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Résumé

Cette thèse, co-financée par l’ADEME, se place dans le cadre d’une collaboration entre le LIRIS
et le Centre Léon Bérard autour de l’étude épidémiologique TESTIS. L’étude TESTIS vise à esti-
mer l’impact des pesticides sur le développement de la tumeur germinale du cancer du testicule.
Cette maladie ayant un temps de développement long, il est nécessaire d’avoir accès à des infor-
mations remontant jusqu’à la naissance des sujets considérés. Dans le cas de TESTIS, les sujets
les plus âgés sont nés au début des années 1970. Afin de tenir compte des expositions résiden-
tielles individuelles aux pesticides propagés par les vents, le Centre Léon Bérard a mis au point
une métrique se basant sur l’occupation du sol autour des habitations. Malheureusement, au-
cune base de données d’occupation du sol avant 1990 n’est actuellement suffisamment précise
pour être utilisée. Afin d’obtenir ces informations, les géomaticiens du Centre Léon Bérard sont
chargés de photo-interpréter des images aériennes historiques en niveaux de gris. Ce processus
manuel étant particulièrement long et fastidieux, l’utilisation de méthodes automatiques ou semi-
automatiques a été suggérée. L’objectif de cette thèse est de développer des algorithmes pour ai-
der les géomaticiens à obtenir des cartes d’occupation du sol en un temps raisonnable. Pour cela,
nous nous sommes intéressés à l’utilisation de méthodes de classification de textures que nous
avons intégrées au sein d’un logiciel d’aide à l’annotation. Celui-ci est actuellement utilisé dans
le cadre de l’étude TESTIS. Nous nous sommes ensuite intéressés à la colorisation automatique
et non-supervisée des images aériennes historiques afin de proposer une visualisation alternative
aux géomaticiens. Ces travaux nous ont également menés à étudier l’intérêt des couleurs géné-
rées artificiellement pour la classification des données historiques. Enfin, nous avons cherché à
améliorer les cartes d’occupation du sol générées par notre logiciel au travers de méthodes de
post-traitement, ouvrant la voie au développement de chaines de traitements plus performantes.

Mots clés : Images aériennes, classification, colorisation, post-traitement, texture, occupation du
sol
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Abstract

This thesis, co-funded by the ADEME, takes place in the context of a collaboration between the
LIRIS laboratory and the Centre Léon Bérard as part of the TESTIS epidemiological study. The
TESTIS study aims to estimate the impact of pesticides on the development of germ cell tumor
of testicular cancer. As this disease has a long development time, it is necessary to have access
to data dating back to the birth of the subjects. In the case of TESTIS, the oldest subjects were
born in the early 1970s. In order to take into account individual residential exposures to pesti-
cides spread by winds, the Centre Léon Bérard has developed a metric based on land use around
dwellings. Unfortunately no land use database before 1990 is sufficiently accurate to be used. In
order to obtain this information, the geomatics specialists at the Centre Léon Bérard are tasked
with photo-interpreting historical aerial images in grayscale. This manual process is particularly
long and tedious. Therefore, the use of automatic or semi-automatic methods has been suggested.
The objective of this thesis is to develop algorithms to help geomatics specialists obtain land cover
maps in a reasonable time. For that, we were interested in the use of texture classification methods
that we have integrated into an annotation assistance software. This software is currently used in
the TESTIS study. We then put our focus on the development of unsupervised colorization me-
thods to provide alternative visualizations of the historical aerial images. This work also led us to
study the interest of the artificially generated colors for land use classification. Finally, we sought
to improve the land use maps generated by our software through post-processing methods, pa-
ving the way for the development of more efficient pipelines.

Keywords : Aerial images, classification, colorization, post-processing, texture, land use land cover
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Introduction générale

L’impact des modifications de l’environnement et des modes de vie sur l’augmentation de
l’apparition de certains cancers est une préoccupation majeure de santé publique. Avec environ
382 000 nouveaux cas de cancers estimés en 2018, le nombre de cancers a plus que doublé sur
presque 40 ans [INC19]. Outre les facteurs individuels de risques établis, les variations spatiales
et l’évolution rapide de l’apparition de certains cancers dans les populations migrantes sont en
faveur d’un rôle des facteurs environnementaux dans le développement de ces maladies. Parmi
les facteurs environnementaux, les expositions environnementales aux pesticides sont particuliè-
rement suspectées. Pour la population générale, l’exposition aux pesticides provient de la dérive
des pesticides appliqués sur les cultures. Ainsi, plusieurs études ont montré une corrélation entre
la taille des surfaces cultivées et la distance des résidences aux cultures, avec l’exposition aux pes-
ticides d’origine agricole. Cependant, le lien avec ces expositions est parfois difficile à établir sur
de longues périodes. Or, un délai de latence important (i.e., plusieurs années) est supposé entre
les premières expositions et le développement de certains cancers, tels que le cancer du testicule.
Les connaissances actuelles sont d’ailleurs en faveur d’un rôle des expositions précoces dans la
vie, voire durant le développement in utero. Cela nécessite l’accès à des données anciennes pour
étudier le cas des malades les plus âgés. Malheureusement, il y a actuellement un manque de
données historiques fiables relatives aux expositions. Ce point conduit à une réduction des infor-
mations utilisables et peut être responsable de sous-estimations ou de sur-estimations du risque.

Dans ce cadre, le Centre de lutte contre le cancer Léon Bérard étudie, avec l’étude épidémiolo-
gique TESTIS, le lien entre cancer du testicule et expositions résidentielles issues de l’épandage des
pesticides agricoles à proximité des lieux de vie des sujets inclus dans l’étude. Pour cela, il a besoin
de définir les types de cultures à proximité des résidences des sujets pour estimer un score d’ex-
position individuel aux pesticides, et ce depuis le développement in utero des sujets (début des
années 1970 pour les plus âgés). Malheureusement, il n’existe pas, à l’heure actuelle, de bases de
données géographiques contenant ces informations, et l’annotation manuelle des terrains cultivés
à partir d’images aériennes d’archives est une tâche spécialisée particulièrement longue et fasti-
dieuse (plusieurs heures par image). Le département Cancer et Environnement du Centre Léon
Bérard s’est ainsi associé à l’équipe IMAGINE du laboratoire LIRIS afin de développer un logiciel
de traitement d’images pour accélérer ce travail. Ce partenariat s’est traduit par l’emploi tempo-
raire d’un ingénieur, moi même, qui a permis de mettre en place une preuve de concept afin de
produire une couche de données de qualité. Encouragés par de premiers résultats, ces travaux ont
pu être continués en thèse via un co-financement de l’Agence De l’Environnement et de la Maî-
trise de l’Energie (ADEME) et du Centre Léon Bérard, sous un encadrement partagé avec le LIRIS.

L’objectif principal de cette thèse est ainsi de développer des méthodes permettant la recon-
naissance automatique des parcelles de terrains à partir d’images aériennes historiques, et d’inté-
grer ces avancées au sein d’outils logiciels à destination des géomaticiens travaillant sur le projet
TESTIS. Pour cela, nous avons d’abord abordé la problématique de la reconnaissance des occupa-
tions du sol via la classification de la texture. Nous avons intégré les chaînes de traitements éva-
luées au sein d’un logiciel permettant à l’utilisateur de guider la segmentation à l’aide de traces
(possibilités de vérification et de correction). Celui-ci est actuellement en cours d’utilisation dans
le cadre de l’étude TESTIS (voir Annexe A). Cependant, les images historiques étant principale-
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Introduction générale

ment disponibles en niveaux de gris, elles sont particulièrement difficiles à interpréter par un être
humain par rapport à des images en couleurs. Afin de combler ce fossé visuel et proposer des re-
présentations alternatives aux géomaticiens, nous nous sommes alors intéressés à la colorisation
automatique des images aériennes historiques. Enfin, malgré les résultats satisfaisants de notre lo-
giciel, ceux-ci ont tendance ; par construction ; à ne pas respecter la géométrie des parcelles. Afin
d’améliorer la qualité des occupations du sol générées, nous avons cherché à utiliser des méthodes
de sur-segmentations et à intégrer l’information portée par les segments au sein d’un champ aléa-
toire conditionnel dans un cadre de post-traitement.

Cette thèse est ainsi composée de 5 chapitres :

— Le chapitre 1 présente le cadre de travail de la thèse du point de vue du projet TESTIS. Il
introduit également les problématiques liées aux données à notre disposition.

— Le chapitre 2 présente les notions de base sur lesquelles nos travaux se sont appuyés : des
filtres de textures aux réseaux de neurones profonds à convolutions, en passant par la sur-
segmentation.

— Le chapitre 3 présente les travaux que nous avons menés sur la classification de textures
naturelles à l’aide de méthodes classiques et de réseaux de neurones profonds.

— Le chapitre 4 présente les méthodes que nous avons développées pour la colorisation non
supervisée d’images aériennes historiques en nous basant sur des réseaux de neurones gé-
nérateurs adversaires cycliques et pseudo-cycliques.

— Le chapitre 5 présente nos travaux sur le post-traitement de segmentations sémantiques à
l’aide d’un champ aléatoire conditionnel et de superpixels générés à partir de bords détectés
par un réseau de neurones entièrement convolutif.

Nos travaux sur la classification de textures ont été présentés dans le cadre de la conférence na-
tionale CFPT 2018 (Conférence Française de Photogrammétrie et de Télédétection) [RCJF+18], du
journal international IEEE TIP (Transactions on Image Processing) [RCJF+19a] et de la conférence
internationale VISAPP 2019 (International Conference on Computer Vision Theory and Applica-
tions) [RBCJT19]. Nos travaux sur la colorisation ont été exposés à la conférence internationale
IGARSS 2019 (International Geoscience and Remote Sensing Symposium) [RCJF+19b] et au Work-
shop SUMAC (Structuring and Understanding of Multimedia heritAge Contents) mené en conjonc-
tion avec la conférence internationale ACM MM (ACM Multimedia 2019) [RCJF+19c]. Nos travaux
sur le post-traitement de segmentations sémantiques d’images aériennes ont été acceptés pour
présentation à la conférence internationale IGARSS 2020 [RCJF+20], et un article a également été
soumis à la conférence internationale IPTA 2020 (International Conference on Image Processing
Theory, Tools and Applications). Notre logiciel a par ailleurs fait l’objet de communications courtes
(abstract proceedings) dans le cadre d’une conférence nationale et de deux conférences interna-
tionales rattachées au domaine de l’épidémiologie [FRCJ+18a; FRCJ+19; FRCJ+18b].
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Chapitre 1

Cadre de travail

Le but de ce chapitre est de présenter le cadre de travail dans lequel nos travaux de recherche
ont été réalisés afin de donner au lecteur un aperçu des enjeux applicatifs sous-jacents à nos dé-
veloppements, de fournir une vision globale des données disponibles, et d’introduire les problé-
matiques qui ont été traitées. Nous verrons tout d’abord le contexte épidémiologique dans lequel
s’inscrit cette thèse au travers de l’étude TESTIS, qui vise à évaluer s’il existe une association entre
l’exposition aux pesticides et le risque de cancer du testicule à l’aide d’un Système d’Information
Géographique (SIG). Nous ferons ensuite un état des lieux des données disponibles pour détermi-
ner l’occupation des sols à partir d’images aériennes et satellites, avec une accentuation particu-
lière sur les données historiques. Nous introduirons enfin les problématiques qui ont été soulevées
et auxquelles nous avons répondu.
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ment ont été inclus dans l’étude. Le protocole détaillé du recrutement est présenté dans l’article de
Béranger et al. [BPB+14]. Les participants et leurs mères (N=50% de répondantes) ont répondu à
un entretien téléphonique afin de collecter des données concernant les lieux d’habitation, les mé-
tiers et les usages domestiques de produits chimiques. Ces questionnaires permettent d’inférer
les informations nécessaires à l’estimation des expositions domestiques et professionnelles aux
pesticides au travers de matrices d’expositions et d’un codage des métiers réalisé par une hygié-
niste industrielle. L’estimation des expositions aux pesticides d’origine agricole requiert quant à
elle des étapes de traitements de données particulières afin d’exploiter l’approche SIG développée
durant le projet SIGEXPO. L’approche qui a été retenue dans le cadre de TESTIS pour obtenir des
OCS consiste à photo-interpréter les images aériennes panchromatiques (en niveaux de gris) dis-
ponibles pour la période d’intérêt de l’étude. On remarquera que cette période d’intérêt s’étend,
de par l’âge des sujets recrutés, du début des années 1970 à la fin des années 1990, et jusqu’en 2018
pour les exposition vie entière. Nous décrivons ci-après le processus suivi pour générer des OCS.

Géocodage des sujets. Avant d’estimer l’OCS autour d’une habitation, il est nécessaire de con-
naitre la position géographique de celle-ci. Pour cela, il est nécessaire de géocoder les sujets, c’est
à dire de les replacer sur la carte de France, et ce pour chacune de leurs adresses. En fonction de
la qualité des informations recueillies avec les questionnaires, cette étape de géocodage peut être
plus ou moins automatisée à l’aide de la Base Adresse Nationale 6. Dans le cas où les adresses ne
sont que peu précises (e.g., nom de rue mais pas de numéro), les géomaticiens peuvent décider
de suivre des règles arbitraires afin de réaliser le géocodage (e.g., placer le sujet au milieu de la
rue) [FDCC+17]. Dans le cadre de TESTIS, l’ensemble du géocodage est réalisé dans le repère géo-
graphique français Lambert93. Il a par ailleurs été observé qu’un sujet de l’étude TESTIS aura eu
6,6 adresses en moyenne au cours de sa vie.

Génération de l’occupation du sol. Une fois le géocodage réalisé, il est nécessaire d’accéder
aux données d’OCS autour des lieux d’habitation des sujets aux dates correspondantes. Cepen-
dant, aucune base de données annotées disponibles avant 1990 existe aux degrés de précisions
spatiale et temporelle désirés (voir section 1.2), et le Recensement Statistique Agricole français,
contenant des statistiques instantanées décennales au niveau communal, ne permet pas d’estimer
un score individuel d’exposition autour d’une habitation particulière (e.g., les champs peuvent se
trouver de l’autre côté de la commune par rapport à l’habitation considérée). Face à ce constat,
l’approche qui a été retenue dans le cadre de TESTIS consiste en une photo-interprétation (i.e.,
annotation) des images aériennes historiques panchromatiques disponibles autour d’une habita-
tion à date donnée. Ces images ont été choisies dû à leur disponibilité et à leurs hautes résolutions
permettant une annotation à la parcelle près (voir section 1.2). On remarquera que l’estimation de
différents types de cultures à partir d’images dans un contexte épidémiologique a déjà montré son
intérêt par le passé [MAN10], où les auteurs proposaient l’utilisation de données satellites pour
estimer l’exposition aux pesticides d’origine agricole en Californie, États-Unis. Nous décrivons ici
le processus générique suivi par les géomaticiens travaillant sur l’étude TESTIS pour générer des
cartes d’OCS par photo-interprétation.

• Pour une date donnée et pour un sujet donné, il est dans un premier temps nécessaire d’ac-
quérir les images d’archives intersectant une aire de rayon 1.5 kilomètres autour du lieu
d’habitation du sujet. Dans le cadre de TESTIS, le choix s’est porté sur les images aériennes
historiques archivées par IGN (voir section 1.2). Celles-ci possèdent une résolution spatiale
élevée et se sont révélées facilement accessibles.

• Si les images obtenues ne sont pas géoréférencées, c’est à dire que la transformation af-
fine entre le plan image et le référentiel géographique n’est pas connue (i.e., on a l’image,
mais on ne sait pas la situer sur la carte), il est alors nécessaire d’effectuer ce géoréféren-
cement pour pouvoir les intégrer convenablement dans un SIG. Pour cela, l’approche stan-
dard consiste à indiquer des points de contrôles sur l’image, qui seront ensuite mis en cor-

6. https://www.data.gouv.fr/en/datasets/base-adresse-nationale/ (accès : 2020-03-23)
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1.2 Données disponibles

Dans le cadre de l’étude TESTIS, il est nécessaire de connaitre l’OCS dans un rayon maximum
de 1500 mètres autour des lieux d’habitation des sujets recrutés, de leurs naissances jusqu’à leurs
recrutements dans l’étude, et ce notamment durant les fenêtres critiques du développement de
l’homme (petite enfance, enfance et adolescence). La détermination de l’OCS dans le temps re-
présente aussi un intérêt majeur pour évaluer et comprendre l’évolution des territoires (e.g., artifi-
cialisation) et mettre en place des politiques publiques. A titre d’exemple, Picuno et al. [PCS19]
arguaient en 2019 que l’analyse de l’environnement rural résultant des activités humaines re-
présente une source d’information incomparable pour estimer l’état de l’environnement. Il s’agit
donc ici de déterminer les propriétés des données disponibles dans notre cadre de travail afin de
justifier les choix techniques réalisés. Dans cette section, nous allons ainsi voir quelles sont les
données disponibles pour obtenir des cartes d’OCS recoupant notre période d’intérêt au travers
des programmes d’annotations existants, avant de nous intéresser aux images disponibles. Par
souci de concision, nous exclurons ici les données que nous qualifierons de récentes, telles que
le Registre Parcellaire Graphique dont les premières données ont été générées en 2002 à partir
des déclarations de surfaces agricoles faites par les agriculteurs. Pour ce qui est des images (non
annotées) disponibles, nous nous focaliserons sur les données visuelles acquises par un disposi-
tif d’imagerie aérien ou satellite. Ces données sont en effet régulièrement utilisées pour générer
des OCS par photo-interprétation manuelle, et ont pour avantage de permettre une vérification
visuelle des résultats. De la même manière, nous exclurons les programmes d’observations ayant
débuté après 1990, tels que le programme spatial Franco-Italien Pléiades, lancé en 2001 (premier
satellite en orbite en 2003) ou le programme Sentinel lancé en 2007 (premier satellite en orbite en
2014).

1.2.1 Occupation du sol

Corine Land Cover (CLC)

CLC1990 CLC2000 CLC2006 CLC2012 CLC2018

Données satellites Landsat-5 MSS/TM Landsat-7 ETM
SPOT-4/5 et

IRS P6 LISS III
IRS P6 LISS III

et RapidEye
Sentinel-2 et Landsat-8
pour combler les trous

Dates d’acquisitions 1986-1998 2000 +/- 1 an 2006 +/- 1 an 2011-2012 2017-2018
Durée de production 10 ans 4 ans 3 ans 2 ans 1.5 ans

Précision géométrique
des données satellites

≤ 50 m ≤ 25 m ≤ 25 m ≤ 25 m
≤ 10 m

(Sentinel-2)
Taille d’élément

minimale (sortie)
25 ha 25 ha 25 ha 25 ha 25 ha

Taille
minimale (sortie)

100 m ≤ 100 m ≤ 100 m ≤ 100 m ≤ 100 m

TABLEAU 1.1 – Métadonnées correspondant au progamme Corine Land Cover (CLC).

Corine Land Cover (CLC) 9 est un jeu de données à l’échelle européenne incluant actuelle-
ment 38 pays pour 5.8 millions de kilomètres carrés de surface, représentées à l’aide de 44 classes
d’occupation du sol. Il est réalisé dans le cadre du programme européen Copernicus, lancé par
l’Agence européenne pour l’environnement et visant à la surveillance des terres européennes.
La génération des données de CLC est standardisée et se fait par photo-interprétation humaine
d’images satellites. Les résultats sont obtenus au format vectoriel, incluant la notion d’objets po-
lygonaux complexes (par opposition au format raster, où l’unité de base correspond au pixel du
capteur). Le tableau 1.1 retranscrit une sélection de métadonnées concernant le programme CLC,
où la ligne Données satellites référence les satellites utilisés pour générer les annotations. Nous
fournissons plus d’informations quant aux programmes satellites d’observation de la terre dans
la section 1.2.2. D’un point de vue temporel, la génération des données de CLC a débuté en 1985,

9. https://land.copernicus.eu/pan-european/corine-land-cover (accès : 2020-02-10)
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FIGURE 1.10 – Première photographie acquise par le satellite Explorer 6 en 1959 montrant une zone en-
soleillée de l’océan pacifique survolée par un nuage. Image extraite de la base publique d’images de la
NASA [NAS20a].

seuls certains satellites d’observation seront mis en avant (non-exhaustivité). Les premiers satel-
lites artificiels ont été mis en orbite dans les années 1950, avec les succès des démonstrateurs
Spoutnik 1 en et Spoutnik 2 achevés en 1957 par l’Union Soviétique. Ils ont permis aux scien-
tifiques de l’époque d’étudier l’ionosphère par l’envoi de signaux radios. Ils furent rapidement
suivis en 1958 par Explorer 1, satellite conçu par les Etats-Unis (USA). Les détecteurs à radiations
(compteurs Geiger) installés sur Explorer 1 permirent la découverte de la ceinture de Van Allen,
une zone où les particules énergétiques chargées émises par les vents solaires sont capturées par
le champ magnétique terrestre. L’année suivante, en février 1959, les Etats-Unis ont mis en orbite
Vanguard-2, le premier satellite météorologique de l’histoire, qui avait pour but de mesurer l’acti-
vités solaire réfléchie et la couverture nuageuse à la surface de la terre à l’aide de caméras optiques.
Celui-ci eu un succès en demi-teinte dû à une erreur de positionnement de sa caméra. Quelques
mois plus tard, le satellite Explorer 6 fut mis en orbite, transmettant les premières photographies
de la Terre depuis l’orbite (voir Figure 1.10).

En 1960, le satellite météorologique TIROS-1 fût mis en orbite dans un état de fonctionnement
opérationnel, contrairement à Vanguard-2. Le satellite Discoverer 13, lancé lui aussi en 1960, fût
le premier satellite de reconnaissance, aussi appelé satellite espion, mis en orbite à avoir permis
l’observation de la terre. En 1964, le satellite Nimbus 1, constituant le début de la deuxième gé-
nération des satellites météorologiques américains, fût déployé. Équipé d’une caméra en lumière
visible et d’une caméra infrarouge, il permit notamment d’observer le trou de la couche d’ozone en
cours de formation. Au total, 7 autres satellites Nimbus furent lancés entre 1964 et 1978. Du côté
de la France, le premier satellite mis en orbite par le Centre National d’Études Spatiales (CNES)
fût Astérix en 1965, qui prit la forme d’un démonstrateur technologique. A noter que l’histoire
des satellites du CNES est détaillée sur un site web interactif 11. Outre les satellites du programme
Nimbus, à visée météorologique, les premiers satellites dédiés à la télédétection et à l’observation
des sols hors applications militaires - ou du moins, les plus marquants à ce jour - furent issus du
programme américain Landsat, lancé en 1972, et du programme français SPOT, lancé 14 ans plus
tard en 1986.

Programme Landsat

Le programme Landsat a débuté en 1972 avec le lancement de Landsat 1, le premier satel-
lite public dédié à l’observation des terres. Il continue encore de nos jours, avec le lancement de
Landsat-9 prévu pour l’an 2021. Le programme est généralement décrit par générations succes-
sives, correspondant aux technologies embarquées dans les satellites. Ces différentes générations

11. https://wax-o.com/demo/satellites/ (accès : 2020-03-28)
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FIGURE 1.11 – Image Landsat-1 multispectrale en fausses couleurs au niveau de Garden City, Kansas, USA.
Celle-ci met en avant la végétation, qui apparait en rouge. Image extraite du site web LandsatLooks de la
NASA [NAS20b].

sont décrites ci-après. La première génération du programme Landsat 12 était à visée expérimen-
tale. Elle était constituée des satellites Landsat-1 (de 1972 à 1978), Landsat-2 (de 1975 à 1982) et
Landsat-3 (de 1978 à 1983), tous très similaires au niveau des dispositifs d’observation embarqués.
Ils avaient pour but principal de démontrer la faisabilité de ce type d’observations depuis l’espace
à l’aide de différents capteur. Ils embarquaient plusieurs instruments, dont une caméra RBV 13

(Return Beam Vidicon) et un capteur multispectral MSS 14 (Multi Spectral Scanner). Le dispositif
RBV était en réalité constitué de trois caméras de télévision, chaque caméra capturant des bandes
spectrales différentes (bande 1 : bleu-vert, bande 2 : jaune-rouge, bande 3 : proche infrarouge,
NIR). Les trois caméras étaient alignées de façon à pouvoir mettre en correspondance les prises de
vue par transformation géométrique. Le capteur MSS permettait quant à lui d’acquérir des bandes
spectrales aux longueurs d’ondes spécifiques, à savoir du vert, du rouge, deux bandes de proche
infrarouge. La résolution spatiale des pixels du MSS était de 79 x 57 mètres, ramenée à 60 mètres
après traitement. Un exemple d’image multispectrale acquise en 1972 par le MSS de Landsat-1 est
présenté sur la Figure 1.11 en fausses couleurs.

La seconde génération de satellites LandSat inclut les satellites Landsat-4 (de 1982 à 1993) et
Landsat-5 (de 1985 à 2013) 15. Cette génération est la première à être considérée comme étant
en phase opérationnelle (contre expérimentale pour la précédente). Le principal changement par
rapport aux modèles précédents est la disparition de la caméra RBV au profit d’un dispositif de car-
tographie thématique (Thematic Mapper, TM), en complément du capteur MSS déjà présent sur
Landsat-1-3. Les bandes spectrales du TM ont un recouvrement spectral avec le MSS, auxquelles

12. https://directory.eoportal.org/web/eoportal/satellite-missions/l/landsat-1-3 (accès : 2020-
04-03)

13. https://earth.esa.int/web/sppa/mission-performance/esa-3rd-party-missions/landsat-1-7/
rbv/ (accès : 2020-04-03)

14. https://earth.esa.int/web/sppa/mission-performance/esa-3rd-party-missions/landsat-1-7/
mss/ (accès : 2020-04-03)

15. https://directory.eoportal.org/web/eoportal/satellite-missions/l/landsat-4-5 (accès : 2020-
04-03)
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viennent s’ajouter des infrarouges à ondes courtes et un capteur thermique. De plus, la résolu-
tion spatiale du TM est de 30 mètres, deux fois supérieure à celle du MSS, pour l’ensemble des
bandes à l’exception des données thermiques (120 mètres, ramenés à 30 mètres après traitement).
Après le lancement raté de Landsat-6 en 1993 16, la troisième génération de satellites Landsat vu
le jour en 1999 avec le lancement de Landsat-7 17, toujours en orbite. Ce satellite embarque un
TM amélioré, ainsi que des capteurs panchromatiques d’une résolution deux fois supérieure (15
mètres) qui faisaient défaut aux précédents satellites du programme. Landsat 8 18 fût quant à lui
lancé en 2013, proposant un nouveau capteur augmentant le nombre de bandes spectrales dispo-
nibles pour l’observation des sols. Pour l’ensemble des satellites Landsat, la résolution temporelle
d’acquisition d’images pour une même aire géographique était de 18 jours pour Landsat-1-3, et 16
jours pour les autres.

Programme SPOT

Le programme SPOT a été lancé en 1986 par le CNES. La première génération de satellites SPOT
inclut les satellites SPOT-1, lancé en 1986, Spot-2, lancé en 1990, et SPOT-3, lancé en 1993. Les sa-
tellites SPOT de première génération étaient initialement prévus pour avoir une durée de vie de
plusieurs centaines d’années. Ils ont cependant été désorbités en 2003 (SPOT-1) et 2009 (SPOT-2)
afin de les laisser se désagréger dans l’atmosphère, mettant fin à leurs missions par la même occa-
sion. Le satellite SPOT-3 a quant à lui arrêté de fonctionner en 1996. Ils étaient tous les trois dotés
de capteurs visuels de hautes résolutions, à savoir un capteur panchromatique d’une résolution
de 10 mètres permettant de couvrir le domaine visible, et un capteur multispectral sur 3 bandes
permettant d’acquérir du vert, du rouge et du proche infrarouge avec une résolution de 20 mètres.
A noter que cette combinaison de bandes spectrales permet d’avoir une estimation intéressante
des indices de végétations tels que l’Indice de végétation par différence normalisée (Normalized
Difference Vegetation Index, NDVI). Ces résolutions sont à comparer avec celles proposées par les
satellites Landsat à la même époque (fin des années 1980, début des année 1990), qui étaient de
30 mètres au mieux. La deuxième génération est constituée du satellite SPOT-4, lancé en 1998. Aux
bandes spectrales déjà présentes sur les satellites SPOT précédents viennent s’ajouter une bande
dédiée aux moyens infrarouges. Les moyens infrarouges sont utiles pour détecter les nuages bas,
mesurer les températures de surface pendant la nuit et pour détecter les incendies de forêt (voir
cours Suivi de l’environnement par télédétection proposé par l’Université Virtuelle Environnement
et Développement Durable (UVED) [eDDU20]. La troisième génération est uniquement consti-
tuée de SPOT-5, lancé en 2002. Il permet d’acquérir des images de 2 à 4 fois plus résolues que
ses prédécesseurs, avec une résolution de 2.5 mètres ou 5 mètres pour les images panchroma-
tiques (en fonction du mode de fonctionnement) et de 10 mètres pour les bandes multispectrales.
Il embarque par ailleurs un capteur dit de Haute Résolution Stéréoscopique pour l’acquisition de
couples d’images dédiés à l’estimation de la profondeur, qui représente ici l’élévation des objets
au sol. La quatrième génération du programme SPOT est constituée des satellites SPOT-6 et SPOT-
7, lancés respectivement en 2012 et 2014. Ces derniers permettent d’atteindre une résolution de
1.5 mètres pour les images panchromatiques et les images couleurs, et de 6 mètres pour les images
multispectrales, avec une emprise au sol de 60 kilomètres par 60 kilomètres.

