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Résumé

Cette these, co-financée par 'ADEME, se place dans le cadre d’'une collaboration entre le LIRIS
et le Centre Léon Bérard autour de ’étude épidémiologique TESTIS. L'étude TESTIS vise a esti-
mer 'impact des pesticides sur le développement de la tumeur germinale du cancer du testicule.
Cette maladie ayant un temps de développement long, il est nécessaire d’avoir acces a des infor-
mations remontant jusqu’a la naissance des sujets considérés. Dans le cas de TESTIS, les sujets
les plus agés sont nés au début des années 1970. Afin de tenir compte des expositions résiden-
tielles individuelles aux pesticides propagés par les vents, le Centre Léon Bérard a mis au point
une métrique se basant sur 'occupation du sol autour des habitations. Malheureusement, au-
cune base de données d’occupation du sol avant 1990 n’est actuellement suffisamment précise
pour étre utilisée. Afin d’obtenir ces informations, les géomaticiens du Centre Léon Bérard sont
chargés de photo-interpréter des images aériennes historiques en niveaux de gris. Ce processus
manuel étant particulierement long et fastidieux, I'utilisation de méthodes automatiques ou semi-
automatiques a été suggérée. Lobjectif de cette thése est de développer des algorithmes pour ai-
der les géomaticiens a obtenir des cartes d’occupation du sol en un temps raisonnable. Pour cela,
nous nous sommes intéressés a l'utilisation de méthodes de classification de textures que nous
avons intégrées au sein d'un logiciel d’aide a I'annotation. Celui-ci est actuellement utilisé dans
le cadre de I'étude TESTIS. Nous nous sommes ensuite intéressés a la colorisation automatique
et non-supervisée des images aériennes historiques afin de proposer une visualisation alternative
aux géomaticiens. Ces travaux nous ont également menés a étudier I'intérét des couleurs géné-
rées artificiellement pour la classification des données historiques. Enfin, nous avons cherché a
améliorer les cartes d'occupation du sol générées par notre logiciel au travers de méthodes de
post-traitement, ouvrant la voie au développement de chaines de traitements plus performantes.

Mots clés : Images aériennes, classification, colorisation, post-traitement, texture, occupation du
sol






Abstract

This thesis, co-funded by the ADEME, takes place in the context of a collaboration between the
LIRIS laboratory and the Centre Léon Bérard as part of the TESTIS epidemiological study. The
TESTIS study aims to estimate the impact of pesticides on the development of germ cell tumor
of testicular cancer. As this disease has a long development time, it is necessary to have access
to data dating back to the birth of the subjects. In the case of TESTIS, the oldest subjects were
born in the early 1970s. In order to take into account individual residential exposures to pesti-
cides spread by winds, the Centre Léon Bérard has developed a metric based on land use around
dwellings. Unfortunately no land use database before 1990 is sufficiently accurate to be used. In
order to obtain this information, the geomatics specialists at the Centre Léon Bérard are tasked
with photo-interpreting historical aerial images in grayscale. This manual process is particularly
long and tedious. Therefore, the use of automatic or semi-automatic methods has been suggested.
The objective of this thesis is to develop algorithms to help geomatics specialists obtain land cover
maps in a reasonable time. For that, we were interested in the use of texture classification methods
that we have integrated into an annotation assistance software. This software is currently used in
the TESTIS study. We then put our focus on the development of unsupervised colorization me-
thods to provide alternative visualizations of the historical aerial images. This work also led us to
study the interest of the artificially generated colors for land use classification. Finally, we sought
to improve the land use maps generated by our software through post-processing methods, pa-
ving the way for the development of more efficient pipelines.

Keywords : Aerial images, classification, colorization, post-processing, texture, land use land cover
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Introduction générale

Limpact des modifications de I'environnement et des modes de vie sur 'augmentation de
I'apparition de certains cancers est une préoccupation majeure de santé publique. Avec environ
382 000 nouveaux cas de cancers estimés en 2018, le nombre de cancers a plus que doublé sur
presque 40 ans [INC19]. Outre les facteurs individuels de risques établis, les variations spatiales
et I'évolution rapide de I'apparition de certains cancers dans les populations migrantes sont en
faveur d’un role des facteurs environnementaux dans le développement de ces maladies. Parmi
les facteurs environnementaux, les expositions environnementales aux pesticides sont particulie-
rement suspectées. Pour la population générale, I'exposition aux pesticides provient de la dérive
des pesticides appliqués sur les cultures. Ainsi, plusieurs études ont montré une corrélation entre
la taille des surfaces cultivées et la distance des résidences aux cultures, avec I’exposition aux pes-
ticides d’origine agricole. Cependant, le lien avec ces expositions est parfois difficile a établir sur
de longues périodes. Or, un délai de latence important (i.e., plusieurs années) est supposé entre
les premiéres expositions et le développement de certains cancers, tels que le cancer du testicule.
Les connaissances actuelles sont d’ailleurs en faveur d'un role des expositions précoces dans la
vie, voire durant le développement in utero. Cela nécessite I'acces a des données anciennes pour
étudier le cas des malades les plus 4gés. Malheureusement, il y a actuellement un manque de
données historiques fiables relatives aux expositions. Ce point conduit a une réduction des infor-
mations utilisables et peut étre responsable de sous-estimations ou de sur-estimations du risque.

Dans ce cadre, le Centre de lutte contre le cancer Léon Bérard étudie, avec I’étude épidémiolo-
gique TESTIS, le lien entre cancer du testicule et expositions résidentielles issues de I'épandage des
pesticides agricoles a proximité des lieux de vie des sujets inclus dans I’étude. Pour cela, il a besoin
de définir les types de cultures a proximité des résidences des sujets pour estimer un score d’ex-
position individuel aux pesticides, et ce depuis le développement in utero des sujets (début des
années 1970 pour les plus agés). Malheureusement, il n’existe pas, a '’heure actuelle, de bases de
données géographiques contenant ces informations, et ’annotation manuelle des terrains cultivés
a partir d'images aériennes d’archives est une tache spécialisée particulierement longue et fasti-
dieuse (plusieurs heures par image). Le département Cancer et Environnement du Centre Léon
Bérard s’est ainsi associé a I’équipe IMAGINE du laboratoire LIRIS afin de développer un logiciel
de traitement d’images pour accélérer ce travail. Ce partenariat s’est traduit par I'emploi tempo-
raire d'un ingénieur, moi méme, qui a permis de mettre en place une preuve de concept afin de
produire une couche de données de qualité. Encouragés par de premiers résultats, ces travaux ont
pu étre continués en these via un co-financement de I’Agence De 'Environnement et de la Mai-
trise de 'Energie (ADEME) et du Centre Léon Bérard, sous un encadrement partagé avec le LIRIS.

Lobjectif principal de cette these est ainsi de développer des méthodes permettant la recon-
naissance automatique des parcelles de terrains a partir d'images aériennes historiques, et d’inté-
grer ces avancées au sein d’outils logiciels a destination des géomaticiens travaillant sur le projet
TESTIS. Pour cela, nous avons d’abord abordé la problématique de la reconnaissance des occupa-
tions du sol via la classification de la texture. Nous avons intégré les chaines de traitements éva-
luées au sein d'un logiciel permettant a l'utilisateur de guider la segmentation a I'aide de traces
(possibilités de vérification et de correction). Celui-ci est actuellement en cours d’utilisation dans
le cadre de I'étude TESTIS (voir Annexe A). Cependant, les images historiques étant principale-



Introduction générale

ment disponibles en niveaux de gris, elles sont particulierement difficiles a interpréter par un étre
humain par rapport a des images en couleurs. Afin de combler ce fossé visuel et proposer des re-
présentations alternatives aux géomaticiens, nous nous sommes alors intéressés a la colorisation
automatique des images aériennes historiques. Enfin, malgré les résultats satisfaisants de notre lo-
giciel, ceux-ci ont tendance; par construction; a ne pas respecter la géométrie des parcelles. Afin
d’améliorer la qualité des occupations du sol générées, nous avons cherché a utiliser des méthodes
de sur-segmentations et a intégrer 'information portée par les segments au sein d'un champ aléa-
toire conditionnel dans un cadre de post-traitement.

Cette these est ainsi composée de 5 chapitres :

— Le chapitre 1 présente le cadre de travail de la thése du point de vue du projet TESTIS. 1l
introduit également les problématiques liées aux données a notre disposition.

— Le chapitre 2 présente les notions de base sur lesquelles nos travaux se sont appuyés : des
filtres de textures aux réseaux de neurones profonds a convolutions, en passant par la sur-
segmentation.

— Le chapitre 3 présente les travaux que nous avons menés sur la classification de textures
naturelles a I’aide de méthodes classiques et de réseaux de neurones profonds.

— Le chapitre 4 présente les méthodes que nous avons développées pour la colorisation non
supervisée d’'images aériennes historiques en nous basant sur des réseaux de neurones gé-
nérateurs adversaires cycliques et pseudo-cycliques.

— Le chapitre 5 présente nos travaux sur le post-traitement de segmentations sémantiques a
I'aide d’'un champ aléatoire conditionnel et de superpixels générés a partir de bords détectés
par un réseau de neurones entierement convolutif.

Nos travaux sur la classification de textures ont été présentés dans le cadre de la conférence na-
tionale CFPT 2018 (Conférence Francaise de Photogrammétrie et de Télédétection) [RCJF*18], du
journal international IEEE TIP (Transactions on Image Processing) [RCJF*19a] et de la conférence
internationale VISAPP 2019 (International Conference on Computer Vision Theory and Applica-
tions) [RBCJT19]. Nos travaux sur la colorisation ont été exposés a la conférence internationale
IGARSS 2019 (International Geoscience and Remote Sensing Symposium) [RCJF*19b] et au Work-
shop SUMAC (Structuring and Understanding of Multimedia heritAge Contents) mené en conjonc-
tion avec la conférence internationale ACM MM (ACM Multimedia 2019) [RCJF*19c]. Nos travaux
sur le post-traitement de segmentations sémantiques d’'images aériennes ont été acceptés pour
présentation a la conférence internationale IGARSS 2020 [RCJF*20], et un article a également été
soumis a la conférence internationale IPTA 2020 (International Conference on Image Processing
Theory, Tools and Applications). Notre logiciel a par ailleurs faitI'objet de communications courtes
(abstract proceedings) dans le cadre d'une conférence nationale et de deux conférences interna-
tionales rattachées au domaine de I'épidémiologie [FRCJ*18a; FRCJ"19; FRCJ*18b].



Chapitre 1

Cadre de travail

Le but de ce chapitre est de présenter le cadre de travail dans lequel nos travaux de recherche
ont été réalisés afin de donner au lecteur un apercu des enjeux applicatifs sous-jacents a nos dé-
veloppements, de fournir une vision globale des données disponibles, et d'introduire les problé-
matiques qui ont été traitées. Nous verrons tout d’abord le contexte épidémiologique dans lequel
s’inscrit cette these au travers de I’étude TESTIS, qui vise a évaluer s’il existe une association entre
I'exposition aux pesticides et le risque de cancer du testicule a 'aide d'un Systéme d’'Information
Géographique (SIG). Nous ferons ensuite un état des lieux des données disponibles pour détermi-
ner 'occupation des sols a partir d'images aériennes et satellites, avec une accentuation particu-
liére sur les données historiques. Nous introduirons enfin les problématiques qui ont été soulevées

et auxquelles nous avons répondu.
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CHAPITRE 1. CADRE DE TRAVAIL

1.1 Contexte

Cette these se place dans le cadre de I'étude épidémiologique TESTIS portée par le dépar-
tement Cancer et Environnement du Centre Léon Bérard. TESTIS est une étude multicentrique
d’envergure nationale visant a caractériser I'impact de I'exposition vie entiére aux pesticides (do-
mestiques, professionnels et environnementaux) de participants francgais sur le risque de déve-
loppement d’'une Tumeur Germinale du Testicule (TGT) a I’age adulte. Le terme germinale est ici
associé aux cellules de reproductions présentes dans les testicules et impliquées dans le dévelop-
pement des spermatozoides. Des études sur les TGT dans la littérature ont suggéré qu'une origine
précoce des expositions pouvait avoir un fort impact sur le développement de la tumeur (jeune
age des patients). Létude TESTIS s’intéresse ainsi tout particulierement a ’hypothese d'une as-
sociation entre I'exposition aux pesticides pendant les périodes critiques de développement de
I’humain et le risque de développement d'une TGT. Pour cela, 472 hommes (cas), nés entre 1971
et 1997, appariés a 683 témoins sur le centre recruteur et I'age, ont été recrutés entre 2015 et 2018.
La répartition spatiale de ces sujets (cas et témoins) a leur année de naissance est présentée sur
la Figure 1.1. A ce jour, TESTIS est 'une des plus larges études cas-témoins portant sur ce type de
tumeurs et couvrant le territoire francais.

1.1.1 Cancer du testicule
En chiffre

Le cancer du testicule est le cancer le plus fréquemment observé chez ’homme jeune de 15
a 44 ans dans les pays développés, avec un age moyen de diagnostique estimé a 33 ans [FBB*13;
WB18]. Bien que n’affectant qu'une faible partie de la population, son incidence (i.e., sa fréquence
d’apparition) augmente de 2,6%/an en moyenne depuis 1980. Il a ainsi été estimé en 2014 qu'une
augmentation moyenne de 24% aurait lieu en Europe d’ici 2025 [LCLTF* 14]. Parmi les variantes
du cancer du testicule, 1a TGT, étudiée dans le cadre de TESTIS, representerait 98% des cas obser-
vés [FBB*13], avec des taux de survie a 5 ans de 95% pour les tumeurs localisées et de 80% pour
les tumeurs métastasées (i.e., qui s'étendent au reste du corps) [Fel08]. Il semble également inté-
ressant de constater que le cancer du testicule a un taux d'incidence qui semble étre positivement
corrélé avec le niveau économique des pays [WB18]. Les taux de mortalité liés au cancer du testi-
cule semblent étre, quant a eux, inversement proportionnels aux niveaux économiques des pays.
Tandis que ces observations ont été réalisées a partir de données de 2012 [WB18], il est possible
de voir sur les Figures 1.2 et 1.3 proposées par le Centre International de Recherche sur le Cancer

® Adresses des sujets a la naissance

FIGURE 1.1 - Distribution des sujets recrutés dans 1’étude TESTIS a leur année de naissance, France métro-
politaine (Matthieu Dubuis, 2020).
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FIGURE 1.2 — Taux d’incidence standardisé pour 1'dge (Age-Standardized Rates, ASR) du cancer du testicule
en 2018. Données fournies par le CIRC [dRsICC20].

(CIRC) - International Agency for Research on Cancer (IARC) [dRsICC20], que leur validité semble
aussi se vérifier en 2018. Sur ces deux figures, les taux d’incidence et de mortalité standardisés
pour I'age (ASR) correspondent aux valeurs qui seraient obtenues pour des populations suivant la
distribution des ages de la population mondiale standard fournie par le CIRC !. Il est ainsi possible
d’observer que les pays développés tels que la France ou les Etats-Unis ont des taux de mortalité
relativement faibles en comparaison des taux d’incidence (facteurs 28 et 21 respectivement), tan-
dis que le Mali a un fort taux de mortalité (plus élevé que la France) pour un taux d’incidence
relativement faible (dix fois moins élevé que la France). Ces éléments tendent a indiquer que la
maladie touche plus les populations des pays économiquement développés que celles des pays
en développement, mais qu’elle y est traitée de facon plus efficace (mortalité plus faible).

Facteurs de risques

Les facteurs de risques sont des éléments non directement causaux ayant été identifiés ou
étant suspectés de faciliter le développement d'un cancer. Dans le cas d'une TGT, certains fac-
teurs de risques tels qu'un antécédent cancéreux localisé sur les testicules ou la présence de syn-
dromes particuliers ont déja pu étre identifiés 2. D’autres facteurs de risques font actuellement le
sujet de recherches approfondies. Parmi eux, les facteurs environnementaux sont fortement sus-
pectés d’avoir un impact sur le développement de la maladie. Cette hypothese a été émise de par
I'observation de fortes disparités géospatiales dans le monde [WB18]. Elle est renforcée par1'étude
des taux d’incidence sur les flux migratoires de populations entre la premiere génération (adultes
migrants) et la deuxieme génération (enfants nés sur place), qui montrent que la deuxieme gé-
nération tend a étre plus touchée que la premiere [SSSJ10]. Ces observations mettent en avant
I'influence potentielle d'un facteur environnemental, indépendant de la génomique, intervenant
durant les phases de développements de '’humain. En particulier, I'hypothése du réle des expo-
sitions intra-utérines; c’est a dire lors du développement du foetus dans le ventre de la mere;
associées a un développement long de la maladie a été émise en 2001 suite a '’observation de pics

1. www-dep.iarc.fr/WHOdb/glossary.htm (acces : 2020-01-31)
2. www.urofrance.org/congres-et-formations/formation-initiale/referentiel-du-college/
tumeurs-du-testicule.html (acces: 2020-01-31)
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Estimated age-standardized mortality rates (World) in 2018, males, all ages
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FIGURE 1.3 — Taux de mortalité standardisé pour I'dge (Age-Standardized Rates, ASR) lié au cancer du testi-
cule en 2018. Données fournies par le CIRC [dRsICC20].

d’incidence de la TGT chez I’adulte jeune [SRDMMO01]. Les sources d’expositions environnemen-
tales actuellement suspectées comme étant des facteurs de risques sont des produits ayant des ef-
fets perturbateurs endocriniens, dont les polluants chimiques dans I'air rejetés par I'industrie chi-
mique et les pratiques agricoles. Les expositions professionnelles et domestiques sont également
suspectées. Dans le cadre de TESTIS, les expositions intra-utérines aux pesticides constituent la
principale hypothese de recherche.

1.1.2 Pesticides dans le monde

Les pesticides sont des produits chimiques qui permettent d’éradiquer les insectes ravageurs
ou d’éliminer certaines espéces de végétaux. On distingue plusieurs catégories de pesticides en
fonction des étres vivants qu’ils permettent d’éliminer, tels que les insectes (insecticides), les mau-
vaises herbes (herbicides), ou encore les champignons (fongicides). Les pesticides étant par na-
ture nocifs pour les étres biologiques (dont I'humain), ils sont impropres a la consommation et
font I'objet de controles réglementaires importants dans le domaine de 1’agro-alimentaire. On
parle alors de limites maximales en résidus de pesticides. Tandis que ces protections protégent
partiellement le consommateur d'une ingurgitation excessive de pesticides par I'alimentaire, les
populations restent exposées aux inhalations des molécules qui sont propagées dans 'air, puis
éventuellement déplacées par les vents.

