

individual variance, the fabrication of cortical bone biomodels along the intended purpose should be 

necessary. From the standpoint of engineering, polymeric materials can easily get the effects of 

temperature rise during drilling, and so these characteristics should be taken into account for drilling 

of bone biomodel. Shear strength and fracture toughness of work material are also considered to affect 

drilling characteristics. 

The chapter 3 describes the drilling of acrylic resin as a matrix for composite materials. From 

the drilling properties and observation of cutting chips, the temperature elevation during drilling can 

influence drilling of acrylic resin by stages. Due to the thermoplasticity of acrylic resin, when reaching 

the glass transition temperature around 100℃, there is a morphological change leading the slight 

decrease in torque that is associated with the decrease in viscoelasticity. Since the effects of mechanical 

changes due to temperature rise are confirmed on drilling characteristics, the acrylic composite 

materials are estimated also to show temperature-dependent drilling characteristics. The effects of 

temperature rise are negligible concerning drilling in acrylic-based bone biomodels. 

Fabrication of acrylic composite materials and their drilling characteristics are described in the 

chapter 4. Ceramic additives were mixed to acrylic resin to form composite materials. After confirming 

the effects of ceramic additives on the alternation of drilling properties, the effects of additive amount 

were studied focusing alumina cement. The inclusion of alumina cement was useful for controlling 

drilling properties under both constant load and feed rate drilling. Thrust force, torque, and feed rate 

during drilling can be controlled along the amount of alumina cement; the much the additive is mixed, 

the more the effects become up to 40 wt% of additive composition. Moreover, acrylic composite 

materials including 40 wt% of alumina cement exhibits the comparable torque and feed rate under 

constant load drilling at 20-N thrust force and 1,000-rpm rotation speed. The similarity in drilling 
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properties can pertain to the similarity in mechanical properties related to drilling, and so mechanical 

tests were conducted. 

Chapter 5 describes the relationship between drilling properties and mechanical properties of 

acrylic composite materials. The mechanical properties possibly dominant on determining drilling 

properties are focused on and measured in the mechanical tests. Considering previous studies, 

mechanical tests including bending tests, Microindentation tests, and fracture toughness tests were 

carried out. DMA tests were also performed to see the temperature dependency of mechanical 

properties of acrylic composite materials. The mechanical testing revealed that the inclusion of 

alumina cement in acrylic resin can enhance hardness and elasticity with showing more brittle 

behavior against the fracture. This effect becomes larger along the additive amount until 40 wt%. The 

enhancement of stiffness of acrylic composite materials can be resulting from the prevention of 

molecular movements by alumina cement. The additive amount has little effects on temperature 

dependency of mechanical properties. However, the hardness or elasticity of acrylic composite 

materials are still lower than that of cortical bone, and thus other mechanical properties rather than 

stiffness shall be dominant for determining drilling characteristics. 

The chapter 6 describes the relationship between drilling properties and tactile feedback during 

drilling by surgeons. The drilling haptics by experienced surgeons were measured using the 

measurement system consisted of a 6-axis sensor. After drilling tests, tactile feedback was interviewed 

and the ranking of the tactile sense of hardness during drilling was obtained. The experimental results 

revealed that cutting forces represented by thrust force depends on work materials, and the 

resemblance of drilling haptics can be attributed to the similarity in the magnitude of thrust force rather 

than that of torque. The inclusion of ceramic additives such as alumina cement can be useful for the 

alternation of the perceptual feedback during drilling by promoting the changes in thrust force applied 

during drilling. Toward development of bone biomodels that can cover the similar tactile feedback to 

natural bone, one of the approaches is the modification of thrust force applied during drilling. 

Through the whole chapters, the fabrication of composite materials made of acrylic resin as a 

matrix and ceramic powders as additives was established, and then the fabricated materials 

experienced a series of drilling and mechanical tests in order to provide quantitative information of 

drilling and mechanical properties considering the effects of the presence of additives. The relationship 

among drilling and mechanical properties, and tactile feedback during drilling was studied. The 

present study brought the following findings. The inclusion of alumina cement in a matrix of acrylic 
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resin enhances the stiffness of the matrix, and the effects becomes larger along the increase in the 

amount up to 40 wt%. The effect of the additive can be seen in drilling properties of acrylic composite 

materials as the thrust force, torque, and feed rate were altered to get closer to those of cortical bone. 

The alternation of drilling properties by alumina cement can be related to the alternation of mechanical 

properties dominant on determining drilling characteristics affected by alumina cement. The effects of 

alumina cement were observed in hardness and elasticity. However, since the obtained values of 

hardness, strength, fracture toughness, and elasticity of fabricated acrylic composite materials are not 

completely corresponding to those of cortical bone, other mechanical properties rather than the 

mechanical properties measured in this study may affect drilling properties. Shear strength and surface 

roughness are the prospective mechanical properties possibly influencing drilling properties based on 

cutting theory. Not only static but also dynamic mechanical properties might be other factors 

influencing drilling behavior. Furthermore, the acrylic composite materials including 20 wt% of 

alumina cement achieved the good agreement in the similarity in tactile feedback during drilling in 

comparison of human cortical bone. This agreement can be attributed to the equivalent thrust force to 

that of cortical bone during drilling by skillful surgeons. This finding implies that the similarity in 

thrust force during drilling can cause the close tactile feedback during drilling of natural bone. 

Therefore, toward the development of bone biomodels that reproduce the similar tactile feedback to 

natural bone, the modification of thrust force during drilling can be one of the development approaches, 

which is caused by the inclusion of alumina cement. 
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