Accès aux données

L’accès aux données satellites a longtemps été un enjeu économique important. Depuis quelques
années, un certain nombre d’images sont publiées gratuitement pour permettre leur utilisation

16. https://directory.eoportal.org/web/eoportal/satellite-missions/l/landsat-6 (accès : 2020-04-
03)

17. https://directory.eoportal.org/web/eoportal/satellite-missions/l/landsat-7 (accès : 2020-04-
03)

18. https://directory.eoportal.org/web/eoportal/satellite-missions/l/landsat-8 (accès : 2020-04-
03)
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issues des campagnes d’acquisitions aériennes (e.g., documentation, interprétation visuelle, gé-
nération de données topographiques), le niveau d’avancement dans la numérisation des images
analogiques, ainsi que la mise à la disposition des ces données au grand public. On y apprend
que, à date du sondage (2019) et parmi les organisations ayant répondu, l’IGN est l’organisation
avec le plus grand nombre d’images aériennes disponibles (4.7 millions), possède des données sur
les 100 dernières années ; tout comme les organisations nationales suisse et espagnole ; et était la
seule organisation à avoir intégralement numérisé ses données analogiques (voir figure 1.12). Ce
dernier point met en avant les difficultés rencontrées pour numériser ces données. Celles-ci ont
été discutées lors de l’atelier de travail Geoprocessing and Archiving of Historical Aerial Images
(littéralement, géotraitement et archivage des images aériennes historiques) en Juin 2019 à Pa-
ris [MGRT19]. Les difficultés principales évoquées par les participants semblaient être d’ordres
logistique et économique. Les images analogiques d’archives sont en effet stockées dans des en-
trepôts sous conditions contrôlées pour éviter leur détérioration, avec l’utilisation de contenants
tels que des boites à potentiel hydrogène nul [Wil19], ce qui limite l’accès à ces données maté-
rielles. Il faut aussi noter que, au niveau européen, ces archives sont décentralisées dans 5.88%
des cas [GM19], ce qui nécessite d’en maîtriser le transport.

La numérisation est quant à elle longue et coûteuse en ressources humaines, les images de-
vant être scannées manuellement à l’aide d’un scanneur photogrammétrique dédié (e.g., Leica
DSW 700, Vexcel VX4000HT, Wehrli RM6) avant d’être géoréférencées en sein d’un SIG. Face à
cette problématique, certaines organisations telles que la Collection Nationale de Photographies
Aériennes (National Collection of Aerial Photography, NCAP) cherchent à partiellement automati-
ser l’étape de numérisation par la création et l’utilisation d’unités robotisées [Wil19]. Une fois les
images numérisées et géoréférencées, vient alors le problème de la valorisation de ces données,
pour lesquelles il faut trouver des applications permettant de financer le maintien des infrastruc-
tures mises en place.

Indépendamment de ces problématiques, les organisations ayant répondu au sondage [GM19]
ont déclaré avoir majoritairement des images de hautes résolutions spatiales, avec des pixels va-
riant de 10-20 centimètres à 1 mètre. Ces valeurs sont à opposer aux résolutions des images satel-
lites disponibles au travers des programmes tels que Landsat (dizaines de mètres).

État des lieux en France

Les premières acquisitions d’images de la France vue d’en haut, puis mises à la disposition du
grand public par la suite via le service remonterletemps [IGN20b], ont été réalisées en 1919. Pour
cela, des appareils photographiques ; argentiques au départ, puis numériques par la suite ; ont été
placés sur des dispositifs aériens chargés de suivre un tracé prédéfinit à vitesse et altitude données.
La capture d’une prise de vue est déclenchée automatiquement à intervalle régulier. L’intervalle
entre deux acquisitions est calibré de telle sorte qu’un recouvrement existe entre deux acquisitions
successives afin d’assurer un suivi des acquisitions et générer des images en relief par stéréosco-
pie. Cette technique d’acquisition de données territoriales ayant fait ses preuves, elle a rapidement
été généralisée. De nombreuses campagnes d’acquisitions aériennes incluant de multiples moda-
lités ont ainsi été menées (couleur, infrarouge, optique, numérique). Les prises de vue aériennes
continuent d’être utilisée de nos jours, et ce malgré l’apparition de satellites d’observation de la
terre de plus en plus performants (voir section 1.2.2). Celles-ci ont pour avantage de permettre la
génération d’images géographiquement et temporellement ciblées (i.e., on peut acquérir de nou-
velles images sur de nouvelles zones en fonction des besoins et des conditions atmosphériques).
Les images aériennes ont par ailleurs des résolutions considérées comme étant élevées ou très
élevées (inférieure à 1 mètre), et sur lesquelles peu de nuages sont présents. Ce dernier point s’ex-
plique par l’altitude relativement basse à laquelle les clichés sont obtenus par rapport aux don-
nées satellitaires, et par le fait qu’il est possible de commander la campagne de vol selon la météo
(ajustement flexible). Concernant la mise à disposition de ces données, la France fait office de pays
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submergé la vallée, et il s’agit pour les auteurs de permettre la visite virtuelle de cette vallée avant la
mise en place du barrage. Dans la même thématique, Kruse et al. [KRH19] et Ozdemir et al. [OR19]
proposent des approches de vision par ordinateur pour inférer la position de cratères d’obus de
la seconde guerre mondiale à partir d’images aériennes historiques afin de guider des équipes de
déminage pour sécuriser les sols qui pourraient encore contenir des engins explosifs. Ces cratères
sont considérés comme difficiles à détecter sur les images actuelles à cause des renouvellements
des éléments présents au sol (i.e., recouvrement par des zones urbaines, des cultures, ou autre).
Gominski et al. [GPGBC19] explorent la possibilité de mettre en correspondance et d’associer des
images actuelles et des images du passé, dont des images aériennes, afin de pouvoir les géoloca-
liser automatiquement. Enfin, nos travaux proposent d’estimer l’OCS à partir d’images aériennes
historiques afin d’inférer les expositions environnementales aux pesticides sur une maladie avec
une latence de 15 à 25 ans.

1.3 Problématique et positionnement

Nous avons vu quel était l’objectif du projet épidémiologique TESTIS, et nous avons mis en
avant les données disponibles pour parvenir à estimer l’occupation du sol historique (OCS) afin
d’estimer les expositions aux pesticides d’origine agricole. Cette section a pour but de clarifier le
positionnement de cette thèse en informatique dans ce contexte pluridisciplinaire, et d’introduire
les problématiques qui ont été abordées par nos travaux.

Nous avons vu dans la section précédente (voir section 1.2) que peu de données annotées
existent sur la période d’intérêt du projet TESTIS (1970-2000). Parmi les images disponibles pour
réaliser des annotations et générer des cartes d’OCS, nous rappelons que le choix réalisé par les
géomaticiens pour ce projet s’est porté sur les images aériennes d’archives de l’IGN. Pour la pé-
riode d’intérêt de TESTIS, la majorité de ces images ne sont disponibles qu’en niveaux de gris. Ces
dernières contiennent moins d’informations spectrales que les données satellites disponibles à la
même époque. Il a cependant été estimé que ces images étaient plus faciles d’accès que les don-
nées satellites du programme Landsat, l’IGN étant un organisme français qui garantit l’accès à ces
données tout en proposant une interface adaptée [IGN20b]. De plus, les images aériennes pos-
sèdent une résolution bien supérieure aux premiers satellites Landsat, ce qui leur permet d’être
plus aisées à interpréter par un être humain (représentation plus commune) bien que moins dis-
criminantes spectralement. A noter que ce constat ne vaut pas pour les acquisitions satellites ac-
tuelles (e.g., résolution de 1.5 mètres pour le programme SPOT).

L’analyse manuelle des images aériennes prend néanmoins beaucoup de temps, et représente
un point bloquant dans le cadre de TESTIS. Une estimation grossière consisterait à considérer
1 image par adresse par sujet, soit 7623 (6.6 adresses × 1155 sujets) images à traiter pour l’en-
semble de l’étude. En pratique, ce nombre est certainement plus important : il faut parfois plu-
sieurs images pour couvrir la zone d’intérêt correspondant à une adresse, et il est parfois né-
cessaire d’analyser l’environnement d’une adresse à plusieurs dates différentes. Néanmoins, en
supposant notre estimation grossière correcte, et en estimant le temps de traitement de chaque
image à une demi-journée de travail, il faudrait l’équivalent de 3812 jours pour traiter l’ensemble
des données. Le nombre de jours travaillés par an étant d’environ 220 en 2020 en France, il fau-
drait donc 208 homme.mois pour obtenir les résultats attendus. Face à ce constat, il semble né-
cessaire de proposer des solutions permettant de faciliter et d’accélérer l’étape d’annotation des
images aériennes historiques, point qui constitue un véritable frein à la réalisation de TESTIS. Ce-
pendant, peu d’études se sont à ce jour intéressées à l’analyse du contenu des images aériennes
historiques panchromatiques d’un point de vue vision par ordinateur, les efforts de la commu-
nauté étant principalement concentrés sur l’analyse des données actuelles et futures, porteuses
d’informations temporelles et multispectrales dont la qualité et la quantité ne cessent de croître.
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Dans ce cadre, nous avons consacré nos efforts au développement de méthodes originales
de vision par ordinateur adaptées aux images aériennes historiques. A noter que nous n’avons
pas travaillé avec des images acquises en vue oblique (i.e., prise de vue non parallèle au sol). Nos
travaux ont été réalisés en trois étapes.

• Dans un premier temps, nous nous sommes intéressés à la classification des différents types
d’OCS à l’aide d’approches basées sur la texture et l’apprentissage profond [RCJF+19a]
[RCJF+18] [RBCJT19]. On remarque en effet que les images aériennes permettent de visua-
liser le territoire sous forme de motifs similaires qui permettent à l’humain de distinguer
différents types d’OCS (e.g., forêts, zones urbaines). Nos résultats ont été intégrés au sein
du logiciel Gouramic, proposant d’intégrer l’utilisateur dans la boucle pour la segmenta-
tion sémantique des images aériennes panchromatiques et présenté en annexe A [FRCJ+18;
FRCJ+19].

• Dans un second temps, nous nous sommes intéressés à la colorisation automatique et à
l’application de ce type d’approche aux images aériennes historiques. D’une part, nous avons
cherché à combler le fossé visuel entre les acquisitions historiques panchromatiques et les
acquisitions récentes en couleurs dans le but de faciliter l’annotation de ces images par
les géomaticiens. D’autre part, nous souhaitions étudier l’intérêt de la colorisation comme
étape intermédiaire pour la classification [RCJF+19b; RCJF+19c].

• Enfin, nous nous sommes intéressés au post-traitement des segmentations sémantiques des
images aériennes historiques afin d’améliorer les résultats obtenus par les géomaticiens à
l’aide du logiciel Gouramic. En particulier, nous avons étudié l’utilisation d’algorithmes de
segmentation non supervisés (clustering) et de champs aléatoires conditionnels pour ré-
duire les erreurs de classification et lisser spatialement les résultats obtenus [RCJF+20].

La suite de ce manuscrit découle directement de ces trois étapes. Le chapitre 2 présente les
principaux éléments théoriques de la littérature sur lesquels nos travaux se sont basés. Le cha-
pitre 3 présente nos travaux relatifs à la classification d’images aériennes historiques en différentes
classes d’occupation du sol. Le chapitre 4 présente nos travaux portant sur la colorisation auto-
matique. Le chapitre 5 s’intéresse au post-traitement des résultats obtenus par inférence pour les
cartes d’occupation du sol. Le chapitre 6 conclut ce manuscrit et présente des perspectives qui
nous semblent intéressantes pour la poursuite de nos travaux.
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Chapitre 2

Notions de base

Ce chapitre introduit les méthodes de la littérature sur lesquelles nos travaux se sont basés. Il a
pour but de fournir au lecteur un tour d’horizon des approches existantes afin de mieux situer les
travaux que nous avons réalisés. Pour cela, nous traiterons d’abord des approches de traitement
d’images et d’apprentissage automatique, que nous qualifierons ici de "classiques", avant de nous
intéresser aux méthodes d’apprentissage "bout en bout", qui ont connu un regain de popularité
ces dernières années. En particulier, nous aborderons les méthodes employées pour l’extraction
de caractéristiques de textures à partir d’images numériques, avant de nous intéresser aux mé-
thodes de sur-segmentation permettant de générer des groupes de pixels homogènes, aussi appe-
lés segments ou objets en télédétection. Nous verrons ensuite les notions relatives aux réseaux de
neurones profonds à convolutions, permettant d’optimiser simultanément les étapes d’extraction
de caractéristiques et de classification. Nous présenterons également des exemples d’utilisation
de ces méthodes sur des données de télédétection.
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2.1. EXTRACTION DE CARACTÉRISTIQUES DE TEXTURES

FIGURE 2.2 – Exemples de d’images texturées dans divers domaines d’applications. Image extraite
de [LCF+19].

En biométrie, la texture a pu être utilisée pour reconnaître des empreintes palmaires [KZ02],
des visage [AS93; RAHI13; TT10], ou encore identifier des individus par leur iris [LTYD03]. En ima-
gerie médicale, les méthodes d’extraction de caractéristiques de textures ont montré leur intérêt
pour obtenir des descriptions représentatives pour la machine [CTK15], comme pour l’être hu-
main [LSS+17]. Dans le domaine de la reconnaissance automatique des végétaux, de nombreux
travaux se sont intéressés à l’utilisation de la texture pour reconnaitre des espèces d’arbres à tra-
vers leurs écorces [PVMH14; BCT17; BAC+18]. En numismatique, la texture a pu être utilisée pour
analyser les défauts visuels des pièces de monnaies pour la gradation automatique [Pan18]. En
télédétection, les analyses basées sur la texture ont pu montrer leur intérêt pour l’estimation de
l’occupation du sol à partir du ciel et de l’espace [ZY98; HW90; FLG15; AKvdW+18].

2.1.2 Description de la texture

La recherche en analyse de textures vise au développement de méthodes efficaces, et si pos-
sible robustes au perturbations, pour pouvoir représenter une image texturée à l’aide d’un vecteur
de caractéristiques représentatif. La texture étant par définition un phénomène spatial lié aux va-
riations d’intensité, les méthodes développées pour extraire des caractéristiques de textures s’at-
tachent tout particulièrement à l’intégration de l’information disponible dans le voisinage d’un
pixel. On parle alors de descripteurs locaux, qui, pour chaque pixel d’intérêt, génèrent des carac-
téristiques en se basant sur l’information portée par le voisinage du pixel. Ces caractéristiques
locales sont ensuite agrégées pour représenter l’image entière à l’aide d’un unique vecteur de ca-
ractéristiques. Les agrégations les plus communes incluent l’utilisation de statistiques, d’histo-
grammes, de mise en commun (pooling), ou encore l’utilisation de textons (encodage à l’aide de
groupes de caractéristiques) [LCF+19]. De façon générique, il s’agit ici de passer d’une représenta-
tion locale à une représentation globale de la texture. Dans un état de l’art étendu réalisé en 2019,
Liu et al. [LCF+19] faisaient référence à ce type d’approche sous le terme de sac de mots (sous-
entendu, visuels), par analogie avec les approches employées en traitement naturel du langage.
Ici, chaque caractéristique correspondrait à un mot décrivant la texture.

Dans la suite de cette section, nous détaillons plusieurs types d’approches classiques utilisées
pour l’extraction de caractéristiques de textures denses (i.e., qui se basent sur l’ensemble des pixels
de l’image) : matrices de cooccurrences, banques de filtres de Gabor, et motifs binaires locaux.
Elles sont présentées ici car elles sont régulièrement utilisées en télédétection [WFZ+18; HCLD16]
pour la classification de l’occupation du sol (voir sous-section 2.1.3). Nous porterons une atten-
tion particulière sur les méthodes basées sur les motifs binaires locaux [OPM01]. D’une part, ces
méthodes ont montré leur capacité à générer rapidement des représentations discriminantes de
relativement faibles dimensions [AFA+16]. D’autre part, nous les avons particulièrement étudiées
dans le cadre de cette thèse. Les méthodes basées sur des réseaux de neurones profonds à convo-
lutions sont quant à elles décrites en section 2.4, dans un contexte plus générique que celui de
l’analyse de la texture.
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mettre de détecter des bords et des lignes à orientation et échelle variables. Chaque filtre de Gabor
G est modélisé à l’aide d’une sinusoïde complexe modulée par un filtre gaussien. Dans le cas 2D,
qui nous intéresse en traitement d’images, la partie réelle de ce filtre est représentée par l’équa-
tion (2.1), et la partie imaginaire par l’équation (2.2). Les paramètres a et b permettent de modifier
la fréquence et l’orientation du filtre, tandis que σ2 représente la variance de la gaussienne qui
permet de faire varier l’échelle du filtre. Il est possible de définir différentes banques de filtres de
Gabor en faisant varier ces paramètres [MM96; PS06].

G1(x, y) = cos(ax +by)×exp(−
x2 + y2

2σ2
) (2.1)

G2(x, y) = si n(ax +by)×exp(−
x2 + y2

2σ2
) (2.2)

En pratique, les filtres dans un banque de filtres de Gabor sont appliqués sur une image I à
l’aide d’une convolution afin d’obtenir une image filtrée J. Une fois l’image J obtenue, des statis-
tiques peuvent directement en être extraites, telles que la moyenne et la variance. Afin d’obtenir
un représentation plus complète, il s’agit d’extraire ces statistiques à partir du résultat de chaque
filtre, puis de concaténer le tout au sein d’un même vecteur de caractéristiques. A noter qu’il a
été montré que, malgré la définition des filtres de Gabor à plusieurs orientations et échelles, leurs
performances tendent à diminuer en présence de rotations, ou plus généralement de transforma-
tions affines [LCF+19; ZMLS07].

Résumé des propriétés. Nous résumons ici les propriétés principales des filtres de Gabor (forces
(+), faiblesses (-)) :

• (+) Représentation multi-échelle

• (+) Formulation supposée robuste au bruit (filtre gaussien) et robuste aux rotations dans le
plan

• (-) Nécessité d’utiliser beaucoup de filtres pour obtenir une représentation à plusieurs échelles
et rotations (augmentation des temps de calculs)

• (-) Suppression des hautes fréquences (filtre gaussien) pouvant réduire la quantité de motifs
détectés

Motifs Binaires Locaux

Les méthodes visant à décrire les motifs locaux à l’aide de codes binaires [OPM01] ont connu
un fort engouement depuis leur apparition à la fin des années 1990 [PZ15; LCF+19]. Une taxono-
mie dédiée à ces méthodes a d’ailleurs été réalisée en 2017 [LFG+17], montrant la grande quantité
de travaux qui leur ont été consacrés (voir tableaux 8 et 9 de [LFG+17]). Cet engouement s’ex-
plique de par la relative simplicité dans la formulation de ces approches, leurs propriétés d’inva-
riances, leur faible complexité algorithmique et leur pouvoir discriminant pour l’analyse de tex-
tures comparé aux approches plus classiques [FÁB13], et ce notamment sur des données de télé-
détection [AFA+16]. Ici, nous présentons les fondamentaux liés aux méthodes basées sur les filtres
de type Motifs Binaires Locaux (Local Binary Pattern, LBP) [OPM01], ainsi que les grandes lignes
correspondant aux différentes extensions de cette approche. Nous reviendrons en détail sur les
méthodes utilisées dans nos travaux et issues de cette catégorie de descripteurs dans le chapitre 3.

Principe. Les filtres basés sur les LBP sont des filtres locaux invariants aux changements d’in-
tensité globaux. Ils permettent de calculer un code binaire local représentatif de l’information de
texture en utilisant un voisinage circulaire de rayon R contenant P pixels gp et centré sur un pixel
central gc . Il est possible de représenter un voisinage (P,R) à l’aide de coordonnées discrètes ou
continues [OPM01]. Dans le premier cas, la valeur d’un pixel voisin est obtenue en considérant la
valeur discrète la plus proche de la position réelle de l’élément sur le cercle de rayon R. Dans le
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• (+) Robustesse aux rotations dans le plan (avec mapping de type r i ou r i u2)

• (+) Possibilité de modifier le voisinage et d’étendre la quantité de motifs détectés par conca-
ténation d’histogrammes

• (+) Algorithmes généralement rapides, possibilité d’optimisations parallèles

• (-) Perte d’information avec le mapping pouvant parfois réduire l’efficacité

• (-) Histogrammes potentiellement de grandes tailles sans mapping

• (-) Les motifs binaires intéressants pour une tâche donnée ne sont pas a priori connus, et
l’exhaustivité de la représentation n’est pas désirée (trop coûteuse, gain difficile à estimer)

• (-) Sensibilité au bruit (gradient local), mais possibilité d’appliquer un filtre passe bas au
préalable

2.1.3 Application de la texture en télédétection

Les acquisitions réalisées en télédétection permettent d’observer la terre vue du ciel, ortho-
gonalement à la surface (nous excluons les acquisitions en vue oblique dans le cadre de cette
thèse). Les territoires apparaissent alors comme étant constitués de grandes zones texturées, dont
la forme n’est pas a priori connue (e.g., deux forêts de feuillus peuvent avoir des formes diffé-
rentes). Face à ce constat, les méthodes d’analyse de la texture ont été largement utilisées en télé-
détection, et ce depuis de nombreuses années. A titre d’exemple, en 1974, Mauer [Mau74] étudiait
déjà l’intérêt de la texture et des paramètres associés pour permettre la classification des champs
de cultures à partir d’images aériennes en couleurs scannées.

Quelques cas d’utilisation dans le temps. En 1981, Irons et al. [IP81], proposaient d’étudier
l’intérêt de statistiques locales similaires à celles extraites à l’aide des GLCM (moyenne, variance,
skewness, kurtosis) pour l’analyse des images multi-spectrales de Landsat-2. Les auteurs indi-
quaient alors que ces représentations semblaient utiles pour la détection des hautes fréquences
présentes dans l’image, mais que leur intérêt semblait limité pour la séparation des classes d’oc-
cupation du sol. En 1990, He et al. [HW90] proposaient l’utilisation d’unités de textures (Texture
Units) pour l’analyse d’image de télédétection. Les unités de textures avaient ici une formulation
très proche des filtres de motifs ternaires, basés sur les LBP, qui ont gagné en popularité 20 ans
plus tard. Les résultats préliminaires obtenus par les auteurs montraient l’intérêt d’étudier ce type
d’approche pour la classification d’images de télédétection de résolutions moyennes (10 m x 10m,
20 m x 20 m) en 4 classes d’occupation du sol. En 1998, Zhu et al. [ZY98] s’intéressaient à l’utili-
sation d’une banque de filtres de Gabor dans un contexte de télédétection afin de classifier l’oc-
cupation du sol en 25 catégories. En 2005, Warner et al. [CGDC+14] comparaient l’utilisation de
l’auto-corrélation avec les GLCM pour segmenter les zones cultivées correspondant à des vignes
et des vergers. En 2008, Rabatel et al. [RDD08] proposaient une approche itérative pour détecter
les vignes à partir d’une analyse des zones correspondants aux pics de hautes fréquences dans
l’espace de Fourrier avec des filtres de Gabor. Encore en 2008, Caridade et al. [CMM08] mon-
traient l’intérêt des statistiques GLCM pour générer automatiquement des cartes d’occupation
du sol (quatre classes : eau, sol nue, arbres, prairies) à partir de 4 images en niveaux de gris du parc
Peneda-Gerês au Portugal, acquises en 1958 (résolution 3m×3m, avec environ 6000×6000 pixels
par image).

Plus récemment, en 2014, Champion et al. [CGDC+14] proposaient d’exploiter les GLCM pour
estimer l’age des forêts à partir d’acquisitions réalisées par un radar à synthèse d’ouverture. En
2015, Feng et al. [FLG15] proposaient de combiner l’information portée par les canaux RVB (Rouge-
Vert-Bleu) d’une image en couleurs avec les statistiques extraites d’une GLCM afin d’améliorer
l’identification de la végétation en environnement urbain à partir d’images acquises par drone.
En 2016, Regniers et al. [RBLG16] exploraient l’utilisation d’ondelettes (i.e., banque de filtres) ba-
sées sur des modèles multivariés afin de segmenter des images optiques panchromatiques de très
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haute résolution en trois classes d’occupation du sol. Ils ont pu montrer que des résultats pro-
metteurs pouvaient être obtenus sur ce type d’images, en comparaison avec l’utilisation de mé-
thodes plus classiques telles que les GLCM. Encore en 2016, Aguilar et al. [AFA+16] comparaient
26 extracteurs de caractéristiques incluant plusieurs approches de type LBP et des GLCM pour
l’analyse automatique d’images satellites. Les auteurs ont ainsi pu montrer que les approches
de type LBP permettaient d’obtenir des taux de bonne classification plus élevés que les autres
méthodes comparées, et ce pour des temps d’exécution plus faibles. Toujours en 2016, Hunag et
al. [HCLD16] s’intéressaient à l’utilisation d’une représentation complétée des LBP combinée à un
encodage à l’aide des vecteurs de Fisher [SPMV13] afin de classifier des images de télédétection.
En 2018, Wang et al. [WFZ+18] proposaient eux aussi d’utiliser une représentation complétée des
LBP, cette fois-ci pour classifier la végétation côtière à partir d’images de très hautes résolutions.
En 2019, Kwak et al. [KP19] prenaient en compte des statistiques issues de GLCM combinées aux
informations spectrales d’une série d’images (Rouge, Vert, Proche Infrarouge) acquises par drone
à plusieurs dates afin d’estimer différents types de champs de cultures.

Observations. Nous remarquons ici une forte prédominance des approches de type GLCM
dans les applications de la texture en télédétection, et ce malgré le fait que plusieurs études aient
pu montrer l’avantage des approches de type LBP pour la classification des images texturées. Nous
pouvons ici seulement supposer que cela est dû à la disponibilité de ces approches au sein des
logiciels de type SIG, permettant à la communauté pluridisciplinaire de la télédétection d’utiliser
ces méthodes sans avoir à les ré-implémenter. Un autre aspect important qui pourrait expliquer la
popularité des GLCM est l’interprétabilité des vecteurs de caractéristiques générés (i.e., exprimer
empiriquement les valeurs générées). La difficulté d’interprétation des histogrammes générés par
les filtres de type LBP peut en effet être un frein à leur utilisation pour certains praticiens. Par
ailleurs, on constate que peu d’études se sont intéressées aux images aériennes historiques, et ce
en particulier à l’aide de méthodes d’extraction de caractéristiques récentes.

2.2 Sur-segmentation

La sur-segmentation, aussi appelée segmentation non supervisée (clustering), consiste à par-
titionner une image en groupe de pixels aux propriétés homogènes afin de proposer une repré-
sentation spatiale simplifiée de la donnée. L’idée est ici de considérer qu’un pixel seul ne contient
pas beaucoup d’information, et que de nombreux pixels proches les uns des autres vont possé-
der des informations similaires qu’il peut être intéressant de regrouper. En particulier, le fait de
passer d’une représentation pixels à une représentation basée sur une sur-segmentation permet
de générer ce que l’on nomme des superpixels, qui sont tout simplement des groupes de pixels
connexes. En pratique, les superpixels sont définis comme des groupes de pixels de tailles simi-
laires - nous utiliserons ici ce terme pour caractériser le résultat obtenu par toutes les méthodes
de sur-segmentation. En télédétection, il n’est par ailleurs pas rare d’utiliser les termes segments
et objets pour caractériser les superpixels [Bla10]. Ces derniers ont pu trouver des applications
pour la segmentation sémantique [KHH17], le transfert de couleur [GTP17], ou encore l’analyse
d’images 3D [CRN+19].

2.2.1 Méthodes courantes

Une évaluation de 28 méthodes de la littérature sur 5 jeux de données a été proposée par Stutz
et al. [SHL18] en 2018, mettant en avant la diversité des approches qui ont été mis au point pour gé-
nérer des superpixels. Les auteurs ont ainsi identifié 8 groupes de méthodes, dont celles basées sur
le partage des eaux (Watershed), la recherche de modes, les graphs, le regroupement (clustering)
ou encore la minimisation d’énergie. En pratique, cette évaluation vise à déterminer la qualité des
sur-segmentations générées à l’aide de critères particuliers tels que :

• L’erreur de sur-segmentation (Oversegmentation Error, OE) : mesure le fait que plusieurs
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Simple Linear Iterative Clustering (SLIC)

Simple Linear Iterative Clustering (SLIC) a été proposé par Achanta et al. en 2010 avant d’être
revisité dans une étude comparative en 2012 [ASS+12]. Cette méthode itérative correspond à une
adaptation locale de l’algorithme des k-moyennes. Le but de SLIC va être de moduler l’emprise
spatiale des cellules d’une grille régulière afin qu’elles respectent un critère d’homogénéité basé
sur la couleur dans l’espace LAB (3 valeurs : l ,a,b) et la position dans l’image (2 valeurs : x,y), de
façon similaire à l’algorithme QS. L’algorithme de SLIC proposé par [ASS+12] est décrit ci-après.

Pour une image I, on définit une grille régulière de K cellules, chaque cellule étant de taille
S ×S. On rappelle que chaque pixel est ici représenté à l’aide d’un vecteur de 5 valeurs (l ,a,b,x,y).
On initialise les K centres de masses des cellules correspondant à la valeur moyenne des pixels qui
la composent : Ck = [lk , ak ,bk , xk , yk ]. Afin de pouvoir rattacher chaque pixel à un des K centres de
masses dans l’espace 5D, il est nécessaire de définir une mesure de distance. Pour cela, Achanta et
al. [ASS+12] proposent de calculer la distance Ds d’un point à un autre à l’aide d’une combinaison
linéaire de la distance euclidienne des couleurs dl ab et de la distance euclidienne des positions
dx y (voir équations (2.8), (2.9) et (2.10), où l’indice k représente un centre de masse et l’indice
i un pixel). Ce choix est fait afin de pouvoir pondérer l’importance de la couleur par rapport à
la position à l’aide d’un paramètre m, dit de compacité, qui se comprend intuitivement comme
étant le poids relatif donné à la position des pixels.

dl ab =

√

(lk − li )2 + (ak −ai )2 + (bk −bi )2 (2.8)

dx y =

√

(xk −xi )2 + (yk − yi )2 (2.9)

Ds = dl ab +
m

S
dx y (2.10)

A l’aide de cette distance Ds , SLIC réalise à chaque itération une assignation de chaque pixel à
un des K centres dans un voisinage de 2S×2S pixels, avant de mettre à jour la position des centres.
A noter qu’il est nécessaire de fixer S pour l’utilisateur. Ce paramètre permet d’obtenir des super-
pixels à des échelles différentes (plus S est grand, plus les superpixels seront grands).