Consommation

La consommation des pesticides dans le monde et dans le temps peut étre suivie a 1'aide
des statistiques récoltées par I'Organisation des Nations Unies pour I'alimentation et I'agricul-
ture (Food and Agriculture Organization of the United Nations, FAO). Ces derniéres ont été mis
en ligne en acces libre et gratuit via de la base de données FAOSTAT 3. La Figure 1.4 a été géné-
rée a partir de ces données. Nous pouvons remarquer sur cette figure que 'utilisation de pesti-
cides dans le monde est en augmentation depuis prés de 30 ans, et ce en particulier dans les pays
d’Asie et d’Amérique ol l'utilisation de pesticides est respectivement passée de 2.12 kg/hectare

3. http://www.fao.org/faostat/en/ (acces: 2020-02-10)
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FIGURE 1.4 - Evolution de la consommation moyenne de pesticides dans le monde par hectare de surface
cultivée de 1990 a 2017. Données fournies par la FAO.

et de 1.63kg/hectare en 1990 a 3.67 kg/hectare et 3.57 kg/hectare en 2017. En Europe, on ob-
serve que la consommation des pesticides sur cette période est restée relativement stable, passant
de 1.34 kg/hectare en 1990 a 1.65 kg/hectare en 2017. Lutilisation importante de pesticides en
Asie et Amérique est principalement attribuée a la culture du riz. En 2017, tandis que la moyenne
mondiale de consommation de pesticides était de 2.63 kg/hectare, la Chine en consommait 13.07
kg/hectare et le Japon 11.76 kg/hectare. A titre comparatif, la France consommait en moyenne 3.63
kg/hectare de pesticides. Il est cependant important de préciser que ces chiffres représentent des
données par unité de surface cultivée. Ils ne représentent donc pas la consommation brute des
pays (i.e., la quantité totale de pesticides utilisés). En 2010, il avait été ainsi estimé, dans un rap-
port de l'office parlementaire d’évaluation des choix scientifiques et technologiques sur les pesti-
cides et la santé*, que la France, plus grand producteur agricole en Europe, avait été le 4°€ pays
plus grand consommateur de pesticides dans le monde et le plus grand consommateur en Europe
pour I'année 2008. Ce rapport indique également que, "rapportée ala consommation moyenne de
pesticides par hectare cultivé, la France se place dans une position moyenne".

Impact sur la santé

Limpact des pesticides sur le développement de maladies humaines est depuis longtemps
suspecté. Il a été quantitativement étudié pour certaines d’entre elles, telles que pour la mala-
die de Parkinson [PPC*17]. Les pesticides sont par ailleurs des facteurs de risques avérés pour
de nombreux cancers. Selon un rapport de 'INSERM °, on remarque ainsi une augmentation du
risque sur le cancer de la prostate sur les ruraux et les ouvriers (entre 12% et 28% selon les popu-
lations). Ce méme rapport indique que les pesticides peuvent avoir un impact sur la grossesse et
le développement de I'enfant. En particulier, les expositions professionnelles tendent a augmen-
ter le risque de mort foetale ainsi que le risque de réduction des capacités visuelles et motrices
chez I'enfant. Les expositions résidentielles en période pré-natale augmenteraient quant a elles
les risques de malformations et de leucémies. Dans le cadre de TESTIS, il s’agit d’étudier I'impact
de I'exposition vie entiere, incluant la période pré-natale, aux pesticides sur le développement de
la TGT al’age adulte.

4. http://www.assemblee-nationale.fr/13/pdf/rap-off/i2463.pdf (acces: 2020-02-10)
5. http://www3.ligue-cancer.net/docs/fichiers/pesticides.pdf (acces: 2020-02-10)
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FIGURE 1.5 — Illustration de I'étude SIGEXPO avec I'occupation des sols hors barrieres naturelles et artifi-
cielles, et modélisation des vents dominants sur un sixiéme d’arc de cercle [FBF18].

1.1.3 Méthodologie de I'étude TESTIS

L'étude TESTIS fait suite a deux projets préliminaires, TESTEPERA et SIGEXPO. Ils ont permis
d’étudier et de mettre en place les briques de base nécessaires a la réalisation de TESTIS. Ces deux
projets ont été réalisés durant la these de Rémi Béranger [Bé14]. Nous les exposons succinctement
ici afin de mettre en avant la méthodologie appliquée dans le cadre de TESTIS.

TESTEPERA

TESTEPERA est une étude pilote cas témoins qui a été réalisée sur un sous-ensemble repré-
sentatif de la population cible de TESTIS [BBB*14]. Elle visait a déterminer I'efficacité de diffé-
rents modes de recrutement et la capacité de collection de données pertinentes pour la période
prénatale. Elle a été réalisée entre 2011 et 2012. Durant cette période, 150 sujets masculins ont été
contactés dans la région Rhone-Alpes en France, dont 58 hommes atteint d'un cancer et 92 sujets
témoins. Pour 'ensemble des recrutements, il est intéressant de remarquer que seuls les sujets
ayant rencontré un recruteur en personne ont accepté de participer a I'étude. Les questionnaires
permettant la récolte des données ont permis de déterminer les emplois et la géolocalisation des
sujets dans le temps. L'étude a montré que la précision de la géolocalisation des sujets était dépen-
dante du niveau d'urbanisation, en plus d’étre dépendante de la précision portée par les réponses
des sujets (e.g., précision a I’adresse, a la rue, au lieu-dit). A noter que cette précision ne semble
pas biaisée par la période d’étude [BBB* 14].

SIGEXPO

SIGEXPO [BBB*13] est une étude lancée en 2012 qui avait pour but d’identifier les facteurs
déterminants de I'exposition environnementale aux pesticides agricoles et de développer une
nouvelle métrique basée sur un SIG adapté au territoire francais a partir de données récentes.
Pour cela, I'étude s’est basée sur une campagne de prélevements de poussieres en habitat inté-
rieur dans la région Rhéne-Alpes. Il a en effet été montré dans la littérature que les poussiéres
que I'on retrouve au sein des habitations contiennent des traces de pesticides provenant certes
d’'un usage domestique, mais aussi de I'application de produits sur les cultures proches de I'habi-
tation [GWA™11]. Il a par ailleurs été montré que les connaissances géographiques liées a la loca-
lisation des cultures a proximité des habitations permettent de prédire efficacement la présence
de pesticides dans les poussiéres. Les foyers étudiés dans le cadre de SIGEXPO ont ainsi été sélec-
tionnés de par leur proximité avec différents types de cultures représentatifs du territoire francais
(arboriculture / vergers, vignes, champs céréaliers) a des rayons de taille variable. En pratique,
des aires de rayon compris entre 100 metres et 1250 metres ont été étudiées pour déterminer les
facteurs environnementausx, les études précédentes suggérant des aires de rayon entre 500 metres
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et 1250 metres en fonction de I'étude [CMZ*11; GWA*11]. A noter que ce rayon a été étendu a
1500 meétres dans le cadre de TESTIS. L'étude SIGEXPO s’est basée sur des données d’Occupation
du sol (OCS) disponibles (BD Alti, Institut Géographique National (IGN) ; BD Topo, IGN) ; Registre
Parcellaire Géographique (RPG), IGN) [FBF* 18] afin de développer un modele SIG incluant non-
seulement les informations spatiales liées aux cultures, mais aussi la présence de barriéeres topolo-
giques naturelles (e.g., haies) et artificielles (e.g., murs, bati) propres a bloquer la propagation des
particules. La direction des vents dominants a aussi été intégrée dans la méthode développée afin
de pondérer 'importance des types de cultures dans une direction particuliére selon ce vecteur de
diffusion (voir Figure 1.5). Cette information a été obtenue grace aux données des stations météo-
rologiques de Météo France. Les résultats obtenus ont montré que I'analyse de ’environnement
al’aide du modéle SIG développé pour SIGEXPO permettait d’expliquer une part non négligeable
des phytosanitaires retrouvés dans les poussieres, et ainsi d'inférer des scores d’exposition indivi-
duels pour chaque habitat dont I'OCS alentours est connue [BBB13].

TESTIS

L'étude TESTIS a été lancée en 2015 et est encore en cours actuellement (03/2020). Cette étude
a pour ambition d’étendre les approches développées lors des projets TESTEPERA et SIGEXPO a
I’échelle nationale, et ce sur la vie entiére des sujets. Le diagramme de flux simplifié de la figure 1.6
permet de visualiser les relations entre TESTIS et ces deux études préliminaires. A noter que ce
diagramme exclut les aspects liés aux expositions professionnelles et domestiques aux pesticides,
aussi étudiées dans le cadre de TESTIS. Par la suite, nous nous intéresserons tout particulierement
a la partie représentée a gauche de ce diagramme, correspondant a la génération de cartes d’oc-
cupation du sol géoréférencées a partir d'images aériennes historiques.

TESTIS
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FIGURE 1.6 — Diagramme de flux simplifié de I’étude TESTIS. La méthode SIG (en vert) a été développée
dans le cadre de SIGEXPO. Lutilisation de questionnaires pour le recueille d'informations (en bleu) a été
validée dans le cadre de TESTEPERA.

Recrutement des sujets. Entre 2015 et 2018, un recrutement de 1155 sujets (sur 1500 pré-
vus initialement) a I’échelle nationale a été réalisé dans 20 Centres Hospitaliers Universitaires en
France Métropolitaine sous la coordination du Centre Léon Bérard. Ces recrutements ont permis
d’inclure 472 sujets (cas) atteints de TGT et 683 témoins non atteints par la TGT. Les témoins ont
été répartis en deux catégories, A et B, correspondants respectivement a des hommes donneurs de
sperme mariés a des femmes infertiles, et a des hommes mariés a des femmes ayant une grossesse
pathologique. Afin de n’inclure que des sujets ayant un age dans la fourchette correspondant au
pic d’'incidence de la TGT, seuls des sujets adultes agés au plus de 44 ans au moment du recrute-
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ment ont été inclus dans I’étude. Le protocole détaillé du recrutement est présenté dans I'article de
Béranger et al. [BPB*14]. Les participants et leurs méres (N=50% de répondantes) ont répondu a
un entretien téléphonique afin de collecter des données concernant les lieux d’habitation, les mé-
tiers et les usages domestiques de produits chimiques. Ces questionnaires permettent d’inférer
les informations nécessaires a I’estimation des expositions domestiques et professionnelles aux
pesticides au travers de matrices d’expositions et d'un codage des métiers réalisé par une hygié-
niste industrielle. L'estimation des expositions aux pesticides d’origine agricole requiert quant a
elle des étapes de traitements de données particuliéres afin d’exploiter 'approche SIG développée
durant le projet SIGEXPO. L'approche qui a été retenue dans le cadre de TESTIS pour obtenir des
OCS consiste a photo-interpréter les images aériennes panchromatiques (en niveaux de gris) dis-
ponibles pour la période d’'intérét de I'étude. On remarquera que cette période d’intérét s’étend,
de par1’age des sujets recrutés, du début des années 1970 a la fin des années 1990, et jusqu’en 2018
pour les exposition vie entiére. Nous décrivons ci-apres le processus suivi pour générer des OCS.

Géocodage des sujets. Avant d’estimer I’OCS autour d’'une habitation, il est nécessaire de con-
naitre la position géographique de celle-ci. Pour cela, il est nécessaire de géocoder les sujets, c’est
a dire de les replacer sur la carte de France, et ce pour chacune de leurs adresses. En fonction de
la qualité des informations recueillies avec les questionnaires, cette étape de géocodage peut étre
plus ou moins automatisée a I'aide de la Base Adresse Nationale ®. Dans le cas ot les adresses ne
sont que peu précises (e.g.,, nom de rue mais pas de numéro), les géomaticiens peuvent décider
de suivre des régles arbitraires afin de réaliser le géocodage (e.g., placer le sujet au milieu de la
rue) [FDCC*17]. Dans le cadre de TESTIS, I'ensemble du géocodage est réalisé dans le repere géo-
graphique francais Lambert93. Il a par ailleurs été observé qu'un sujet de I'étude TESTIS aura eu
6,6 adresses en moyenne au cours de sa vie.

Génération de 'occupation du sol. Une fois le géocodage réalisé, il est nécessaire d’accéder
aux données d’OCS autour des lieux d’habitation des sujets aux dates correspondantes. Cepen-
dant, aucune base de données annotées disponibles avant 1990 existe aux degrés de précisions
spatiale et temporelle désirés (voir section 1.2), et le Recensement Statistique Agricole francais,
contenant des statistiques instantanées décennales au niveau communal, ne permet pas d’estimer
un score individuel d’exposition autour d'une habitation particuliere (e.g., les champs peuvent se
trouver de I'autre c6té de la commune par rapport a 'habitation considérée). Face a ce constat,
I'approche qui a été retenue dans le cadre de TESTIS consiste en une photo-interprétation (i.e.,
annotation) des images aériennes historiques panchromatiques disponibles autour d’'une habita-
tion a date donnée. Ces images ont été choisies dii a leur disponibilité et a leurs hautes résolutions
permettant une annotation a la parcelle pres (voir section 1.2). On remarquera que ’estimation de
différents types de cultures a partir d'images dans un contexte épidémiologique a déja montré son
intérét par le passé [MAN10], ou les auteurs proposaient I'utilisation de données satellites pour
estimer I'exposition aux pesticides d’origine agricole en Californie, Etats-Unis. Nous décrivons ici
le processus générique suivi par les géomaticiens travaillant sur I’étude TESTIS pour générer des
cartes d’OCS par photo-interprétation.

» Pour une date donnée et pour un sujet donné, il est dans un premier temps nécessaire d’ac-
quérir les images d’archives intersectant une aire de rayon 1.5 kilometres autour du lieu
d’habitation du sujet. Dans le cadre de TESTIS, le choix s’est porté sur les images aériennes
historiques archivées par IGN (voir section 1.2). Celles-ci possédent une résolution spatiale
élevée et se sont révélées facilement accessibles.

« Si les images obtenues ne sont pas géoréférencées, c’est a dire que la transformation af-
fine entre le plan image et le référentiel géographique n’est pas connue (i.e., on a I'image,
mais on ne sait pas la situer sur la carte), il est alors nécessaire d’effectuer ce géoréféren-
cement pour pouvoir les intégrer convenablement dans un SIG. Pour cela, 'approche stan-
dard consiste a indiquer des points de contrdles sur I'image, qui seront ensuite mis en cor-

6. https://www.data.gouv.fr/en/datasets/base-adresse-nationale/ (acces: 2020-03-23)
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respondance avec des points de contrdles connus (e.g., intersection de routes). Des ap-
proches automatiques sont proposées par certains logiciels tels que ArcGIS’, mais la do-
cumentation indique que cette approche ne fonctionne pas correctement avec les données
numérisées ou historiques. Des approches automatiques expérimentales prometteuses dé-
veloppées par 'IGN francais apparaissent peu a peu pour les photographies aériennes his-
toriques [GLBM18] en se basant sur le logiciel MicMac®. Lapproche manuelle reste néan-
moins privilégiée dans le cadre de TESTIS.

e Une fois 'image géoréférencée sur la carte, il est nécessaire de la segmenter en plusieurs
classes d’OCS afin d’obtenir la donnée désirée. Dans le cadre de TESTIS, 7 classes d’OCS ont
été identifiées, a savoir les prairies, les champs de grandes cultures, les zones urbaines, les
foréts, les vignes, les vergers et les eaux. En particulier, les vignes, vergers et grandes cultures
représentent des utilisations de phytosanitaires différents dont 'impact intéresse particu-
lierement les épidémiologistes. Les zones urbaines et les foréts permettent quant a elles de
définir des barriéres naturelles ou artificielles lors de I'intégration des vents dominants (voir
section 1.1.3). Nous rappelons qu’afin de réaliser cette étape, 'approche choisie pour TES-
TIS est la photo-interprétation des images aériennes historiques par un géomaticien expé-
rimenté. Cette approche a été appliquée lors d'une étude préliminaire sur les images qui
correspondent aux sujets issus de I'étude TESTEPERA. 1l a alors été estimé que le temps
d’annotation était de 6 a 10 heures par image avec une approche basée sur le détourage des
parcelles. Cette durée d’annotation particulierement longue s’explique par la difficulté d’in-
terprétation des données historiques, ainsi que par la taille (e.g., 12 000 x 12 000 pixels) et la
haute résolution des images exploitées (0.6 metres en moyenne sur I'année de naissance).
Une approche alternative basée sur une annotation d’'un maillage régulier a été proposée
en 2015 dans le cadre du stage d’Amélie Machelart, permettant de réduire le temps d’anno-
tation manuelle a environ 2h30 par image contre une perte de données liée a un territoire
représenté de facon morcelée (grille réguliere). Un exemple visuel est présenté sur la Fi-
gure 1.7 au niveau de la commune de Die, France, en 1978, avec 9 classes d’OCS (distinction
entre foréts denses et foréts peu denses, et entre prairies et parcs / jardins non exploitée par
la suite). A noter que cette deuxiéme approche a motivé le développement du logiciel semi-
automatique Gouramic, basé sur nos travaux et présenté en annexes (Annexe A). Gouramic
permet de réduire le temps d’annotation a environ 20 minutes par image. L'utilisation de
Gouramic pour la photo-interprétation est celle qui a été retenue pour I'étude TESTIS.

sujet

Arboriculture/vergers
Céréales/grandes cultures
Prairies/superficies en herbe
Vignes

Urbain/industriel

Foréts denses
Parcs/jardins/petites

Etendues d'eau

ERERERREENCN

Foréts peu denses

FIGURE 1.7 - Exemples de cartes d’'occupation du sol générées manuellement a partir d'images aériennes
historiques au niveau de la commune de Die, France, en 1978. Comparaison d'une approche (a) par détou-
rage de parcelles, et d'une approche (b) par annotation de cellules sur une grille réguliere.

7. https://desktop.arcgis.com/fr/arcmap/10.3/manage-data/raster-and-images/ (acces:2020-03-18)
8. https://micmac.ensg.eu/index.php/IGN (acces : 2020-03-23)
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1.2 Données disponibles

Dans le cadre de I'étude TESTIS, il est nécessaire de connaitre 'OCS dans un rayon maximum
de 1500 metres autour des lieux d’habitation des sujets recrutés, de leurs naissances jusqu’a leurs
recrutements dans I'étude, et ce notamment durant les fenétres critiques du développement de
I'homme (petite enfance, enfance et adolescence). La détermination de I’OCS dans le temps re-
présente aussi un intérét majeur pour évaluer et comprendre I'évolution des territoires (e.g., artifi-
cialisation) et mettre en place des politiques publiques. A titre d’exemple, Picuno et al. [PCS19]
arguaient en 2019 que 'analyse de I'’environnement rural résultant des activités humaines re-
présente une source d’'information incomparable pour estimer I'état de 'environnement. Il s’agit
donc ici de déterminer les propriétés des données disponibles dans notre cadre de travail afin de
justifier les choix techniques réalisés. Dans cette section, nous allons ainsi voir quelles sont les
données disponibles pour obtenir des cartes d’OCS recoupant notre période d’intérét au travers
des programmes d’annotations existants, avant de nous intéresser aux images disponibles. Par
souci de concision, nous exclurons ici les données que nous qualifierons de récentes, telles que
le Registre Parcellaire Graphique dont les premieres données ont été générées en 2002 a partir
des déclarations de surfaces agricoles faites par les agriculteurs. Pour ce qui est des images (non
annotées) disponibles, nous nous focaliserons sur les données visuelles acquises par un disposi-
tif d'imagerie aérien ou satellite. Ces données sont en effet régulierement utilisées pour générer
des OCS par photo-interprétation manuelle, et ont pour avantage de permettre une vérification
visuelle des résultats. De la méme maniere, nous exclurons les programmes d’observations ayant
débuté apres 1990, tels que le programme spatial Franco-Italien Pléiades, lancé en 2001 (premier
satellite en orbite en 2003) ou le programme Sentinel lancé en 2007 (premier satellite en orbite en
2014).