On remarquera que de nombreuses variantes de cet algorithme ont été proposées dans la lit-
térature, afin notamment d’améliorer la prise en compte de la texture et des contours à l’aide,
par exemple, de filtres basés sur les LBP (présentés dans la section précédente) ou via l’intégra-
tion des gradients de l’image dans le calcul dans la mise à jour des groupes de pixels. Des exten-
sions étendant la distance dl ab aux caractéristiques issues des couches cachées d’un réseau de
neurones profond à convolutions ont également été étudiées afin d’améliorer la qualité des sur-
segmentation générées [JSL+18; VBt18].

Efficient Topology Preserving Segmentation (ETPS)

Efficient Topology Preserving Segmentation (ETPS) [YBFU15] est un algorithme qui étend le for-
malisme introduit par SLIC à plusieurs échelles. Il introduit également des termes de régularisa-
tion supplémentaires pour améliorer la qualité des superpixels générés. En particulier, les termes
introduits par ETPS vont pénaliser les superpixels non connectés tout en les forçant à avoir une
taille finale au moins égale à un quart de leur taille initiale, et ce dans le but d’éviter que des pixels
isolés forment des superpixels. Cet algorithme se plaçait en première position de l’évaluation réa-
lisée par [SHL18] en 2018.

Tout comme SLIC, ETPS s’initialise sur une grille régulière et va chercher à assigner chaque
pixel à un groupe de pixels. Cependant, tandis que SLIC se base sur une grille régulière définie
uniquement lors de l’initialisation, ETPS va exploiter une grille régulière avec une échelle diffé-
rente à chaque itération. Pour cela, ETPS considère initialement une grille régulière relativement
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grossière, avec de grandes cellules de taille S1×S1. Pour chaque cellule de la grille, l’algorithme va
calculer le centre de masse correspondant dans un espace 5D (tout comme SLIC). Il va alors cher-
cher quelles sont les cellules de chaque superpixel qui sont adjacentes à une cellule d’un autre su-
perpixel. Les auteurs nomment ces cellules les cellules frontières (boundary blocks). Une fois cette
liste de cellules frontières obtenues, l’algorithme va alors tester la mise en commun de chaque
cellule frontière avec les superpixels de ses cellules voisines sur un voisinage 4-connexe, et affec-
ter la cellule frontière au superpixel le plus proche. A noter qu’à l’initialisation, toutes les cellules
sont considérées à la fois comme des cellules frontières et comme des superpixels. Cela permet de
regrouper des cellules (i.e., de générer des superpixels) à l’échelle la plus grossière. Afin de raffiner
la sur-segmentation obtenue à chaque itération i > 1, une nouvelle grille régulière de cellules de
taille Si × Si est créée, tel que Si < Si−1. Cette grille régulière permet de décomposer les super-
pixels obtenus lors de l’itération i − 1 en appliquant le processus basé sur les cellules frontières
qui est décrit ci-dessus. On remarquera que les auteurs précisent qu’utiliser des cellules de grande
taille permet à leur algorithme d’atteindre des minima locaux de meilleur qualité par rapport à
leur fonction objectif (i.e., distance calculée avec termes de régularisation).

Méthode de Felzenswalb et Huttenhoch (FH)

L’algorithme de segmentation proposé par Felzenszwalb et Huttenhoch [FH04] (FH) génère
des régions de pixels en modélisant l’image I à l’aide d’un graphe G =< V,E >, avec V = {v1, ..., vN}
un ensemble de N sommets correspondant aux pixels de I, et E un ensemble d’arêtes reliant les
sommets (i.e., E définit le voisinage). La pondération des arêtes E correspond à la distance sé-
parant deux sommets. Elle est définie comme la différence absolue entre les niveaux de gris des
pixels dans l’algorithme de FH.

Les superpixels s sont ici formés en regroupant les pixels (les sommets) v en fonction d’un
prédicat d’homogénéité sur les arêtes. Soit si un superpixel. On note alors Ei ⊂ E l’ensemble des
arêtes entre les pixels de si , et Ei , j l’ensemble des arêtes reliant si à un autre superpixel s j . Le pré-
dicat défini par FH consiste alors à comparer la différence maximale entre les pixels d’un même
superpixels si , que l’on nommera différence interne (Di nt ), avec la différence minimale entre si et
s j , que l’on nommera différence externe (Dext ). Les différences sont ici défini à l’aide des pondé-
ration des arêtes. Cette pondération correspondant à une différence absolue, les valeurs maximale
et minimale peuvent être définie par les équations (2.11) pour Di nt et (2.12) pour Dext . Si Ei , j est
l’ensemble vide, alors Dext prend une valeur infinie.

Di nt (si ) = maxek,l∈Ei (ek,l ) (2.11)

Dext (si , s j ) = mi nek,l∈Ei , j (ek,l ) (2.12)

Le prédicat P est alors donné par une fonction binaire qui indique si les superpixels si et s j doivent
restés distincts ou être fusionnés (voir équation (2.13)).

P(si , s j ) =

{

vrai si Dext (si , s j ) > mi n(Di nt (si )+τsi ,Di nt (s j )+τs j )
faux sinon

(2.13)

où τsi et τs j sont des paramètres de la méthode.

Cette méthode est généralement appliquée sur une image ayant été filtrée à l’aide d’un filtre
passe bas afin de lisser les hautes fréquences non désirées. Il est par ailleurs difficile de contrôler
le nombre de superpixels qu’elle va permettre de générer (paramètre non explicite, contrairement
à SLIC et ETPS).

Watershed (W)

L’algorithme de Watershed (W) [BM93], ou de partage des eaux, consiste à considérer que les
groupes de pixels dans l’image seront séparés par des gradients d’intensités. Par analogie, chaque
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intensité de gradient correspondrait ici à une élévation séparant des bassins versants (zones de
faibles gradients). Si l’on souhaitait représenter ces éléments en 3D, le gradient représenterait
donc des éléments de relief, tandis que les bassins versants correspondraient à des crevasses. L’al-
gorithme de partage des eaux va chercher à inonder les bassins versants en augmentant l’intensité
des pixels correspondants, simulant une montée du niveau d’eau. La séparation entre deux objets
correspondra alors à la position où deux bassins versants inondés se rejoignent. L’avantage prin-
cipal de cette approche est de pouvoir détecter des superpixels de tailles variables en se basant sur
une représentation intermédiaire, à savoir les hautes fréquences détectées dans l’image. Comme
pour la méthode de FH, le nombre de superpixels généré par la méthode de partage des eaux n’est
ici pas contrôlé a priori.

2.2.2 Application de la sur-segmentation en télédétection

Les superpixels en télédétection ont connu un fort engouement de par leur capacité à regrou-
per des ensembles homogènes de pixels et ainsi diminuer la quantité d’information à traiter. Une
édition spéciale du journal scientifique Remote Sensing (Télédétection), était d’ailleurs consacrée
à cette thématique en 2019 3. Cet intérêt s’explique de par le gain de temps que les superpixels
permettent d’obtenir lors des traitements d’image aériennes et satellites qui sont généralement
de très grandes tailles (e.g., 12000 × 12000 pixels), mais aussi de par la possibilité qu’ils offrent
d’agréger les statistiques spectrales au sein de chaque superpixel afin de les reconnaitre. En pra-
tique, on parle beaucoup d’identification basée objets (Object Based Image Analysis, OBIA), où un
objet est défini par un superpixel. L’avantage des approches de type OBIA est qu’elles permettent
d’obtenir des résultats sémantiques qui seront spatialement lisses par rapport aux résultats ob-
tenus au pixel-près (i.e., on attribue un label à tout un superpixel d’un seul coup, plutôt qu’à un
pixel à la fois). Une revue de ces méthodes était proposée par Blaschke et al. en 2010 [Bla10]. Les
auteurs indiquaient alors que les méthodes de type OBIA devenaient de plus en plus populaires en
comparaison des méthodes basées pixels. A titre d’exemple, Zhang et al. [ZZS+19] utilisent des su-
perpixels à plusieurs échelles générés par un logiciel commercial 4 afin d’extraire des statistiques
multispectrales pour chaque superpixel et ainsi classifier les superpixels. Un vote majoritaire entre
les résultats obtenus avec les superpixels d’échelles différentes est ensuite réalisé.

De nombreuses approches combinant réseaux de neurones à convolutions (voir section 2.4) et
superpixels ont également vu le jour. Postdajian et al. [PBMS18] proposent de classifier des ima-
gettes centrées sur les superpixels issues de la méthode FH afin de générer des résultats spatia-
lement cohérents tout en réalisant une classification dense de l’occupation du sol en un temps
raisonnable (par superpixel plutôt que par pixel). Les auteurs indiquent que les paramètres de la
méthode FH ont été selectionnés manuellement dans le cadre de leurs travaux. Ma et al. [MGS+19]
proposent d’extraire des superpixels à l’aide de SLIC, qu’ils combinent avec un réseau de neurones
à convolutions leur permettant d’extraire automatiquement des caractéristiques représentatives
d’images radars et ainsi attribuer une classe d’occupation du sol à chaque superpixel. Pour cela,
ils proposent de s’intéresser non seulement à chaque superpixel de l’image, mais également à une
imagette englobant le superpixel et centrée sur celui-ci. Ce choix a été fait afin d’intégrer à la fois
l’information spécifiquement liée au superpixel et l’information liée à son contexte (imagette).
Le fait de combiner l’information portée par les superpixels avec leur environnement au travers
d’imagettes et de réseaux de neurones profonds a également été étudié par Chen et al. [CM19].
Gharibbafghi et al. [GTR18] utilisent l’algorithme SLIC à plusieurs échelles afin d’extraire des bâ-
timents à partir de modèles numériques de terrain (représentation 3D des éléments observés au
sol) générés par imagerie satellite stéréoscopique. Sherpherd et al. [SBD19] proposent quant à eux
de comparer plusieurs algorithmes de sur-segmentation tels que FH et Quick Shift pour la géné-
ration de superpixels adaptés à l’analyse d’images satellites.

3. https ://www.mdpi.com/journal/remotesensing/special_issues/Superpixel_based_Analysis_and_Classification
4. https ://geospatial.trimble.com/products-and-solutions/ecognition
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Observations. De nombreux travaux ont mis en avant l’avantage des approches basées super-
pixels afin de générer des représentations spatiales plus cohérentes qu’avec les approches basées
pixels. On remarque aussi ici la volonté d’avoir accès à un contexte spatial plus étendu que les su-
perpixels générés par les méthodes classiques afin d’améliorer les résultats obtenus. Pour chaque
application (différentes images, différentes résolutions, différents objets à reconnaitre), il semble
cependant y avoir une incertitude qui se dégage quant à la taille optimale des superpixels à utiliser
(utilisation de plusieurs échelles, modification des paramètres à la main).

2.3 Algorithmes de classification

Dans le cadre de nos travaux, nous nous sommes particulièrement intéressés à la classifica-
tion des images aériennes historiques. Cette section a pour but d’introduire la notion de classi-
fieur (algorithme de classification) et présente les méthodes de classification supervisée les plus
couramment utilisées dans la littérature.

2.3.1 Définitions

Définition intuitive

Un algorithme de classification, ou classifieur, permet d’attribuer automatiquement une classe
à un objet représenté par un vecteur de caractéristiques. Les différentes classes possibles en sortie
d’un classifieur dépendent de l’application visée et doivent être fixées par l’utilisateur. Afin de les
représenter, il est d’usage d’avoir recours à des étiquettes correspondant à des valeurs numériques
distinctes et identifiables (e.g., {eti quet te} : cl asse ; {0} : or ang e, {1} : pomme). Un classifieur est
donc un algorithme qui va associer des vecteurs de caractéristiques à des étiquettes.

Définition formelle

Considérons un vecteur de caractéristiques x ∈C
N avec N ∈N

∗, et Y l’ensemble des étiquettes
formé par un sous-ensemble des entiers relatifs Z dont les éléments sont tous distincts deux à
deux. Un classifieur h est alors défini comme une application injective de C

N dans Y qui, à tout x
de dimension n à valeur dans CN, associe une étiquette y de Y. Cette définition est succinctement
représentée par l’équation (2.14) pour un nombre d’étiquettes k arbitraire.

y = h(x), x ∈C
N, y ∈ Y = {y1, ..., yk } (2.14)

Il est important de remarquer que les vecteurs x sont pris dans C
N afin de nous assurer de l’exis-

tence d’un produit scalaire entre les vecteurs de notre ensemble de départ, condition nécessaire à
l’apprentissage de certains classifieurs tels que les machines à vecteurs de support.

Ensembles d’entraînement, de validation et de test

Afin de pouvoir classifier un vecteur de caractéristiques, les classifieurs ont besoin d’être expo-
sés à un ensemble connu de paires caractéristiques-étiquettes (cas surpervisé). Cet ensemble est
généralement nommé ensemble d’entraînement, que l’on notera Xtr ai n . Le terme entraînement
est ici lié au fait que certains algorithmes vont optimiser leurs paramètres, au sens mathématique,
par rapport à Xtr ai n afin de réaliser la tâche de classification. Cet ensemble est généralement cou-
plé à un ensemble de validation, Xval , qui permet de sélectionner les hyperparamètres (i.e., para-
mètres difficilement optimisables mathématiquement) de l’algorithme par recherche exhaustive
sur grille de paramètres. L’ensemble de validation est constitué de données qui ne sont pas pré-
sentes dans Xtr ai n . En pratique, il est possible de se passer de Xval en ayant ou bien recours à des
approches par validation croisée, ou bien en ne cherchant pas à optimiser les hyperparamètres,
ou encore en cherchant à évaluer les algorithmes dans un scénario optimiste (i.e., algorithmes "au
meilleur de leur forme") lorsque que peu de données existent. Enfin, l’ensemble des données de
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souhaite classifier. La marge est ici définie comme étant la distance entre l’hyperplan et les points
qui en sont les plus proches. Les points les plus proches de l’hyperplan sont nommés les vecteurs
de supports (chaque point correspondant à un vecteur de caractéristiques). Dans le cas linéaire,
nous pouvons considérer un classifieur h (un hyperplan) comme une fonction qui va pondérer
un vecteur de N caractéristiques x à l’aide d’un vecteur de poids w = {w1, ..., wN} afin d’en estimer
l’étiquette y (voir équation (2.15)).

h(x) = wTx +w0 (2.15)

Il peut être montré que la fonction h optimale s’obtient en minimisant 1
2 ||w ||2 sous contraintes

yk (wTxk + w0) ≥ 1 , avec (xk , yk ) l’ensemble des paires caractéristiques-étiquettes de Xtr ai n =

{(x1, y1), ..., (xp , yp )}, telles que yk ∈ {−1,1}. Ce problème peut être résolu à l’aide des multiplica-
teurs de Lagrange (voir [CV95]), dont la solution duale met en avant que seul un sous-ensemble
de points est nécessaire pour obtenir une solution (les vecteurs de support), et que l’hyperplan
solution dépend uniquement du produit scalaire entre le vecteur d’entrée x et les vecteurs de sup-
port xk (voir équation (2.16), où α∗

k est un multiplicateur de Lagrange optimal).

h(x) =
p
∑

k=1
α∗

k yk (x ·xk )+w0 (2.16)

Ce dernier point permet d’utiliser l’astuce du noyau (kernel-trick), qui consiste à projeter les vec-
teurs de caractéristiques non linéairement séparables dans un espace de redescription où ils sont
linéairement séparables. Pour cela, on utilise un noyau K(xi , x j ) = φ(xi )T ·φ(x j ), ce qui donne la
solution décrite pas l’équation (2.17).

h(x) =
p
∑

k=1
α∗

k yk K(x, xk )+w0 (2.17)

En pratique, les noyaux les plus régulièrement utilisés sont le noyau polynomial (2.18) et le noyau
gaussien (aussi appelé fonction de base radiale, RBF) (2.19). A noter que le choix du noyau RBF
tend à fonctionner correctement dans la majorité des cas (i.e., il est à privilégier quand aucun a
priori n’est connu sur la structure des données), mais qu’il est nécessaire de fixer le paramètre γ à
l’aide d’un jeu de validation.

K(xi , x j ) = (xT
i · x j )d ,d ∈N (2.18)

K(xi , x j ) = e−γ||xi−x j ||
2
, avec γ> 0 (2.19)

Par ailleurs, il est courant de ne pas pouvoir trouver d’hyperplan séparant linéairement les points,
et ce même dans l’espace de redescription. Les SVM sont donc généralement optimisés à l’aide
d’une marge souple [CV95], prenant la forme d’un terme de régularisation permettant une to-
lérance à l’erreur. Ce terme de régularisation est pondéré par un paramètre C > 0, qui va per-
mettre de réaliser un compromis entre les erreurs commises et la largeur de la marge. En pratique,
ce terme de régularisation permet d’éviter le sur-apprentissage. Il est généralement déterminé à
l’aide d’un ensemble de validation.

Forêts aléatoires d’arbres décisionnels

Les arbres décisionnels sont des classifieurs qui vont être optimisés afin de générer une déci-
sion basée sur des règles logiques successives. Un arbre est ici constitué d’un ensemble de nœuds,
chaque nœud étant responsable de séparer l’ensemble des données qu’il prend en entrée en deux
groupes à l’aide d’un seuil sur les caractéristiques des données. De nombreuses approches ont
été proposées dans la littérature pour construire des arbres de décisions, telles que ID3 (Iterative
Dichotomiser 3) [Qui86] ou encore CART (Classification And Regression Trees) [BFOS84]. Ici, nous
allons nous intéresser tout particulièrement à l’algorithme CART, à la base des forêts aléatoires.

L’algorithme CART est basé sur des règles logiques binaires, il fonctionne avec des valeurs
continues et va permettre d’optimiser le choix des caractéristiques et les seuils logiques à chaque
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δsor t i e
j = g sor t i e ′(zsor t i e

j )L ′(ŷ j , y j ) (2.23)

δ(l )
j = g (l )′(z(l )

j )
∑

j k
w (l+1)

j k δ(l+1)
j (2.24)

∂L

∂w (l )
j k

= al−1
j δ(l )

j (2.25)

∂L

∂b(l )
j

= δ(l )
j (2.26)

Ces dérivées partielles permettent de mettre à jour les paramètres du réseau à l’aide des équa-
tions (2.27) et (2.28), où λ est le taux d’apprentissage (learning rate, LR), dont la valeur est géné-
ralement faible pour éviter les variations trop fortes des paramètres. Celui-ci défini la vitesse de
mise à jour des paramètres lors de la descente de gradient.

w (l )
j k = w (l )

j k −λ
∂L

∂w (l )
j k

(2.27)

b(l )
j = b(l )

j −λ
∂L

∂b(l )
j

(2.28)

Des algorithmes de mise à jour des paramètres plus évolués, tenant notamment compte de
l’intensité du gradient et des variations passées (momentum), ont par ailleurs été proposés dans
la littérature (e.g., RMSPROP [HSS12], ADAM [KB14]). Ces algorithmes permettent d’optimiser les
réseaux de neurones plus rapidement et plus efficacement en régularisant les variations des para-
mètres.

En pratique, l’entraînement d’un réseau de neurones se fait à l’aide d’un sous ensemble de
données d’entraînement à chaque itération. Ce sous ensemble est nommé batch, et la taille du
batch correspond au nombre d’échantillons utilisés par itération. L’utilisation d’un batch permet
de cumuler l’erreur sur plusieurs échantillons de données avant de calculer et de rétropropager le
gradient. Cela permet d’accélérer l’entraînement via la parallélisation des algorithmes.

Les hyperparamètres principaux du MLP concernent le choix du taux d’apprentissage, le choix
de la fonction de coût, le choix des fonctions d’activation, le choix de l’algorithme de mise à jour
des paramètres, le nombre de couches cachées et le nombre de neurones par couche ; qui défi-
nissent la profondeur du réseau ainsi que le nombre de paramètres à optimiser. En pratique, il est
difficile d’estimer a priori ces hyperparamètres et une étape de validation peut être nécessaire. La
règle générale veut cependant que plus il y a de neurones, plus il y a de paramètres, donc plus les
représentations qu’un réseau de neurones pourra apprendre seront complexes. En revanche, plus
il aura de paramètres, plus il y aura besoin d’un grand nombre de données pour que l’optimisation
converge vers une solution mathématiquement optimisée. De la même manière, plus la quantité
de paramètres est importante, plus l’entraînement des réseaux de neurones est lent.

2.4 Réseaux de neurones à convolutions

Les réseaux de neurones à convolutions (Convolutional Neural Network, CNN) sont apparus
dès la fin des années 1990 [LBBH98], mais ne sont vraiment devenus populaires qu’à partir de 2012
avec le succès sans précédent de ces approches pour la classification à grande échelle [KSH12] sur
le jeu de données ImageNet (ILSVRC 2012) [RDS+15].
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FIGURE 2.12 – Schéma illustrant le principe d’un réseau de neurones entièrement convolutif (FCN) de type
encodeur-décodeur pour la segmentation sémantique. Il s’agit ici du réseau SegNet [BKC17].

2.4.1 Blocs de base

Nous décrivons ici certains des blocs de base pouvant être utilisés au sein d’un réseau de neu-
rones à convolutions.

Filtres de convolutions

Les filtres de convolutions sont l’essence même des réseaux de neurones à convolutions. Ce
sont eux qui vont permettre de filtrer la donnée. En pratique, ils vont pondérer et sommer les
pixels d’une image au travers d’une opération de convolution (opération bilinéaire, associative,
commutative). Par définition, ces filtres sont donc invariants à la position des pixels dans l’image.
Dit autrement, les poids (i.e., les paramètres) des neurones convolutifs sont partagés par tous les
pixels de l’image.

La dimension de ces filtres est définie en nombre de pixels par la hauteur H, la largeur W, et la
profondeur C. Ces dimensions définissent le nombre de paramètres du filtre qui peuvent être opti-
misés par descente de gradient (W×H×C). La profondeur correspond ici au nombre de canaux de
l’image qui vont être vus par le filtre. Ces filtres prennent généralement une taille impaire de pixels
afin que le résultat soit centré sur le pixel central du filtre. Les filtres de taille supérieure à 1×1×C
(H×W ×C) vont dépasser de l’image lorsqu’ils vont traiter des pixels aux bords de celle-ci. Une
solution courante est d’ajouter des pixels aux bords de l’image. Cette opération se nomme le pad-
ding, et va généralement de pair avec la convolution. Les pixels ajoutés par padding peuvent être
de plusieurs types, tels que des zéros, du bruit blanc, ou une copie des pixels aux bords de l’image.
Elle permet d’obtenir une image filtrée de la même taille que l’image en entrée. Ce constat n’est
cependant valable que lorsque la fenêtre glissante représentant le filtre de convolutions va par-
courir les pixels de l’image avec un pas de 1 (stride égal à 1). Le fait de faire varier ce pas permet
de sous-échantillonner l’image sans avoir recours à des opérations supplémentaires (e.g., un pas
de 2 divisera les dimensions H et W de l’image par deux). Un exemple de filtre de convolutions de
taille 3×3×1 appliqué sur une image mono-canal est présenté sur la figure 2.13.

Il existe par ailleurs plusieurs types de convolutions, que nous détaillons ci-dessous. Certaines,
parmi les plus courantes, sont également représentées sur la figure 2.14.

• Convolution classique. Il s’agit ici du filtre de convolutions standard de taille H×W ×C.
L’application d’une convolution classique avec padding sur une image de taille Ih×Iw ×Ic va
générer une image filtrée de taille Ih×Iw ×1 (agrégation de l’information spectrale contenue
par les différents canaux). Il est de fait nécessaire d’utiliser plusieurs filtres de convolutions
différents pour générer des images filtrées différentes. Ces images filtrées sont aussi appe-
lées cartes de caractéristiques (features map). A titre d’exemple, l’application de n f filtres de
convolutions va permettre de générer n f cartes de caractéristiques, qui seront concaténées
dans la dimension des canaux (image de taille Ih × Iw ×n f ).
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ainsi de fusionner des images multispectrales de basse résolution avec des images panchroma-
tiques de haute résolution (pansharpening) à l’aide d’un CNN. Pour cela, Masi et al. ont utilisé
un réseau de neurones entièrement convolutif prévu pour la super-résolution (i.e., l’agrandisse-
ment des images en minimisant les pertes) qu’ils ont conditionné à la fois sur les images pan-
chromatiques et sur les images multispectrales. Audebert et al. [ALSL16] proposaient l’utilisation
d’un réseau entièrement convolutif suivant une architecture encodeur-decodeur pour segmenter
des images multispectrale acquises en environnement urbain. Pour cela, les auteurs proposaient
une approche multi-échelle en combinant les sorties générées par trois convolutions transpo-
sées de tailles différentes. Encore en 2016, Maggiori et al. [MTCA16] utilisaient un réseau entiè-
rement convolutif pour détecter des bâtiments à partir d’images aériennes de haute résolution
(≥ 1 m). La même année, Chen et al. [CJL+16] proposaient l’utilisation de réseaux de neurones à
convolutions pour extraire et classifier des caractéristiques à partir d’images hyperspectrales. En
2017, Wang et al. [WLH+17] étudiaient la possibilité d’affiner les poids de réseaux de neurones à
convolutions pré-entraînés pour classifier des images aériennes [YN10] et satellites [PNDS15]. En
2018, Kellenberger et al. [KMT18] s’intéressaient à l’utilisation des réseaux de neurones à convo-
lutions pour la détection de mammifères à partir d’images acquises par drone. Lin et al. [LFW+17]
s’intéressaient quant à eux à l’apprentissage non supervisé de caractéristiques pour classifier des
images de télédétection. Ils ont pour cela utilisé un réseau de neurones adversaire afin d’entraîner
un réseau de neurones discriminant à reconnaitre de vraies images aériennes d’images aériennes
générées. Les paramètres du réseau discriminant sont ensuite fixés, et celui-ci est utilisé pour ex-
traire des vecteurs de caractéristiques afin de décrire des images aériennes et de les classifier en
plusieurs classes d’occupation du sol. En 2018 encore, Maltezos et al. [MPD+18] s’intéressaient à
l’utilisation des réseaux de neurones à convolutions pour détecter les ombres et les bâtiments à
partir d’images aériennes.

2.5 Conclusion et positionnement

Nous avons introduit plusieurs blocs de base de la littérature pour l’extraction de caractéris-
tiques, la classification, la sur-segmentation et l’apprentissage automatique d’approches "bout
en bout". Cependant, ces approches n’ont que très peu été appliquées sur des images aériennes
historiques panchromatiques. Dans le cadre de nos travaux, nous avons dans un premier temps
cherché à générer des cartes d’occupation du sol en nous basant sur la classification de textures
et les réseaux de neurones profonds à convolutions. Notre but était d’obtenir rapidement des ré-
sultats vraisemblables. Pour cela, nous avons notamment réalisé une étude comparative des ap-
proches existantes de type LBP et de DCNN, auxquelles nous avons pu proposer deux nouvelles
variantes de filtres de type LBP (chapitre 3). Dans un second temps, nous avons cherché à exploi-
ter et à développer des réseaux de neurones entièrement convolutifs pour la colorisation d’images
aériennes historiques, et ce dans le but de proposer une visualisation alternative de ces données et
d’améliorer les résultats obtenus par classification (chapitre 4). Pour cela, nous nous sommes tout
particulièrement intéressés aux approches non-supervisées, permettant d’optimiser les DCNN à
l’aide de données dont la vérité terrain (la couleur des images historiques dans notre cas) n’est
pas connue. Enfin, nous avons cherché à améliorer les cartes d’occupation du sol obtenues par
classification dans un contexte de post-traitement à l’aide de sur-segmentations que nous avons
intégrées au sein d’un champs aléatoire conditionnel (chapitre 5). En particulier, nous avons pro-
posé l’utilisation d’une représentation intermédiaire pour la génération de superpixels à l’aide
d’un DCNN optimisé pour l’estimation de bords sémantiquement intéressants.
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Chapitre 3

Classification de textures

Ce chapitre présente les travaux que nous avons réalisés concernant la classification automatique
de textures, principalement appliquée aux images aériennes historiques. Pour réaliser ces travaux,
nous avons dans un premier temps constitué un jeu de données annotées, que nous avons nommé
HistAerial. Ce jeu de données nous a permis de comparer l’utilisation de plusieurs méthodes d’ex-
traction de caractéristiques et de classification, ainsi que des réseaux de neurones à convolutions.
Nous avons ensuite étendu nos travaux à l’analyse d’images couleur extraites d’écorces d’arbres
dans le cadre d’une collaboration avec une autre doctorante. Le but était ici de vérifier la possibi-
lité de combiner des caractéristiques issues d’images en niveaux de gris avec des caractéristiques
de couleur afin d’améliorer le pouvoir discriminant des représentations obtenues. Ces expériences
nous ont par la suite menées à réaliser des travaux sur la colorisation automatique, présentés dans
le chapitre suivant.
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3.2. HISTAERIAL, UN NOUVEAU JEU DE DONNÉES

Pour cela, nous nous intéressons ici à la classification d’images aériennes historiques comme
substitut pour la génération de cartes d’occupation du sol. Le choix de nous intéresser à la classi-
fication a été fait afin de pouvoir comparer sur une base commune des chaines de traitements
classiques basées sur l’extraction de caractéristiques de textures et des réseaux de neurones à
convolutions (voir chapitre 2). Afin de réaliser cette étude, nous avons dans un premier temps
construit un jeu de données que nous avons nommé HistAerial, composé de plusieurs millions
d’imagettes annotées. Nous présentons ce jeu de données dans la section 3.2. Nous avons ensuite
sélectionné et comparé des algorithmes d’extraction de caractéristiques et de classification (filtres
de type LBP + classifieur, réseaux de neurones à convolutions). Nos travaux ont été intégrés dans le
logiciel Gouramic, présenté en Annexe A. Enfin, nous avons collaboré avec une autre doctorante,
travaillant sur la reconnaissance des végétaux, pour étendre nos résultats à des images texturées
en couleurs (écorces d’arbres), et ce dans le but de déterminer si la couleur pouvait permettre
d’améliorer les résultats obtenus en classification.

3.2 HistAerial, un nouveau jeu de données

Cette section présente le jeu de données HistAerial, que nous avons créé en collaboration avec
les géomaticiens du département Cancer et Environnement du Centre Léon Bérard afin d’évaluer
des chaines de traitements pour la classification des images aériennes historiques. Ce jeu de don-
nées a été mis gratuitement et publiquement à la disposition de la communauté afin d’encourager
les efforts de développements pour l’analyse automatique de ce type d’images (voir
http://eidolon.univ-lyon2.fr/~remi1/HistAerialDataset/).

3.2.1 Images sources

HistAerial a été conçu à partir d’images aériennes historiques panchromatiques acquises en
France entre les années 1970 et 1990. Elles ont été téléchargées via le service remonterletemps
de l’IGN [IGN20]. Ces images sont disponibles sans annotations de l’occupation du sol. De par la
faible quantité de données disponibles en infrarouge et en couleurs dans les années 1970 et 1980,
seules des images panchromatiques ont été ici utilisées (voir chapitre 1). Une fois les images télé-
chargées, elles ont été géoréférencées manuellement par les géomaticiens du Centre Léon Bérard
via le logiciel ArcGis. Pour cela, 7 points d’ancrage en moyenne ont été utilisés pour projeter les
images dans un repère géographique (Lambert 93). Le Lambert 93 est le système de projection en
vigueur en France. Le choix des images à télécharger a ici été fait afin d’obtenir des zones de rayon
1.5 km à partir de l’adresse des sujets recrutés pour une précédente étude au Centre Léon Bérard
(TESTEPERA, en région Rhônes-Alpes, France), les sujets de l’étude TESTIS n’ayant pas tous été
recrutés et géocodés lorsque nous avons démarré nos travaux. A ces données se sont ajoutées des
images d’autres zones géographiques en France qui ont été sélectionnées afin de combler la pré-
sence relativement faible de certains types d’occupations du sol sur les premières images. Au total,
81 images annotées ont été utilisées (ordre de grandeur de la taille des images : 6000 × 6000 pixels).
Les détails liés à l’annotation de ces images sont présentés en Section 3.2.3.

3.2.2 Propriétés des images sources

Avant de détailler la construction du jeu de données HistAerial à proprement parler, nous al-
lons d’abord nous intéresser aux propriétés des images aériennes historiques utilisées. Ces pro-
priétés ayant déjà été partiellement introduites dans le chapitre 1, il s’agit ici de mettre en avant
les difficultés que ces images représentent d’un point de vue traitement d’image.

Les images utilisées pour constituer HistAerial ont les propriétés suivantes :

• Elles sont monochromatiques.
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• Elles sont de hautes résolutions. Il a été estimé sur un sous échantillon de 25 images que
la résolution des images utilisées varie de 0.17 à 1.4 mètres, pour une résolution moyenne
estimée à 0.5 mètres.

• Elles ont été acquises durant les périodes estivales, lorsque le soleil était haut dans le ciel
et que peu de nuages étaient présents. Ces conditions permettent de limiter l’apparition
d’ombres portées par les bâtiments et les arbres, et de limiter également l’apparition de
nuages sur les clichés photographiques.

• Elles sont géolocalisées suite au géoréférencement réalisé. Cela signifie qu’il est potentiel-
lement possible d’exploiter des méta-données géographiques en plus des images. Ce point
constitue une perspective potentielle à nos travaux.

• Pour une coordonnée géographique donnée (un sujet), plusieurs images aériennes peuvent
avoir été acquises dans le temps. Dans le cadre de nos travaux, les géomaticiens ont estimé
qu’il y avait peu de chance d’obtenir plus d’une zone d’intérêt par an (une zone d’intérêt
pouvant être constituée de plusieurs images).

• La qualité exacte des images est supposée inconnue et variable. Ce point est dû au fait que
les systèmes d’acquisition et de numérisation (non connus pour nous) ont pu évoluer avec
le temps, et que les conditions d’acquisitions extérieures sont incontrôlables (e.g., présence
de vent, de poussière, etc.).

• Les images ont été acquises dans un passé lointain, ce qui empêche l’acquisition de nou-
velles données pour les périodes étudiées.

Ces propriétés induisent une variabilité intra-classe élevée (i.e., une même classe d’occupa-
tion du sol peut être représentée à l’aide d’images très différentes), ainsi qu’une variabilité inter-
classe faible (i.e., des images de classes d’occupation du sol différentes se ressemblent). Cette re-
marque est valable à la fois dans l’espace et dans le temps (e.g., les cultures et les prairies n’ont
pas une représentation statique, et ces représentations varient d’une région à une autre). Il n’est
par ailleurs pas possible de se baser sur des informations telles que l’index NDVI ou les distribu-
tions multispectrales [HLZ14] pour distinguer les différentes classes d’occupation du sol car seul
le canal panchromatique est disponible. Enfin, l’écart temporel important entre deux images pour
une localisation géographique donnée associé aux modifications du territoire dans le temps com-
pliquent l’utilisation de séries temporelles pour produire des résultats plus robustes, tels que ceux
obtenus par Kussul et al. [KLSY16].

3.2.3 Génération du jeu de données

Annotations

Les annotations manuelles ont été réalisées à l’échelle de la parcelle de terrain à l’aide de
7 classes d’occupation du sol, à savoir : Verger, Terres Arable (abrégé Arable par la suite), Prai-
rie, Vigne, Urbain, Forêt, Eau. Ces annotations ont été réalisées densément (i.e., tous les pixels
de l’image ont été annotés), avec l’ensemble des classes disponibles, pour 56 des 81 images aé-
riennes. Les autres annotations ont été réalisées de façon ciblée (i.e., seules certaines parcelles
ont été annotées) afin de combler le manque en données pour certaines classes. Ainsi, 15 images
aériennes ont été partiellement annotées avec uniquement la classe Verger, et 10 images ont été
partiellement annotées avec uniquement la classe Vigne. Les annotations partielles ont été réa-
lisées car les classes Vergers et Vignes était sous-représentées dans les 56 premières images. Par
ailleurs, compte tenu de la résolution moyenne des images (0.5 mètres) et la taille des zones étu-
diées (rayon 1.5 km), les annotations denses correspondent à des zones composées de très nom-
breux pixels (≈ 6000×6000 pixels, voir Figure 3.1).
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(voir tableau 3.3) a été créé afin de tenir compte de cette observation. Pour chaque taille, des ima-
gettes ont été échantillonnées en se basant sur le nombre le plus faible d’imagettes par classe. Ce
processus permet d’avoir, de façon approximative, la même proportion d’imagettes pour chaque
taille disponible tout en ayant le même nombre d’imagettes par classe (class-balanced). Ces deux
sous-ensembles de données ont été échantillonnés une fois pour toute, de telle sorte que les expé-
riences détaillées dans la Section 3.4 ont toutes été réalisées sur les même données. Des exemples
d’imagettes sont présentés sur la figure 3.3 pour chacune des classes et chacune des tailles consi-
dérées dans HistAerial.

TABLEAU 3.1 – Le jeu de données HistAerial complet.

Nombre d’imagettes par taille (en pixels)
Classe 25 × 25 50 × 50 100 × 100
Verger 319 804 76 866 17 888
Arable 631 015 145 097 30 754
Prairie 348 349 71 334 11 984
Vigne 174 288 40 528 8 889
Urbain 891 500 204 746 43 254
Forêt 443 760 95 945 18 554
Eau 121 294 28 173 6 207
Total 2 930 010 662 689 137 530

TABLEAU 3.2 – Le sous ensemble équilibré en taille du jeu de données HistAerial.

Nombre d’imagettes par taille (en pixels)
Classe 25 × 25 50 × 50 100 × 100
Verger 6 000 6 000 6 000
Arable 6 000 6 000 6 000
Prairie 6 000 6 000 6 000
Vigne 6 000 6 000 6 000
Urbain 6 000 6 000 6 000
Forêt 6 000 6 000 6 000
Eau 6 000 6 000 6 000
Total 42 000 42 000 42 000

TABLEAU 3.3 – Le sous ensemble équilibré en classe du jeu de données HistAerial.

Nombre d’imagettes par taille (en pixels)
Classe 25 × 25 50 × 50 100 × 100
Verger 120 000 28 000 6 000
Arable 120 000 28 000 6 000
Prairie 120 000 28 000 6 000
Vigne 120 000 28 000 6 000
Urbain 120 000 28 000 6 000
Forêt 120 000 28 000 6 000
Eau 120 000 28 000 6 000
Total 840 000 196 000 42 000
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considérées comme étant des instances spatialement indépendantes, de façon similaire au
jeu de données d’écorces d’arbres proposé par Porebski et al. [PVMH14]. Elles sont de fait
aptes à capturer les variabilités inter-classes et intra-classes sans incorporer de corrélation
explicite entre deux imagettes (voir figure 3.3). Il est cependant à noter que des imagettes
issues d’une même parcelles auront plus de chances de se ressembler que des imagettes de
parcelles différentes (i.e., même capteur, même résolution, même structure de la parcelle).

• (+) Les imagettes permettent de réaliser une étude à plusieurs échelles. Seule la taille des
imagettes nécessite d’être modifiée lors de leur extraction afin d’acquérir des données de
tailles différentes. Il est également possible de relaxer les contraintes liées à la présence de
plusieurs classes au sein d’une même imagette.

• (-) Le nombre d’imagettes par classe dépend d’image aériennes annotées de tailles fixes.
Elles ne permettent pas de représenter chaque classe disponible de façon équilibrée. Les
sous-ensembles de HistAerial visent à résoudre ce problème pour comparer différents algo-
rithmes.

• (-) Par choix, chaque imagette ne représente qu’une seule et unique classe, ce qui empêche
toute acquisition d’imagettes à la frontière entre deux parcelles / éléments sémantiques.
Ainsi, plus les imagettes sont grandes, moins la quantité d’imagettes extraite est importante
(voir tableau 3.1). L’utilisation d’imagettes avec recouvrement permettrait de résoudre ce
problème. Cependant, à l’image de Porebski et al. [PVMH14], nous avons préféré éviter toute
redondance spatiale entre les imagettes d’une même taille et provenant d’une même image.

• (-) La forme carrée des imagettes a été choisie de façon arbitraire afin de comparer différents
algorithmes. Elle ne tient pas compte de la nature hiérarchique des classes d’occupation du
sol qui possèdent des caractéristiques à plusieurs échelles sémantiques (i.e., notion d’ob-
jets, tels que des parcelles / des superpixels). La représentation de chacune des classes dans
HistAerial est, de fait, moins précise que si nous avions accès à la géométrie des parcelles
auxquels ils appartiennent. Ce problème est abordé dans un cadre de post-traitement dans
le chapitre 5 de ce manuscrit.

3.3 Algorithmes évalués sur HistAerial

Cette section présente les algorithmes évalués sur HistAerial. Le but est ici de trouver des ap-
proches performantes pour la classification des images aériennes historiques, tout en ayant le
volonté de limiter les temps d’exécution et la taille des vecteurs de caractéristiques extraits. Cette
volonté est guidée par le besoin de pouvoir appliquer ces algorithmes en un temps raisonnable
sur des machines non dédiées aux calculs scientifiques, telles que les ordinateurs utilisés par les
praticiens / géomaticiens.

3.3.1 Algorithmes d’extraction de caractéristiques de la littérature

Les algorithmes d’extraction de caractéristiques "artisanaux" (handcrafted) qui ont été étudiés
dans nos travaux ont été principalement introduits pour la classification de textures. L’utilisation
de filtres de textures a déjà été appréciée dans des travaux antérieurs sur des images aériennes
et satellites (voir chapitre 2). Nous rappelons en effet que les images aériennes représentent des
zones à grande échelle constituées d’objets spatialement proches observés à partir d’un point
d’observation élevé et généralement perpendiculaire au sol. De ce point de vue, la surface de
la terre est représentée avec des motifs structurels spécifiques et presque répétitifs, qui corres-
pondent implicitement à la définition des textures inhomogènes en vision par ordinateur. Sur la
base de ces observations, nous avons comparé plusieurs filtres de textures artisanaux de la littéra-
ture basés sur les motifs binaires locaux (LBP) [OPM00] sur le jeu de données HistAerial. Ils sont
présentés ci-dessous pour des images en niveaux de gris. D’autres filtres plus classiques tels que
la matrice de cooccurrence de niveau de gris (GLCM) [HSD73] et les filtres de Gabor [Mar11] n’ont
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Une fois la variance locale calculée pour chaque pixel du voisinage circulaire, un histogramme
de 128 bins représentant la variance globale de l’image filtrée est calculé. Cet histogramme de
variance est concaténé à l’histogramme LBP [OPM00]. Le filtre VAR-LBP génère ainsi un histo-
gramme de 2P + 128 bins en supposant que aucun mapping n’est appliqué.

Center Symmetric Local Binary Pattern (CSLBP) [HPS06]

le filtre CSLBP [HPS06] tient compte uniquement de l’information portée par les pixels du
voisinage gp . Il utilise la symétrie du voisinage pour calculer le signe de la différence entre les
pixels opposés par gc (symétrie centrale, voir (voir figure 3.4 (f)). Cette opération est représentée
par l’équation (3.4). La valeur du pixel central n’est pas utilisée ici. Le filtre CSLBP produit un code
binaire de P

2 bits par voisinage, résultant en un histogramme 2
P
2 bins.

CSLBPP,R =

P
2 −1
∑

p=0
s(gp − gp+ P

2
)2p (3.4)

avec s(x) défini par l’équation (3.5).

s(x) =

{

1, x ≥ τ

0, si non
(3.5)

où τ est une valeur faible (e.g. τ= 0.01).

Extended Center Symmetric Local Binary Pattern (XCSLBP) [SBF15]

Le filtre XCSLBP [SBF15] a été introduit comme une amélioration du filtre CSLBP dans un
contexte de soustraction d’arrière-plan. Il a été conçu pour être plus robuste au bruit que le CSLBP
tout en conservant un pouvoir discriminant équivalent. Il utilise des métriques intermédiaires
g1(p,c) et g2(p,c) pour calculer le code binaire à partir des pixels du voisinage opposés par sy-
métrie centrale en tenant comme de la valeur du pixel central gc (voir équations (3.6) et (3.7), et
figure 3.4 (g)). On remarquera ici que ces métriques intermédiaires intègrent la valeur de gc , qui
est absente du filtre CSLBP.

XCSLBPP,R =

P
2 −1
∑

p=0
s(g1(p,c)+ g2(p,c))2p , (3.6)

avec s(x) défini par l’équation (3.5) et

{

g1(p,c) = gp − gp+ P
2
+ gc

g2(p,c) = (gp − gc )× (gp+ P
2
− gc )

(3.7)

Tout comme le CSLBP, le XCSLBP résulte en un histogramme de 2
P
2 bins.

Three Patch Local Binary Pattern (TPLBP) [WHT08]

Pour définir le TPLBP [WHT08], on considère un patch C comme étant représenté par une fe-
nêtre de w pixels × w pixels centrée sur un pixel du voisinage (P,R). Le code binaire du filtre TPLBP
est obtenu en calculant la différence entre deux distances euclidiennes, elles même calculées entre
le patch central Cc et deux de ses patchs voisins Cp et Cp+α (voir équation (3.8)). Ces patchs sont
présents sur le même rayon R et radialement espacés d’un angle de valeur α. Dans [WHT08], α
est égal à 2, résultant en un angle de 90 degrés entre Cp et Cp+α lorsque le nombre de voisins P
est égal à 8. Le filtre TPLBP appliqué sur une image en niveaux de gris génère un histogramme de
2P bins si aucun mapping n’est utilisé. Dans nos travaux, nos avons utilisé utilisé w = 1 (i.e., un
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patch est un pixel) et α= 2 afin de limiter le nombre de paramètres de la méthode (illustration sur
la figure 3.4 (d)).

TPLBPP,R,w,α =
P−1
∑

p=0
s(d(Cp ,Cc )−d(Cp+α,Cc ))2p (3.8)

avec s(.) définie par l’équation (3.5) et d(.) la distance euclidienne.

Four Patch Local Binary Pattern (FPLBP) [WHT08]

Le filtre FPLBP [WHT08] calcule la différence entre deux distances euclidiennes obtenues de
manière symétrique par rapport au pixel central en comparant deux patchs espacés radialement
avec un angle de α degrés et présents sur deux rayons différents R1 et R2 (voir équation (3.9)). La
valeur de α est généralement choisie comme étant égale à 180

P . La différence entre les distances
euclidiennes est comparée à zéro pour produire un code binaire de P

2 bits, résultant en un histo-

gramme de 2
P
2 bins. Il est illustré sur la figure 3.4 (e).

FPLBPP,R1,R2,w,α =

P
2 −1
∑

p=0
s(d(CR1,p ,CR2,p+α)−d(CR1,p+ P

2
,CR2,p+ P

2 +α
))2p (3.9)

Completed Local Binary Pattern (CLBP) [GZZ10]

Le filtre CLBP [GZZ10] combine trois filtres complémentaires de type LBP, tous définis avec le
même voisinage (P,R) que le filtre LBP d’origine (voir figure 3.4 (b)). Le premier est le filtre LBP
classique, renommé CLBP_S (voir équation (3.1)). Les autres filtres sont CLBP_M et CLBP_C, où M
représente la magnitude et C le niveau de gris central correspondant à la valeur de gc . L’amplitude
correspond à la valeur absolue de la différence entre gc et un pixel voisin gp . Elle représente une
information complémentaire au signe qui est par définition indépendant de l’intensité. Celle-ci est
encodée à l’aide d’un code binaire défini par l’équation (3.10), où mp et τm sont respectivement
la magnitude de la différence entre gp et gc et la moyenne de toutes les magnitudes dans l’image.
La fonction s(.) est ici définie comme étant la fonction signe classique.

CLBP_MP,R =
P−1
∑

p=0
s(mp −τm)2p (3.10)

Le code binaire du CLBP_C est quant à lui obtenu en comparant gc avec le niveau de gris
moyen µ de l’image entière [GZZ10] (voir équation (3.11)). La fonction s(.) est là aussi définie
comme étant la fonction signe classique.

CLBP_CP,R = s(gc −µ) (3.11)

Le filtre CLBP permet d’obtenir un histogramme concaténé de 2P+1 +2 bins lorsque aucun map-
ping n’est utilisé.

Local Ternary Patterns (LTP) [TT10]

Le filtre LTP [TT10] est une extension du filtre LBP (même voisnage, voir figure 3.4 (b)). Il génère
un code ternaire au lieu d’un code binaire. Les valeurs ternaires sont obtenues en appliquant deux
seuils opposés (τ,−τ) et choisis arbitrairements. Afin de simplifier sa représentation et de le rendre
moins coûteux en calculs, le code LTP peut être séparé en deux codes LBP : un pour la partie
positive et un pour la partie négative [TT10]. La partie positive est obtenue en mettant toutes les
valeurs positives à 1 et les autres à 0 tandis que la partie négative est obtenue en mettant toutes les
valeurs négatives à 1 et les autres à 0. En fin de compte, le filtre LTP génère soit un histogramme de
3P bins, soit deux histogrammes de 2P bins pouvant être concaténés pour former un histogramme
unique de 2P+1 bins. La génération d’un code ternaire est montrée par une fonction signe telle que
définie par l’équation (3.12).

61



CHAPITRE 3. CLASSIFICATION DE TEXTURES

s(x) =







+1, x ≥+τ

0, |x| < +τ

−1, x ≤−τ

(3.12)

Robust Local Ternary Patterns (RLTP) [WSFW15]

Le filtre RLTP [WSFW15] est défini comme étant une version robuste au bruit du filtre LTP. Pour
chaque voisinage (P,R) incluant le pixel central gc , la valeur moyenne du voisinage µc est calculée
(voir équation (3.13)).

µc =
1

P+1
(gc +

P−1
∑

p=0
gp ) (3.13)

Les seuils positifs et négatifs sont alors définis comme des fractions de µc (voir équations (3.14)
et (3.15)). La constante α dans l’équation (3.14) est égale à 1 par défaut. Cette valeur n’a pas été
modifiée dans nos travaux. Il a cependant été montré que régler la valeur α par recherche exhaus-
tive pouvait permettre d’obtenir des caractéristiques plus robustes aux variations d’illuminations
avec le filtre RLTP [WSFW15].

τc = α×µc (3.14)

s(x) =







+1, x ≥+τc

0, |x| < +τc

−1, x ≤−τc

(3.15)

Le filtre RLTP génère des histogrammes de même dimension que le filtre LTP.

Soft Concave-Convex Orthogonal Combination of Robust Local Ternary Patterns (SCCOCRLTP)
[WSFW15]

Le filtre SCCOCRLTP [WSFW15] est basé sur le filtre RLTP. Il propose d’augmenter le nombre
de motifs discriminants tout en réduisant leur empreinte mémoire grâce aux concepts de combi-
naison orthogonale [ZBC13] et de discrimination concave-convexe [SFYW14]. L’idée derrière la
combinaison orthogonale est qu’une concaténation de K histogrammes obtenus à partir de K
filtres de type LBP orthogonaux entre eux sur un voisinage (P,R) devrait permettre de représen-
ter la même information qu’un histogramme unique obtenu à partir d’un filtre LBP complet, tout
en étant plus compacte (i.e., K×2P/K bins vs 2P bins). Une illustration de ce principe est présenté
sur la figure 3.5. La discrimination concave-convexe d’un voisinage LBP est quant à elle basée sur
une comparaison entre la moyenne locale du voisinage LBP avec la moyenne globale de l’image
entière (voir (3.16)). Dans l’équation (3.16), µc est la moyenne locale définie par l’équation (3.13),
µ est la moyenne globale et β est une petite valeur égale à 0 par défaut.

gc est

{

concave, si µc < (1−β)µ
convexe, si µc ≥ (1+β)µ

(3.16)

Extended Local Binary Pattern (ELBP) [LZL+12]

Le filtre ELBP est une combinaison de trois filtres de type LBP nommés respectivement ELBP_-
CI, ELBP_NI et ELBP_RD. Le filtre ELBP_CI représente l’intensité du pixel central gc . Cette inten-
sité est comparée à la valeur moyenne de l’image entière µ pour obtenir un code binaire a 1 bit
(voir équation (3.17)), soit un histogramme de 2 bins. Il correspond au filtre CLBP_C utilisé par le
CLBP.

ELBP_CIP,R = s(gc −µ) (3.17)

Le filtre ELBP_NI représente les intensités des P pixels gp , voisins de gc , d’une manière robuste
au bruit additif gaussien [LZL+12]. De façon similaire à l’approche employée par le RLTP, pour
chaque voisinage (P,R), la moyenne locale µl ,R de l’intensité des P pixels voisins est calculée (voir
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équation (3.18)). Cette moyenne locale est ensuite comparée à chaque pixel voisin gp pour générer
un code binaire (voir équation (3.19)).

µl ,R =
1

P

P−1
∑

p=0
gp,R (3.18)

ELBP_NIP,R =
P−1
∑

p=0
s(gp,R −µl ,R)2p (3.19)

Le filtre ELBP_RD représente la différence radiale entre deux pixels voisins à la même position
angulaire p, mais localisés sur deux rayons R1 et R2 différents tels que R1 < R2. Le signe de la diffé-
rence entre gp,R1 et gp,R2 est utilisé pour créer le code binaire. Il est schématisé sur la figure 3.4 (c).

ELBP_RDP,R =
P−1
∑

p=0
s(gp,R2 − gp,R1 )2p (3.20)

Étant donné que le filtre ELBP_RD et le filtre ELBP_NI résultent tous deux en un histogramme de
2P bins et que le filtre ELBP_CI donne un histogramme de 2 bins, le filtre ELBP se traduit par un
histogramme de 2P+1 +2 bins sans utiliser de mapping.

Median Robust Extended Local Binary Pattern (MRELBP) [LLF+16]

Le filtre MRELBP [LLF+16] a été présenté comme une mise à jour du filtre ELBP dédié à la
classification des textures bruitées. Les auteurs proposent ici d’appliquer un filtre passe-bas ψ(x),
centré sur le pixel x, avant le calcul des caractéristiques décrites par le filtre ELBP. Le choix d’un
filtre médian a ici été fait à travers une comparaison qualitative avec les filtres gaussiens et moyens
[LLF+16]. Le filtre MRELBP fonctionne particulièrement bien sur les jeux de données de textures
bruitées. Dans nos travaux, nous avons suivit Liu et al. [LLF+16] en fixant la taille du filtre médian
appliqué au pixel central gc à 3 pixels par 3 pixels. La taille du filtre médian pour les P pixels voisins
gp de différents rayons (R1, R2, R3), avec R3 > R2 > R1, a été fixée à (3, 3, 5).

3.3.2 Proposition de nouveaux filtres pour la texture

La plupart des filtres présentés ci-dessus génèrent des vecteurs de caractéristiques de hautes
dimensions (i.e. 2P bins) pour un seul ensemble de paramètres défini par le voisinage (P,R). Nous
rappelons par ailleurs que l’utilisation de mapping dans un contexte inadéquat peut diminuer
le pouvoir discriminant de ces filtres (voir chapitre 2). Leur utilisation peut donc résulter soit en
des résultats moins précis, soit en des étapes d’apprentissage (optimisation d’un classifieur) et de
classification plus lentes dû au nombre de caractéristiques à traiter. Cette deuxième situation n’est
a priori pas souhaitée dans le cadre d’un apprentissage en ligne (online) à partir de données four-
nies par un utilisateur (e.g., les traces dans le logiciel Gouramic, voir Annexe A). Cela est particu-
lièrement vrai sur des ordinateurs avec des capacités de calculs limitées (par exemple, sans GPU)
comme ceux utilisés par les praticiens. Afin de trouver un compromis approprié entre le pouvoir
discriminant et la taille du vecteur de caractéristiques, tout en proposant des approches complé-
mentaires à l’état de l’art actuel, nous avons proposé deux nouveaux filtres permettant d’obtenir
des vecteurs de caractéristiques de faibles dimensions.

Rotated-CorneR Local Binary Pattern (R-CRLBP)

Le filtre R-CRLBP est un nouveau filtre que nous avons introduit dans le cadre de nos travaux.
Il a été inspiré par le filtre Binary Gradient Contours (BGC) [FÁB13] et par la combinaison orthogo-
nale [ZBC13]. Il considère le signe des différences successives entre les pixels voisins présents sur
un même rayon R. La différence successive entre deux pixels voisins consécutifs est définie par la
relation suivante : (gp − gp−1). Cette opération peut être opposée à la différence symétrique cen-
trale utilisée dans le filtre CSLBP [HPS06] et à la différence classique centre-voisins utilisée dans
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quées avec succès sur des images satellite [MTCA16]. Les DCNN ont, de manière générale, ten-
dance à surpasser les extracteurs de caractéristiques classiques dans les tâches de classification.
Des banques de filtres issus des réseaux de neurones à convolutions ont également pu démon-
ter leur efficacité pour la segmentation (classification au pixel près) d’objets texturés (i.e., un élé-
ment visuel dans une scène dont la texture est discriminante) [CMV15]. Néanmoins, des études
théoriques [BKD+16] et expérimentales [LFG+17] ont pu montrer que les DCNN peuvent ne pas
être aussi performants qu’attendu sur des images de textures (i.e., gains faibles par rapport aux
méthodes plus classiques). Ils seraient en revanche aptes à générer des caractéristiques complé-
mentaires aux descripteurs de textures artisanaux [QZS+16]. Il n’y a cependant pas eu, à notre
connaissance, d’études antérieure sur l’efficacité des DCNN pour la classification des images aé-
riennes historiques. Nous avons de fait choisit d’évaluer les performances de méthodes existantes
sur HistAerial. Les DCNN présentés dans cette section ont été sélectionnés sur la base d’études
antérieures notables, avec l’idée que les architectures les moins profondes (i.e., avec moins de
couches, et moins de filtres) devraient être capables de reproduire au moins les performances des
filtres de textures présentés dans les sections précédentes.

LeNet [LBBH98]

Le modèle LeNet [LBBH98] est un pionnier parmi les réseaux de neurones profonds à convo-
lutions. Il a d’abord été appliqué pour la classification de chiffres manuscrits via le jeu de données
MNIST [LBBH98]. Il a permis d’introduire les concepts de base des couches de convolutions, des
couches de pooling et des couches entièrement connectées présentées dans le chapitre 2. Dans
LeNet, chaque couche de convolutions est suivie d’une couche de pooling moyen. Lorsqu’il est
utilisé comme un extracteur de caractéristiques (i.e., lorsque l’on retire les couches entièrement
connectées), LeNet permet de générer un vecteur de 500 caractéristiques.

AlexNet [KSH12]

AlexNet [KSH12] est le premier modèle publié publiquement a avoir obtenu un taux d’erreur
en classification (top-5) inférieur à 20% sur le jeu de données ImageNet [KSH12; RDS+15], consti-
tué de plus de 1000 classes différentes. AlexNet étend l’architecture de LeNet en rajoutant plusieurs
couches de convolutions afin d’extraire des caractéristiques plus profondes, et remplace le pooling
moyen par un pooling max (plus rapide). Pour nos travaux, nous avons utilisé la version d’AlexNet
proposée par la librairie Caffe. Cette implémentation exploite la technique du dropout afin d’in-
hiber aléatoirement des neurones durant l’entraînement et ainsi minimiser le sur-apprentissage.
Lorsqu’utilisé en tant qu’extracteur de caractéristiques, AlexNet permet de générer un vecteur de
4096 caractéristiques.