1.2.1 Occupation du sol

Corine Land Cover (CLC)
CLC1990 CLC2000 CLC2006 CLC2012 CLC2018
SPOT-4/5et | IRSP6 LISSIII | Sentinel-2 et Landsat-8
Donné 1li L -5MSS/TM | L -7ETM
onnées satellites | Landsat-5 MSS/ andsat-7 IRSP6LISSTII | etRapidEye | pour combler les trous
Dates d’acquisitions 1986-1998 2000 +/-1an 2006 +/- 1 an 2011-2012 2017-2018
Durée de production 10 ans 4 ans 3 ans 2 ans 1.5 ans
Précision geometrl.que <50m <25m <25m <25m < 1.0 m
des données satellites (Sentinel-2)
Taille d’élé
aille d'élément 25ha 25ha 25ha 25ha 25ha
minimale (sortie)
Taille
. . 100 m <100 m <100 m <100 m <100 m
minimale (sortie)

TABLEAU 1.1 — Métadonnées correspondant au progamme Corine Land Cover (CLC).

Corine Land Cover (CLC)? est un jeu de données a I'échelle européenne incluant actuelle-
ment 38 pays pour 5.8 millions de kilomeétres carrés de surface, représentées a I’aide de 44 classes
d’occupation du sol. 1l est réalisé dans le cadre du programme européen Copernicus, lancé par
I’Agence européenne pour I'environnement et visant a la surveillance des terres européennes.
La génération des données de CLC est standardisée et se fait par photo-interprétation humaine
d’images satellites. Les résultats sont obtenus au format vectoriel, incluant la notion d’objets po-
lygonaux complexes (par opposition au format raster, ot 'unité de base correspond au pixel du
capteur). Le tableau 1.1 retranscrit une sélection de métadonnées concernant le programme CLC,
ou la ligne Données satellites référence les satellites utilisés pour générer les annotations. Nous
fournissons plus d'informations quant aux programmes satellites d’observation de la terre dans
la section 1.2.2. D'un point de vue temporel, la génération des données de CLC a débuté en 1985,

9. https://land.copernicus.eu/pan-european/corine-land-cover (acces:2020-02-10)
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. Tissu urbain discontinu D Foréts de feuillus

Terres arables hors périmétres Systémes culturaux et
d’irrigation parcellaires complexes

FIGURE 1.8 — Exemple d’annotations issues du jeu de données CLC 2018 en transparence avec une pho-
tographie aériennes en couleurs récentes. Données issues du géoportail [[GN20a]. On constate au centre
que certaines cultures sont regroupées avec des zones forestieres afin de former une zone d’au moins 25
hectares.

mais les premieres données disponibles ne correspondent qu’au millésime de 'année 1990, avec
une fréquence de publication des annotations relativement faible pour notre période d’intérét (10
ans entre 1990 et 2000). Cette fréquence empéche la mise en place d’analyses précises temporel-
lement. On constate par ailleurs que les données disponibles au sein de CLC n’incluent que des
zones composées de 25 hectares ou plus, ce qui est relativement peu précis par rapport aux zones
d’occupation étudiées dans le cadre de TESTIS. Concernant les éléments linéaires, tels que les
routes ou les ponts, seuls sont retenus ceux qui ont une taille d’au moins 100 métres. Un exemple
d’annotations issue de CLC 2018 au niveau de la commune de Launay, prés de Elancourt dans le
département des Yvelines (France), est présenté dans la figure 1.8. On peut observer sur cette fi-
gure le regroupement d’objets sémantiquement différents au sein de méme zones. Par exemple,
des éléments urbains isolés se retrouvent annotés comme faisant partie de la forét. Lintermit-
tence de champs et de foréts, au centre de 'image, se retrouve annotée comme une unique zone
nommeée systéemes culturaux parcellaires complexes, faisant perdre I'information de localisation
de chacun des éléments qui composent la zone. Pour rappel, cette information est importante
dans le cadre de TESTIS afin de permettre I'intégration des vents dominants dans le calcul des
scores d’expositions aux pesticides d’origine agricole. Il est cependant important de remarquer
que I'ensemble des annotations fournies par CLC sont d'une résolution inférieure (25 hectares)
a celle des données générées par les satellites disponibles a chaque époque (pixels de 50 metres
ou moins pour CLC1990). Ce fait permet d’envisager I'obtention de données de meilleures résolu-
tions a partir des images exploitées pour générer les données de CLC.

Historic Land Dynamics Assessment (HILDA)

HILDA [FHV*14; FVCH15] est un jeu de données d’occupation du sol généré automatique-
ment a I'aide d’'un modeéle mathématique basé sur des flux de données variés et harmonisés. Il a
été développé entre 2010 et 2015 par le laboratoire d’information géospatiale et de télédétection
(Laboratory of Geo-information Science and Remote Sensing) de I'Université de Wageningen aux
Pays-Bas dans le cadre du projet GHG Europe '°, visant 2 améliorer les capacités de prédiction
des émissions de gaz a effet de serre sur le territoire européen (Greenhouse Gases, GHGs). Les au-
teurs de HILDA décrivent leur modele comme un concept pour la reconstruction historique de
I'occupation du sol et de ses changements. Il exploite en effet des données telles que des inven-

10. http://www.europe-fluxdata.eu/ghg-europe (acces : 2020-04-03)
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FIGURE 1.9 - Exemple d’annotations issues du jeu de données HILDA [FHV* 14; FVCH15] pour les années
1910 et 1990. On constate une diminution des cultures au profit des zones forestieres et urbaines. Images
extraites du site web du laboratoire de géoinformation et de télédétection de Wageningen [0GiSS20].

taires nationaux, des statistiques d’occupation, des images aériennes historiques, et des données
archivées. La fusion de ces informations hétérogenes permet au modele d’estimer non seulement
les tendances de changements d’occupation du sol sur de grandes périodes de temps, mais aussi
d’intégrer ’aspect spatial correspondant afin de répondre a la question de la localisation de ces
changements. D'un point de vue numérique, HILDA posséde une résolution spatiale d'un kilo-
metre carré et une résolution temporelle de 10 ans entre deux cartes d’occupation du sol sur la
période 1900-2010, et ce pour une grande partie du territoire européen. D'un point de vue séman-
tique, un total de 6 classes sont représentées, a savoir : les zones urbaines, les cultures (incluant
les zones d’arboriculture), les zones forestieres, les prairies, les zones aqueuses, et d’autres terrains
(e.g., glaciers, plages). Une illustration de HILDA est présentée sur la figure 1.9, montrant |'évolu-
tion globale du paysage au niveau européen entre 1910 et 1990. HILDA représente donc un jeu
de données particulierement pertinent pour des études environnementales liées a I’occupation
du sol, et ressemble a ce dont le projet TESTIS aurait besoin. Cependant, la résolution spatiale
est a priori trop faible par rapport aux zones de rayon 1.5 km étudiées. Par ailleurs, la résolution
temporelle de 10 ans dans HILDA induirait une incertitude supplémentaire quant aux individus
nés entre deux décennies. Enfin, les classes d’occupation du sol ne distinguent pas les différentes
cultures qui pouvaient étre présentes a un lieu et a un instant donné, et cet aspect semble né-
cessaire dans le cadre de TESTIS afin de pouvoir estimer les expositions environnementales aux
pesticides d’origine agricole.

1.2.2 Images satellites
Chronologie abrégée des satellites

Cette section présente un bref historique des dispositifs spatiaux utilisés pour I'observation de
la terre. Elle fait office d’introduction aux programmes d’observation modernes intersectant notre
période d’intérét, que sont Landsat et Systeme Probatoire d’Observation de la Terre (SPOT) (voir
sous-sections ci-apres). Par souci de clarté, on exclura donc les programmes de télécommunica-
tion et d’exploration de I'espace et de ses planétes (e.g., Pioneer, Luna, etc.). De la méme maniere,
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FIGURE 1.10 — Premieére photographie acquise par le satellite Explorer 6 en 1959 montrant une zone en-
soleillée de 'océan pacifique survolée par un nuage. Image extraite de la base publique d'images de la
NASA [NAS20a].

seuls certains satellites d’observation seront mis en avant (non-exhaustivité). Les premiers satel-
lites artificiels ont été mis en orbite dans les années 1950, avec les succes des démonstrateurs
Spoutnik 1 en et Spoutnik 2 achevés en 1957 par I'Union Soviétique. IIs ont permis aux scien-
tifiques de I'époque d’étudier I'ionospheére par I'envoi de signaux radios. Ils furent rapidement
suivis en 1958 par Explorer 1, satellite concu par les Etats-Unis (USA). Les détecteurs a radiations
(compteurs Geiger) installés sur Explorer 1 permirent la découverte de la ceinture de Van Allen,
une zone ou les particules énergétiques chargées émises par les vents solaires sont capturées par
le champ magnétique terrestre. Lannée suivante, en février 1959, les Etats-Unis ont mis en orbite
Vanguard-2, le premier satellite météorologique de 'histoire, qui avait pour but de mesurer I'acti-
vités solaire réfléchie et la couverture nuageuse a la surface de la terre al’aide de caméras optiques.
Celui-ci eu un succés en demi-teinte dii a une erreur de positionnement de sa caméra. Quelques
mois plus tard, le satellite Explorer 6 fut mis en orbite, transmettant les premieres photographies
de la Terre depuis I'orbite (voir Figure 1.10).

En 1960, le satellite météorologique TIROS-1 fit mis en orbite dans un état de fonctionnement
opérationnel, contrairement a Vanguard-2. Le satellite Discoverer 13, lancé lui aussi en 1960, ftit
le premier satellite de reconnaissance, aussi appelé satellite espion, mis en orbite a avoir permis
I'observation de la terre. En 1964, le satellite Nimbus 1, constituant le début de la deuxiéme gé-
nération des satellites météorologiques américains, fat déployé. Equipé d’'une caméra en lumiere
visible et d'une caméra infrarouge, il permit notamment d’observer le trou de la couche d’ozone en
cours de formation. Au total, 7 autres satellites Nimbus furent lancés entre 1964 et 1978. Du coté
de la France, le premier satellite mis en orbite par le Centre National d’Etudes Spatiales (CNES)
fat Astérix en 1965, qui prit la forme d’'un démonstrateur technologique. A noter que 'histoire
des satellites du CNES est détaillée sur un site web interactif 1. Outre les satellites du programme
Nimbus, a visée météorologique, les premiers satellites dédiés a la télédétection et a ’observation
des sols hors applications militaires - ou du moins, les plus marquants a ce jour - furent issus du
programme américain Landsat, lancé en 1972, et du programme francais SPOT, lancé 14 ans plus
tard en 1986.

Programme Landsat

Le programme Landsat a débuté en 1972 avec le lancement de Landsat 1, le premier satel-
lite public dédié a 'observation des terres. Il continue encore de nos jours, avec le lancement de
Landsat-9 prévu pour I'an 2021. Le programme est généralement décrit par générations succes-
sives, correspondant aux technologies embarquées dans les satellites. Ces différentes générations

11. https://wax-o.com/demo/satellites/ (acces:2020-03-28)
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FIGURE 1.11 — Image Landsat-1 multispectrale en fausses couleurs au niveau de Garden City, Kansas, USA.
Celle-ci met en avant la végétation, qui apparait en rouge. Image extraite du site web LandsatLooks de la
NASA [NAS20b].

sont décrites ci-apres. La premiére génération du programme Landsat '? était & visée expérimen-
tale. Elle était constituée des satellites Landsat-1 (de 1972 a 1978), Landsat-2 (de 1975 a 1982) et
Landsat-3 (de 1978 a 1983), tous tres similaires au niveau des dispositifs d’observation embarqués.
IIs avaient pour but principal de démontrer la faisabilité de ce type d’observations depuis I'espace
a l'aide de différents capteur. Ils embarquaient plusieurs instruments, dont une caméra RBV 13
(Return Beam Vidicon) et un capteur multispectral MSS '* (Multi Spectral Scanner). Le dispositif
RBV était en réalité constitué de trois caméras de télévision, chaque caméra capturant des bandes
spectrales différentes (bande 1 : bleu-vert, bande 2 : jaune-rouge, bande 3 : proche infrarouge,
NIR). Les trois caméras étaient alignées de facon a pouvoir mettre en correspondance les prises de
vue par transformation géométrique. Le capteur MSS permettait quant a lui d’acquérir des bandes
spectrales aux longueurs d’ondes spécifiques, a savoir du vert, du rouge, deux bandes de proche
infrarouge. La résolution spatiale des pixels du MSS était de 79 x 57 metres, ramenée a 60 metres
apres traitement. Un exemple d’'image multispectrale acquise en 1972 par le MSS de Landsat-1 est
présenté sur la Figure 1.11 en fausses couleurs.

La seconde génération de satellites LandSat inclut les satellites Landsat-4 (de 1982 a 1993) et
Landsat-5 (de 1985 a 2013) !°. Cette génération est la premiére a étre considérée comme étant
en phase opérationnelle (contre expérimentale pour la précédente). Le principal changement par
rapport aux modeles précédents est la disparition de la caméra RBV au profit d'un dispositif de car-
tographie thématique (Thematic Mapper, TM), en complément du capteur MSS déja présent sur
Landsat-1-3. Les bandes spectrales du TM ont un recouvrement spectral avec le MSS, auxquelles

12. https://directory.eoportal.org/web/eoportal/satellite-missions/1/landsat-1-3 (acces : 2020-
04-03)

13. https://earth.esa.int/web/sppa/mission-performance/esa-3rd-party-missions/landsat-1-7/
rbv/ (acces : 2020-04-03)

14. https://earth.esa.int/web/sppa/mission-performance/esa-3rd-party-missions/landsat-1-7/
mss/ (acces : 2020-04-03)

15. https://directory.eoportal.org/web/eoportal/satellite-missions/1/landsat-4-5 (acces : 2020-
04-03)
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viennent s’ajouter des infrarouges a ondes courtes et un capteur thermique. De plus, la résolu-
tion spatiale du TM est de 30 metres, deux fois supérieure a celle du MSS, pour I’ensemble des
bandes a’exception des données thermiques (120 métres, ramenés a 30 metres apres traitement).
Apreés le lancement raté de Landsat-6 en 1993 '8, 1a troisieme génération de satellites Landsat vu
le jour en 1999 avec le lancement de Landsat-7!7, toujours en orbite. Ce satellite embarque un
TM amélioré, ainsi que des capteurs panchromatiques d'une résolution deux fois supérieure (15
metres) qui faisaient défaut aux précédents satellites du programme. Landsat 8 '8 fat quant a lui
lancé en 2013, proposant un nouveau capteur augmentant le nombre de bandes spectrales dispo-
nibles pour I'observation des sols. Pour I'’ensemble des satellites Landsat, la résolution temporelle
d’acquisition d'images pour une méme aire géographique était de 18 jours pour Landsat-1-3, et 16
jours pour les autres.

Programme SPOT

Le programme SPOT a été lancé en 1986 par le CNES. La premiere génération de satellites SPOT
inclut les satellites SPOT-1, lancé en 1986, Spot-2, lancé en 1990, et SPOT-3, lancé en 1993. Les sa-
tellites SPOT de premiére génération étaient initialement prévus pour avoir une durée de vie de
plusieurs centaines d’années. Ils ont cependant été désorbités en 2003 (SPOT-1) et 2009 (SPOT-2)
afin de les laisser se désagréger dans I'atmosphere, mettant fin a leurs missions par la méme occa-
sion. Le satellite SPOT-3 a quant a lui arrété de fonctionner en 1996. Ils étaient tous les trois dotés
de capteurs visuels de hautes résolutions, a savoir un capteur panchromatique d'une résolution
de 10 metres permettant de couvrir le domaine visible, et un capteur multispectral sur 3 bandes
permettant d’acquérir du vert, du rouge et du proche infrarouge avec une résolution de 20 metres.
A noter que cette combinaison de bandes spectrales permet d’avoir une estimation intéressante
des indices de végétations tels que I'Indice de végétation par différence normalisée (Normalized
Difference Vegetation Index, NDVI). Ces résolutions sont a comparer avec celles proposées par les
satellites Landsat a la méme époque (fin des années 1980, début des année 1990), qui étaient de
30 metres au mieux. La deuxiéme génération est constituée du satellite SPOT-4, lancé en 1998. Aux
bandes spectrales déja présentes sur les satellites SPOT précédents viennent s’ajouter une bande
dédiée aux moyens infrarouges. Les moyens infrarouges sont utiles pour détecter les nuages bas,
mesurer les températures de surface pendant la nuit et pour détecter les incendies de forét (voir
cours Suivi de l'environnement par télédétection proposé par I'Université Virtuelle Environnement
et Développement Durable (UVED) [eDDU20]. La troisieme génération est uniquement consti-
tuée de SPOT-5, lancé en 2002. Il permet d’acquérir des images de 2 a 4 fois plus résolues que
ses prédécesseurs, avec une résolution de 2.5 metres ou 5 meétres pour les images panchroma-
tiques (en fonction du mode de fonctionnement) et de 10 metres pour les bandes multispectrales.
Il embarque par ailleurs un capteur dit de Haute Résolution Stéréoscopique pour 'acquisition de
couples d'images dédiés a I'estimation de la profondeur, qui représente ici I'élévation des objets
au sol. La quatrieme génération du programme SPOT est constituée des satellites SPOT-6 et SPOT-
7, lancés respectivement en 2012 et 2014. Ces derniers permettent d’atteindre une résolution de
1.5 metres pour les images panchromatiques et les images couleurs, et de 6 métres pour les images
multispectrales, avec une emprise au sol de 60 kilometres par 60 kilometres.

Acces aux données

Lacces aux données satellites a longtemps été un enjeu économique important. Depuis quelques
années, un certain nombre d’images sont publiées gratuitement pour permettre leur utilisation

16. https://directory.eoportal.org/web/eoportal/satellite-missions/1/landsat-6 (acces : 2020-04-
03)

17. https://directory.eoportal.org/web/eoportal/satellite-missions/1/landsat-7 (acces : 2020-04-
03)

18. https://directory.eoportal.org/web/eoportal/satellite-missions/1/landsat-8 (acces : 2020-04-
03)
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FIGURE 1.12 — Etat des lieux des images aériennes disponibles en Europe. Image issue de [GM19].

par les différentes communautés scientifiques. Pour I'accés aux données Landsat, le site web amé-
ricains LandsatLook Viewer, décrit comme un prototype au 2020-03-29, permet d’accéder aux
données d’archives depuis un navigateur web '%. Les données sont proposées avec une référence
géographique pour '’ensemble des modalités proposées (couleurs composites, thermique). Pour
les données plus récentes, le pole de données et de services surfaces continentales francais Theia,
créé en 2012 et regroupant aujourd’hui 11 institutions publiques francaises impliquées dans I'ob-
servation de la terre et les sciences de I'environnement 2%, propose un portail > permettant d’ac-
céder, entre autres, aux images Landsat a partir de Landsat-5, ainsi qu’aux images du programme
SPOT. 1l propose également I’acces a des données plus récentes, telles que celles acquises par les
programmes Pléiades et Sentinel, non présentés ici.