VGG-16 [SZ14]

VGG-16 [SZ14] empile plusieurs couches de convolutions avec des filtres de petite taille 3 ×

3 pixels, par rapport aux filtres d’AlexNet qui diminuent en taille à mesure que l’on ajoute des
couches (e.g., 11 × 11, 5 × 5, etc.). L’architecture de VGG-16 se base sur l’idée qu’en empilant plu-
sieurs petits filtres, on peut obtenir la même précision qu’avec des filtres moins nombreux mais
plus larges. Ce point permet de réduire le nombre de paramètres dans le réseau. De plus, VGG-16
applique un pooling uniquement après deux ou trois convolutions, tandis que LeNet et AlexNet
appliquent cette opération après chaque couche de convolutions. Au final, VGG-16 contient plus
de couches qu’AlexNet, ce qui devrait l’aider à apprendre une représentation plus significative des
données. Comme AlexNet, l’implémentation utilisée pour VGG-16 utilise des couches de dropout.
Il génère également un vecteur de 4096 caractéristiques lorsqu’il est utilisé comme extracteur de
caractéristiques.
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TABLEAU 3.4 – Meilleurs résultats obtenus sur le sous ensemble équilibré en taille du jeu de données His-
tAerial pour des imagettes de 25 pixels × 25 pixels. Les valeurs manquantes correspondent à des arrêts
prématurés de l’entraînement des DCNN (optimisation divergente).

Filtres de textures et classifieurs

Filtre Paramètre (P,R) mapping
Nombre de

caractéristiques
Classifieur - Accuracy (%)

Rang

KNN SVM RFOREST MLP Best
LBP (8,{1,2,3}) r i u2 30 65.5 62.6 67.5 64.3 67.5 9
LBP (8,{1,2,3}) none 768 63.2 66.7 66.1 63.7 66.7 11

VAR-LBP (8,{1,2,3}) r i u2 414 54.3 67.9 69.6 65.0 69.6 8
CSLBP (8,{1,2,3}) none 48 50.4 49.3 60.8 53.1 60.8 15

XCSLBP (8,{1,2,3}) none 48 62.5 59.1 65.9 59.0 65.9 12
TPLBP (8,{1,2,3}) r i u2 30 61.6 56.7 62.3 59.6 62.3 14
FPLBP (8,{1,2,3}) none 48 58.4 58.4 59.8 59.9 59.9 17
CLBP (8,{1,2,3}) r i u2 66 69.4 69.0 72.1 68.9 72.1 4
LTP (8,{1,2,3}) r i u2 60 66.9 65.9 69.1 69.2 69.2 7

RLTP (8,{1,2,3}) r i u2 60 60.5 53.4 63.8 54.1 63.8 13
SCCOCRLTP (8,{1,2,3}) none 384 52.2 54.5 54.5 50.2 54.5 20

ELBP (8,{1,2,3}) r i u2 66 56.3 45.9 57.2 40.0 57.2 19
MRELBP (8,{1,2,3}) r i u2 66 49.4 49.2 57.4 49.4 57.4 18
R-CRLBP (8,{1,2,3}) none 96 63.0 65.6 65.8 66.9 66.9 10
LCOLBP (8,{1,2,3}) none 240 68.6 71.0 71.2 72.9 72.9 3

Réseaux de neurones profonds à convolutions

Modèle Algorithme d’optimisation Epochs
Nombre de

caractéristiques
Accuracy (%) par taux d’apprentissage

Rang
0.01 0.001 0.0001 0.00001 Best

LeNet RMSPROP 40 500 60.0 55.3 60.2 51.7 60.2 16
AlexNet SGD 40 4096 73.0 73.6 68.6 59.1 73.6 1
VGG-16 SGD 40 4096 — 70.3 69.9 65.8 70.3 6

SqueezeNet RMSPROP 40 86528 — 72.6 73.1 65.2 73.1 2
ResNet-18 SGD 40 512 71.6 66.71 42.9 32.8 71.6 5

avec la distance chi2 (adaptée aux histogrammes) et K = 1 a été utilisé. Des résultats comparables
à ceux de la littérature ont pu être observés, indiquant que nos implémentations semblaient co-
hérentes. A titre d’exemple, le filtre MRELBP combiné au mapping r i u2, considéré comme une
référence sur cet ensemble de données [LFG+17], a permis d’obtenir un taux de bonne classifica-
tion moyen de 97.6% avec P = 8 et R = (1,2,3). En comparaison, le filtre LCoLBP a permis d’obtenir
un score de seulement 51.7% avec les mêmes paramètres. Le score obtenu avec le filtre LCoLBP
peut être expliqué par sa définition non invariante à la rotation, tandis que l’ensemble de don-
nées Outex TC_10_000 représente des images de textures orientées pour lesquelles l’utilisation du
mapping r i u2 est particulièrement justifiée.

Ensuite, les méthodes ont été comparées sur le sous-ensemble équilibré en taille du jeu de
données HistAerial (voir tableau 3.2). La métrique utilisée est le taux de bonne classification (ac-
curacy) en pourcentage. Les meilleurs résultats obtenus pour ces comparaisons sont visibles sur
les tableaux 3.4, 3.5 et 3.6. Pour les imagettes de 25 pixels × 25 pixels, le filtre LCoLBP a permis
d’obtenir le score le plus élevé entre les filtres de textures, avec un taux de bonne classification
de 72.9% en utilisant un MLP. Le filtre CLBP appliqué avec le mapping r i u2 combiné a une fo-
rêt aléatoire d’arbres décisionnels s’est classé deuxième parmi les filtres de textures, avec un taux
de bonne classification de 72.1%. En comparaison, AlexNet a permis d’atteindre le score le plus
élevé (73.6%) avec un taux d’apprentissage initial de 0.001, une décroissance du taux d’appren-
tissage de 0.1 appliquée toutes les 10 époques et un l’algorithme d’optimisation SGD. Il a généré
un vecteur caractéristique de 4096 valeurs, à comparer aux 240 bins du LCoLBP et aux 66 bins du
CLBP. Pour la même taille de vecteur de caractéristiques, VGG-16 a permis d’atteindre un taux
de bonne classification de seulement 70.3% avec un taux d’apprentissage initial de 0.0001 et l’al-
gorithme d’optimisation SGD. Toutes les combinaisons filtre-classifieur et DCNN ont obtenu des
taux de classification plus élevés avec les imagettes de plus grandes tailles. En particulier, le filtre
LCoLBP combiné a une forêt aléatoire d’arbres décisionnels s’est classé premier, au-dessus des
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TABLEAU 3.5 – Meilleurs résultats obtenus sur le sous ensemble équilibré en taille du jeu de données His-
tAerial pour des imagettes de 50 pixels × 50 pixels. Les valeurs manquantes correspondent à des arrêts
prématurés de l’entraînement des DCNN (optimisation divergente).

Filtres de textures et classifieurs

Filtre Paramètre (P,R) mapping
Nombre de

caractéristiques
Classifieur - Accuracy (%)

Rang
KNN SVM RFOREST MLP Best

LBP (8,{1,2,3}) r i u2 30 78.9 72.1 79.0 75.8 79.0 10
LBP (8,{1,2,3}) none 768 80.5 77.9 78.9 78.5 80.5 6

VAR-LBP (8,{1,2,3}) r i u2 414 67.1 77.6 80.3 78.1 80.3 8
CSLBP (8,{1,2,3}) none 48 63.4 56.2 68.6 63.5 68.6 19

XCSLBP (8,{1,2,3}) none 48 76.3 70.6 78.3 70.9 78.3 12
TPLBP (8,{1,2,3}) r i u2 30 68.9 65.7 73.6 70.1 73.6 17
FPLBP (8,{1,2,3}) none 48 72.8 70.5 74.0 71.9 74.0 16
CLBP (8,{1,2,3}) r i u2 66 79.5 77.8 80.9 77.1 80.9 5
LTP (8,{1,2,3}) r i u2 60 79.1 76.1 80.4 79.0 80.4 7

RLTP (8,{1,2,3}) r i u2 60 74.4 64.2 76.6 70.8 76.6 15
SCCOCRLTP (8,{1,2,3}) none 384 76.3 68.3 76.8 66.8 76.8 14

ELBP (8,{1,2,3}) r i u2 66 69.1 73.7 77.9 75.0 77.9 13
MRELBP (8,{1,2,3}) r i u2 66 65.7 61.5 71.8 65.4 71.8 18
R-CRLBP (8,{1,2,3}) none 96 76.1 74.7 78.8 77.2 78.8 11
LCOLBP (8,{1,2,3}) none 240 80.4 80.6 82.9 81.6 82.9 1

Réseaux de neurones profonds à convolutions

Modèle Algorithme d’optimisation Epochs
Nombre de

caractéristiques
Accuracy (%) par taux d’apprentissage

Rang
0.01 0.001 0.0001 0.00001 Best

LeNet RMSPROP 40 500 68.3 61.8 65.8 56.6 68.3 20
AlexNet SGD 40 4096 82.0 82.5 78.4 68.7 82.5 2
VGG-16 SGD 40 4096 — 79.0 80.0 77.7 80.0 9

SqueezeNet RMSPROP 40 86528 — 79.2 82.4 75.5 82.4 4
ResNet-18 SGD 40 512 82.4 74.5 60.7 37.4 82.4 3

DCNN, sur les imagettes de 50 pixels × 50 pixels avec un taux de bonne classification de 82.9%. Le
meilleur DCNN a permis d’obtenir un taux de bonne classification de 82.5 % sur ces données. Le
filtre LCoLBP s’est classé deuxième sur les imagettes de 100 pixels × 100 pixels avec un score de
89.3%. AlexNet s’est classé premier sur ces données avec un score de 90.4%.

Pour l’ensemble des méthodes, nous nous sommes également intéressés au temps nécessaire
pour l’extraction des caractéristiques. Pour cela, nous nous sommes placés dans des conditions
équivalentes à celle d’un praticien, et nous avons utilisé un ordinateur avec un processeur cadencé
à 1.7 GhZ sans carte graphique. Nous avons utilisé les implémentations optimisées de OpenCV 3.4
pour les DCNN, et nos propres implémentations pour les filtres de textures. De plus, nous avons
considéré uniquement les imagettes de 100 × 100 pixels, ces dernières étant les plus longues à
traiter pour les filtres de textures. Pour les DCNN utilisés, l’imagette est redimensionnée pour cor-
respondre à la taille attendue à l’entrée de chaque réseau. Le temps d’exécution pour l’extraction
de caractéristiques à l’aide de l’un de ces DCNN est donc constant quelque soit la taille de l’ima-
gette considérée dans HistAerial. Les résultats sont reportés dans le tableau 3.6. On y observe que,
dans ces conditions, le filtre LCoLBP est approximativement 33 fois plus rapide que AlexNet pour
l’extraction de caractéristiques, mais moins rapide que le CLBP. Concernant les étapes de classifi-
cation, à classifieur constant, un vecteur de caractéristiques plus petit nécessitera moins d’opéra-
tions, donnant ici un avantage aux filtres de textures. Ces résultats sont cependant à nuancer : les
temps d’exécution varient linéairement avec la taille de l’image pour les filtres artisanaux utilisés
ici (ils seraient moins rapides sur des images plus grandes).

Du point de vue des performances de classification globales, les filtres de textures semblent
donc permettre d’obtenir des résultats similaires aux DCNN sur le sous-ensemble équilibré en
taille de HistAerial, tout en étant moins gourmands en calculs aux étapes d’extraction et de clas-
sification des caractéristiques. En particulier, le filtre LCoLBP proposé a atteint des résultats au
niveau de l’état de l’art lorsque combiné avec une forêt aléatoire d’arbres décisionnels.
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TABLEAU 3.6 – Meilleurs résultats obtenus sur le sous ensemble équilibré en taille du jeu de données His-
tAerial pour des imagettes de 100 pixels × 100 pixels. Les valeurs manquantes correspondent à des arrêts
prématurés de l’entraînement des DCNN (optimisation divergente). Les temps moyens d’extraction de ca-
ractéristiques obtenus sur un CPU cadencé à 1.7 Ghz avant classification sont donnés en millisecondes.

Filtres de textures et classifieurs

Filtre Pramètres (P,R) mapping
Nombre de

Caractéristiques
Classifieur - Accuracy

Rang
Temps moyen

d’extraction (ms)KNN SVM RFOREST MLP Best
LBP (8,{1,2,3}) r i u2 30 87.4 81.1 87.3 83.0 87.4 9 1.047
LBP (8,{1,2,3}) none 768 89.1 85.6 86.8 84.2 89.1 5 0.964

VAR-LBP (8,{1,2,3}) r i u2 414 73.6 80.8 84.5 81.9 84.5 17 1.800
CSLBP (8,{1,2,3}) none 48 75.7 63.2 80.3 72.8 80.3 18 0.624

XCSLBP (8,{1,2,3}) none 48 84.4 78.2 86.0 77.5 86.0 11 0.8124
TPLBP (8,{1,2,3}) r i u2 30 72.5 71.0 80.1 73.7 80.1 19 1.310
FPLBP (8,{1,2,3}) none 48 84.7 79.7 85.2 81.3 85.2 15 1.023
CLBP (8,{1,2,3}) r i u2 66 85.8 85.4 88.1 84.9 88.1 6 2.701
LTP (8,{1,2,3}) r i u2 60 87.6 83.6 88.0 83.5 88.0 7 3.891

RLTP (8,{1,2,3}) r i u2 60 83.6 69.3 85.3 78.1 85.3 14 2.338
SCCOCRLTP (8,{1,2,3}) none 384 84.6 73.7 85.5 67.0 85.5 13 8.589

ELBP (8,{1,2,3}) r i u2 66 73.9 81.8 84.8 80.5 84.8 16 3.180
MRELBP (8,{1,2,3}) r i u2 66 74.8 82.2 85.9 79.6 85.9 12 3.528
R-CRLBP (8,{1,2,3}) none 96 85.6 82.2 86.7 84.6 86.7 10 1.053
LCOLBP (8,{1,2,3}) none 240 88.4 86.8 89.3 85.8 89.3 2 3.491

Réseaux de neurones profonds à convolutions

Modèle Algorithme d’optimisation Epochs
Nombre de

caractéristiques
Accuracy (%) par taux d’apprentissage

Rang
Temps moyen

d’extraction (ms)0.01 0.001 0.0001 0.00001 Best
LeNet RMSPROP 40 500 72.3 69.2 72.1 64.4 72.3 20 0.675

AlexNet RMSPROP 40 4096 — 86.9 90.4 89.7 90.4 1 99.610
VGG-16 RMSPROP 40 4096 — — 87.8 89.1 89.1 4 1256.500

SqueezeNet RMSPROP 40 86528 — 86.0 89.2 84.3 89.2 3 60.772
ResNet-18 SGD 40 512 87.8 82.9 72.0 45.7 87.8 8 144.633

Le filtre MRELBP ne semble pas permettre d’obtenir des taux de classification au niveau des
autres algorithmes sur l’ensemble de données HistAerial par rapport à l’ensemble de données Ou-
tex TC_10_000. Cela pourrait s’expliquer par l’effet de lissage du filtre médian appliqué avec le filtre
MRELBP. Ce filtre non-linéaire réduit le nombre possible de motifs que la méthode peut extraire,
ce qui peut conduire à des représentations moins discriminantes. Son impact négatif est parti-
culièrement visible sur les petites imagettes, qui sont susceptibles de contenir moins de hautes
fréquences que les plus grandes. Cette hypothèse est renforcée par les résultats obtenus avec le
filtre LTP et sa version robuste au bruit, le filtre RLTP. Elle n’est pas vérifiée pour le XCSLBP com-
paré au CSLBP. Cela peut s’expliquer par l’absence de filtre passe-bas explicite dans la formulation
du XCSLBP afin d’être plus robuste au bruit.

Le mapping r i u2 appliqué sur le filtre LBP n’a quant à lui apporté aucune amélioration ni
perte significative sur le sous-ensemble équilibré en taille de HistAerial. Son utilisation semble
donc être indiquée sur ce jeu de données afin de réduire le coût de calcul des filtres de type LBP
de la littérature.

Par ailleurs, comme indiqué dans le paragraphe précédent, les résultats obtenus par VGG-16,
ResNet-18 et SqueezeNet sur le sous-ensemble équilibré en taille de HistAerial sont inférieurs aux
résultats obtenus par AlexNet, et ce pour chaque taille. Ces résultats relatifs sont inattendus, les
réseaux comparés à AlexNet étant plus profonds et donc plus à même d’extraire des caractéris-
tiques représentatives. Ils nécessiteraient probablement d’autres expériences pour être étudiés de
manière approfondie, ce qui n’est pas le but de nos travaux. Cependant, sur la base des travaux
des auteurs de [UVL18], nous pouvons faire l’hypothèse que les DCNN se comporteraient naturel-
lement comme des filtres passe-bas résultant en une efficacité réduite sur les données de textures.
Par conséquent, un réseau plus profond générerait des cartes de caractéristiques plus lisses que
des réseaux moins profonds, ce qui entraînerait une baisse des performances sur les jeux de don-
nées de textures.
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TABLEAU 3.7 – Meilleurs résultats obtenus sur le sous ensemble de HistAerial équilibré en classe (i.e. même
proportion d’imagettes par taille).

Meilleurs résultats obtenus pour chaque méthode

Filtre Paramètres (P,R) mapping
Nombre de

caractéristiques
Accuracy (%) par taille d’imagette (pixels)
25 × 25 50 × 50 100 × 100

LCoLBP + Random Forest (8,{1,2,3}) none 240 75.0 84.1 89.3
AlexNet + SGD learning rate : 0.001 * 4096 73.4 85.6 *

AlexNet + RMSPROP learning rate : 0.0001 * 4096 * * 90.4

spatial, bien que cette hypothèse soit en désaccord avec les résultats observés sur le tableau 3.4.
Cette architecture a obtenu des scores légèrement plus élevés sur les autres tailles d’imagettes que
le filtre LCoLBP, avec des gain 1.5% sur les imagettes de 50 pixels × 50 pixels et 1.1% sur les ima-
gettes de 100 pixels × 100 pixels. Ces résultats sont conformes à l’hypothèse présentée par Basu
et al. [BKD+16] : les réseaux de neurones à convolutions semblent ne pas être aussi performants
sur les données de textures (non spatialisées) que sur des images plus classiques (représentant des
entités dans leur contexte, des objets).

On constate enfin que le contexte spatial semble fournir une amélioration significative (+15%
de taux de bonne classification entre les plus petites et les plus grandes imagettes). Ce point est en
accord avec ce qui était observé sur le sous-ensemble équilibré en taille.

3.4.4 Conclusion partielle

Dans ces travaux, un nouveau de jeu de données a été proposé pour l’analyse d’images aé-
riennes historiques panchromatiques. Il est composé de plusieurs millions d’imagettes annotées
à trois niveaux d’échelle spatiale. Une comparaison des méthodes d’extraction de caractéristiques
et de classification de la littérature a été réalisée sur ce jeu de données. Deux nouveaux filtres ont
également été proposés. Parmi eux, le LCoLBP combiné à une forêt aléatoire d’arbres décision-
nels a permis d’obtenir des résultats similaires (légèrement inférieurs) aux réseaux de neurones
profonds à convolution, et ce pour un vecteur de caractéristiques 17 fois plus petit et un temps
d’exécution bien inférieur. De manière générale, nous n’avons pas décelé de contre-indications
à l’utilisation des filtres basés sur la texture. Ces derniers semblent être particulièrement adap-
tés pour des applications sur des ordinateurs peu puissants. On notera néanmoins que les DCNN
tendent à obtenir des taux de classification plus élevés, et ce quelle que soit l’architecture utilisée.
La principale limitation des DCNN dans notre cadre de travail est liée aux ressources matérielles
qu’ils nécessitent, les rendant peu praticables sans carte graphique pour des applications interac-
tives (e.g., Gouramic, voir Annexe A). Ils semblent cependant indiqués pour des applications hors
ligne (i.e., l’utilisateur n’attendant pas devant l’écran).

3.5 Extension aux images en couleurs : cas des écorces d’arbres

Nous avons vu dans les sections précédentes que la texture est un facteur discriminant viable
pour l’analyse automatique d’images aériennes historiques. Nous avons cependant fait la remarque
que l’absence d’informations sur la couleur pouvait avoir un impact sur les taux atteignables de
bonne classification. Afin de vérifier cette hypothèse avant de nous lancer dans des travaux sur la
colorisation automatique d’images aériennes historiques (voir chapitre 4), nous avons collaboré
une autre doctorante du LIRIS travaillant sur la classification d’écorces d’arbres dans un environ-
nement mobile (i.e., identifier un arbre par son écorce sur smartphone). D’un point de vue appli-
cation, les images d’écorces d’arbres représentent des éléments sur lesquels les filtres de textures
ont tendance à être particulièrement efficaces.

Ainsi, en 2004, Wan et al. [WDH+04] ont proposé de comparer plusieurs approches statistiques
pour reconnaitre des textures, dont les GLCM (voir chapitre 2). Afin de conserver l’information
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portée par la couleur, Wan et al. ont appliqué leur approche sur chaque canal couleur (espace RVB)
avant de concaténer les caractéristiques obtenues. Huang et al. [HHD+06] ont pour leur part ex-
ploré l’utilisation d’une banque de filtres de Gabor (voir chapitre 2) pour la classification d’écorces.
Bakic et al. [BMOL+13] ont quant à eux exploré l’utilisation de plusieurs espaces couleur (RVB,
HSV) pour représenter les écorces d’arbres. Bertrand et al. [BCT17] ont cherché à combiner des
caractéristiques orientées, obtenues à l’aide de filtres de Gabor, avec une représentation éparse de
la texture représentée à l’aide du détecteur de contours de Canny et d’un échantillonnage linéaire
éparse en deux dimensions. L’information de couleur a ici été ajoutée par les auteurs en conca-
ténant l’histogramme de teinte (espace couleur HSV) aux caractéristiques précédentes. Parmi les
approches basées sur les filtres des type LBP, Boudra et al. [BYB18] ont proposé un descripteur de
textures nommé Statistical Macro Binary Pattern (SMBP). SMBP encode l’information entre dif-
férentes "macro-structures" à l’aide d’une représentation statistique de chaque échelle. Porebski
et al. [PVMH14] ont quant à eux appliqué des filtres de type LBP sur plusieurs espaces couleur en
cherchant à concaténer de manière optimale les histogrammes obtenus (e.g., concaténation des
histogrammes RVB et HSV). Les auteurs ont réussi à obtenir des taux de classification supérieurs
à l’état de l’art, au prix de vecteurs de caractéristiques de très hautes dimensions.

Ici, nous nous sommes intéressés au cas particulier de la reconnaissance des écorces dans un
environnement contraint (sur mobile). Nous avons de fait cherché à minimiser les ressources né-
cessaires, avec un focus particulier sur la mémoire utilisée (taille des vecteurs de caractéristiques).

3.5.1 Jeux de données

FIGURE 3.13 – Exemples d’images d’écorces d’arbres du jeu de données Bark-101 [RBCJT19].

Nous avons travaillé sur plusieurs jeux de données de la littérature auxquels nous avons ajouté
Bark-101 (voirhttp://eidolon.univ-lyon2.fr/~remi1/Bark-101/). Bark-101 est un nouveau
jeu de données créé par Sarah Bertrand dans le cadre de sa thèse et présenté dans le cadre de nos
travaux joints [RBCJT19]. Les caractéristiques des jeux de données que nous avons utilisés sont
résumés sur le tableau 3.8. On remarquera que la plupart de ces jeux de données sont consti-
tués d’une faible quantité d’images, pour un faible nombre de classes. Le jeu de données Bark-
101 propose quant à lui une quantité de données relativement faible, mais un nombre de classes
conséquent (101 classes). Il a été conçu à partir des images du défi PlantCLEF. Ces images ont
été acquises en milieu naturel dans des conditions non controllées afin de permettre le dévelop-
pement d’algorithmes de reconnaissance des végétaux. Ici, seules les images correspondant à des
troncs d’arbres ont été utilisées pour créer Bark-101. Ces dernieres ont été manuellement segmen-
tées afin de supprimer l’information contenue dans le fond et ne conserver que les écorces. Afin
de simuler des conditions réelles d’utilisation, nous avons choisi de suivre Wendel et al. [WSG11]
en n’imposant pas de contraintes sur la taille des images segmentées. De par la méthode d’ac-
quisition des images originelles, Bark-101 possède une forte variabilité intra-classe. De plus, le
grand nombre de classes dans ce jeu de données induit une variabilité inter-classe relativement
faible (plus on augmente le nombre d’espèces, plus les chances d’avoir des images similaires entre
classes différentes sont élevées).
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3.5.3 Expériences et résultats

Nous avons réalisé une étude comparative avec et sans réduction d’histogrammes sur les jeux
de données d’écorces présentés précédemment. Pour cela, nous avons considéré le filtres LCoLBP
et le filtre CLBP avec mapping r i u2 afin d’étudier l’intérêt des statistiques tardives avec et sans
mapping.

Stratégies d’évaluation

On distingue ici deux stratégies d’évaluation en fonction des jeux de données et des approches
utilisées dans la littérature.

• Évaluation standard : on entraîne un classifieur sur le jeu de données d’entraînement, et on
utilise le jeu de test pour évaluer la performance de l’approche. Cette approche est appliquée
sur NewBarkTex et Bark-101, tous deux proposant une séparation claire du jeu de données.
Aucun ensemble de validation n’est ici inclu. Les paramètres des classifieurs sont de fait
optimisés, si nécessaire, par validation croisée sur le jeu d’entraînement.

• Évaluation en leave-one-out : il s’agit ici d’une approche particulièrement utilisée sur les
petits ensembles de données. Soit S un ensemble de N échantillons. On réalise alors N itéra-
tions. A chaque itération, i ∈ {1, ...,N}, l’échantillon s(i ) ∈ S est réservé pour le test, et tous les
autres échantillons S − {s(i )} sont utilisés pour l’entraînement. Si s(i ) est correctement clas-
sifié, le résultat de l’itération i est positif, sinon il est négatif. Le taux de bonne classification
(accuracy) est obtenu en moyennant les résultats obtenus pour toutes les itérations. Cette
approche a été appliquée sur les jeux de données BarkTex, Trunk12 and AFF, en accord avec
les travaux réalisés par Boudra et al. [BYB18].

Pour les deux types d’évaluation, la métrique utilisée est le taux de bonne classification en top-
1. Le classifieurs KNN K = 1 avec la distance L1 a été utilisé comme référence, celui-ci étant le
plus utilisé dans le contexte de la classifcation d’écorces. Pour la stratégie d’évaluation standard,
nous avons également utilisé un SVM multi-classes avec un noyau RBF, en accord avec Porebski et
al. [PHVH18]. Les paramètres du SVM ont été obtenus par validation croisée pour chaque filtre et
chaque jeu de données indépendamment.

Choix des statistiques tardives

Nous avons considéré 7 statistiques dans nos expériences : la moyenne, la variance, l’entro-
pie, le minimum, le maximum, la valeur médiane et l’aplatissement (kurtosis). Afin de déterminer
les meilleures combinaisons de statistique pour chacun des filtres, nous avons mené une étude
par ablation sur le jeu de données BarkTex. Les résultats de cette étude sont présentés sur le ta-
bleau 3.9. On y observe qu’ajouter naïvement des statistiques (7 premières lignes) peut réduire
les taux de bonne classification. Ainsi le choix des statistiques tardives doit être fait de façon judi-
cieuse pour chacun des filtres, ce qui représente une faiblesse pour la méthode. En nous basant
sur ces résultats, le nombre de statistiques Ns a été fixé à 6 pour le LCoLBP et à 4 pour le CLBP.
Nous n’avons pas calculé de statistiques pour le sous-histogramme obtenu à l’aide du CLBP_C, ce
dernier ne contenant que deux bins. Ainsi, les statistiques tardives du LCoLBP (LS −LCoLBP) gé-
nèrent des vecteurs de Rs ×5×6 caractéristiques, où 5 est le nombre de sous filtres et 6 le nombre
de statistiques. Les statistiques tardives du CLBP génèrent des vecteurs de Rs × (2+2×4) caracté-
ristiques.

Résultats

Les résultats que nous avons obtenus sont reportés sur les tableaux 3.10 et 3.11. Les taux de
bonne classification d’études précédentes ont été reportés et indiqués à l’aide d’une étoile (*).
Pour les jeux de données AFF, Trunk12 et BarkTex, nous avons reporté les résultat obtenus avec
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les méthodes MSLBP* et SLBP* de [BYB18]. Pour le jeu de données NewBarkTex, nous avons re-
porté les résultats obtenus par les méthodes de Wang17* [JW17], de Sandid16* [SD16], et de Po-
rebski18* [PHVH18]. Nous avons également considéré les résultats des méthodes proposées par
[BCT17], que nous avons renommées GWs et GWs/H180 (concaténation avec l’histogramme de
teintes complet). Tous les résultats non reportés correspondent à nos propres implémentations
en C++ pour les filtres de type LBP et les histogrammes de couleur, et Python avec la librairie
Scikit-learn pour le calcul des statistiques tardives et l’utilisation des classifieurs. Nous discutons
les résultats obtenus ci-après.

Apport de la couleur. Nous pouvons observer que les filtres de textures permettent d’obtenir
des taux de classification plus élevés lorsqu’ils sont combinés avec les histogrammes de couleur
réduits (H30) ou non (H180). Pour rappel, les histogrammes de couleur sont obtenus à partir du
canal de teinte dans l’espace couleur HSV. Lorsqu’il est utilisé seul, H180 permet d’obtenir des
taux de classification supérieurs à ceux obtenus avec H30 de 3.3% en moyenne sur AFF, Trunk12
et BarkTex. Cependant, lorsqu’ils sont combinés aux histogrammes issus des filtres de type LBP,
leurs contributions apparaissent équivalentes. Ces résultats montrent l’intérêt de l’algorithme de
réduction d’histogramme présenté précédemment. De plus, ils confirment que la couleur est un
indice visuel non négligeable a priori pour la classification d’images texturées, et en particulier
pour la classification d’écorces. Cette observation est en accord avec les travaux de [JW17].

Apport des statistiques tardives. Les statistiques tardives permettent de diminuer la taille des
vecteurs des caractéristiques d’un facteur 2.7 pour le filtre LCoLBP et 2.2 pour le CLBP, avec une
diminution des taux de bonne classification de seulement 5.5% en moyenne. Ce chiffre est néan-
moins à nuancer en fonction des jeux de données et des stratégies d’évaluation utilisées. Les statis-
tiques tardives semblent ainsi particulièrement efficaces dans le cadre d’un stratégie de type leave-
one-out (voir tableau 3.10). Elles semblent cependant moins intéressantes dans le cadre d’une
stratégie standard (voir tableau 3.11). A noter que ces résultats peuvent partiellement s’expliquer
par la faible quantité de données d’entraînement disponible comparé à l’approche leave-one-out.

3.5.4 Conclusion partielle

Nous avons évalué l’intérêt de combiner des filtres de textures avec la couleur, représentées ici
par des histogrammes de teintes. Les résultats obtenus sur 5 jeux de données d’écorces d’arbres
nous ont montré une complémentarité entre ces deux types d’informations. Par ailleurs, nous
avons évalué deux approches permettant respectivement de réduire la taille des vecteurs de ca-
ractéristiques obtenus par les filtres de LBP et la taille des histogrammes de teintes. Nous avons
ainsi pu mettre en avant l’intérêt de ces algorithmes pour réduire la quantité d’information né-
cessaire pour classifier des images d’écorces. Cependant, ces statistiques réduisent les taux de

TABLEAU 3.9 – Étude par ablation des statistiques tardives appliquées aux filtres LCoLBP et CLBP sur le jeu
de données BarkTex.

Late Statistics Accuracy (%)
moyenne variance entropie minimum maximum médiane aplatissement LS-LCOLBP LS-CLBP

✓ – – – – – – 81.9 71.8
✓ ✓ – – – – – 82.8 59.6
✓ ✓ ✓ – – – – 78.4 64.7
✓ ✓ ✓ ✓ – – – 82.8 63.2
✓ ✓ ✓ ✓ ✓ – – 83.1 69.4
✓ ✓ ✓ ✓ ✓ ✓ – 86.3 72.1
✓ ✓ ✓ ✓ ✓ ✓ ✓ 89.5 62.8
✓ ✓ – ✓ ✓ ✓ ✓ 88.2 60.1
✓ – ✓ ✓ ✓ ✓ ✓ 89.5 62.5
✓ – – ✓ ✓ ✓ ✓ 88.2 59.6
✓ – – ✓ ✓ ✓ – 88.2 75.3
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TABLEAU 3.10 – Résultats obtenus avec un 1-NN sur les jeux de données BarkTex, AFF et Trunk12. En bleu :
Résultats les plus élevés reportés dans la littérature. En vert : résultats les plus élevés dans cette comparai-
son. En rouge : résultats les plus élevés avec les statistiques tardives.

Accuracy / Jeu de données (%)
Filtre Nombre de caractéristiques

AFF Trunk12 BarkTex
MSLBP* 2 816 63.3 63.3 86.8
SMBP* 10 240 71.7 71.0 84.3

H30 30 50.5 64.4 55.4
H180 180 55.6 69.0 61.3

LCoLBP 240 75.3 77.1 92.1
LCoLBP / H30 270 80.7 84.2 92.4

LCoLBP / H180 420 80.7 84.2 91.7
CLBP 66 68.1 70.0 78.7

CLBP / H30 96 72.9 77.4 83.8
CLBP / H180 246 73.5 78.1 84.3

GWs 121 48.2 39.9 56.1
GWs / H30 151 64.7 74.3 66.2

GWs / H180 301 66.5 76.1 69.6

LS-LCoLBP 90 69.4 74.6 89.5
LS-LCoLBP / H30 120 76.9 80.7 90.2

LS-LCoLBP / H180 270 76.9 80.7 91.2
LS-CLBP 30 59.1 70.0 75.3

LS-CLBP / H30 60 65.4 77.4 78.2
LS-CLBP / H180 210 67.9 78.1 79.4

TABLEAU 3.11 – Résultats obtenus sur les jeux de données NewBarkTex et Bark-101.

Accuracy / Jeu de données (%)
NewBarkTex Bark-101

Filtre Nombre de caractéristiques KNN SVM KNN SVM
Porebski18* 10 752 – 92.6 – –

Wang17* 267 84.3 – – –
Sandid16* 3 072 – 82.1 – –

H30 30 48.0 50.6 19.1 20.4
H180 180 48.5 53.6 22.2 20.9

LCoLBP 240 78.8 89.3 34.2 41.9
LCoLBP / H30 270 – – – 44.0

LS-LCoLBP 90 66.5 79.4 28.3 30.1
LS-LCoLBP / H30 120 71.9 82.0 27.6 32.1

LS-LCoLBP / H180 270 72.3 82.2 27.8 31.0
GWs / H30 151 60.4 74.1 28.2 31.7

GWs / H180 301 54.1 63.6 31.8 32.2

classification obtenus, et ce particulièrement dans un contexte où relativement peu de données
d’entraînement sont disponibles par rapport aux données évaluées. Face à cette observation, nous
ne les avons pas appliquées sur les histogrammes issus de HistAerial, les gains obtenus en termes
de mémoire ne compensant pas la perte de précision (accuracy) dans un environnement moins
contraint que les applications mobiles.

3.6 Conclusion

Résumé des travaux réalisés. Nous avons présenté HistAerial, un jeu de données contenant
plusieurs millions d’imagettes à plusieurs échelles pour 7 classes d’occupation du sol. Au travers
de ce jeu de données, nous nous sommes intéressés à la classification des images aériennes his-
toriques panchromatiques à l’aide de filtres de textures, de classifieurs classiques et de réseaux de
neurones profonds à convolutions. Ces travaux comparatifs nous ont permit de montrer l’intérêt
des filtres de textures pour cette tâche. Les caractéristiques extraites par ces derniers permettent
d’obtenir des résultats équivalents aux réseaux de neurones profonds sur HistAerial, et ce pour
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des temps de traitement et des besoins en mémoire (taille des vecteurs de caractéristiques) moins
importants. Nous avons par la suite étendu nos travaux à la classification d’images en couleurs en
concaténant les caractéristiques extraites par les filtres de textures et des histogrammes de teintes.
Nous avons pu montrer la complémentarité de ces deux types d’informations. Nous avons égale-
ment proposé une approche pour réduire la taille des vecteurs de caractéristiques, avec des résul-
tats que nous qualifierons de contrastés : la taille des histogrammes est effectivement réduite de
moitié (cas du LCoLBP), mais des pertes plus ou moins conséquentes de taux de bonne classifica-
tion (accuracy) ont pu être observées en fonction des jeux de données (e.g., 7.1% sur NewBarkTex).

Vision critique sur les travaux réalisés. Le jeu de données HistAerial que nous avons pro-
posé est principalement localisé sur la région Rhône-Alpes. Malgré la quantité de données qu’il
contient, il n’est probablement pas représentatif du cas général associé au territoire français. De
plus, il ne représente que le cas où une seule et unique classe est supposée présente sur les ima-
gettes (aux erreurs d’annotations près). Il y a ici la nécessité de collecter des données sur l’en-
semble du territoire. Pour cela, nous avons développé le logiciel Gouramic, présenté en Annexe A,
qui permet non seulement d’obtenir des cartes d’occupation du sol de façon interactive, mais éga-
lement de sauvegarder les annotations partielles fournies par l’utilisateur. L’application de ce logi-
ciel dans le cadre de TESTIS permet la génération de carte d’occupation du sol et de données an-
notées manuellement. Concernant les méthodes proposées, le choix de la combinaison des filtres
utilisés dans le LCoLBP a été réalisée de façon empirique, en se basant sur les types de motifs
représentés. D’autres filtres, et d’autres combinaisons de filtres de type LBP mériteraient d’être
étudiées (e.g., ajout de l’histogramme du LBP avec mapping r i u2). De plus, bien que le LCoLBP
soit relativement performant sur le jeu de données HistAerial, sa formulation non-invariante à la
rotation est peut-être moins intéressante que celle des filtres existants associés au mapping r i u2

dans le cas général (e.g., le CLBP). En pratique, nous ne pouvons ici que recommander l’évalua-
tion des méthodes sur les jeux de données d’intérêts. Le R-CRLBP permet quant à lui d’obtenir
des résultats au niveau de nombreux algorithmes de la littérature, mais il est moins performant
que les meilleures méthodes existantes. Celui-ci permet principalement de compléter la repré-
sentation du LCoLBP. Enfin, nous n’avons pas cherché à étudier l’intérêt d’un voisinage différent
de (P,R) = (8, {1,2,3}) dans ces travaux afin de limiter l’espace des paramètres et le coût algorith-
mique associé à un P > 8. Il pourrait néanmoins être intéressant de faire varier P et R afin d’obtenir
des résultats plus approfondis. Par ailleurs, les statistiques extraites des histogrammes générés
par des filtres de type LBP ne permettent pas d’obtenir des taux de classifications au niveau de
ceux provenant de l’utilisation de filtres seuls. Le gain en termes de complexité spatiale qu’ils per-
mettent d’obtenir reste quant à lui limité. Nous ne recommandons pas leur usage dans des envi-
ronnements où les contraintes matérielles ne seraient pas fortes (e.g., les ordinateurs ont moins
de contraintes que les mobiles).
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Chapitre 4

Colorisation automatique

Ce chapitre présente les travaux réalisés portant sur la colorisation automatique des images aé-
riennes historiques. Notre but était ici double : (1) proposer une visualisation alternative des images
historiques aux géomaticiens afin de les aider dans le processus d’annotation, et (2) évaluer l’in-
térêt des couleurs générées pour la classification. Nous nous sommes particulièrement intéressés
à l’utilisation de réseaux de neurones profonds à convolutions non-supervisés. Le choix d’une ap-
proche non-supervisée a été fait afin de pouvoir optimiser les réseaux de neurones d’une part à
l’aide des images historiques, uniquement disponibles en niveaux de gris, et d’autre part en utili-
sant des images récentes en couleurs. Nous avons également étendu nos travaux à d’autres types
d’images afin d’évaluer une nouvelle méthode de colorisation que nous avons proposée.
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4.2. TRAVAUX CONNEXES ET NOTIONS SPÉCIFIQUES

4.2 Travaux connexes et notions spécifiques

Cette section présente les travaux connexes aux méthodes que nous avons étudiées pour la
colorisation. Nous allons ici introduire les notions de réseaux de neurones adversaires génératifs
et de réseaux de neurones cycliques. Nous présenterons ensuite des travaux récents sur la colori-
sation d’images.

4.2.1 Réseaux de neurones adversaires génératifs (GAN)

Les réseaux de neurones adversaires génératifs (GAN) [GPAM+14], ainsi que leurs variantes à
convolutions (DCGAN) [RMC15], sont composés de deux éléments :

• un réseau de neurones générateur G, qui va chercher à convertir un signal (vecteur) z, échan-
tillonné aléatoirement à partir d’une distribution connue (e.g., distribution gaussienne), en
une donnée cible réaliste G(z) par rapport à un ensemble de données réelles (une distribu-
tion).

• un réseau de neurones discriminateur D, qui va avoir pour tâche de différencier les données
réelles et les données générées artificiellement par G (les fausses données).

Une fonction de coût est calculée à partir de la sortie du discriminateur. Elle permet de contraindre
le générateur afin qu’il génère des images de plus en plus réalistes ; aptes à tromper le discrimina-
teur ; et de contraindre le discriminateur à être de plus en plus performant. Pour cela, on attribue
une étiquette positive (= 1) à chaque donnée réelle x et une étiquette nulle (= 0) à chaque don-
née générée G(z). La fonction de coût va comparer ces étiquettes aux prédictions réalisées par
D (D(x) avec 1, et D(G(z)) avec 0). La fonction de coût peut alors s’exprimer à l’aide de l’équa-
tion (4.1) [GPAM+14], où G cherche à maximiser l’erreur de classification commise par D, et D à
la minimiser. Cette fonction de coût est calculée comme étant la moyenne statistique (espérance
E[.]) sur un batch de données.

LGAN = mi n
G

max
D

[E[log (D(x))]+E[log (1−D(G(z)))]] (4.1)

Le but final est ici d’atteindre un état proche de l’équilibre de Nash, où le générateur et le
discriminateur obtiendraient tous deux des résultats satisfaisants. A noter que l’utilisation de la
fonction de coût en sortie du discriminateur est communément nommée fonction de coût adver-
saire (adversarial loss, ou GAN loss). Cette fonction de coût peut être utilisée pour contraindre des
réseaux de neurones de type encodeur-décodeur, les caractéristiques encodées remplaçant alors
le signal échantillonné aléatoirement z. Par souci de clarté, nous exclurons les fonctions min et
max dans les notations des fonctions de coût par la suite.

4.2.2 Réseaux de neurones cycliques

Les réseaux de neurones cycliques [IZZE17; ZPIE17] ont fortement contribué à populariser les
méthodes de translation d’image à image. Ils ont initialement été développés pour convertir des
images entre deux espaces de représentations (deux domaines), A et B, à l’aide d’un réseau de
neurones générateur de type encodeur-décodeur pour chaque translation (i.e., un réseau G pour
réaliser la translation de A vers B, et un réseau F pour réaliser la translation de B vers A).

Parmi les méthodes les plus populaires, le réseau de neurones Pix2Pix, proposé par Isola et
al. [IZZE17], requiert l’existence de données appariées (i.e., correspondance 1 : 1 entre une image
du domaine A et une image du domaine B) pour contraindre de façon supervisée la génération
d’images réalistes dans chacun des domaines. Afin de considérer un cas plus général, l’utilisation
de réseaux de neurones cycliques non-supervisés tels que CycleGan [ZPIE17] et MartaGan [LFW+17]
ont été proposés en exploitant une fonction de coût adversaire permettant de contraindre l’opti-
misation de chaque générateur. On parle alors de réseaux de neurones adversaires cycliques. En
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lutions basé sur des représentations cycliques consistantes, similaire à CycleGan [ZPIE17]. Le se-
cond est une approche simple mais efficace de remplacement de textures, que nous avons utilisée
afin d’améliorer la visualisation des images de très hautes résolutions constituées d’une mosaïque
d’imagettes colorisées indépendamment les unes des autres. Nous décrivons ces deux compo-
sants ci-après.

4.3.1 Col-Cycle

Description du réseau

Col-Cycle est un réseau de neurones entièrement convolutif. Il est directement inspiré de Cy-
cleGan [ZPIE17]. Comme ce dernier, Col-Cycle est basé sur deux GAN qui vont chercher à colla-
borer afin de générer des images réalistes entre deux domaines (niveaux de gris et couleur). Les
deux GAN ont la même architecture (hyperparamètres identiques), mais leurs paramètres (poids)
ne sont pas partagés.

Soit A le domaine des images en niveaux de gris, et B le domaine des images en couleurs.
Dans notre cas, les images en couleurs sont représentées dans l’espace couleur RVB afin d’outre-
passer l’absence de relations linéaires entre les canaux couleur et l’intensité dans l’espace LAB,
classiquement utilisé en colorisation supervisée. Nous supposons en effet qu’il est plus aisé d’ap-
prendre une translation linéaire de B vers A qu’une translation non linéaire. Nous définissons les
deux GAN chargés de réaliser la translation de A vers B et la translation de B vers A de la manière
suivante : GANA−→B = {G,DB} et GANB−→A = {F,DA}. Ici, G et F sont les réseaux générateurs, et DA et
DB sont les réseaux discriminateurs associés aux images des domaines A et B respectivement.

L’architecture des réseaux générateurs G et F de Col-Cycle prend une forme encodeur-décodeur
(voir figure 4.5). Ils possèdent une couche de convolutions dite d’entrée, qui va être chargée de
transformer l’image en une représentation intermédiaire. Celle-ci préserve la taille de l’image.
Cette couche d’entrée est suivie de deux couches de sous-échantillonnages, qui vont permettre
d’encoder l’information en augmentant le nombre de caractéristiques. Viennent ensuite 3 couches
résiduelles, telles que définies dans le chapitre précédent (voir ResNet). Les couches résiduelles
vont encoder l’information sous-échantillonnée en préservant les informations nécessaires pour
le décodage. Elles vont également permettre de rétropropager le gradient plus en amont dans le
réseau, ce qui devrait a priori améliorer l’optimisation de l’encodeur. Les couches résiduelles sont
suivies de deux couches de sur-échantillonnage, et d’une couche de sortie qui va convertir la re-
présentation profonde en une image du domaine cible. Dans notre cas, la couche d’entrée est
composée de 64 filtres de 7 × 7 pixels. Elle génère ainsi une représentation intermédiaire de 64 ca-
naux, 1 par filtre. La couche de sortie génère des images avec 3 canaux, en utilisant des filtres de 7
× 7 pixels. Toutes les autres couches sont constituées de filtres de 3 × 3 pixels. Tous les filtres sont
appliqués avec du zéro padding (i.e., ajout de pixels à 0 au bord de l’image) afin de préserver la
taille des images qu’ils prennent en entrée. Le sous-échantillonnage est ici réalisé à l’aide de la va-
leur du pas (stride value égale à 2) des filtres de convolutions. Les couches de sur-échantillonnage
vont réaliser l’opération opposée des couches de sous-échantillonnage. En pratique, nous avons
choisi d’utiliser un sur-échantillonnage classique (e.g., interpolation bilinéaire) suivi de filtres de
convolutions à la place de convolutions transposées afin de limiter les artefacts visuels de type
damier (checkerboard artifacts) [ODO16]. Des opérations de normalisation par instance (instance
norm, IN) sont par ailleurs utilisées afin d’améliorer la qualité des images générées [UVL16].

Le discriminateur est un réseau de neurones entièrement convolutif dont l’architecture est
décrite sur la Figure 4.5. Seule particularité de ce réseau : un pooling global (i.e., dont la taille est
égale à l’image qu’il prend en entrée) est appliqué sur la dernière couche de caractéristiques afin
de pouvoir obtenir une valeur unique indiquant si l’image est réelle ou fausse.
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Pour cela, la fonction de coût liée à la consistance cyclique est définie à l’aide de la norme L1 (voir
équation (4.6)). Les auteurs de [ZPIE17] ont également essayé d’utiliser la norme L2 pour cette
fonction de coût, sans observer d’amélioration particulière.

Lc ycle = EB[||G(F(IB))− IB||1] + EA[||F(G(IA))− IA||1] (4.6)

Identity loss. Enfin, nous utilisons la fonction de coût identité afin d’aider à préserver les infor-
mations liées au domaine cible. Pour cela, les réseaux G et F doivent générer des images proches
de la réalité lorsqu’ils translatent des images du domaine cible, vers le même domaine cible (e.g.,
avec J ∈ B, on cherche à obtenir G(J) = J). Cette fonction de coût est définie par l’équation (4.7).
En pratique, cette fonction permet de réduire les cas où une seule couleur prédominante serait
prédite.

Li denti t y = EB[||G(IB)− IB||1] + EA[||F(IA)− IA||1] (4.7)

La fonction de coût totale est alors définie comme une somme des fonctions de coût ci-dessus
(voir equation (4.8).

L =LGANA−→B +LGANB−→A +Lc ycle +Li denti t y (4.8)

Différences avec CycleGan

Les différences entre Col-Cycle et CycleGan sont ici mineures d’un point de vue conceptuel.
Elles résident principalement dans la quantité de couches résiduelles utilisées. Nous avons fait
le choix d’en utiliser 3, contre 9 pour CycleGan. Cela nous permet de réduire significativement la
quantité de paramètres à optimiser, mais également de réduire le nombre de cartes de caractéris-
tiques intermédiaires stockées en mémoire sur les cartes graphiques lors de l’inférence. De fait,
nous avons pu travailler avec des imagettes de tailles relativement grandes par rapport au réseau
originel (1024 × 1024 contre 256 × 256). Travailler avec des images plus grandes lors de l’inférence
est utile pour diminuer l’effet mosaïque observé lors de la "reconstruction" des images aériennes
historiques colorisées (voir section suivante).

4.3.2 Reconstruction des images colorisées

La seconde étape de notre approche vise à reconstituer les images de très hautes résolutions
(VHR) à l’aide des imagettes colorisées avec Col-Cycle. Des exemples de résultats sont proposés
ici : http://eidolon.univ-lyon2.fr/~remi1/Col-Cycle-Res/.

Reconstitution et effet mosaïque

Nous commençons par extraire toutes les imagettes de taille 1024 × 1024 pixels sans recouvre-
ment à partir des images VHR, et nous stockons les coordonnées correspondantes. Nous utilisons
ensuite Col-Cycle pour coloriser chacune de ces imagettes indépendamment les unes des autres.
Enfin, nous reconstituons l’image VHR en concaténant spatialement les imagettes colorisées à
l’aide de leurs coordonnées initiales. Ce processus est particulièrement simple à implémenter et
efficace d’un point de vue computationnel (le fait de ne pas avoir de recouvrement entre les ima-
gettes évite la redondance lors des traitements).

Cependant, nous pouvons observer sur la figure 4.6 que les imagettes colorisées puis concaté-
nées semblent produire, par endroits, des discontinuités locales faisant ressortir la structure des
imagettes dans l’image. Nous nommons cet effet non désiré "effet mosaïque", par analogie avec
les mosaïques d’images. En télédétection, de telles mosaïques apparaissent régulièrement, à plus
grande échelle, lors de la visualisation d’images aériennes et satellites acquises à des dates diffé-
rentes.

Les convolutions étant par définition invariantes à la translation spatiale dans l’image, nous
pouvons supposer que cet effet mosaïque est lié à l’utilisation d’opérations de normalisation par
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Dans un contexte de colorisation, nous rappelons que notre but est d’optimiser un réseau gé-
nérateur G qui va générer une image en couleurs IB ∈ B =R

3×W×H à partir d’une image en niveaux
de gris IA ∈ A = R

1×W×H. Nous définissons alors la Handcrafted Translation Ht comme étant une
fonction capable d’effectuer la translation inverse, de B vers A. Afin d’étudier l’intérêt d’une Ht

pour contraindre la colorisation d’images à l’aide d’un réseau générateur, et non pas l’inverse,
nous avons souhaité utiliser une fonction Ht aussi simple que possible. Nous avons pour cela uti-
lisé l’une des premières représentations de l’intensité en niveaux de gris : la somme pondérée des
canaux RVB. Pour un pixel xi , j positionné sur la i th ligne et la j th colonne d’une image numé-
rique I ∈ R

3×W×H, l’opération correspondant à Ht est alors exprimée à l’aide de l’équation (4.9).
Dans cette équation, les poids ont été fixés afin de mimer la vision biologique humaine, plus sen-
sible aux teintes vertes, que rouges, que bleu. A noter que Ht est alors définie comme la fonction
Gr ay utilisée par Cao et al. [CZZY17].

x
i , j
g r i s = 0.299×x

i , j
R +0.587×x

i , j
V +0.114×x

i , j
B (4.9)

Comme cette fonction représente une somme pondérée des canaux RVB avec des poids cons-
tants, elle peut être facilement implémentée à l’aide d’une convolution 1×1 dont les poids sont
fixés. L’utilisation d’une convolution 1×1 présente comme avantage de préserver la majorité des
structures spatiales présentent au sein des images en entrée, telles les formes, les contours ou les
textures. Elle permet également l’intégration de cette fonction au sein des librairies d’apprentis-
sage profond déjà en place, ce qui permet de rétropropager le gradient via Ht (cycle-consistency).
Par conséquent, formuler la translation Ht à l’aide d’une convolution 1×1 permet de directement
contraindre les propriétés spatiales des images couleur générées par G. En pratique, Ht a pour but
de remplacer GANB−→A = (F,DA) : F est directement remplacé par Ht , et DA ne devient plus néces-
saire étant donné que Ht est une fonction déterministe (i.e., si G(IA) est correctement colorisée,
Ht donnera un résultat proche de celui espéré). Le terme pseudo-cyclique se comprend ici par le
remplacement de l’un des deux GAN par une transformation fixée (le cycle existe bien, mais seule
la moitié de celui-ci est apprise).

L’opération Ht définie à l’aide d’un filtre 1×1 est par ailleurs à opposer aux translations ap-
prises à l’aide de filtres de convolutions, qui ne permettent pas de garantir la préservation des
propriétés spatiales et des hautes fréquences des images traitées. En effet, d’une part, les convolu-
tions spatiales tendent à lisser les images [UVL18]. D’autre part, les réseaux générateurs cycliques
(e.g., G et F avec Col-Cycle et CycleGan) peuvent apprendre à satisfaire un critère d’optimisation
sans chercher à préserver les structures spatiales entre les domaines concernés par la translation,
hallucinant alors des structures qui n’existent pas [IZZE17]. Le fait de pouvoir modifier les struc-
tures spatiales est une propriété particulièrement intéressante pour des applications telles que le
débruitage [XXC12], la segmentation sémantique [BKC17], ou la modification d’objets [RRVB17],
mais elle n’est pas désirée lorsque l’on souhaite que l’image dans le domaine cible partage ses
hautes fréquences avec l’image dans le domaine source (cas de la colorisation).

Enfin, l’utilisation de Ht , telle que définie ci-dessus contraint la génération d’images dans l’es-
pace couleur RVB, et ce malgré le fait que plusieurs études ont montré l’intérêt des espaces couleur
LAB et HCL afin de découpler luminance, teinte et intensité [LMS16; ISSI16]. Nous rappelons que
le choix de travailler avec l’espace RVB a été fait afin de nous assurer de l’existence d’une transla-
tion linéaire entre l’espace couleur cible (RVB) et celui des intensités (niveaux de gris), ce qui n’est
pas possible avec l’espace LAB (non-linéarité entre AB et L).

Output Spatial Pyramids

Afin de tenter d’améliorer les résultats que l’on peut espérer obtenir en colorisation à l’aide
d’un réseau générateur, nous nous sommes également intéressés à l’utilisation de représentations
multi-échelles. Ces représentations sont également nommées pyramides spatiales dans la littéra-
ture. Elles consistent soit à considérer un ensemble d’images représentant le même contenu mais
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Od1 font la même taille). D’un point de vue notation, Od1 est générée par la couche l d1 de G (qui
est la couche de sortie ici). Elle est supposée être représentée dans le domaine B. L’optimisation
usuelle de G se fait alors en calculant une ou plusieurs fonctions de coût en se basant unique-
ment sur la sortie finale Od 1. Cependant, nous remarquons qu’atteindre un état optimal pour l’en-
semble des couches internes du décodeur {l d2 , ..., l dN } est complexe lorsqu’une grande quantité de
paramètres est impliquée. Afin de faciliter l’entraînement de G, et ainsi améliorer la génération
d’images en couleurs réalistes, nous avons intégré les cartes de caractéristiques / sorties intermé-
diaires du décodeur {Od2 , ...,OdN } dans le calcul de la fonction de coût (voir section 4.4.2). Pour
cela, on remarque que deux sorties successives Odi et Od j , avec i ∈ {1, ..,N−1}, j = i +1, diffèrent
d’un facteur d’échelle. On suppose que ce facteur d’échelle est égal à deux (cas classique). Afin
de pouvoir calculer une fonction de coût identique pour chaque Odi , celles-ci sont redimension-
nées afin d’avoir la même échelle spatiale que IA avant d’être translatées dans l’espace de sortie.
Pour toutes les sorties, cela permet de n’avoir qu’un seul discriminateur par opposition aux tra-
vaux de [WLZ+18; GGY+18], et de pouvoir se baser sur les images IA ∈ A à pleine résolution pour le
calcul des fonctions de coût cycliques (pas de perte d’information liée à un sous-échantillonnage
de IA). Cette opération de sur-échantillonnage peut être exprimée à l’aide de l’équation (4.10),
où up(.) transforme une image d’échelle S

2 en une image d’échelle S (e.g., interpolation, super-
résolution). La notation upk (.) indique la composition de la fonction up(.) avec elle-même k fois
(on sur-échantillonne k fois l’image).

OW×H
di

= up i−1(Odi ), i ∈ {1, ...,N} (4.10)

Une fois que l’opération de ré-échantillonnage est appliquée sur les sorties du décodeur, il est
nécessaire de les projeter dans le domaine cible B afin de pouvoir calculer les fonctions de coût
et rétropropager le gradient associé à chacune des sorties. Pour cela, il est possible d’utiliser une
couche de convolutions par sortie [HAGM15]. Cependant, cette approche ne permet pas de nous
assurer que les représentations profondes obtenues à partir des différentes sorties seront simi-
laires les unes des autres (elles auront été filtrées par des filtres a priori différents). Par extension,
nous ne pouvons pas nous assurer que les cartes de caractéristiques intermédiaires vont s’opti-
miser vers le même objectif simplement en observant les sorties projetées dans le domaine B (i.e,
deux sorties peuvent être réalistes sans que les caractéristiques se ressemblent). Dans le but de
contraindre la génération de cartes de caractéristiques intermédiaires plausibles pour la colori-
sation à plusieurs échelles, nous avons proposé l’utilisation d’une unique couche de sortie dont
les poids sont partagés pour toutes les OW×H

di
. Cette idée est en partie empruntée des travaux de

[LDG+17], mais à la place d’utiliser des convolutions 1×1 pour gérer des cartes de caractéristiques
avec un nombre de caractéristiques différent, nous avons proposé de garder le nombre de caracté-
ristiques n constant dans tout le décodeur. Ce choix nous permet de nous assurer que les caracté-
ristiques intermédiaires sont des représentations adaptées, proches les unes des autres, et ce pour
une tâche donnée (la colorisation dans notre cas). Il nous est également possible de les visualiser
à travers une couche de sortie, celle-ci faisant alors office de "lentille d’observation". D’un point
de vue intuitif, si les caractéristiques intermédiaires (e.g., Od2 ) permettent d’obtenir des images
parfaitement générées, du point de vue du discriminateur, les couches de convolutions suivantes
n’auront qu’à améliorer la résolution des cartes de caractéristiques (i.e., les dernières couches du
décodeur n’ont plus besoin d’apprendre à extraire des caractéristiques pour la colorisation et le
sur-échantillonnage, mais uniquement pour le sur-échantillonnage).