1.2.3 Images aériennes
Etat des lieux en Europe

Plusieurs pays Européens possedent des archives d’'images aériennes analogiques et numé-
riques utilisées pour administrer les territoires. Dans le cadre du projet ANR HIATUS (Historical
Image Analysis for Territory evolUtion Stories), I'IGN francais a réalisé un sondage [GM19] aupres
de 19 organisations européennes, représentant un total de 13 pays, afin de proposer un état des
lieux des données d’archives disponibles. Les résultats du sondage donnent un apercu aussi bien
quantitatif que qualitatif des données acquises et numérisées en Europe. Ils mettent en avant les
stratégies utilisées par chaque organisation ayant répondu concernant les modalités d’acquisition
des données (e.g., type d’acquisition, but des acquisitions, consignes suivies), 'usage des données

19. https://landsatlook.usgs.gov/ (acces: 2020-04-06)
20. https://wuw.theia-land.fr/pole-theia-2/ (acces : 2020-04-06)
21. https://theia.cnes.fr/atdistrib/rocket/#/home (acces : 2020-04-06)
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issues des campagnes d’acquisitions aériennes (e.g., documentation, interprétation visuelle, gé-
nération de données topographiques), le niveau d’avancement dans la numérisation des images
analogiques, ainsi que la mise a la disposition des ces données au grand public. On y apprend
que, a date du sondage (2019) et parmi les organisations ayant répondu, 'IGN est I'organisation
avec le plus grand nombre d’images aériennes disponibles (4.7 millions), possede des données sur
les 100 derniéres années; tout comme les organisations nationales suisse et espagnole; et était la
seule organisation a avoir intégralement numérisé ses données analogiques (voir figure 1.12). Ce
dernier point met en avant les difficultés rencontrées pour numériser ces données. Celles-ci ont
été discutées lors de 'atelier de travail Geoprocessing and Archiving of Historical Aerial Images
(littéralement, géotraitement et archivage des images aériennes historiques) en Juin 2019 a Pa-
ris [MGRT19]. Les difficultés principales évoquées par les participants semblaient étre d’ordres
logistique et économique. Les images analogiques d’archives sont en effet stockées dans des en-
trepOts sous conditions controlées pour éviter leur détérioration, avec I'utilisation de contenants
tels que des boites a potentiel hydrogéne nul [Wil19], ce qui limite 'acces a ces données maté-
rielles. Il faut aussi noter que, au niveau européen, ces archives sont décentralisées dans 5.88%
des cas [GM19], ce qui nécessite d’en maitriser le transport.

La numérisation est quant a elle longue et cotiteuse en ressources humaines, les images de-
vant étre scannées manuellement a I'aide d’'un scanneur photogrammeétrique dédié (e.g., Leica
DSW 700, Vexcel VX4000HT, Wehrli RM6) avant d’étre géoréférencées en sein d'un SIG. Face a
cette problématique, certaines organisations telles que la Collection Nationale de Photographies
Aériennes (National Collection of Aerial Photography, NCAP) cherchent a partiellement automati-
ser I'étape de numérisation par la création et I'utilisation d'unités robotisées [Wil19]. Une fois les
images numérisées et géoréférencées, vient alors le probleme de la valorisation de ces données,
pour lesquelles il faut trouver des applications permettant de financer le maintien des infrastruc-
tures mises en place.

Indépendamment de ces problématiques, les organisations ayant répondu au sondage [GM19]
ont déclaré avoir majoritairement des images de hautes résolutions spatiales, avec des pixels va-
riant de 10-20 centimetres a 1 metre. Ces valeurs sont a opposer aux résolutions des images satel-
lites disponibles au travers des programmes tels que Landsat (dizaines de metres).

Ftat des lieux en France

Les premiéres acquisitions d'images de la France vue d’en haut, puis mises a la disposition du
grand public par la suite via le service remonterletemps [IGN20b], ont été réalisées en 1919. Pour
cela, des appareils photographiques; argentiques au départ, puis numériques par la suite ; ont été
placés sur des dispositifs aériens chargés de suivre un tracé prédéfinit a vitesse et altitude données.
La capture d’'une prise de vue est déclenchée automatiquement a intervalle régulier. L'intervalle
entre deux acquisitions est calibré de telle sorte qu'un recouvrement existe entre deux acquisitions
successives afin d’assurer un suivi des acquisitions et générer des images en relief par stéréosco-
pie. Cette technique d’acquisition de données territoriales ayant fait ses preuves, elle a rapidement
été généralisée. De nombreuses campagnes d’acquisitions aériennes incluant de multiples moda-
lités ont ainsi été menées (couleur, infrarouge, optique, numérique). Les prises de vue aériennes
continuent d’étre utilisée de nos jours, et ce malgré I'apparition de satellites d’observation de la
terre de plus en plus performants (voir section 1.2.2). Celles-ci ont pour avantage de permettre la
génération d'images géographiquement et temporellement ciblées (i.e., on peut acquérir de nou-
velles images sur de nouvelles zones en fonction des besoins et des conditions atmosphériques).
Les images aériennes ont par ailleurs des résolutions considérées comme étant élevées ou tres
élevées (inférieure a 1 metre), et sur lesquelles peu de nuages sont présents. Ce dernier point s’ex-
plique par I'altitude relativement basse a laquelle les clichés sont obtenus par rapport aux don-
nées satellitaires, et par le fait qu’il est possible de commander la campagne de vol selon la météo
(ajustement flexible). Concernant la mise a disposition de ces données, la France fait office de pays
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FIGURE 1.13 - Cartes de chaleur des acquisitions d’'images aériennes par I'IGN (a) entre 1919 et 1970, et (b)

entre 1970 et 2000.
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FIGURE 1.14 — Nombre relatif d'images aériennes disponibles sur remonterletemps [IGN20b] par type d’ac-

quisition pour la période 1970-2000.

précurseur en Europe. La numérisation et la mise en ligne des données d’archives en France a été

finalisée en 2016 par I'IGN.

Les métadonnées correspondant a ces prises de vues aériennes ont elles aussi été publiées
en 2016 grace au travail de Christian Quest??. Les métadonnées de ces images d’archives nous
apprennent qu'un total de 19420 missions d’acquisitions ont été réalisées entre 1919 et 2010. A
noter que cette estimation, réalisée a 'aide de la librairie geopandas ?® (version 0.6.1) exclut I'an-
née 1941 due a des erreurs de lecture du fichier. La Figure 1.13 représente une carte de chaleur des
acquisitions réalisées entre 1919 et 1970, et une carte de chaleur pour la période d’intérét princi-

22. https://wuw.data.gouv.fr/en/datasets/metadonnee-des-photos-aeriennes-anciennes-de-lign/

(acces: 2020-03-10)
23. https://geopandas.org/
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FIGURE 1.15 — Exemple d'une image aérienne historique de 1956 mis en correspondance avec une image
aérienne récente de 2015 au niveau de Strasbourg, France. On constate 'urbanisation du territoire. Image
extraite de remonterletemps [IGN20b].

pale dans le cadre de TESTIS (voir section 1.1.3), entre 1970 et 2000. On constate que ces cartes
semblent corrélées spatialement aux lieux d’habitation des sujets inclus dans I'étude TESTIS (voir
Figure 1.1), avec une proportion d’acquisitions en zones rurale plus importante apres 1970. Il a ce-
pendant été constaté que la fréquence temporelle des acquisitions pour une coordonnée géogra-
phique donnée était relativement faible (entre 1 et 3 ans, fréquence irréguliere) sur cette période.
Par ailleurs, les métadonnées nous apprennent qu'un total de 948 813 images panchromatiques,
184 758 images en couleurs, 139 552 images infrarouges et 122 144 images en infrarouges cou-
leurs on été acquises sur cette période, mettant en avant la forte prédominance des acquisitions
panchromatiques, et ce en particulier avant 1990 (voir Figure 1.14). Un exemple d’'image aérienne
historique panchromatique a c6té d’'une image aérienne récente issues du service remonterle-
temps est présenté sur la Figure 1.15, mettant en avant la diversité des représentations au cours
du temps ainsi que I"évolution du paysage.

Données d’archives et applications

Outre I'héritage culturel d’intérét public, il est a ce jour difficile d’estimer I’ensemble des ap-
plications potentielles des images aériennes d’archives. Certains organismes nationaux proposent
un modele économique basé sur la commercialisation des images, que ce soit sous forme de don-
nées numériques, de posters, ou de cartes en reliefs. On constate néanmoins certaines applica-
tions finales qui émergent gréce a la disponibilité de ces données. Parmi elles, Poli et al. [PSM*19]
proposent de modéliser les glaciers en 3D a I'aide d’approches photogrammétriques et d'images
aériennes historiques afin d’estimer et de visualiser la surface de recouvrement des glaces dans le
temps. La connaissance de cette surface permet de mettre en avant les effets du réchauffement
climatique sur les glaciers. Pinto et al. [PGBPH19] proposent d’utiliser des images aériennes his-
toriques photo-interprétées afin de d’obtenir des informations environnementales dans le cadre
d’études socio-écologiques. Les auteurs mettent en avant le fait que la photo-interprétation est un
processus couteux mais fiable pour I'estimation des OCS. D’autres applications ont pour but de
permettre laredécouverte des territoires ayant été modifiés, avec une approche a mi-chemin entre
I'histoire et I’art, au sens ot il s’agit de visualiser les territoires dans le passé. Dusanek et al. [DP19],
a partir des travaux de Hodac et al. [HZ18], proposent ainsi d’identifier, de reconstruire et de visua-
liser des paysages du passé qualifiés de "perdus", en République Tchéque. De la méme maniére,
Mazagol et al. [MNDR19] proposent de visualiser en 3D le patrimoine englouti de la Loire a partir
d’images des années 1950. Ici, le patrimoine est dit englouti dii a la construction d'un barrage qui a
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submergé la vallée, et il s’agit pour les auteurs de permettre la visite virtuelle de cette vallée avant la
mise en place du barrage. Dans la méme thématique, Kruse et al. [KRH19] et Ozdemir et al. [OR19]
proposent des approches de vision par ordinateur pour inférer la position de crateres d’obus de
la seconde guerre mondiale a partir d'images aériennes historiques afin de guider des équipes de
déminage pour sécuriser les sols qui pourraient encore contenir des engins explosifs. Ces crateres
sont considérés comme difficiles a détecter sur les images actuelles a cause des renouvellements
des éléments présents au sol (i.e., recouvrement par des zones urbaines, des cultures, ou autre).
Gominski et al. [GPGBC19] explorent la possibilité de mettre en correspondance et d’associer des
images actuelles et des images du passé, dont des images aériennes, afin de pouvoir les géoloca-
liser automatiquement. Enfin, nos travaux proposent d’estimer 'OCS a partir d'images aériennes
historiques afin d’'inférer les expositions environnementales aux pesticides sur une maladie avec
une latence de 15 a 25 ans.

1.3 Problématique et positionnement

Nous avons vu quel était I'objectif du projet épidémiologique TESTIS, et nous avons mis en
avant les données disponibles pour parvenir a estimer 'occupation du sol historique (OCS) afin
d’estimer les expositions aux pesticides d’origine agricole. Cette section a pour but de clarifier le
positionnement de cette theése en informatique dans ce contexte pluridisciplinaire, et d’introduire
les problématiques qui ont été abordées par nos travaux.

Nous avons vu dans la section précédente (voir section 1.2) que peu de données annotées
existent sur la période d’intérét du projet TESTIS (1970-2000). Parmi les images disponibles pour
réaliser des annotations et générer des cartes d’OCS, nous rappelons que le choix réalisé par les
géomaticiens pour ce projet s’est porté sur les images aériennes d’archives de 'IGN. Pour la pé-
riode d’intérét de TESTIS, la majorité de ces images ne sont disponibles qu’en niveaux de gris. Ces
derniéres contiennent moins d’informations spectrales que les données satellites disponibles a la
méme époque. Il a cependant été estimé que ces images étaient plus faciles d’accés que les don-
nées satellites du programme Landsat, 'IGN étant un organisme francais qui garantit I’acces a ces
données tout en proposant une interface adaptée [IGN20b]. De plus, les images aériennes pos-
sedent une résolution bien supérieure aux premiers satellites Landsat, ce qui leur permet d’étre
plus aisées a interpréter par un étre humain (représentation plus commune) bien que moins dis-
criminantes spectralement. A noter que ce constat ne vaut pas pour les acquisitions satellites ac-
tuelles (e.g., résolution de 1.5 metres pour le programme SPOT).

L'analyse manuelle des images aériennes prend néanmoins beaucoup de temps, et représente
un point bloquant dans le cadre de TESTIS. Une estimation grossiere consisterait a considérer
1 image par adresse par sujet, soit 7623 (6.6 adresses x 1155 sujets) images a traiter pour 'en-
semble de I'étude. En pratique, ce nombre est certainement plus important : il faut parfois plu-
sieurs images pour couvrir la zone d’intérét correspondant a une adresse, et il est parfois né-
cessaire d’analyser 'environnement d’'une adresse a plusieurs dates différentes. Néanmoins, en
supposant notre estimation grossiere correcte, et en estimant le temps de traitement de chaque
image a une demi-journée de travail, il faudrait I'équivalent de 3812 jours pour traiter 'ensemble
des données. Le nombre de jours travaillés par an étant d’environ 220 en 2020 en France, il fau-
drait donc 208 homme.mois pour obtenir les résultats attendus. Face a ce constat, il semble né-
cessaire de proposer des solutions permettant de faciliter et d’accélérer I'étape d’annotation des
images aériennes historiques, point qui constitue un véritable frein a la réalisation de TESTIS. Ce-
pendant, peu d’études se sont a ce jour intéressées a ’analyse du contenu des images aériennes
historiques panchromatiques d'un point de vue vision par ordinateur, les efforts de la commu-
nauté étant principalement concentrés sur 'analyse des données actuelles et futures, porteuses
d’informations temporelles et multispectrales dont la qualité et la quantité ne cessent de croitre.
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Dans ce cadre, nous avons consacré nos efforts au développement de méthodes originales
de vision par ordinateur adaptées aux images aériennes historiques. A noter que nous n’avons
pas travaillé avec des images acquises en vue oblique (i.e., prise de vue non parallele au sol). Nos
travaux ont été réalisés en trois étapes.

+ Dans un premier temps, nous nous sommes intéressés a la classification des différents types
d’OCS aTl’aide d’approches basées sur la texture et I'apprentissage profond [RCJF*19a]
[RCJF*18] [RBCJT19]. On remarque en effet que les images aériennes permettent de visua-
liser le territoire sous forme de motifs similaires qui permettent a 'humain de distinguer
différents types d’OCS (e.g., foréts, zones urbaines). Nos résultats ont été intégrés au sein
du logiciel Gouramic, proposant d’intégrer I'utilisateur dans la boucle pour la segmenta-
tion sémantique des images aériennes panchromatiques et présenté en annexe A [FRCJ* 18;
FRCJ"19].

* Dans un second temps, nous nous sommes intéressés a la colorisation automatique et a
I'application de ce type d’approche aux images aériennes historiques. D’une part, nous avons
cherché a combler le fossé visuel entre les acquisitions historiques panchromatiques et les
acquisitions récentes en couleurs dans le but de faciliter 'annotation de ces images par
les géomaticiens. D’autre part, nous souhaitions étudier I'intérét de la colorisation comme
étape intermédiaire pour la classification [RCJF*19b; RCJF*19c].

« Enfin, nous nous sommes intéressés au post-traitement des segmentations sémantiques des
images aériennes historiques afin d’améliorer les résultats obtenus par les géomaticiens a
I'aide du logiciel Gouramic. En particulier, nous avons étudié 1'utilisation d’algorithmes de
segmentation non supervisés (clustering) et de champs aléatoires conditionnels pour ré-
duire les erreurs de classification et lisser spatialement les résultats obtenus [RCJF*20].

La suite de ce manuscrit découle directement de ces trois étapes. Le chapitre 2 présente les
principaux éléments théoriques de la littérature sur lesquels nos travaux se sont basés. Le cha-
pitre 3 présente nos travaux relatifs a la classification d’images aériennes historiques en différentes
classes d’occupation du sol. Le chapitre 4 présente nos travaux portant sur la colorisation auto-
matique. Le chapitre 5 s’'intéresse au post-traitement des résultats obtenus par inférence pour les
cartes d'occupation du sol. Le chapitre 6 conclut ce manuscrit et présente des perspectives qui
nous semblent intéressantes pour la poursuite de nos travaux.
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Chapitre 2

Notions de base

Ce chapitre introduit les méthodes de la littérature sur lesquelles nos travaux se sont basés. Il a
pour but de fournir au lecteur un tour d’horizon des approches existantes afin de mieux situer les
travaux que nous avons réalisés. Pour cela, nous traiterons d’abord des approches de traitement
d’images et d’apprentissage automatique, que nous qualifierons ici de "classiques", avant de nous
intéresser aux méthodes d’apprentissage "bout en bout", qui ont connu un regain de popularité
ces dernieres années. En particulier, nous aborderons les méthodes employées pour I'extraction
de caractéristiques de textures a partir d'images numériques, avant de nous intéresser aux mé-
thodes de sur-segmentation permettant de générer des groupes de pixels homogenes, aussi appe-
1és segments ou objets en télédétection. Nous verrons ensuite les notions relatives aux réseaux de
neurones profonds a convolutions, permettant d’optimiser simultanément les étapes d’extraction
de caractéristiques et de classification. Nous présenterons également des exemples d’utilisation
de ces méthodes sur des données de télédétection.
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CHAPITRE 2. NOTIONS DE BASE

2.1 Extraction de caractéristiques de textures

Soit I une image numérique composée de pixels. On souhaite caractériser/résumer les infor-
mations contenues dans cette image. Pour cela, il est possible d’extraire des caractéristiques repré-
sentatives du contenu de I, telles que la texture et la couleur. Afin de les agréger dans une méme
structure de données, ces caractéristiques vont étre stockées dans un vecteur de caractéristiques.
Chaque valeur du vecteur de caractéristique représentera alors 'intensité du vecteur dans une di-
rection de I’espace des caractéristiques extraites. Le fait de passer d'une source de données brute
a un vecteur de caractéristiques (i.e., d’extraire des caractéristiques) permet généralement de ré-
duire significativement la complexité spatiale des images, tout en en faisant ressortir les éléments
discriminants (i.e., on extrait que les caractéristiques qui nous intéressent). Il s’agit, en général,
d'une des premiéres étapes dans une chaine de traitement visant a identifier le contenu d’une
image. Cette approche est représentée schématiquement sur la figure 2.1 avec des exemples de
taches a accomplir (e.g,, classification).

classification

segmentation

— LI~ ]——

Vecteur de caractéristiques

Extraction de
caractéristiques

colorisation

FIGURE 2.1 — Schéma générique de 'obtention d'un vecteur de caractéristiques a partir d'une image et de
son utilisation pour différentes taches. Limage de gauche a été extraite d'une image aériennes historique
utilisée dans nos travaux.