4.4.2 SpyncoGan

Pour évaluer l’intérêt des composants présentés précédemment, nous avons introduit Spyn-
coGan (Spynco pour Spatial PYramids and haNdcrafted translation COmbined). SpyncoGan est
un réseau pseudo-cyclique qui se base sur Col-Cycle, mais qui intègre la Handcrafted Translation
et la OSP. Son architecture est présentée sur la Figure 4.13.
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multiples gradients seront calculés (fonctions de coût liées à toutes les sorties de l’OSP, voir sous-
section suivante). Malgré le fait que l’utilisation de convolutions séparables permette de réduire
substantiellement le nombre de paramètres du réseau, et que Ht ait une empreinte mémoire
faible, ce point est une contrainte pratique forte quant à l’entraînement de réseaux très profonds
basés sur les OSP (nécessité d’avoir beaucoup de mémoire disponible).

Fonctions de coût

Cette section définit les fonctions de coût utilisées pour optimiser SpyncoGan à l’aide des sor-
tie de l’OSP.

Notations. Nous rappelons que IA ∈ A and IB ∈ B sont deux images d’échelle S = W ×H. L’OSP
nous permet d’obtenir N sorties OW×H

di
telles que définies par l’équation (4.11). Par souci de sim-

plicité, nous confondons ici les sorties avant et après projection dans le domaine cible B. Après
redimensionnement, ces sorties ont toutes la même échelle, égale à celle de IA. Celles-ci vont per-
mettre d’optimiser G en les intégrant dans le calcul des fonctions de coût.

{OW×H
d1

, ...,OW×H
dN

} = {G1(IW×H
A ), ...,GN(IW×H

A )} = G(IW×H
A ) (4.11)

avec ∀i ∈ {1, ...,N},OW×H
di

∈ B, et Gi représentant la sortie i de l’OSP de G (i.e., OW×H
di

).
Par souci de concision, nous omettrons l’indice W ×H par la suite, et nous utiliserons la nota-

tion Gi (.) à la place de OW×H
di

lorsque nous jugerons que cela facilite la compréhension.

A l’aide de ces notations, nous pouvons alors redéfinir les fonctions de coût utilisées avec Col-
Cycle. Pour cela, nous avons recours à une somme pondérée des coûts calculés pour chaque sortie
de l’OSP (voir équations (4.12), (4.18), (4.15)). La pondération associée à chaque sortie (indice i )
est gérée par de nouveaux paramètres αi , βi , γi et ζi , dont les valeurs sont explicitées dans la sous-
section suivante.

GAN loss. La fonction de coût (formulation minimax) liée au GAN peut-être re-définie par
l’équation (4.12) en se basant sur un objectif quadratique, inspiré par les travaux de [MLX+17].

L
1,...,N
GANA−→B

(G,DB)=
N
∑

i=1
γiEA[‖1−DB(Gi (IA))‖2

2]+EB[‖DB(IB)‖2
2] (4.12)

En pratique, lors de l’implémentation, on reformule cette contrainte d’une façon similaire aux
fonctions de coût utilisées pour Col-Cycle. Ces fonctions, (4.13) et (4.14), sont toutes deux à mi-
nimiser. On remarquera que l’équation (4.14) est une formulation "duale" du problème posé par
la fonction minimax, au sens où l’on chercherait à maximiser pour DB plutôt que de minimiser. A
noter que dans nos expériences, nous nous sommes restreints à G1(IA) pour entraîner le discrimi-
nateur à l’aide de l’équation (4.14) afin d’éviter que son entraînement ne soit biaisé par les sorties
intermédiaires de l’OSP, plus à même de contenir des artefacts visuels.

LG =
N
∑

i=1
γiEA[‖DB(Gi (IA))−1‖2

2] (4.13)

LDB = EB[‖DB(IB)−1‖2
2]+

N
∑

i=1
γiEA[‖DB(Gi (IA)‖2

2] (4.14)

Par ailleurs, comme nous utilisons une Handcrafted Translation pour réaliser la translation du do-
maine B vers le domaine A, cette équation n’est définie que pour GANA−→B : si les images générées
par G sont capables de tromper le discriminateur DB, nous supposons a priori que Ht arrivera à
translater correctement l’image générée vers le domaine A.
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Cycle-consistency loss. Similairement, la fonction de coût cyclique est redéfinie à l’aide de
l’équation (4.15), somme des équations (4.16) et (4.17) (décomposition réalisée par souci de clarté).
Elle permet d’ajouter une contrainte cyclique pour chacune des sorties de l’OSP.

L
1,...,N
c ycle (G) =L

1,...,N
c ycleBAB

(G)+L
1,...,N
c ycleABA

(G) (4.15)

L
1,...,N
c ycleBAB

(G) =
N
∑

i=1
βiEB[‖(Gi (Ht (IB))− IB]‖1] (4.16)

L
1,...,N
c ycleABA

(G) =
N
∑

i=1
βiEA[‖Ht (Gi (IA))− IA‖1] (4.17)

Identity loss. La fonction de coût identité est redéfinie à l’aide de l’équation (4.18). Son utilité
reste identique à celle utilisée avec Col-Cycle, si ce n’est qu’elle va ici apporter une contrainte sup-
plémentaire sur les couches cachées du générateur. Par définition de Ht , elle n’a pas lieu d’être
définie pour la translation de B vers A.

L
1,...,N
i denti t y (G) =

N
∑

i=1
αiEB[‖Gi (IB)− IB‖1] (4.18)

Contours loss. Enfin, nous ajoutons ici une fonction de coût supplémentaire visant à contrain-
dre la génération d’une image colorisée Gi (IA) dont les hautes fréquences seraient proches de
celles de l’image en niveaux de gris IA. Pour cela, nous nous basons sur l’existence d’une relation
spatiale directe entre les images des deux domaines telle que permise par la Handcrafted Transla-
tion, et nous comparons les hautes fréquences de IA et Ht (Gi (IA)) vues par un filtre de Sobel Sk (.)
(voir équation (4.19)). Le filtre de Sobel est aisément applicable avec des convolutions, et sa défi-
nition symétrique permet de donner plus d’importance au pixel qui se trouve au centre du filtre.
Ce dernier point permet d’obtenir des hautes fréquences mieux localisées qu’avec une fonction
de coût liée à un gradient local par exemple (i.e., comparaison directe des pixels adjacents).

L
1,...,N
contour s(G) =

N
∑

i=1
ζiEA[‖Sk (Ht (Gi (IA)))−Sk (IA)‖1] (4.19)

La fonction de coût totale est alors définie comme étant la somme des fonctions de coût pré-
cédentes (voir équation (4.20)).

L
1,...,N

=L
1,...,N
GANA−→B

+L
1,...,N
c ycle +L

1,...,N
i denti t y +L

1,...,N
contour s (4.20)

Choix des paramètres des fonctions de coût

Les paramètres des fonctions de coût de SpyncoGan (αi , βi , γi , ζi ) ont été fixés empiriquement
afin de donner plus d’importance à la sortie finale du réseau. Ce choix a été fait afin de contreba-
lancer la contribution multiple des cartes de caractéristique intermédiaires pour lesquelles le gra-
dient est rétropropagé plusieurs fois à cause de l’OSP. Ils ont été fixés en considérant N = 3, comme
décrit précédemment. En pratique : αi∈{1,2,3} = {5,3,2}, βi∈{1,2,3} = {10,6,4}, γi∈{1,2,3} = {1,1,1} et
ζi∈{1,2,3} = {1,0,0}, avec i l’indice de la sortie de l’OSP (pour rappel, ici, plus i est petit, plus on
se rapproche de la couche de sortie). On remarquera qu’à cause de la valeur de ζi , seule la sor-
tie finale permet ici de contraindre les hautes fréquences. Ce choix a été fait afin de ne pas tenir
compte explicitement des hautes fréquences liées aux sorties intermédiaires, celles-ci ayant plus
de chance de contenir des artefacts visuels (moins de filtres de convolutions appliqués, mais plus
d’opérations de redimensionnements).
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4.4.3 Mise en place des expériences

Nous avons cherché à évaluer l’intérêt de la Handcrafted Translation comme remplacement
d’un des deux GAN pour la colorisation non-supervisée. Nous nous sommes également intéressés
à l’intérêt des contraintes imposées via les différentes sorties de l’OSP. Nos expériences ont été
réalisées à l’aide de 2 cartes graphiques NVIDIA GeForce GTX 1080 Ti et des librairies Pytorch,
Scikit, Caffe et OpenCV.

Jeux de données

Afin d’évaluer la qualité des colorisations générées, nous nous sommes placés dans un cadre
plus générique que celui du traitement des images aériennes historiques. Nous souhaitions avoir
accès à un panel d’images ayant des vérités terrains en couleurs et représentant des scènes diffé-
rentes afin de pouvoir calculer des métriques de similarité. Nous avons pour cela adapté des jeux
de données classiquement utilisés pour la classification, à savoir : Cifar-10 [Kri09] et UCMerced
Land Use [YN10]. Le jeu de données Cifar-10 est constitué de 60 000 images en couleurs regrou-
pées en 10 classes communes (e.g., avion, chat, bateau, etc.). Chaque image a une résolution très
faible (thumbnails, 32×32 pixels). UCMerced Land Use contient quant à lui des images couleur
d’occupation du sol regroupées en 24 classes (e.g., zone résidentielle, plage, rivière). Ces images
ont une résolution proche des images aériennes historiques, et font chacune 256×256 pixels. En
complément, nous avons aussi utilisé des images de peintures de Cézanne (580 images) et des
images de paysages (Landscape, 7038 images) qui avaient déjà été utilisées dans un contexte de
transfert de domaine (pas de classes, images de 256×256 pixels).

Ces jeux de données étant composés d’images en couleurs, nous les convertissons tout d’abord
en niveaux de gris afin d’avoir deux ensembles d’images. Cependant, nos approches étant non-
supervisées, ces images ne sont pas appariées explicitement durant l’entraînement afin de simuler
un entraînement non-supervisé (i.e., les images de A et B sont échantillonnées aléatoirement, sans
mise en correspondance). En pratique, l’entraînement est réalisé en utilisant un sous-ensemble
d’entraînement, et l’évaluation est réalisée avec un sous-ensemble de test. Pour les jeux de don-
nées Cifar-10, Cézanne et Landscape, nous utilisons les sous-ensembles proposés par les auteurs.
Pour UCMerced Land Use, aucun sous-ensemble par défaut n’est proposé. Nous avons, de fait,
échantillonné aléatoirement 80% des images pour l’entraînement, et 20% pour l’évaluation.

Métriques

L’évaluation de la qualité de la colorisation est effectuée toutes les 10 epochs pour quantifier
l’évolution des métriques durant l’entraînement. Nous calculons l’erreur quadratique moyenne
(MSE) et le score de similarité structurelle (SSIM) entres les images colorisées et les images en
couleurs réelles (mesures calculées pour chaque canal couleur, puis moyennées par le nombre de
canaux). La MSE permet de déterminer grossièrement la différence entre deux images (plus la va-
leur est basse, plus les deux images sont proches). Cette métrique est couramment utilisée pour
évaluer les résultats des algorithmes de régression, et sa variante monotone (racine MSE, RMSE) a
déjà été appliquée pour évaluer les algorithmes de colorisation [LMS16]. La SSIM indique la qua-
lité d’une image par rapport à une autre (plus sa valeur est élevée, plus les images comparées sont
proches), en mettant l’accent sur les différences structurelles. Ces deux mesures fournissent un
aperçu de la qualité de la colorisation lorsque des images en couleurs réelles sont disponibles (cas
de nos ensembles de données). Le choix d’utiliser ces mesures quantitatives de la qualité de la co-
lorisation nous permet de comparer plusieurs approches sans à avoir recours à un questionnaire
(long et complexe à mettre en place lorsque plusieurs méthodes et plusieurs jeux de données sont
utilisés).
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FIGURE 4.14 – Résultats qualitatifs obtenus durant l’entraînement de SpyncoGan sur le jeu de données
Cifar-10.

4.4.4 Résultats et discussions

Résultats qualitatifs

La figure 4.1 présente des exemples de résultats qualitatifs obtenus sur des peintures de Cé-
zanne, des photos de paysages et des images aériennes de UCMerced Land Use. Visuellement,
nous trouvons que ces résultats semblent plutôt réalistes pour une approche non-supervisée. Plus
de résultats sont disponibles dans la section 4.6. Ces résultats incluent des cas limites où le réseau
n’a pas réussi à coloriser correctement les images en fonction des epochs. Néanmoins, l’ensemble
des représentations obtenues semblent indiquer que l’utilisation de Ht à la place de l’un des deux
GAN utilisé par certains réseaux cycliques est une piste viable dans un contexte de colorisation.

La figure 4.14 montre les résultats qualitatifs obtenus avec SpyncoGan sur trois échantillons
d’images de Cifar-10. De haut en bas, les images sont représentées en niveaux de gris (domaine
A), en fausses couleurs (images colorisées) et en couleurs réelles (domaine B). Les images colori-
sées sur différentes lignes ont été générées à différentes epochs de l’entraînement de SpyncoGan
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TABLEAU 4.1 – Résultat de l’ablation des sorties. Métriques calculées toutes les 10 epochs (entraînement de
50 epochs) puis moyennées (Avg.).

Données Fonction de coût Avg. MSE ↓ Avg. SSIM (%) ↑

Cézanne L
1 92.9 82

Cézanne L
1,2,3 91.5 82

Landscape L
1 85.7 83

Landscape L
1,2,3 85.1 83

UCMerced Land Use L
1 85.5 86

UCMerced Land Use L
1,2,3 83.1 85

Cifar-10 L
1 87.2 89

Cifar-10 L
1,2,3 86.8 89

(de 10 à 100 avec un pas de 10). De gauche à droite, les résultats obtenus sont présentés pour
les différentes sorties de l’OSP à savoir G3(IA), G2(IA) et G1(IA). D’un point de vue global, nous
observons des artefacts en damier sur les images G3(IA) (image la plus à gauche) qui semblent
perdurer durant l’entraînement. Ils semblent néanmoins avoir été filtrés par les couches plus pro-
fondes, ce qui est le comportement attendu pour notre réseau. Cependant, puisque G3(IA) a été
directement obtenu à partir des couches résiduelles après ré-échantillonnage et convolution spa-
tiale ; dont les poids sont partagés entre toutes les sorties ; nous pensons que les couches rési-
duelles n’ont pas pu apprendre une représentation suffisante pour éliminer les artefacts causés
par le ré-échantillonnage, ou ont causé les artefacts eux-mêmes. On constate également que les
représentations obtenues avec G2(.) et G3(.) semblent parfois très proches, ce qui met en avant les
contraintes imposées par l’OSP.

Par ailleurs, nous observons sur cette figure la diversité des représentations possibles au cours
de l’entraînement. Cette diversité met en avant l’exploration de l’espace des paramètres pour gé-
nérer des images en couleurs vraisemblables. Ce point est particulièrement intéressant dans un
contexte de colorisation car il permet de créer des représentations couleur variées uniquement en
chargeant les poids du réseau optimisés à une epoch différente, et ce sans modifier son architec-
ture.

Évaluation quantitative par ablations

Ablation des sorties. Nous avons commencé par étudier l’intérêt de l’OSP en considérant
N = 1 sortie pour l’entraînement de SpyncoGan. Nous avons nommé cette étude "ablation des
sorties". Pour cela, nous considérons l’architecture de SpyncoGan présentée en section 4.4.2, ce
qui signifie que les trois sorties de l’OSP sont disponibles mais que seule G1(I) est utilisée dans le
calcul des fonctions de coût durant l’entraînement (N = 1). Dans un but comparatif, on distingue
donc les fonctions de coût avec N = 1 et N = 3 (SpyncoGan sans ablation), à savoir L

1 et L
1,2,3.

Le tableau 4.1 présente les scores de MSE et de SSIM calculés toutes les 10 epochs puis moyennés
entre les epochs 10 et 50. Nous observons qu’utiliser toutes les sorties (N = 3) pour l’optimisation
de SpyncoGan permet d’obtenir une diminution moyenne de 1.2 points pour la MSE, mais une
diminution de 0.25% de la SSIM. Il semblerait qu’utiliser plus de contraintes pour l’optimisation
des couches cachées à travers l’OSP permette d’obtenir des couleurs plus consistantes par rap-
port aux images réelles (MSE plus faible), mais tende à diminuer le réalisme relatif des structures
générées. Le gain apporté par l’inclusion des sorties de l’OSP dans le calcul des fonctions de coût
semble donc limité sur ces données.

Ablation de la fonction de coût. Pour les deux cas de figures L
1 et L

1,2,3, nous avons égale-
ment étudié l’intérêt de la fonction de coût liée aux hautes fréquences L

1,...,N
contour s . Les résultats ob-
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TABLEAU 4.2 – Résultats de l’ablation de la fonction de coût liée aux hautes fréquences sur les peintures de
Cézanne. Métriques calculées toutes les 10 epochs (entraînement de 50 epochs) puis moyennées (Avg.).

Fonction de coût Ablation Avg. MSE ↓ Avg. SSIM (%) ↑

L
1

L
1
contour s 92.6 79

L
1 / 92.9 82

L
1,2,3

L
1,2,3
contour s 92.0 77

L
1,2,3 / 91.5 82

tenus sont présentés sur le tableau 4.2 pour les peintures de Cézanne. La colonne Ablation sur ce
tableau indique si la fonction de coût liée aux hautes fréquences a été retirée (nom de la fonction)
ou pas (symbole "/"). Malgré la faible contribution de L

1,...,N
contour s dans le calcul de la fonction de

coût totale, représentée par une petite valeur de ζi , on observe que ne pas utiliser cette fonction
réduit significativement l’indice de similarité structurel. Comme attendu, le fait de contraindre
la génération de contours réalistes à travers Ht permet de préserver les hautes fréquences, et ce
même sans OSP.

Visualization des sorties intermédiaires de l’OSP. Malgré des différences faibles en termes de
scores MSE et SSIM pour G1(IA) avec et sans ablation des sorties, nous nous sommes demandé à
quoi ressemblaient les caractéristiques profondes des sorties intermédiaires vues par la couche de
sortie, et ce avec et sans ablation des sorties. La figure 4.15 permet de visualiser les sortie G2(IA) et
G3(IA) pour des peintures de Cézanne au cours de l’entraînement. On distingue les visualisations
obtenues par SpyncoGan entraîné avec L

1 et avec L
1,2,3. On peut ainsi observer que les sorties in-

termédiaires de SpyncoGan entraîné avec L
1 sont beaucoup moins réalistes que celles obtenues

lorsque SpyncoGan est entraîné avec L
1,2,3. De plus, ces visualisations nous indiquent que les ca-

ractéristiques profondes extraites de la couche l d3 et celles extraites de l d2 sont très différentes les
unes des autres lorsque SpyncoGan est entraîné avec L

1. Néanmoins, ces visualisations mettent
en avant la capacité des réseaux générateurs à préserver les structures spatiales, et ce même sans
avoir recours à des contraintes imposées directement sur les cartes de caractéristiques profondes
/ intermédiaires (contrainte que nous imposons à l’aide de l’OSP).

Qualité de la colorisation par rapport à Col-Cycle

Nous avons ensuite comparé la qualité relative des colorisations générées avec SpyncoGan et
Col-Cycle durant l’entraînement de chacun des réseaux, sans remplacement de textures (i.e., on
évalue la sortie "brute"). Les deux réseaux ont été entraînés durant 100 epochs (mais seulement
50 pour les photographies de paysages) avec un taux d’apprentissage de 0.0002 et une diminution
linéaire du taux d’apprentissage vers 0 appliqué après que la moitié des epochs aient été réalisées.
Les poids des deux réseaux ont été initialisés aléatoirement. L’algorithme d’optimisation utilisé
pour les générateurs comme pour les discriminateurs a été fixé sur la méthode ADAM [KB14], avec
les paramètres par défaut (β1 = 0.9,β2 = 0.999). La taille du batch a été fixée pour chaque réseau de
façon à pouvoir traiter un maximum d’images en parallèle sur les cartes graphiques à notre dis-
position durant l’entraînement. Les résultats obtenus toutes les 10 epochs à l’aide des métriques
MSE et SSIM sont présentés sur la figure 4.16.

On observe que les sorties de SpyncoGan permettent systématiquement d’obtenir des score
MSE plus faibles que ceux de Col-Cycle, et des scores SSIM plus élevés. Cette observation se traduit
par le fait que les colorisations générées par SpyncoGan sont plus réalistes au sens des métriques
utilisées. En particulier, SpyncoGan semble permettre d’obtenir des résultats dont les couleurs
sont plus proches des vérités terrain, et préserve mieux les structures visibles dans les images. Ces
deux points s’expliquent par l’utilisation d’une fonction de coût dédiée aux hautes fréquences,
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considère alors que les couleurs générées sont représentatives d’un domaine couleur légèrement
différent des images réelles en couleurs, mais aussi de tous les autres domaines couleur générés.
Cette observation se vérifie en pratique, que ce soit sur la figure 4.14, ou sur les figures complé-
mentaires présentées en section 4.6. A l’aide de ces données, nous avons entraîné des réseaux de
neurones à convolutions sur les images colorisées, les vraies images en couleurs, et les images
en niveaux de gris des jeux de données d’entraînement de Cifar-10 et de UCMerced Land Use.
Ainsi, pour un même jeu de données, un même réseau a été entraîné séparément sur chacun des
12 domaines couleur (1 domaine couleur généré toutes les 10 epochs, 1 pour les vraies couleurs,
et 1 pour les niveaux de gris). Le but est alors d’évaluer le pouvoir discriminant de ces réseaux
entraînés sur l’ensemble des domaines couleur disponibles (i.e., évaluation inter-domaines) en
utilisant les données de test. En pratique, nous avons utilisé AlexNet [KSH12] avec la normalisa-
tion par batch sur le jeu de données Cifar-10, et VGG-16 [SZ14] sur UCMerced Land Use. Pour
l’entraînement de ces réseaux, toutes les images ont été redimensionnées à 256 × 256 pixels. Le
taux d’apprentissage a été fixé à 0.0001, avec une décroissance d’un facteur 10 à 33% et 66% de
l’entraînement. AlexNet a été entraîné durant 20 epochs, et VGG-16 durant 40 epochs.

Les résultats obtenus en classification inter-domaine pour G1(IA) sont représentés à l’aide d’un
diagramme de cordes [KSB+09] sur la figure 4.17. Sur ce diagramme, chaque arc de cercle corres-
pond au même jeu de données mais représenté dans un domaine couleur différent. Les cordes in-
diquent quant à elles les relations entre les jeux d’entraînement et de test des différents domaines
(i.e., réseau entraîné sur un domaine couleur puis évalué sur un autre). Une corde attachée à un arc
de cercle indique que le domaine correspondant à l’arc de cercle a été utilisé pour l’entraînement.
Une corde séparée par un blanc de l’arc de cercle indique que le domaine correspondant à l’arc
de cercle a été utilisé pour le test. Seules les cordes correspondant au premier quartile des taux de
bonne classification obtenus (les 25% taux les plus élevés parmi tous) sont en couleur, les autres
étant grisés. Afin d’identifier les domaines couleur qui sont les plus aptes à permettent à un réseau
de neurones à convolutions de généraliser à d’autres domaines couleur, il suffit alors de compter
le nombre de cordes colorées attachées à chaque arc. L’arc ayant le compte le plus grand corres-
pond au domaine couleur qui a permis la meilleure généralisation. On observe ainsi qu’entraîner
VGG-16 sur les images d’UCMerced Land Use colorisées par SpyncoGan à l’epoch 70 permet une
meilleure généralisation qu’avec les autres domaines couleur. Pour Cifar-10, les images colorisées
par SpyncoGan à l’epoch 100 sont celles qui permettent la meilleure généralisation d’AlexNet. Il
semblerait ici qu’entraîner un réseau de neurones classifieur sur des données colorisées permette
d’obtenir des représentations plus robustes aux variations de domaines couleur qu’un entraîne-
ment réalisé à l’aide de données réellement en couleurs. Afin d’accompagner ces observations,
nous présentons les résultats moyennés par domaine d’entraînement sur le tableau 4.4. La valeur
moyenne très faible obtenue sur Cifar-10 par un AlexNet entraîné sur les images en niveaux de gris
et évalué sur l’ensemble des jeux de données pourrait s’expliquer par la présence d’un fort biais
dans les représentations couleurs. Ce point mériterait cependant la réalisation d’expériences sup-
plémentaires afin de mieux comprendre les tenants et les aboutissants de ce résultat qui nous a
particulièrement surpris.

Classification sur HistAerial

Nous reproduisons ici une partie des expériences réalisées avec Col-Cycle à l’aide de Spynco-
Gan afin de voir si les colorisations générées par ce réseau permettent d’améliorer la classification
des images aériennes historiques. Pour cela, nous avons entraîné SpyncoGan sur le même jeu de
données que Col-Cycle et avec le même taux d’apprentissage. Comme pour Col-Cycle, nous avons
appliqué le remplacement de textures lors de l’inférence. Les résultats obtenus après 120 epochs
sont présentés sur le tableau 4.5. Nous présentons également les résultats obtenus avec les sta-
tistiques couleur générées seules (i.e., sans la texture). Les deux réseaux semblent permettre de
générer des couleurs permettant d’améliorer légèrement les taux de bonne classification, sans dif-
férence notable lorsque ces couleurs sont combinées aux caractéristiques de texture. Lorsqu’uti-
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TABLEAU 4.4 – Taux de classification (%) inter-domaine moyennés sur tous les domaines couleur. (1) VGG-
16 entraîné pour 40 epochs sur UCMerced Land Use et (2) AlexNet entraîné pour 20 epochs sur Cifar-10.

Ensemble d’entraînement Col. epoch Avg. % (1) Avg. % (2)

SpyncoGan (G1(IA)) 10 94.7 74.8
SpyncoGan (G1(IA)) 20 95.2 77.0
SpyncoGan (G1(IA)) 30 95.4 78.7
SpyncoGan (G1(IA)) 40 96.2 79.2
SpyncoGan (G1(IA)) 50 95.3 79.5
SpyncoGan (G1(IA)) 60 96.3 79.9
SpyncoGan (G1(IA)) 70 97.0 78.7
SpyncoGan (G1(IA)) 80 96.1 79.9
SpyncoGan (G1(IA)) 90 95.2 79.5
SpyncoGan (G1(IA)) 100 95.1 81.0

Couleurs réelles / 92.4 75.7
Niveaux de gris / 92.5 22.1

lisées seules, les couleurs générées par Col-Cycle semblent cependant avoir un pouvoir discrimi-
nant nettement supérieur, ce qui tend à montrer qu’une colorisation que l’on pourrait qualifier
de plus grossière (SSIM plus faible pour Col-Cycle en moyenne) n’est pas un problème pour amé-
liorer la classification des images aériennes historiques. Dans les deux cas, les couleurs générées
seules permettent d’obtenir des taux de bonne classification beaucoup plus élevés qu’un choix
aléatoire (≈ 14.3% pour 7 classes d’occupation du sol). Ce dernier point indique que les couleurs
générées ne sont pas incohérentes sémantiquement les unes par rapport aux autres. Des exemples
de colorisations d’images aériennes historiques avec SpyncoGan sont présentées sur la figure 4.18,
montrant que les résultats visuels obtenus semblent aussi intéressants visuellement que ceux ob-
tenus avec Col-Cycle (voir figure 4.9).

TABLEAU 4.5 – Comparaison de l’apport des couleurs générées par Col-Cycle et SpyncoGan à la classification
des images aériennes historiques de HistAerial.

Texture Réseau Col. epoch Taux de bonne classification (%)

CLBP / / 88.1
CLBP Col-Cycle 120 89.2
CLBP SpyncoGan 120 89.2

LCOLBP / / 89.3
LCOLBP Col-Cycle 120 89.5
LCOLBP SpyncoGan 120 89.4

/ Col-Cycle 120 58.6
/ SpyncoGan 120 49.0

Aléatoire / / 14.3

4.4.6 Conclusion partielle

Nous avons développé SpyncoGan, une nouvelle approche non-supervisée combinant réseaux
de neurones profonds à convolutions et méthodes classiques pour la colorisation d’images pan-
chromatiques. Nous avons appliqué cette méthode sur plusieurs jeux de données différents, ce
qui nous a permis de mettre en avant sa capacité à générer des images relativement réalistes par
rapport à l’existant. Une étude par ablation nous a permis de montrer les forces et les faiblesses
des blocs constituant SpyncoGan. En particulier, le gain procuré par l’utilisation d’une pyramide
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4.5 Conclusion

Résumé des travaux réalisés. Nous nous sommes intéressés à la colorisation non-supervisée
d’images panchromatiques. Dans un premier temps, nous avons cherché à coloriser les images
aériennes historiques de très hautes résolutions afin d’améliorer la visualisation de ces données
pour les géomaticiens. Nous avons pu mettre en avant un effet mosaïque apparaissant lors de la
colorisation par imagettes, que nous avons partiellement résolu à l’aide d’un remplacement de
textures. Devant les résultats encourageants obtenus, nous nous sommes placés dans un cadre
plus général afin de proposer une nouvelle approche de colorisation non-supervisée basée sur un
a priori empirique et une représentation pyramidale. Nous avons ainsi pu montrer que remplacer
l’un des deux GAN utilisé dans les réseaux de neurones cycliques était possible pour la colorisa-
tion. Nous avons également montré que la représentation pyramidale permettait de contraindre
les représentations internes du réseau de neurones (visualisation réalistes), mais que son gain
quantitatif semble limité. Enfin, nous avons pu évaluer l’intérêt de la colorisation pour la classi-
fication. Nous avons ainsi montré qu’un réseau de neurones classifieur entraîné sur des images
colorisées pouvait mieux se généraliser à d’autres domaines couleur que lorsqu’il était entraîné
sur des données en vraies couleurs. Nous avons également montré l’intérêt de la colorisation pour
améliorer légèrement la classification des images aériennes historiques, les couleurs générées oc-
casionnant de légers gains sur HistAerial lorsque combinées avec des caractéristiques de texture.