2.1.1 Latexture
Définition intuitive

La texture correspond aux variations d’intensités et de couleur visibles au sein des images. Ces
variations forment des motifs visuels caractéristiques. Cette propriété fait de la texture une infor-
mation particulierement pertinente quand aucun a priori sur la forme des objets contenus dans
I'image n’est connu, ou que cet a priori n’est pas jugé discriminant. A titre d’exemple, un cheval
et un zebre ont tous les deux des formes d’équidés qu'il serait aisé de confondre, mais les motifs
représentés sur leurs pelages nous permettent de les distinguer sans difficulté . Par analogies, il
est également possible de comprendre la texture comme étant la surface d'un objet qu'il serait
possible de reconnaitre au toucher en considérant la couleur comme étant représentative de la
chaleur émise par I'objet, et en considérant les variations d’intensités comme étant des variations
de reliefs.

Exemples d’utilisation

De par les propriétés discriminantes de la texture pour I'ceil humain, son analyse intéresse
les chercheurs depuis plus d'un demi-siecle, durée symbolisée par les travaux précurseurs de Ju-
lesz [Jul62]. Depuis ces premiers travaux, les méthodes d’extraction de caractéristiques de textures
développées au cours du temps ont joué un role prépondérant dans de nombreux domaines ap-
plicatifs, principalement pour résoudre des problemes de classification, de segmentation, ou de
synthese d’'images [LCF*19]. La figure 2.2 présente des exemples d’images de textures, mettant en
avant la diversité des textures existantes qui font régulierement 'objet de travaux de recherche.

1. Al'opposé, il est possible de confondre le pelage d'un chat avec la texture d'un tapis meelleux, auquel cas la forme
prend toute son importance.
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Mlucopic S = Aerial Synthetic Aperture Radar " Light Field Nodular Chest XRay Normal

FIGURE 2.2 — Exemples de d’images texturées dans divers domaines d’applications. Image extraite
de [LCF*19].

En biométrie, la texture a pu étre utilisée pour reconnaitre des empreintes palmaires [KZ02],
des visage [AS93; RAHI13; TT10], ou encore identifier des individus par leur iris [LTYDO03]. En ima-
gerie médicale, les méthodes d’extraction de caractéristiques de textures ont montré leur intérét
pour obtenir des descriptions représentatives pour la machine [CTK15], comme pour I'étre hu-
main [LSS*17]. Dans le domaine de la reconnaissance automatique des végétaux, de nombreux
travaux se sont intéressés a I'utilisation de la texture pour reconnaitre des especes d’arbres a tra-
vers leurs écorces [PVMH14; BCT17; BAC*18]. En numismatique, la texture a pu étre utilisée pour
analyser les défauts visuels des pieces de monnaies pour la gradation automatique [Pan18]. En
télédétection, les analyses basées sur la texture ont pu montrer leur intérét pour I’estimation de
I'occupation du sol a partir du ciel et de I'espace [Z2Y98; HW90; FLG15; AKvdW*18].

2.1.2 Description de la texture

La recherche en analyse de textures vise au développement de méthodes efficaces, et si pos-
sible robustes au perturbations, pour pouvoir représenter une image texturée a I’aide d'un vecteur
de caractéristiques représentatif. La texture étant par définition un phénomene spatial lié aux va-
riations d’intensité, les méthodes développées pour extraire des caractéristiques de textures s’at-
tachent tout particulierement a l'intégration de I'information disponible dans le voisinage d'un
pixel. On parle alors de descripteurs locaux, qui, pour chaque pixel d’intérét, géneérent des carac-
téristiques en se basant sur I'information portée par le voisinage du pixel. Ces caractéristiques
locales sont ensuite agrégées pour représenter I'image entiere a I’aide d'un unique vecteur de ca-
ractéristiques. Les agrégations les plus communes incluent I'utilisation de statistiques, d’histo-
grammes, de mise en commun (pooling), ou encore I'utilisation de textons (encodage a l'aide de
groupes de caractéristiques) [LCF*19]. De facon générique, il s’agit ici de passer d’'une représenta-
tion locale a une représentation globale de la texture. Dans un état de I'art étendu réalisé en 2019,
Liu et al. [LCF*19] faisaient référence a ce type d’approche sous le terme de sac de mots (sous-
entendu, visuels), par analogie avec les approches employées en traitement naturel du langage.
Ici, chaque caractéristique correspondrait a un mot décrivant la texture.

Dans la suite de cette section, nous détaillons plusieurs types d’approches classiques utilisées
pour I'extraction de caractéristiques de textures denses (i.e., qui se basent sur’ensemble des pixels
de I'image) : matrices de cooccurrences, banques de filtres de Gabor, et motifs binaires locaux.
Elles sont présentées ici car elles sont régulierement utilisées en télédétection [WFZ*18; HCLD16]
pour la classification de I'occupation du sol (voir sous-section 2.1.3). Nous porterons une atten-
tion particuliere sur les méthodes basées sur les motifs binaires locaux [OPMO01]. D’une part, ces
méthodes ont montré leur capacité a générer rapidement des représentations discriminantes de
relativement faibles dimensions [AFA*16]. D’autre part, nous les avons particulierement étudiées
dans le cadre de cette thése. Les méthodes basées sur des réseaux de neurones profonds a convo-
lutions sont quant a elles décrites en section 2.4, dans un contexte plus générique que celui de
I'analyse de la texture.
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Matrices de cooccurrences

Les travaux précurseurs de Julesz et al. [Jul62] suggéraient que la texture pouvait étre modéli-
sée a l'aide de statistiques représentant la cooccurrence des intensités de k paires de pixels. Lidée
était ici de représenter la fréquence d’apparition de deux intensités pour caractériser les motifs
présents au sein de I'image. Celle-ci ft reprise par Haralick et al. [HSD73; Har79] dans les années
1970, qui proposerent alors un formalisme basé sur une matrice de cooccurrences de niveaux de
gris (Gray Level Cooccurrence Matrix, GLCM).

GLCM
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FIGURE 2.3 - Exemple de la construction d’'une matrice de cooccurrences de niveaux de gris avec une dis-
tance D(y,,,) = 1 pixel et une orientation O, horizontale.

La cooccurrence est ici a comprendre au sens ol deux pixels p; et p» distants I'un de 'autre de
D(p,,p,) Pixels selon une orientation O, prendront simultanément des valeurs d’intensité i; et i>.
La distance D, p,) et I'orientation O, définissent ici la relation d’adjacence entre les deux pixels
(le voisinage). Pour représenter ce phénomene, le formalisme des GLCM définit un accumulateur
a deux dimensions (un tableau), avec autant de lignes et de colonnes que de valeurs d’intensité
possibles. Pour Dy, ,) et O fixés, il s’agit alors de parcourir I'image, et d’ajouter une unité dans la
cellule de 'accumulateur dont la ligne est définie par i; etla colonne définie par i,. Dit autrement,
on compte le nombre de fois ou i; et ip apparaissent simultanément dans I'image selon le voisi-
nage. Un exemple de construction d'une GLCM a partir d'une image est présenté sur la figure 2.3.
Une fois la matrice de cooccurrence construite, celle-ci peut étre utilisée comme base pour calcu-
ler des statistiques représentatives de la texture telles que I'énergie, I'entropie, le contraste, I'ho-
mogénéité, ou encore la corrélation. Ces statistiques sont ensuite concaténées au sein d'un méme
vecteur de caractéristiques.

Résumé des propriétés. Nous résumons ici les propriétés principales des matrices de cooc-
currences (forces (+), faiblesses (-)) :

¢ (+) La méthode est relativement facile a implémenter

e (+) Les parametres et caractéristiques calculées sont aisément compréhensibles par I'étre
humain

¢ (-) Complexité spatiale élevée des GLCM (nombre de pixels dans I'image au carré), qui aug-
mente avec le nombre de voisinages considérés

e (-) Caractéristiques globalement moins discriminantes que celles des méthodes plus ré-
centes (voir ci-apres)

Filtres de Gabor

Parmi les filtres de textures existants, les filtres de Gabor sont probablement les plus popu-
laires. Ce modele, inspiré par la vision des mammiferes, est particulierement réputé pour per-
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mettre de détecter des bords et des lignes a orientation et échelle variables. Chaque filtre de Gabor
G est modélisé a I’aide d'une sinusoide complexe modulée par un filtre gaussien. Dans le cas 2D,
qui nous intéresse en traitement d’images, la partie réelle de ce filtre est représentée par 1'équa-
tion (2.1), et la partie imaginaire par I'équation (2.2). Les parameétres a et b permettent de modifier
la fréquence et I'orientation du filtre, tandis que o2 représente la variance de la gaussienne qui
permet de faire varier I'échelle du filtre. Il est possible de définir différentes banques de filtres de
Gabor en faisant varier ces parametres [MM96; PS06].

2 4 42

G1(x,y) =cos(ax+by) x exp(— 552 ) 2.1)
24 42

Gao(x,y) =sin(ax+by) x exp(— 592 ) 2.2)

En pratique, les filtres dans un banque de filtres de Gabor sont appliqués sur une image I a
I'aide d’'une convolution afin d’obtenir une image filtrée J. Une fois I'image J obtenue, des statis-
tiques peuvent directement en étre extraites, telles que la moyenne et la variance. Afin d’obtenir
un représentation plus compleéte, il s’agit d’extraire ces statistiques a partir du résultat de chaque
filtre, puis de concaténer le tout au sein d'un méme vecteur de caractéristiques. A noter qu’il a
été montré que, malgré la définition des filtres de Gabor a plusieurs orientations et échelles, leurs
performances tendent a diminuer en présence de rotations, ou plus généralement de transforma-
tions affines [LCF"19; ZMLS07].

Résumé des propriétés. Nous résumons iciles propriétés principales des filtres de Gabor (forces
(+), faiblesses (-)) :

¢ (+) Représentation multi-échelle

» (+) Formulation supposée robuste au bruit (filtre gaussien) et robuste aux rotations dans le
plan

¢ (-) Nécessité d'utiliser beaucoup de filtres pour obtenir une représentation a plusieurs échelles
et rotations (augmentation des temps de calculs)

¢ (-) Suppression des hautes fréquences (filtre gaussien) pouvant réduire la quantité de motifs
détectés

Motifs Binaires Locaux

Les méthodes visant a décrire les motifs locaux a 1’aide de codes binaires [OPMO01] ont connu
un fort engouement depuis leur apparition a la fin des années 1990 [PZ15; LCF*19]. Une taxono-
mie dédiée a ces méthodes a d’ailleurs été réalisée en 2017 [LFG* 17], montrant la grande quantité
de travaux qui leur ont été consacrés (voir tableaux 8 et 9 de [LFG*17]). Cet engouement s’ex-
plique de par la relative simplicité dans la formulation de ces approches, leurs propriétés d’'inva-
riances, leur faible complexité algorithmique et leur pouvoir discriminant pour 'analyse de tex-
tures comparé aux approches plus classiques [FAB13], et ce notamment sur des données de télé-
détection [AFA*16]. Ici, nous présentons les fondamentaux liés aux méthodes basées sur les filtres
de type Motifs Binaires Locaux (Local Binary Pattern, LBP) [OPMO01], ainsi que les grandes lignes
correspondant aux différentes extensions de cette approche. Nous reviendrons en détail sur les
meéthodes utilisées dans nos travaux et issues de cette catégorie de descripteurs dans le chapitre 3.

Principe. Les filtres basés sur les LBP sont des filtres locaux invariants aux changements d’in-
tensité globaux. Ils permettent de calculer un code binaire local représentatif de I'information de
texture en utilisant un voisinage circulaire de rayon R contenant P pixels g, et centré sur un pixel
central g.. Il est possible de représenter un voisinage (P R) a I'aide de coordonnées discretes ou
continues [OPMO01]. Dans le premier cas, la valeur d'un pixel voisin est obtenue en considérant la
valeur discrete la plus proche de la position réelle de I'élément sur le cercle de rayon R. Dans le
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FIGURE 2.4 — Schéma représentant le pipeline générique pour I'extraction de caractéristiques a I'aide de
LBP. Image extraite de [LFG*17].

second cas, la valeur d'un pixel voisin a la position réelle est obtenue par interpolation bilinéaire.
Une fois le voisinage défini, il s’agit alors de déterminer les relations locales entre les intensités
des pixels afin de représenter les motifs présents dans le voisinage. Pour cela, 'approche proposée
par Ojala et al. [OPMO1] consistait a estimer le signe de la différence entre le pixel central et les
pixels ordonnés du voisinage. Pour chaque pixel gy, si la différence entre g, et g. est positive, on
concaténe lavaleur 1 au code binaire modélisant le voisinage, sinon la valeur 0. Ce nombre binaire
est ensuite convertit en base 10 afin d’obtenir une valeur entiere. Ce principe est représenté sur la
figure 2.4 par I'étape seuillage et quantification (Thresholding and Quantization). D'un point de
vue modélisation, le filtre classique de LBP [OPMO1] est défini par I'équation (2.3).

P-1
1,x=0
= —g.)2P 1"
LBPpr pEZOs(gp 8c)2F, s(x) { 0,x<0 (2.3)

Le filtre LBP classique [OPMO1] permet de représenter les motifs d’'une image a l'aide de 2°
valeurs. Il est ici intéressant de constater que chaque valeur correspondra a un motif particulier
au sens des différences locales qui auront été calculées, tels que des coins, des lignes, des points,
ou des zones uniformes. En sortie d'un filtre de type LBP, on se retrouve donc avec une image en
niveaux de gris. Afin de générer une représentation globale de cette image, 'approche standard
consiste a générer un histogramme de I'image filtrée. Cet histogramme va représenter la probabi-
lité, ou la fréquence, d’apparition d’un motif particulier. Il contiendra par défaut 2° bins avec le
LBP classique appliqué sur un unique voisinage. Il est par ailleurs possible de calculer les motifs
a plusieurs échelles [OPMO02]. Pour cela, il suffit de modifier le parametre R et de concaténer les
histogrammes résultants. En pratique, il est courant de faire varier R d’'une unité, et de faire va-
rier P par multiples de 8, ce qui permet de travailler sur des voisinages relativement denses (e.g.,
(BR) = {(8,16,24),(1,2,3)}). Cependant, plus P est grand, plus le nombre de pixels g, augmente,
et plus les calculs sont longs. Il a de fait été suggérer de travailler a P constant, en faisant unique-
ment varier R [LYF*13] (e.g., (P R) = {8, (1,2,3)}) afin de générer des représentations multi-échelles,
certes moins représentatives, mais plus efficaces d’'un point de vue algorithmique. A titre illustra-
tif, différents voisinages (P, R) sont représentés sur la figure 2.5.

Mapping. En pratique, on constate que le LBP se base sur un voisinage circulaire, ce qui fait
que de nombreux motifs binaires pourront étre identiques a une rotation ou une permutation
pres. En se basant sur cette observation, plusieurs méthodes de mise en correspondance (map-
ping) ont été développées afin de réduire la taille des histogrammes générés et induire des pro-
priétés supplémentaires [OPMO02]. Parmi ces approches, les plus populaires sont 'uniformité 2
(voir équation (2.6)), I'invariance a la rotation ri (voir équation (2.4)) et la combinaison des deux

30



2.1. EXTRACTION DE CARACTERISTIQUES DE TEXTURES

riu? (voir équation (2.5)). Dans ces équations, 'opération ROR correspond a un décalage binaire
circulaire réalisé sur le P-bit i fois, et s(x) est définie par I'équation (2.3).

LBPp; = min{ROR(LBPpg, )} 1 =0,1,...,P -1 2.4)
P-1 »
i S —g.)2P si U(LBP <2
LBPE%”Z _ pgo (&p—8¢) ( PR) -

P+1 sinon

avec U(LBPpp) le degré d'uniformité défini par I'équation (2.6) :

P-1
U(LBPpR) = [s(gp-1—8c) — $(80 — 8 + Zl Is(gp —8&c) — s(gp-1— &) (2.6)
p:

D’un point de vue empirique, 'invariance a la rotation est définie de facon intuitive par rap-
port a 'aspect circulaire et symétrique du filtre. Elle permet de réduire la quantité de motifs pris
en compte en considérant les motifs identiques a une rotation prés comme représentant la méme
chose. Ojala et al. [OPM02] remarquaient ainsi que 36 motifs distincts et invariants a la rotation
pouvaient étre détectés a partir d'un voisinage (B R) = (8,R). L'uniformité est quant a elle définie
par rapport au nombre de transitions U(LBPpr) qui vont apparaitre sur le motif binaire. Ici, pour
le mapping riu?, le 2 indique que seuls les motifs binaires ayant au plus 2 transitions (de 0 a 1, ou
de 1 a 0) seront considérés comme étant uniformes. Ces motifs uniformes représenteraient 90%
des motifs apparaissant sur des images de textures [OPM02]. Une visualisation des 58 motifs uni-
formes pour un voisinage (P R) = (8,R) avec le LBP classique est proposé sur la Figure 2.6. Dans
ce formalisme, les motifs non-uniformes sont alors considérés comme ne représentant qu'un seul
et méme attribut, portant le nombre de motifs possibles a 59 pour ce méme voisinage. A cela
s’ajoute l'invariance a la rotation, permettant au final de réduire la quantité de bins a seulement
P + 2 bins (9 motifs uniformes et invariants a la rotation, et 1 pour les motifs non uniformes) pour
la mapping riu®. Ces mapping ont deux avantages : (1) réduire la complexité spatiale de I'histo-
gramme (vecteur de caractéristiques) et (2) ajouter des propriétés intéressantes aux filtres telles
que 'invariance a la rotation. Cependant, il a été montré que le mapping peut réduire le pouvoir
discriminant du filtre [OPMO02], en particulier lorsque les propriétés supplémentaires qu’ils per-
mettent d’obtenir ne sont pas particulierement nécessaires aux données traitées.

Extensions. Les LBP proposés par Ojala et al. [OPMO01] ont fait émerger de nombreuses mé-
thodes. On remarquera tout d’abord que, par définition, le filtre LBP [OPMO02] se cantonne a un
voisinage circulaire, ne permet pas de décrire les relations entre les pixels du voisinage eux-méme,
et ne permet pas de décrire les relations qui existent entre deux voisinages de rayons différents. De
nombreux travaux se sont donc intéressés a I'extraction de codes binaires issus de voisinages et de
topologies de voisinages différents. En 2017, Liu et al. [LFG*17] remarquaient ainsi pas moins de
6 classes de méthodes réparties en 23 grandes catégories de topologies (voir Figure 5 de I'article
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(P=4,R=1.0) (P=8,R=1.0) (P=12,R=1.5) (P=16,R=2.0) (P=24,R=3.0)

FIGURE 2.5 — Schéma représentant différents voisinages (P,R) pour les motifs binaires de type LBP. Image
extraite de [OPMO02].
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de Liu et al. [LFG*17]), que les auteurs regroupent en trois grandes catégories : information aniso-
tropique, différences locales ou magnitudes, et micro-structures et macro-stuctures. La premiere
catégorie correspond a I'analyse de voisinages non circulaires, tels que des lignes, des croix ou des
selles. La deuxieme catégorie correspond aux approches reprenant la topologie du LBP en cher-
chant a augmenter I'information extraite sur le voisinage en incluant la magnitude en plus du
signe, en analysant les différences entre les pixels inter-voisinages de rayons différents, ou encore
en étudiant les différences intra-voisinage de fagons circulaires ou symétriques vis-a-vis du pixel
central. La troisieme catégorie de méthodes repose sur I'utilisation d'un voisinage constitué de
patchs, permettant de lisser spatialement I'information représentée par chacun des voisins. Ces
approches sont particulierement intéressantes pour obtenir des représentations plus robustes au
bruit (perturbations locales et aléatoire de I'intensité), auquel les filtres de type LBP tendent a
étre sensibles. Enfin, on remarquera qu’il est courant de générer des représentations étendues de
textures en combinant, par concaténation, les histogrammes issues de plusieurs voisinages dif-
férents. Cela permet d’augmenter le pouvoir discriminant des représentations obtenues, d'une
facon similaire aux représentations multi-échelles. De ce fait, chaque filtre de type LBP permettra
d’obtenir des vecteurs de caractéristiques de tailles différentes. Basé sur ce principe, des exten-
sions de ces filtres aux images en couleurs et aux vidéos ont été proposées. Pour cela, il est ou
bien possible de considérer chaque canal comme une image complémentaire aux autres, ou bien
de définir des voisinages inter-canaux. Enfin, le principe des LBP a inspiré des méthodes telles
que SIFT [Low04] pour la description robuste a 'orientation et a I'’échelle de points d’intéréts (e.g.,
coins des objets), principalement utilisées pour des applications de mise en correspondance.

Résumé des propriétés. Nous résumons ici les propriétés principales des filtres de type LBP
(forces (+), faiblesses (-)) :

¢ (+) Robustesse aux changement globaux d’illuminations (utilisation du signe du gradient)

¢ (+) Représentation locale vers globale intuitive (histogramme)
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FIGURE 2.6 — Schéma représentant les 58 motifs binaires uniformes pour un degré d'uniformité égal a 2.
Image extraite de [ZAMP11].
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¢ (+) Robustesse aux rotations dans le plan (avec mapping de type ri ou riu?)

» (+) Possibilité de modifier le voisinage et d’étendre la quantité de motifs détectés par conca-
ténation d’histogrammes

¢ (+) Algorithmes généralement rapides, possibilité d’optimisations paralléles
¢ (-) Perte d'information avec le mapping pouvant parfois réduire I'efficacité
 (-) Histogrammes potentiellement de grandes tailles sans mapping

e (-) Les motifs binaires intéressants pour une tadche donnée ne sont pas a priori connus, et
I'exhaustivité de la représentation n’est pas désirée (trop cotiteuse, gain difficile a estimer)

¢ (-) Sensibilité au bruit (gradient local), mais possibilité d’appliquer un filtre passe bas au
préalable

2.1.3 Application de la texture en télédétection

Les acquisitions réalisées en télédétection permettent d’observer la terre vue du ciel, ortho-
gonalement a la surface (nous excluons les acquisitions en vue oblique dans le cadre de cette
these). Les territoires apparaissent alors comme étant constitués de grandes zones texturées, dont
la forme n’est pas a priori connue (e.g., deux foréts de feuillus peuvent avoir des formes diffé-
rentes). Face a ce constat, les méthodes d’analyse de la texture ont été largement utilisées en télé-
détection, et ce depuis de nombreuses années. A titre d’exemple, en 1974, Mauer [Mau74] étudiait
déja l'intérét de la texture et des parametres associés pour permettre la classification des champs
de cultures a partir d'images aériennes en couleurs scannées.

Quelques cas d’utilisation dans le temps. En 1981, Irons et al. [I[P81], proposaient d’étudier
I'intérét de statistiques locales similaires a celles extraites a I'aide des GLCM (moyenne, variance,
skewness, kurtosis) pour I'analyse des images multi-spectrales de Landsat-2. Les auteurs indi-
quaient alors que ces représentations semblaient utiles pour la détection des hautes fréquences
présentes dans I'image, mais que leur intérét semblait limité pour la séparation des classes d’oc-
cupation du sol. En 1990, He et al. [HW90] proposaient I'utilisation d’'unités de textures (Texture
Units) pour 'analyse d’'image de télédétection. Les unités de textures avaient ici une formulation
tres proche des filtres de motifs ternaires, basés sur les LBP, qui ont gagné en popularité 20 ans
plus tard. Les résultats préliminaires obtenus par les auteurs montraient I'intérét d’étudier ce type
d’approche pour la classification d'images de télédétection de résolutions moyennes (10 m x 10m,
20 m x 20 m) en 4 classes d’occupation du sol. En 1998, Zhu et al. [ZY98] s'intéressaient a 1'utili-
sation d'une banque de filtres de Gabor dans un contexte de télédétection afin de classifier 1'oc-
cupation du sol en 25 catégories. En 2005, Warner et al. [CGDC" 14] comparaient I'utilisation de
I'auto-corrélation avec les GLCM pour segmenter les zones cultivées correspondant a des vignes
et des vergers. En 2008, Rabatel et al. [RDDO08] proposaient une approche itérative pour détecter
les vignes a partir d'une analyse des zones correspondants aux pics de hautes fréquences dans
I'espace de Fourrier avec des filtres de Gabor. Encore en 2008, Caridade et al. [CMMO08] mon-
traient I'intérét des statistiques GLCM pour générer automatiquement des cartes d’occupation
du sol (quatre classes : eau, sol nue, arbres, prairies) a partir de 4 images en niveaux de gris du parc
Peneda-Gerés au Portugal, acquises en 1958 (résolution 3mx3m, avec environ 6000x6000 pixels
par image).

Plus récemment, en 2014, Champion et al. [CGDC* 14] proposaient d’exploiter les GLCM pour
estimer I'age des foréts a partir d’acquisitions réalisées par un radar a synthése d’ouverture. En
2015, Feng et al. [FLG15] proposaient de combiner I'information portée par les canaux RVB (Rouge-
Vert-Bleu) d'une image en couleurs avec les statistiques extraites d’'une GLCM afin d’améliorer
I'identification de la végétation en environnement urbain a partir d’'images acquises par drone.
En 2016, Regniers et al. [RBLG16] exploraient 'utilisation d’ondelettes (i.e., banque de filtres) ba-
sées sur des modeles multivariés afin de segmenter des images optiques panchromatiques de tres
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haute résolution en trois classes d’occupation du sol. IIs ont pu montrer que des résultats pro-
metteurs pouvaient étre obtenus sur ce type d'images, en comparaison avec |'utilisation de mé-
thodes plus classiques telles que les GLCM. Encore en 2016, Aguilar et al. [AFA*16] comparaient
26 extracteurs de caractéristiques incluant plusieurs approches de type LBP et des GLCM pour
I'analyse automatique d’images satellites. Les auteurs ont ainsi pu montrer que les approches
de type LBP permettaient d’obtenir des taux de bonne classification plus élevés que les autres
méthodes comparées, et ce pour des temps d’exécution plus faibles. Toujours en 2016, Hunag et
al. [HCLD16] s’intéressaient a l'utilisation d'une représentation complétée des LBP combinée a un
encodage a l'aide des vecteurs de Fisher [SPMV13] afin de classifier des images de télédétection.
En 2018, Wang et al. [WFZ™" 18] proposaient eux aussi d’utiliser une représentation complétée des
LBP, cette fois-ci pour classifier la végétation cotiére a partir d'images de trés hautes résolutions.
En 2019, Kwak et al. [KP19] prenaient en compte des statistiques issues de GLCM combinées aux
informations spectrales d'une série d’'images (Rouge, Vert, Proche Infrarouge) acquises par drone
a plusieurs dates afin d’estimer différents types de champs de cultures.

Observations. Nous remarquons ici une forte prédominance des approches de type GLCM
dans les applications de la texture en télédétection, et ce malgré le fait que plusieurs études aient
pu montrer 'avantage des approches de type LBP pour la classification des images texturées. Nous
pouvons ici seulement supposer que cela est dii a la disponibilité de ces approches au sein des
logiciels de type SIG, permettant a la communauté pluridisciplinaire de la télédétection d’'utiliser
ces méthodes sans avoir a les ré-implémenter. Un autre aspect important qui pourrait expliquer la
popularité des GLCM est I'interprétabilité des vecteurs de caractéristiques générés (i.e., exprimer
empiriquement les valeurs générées). La difficulté d’interprétation des histogrammes générés par
les filtres de type LBP peut en effet étre un frein a leur utilisation pour certains praticiens. Par
ailleurs, on constate que peu d’études se sont intéressées aux images aériennes historiques, et ce
en particulier a 'aide de méthodes d’extraction de caractéristiques récentes.

2.2 Sur-segmentation

La sur-segmentation, aussi appelée segmentation non supervisée (clustering), consiste a par-
titionner une image en groupe de pixels aux propriétés homogenes afin de proposer une repré-
sentation spatiale simplifiée de la donnée. L'idée est ici de considérer qu'un pixel seul ne contient
pas beaucoup d’information, et que de nombreux pixels proches les uns des autres vont possé-
der des informations similaires qu’il peut étre intéressant de regrouper. En particulier, le fait de
passer d’'une représentation pixels a une représentation basée sur une sur-segmentation permet
de générer ce que 'on nomme des superpixels, qui sont tout simplement des groupes de pixels
connexes. En pratique, les superpixels sont définis comme des groupes de pixels de tailles simi-
laires - nous utiliserons ici ce terme pour caractériser le résultat obtenu par toutes les méthodes
de sur-segmentation. En télédétection, il n’est par ailleurs pas rare d’utiliser les termes segments
et objets pour caractériser les superpixels [Blal0]. Ces derniers ont pu trouver des applications
pour la segmentation sémantique [KHH17], le transfert de couleur [GTP17], ou encore 'analyse
d’images 3D [CRN*19].

2.2.1 Méthodes courantes

Une évaluation de 28 méthodes de la littérature sur 5 jeux de données a été proposée par Stutz
etal. [SHL18] en 2018, mettant en avant la diversité des approches qui ont été mis au point pour gé-
nérer des superpixels. Les auteurs ont ainsi identifié 8 groupes de méthodes, dont celles basées sur
le partage des eaux (Watershed), la recherche de modes, les graphs, le regroupement (clustering)
ou encore la minimisation d’énergie. En pratique, cette évaluation vise a déterminer la qualité des
sur-segmentations générées a ’aide de criteres particuliers tels que :

¢ Lerreur de sur-segmentation (Oversegmentation Error, OE) : mesure le fait que plusieurs
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FIGURE 2.7 — Exemples de superpixels. De gauche a droite : Quick Shift [VS08], SLIC [ASS*12],
ETPS [YBFU15], FH [FH04] et Watershed [BM93]. Images extraites du site web? lié aux travaux de Stutz
et al. [SHL18].

groupes de pixels ont été générés au sein d'un objet d’intérét (i.e., on aurait aimé avoir un
unique groupe).

o Lerreur de sous-segmentation (Undersegmentation Error, UE) : mesure le fait que des groupes
de pixels se superposent aux bordures des objets d’intéréts (i.e., on aurait aimé ne pas dé-
border).

o Le taux de bonne classification atteignable (Achievable Segmentation Accuracy, ASA) : me-
sure le taux de classification que I’on pourrait obtenir si tous les superpixels étaient classifiés
correctement (nécessite une vérité terrain).

Dans la suite, nous allons décrire succinctement certaines des méthodes représentatives de
la littérature. Celles-ci sont illustrées sur la Figure 2.7. Ces méthodes ont pu prouver leurs perfor-
mances [SHL18] et ont déja été utilisées sur des images aériennes ou satellites. Nous avons exploité
certaines d’entre elles dans nos travaux présentés dans le chapitre 5 de ce manuscrit a des fins de
post-traitement. Nous reprenons ici une partie du formalisme décrit par Mathieu et al. [Mat17].

Quick Shift (QS)

Quick Shift (QS) a été proposée en 2008 par Vedaldi et al. [VS08]. Il s’agit d'une amélioration de
I'algorithme Mean Shift [CM02]. Cette méthode appartient a la catégorie des algorithmes par re-
cherche de modes. Dans cet article, les auteurs proposent de représenter les N pixels d'une image
a l'aide de leur couleur dans I’espace RGB et de leur position dans I'image 2D. Chaque pixel est
ainsi représenté a 'aide d’'un vecteur de 5 caractéristiques. Il est possible de représenter la dis-
tribution de ces vecteurs a 'aide d’'une densité de probabilités. Les modes de I'image sont alors
définis comme étant les maxima locaux de la densité de probabilité. Le but de QS est de réussir a
trouver ces modes de facon efficace afin d’associer chaque pixel au mode dont il est le plus proche,
générant ainsi des groupes de pixels ayant des positions et des couleurs proches les uns des autres.
En pratique, Quick Shift va estimer la densité de probabilité F, des pixels dans I'image a 'aide de
la densité de Parzen, qui repose sur un filtrage gaussien ¢ de la différence d(.) entre les vecteurs
de caractéristiques dans X = {xy, ..., xn} (voir équation (2.7)).

N
(d(x,x;),x;€X (2.7)
Yo

Fj(x) !
pX)=—
N3
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Simple Linear Iterative Clustering (SLIC)

Simple Linear Iterative Clustering (SLIC) a été proposé par Achanta et al. en 2010 avant d’étre
revisité dans une étude comparative en 2012 [ASS™ 12]. Cette méthode itérative correspond a une
adaptation locale de I'algorithme des k-moyennes. Le but de SLIC va étre de moduler 'emprise
spatiale des cellules d'une grille réguliere afin qu’elles respectent un critére d’homogénéité basé
sur la couleur dans 'espace LAB (3 valeurs : /,a,b) et la position dans I'image (2 valeurs : x,y), de
fagon similaire a I’algorithme QS. L'algorithme de SLIC proposé par [ASS*12] est décrit ci-apres.

Pour une image I, on définit une grille réguliere de K cellules, chaque cellule étant de taille
S x S. On rappelle que chaque pixel est ici représenté a I’aide d'un vecteur de 5 valeurs (/,a,b,x,y).
On initialise les K centres de masses des cellules correspondant a la valeur moyenne des pixels qui
la composent : Ci = [Ig, ag, bk, Xk, Yxl. Afin de pouvoir rattacher chaque pixel a un des K centres de
masses dans I'espace 5D, il est nécessaire de définir une mesure de distance. Pour cela, Achanta et
al. [ASS* 12] proposent de calculer la distance D d'un point a un autre a I'aide d’'une combinaison
linéaire de la distance euclidienne des couleurs d;,j, et de la distance euclidienne des positions
dyy (voir équations (2.8), (2.9) et (2.10), ot I'indice k représente un centre de masse et I'indice
i un pixel). Ce choix est fait afin de pouvoir pondérer I'importance de la couleur par rapport a
la position a I'aide d’'un parameétre m, dit de compacité, qui se comprend intuitivement comme
étant le poids relatif donné a la position des pixels.

diap = \/(lk —1)? + (ax — a;)? + (bx — b;)? (2.8)
dyy = \/(xk—xi)2 +(yk— yi)? (2.9)

m
Ds=djap+ ?dxy (2.10)

ATaide de cette distance Dy, SLIC réalise a chaque itération une assignation de chaque pixel a
un des K centres dans un voisinage de 2S x 2S pixels, avant de mettre a jour la position des centres.
A noter qu’il est nécessaire de fixer S pour I'utilisateur. Ce parametre permet d’obtenir des super-
pixels a des échelles différentes (plus S est grand, plus les superpixels seront grands).

On remarquera que de nombreuses variantes de cet algorithme ont été proposées dans la lit-
térature, afin notamment d’améliorer la prise en compte de la texture et des contours a 'aide,
par exemple, de filtres basés sur les LBP (présentés dans la section précédente) ou via I'intégra-
tion des gradients de I'image dans le calcul dans la mise a jour des groupes de pixels. Des exten-
sions étendant la distance d;,;, aux caractéristiques issues des couches cachées d'un réseau de
neurones profond a convolutions ont également été étudiées afin d’améliorer la qualité des sur-
segmentation générées [JSL*18; VBt18].

Efficient Topology Preserving Segmentation (ETPS)

Efficient Topology Preserving Segmentation (ETPS) [YBFU15] est un algorithme qui étend le for-
malisme introduit par SLIC a plusieurs échelles. Il introduit également des termes de régularisa-
tion supplémentaires pour améliorer la qualité des superpixels générés. En particulier, les termes
introduits par ETPS vont pénaliser les superpixels non connectés tout en les forcant a avoir une
taille finale au moins égale a un quart de leur taille initiale, et ce dans le but d’éviter que des pixels
isolés forment des superpixels. Cet algorithme se placait en premiére position de I'évaluation réa-
lisée par [SHL18] en 2018.

Tout comme SLIC, ETPS s’initialise sur une grille réguliére et va chercher a assigner chaque
pixel a un groupe de pixels. Cependant, tandis que SLIC se base sur une grille réguliére définie
uniquement lors de l'initialisation, ETPS va exploiter une grille réguliere avec une échelle diffé-
rente a chaque itération. Pour cela, ETPS considere initialement une grille réguliere relativement
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grossiere, avec de grandes cellules de taille S; x S;. Pour chaque cellule de la grille, 'algorithme va
calculer le centre de masse correspondant dans un espace 5D (tout comme SLIC). Il va alors cher-
cher quelles sont les cellules de chaque superpixel qui sont adjacentes a une cellule d'un autre su-
perpixel. Les auteurs nomment ces cellules les cellules frontiéres (boundary blocks). Une fois cette
liste de cellules frontieres obtenues, 1'algorithme va alors tester la mise en commun de chaque
cellule frontiere avec les superpixels de ses cellules voisines sur un voisinage 4-connexe, et affec-
ter la cellule frontiére au superpixel le plus proche. A noter qu’a I'initialisation, toutes les cellules
sont considérées a la fois comme des cellules frontieres et comme des superpixels. Cela permet de
regrouper des cellules (i.e., de générer des superpixels) a I’échelle la plus grossiere. Afin de raffiner
la sur-segmentation obtenue a chaque itération i > 1, une nouvelle grille réguliére de cellules de
taille S; x S; est créée, tel que S; < S;_;. Cette grille réguliére permet de décomposer les super-
pixels obtenus lors de I'itération i — 1 en appliquant le processus basé sur les cellules frontieres
qui est décrit ci-dessus. On remarquera que les auteurs précisent qu’utiliser des cellules de grande
taille permet a leur algorithme d’atteindre des minima locaux de meilleur qualité par rapport a
leur fonction objectif (i.e., distance calculée avec termes de régularisation).

Méthode de Felzenswalb et Huttenhoch (FH)

Lalgorithme de segmentation proposé par Felzenszwalb et Huttenhoch [FH04] (FH) géneére
des régions de pixels en modélisant I'image I a I'aide d’'un graphe G =< V,E >, avec V = {vy, ..., UN}
un ensemble de N sommets correspondant aux pixels de I, et E un ensemble d’arétes reliant les
sommets (i.e., E définit le voisinage). La pondération des arétes E correspond a la distance sé-
parant deux sommets. Elle est définie comme la différence absolue entre les niveaux de gris des
pixels dans I'algorithme de FH.