Vision critique sur les travaux réalisés. L’utilisation de méthodes non-supervisées basées sur
des représentations cycliques est un choix que nous avons fait afin de pouvoir entraîner les ré-
seaux de neurones générateurs à l’aide des images à coloriser elles-mêmes. Il aurait cependant
pu être intéressant de comparer les méthodes développées avec des approches supervisées de la
littérature afin de pouvoir mieux positionner nos méthodes. Par ailleurs, l’utilisation de Ht est
ici limitée au cas de la colorisation. Il aurait pu être intéressant de chercher à développer des
fonctions Ht pour différentes tâches de translation d’image à image, ce qui représente une pro-
blématique que nous jugeons particulièrement complexe. De plus, nous avons ici étudié l’utilisa-
tion de pyramides spatiales de sorties en nous basant sur des observations intuitives, mais nous
n’avons pas comparé cette approche à d’autres formulations multi-échelles. Nous pensons que ce
point mériterait d’être approfondi. Enfin, les comparaisons réalisées à différentes epochs fixées ne
peuvent qu’être indicatives : les colorisations générées lors de l’entraînement de réseaux différents
pris à une même epoch n’ont pas de raison, a priori, d’être similaires (i.e., dans tous les cas, nous
comparons des minima locaux). Il est par ailleurs possible que des couleurs générées soient très
éloignées d’une image réelle en couleurs tout en étant discriminantes sémantiquement et per-
ceptuellement appréciables pour l’être humain : une image en couleurs parfaite n’existe pas. A ce
titre, nous avons ici uniquement utilisé des métriques par rapport à des images de références. Il
aurait pu être intéressant d’évaluer la diversité des couleurs générées afin de déterminer si l’un
des réseaux a tendance a apprendre des représentations plus variées qu’un autre.

4.6 Visualisations supplémentaires

Cette section est constituée de visualisations supplémentaires (figures 4.19, 4.20, 4.21 et 4.22)
mettant en avant les différentes colorisations générées au cours de l’entraînement de Spynco-
Gan. On y constate une forte variabilité, ainsi que des représentations beaucoup plus réalistes que
d’autres. Nous recommandons une visualisation électronique pour apprécier les qualités et les dé-
fauts de ces images. Ces visualisations sont également disponibles ici :
http://liris.univ-lyon2.fr/SpyncoGan/files/ratajczak-SpyncoGan19supp.pdf.
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Chapitre 5

Segmentation sémantique et
post-traitement

Ce chapitre présente nos travaux sur le post-traitement de segmentations d’images aériennes his-
toriques. Notre but est d’améliorer les cartes d’occupation du sol générées à l’aide d’un logiciel
tel que Gouramic (voir Annexe A). D’une part, nous avons cherché à générer des superpixels qui
prennent en compte les séparations sémantiques entre les parcelles des images aériennes his-
toriques afin d’obtenir des groupes de pixels réalistes. D’autre part, nous avons étudié l’intégra-
tion de l’information portée par ces superpixels au sein d’un champ aléatoire conditionnel afin
de contraindre l’inférence de ces modèles graphiques. Face aux résultats encourageants que nous
avons obtenus, nous nous sommes alors demandé dans quelle mesure la colorisation automa-
tique, étudiée dans le chapitre précédent, pouvait avoir un intérêt pour le post-traitement des
données historiques.
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détecter (e.g., séparation entre une parcelle de forêt et une parcelle de prairie).

Afin de tenir compte de la sémantique des objets et de détecter prioritairement des bords cor-
respondants aux entités que l’on aimerait détourer, des approches combinant traitement d’image
et apprentissage machine ont été proposées [AMFM11]. Dans ce manuscrit, nous nous intéres-
sons particulièrement aux approches exploitant des réseaux de neurones profonds à convolutions.
Ces approches ont permis d’obtenir des résultats compétitifs sur plusieurs jeux de données stan-
dards [XT15]. L’idée derrière l’utilisation de réseaux de neurones à convolutions pour détecter des
bords est qu’ils vont permettre d’apprendre des filtres aptes à donner plus d’importance aux gra-
dients d’intensités ayant une connotation sémantique, et de "gommer" les autres. Pour cela, les
détecteurs de bords sont entrainés à segmenter une image en deux catégories, à savoir les pixels
de fond et les pixels de bords. Une fois entraîné, un détecteur génère une carte de probabilités,
indiquant pour chaque pixel sa probabilité d’appartenir à un bord sémantiquement intéressant
(voir figure 5.2).

Les bords profonds ont à ce jour trouvé moult applications en télédétection. Marmanis et
al. [MSW+18] ont proposé d’intégrer des bords profonds sous forme de canaux supplémentaires
aux images IRGB et RGBD des jeux de données IPSRS Potsdam et Vaihingen. Les images avec
ces canaux supplémentaires ont été utilisées afin d’entraîner des réseaux de neurones entière-
ment convolutifs tels que SegNet [BKC17] et FCN-8 [LSD15], populairement utilisés pour la seg-
mentation sémantique. Les résultats obtenus ont montré l’intérêt d’intégrer explicitement des
bords profonds afin de contraindre la génération de segmentations sémantiques plus proches de
la vérité terrain. Chen et al. [CBP+16] ont étudié l’intérêt de prédire des bords profonds en plus
des cartes de segmentation sémantique à l’aide d’un même réseau de neurones. Le but était ici
de contraindre l’apprentissage de représentations cohérentes par rapport aux bords afin d’amé-
liorer implicitement les résultats du réseau pour la segmentation. Les bords profonds ont éga-
lement trouvé des applications pour le détourage de parcelles de champs de cultures [MPT20;
GPLSREGM19], la génération automatique de cartes cadastrales [XPK19; CKYV19], ou encore l’es-
timation de réseaux routiers [XXFC18].

Nos travaux se positionnent ici à mi-chemin entre le détourage de parcelles et l’intégration
de bords profonds pour l’amélioration de segmentations sémantiques. Dans notre cas, le détou-
rage de parcelles constitue une étape intermédiaire à l’amélioration de segmentations obtenues a
priori.

5.2.2 Champs aléatoires conditionnels

Les champs aléatoires conditionnels ont été largement étudiés dans la littérature pour le post-
traitement de segmentations sémantiques. Pour cela, une image I est représentée à l’aide d’un
graphe G dont les vertex sont les pixels de l’image. A chaque pixel sont associées des caractéris-
tiques et à une étiquette estimée. L’étiquette estimée est généralement assortie d’une probabilité,
qui peut-être obtenue soit en sortie d’un algorithme de segmentation, soit fixée manuellement
(cas où l’algorithme de segmentation n’est pas accessible). Cette probabilité est régulièrement ap-
pelée potentiel unaire (i.e., potentiel indépendant pour chaque pixel). Le but des algorithmes de
type CRF est alors de moduler le potentiel unaire en tenant compte des relations d’adjacences
entre les pixels (étape d’inférence). Celles-ci sont représentées à l’aide de potentiels par paires, qui
indiquent la proximité des pixels dans l’espace dans caractéristiques (e.g., différence entre l’inten-
sité de deux pixels connexes sur le graphe). En se basant sur ce principe, plusieurs approches ont
vu le jour.

Triggs et Verbeek [TV08] ont cherché à agréger les informations portées par des représenta-
tions à plusieurs échelles afin de tenir compte des observations locales et globales en se basant
sur des sous-ensembles de pixels rectangulaires (imagettes, patch). Krahenbühl et al. [KK11] ont
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(a) (b) (c) (d)

‘

(e) (f) (g)

FIGURE 5.5 – Résultats obtenus avec HED pour la détection de bords sur une imagette de 1024x1024 pixels
après 10000 itérations d’entraînement. (a) Imagette, (b) à (f) les sorties intermédiaires du réseau, (g) résultat
de la fusion linéaire apprise par le réseau et appliquée sur les 5 sorties.

L =−β
∑

i∈Y+
log (p(yi = 1|X;W; wm)

−(1−β)
∑

i∈Y−
log (p(yi = 0|X;W; wm)

(5.1)

Dans l’équation (5.1), W représente les poids du réseau de base (VGG-16 ici), wm représente
les poids associés à une sortie intermédiaire m, Y+ sont les étiquettes de vérité terrain pour le
fond, Y− sont des étiquettes de vérité terrain pour les bords, et β= Y−

Y et 1−β= Y+
Y .

Nous présentons des exemples de bords profonds obtenus avec les différentes sorties de HED
après 10 000 epochs d’entraînement sur la figure 5.5. Ces bords profonds ont été générés pour des
images aériennes historiques. Nous avons ici inversé les valeurs des résultats obtenus pour que
les bords détectés soient plus facilement visibles sur papier blanc. On peut observer que les sor-
ties les moins profondes (b)-(d) préservent effectivement de nombreuses hautes fréquences qui
ont tendance à s’effacer par la suite. On remarque également que les dernières sorties permettent
d’obtenir une meilleure séparation des classes (bords, non bords). La sortie fusionnée (g) fournie
une représentation lissée de la sortie (f). On distingue en effet que les bords sont moins crénelés
sur (g) que sur (f), mais ils sont plus flous. Comme attendu, cette sortie fusionnée semble égale-
ment intégrer ces informations provenant des sorties précédentes : une image (g) possède plus de
pixels sombres qu’une image (f). Ce dernier point permet de préserver des bords ou des bouts de
bords qui auraient autrement été tronqués.

Des bords profonds aux superpixels

Une fois les bords profonds générés, nous avons choisi d’utiliser l’algorithme de partage des
eaux [BM93] afin d’obtenir des superpixels. Pour rappel, cet algorithme va créer des groupes de
pixels en se basant sur une carte de gradients. Cette dernière est ici simplement remplacée par les
bords profonds. Nous supposons que ceux-ci permettent de réduire la prise en compte des hautes
fréquences qui ne correspondent pas à des séparations sémantiquement intéressantes comparés
aux opérateurs de gradients classiques. Ce processus est fortement inspiré des travaux réalisés
par [AMFM11]. Les auteurs proposaient d’utiliser les résultats obtenus en sortie d’un détecteur
de bords afin de générer une hiérarchie de contours à l’aide de la Oriented Watershed Transform.
Pour cela, les auteurs se basaient sur des caractéristiques extraites à l’aide de filtres "artisanaux" et
de techniques d’apprentissage automatique. Cette idée fût ensuite reprise par [XKP19] afin d’esti-
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tiels sensibles au contraste (contrast-sensitive), comme définis par [KK11]. Ils permettent d’inté-
grer l’information portée par la couleur (ou l’intensité du niveau de gris dans notre cas) Ii et I j ,
ainsi que l’information portée par la position des pixels Pi et P j . L’idée est ici que des pixels spa-
tialement proches avec des couleurs similaires devraient avoir la même étiquette. Ces deux filtres
ont pour paramètres θγ, θα et θβ qui correspondent aux déviations standards du filtre gaussien. En
complément, nous intégrons un troisième noyau qui représente l’information portée par les pixels
de l’image DES-mean, dont les intensités sont représentées par DESi et DES j . Son but est de pé-
naliser deux pixels appartenant à des superpixels différents. Nous avons dans un premier temps
fixé ce noyau sous la forme d’un potentiel générique (pas de paramètres, voir équation (5.4)). Nous
avons ensuite étendu cette formulation à l’utilisation d’un potentiel bilatéral, similaire au noyau
k(2).

k( fi , f j ) =ω(1)exp(−
Pi −P j

2θ2
γ

)

+ω(2)exp(−
|Pi −P j |

2

2θ2
α

−
|Ii − I j |

2

2θ2
β

)

+ω(3)exp(
−|DESi −DES j |

2

2
)

(5.4)

En pratique, les poids ω peuvent être optimisés. Dans notre cas, nous les avons fixés manuel-
lement afin d’étudier l’importance relative des caractéristiques de l’image initiale et de l’image
lissée en tenant compte des bords profonds (voir section 5.4.3).

5.4 Expériences et résultats

Nous présentons dans cette section les expériences que nous avons réalisées, ainsi que les
résultats que nous avons obtenus en post-traitement.

5.4.1 Mise en place

Données initiales

Afin de réaliser nos expériences, nous nous sommes basés sur 17 images aériennes historiques
de très hautes résolutions annotées manuellement à l’aide de 7 classes d’occupation du sol, plus
une classe supplémentaire représentant la catégorie "autre" (e.g., stade) qui a été ignorée dans
nos traitements. Parmi ces images, nous en avons réservées 9 pour entraîner le détecteur de bords
HED, et 8 que nous avons utilisées pour évaluer les résultats obtenus en segmentation sémantique.
Nous avons nommé ces deux ensembles de données de (dataset edges) et ds (dataset segmenta-
tion). La distribution des étiquettes pour ces images est donnée sur la figure 5.7. Cette répartition
nous montre que les images possèdent, globalement, des répartitions de classes similaires, ce qui
devrait permettre d’améliorer les performances du détecteur de bords lors de l’inférence.

Génération de segmentations sémantiques grossières

Afin d’obtenir des résultats initiaux de segmentation sémantique, nous avons choisi de mi-
mer le processus d’utilisation du logiciel Gouramic (voir Annexe A). Pour chaque image aérienne
historique de ds , nous échantillonnons aléatoirement 300 pixels par classe. Nous extrayons en-
suite une imagette de 100 × 100 pixels centrée sur chaque pixel échantillonné, à partir de laquelle
nous calculons un histogramme de textures à l’aide du filtre LCoLBP présenté dans le chapitre 3.
Chaque imagette de 100 × 100 pixels est ici considérée comme étant annotée par son pixel cen-
tral. Les histogrammes calculés sont ensuite utilisés pour entraîner une forêt aléatoire d’arbres de
décisionnels composée de 100 arbres. Nous entraînons une forêt aléatoire d’arbres décisionnels
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des superpixels des autres domaines (i.e., DES-mean de l’image colorisée en utilisant la forme des
superpixels extraits de l’image en niveaux de gris). Les résultats que nous avons obtenus sont pré-
sentés sur le tableau 5.3. On observe que les meilleurs taux de bonne classification sont obtenus à
l’aide des DES calculés à partir des images en niveaux gris et en couleurs. Ces résultats semblent
cohérents avec notre intuition. Les images colorisées ont en effet été hallucinées par un réseau de
neurones à convolutions à partir des images en niveaux de gris, ce qui implique que les structures
spatiales ont pu être légèrement modifiées (e.g., aberrations chromatiques locales). Néanmoins,
pour chaque type de superpixel, on observe des taux de bonne classification plus élevés en utili-
sant les représentations moyennes en vraies et fausses couleurs. Ce dernier point tend à montrer
que les gains observés sont effectivement dus à la colorisation, et non à la forme des superpixels.

TABLEAU 5.3 – Taux de bonne classification (%) en utilisant les DES-mean obtenus à l’aide de DES de dif-
férents domaines couleur avec w (1) = 3 and w (2) = w (3) = 10. Les valeurs reportées correspondent aux
meilleurs résultats obtenus en faisant varier θα et θβ.

Superpixels
DES-mean Niveaux de gris Couleurs réelles Fausses couleurs

Niveaux de gris 82.68 82.63 82.64
Couleurs réelles 83.32 83.34 83.16
Fausses couleurs 83.52 83.34 83.26

5.5 Conclusion

Résumé des travaux réalisés. Nous nous sommes intéressés à l’utilisation d’algorithmes de
post-traitements pour améliorer les résultats de segmentation sémantique d’images aériennes.
Nous avons montré l’intérêt d’extraire des bords profonds afin de générer des superpixels et in-
tégrer l’information qu’ils portent au sein d’un CRF dense. Nous avons également mis en avant
l’intérêt de la colorisation pour le post-traitement.

Vision critique sur les travaux réalisés. Nous avons travaillé dans un cadre exploratoire afin de
déterminer l’intérêt de certains algorithmes de post-traitement pour améliorer les cartes d’occu-
pation du sol. Nous nous sommes limités au cas de l’inférence à l’aide de champs aléatoires condi-
tionnels denses. Nous n’avons pas exploré l’utilisation d’autres algorithmes de post-traitement.
Nous aurions pu, par exemple, remplacer le CRF dense par un réseau de neurones à convolutions.
De la même manière, nous n’avons pas cherché à optimiser les poids associés à chaque potentiel
par paires, nous contentant d’une évaluation de l’importance relative de chacun d’eux. Il aurait
pu être intéressant d’optimiser ces poids de manière plus rigoureuse. Enfin, nous n’avons pas ap-
pliqué les algorithmes de post-traitement sur les images aériennes entières, mais seulement sur
des imagettes de 1024 × 1024 pixels sans recouvrement. Les relations entre les pixels de deux ima-
gettes connexes n’ont donc pas été prises en compte. La prise en compte de ces relations aurait pu
avoir un impact sur les résultats obtenus.
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Dans ce manuscrit, nous avons abordé l’utilisation d’algorithmes de vision par ordinateur afin
d’analyser automatiquement les images aériennes historiques dans le cadre d’une étude épidé-
miologique portant sur l’impact sur la santé de l’exposition aux pesticides associée aux cultures
agricoles. Nous avons vu comment classifier, coloriser, et segmenter ces données en plusieurs
classes d’occupation du sol. Nous avons notamment pu mettre en avant la faisabilité de ce type
d’approches pour faciliter le travail de photo-interprétation des géomaticiens. Nos travaux ne sont
cependant encore qu’une esquisse du champ des possibles, que ce soit à cause de la nature com-
plexe des images étudiées (peu de modalités, différences de résolutions, différentes dates, etc.), ou
de l’état actuel des ressources disponibles (peu de données annotées, mise à disposition récente
des images).

Classification de textures

Nous avons étudié l’utilisation de descripteurs de textures et de réseaux de neurones pro-
fonds à convolutions afin de classifier automatiquement les images aériennes historiques en plu-
sieurs classes d’occupation du sol. Nous avons mis en avant l’efficacité des deux types d’approches
pour cette tâche, les descripteurs de textures ayant des temps de traitements plus rapides que les
DCNN, pour des taux de bonne classification légèrement inférieurs sur le jeu de données His-
tAerial. Face à des résultats encourageants, nous avons étendu nos travaux à des images d’écorces
d’arbres dans le cadre d’une collaboration avec une autre doctorante, mettant en avant l’intérêt de
combiner texture et couleur. La rapidité de ces algorithmes basés sur la texture nous a poussé à les
utiliser dans le cadre du projet TESTIS afin qu’ils puissent bénéficier aux géomaticiens du Centre
Léon Bérard, ne disposant pas de cartes graphiques aptes à accélérer l’exécution des DCNN.

Les méthodes développées dans le cadre de cette thèse, ainsi que le jeu de données HistAe-
rial, peuvent avoir un intérêt pour la classification de textures en général. L’utilisation d’autres
combinaisons de filtres et de caractéristiques pourrait également avoir un intérêt afin d’amélio-
rer les résultats obtenus, non seulement sur HistAerial, mais aussi sur d’autres jeux de données.
Parmi les pistes possibles, la combinaison de caractéristiques extraites par des descripteurs de
textures et des réseaux de neurones profonds à convolutions nous parait intéressante. En parti-
culier, il pourrait être pertinent de contraindre l’entraînement d’un DCNN pour la génération de
caractéristiques complémentaires à celles extraites par les filtres classiques. Pour cela, la conca-
ténation des caractéristiques de textures et des caractéristiques profondes durant l’entraînement
est une piste envisagée. Il s’agirait alors d’avoir un ensemble de caractéristiques pré-définies, et
un semble de caractéristiques qui seraient apprises en complément. Nous avons par ailleurs vu
que l’utilisation de modalités générées par un réseau de neurones à convolutions (i.e., la couleur
dans notre cas) permettait d’améliorer légèrement les taux de bonne classification sur HistAerial.
Ces résultats nous poussent à croire que la génération d’autres modalités pourrait avoir un intérêt
pour l’analyse des images aériennes historiques. En particulier, les informations de profondeur,
qui peuvent être générée par stéréoscopie, devraient nous donner des indices visuels complémen-
taires pour analyser ces images (e.g., distinction vignes / vergers en fonction des pentes ou de la
hauteur des cultures). La fusion d’informations non issues d’images (e.g., saison de l’acquisition,
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coordonnées géographiques, registres cadastraux, statistiques de recensements) est une piste de
recherche qui nous semble également pertinente pour inclure des a priori supplémentaires quant
aux données observées (e.g., certaines régions ne possèdent pas de vignes). En particulier, le fait
de tenir compte des coordonnées géographiques pourrait nous permettre de guider la génération
automatique de cartes d’occupation du sol en adaptant les méthodes en fonction des zones ob-
servées. Enfin, l’utilisation de séries temporelles est une piste que nous avions temporairement
exclue dû à la faible période temporelle entre deux acquisitions, et à la volonté de générer des ré-
sultats à un instant donné (étude TESTIS). Il pourrait néanmoins être intéressant de combiner les
informations d’images multi-temporelles, et éventuellement multi-spectrales, afin d’améliorer les
taux de bonne classification.

Colorisation automatique

Afin d’annoter les images aériennes historiques, que ce soit manuellement ou à l’aide du lo-
giciel Gouramic, les géomaticiens ont besoin de déterminer quel est le contenu des images. Ce
contenu est particulièrement difficile à analyser lorsqu’il n’est disponible qu’en niveaux de gris.
Afin de les aider dans cette tâche, nous avons étudié l’utilisation de réseaux de neurones généra-
teurs adversaires cycliques afin de coloriser automatiquement les images anciennes. Nous avons
montré que les colorisations générées étaient réalistes pour les êtres humains, mais permettaient
aussi d’améliorer légèrement les taux de bonne classification par rapport à la texture seule (i.e., les
couleurs générées semblent positivement corrélées aux classes d’occupation du sol). Afin de ten-
ter d’améliorer les colorisations générées, nous avons proposé une méthode dite pseudo-cyclique,
qui consiste à remplacer l’un des deux GAN par une fonction définie empiriquement. Nous avons
montré qu’une telle approche, pseudo-cyclique, permettait d’obtenir des résultats au moins au
niveau des autres méthodes comparées, sans pour autant que les couleurs générées permettent
d’obtenir un gain supplémentaire en classification.

Les travaux que nous avons menés sur la colorisation automatique se cantonnent à l’utilisa-
tion d’approches entièrement automatiques, sans tenir compte de la géolocalisation des images ni
de la représentation actuelle des sols des lieux observés. Il serait intéressant d’étudier, d’une part,
l’intérêt d’algorithmes supervisés pour coloriser les images aériennes historiques, et, d’autre part,
d’évaluer l’intérêt des méthodes utilisées sur des jeux de données plus disparates que ceux avec
lesquels nous avons travaillés. Une autre perspective intéressante, selon nous, serait de guider le
processus de colorisation en appariant les images historiques aux images récentes dans le cadre
d’une approche hybride, à mi-chemin entre le transfert de couleur et la colorisation. De même,
guider le processus de colorisation en intégrant des contraintes liées à la classification est une
piste relativement populaire dans la littérature, qu’il pourrait être intéressant de suivre. A l’inverse,
il pourrait être pertinent de s’inspirer des Auto-Encodeurs pour étudier l’efficacité des caractéris-
tiques profondes générées pour la colorisation afin de réaliser d’autres tâches (e.g., segmentation).
A ce propos, nous pourrions aussi nous demander si ces caractéristiques sont très différentes de
celles obtenues avec un auto-encodeur, et pourquoi ? Par ailleurs, l’utilisation de méthodes plus
avancées pour gérer l’effet mosaïque est également une piste envisagée. On pourrait, par exemple,
tenir compte de la cohérence spatiale des colorisations lors de l’entraînement en utilisant des ima-
gettes avec recouvrement, et en imposant des contraintes pour que les pixels de deux imagettes
qui se recouvrent aient la même couleur. De plus, l’utilisation d’approches cycliques pour géné-
rer des représentations spectralement plus complètes (e.g., infrarouge, profondeur) est une piste
qui pourrait avoir un intérêt pour la visualisation et la classification des images aériennes histo-
riques (i.e., apprentissage d’une relation entre texture et infrarouge). A noter que l’utilisation de
la colorisation et de la profondeur (élévation du terrain) pour la visualisation est une idée qui a
été mis en place dans le cadre d’une collaboration avec le laboratoire Environnement Ville Société
de Saint-Etienne, France. Enfin, l’utilisation de la colorisation pour l’adaptation de domaines est
une piste qui nous semble prometteuse. Il s’agirait ici de convertir des images acquises avec des
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capteurs différents vers une représentation en niveaux de gris, et de toutes les coloriser à l’aide du
même algorithme. Les domaines couleur rattachés aux niveaux de gris et aux images colorisées
serviraient alors d’intermédiaires entre les différents capteurs, sans avoir nécessairement besoin
d’entraîner un algorithme pour chaque type d’images.

Post-traitement

Dans le but d’améliorer les résultats obtenus par segmentation sémantique au pixel ou à l’ima-
gette près, nous avons étudié l’utilisation de méthodes de post-traitement. Nous nous sommes
basés sur des algorithmes de sur-segmentation et des champs aléatoires conditionnels. En parti-
culier, nous avons proposé d’extraire des bords profonds afin de générer des superpixels basés sur
des informations supposées sémantiquement intéressantes. Nous avons montré l’intérêt de ces
approches pour améliorer les segmentations obtenues sur des images aériennes historiques et ré-
centes. Nous avons également évalué l’intérêt de la colorisation pour le post-traitement, mettant
en avant l’intérêt potentiel de générer des représentations colorisées pour cette tâche.

Les perspectives liées au post-traitement portent, d’une part, sur l’intégration des algorithmes
de post-traitement au sein des chaînes de traitements utilisées par le Centre Léon Bérard via le
logiciel Gouramic. D’autre part, nous nous sommes ici intéressés au post-traitement de segmen-
tations grossières obtenues par une classification par imagette. Nous n’avons pas étudié l’inté-
rêt de segmenter les images aériennes historiques à l’aide de DCNN. Il pourrait être intéressant
d’étudier l’intérêt de ces approches pour la segmentation automatique des images aériennes his-
toriques. De même, nous n’avons pas appliqués nos algorithmes sur d’autres types d’images que
des images aériennes. Une perspective pourrait être d’étudier l’intérêt des superpixels issus de
bords profonds pour le post-traitement d’images d’autres catégories (e.g., images de vie courante,
image médicales). En particulier, il serait possible d’étendre les approches développées au cas
3D afin d’analyser des volumes complexes. Il serait alors intéressant d’observer dans quelle me-
sure les bords profonds peuvent être exploités afin de générer des groupes de voxels (pixels vo-
lumiques). Par ailleurs, nous avons ici travaillé uniquement à l’amélioration de segmentations
existantes. Nous n’avons pas cherché à développer d’approches bout en bout, incluant à la fois
l’algorithme de segmentation et celui de post-traitement. L’étude de ce type d’approches, que ce
soit à l’aide d’algorithmes classiques ou de réseaux de neurones profonds à convolutions, pour-
rait avoir un intérêt pour l’analyse automatique des images aériennes historiques. De la même
manière, il pourrait être intéressant d’exploiter des réseaux de neurones profonds à convolutions
pour post-traiter les segmentations grossières. Une piste qui nous semble intéressante consiste-
rait à entraîner un réseau de neurones pour à la fois raffiner des segmentations et segmenter des
images. Pour cela, il serait possible de donner la segmentation grossière et l’image source en en-
trée du réseau, et de remplacer aléatoirement la segmentation grossière par du bruit blanc lors de
l’entraînement. Ainsi, lorsque la segmentation grossière sera présente, le réseau pourra s’en servir
pour extraire des informations sémantiques qui vont lui permettre d’améliorer l’existant. Lorsque
du bruit blanc sera présent, il aura alors pour tâche de segmenter l’image source.

Apport pour le projet TESTIS

Nous avons contribué au projet TESTIS en développant Gouramic, un logiciel d’aide à l’an-
notation des images aériennes historiques. Notre logiciel a permis de réduire le temps consacré
par un géomaticien sur chaque image à environ, 20 minutes, contre 6 à 10 heures auparavant.
Ce temps inclut l’ensemble de la chaîne de traitements, de l’ouverture du fichier à la sauvegarde
du résultat sur le disque, en passant par l’annotation partielle des images. Afin de fonctionner,
Gouramic nécessite des annotations partielles (des traces) fournies par l’utilisateur. Ce choix a été
fait afin de permettre une vérification et une amélioration des résultats par l’utilisateur : il lui suf-
fit de fournir un plus grand nombre d’annotations en cas de résultat insatisfaisant. La récolte de
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l’ensemble des annotations partielles réalisées sur les images de l’année de naissance des sujets
de l’étude TESTIS a permis le développement d’une approche automatique qui est actuellement
en cours d’évaluation. Les résultats générés par l’étude TESTIS à l’aide de Gouramic devraient
permettre de mettre en place des pistes de réflexion sur l’impact sur la santé de l’exposition aux
pesticides liée à la proximité de résidences aux cultures agricoles, volet intéressant particulière-
ment l’Agence De l’Environnement et de la Maîtrise de l’Energie et le Centre Léon Bérard.

D’un point de vue utilisation, le logiciel Gouramic a été éprouvé par les géomaticiens du Centre
Léon Bérard, ainsi que par un groupe d’étudiants en géomatique de l’Université Jean Monnet de
Saint-Étienne. Ces utilisateurs ont trouvé que le logiciel était ergonomique et facile d’utilisation.
D’un point de vue améliorations, l’intégration d’outils de visualisation supplémentaires et d’un
outil plus performant pour gommer les traces réalisées sont envisagés. D’un point de vue algo-
rithmes, la mise en place d’approches basées sur des superpixels est une piste qui nous semble
prometteuse. Les méthodes de colorisation nous semblent quant à elle pré-destinées à être utili-
sée en amont de Gouramic. Par ailleurs, l’utilisation préalable d’un algorithme automatique avant
que l’utilisateur ait le besoin de réaliser des traces devrait accélérer les traitements réalisés. L’éva-
luation de l’impact des traces utilisateurs sur les résultats, ainsi que la dépendance des résultats
en fonction de l’utilisateur sont des questions qui sont actuellement à l’étude. De même, la com-
paraison des résultats générés à l’aide de Gouramic avec d’autres bases d’occupation du sol est en
cours (Corine Land Cover, Hilda, etc.).
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