Les superpixels s sont ici formés en regroupant les pixels (les sommets) v en fonction d'un
prédicat d’homogénéité sur les arétes. Soit s; un superpixel. On note alors E; c E 'ensemble des
arétes entre les pixels de s;, et E; j 'ensemble des arétes reliant s; a un autre superpixel s;. Le pré-
dicat défini par FH consiste alors a comparer la différence maximale entre les pixels d'un méme
superpixels s;, que I'on nommera différence interne (D;;), avec la différence minimale entre s; et
sj, que 'on nommera différence externe (D). Les différences sont ici défini a I'aide des pondé-
ration des arétes. Cette pondération correspondant a une différence absolue, les valeurs maximale
et minimale peuvent étre définie par les équations (2.11) pour D;j; et (2.12) pour Dey;. Si E; j est
I’ensemble vide, alors D,y prend une valeur infinie.

Dint(si) = maxe, ek, (k1) (2.11)

Dext(si,sj) = minekJEEi,j(ek,l) (212)

Le prédicat P est alors donné par une fonction binaire qui indique si les superpixels s; et s; doivent
restés distincts ou étre fusionnés (voir équation (2.13)).

vrai  SiDexr(8i,$7) > min(Dine(si) + Ts;, Dine(sj) + Tsj)

) (2.13)
faux sinon

P(si,sj) = {
ol Ty, et T ; sont des parametres de la méthode.

Cette méthode est généralement appliquée sur une image ayant été filtrée a 'aide d’un filtre
passe bas afin de lisser les hautes fréquences non désirées. Il est par ailleurs difficile de contréler
le nombre de superpixels qu’elle va permettre de générer (parametre non explicite, contrairement
aSLIC et ETPS).

Watershed (W)

Lalgorithme de Watershed (W) [BM93], ou de partage des eaux, consiste a considérer que les
groupes de pixels dans 'image seront séparés par des gradients d’intensités. Par analogie, chaque
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intensité de gradient correspondrait ici a une élévation séparant des bassins versants (zones de
faibles gradients). Si 'on souhaitait représenter ces éléments en 3D, le gradient représenterait
donc des éléments de relief, tandis que les bassins versants correspondraient a des crevasses. L'al-
gorithme de partage des eaux va chercher a inonder les bassins versants en augmentant l'intensité
des pixels correspondants, simulant une montée du niveau d’eau. La séparation entre deux objets
correspondra alors a la position ol deux bassins versants inondés se rejoignent. L'avantage prin-
cipal de cette approche est de pouvoir détecter des superpixels de tailles variables en se basant sur
une représentation intermédiaire, a savoir les hautes fréquences détectées dans 'image. Comme
pour la méthode de FH, le nombre de superpixels généré par la méthode de partage des eaux n’est
ici pas controlé a priori.

2.2.2 Application de la sur-segmentation en télédétection

Les superpixels en télédétection ont connu un fort engouement de par leur capacité a regrou-
per des ensembles homogenes de pixels et ainsi diminuer la quantité d’information a traiter. Une
édition spéciale du journal scientifique Remote Sensing (Télédétection), était d’ailleurs consacrée
a cette thématique en 20193. Cet intérét s’explique de par le gain de temps que les superpixels
permettent d’obtenir lors des traitements d’'image aériennes et satellites qui sont généralement
de trés grandes tailles (e.g., 12000 x 12000 pixels), mais aussi de par la possibilité qu’ils offrent
d’agréger les statistiques spectrales au sein de chaque superpixel afin de les reconnaitre. En pra-
tique, on parle beaucoup d’identification basée objets (Object Based Image Analysis, OBIA), ol1 un
objet est défini par un superpixel. Lavantage des approches de type OBIA est qu’elles permettent
d’obtenir des résultats sémantiques qui seront spatialement lisses par rapport aux résultats ob-
tenus au pixel-prés (i.e., on attribue un label a tout un superpixel d'un seul coup, plutét qu'a un
pixel a la fois). Une revue de ces méthodes était proposée par Blaschke et al. en 2010 [Blal0]. Les
auteurs indiquaient alors que les méthodes de type OBIA devenaient de plus en plus populaires en
comparaison des méthodes basées pixels. A titre d’exemple, Zhang et al. [ZZS™19] utilisent des su-
perpixels a plusieurs échelles générés par un logiciel commercial# afin d’extraire des statistiques
multispectrales pour chaque superpixel et ainsi classifier les superpixels. Un vote majoritaire entre
les résultats obtenus avec les superpixels d’échelles différentes est ensuite réalisé.

De nombreuses approches combinant réseaux de neurones a convolutions (voir section 2.4) et
superpixels ont également vu le jour. Postdajian et al. [PBMS18] proposent de classifier des ima-
gettes centrées sur les superpixels issues de la méthode FH afin de générer des résultats spatia-
lement cohérents tout en réalisant une classification dense de 'occupation du sol en un temps
raisonnable (par superpixel plutét que par pixel). Les auteurs indiquent que les parametres de la
méthode FH ont été selectionnés manuellement dans le cadre de leurs travaux. Ma et al. IMGS'19]
proposent d’extraire des superpixels a’aide de SLIC, qu’ils combinent avec un réseau de neurones
a convolutions leur permettant d’extraire automatiquement des caractéristiques représentatives
d’images radars et ainsi attribuer une classe d’occupation du sol a chaque superpixel. Pour cela,
ils proposent de s’intéresser non seulement a chaque superpixel de I'image, mais également a une
imagette englobant le superpixel et centrée sur celui-ci. Ce choix a été fait afin d’intégrer a la fois
I'information spécifiquement liée au superpixel et 'information liée a son contexte (imagette).
Le fait de combiner I'information portée par les superpixels avec leur environnement au travers
d’imagettes et de réseaux de neurones profonds a également été étudié par Chen et al. [CM19].
Gharibbafghi et al. [GTR18] utilisent I'algorithme SLIC a plusieurs échelles afin d’extraire des ba-
timents a partir de modéles numériques de terrain (représentation 3D des éléments observés au
sol) générés par imagerie satellite stéréoscopique. Sherpherd et al. [SBD19] proposent quant a eux
de comparer plusieurs algorithmes de sur-segmentation tels que FH et Quick Shift pour la géné-
ration de superpixels adaptés a I'analyse d’images satellites.

3. https ://www.mdpi.com/journal/remotesensing/special_issues/Superpixel_based_Analysis_and_Classification
4. https ://geospatial.trimble.com/products-and-solutions/ecognition
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Observations. De nombreux travaux ont mis en avant I'avantage des approches basées super-
pixels afin de générer des représentations spatiales plus cohérentes qu’avec les approches basées
pixels. On remarque aussi ici la volonté d’avoir acces a un contexte spatial plus étendu que les su-
perpixels générés par les méthodes classiques afin d’améliorer les résultats obtenus. Pour chaque
application (différentes images, différentes résolutions, différents objets a reconnaitre), il semble
cependant y avoir une incertitude qui se dégage quant a la taille optimale des superpixels a utiliser
(utilisation de plusieurs échelles, modification des parametres a la main).

2.3 Algorithmes de classification

Dans le cadre de nos travaux, nous nous sommes particulierement intéressés a la classifica-
tion des images aériennes historiques. Cette section a pour but d’introduire la notion de classi-
fieur (algorithme de classification) et présente les méthodes de classification supervisée les plus
couramment utilisées dans la littérature.

2.3.1 Définitions
Définition intuitive

Un algorithme de classification, ou classifieur, permet d’attribuer automatiquement une classe
a un objet représenté par un vecteur de caractéristiques. Les différentes classes possibles en sortie
d’'un classifieur dépendent de 'application visée et doivent étre fixées par I'utilisateur. Afin de les
représenter, il est d'usage d’avoir recours a des étiquettes correspondant a des valeurs numériques
distinctes et identifiables (e.g., {etiquette}: classe; {0} : orange, {1} : pomme). Un classifieur est
donc un algorithme qui va associer des vecteurs de caractéristiques a des étiquettes.

Définition formelle

Considérons un vecteur de caractéristiques x € CN avec N € N*, et Y I’ensemble des étiquettes
formé par un sous-ensemble des entiers relatifs Z dont les éléments sont tous distincts deux a
deux. Un classifieur & est alors défini comme une application injective de CN dans Y qui, a tout x
de dimension 7 a valeur dans CV, associe une étiquette y de Y. Cette définition est succinctement
représentée par I’équation (2.14) pour un nombre d’étiquettes k arbitraire.

y=hx),xeCN,yeY={y,..., yi} (2.14)

Il est important de remarquer que les vecteurs x sont pris dans CN afin de nous assurer de I'exis-
tence d'un produit scalaire entre les vecteurs de notre ensemble de départ, condition nécessaire a
I'apprentissage de certains classifieurs tels que les machines a vecteurs de support.

Ensembles d’entrainement, de validation et de test

Afin de pouvoir classifier un vecteur de caractéristiques, les classifieurs ont besoin d’étre expo-
sés a un ensemble connu de paires caractéristiques-étiquettes (cas surpervisé). Cet ensemble est
généralement nommé ensemble d’entrainement, que 'on notera X;,4;,. Le terme entrainement
esticilié au fait que certains algorithmes vont optimiser leurs parameétres, au sens mathématique,
par rapport a X;,4in afin de réaliser la tache de classification. Cet ensemble est généralement cou-
plé a un ensemble de validation, X,,;, qui permet de sélectionner les hyperparametres (i.e., para-
metres difficilement optimisables mathématiquement) de 'algorithme par recherche exhaustive
sur grille de parametres. Lensemble de validation est constitué de données qui ne sont pas pré-
sentes dans X;;4i,. En pratique, il est possible de se passer de X, ,; en ayant ou bien recours a des
approches par validation croisée, ou bien en ne cherchant pas a optimiser les hyperparametres,
ou encore en cherchant a évaluer les algorithmes dans un scénario optimiste (i.e., algorithmes "au
meilleur de leur forme") lorsque que peu de données existent. Enfin, 'ensemble des données de
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test X5 va servir a évaluer I'algorithme. On va ici fournir uniquement le vecteur de caractéris-
tiques au classifieur, et comparer le résultat généré par rapport a I'étiquette réelle. Les données
de X,¢5; ne sont pas présentes ni dans X;,4;, ni dans X,,4;. On distingue ici X,,; et X, afin de
pouvoir évaluer plusieurs algorithmes sur une base commune (X;.s;) qui n’a jamais été utilisée ni
pour optimiser le modele, ni pour en sélectionner les hyperparametres.

2.3.2 Algorithmes communs

Dans cette section, nous décrivons les algorithmes de la littérature les plus utilisés.

K plus proches voisins

La méthode des K plus proches voisins (k-nearest neighbors, KNN) est une des méthodes les
plus classiques utilisée en apprentissage automatique pour la classification. Cet algorithme se dé-
compose comme suit :

e Soit Xx;es; € Xes;. Calculer la distance de x5, a tous les éléments de X;,4i,. La distance uti-
lisée peut varier en fonction des vecteurs de caractéristiques utilisés (e.g., distance eucli-
dienne pour valeurs continues, distance de Hamming pour valeurs binaires).

¢ Ordonner les éléments de X, 4, par ordre décroissant de distance avec x;es;.

¢ Ne garder que les K éléments de X;,i, ayant la plus petite distance avec x;.s;. Le K est ici
défini par l'utilisateur.

 Faire un vote majoritaire entre les étiquettes des K éléments retenus. L'étiquette majoritaire
Ym est ici retenue comme étant 1'étiquette prédite par le classifieur. Dit autrement, I’algo-
rithme associe I'étiquette y,,; a X;es;-

A A ) A A o A A o} A A ()
o o ([ O
A A O'. A A <>.. A A O.. A A O..
A <f,>/"\‘.' A <><X>... A oé" A OX'O
AA © AA © Ap © AA ©‘e
K=1 K=3 K=6 K=7
Classe prédite : < Classe prédite : < Classe prédite : ? Classe prédite : @

FIGURE 2.8 — Schéma illustrant le principe des K plus proches voisins avec 3 classes représentées par des
formes géométriques colorées dans un espace 2D. Les formes aux contours rouges sont les K plus proches
voisins de la croix selon la distance euclidienne dans le plan.

Les avantages de cet algorithme sont qu'il est relativement facile a implémenter et qu’il permet
d’obtenir des résultats de classification automatique sans nécessiter d’entrainement. En revanche,
il est nécessaire de fixer '’hyperparametre K. Celui-ci est souvent fixé a I'aide d'un nombre impair a
cause de I'étape de vote majoritaire (voir Figure 2.8). Il peut également étre obtenu par validation
croisée. Par ailleurs, plus 'ensemble d’entrainement X, 4;, contient d’éléments, plus I'algorithme
s’exécutera lentement (recherche exhaustive). Afin de résoudre ce probleme, des approches opti-
misées a I'aide d’arbres de recherche (k-d trees) ont été proposées [O* 13]. Enfin, le KNN tend a étre
sensible au probleme de déséquilibre de classes (i.e., lorsqu’une classe est trés majoritairement re-
présentée par rapport a une autre). Des approches pondérant la distance calculée en fonction du
nombre d’éléments par classe ont été proposées pour lutter contre ce probleme [DP13].

Support Vector Machine

Une machine a vecteurs de support (Support Vector Machine, SVM) [CV95] est un classifieur
initialement introduit pour la classification binaire, avant d’étre étendu au cas de la classifica-
tion multi-classes (k > 2) en se ramenant a un cas binaire [DK05; CV95]. Le but d'une SVM est
de déterminer un hyperplan séparateur optimal, dit de marge maximale, entre les points que 'on
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souhaite classifier. La marge est ici définie comme étant la distance entre '’hyperplan et les points
qui en sont les plus proches. Les points les plus proches de '’hyperplan sont nommés les vecteurs
de supports (chaque point correspondant a un vecteur de caractéristiques). Dans le cas linéaire,
nous pouvons considérer un classifieur 2 (un hyperplan) comme une fonction qui va pondérer
un vecteur de N caractéristiques x al’aide d'un vecteur de poids w = {wy, ..., wn} afin d’en estimer
I'étiquette y (voir équation (2.15)).

h(x)=w' x+ w, (2.15)

I1 peut étre montré que la fonction h optimale s’obtient en minimisant %II w||? sous contraintes
yk(wak + wp) = 1, avec (xg, yx) 'ensemble des paires caractéristiques-étiquettes de X;rqin =
{(x1, 1) ..., (Xp, ¥p)}, telles que yi € {~1,1}. Ce probleme peut étre résolu a I'aide des multiplica-
teurs de Lagrange (voir [CV95]), dont la solution duale met en avant que seul un sous-ensemble
de points est nécessaire pour obtenir une solution (les vecteurs de support), et que I'hyperplan
solution dépend uniquement du produit scalaire entre le vecteur d’entrée x et les vecteurs de sup-
port xj (voir équation (2.16), ot ay. est un multiplicateur de Lagrange optimal).

p
h(x) = )_ o yp(x-xp) + wo (2.16)
k=1
Ce dernier point permet d’utiliser I'astuce du noyau (kernel-trick), qui consiste a projeter les vec-
teurs de caractéristiques non linéairement séparables dans un espace de redescription ot ils sont
linéairement séparables. Pour cela, on utilise un noyau K(x;, x;) = q)(xi)T -¢p(x;), ce qui donne la
solution décrite pas I’équation (2.17).

P
h(x) = ) o yiK(x, xi) + wo (2.17)
k=1

En pratique, les noyaux les plus régulierement utilisés sont le noyau polynomial (2.18) et le noyau
gaussien (aussi appelé fonction de base radiale, RBF) (2.19). A noter que le choix du noyau RBF
tend a fonctionner correctement dans la majorité des cas (i.e., il est a privilégier quand aucun a
priorin’est connu sur la structure des données), mais qu'il est nécessaire de fixer le parameétre y a

l'aide d'un jeu de validation.
K(x;, x)) = (x] -x)?,deN (2.18)

K(xi,xj)ze_Y”x"_xf”Z, avec Y>0 (2.19)

Par ailleurs, il est courant de ne pas pouvoir trouver d’hyperplan séparant linéairement les points,
et ce méme dans I'espace de redescription. Les SVM sont donc généralement optimisés a I'aide
d'une marge souple [CV95], prenant la forme d'un terme de régularisation permettant une to-
lérance a l'erreur. Ce terme de régularisation est pondéré par un parametre C > 0, qui va per-
mettre de réaliser un compromis entre les erreurs commises et la largeur de la marge. En pratique,
ce terme de régularisation permet d’éviter le sur-apprentissage. Il est généralement déterminé a
I'aide d’'un ensemble de validation.

Foréts aléatoires d’arbres décisionnels

Les arbres décisionnels sont des classifieurs qui vont étre optimisés afin de générer une déci-
sion basée sur des regles logiques successives. Un arbre est ici constitué d'un ensemble de nceuds,
chaque nceud étant responsable de séparer 'ensemble des données qu’il prend en entrée en deux
groupes a I'aide d'un seuil sur les caractéristiques des données. De nombreuses approches ont
été proposées dans la littérature pour construire des arbres de décisions, telles que ID3 (Iterative
Dichotomiser 3) [Qui86] ou encore CART (Classification And Regression Trees) [BFOS84]. Ici, nous
allons nous intéresser tout particulierement a I’algorithme CART, a la base des foréts aléatoires.

Lalgorithme CART est basé sur des régles logiques binaires, il fonctionne avec des valeurs
continues et va permettre d’optimiser le choix des caractéristiques et les seuils logiques a chaque
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séparation selon un critere d’homogénéité / d'impureté. En pratique, lorsqu’a un nceud S donné,
la caractéristique j est sélectionnée pour la séparation avec un seuil a;, cette séparation génére
deux sous-nceuds Sg (gauche) et S, (droit). On défini alors I’homogénéité de la séparation par
OI(S) = I(S) — E[I(Sg4)], qui est une mesure de la différence entre I'impureté du nceud I(S) et de
I'espérance (moyenne statistique) des impuretés des sous-noeuds E[I(Sgq)] = pgl(Sg) + pal(Sqa),
avec pg/q = #Sg4/4/#S. Loptimisation consiste ici a maximiser 81(S) sur X;r4;, pour chaque nceud
afin de déterminer la caractéristique qui va étre choisie pour la séparation, ainsi que le seuil qui va
étre utilisé. En classification, les mesures d'impureté régulierement utilisées sont I'index de Gini
Ggn(S) (voir équation (2.20)) et 'entropie H(S) (voir équation (2.21)), toutes deux définies a partir
de la probabilité p; qu'un élément de S se retrouve dans une des k classes de Y = {y1, ..., Yk} apres
la séparation du nceud (i.e., p; = iy ‘Dans un contexte de régression (i.e., génération de données

1S
continues a la place d’étiquettes), I'erreur quadratique moyenne est généralement utilisée.

k
Ggn(S) =) pil—pi) (2.20)
i=1
k
H(S)=-)_ pilog(p) 2.21)

i=1
En pratique, les régles de décisions des arbres peuvent étre biaisées vis a vis des données obser-
vées dans X;,4in, rendant I'algorithme instable. Face a ce probléme, les foréts aléatoires d’arbres
décisionnels (Random Forest, RF) ont été proposées par Léo Breiman en 2001 [Bre01]. L'idée est ici
d’apprendre plusieurs arbres entrainés sur des sous-ensembles de données de X;;4;,, tirés aléatoi-
rement, et d’effectuer un vote majoritaire des classes prédites par I'’ensemble des arbres (bagging).
Ce processus est schématiquement représenté sur la Figure 2.9. De plus, a chaque fois que 'on va
chercher a séparer un nceud, RF va tirer au hasard une partie des caractéristiques afin de réali-
ser la séparation, permettant d’introduire une robustesse supplémentaire dans les décisions. Les
parametres principaux de cet algorithme sont ici le nombre d’arbres a considérer, le nombre de
caractéristiques a considérer a chaque nceud (minimum, maximum) et le critere d'impureté. Ils
sont généralement déterminés a 'aide d'un ensemble de validation, ou par validation croisée.

Perceptrons multicouche (MLP)

Un perceptron multicouche (MLP) est un réseau de neurones organisé sous forme de couches
de neurones, ou les données en sortie d'une couche sont les entrées de la suivante. Chaque couche
contient un certain nombre de neurones non liés entre eux, et chaque neurone est modélisé par
un perceptron [Ros58].

— | ——___ Sélection aléatoire (Xtrain)

|— — v —

<> <> Optimisation des
. R arbres (Xrain)

3 — Vote majoritaire et évaluation (X¢est)

FIGURE 2.9 — Schéma illustrant le principe des foréts aléatoires d’arbres décisionnels. Chaque couleur re-
présente une arbre décisionnel. Les cases noires représentent des sous-ensembles de données de X qui ne
sont pas pris en compte pour entrainer I'arbre.
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Le perceptron s’'inspire des neurones biologiques, qui vont pondérer, biaiser et intégrer les si-
gnaux qu'’ils regoivent avant d’appliquer une fonction d’activation g(.) sur un signal (e.g., un vec-
teur de caractéristiques). Les fonctions d’activations ont ici pour but de produire des décisions
non-linéaires en sortie de chaque neurone afin de simuler un effet de seuil. Elles sont nécessai-
rement continues, dérivables et de dérivées continues afin de permettre le calcul du gradient et
I'optimisation du MLP. Les fonctions d’activation les plus courantes sont la tangente hyperbolique
(f(v) = tanh(z)) etla sigmoide (f(v) = (1+e~%)71).

En pratique, un MLP va avoir une couche d’entrée avec un nombre de neurones correspon-
dant a la taille du vecteur de caractéristiques. Sa couche de sortie aura quant a elle un nombre
de neurones k, égal au nombre de classes que I'on cherche a reconnaitre. Chaque neurone de la
couche de sortie va générer une probabilité que la donnée traitée appartienne a la classe corres-
pondant a I'index du neurone (i.e., un neurone par étiquette). On considere généralement I'index
qui correspond a la probabilité la plus élevée comme étant celui de la classe prédite (top-1 classi-
fication), mais il est également possible de considérer un résultat positif si sa probabilité est parmi
le k plus élevées (top-k classification). Outre ces deux couches, le MLP pourra avoir un nombre
non pré-déterminé de couches dites cachées, c’est a dire entre la couche d’entrée et la couche de
sortie. Plus un réseau de neurones aura de couches cachées, plus il sera dit profond. Un exemple
d'un tel réseau de neurones est schématisé sur la Figure 2.10.

Couche Couche Couche
d’entrée cachée de sortie

Entrées Sorties

FIGURE 2.10 — Schéma illustrant le principe d'un réseau de neurones.

Plus formellement. Soit / le numéro de la couche neuronale considérée, alors le signal se pro-
page des k neurones de la couche (I —1) au neurone j de la couche (/) via I’équation (2.22), ou
ay indique la sortie générée par le neurone k de (I - 1), wj le poids entre les neurones j et k, et
g(.) estla fonction d’activation. Les indices (I) et (I — 1) indiquent la couche a laquelle appartient
I'élément.

a;l) — g (Zy)) — g (% wﬁ-’,iai"” + b}”) 2.22)

Les poids w et les biais b représentent les parametres du réseau. Ils sont appris sur un en-
semble d’entrainement X;,,;, a I'aide de I'algorithme de rétropropagation du gradient [RHW86;
Wer90]. Dans sa forme la plus simple, ce dernier correspond a une descente stochastique du gra-
dient (SGD) a I'aide de dérivées composées. Pour cela, on définit I'’erreur réalisée par le réseau en
calculant la différence entre la sortie estimée y; par les j neurones de la couche de sortie et la
vérité terrain correspondante y;. L'erreur est ici calculée a I'aide d’'une fonction de cotut £ (7, y;),
a définir en fonction des applications. L'algorithme de rétropropagation du gradient permet alors
de calculer la dérivée partielle, les gradients, de la fonction de cotit par rapport a chacun des pa-
rametres du réseau, tels que défini par les équations (2.23), (2.24), (2.25), et (2.26), o1 gV'(.) est
la fonction dérivée de la fonction d’activation de la couche (1), £’(.) est la fonction dérivée de la
fonction de cofit, et I'indice sortie indique la derniére couche du réseau.
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Sjortie — gsortie/(zjortie)xl(yj, i) (2.23)
1 1 1 1
5;) - g(l)’(z;. ))Zk w;k+1)5; +1) (2.24)
J
awjk
0L _ (2.26)
ap® i '

Ces dérivées partielles permettent de mettre a jour les parametres du réseau a I’aide des équa-
tions (2.27) et (2.28), ou A est le taux d’apprentissage (learning rate, LR), dont la valeur est géné-
ralement faible pour éviter les variations trop fortes des parametres. Celui-ci défini la vitesse de
mise a jour des parameétres lors de la descente de gradient.

wh = (.”—)\ai (2.27)
jk jk ow®
ik
0%

pD = pb _\°Z (2.28)
J ] ab(l)

Des algorithmes de mise a jour des parameétres plus évolués, tenant notamment compte de
I'intensité du gradient et des variations passées (momentum), ont par ailleurs été proposés dans
la littérature (e.g.,, RMSPROP [HSS12], ADAM [KB14]). Ces algorithmes permettent d’optimiser les
réseaux de neurones plus rapidement et plus efficacement en régularisant les variations des para-
metres.

En pratique, I'entrainement d'un réseau de neurones se fait a I'aide d’'un sous ensemble de
données d’entrainement a chaque itération. Ce sous ensemble est nommé batch, et la taille du
batch correspond au nombre d’échantillons utilisés par itération. Lutilisation d'un batch permet
de cumuler I'erreur sur plusieurs échantillons de données avant de calculer et de rétropropager le
gradient. Cela permet d’accélérer I'entrainement via la parallélisation des algorithmes.

Les hyperparametres principaux du MLP concernent le choix du taux d’apprentissage, le choix
de la fonction de cofit, le choix des fonctions d’activation, le choix de I'algorithme de mise a jour
des parametres, le nombre de couches cachées et le nombre de neurones par couche; qui défi-
nissent la profondeur du réseau ainsi que le nombre de parametres a optimiser. En pratique, il est
difficile d’estimer a priori ces hyperparametres et une étape de validation peut étre nécessaire. La
régle générale veut cependant que plus il y a de neurones, plus il y a de parameétres, donc plus les
représentations qu'un réseau de neurones pourra apprendre seront complexes. En revanche, plus
il aura de parametres, plus il y aura besoin d'un grand nombre de données pour que I'’optimisation
converge vers une solution mathématiquement optimisée. De la méme maniere, plus la quantité
de paramétres est importante, plus '’entrainement des réseaux de neurones est lent.

2.4 Réseaux de neurones a convolutions

Les réseaux de neurones a convolutions (Convolutional Neural Network, CNN) sont apparus
désla fin des années 1990 [LBBH98], mais ne sont vraiment devenus populaires qu’a partir de 2012
avec le succes sans précédent de ces approches pour la classification a grande échelle [KSH12] sur
le jeu de données ImageNet (ILSVRC 2012) [RDS*15].
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IIs permettent d’étendre la notion de neurones aux filtres de convolutions, usuellement utilisés
pour filtrer les images. Le but recherché est ici double : (1) permettre le partage des poids d'un ré-
seau de neurones pour I'ensemble des pixels d’'une image afin de limiter le nombre de parametres
a optimiser et (2) apprendre des filtres de convolutions optimisés pour la tiche a accomplir afin
d’extraire automatiquement des caractéristiques.

Réseaux de neurones a convolutions

ATinstar des réseaux de neurones classiques (e.g., MLP), les réseaux de neurones a convolu-
tions vont étre constitués de couches, appelées couches de convolutions. La plupart des réseaux
actuels sont tous profonds (on parle alors de Deep Convolutional Neural Network, DCNN). Cepen-
dant, ala place d'un modeéle uniquement basé sur le perceptron, certaines de ces couches vont étre
constituées d’opérateurs issus du traitement du signal et de I'image, tels que le filtre de convolu-
tions (la convolution étant ici un neurone, remplagant le perceptron) et le pooling (opération de
sous-échantillonnage non linéaire). En particulier, les filtres de convolutions vont permettre de
filtrer I'image afin d’en extraire des caractéristiques, qui pourront ensuite servir d’entrées a des
couches dites entierement connectées (Fully Connected, FC) représentées par un MLP (cas de la
classification). Le grand avantage de cette approche est qu’elle permet d’optimiser simultanément
'algorithme de classification et les filtres d’extraction de caractéristiques (voir Figure 2.11).

Sortie

Convolution Pooling Convolution Pooling
Classification

(MLP)
Extraction de caractéristiques

FIGURE 2.11 — Schéma illustrant le principe d'un réseau de neurones a convolutions pour la classification.
Image adaptée de [ATY*19].

Réseaux de neurones entierement convolutifs

Lutilisation de réseaux de neurones entiérement convolutifs (FCN) a été également explo-
rée [LSD15]. Pour cela, il suffit de supprimer les couches entierement connectées et de les rem-
placer par des filtres convolutionnels. Les FCN sont particulierement populaires pour la généra-
tion de données [RMC15; YGZS17] et la segmentation sémantique [BKC17; ALSL16; RFB15]. En
particulier, 'utilisation d’architectures encodeur-décodeur tend a étre privilégiée. Celle-ci permet
d’encoder une image a I'aide de couches convolutives et d’opérations de pooling, avant de la dé-
coder al’aide de convolutions transposées (ces opérations sont décrites ci-apres). Une illustration
d'un réseau de neurones de type encodeur-décodeur est présenté sur la figure 2.12.

Dans la suite de cette section, nous allons présenter les blocs de base régulierement utilisés
avec les réseaux de neurones a convolutions, avant de brievement présenter les applications de
ces méthodes pour 'analyse d'images aériennes et satellites. A noter qu'une revue de la littérature
générique des réseaux de neurones profonds et de leurs architectures a été réalisée en 2019 par
Alom et al. [ATY*19], mettant en avant I'engouement général pour ces approches.
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Convolutional Encoder-Decoder

Output

Input

Pooling Indices

RGB Image B Conv + Batch Normalisation + RelU Segmentation
I Fooling I Upsampling Softmax

FIGURE 2.12 — Schéma illustrant le principe d'un réseau de neurones entierement convolutif (FCN) de type
encodeur-décodeur pour la segmentation sémantique. Il s’agit ici du réseau SegNet [BKC17].

2.4.1 Blocs debase

Nous décrivons ici certains des blocs de base pouvant étre utilisés au sein d'un réseau de neu-
rones a convolutions.

Filtres de convolutions

Les filtres de convolutions sont I'essence méme des réseaux de neurones a convolutions. Ce
sont eux qui vont permettre de filtrer la donnée. En pratique, ils vont pondérer et sommer les
pixels d'une image au travers d'une opération de convolution (opération bilinéaire, associative,
commutative). Par définition, ces filtres sont donc invariants a la position des pixels dans 'image.
Dit autrement, les poids (i.e., les parameétres) des neurones convolutifs sont partagés par tous les
pixels de I'image.

La dimension de ces filtres est définie en nombre de pixels par la hauteur H, la largeur W, et la
profondeur C. Ces dimensions définissent le nombre de parametres du filtre qui peuvent étre opti-
misés par descente de gradient (W x H x C). La profondeur correspond ici au nombre de canaux de
I'image qui vont étre vus par le filtre. Ces filtres prennent généralement une taille impaire de pixels
afin que le résultat soit centré sur le pixel central du filtre. Les filtres de taille supérieurea 1 x 1 x C
(H x W x C) vont dépasser de I'image lorsqu’ils vont traiter des pixels aux bords de celle-ci. Une
solution courante est d’ajouter des pixels aux bords de I'image. Cette opération se nomme le pad-
ding, et va généralement de pair avec la convolution. Les pixels ajoutés par padding peuvent étre
de plusieurs types, tels que des zéros, du bruit blanc, ou une copie des pixels aux bords de 'image.
Elle permet d’obtenir une image filtrée de la méme taille que I'image en entrée. Ce constat n'est
cependant valable que lorsque la fenétre glissante représentant le filtre de convolutions va par-
courir les pixels de I'image avec un pas de 1 (stride égal a 1). Le fait de faire varier ce pas permet
de sous-échantillonner I'image sans avoir recours a des opérations supplémentaires (e.g., un pas
de 2 divisera les dimensions H et W de I'image par deux). Un exemple de filtre de convolutions de
taille 3 x 3 x 1 appliqué sur une image mono-canal est présenté sur la figure 2.13.

1l existe par ailleurs plusieurs types de convolutions, que nous détaillons ci-dessous. Certaines,
parmi les plus courantes, sont également représentées sur la figure 2.14.

o Convolution classique. Il s’agit ici du filtre de convolutions standard de taille H x W x C.
Lapplication d'une convolution classique avec padding sur une image de taille I, xI,, xI, va
générer une image filtrée de taille I, xI,, x 1 (agrégation de I'information spectrale contenue
par les différents canaux). Il est de fait nécessaire d’utiliser plusieurs filtres de convolutions
différents pour générer des images filtrées différentes. Ces images filtrées sont aussi appe-
lées cartes de caractéristiques (features map). A titre d’exemple, I'application de n filtres de
convolutions va permettre de générer ny cartes de caractéristiques, qui seront concaténées
dans la dimension des canaux (image de taille [, x I, x n 1)
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FIGURE 2.13 - Schéma illustrant le principe de la convolution classique sans padding. La rotation du filtre
est ici effectuée a titre d’illustration afin de respecter les propriétés de 'opération de convolution. Celle-ci
n'est généralement pas appliquée dans les réseaux de neurones a convolutions. On confond alors convolu-
tion et corrélation.

e Convolution 1 x 1. Les convolutions 1 x 1 sont des filtres de convolutions classiques dont le
seul but est de réaliser une combinaison linaire des canaux de I'image d’entrée. Ils sont de
taille 1 x 1 x C.

¢ Convolution dilatée. Les convolutions dilatées vont étre des filtres de convolutions avec
des trous. Le but est ici de pouvoir considérer des filtres de méme taille que les convolutions
classiques H x W x C tout en observant un voisinage de rayon plus grand (nommé parametre
de dilatation) [CPSA17].

+ Convolution transposée. Les convolutions classiques vont permettre de générer des images
filtrées sans modifier leur taille (avec padding). Les convolutions transposées vont quant
a elle chercher a filtrer une image en augmentant sa taille. Pour cela, 'image d’entrée est
d’abord aplatie en un vecteur, et le filtre de convolutions appliqué par fenétre glissante est
représenté sous la forme d'une matrice éparse que ’'on va transposer et multiplier a 'image
aplatie. Les filtres de convolutions transposées sont également de taille H x W x C [LSD15].

o Convolution séparable. Les filtres de convolutions classiques sont symétriques par rapport
a un pixel central. Ils ont de fait une forme rectangulaire. Les convolutions séparables se
basent surl'observation que certains de ces filtres peuvent étre obtenu par convolution d'un
filtre horizontal (W x 1 x C) et d'un filtre vertical (1 x H x C). Par propriété d’associativité de la
convolution, il est possible d’appliquer ces deux filtres 'un aprés 'autre sur une image afin
d’obtenir le méme résultat qu'un filtre de convolutions classique. Leur utilisation permet de
réduire la quantité de parametres [MG12].

o Convolution séparable en profondeur. On va ici décomposer la donnée d’entrée en plu-
sieurs groupes de canaux, et appliquer des filtres convolutifs différents sur chaque groupe.
On génere ainsi 1 carte de caractéristique par groupe (Cyy; = Cip/#groupes). On va en-
suite appliquer des convolutions 1 x 1 pour générer plusieurs cartes de caractéristiques. Le
nombre de canaux par groupe est défini par un hyperparametre. Cette approche permet de
réduire significativement le nombre de parametres utilisés [HZC*17].

Fonctions d’activation

Tout comme avec les MLP une fois la pondération et 1'agrégation des valeurs réalisées (ici,
par des filtres de convolutions), il est courant d’appliquer une fonction dite d’activation. Les plus
courantes sont :

e Unité linéaire rectifiée (ReLU) : g(z;) = max(0, z;)
o Tangente hyperbolique: g(z;) = tanh(z;)
o Sigmoide: g(z;) = (1+e %)}
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Entrée Filtre Sortie
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FIGURE 2.14 - Schéma illustrant plusieurs filtres de convolutions 2D. (a) Convolution classique. (b) Convo-
lution 1 x 1. (c) Convolution dilatée. (d) Convolution transposée. Images extraites de 'article de blog A com-
prehensive introduction to different types of convolutions in deep learning®.

et
K 2]

o Softmax: g(z;) = X o7
Jj=1

e’

Ces fonctions vont étre appliquées a chaque pixel des cartes de caractéristiques. En pratique, le
choix d’'une telle fonction est guidé par le besoin d’avoir des données bornées (cas de la tangente
hyperbolique et de la sigmoide), et par la complexité du calcul de la dérivée de ces fonctions.
La fonction softmax est en générale utilisée sur la couche de sortie d'un réseau classifieur afin
que la somme des probabilités générées soit égale a 1. Il est possible d'utiliser plusieurs fonctions
d’activation au sein d'un méme réseau (e.g., ReLU pour toutes les couches, et Softmax pour la
couche de sortie).

Pooling

Afin de réduire 'empreinte mémoire et de réduire progressivement la taille des cartes de ca-
ractéristiques en vue de générer un vecteur, des opérations de sous-échantillonnage de type poo-
ling sont généralement appliquées (notion de couche de pooling). Pour cela, nous définissons
une fenétre carrée de taille S x S. Le pas d’application de cette fenétre est en général égal a S pour
I'opération de pooling (dit autrement, un méme pixel ne sera vu qu'une seule fois par 'opérateur).
Chaque opérateur de pooling va permettre de conserver une seule valeur par pas, permettant ainsi
de réduire la taille de I'image. A titre d’exemple, un opérateur de taille 2 x 2 avec un pas de 2 va per-
mettre de diviser par 2 la taille de son entrée. Cette opération est appliquée de facon indépendante
sur chaque canal.

5. https ://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-
learning-669281e58215 (acces : 2020-06-15)
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Les opérateurs les plus courants sont les suivants. Ils sont illustrés sur la figure 2.15.
e Max-pooling. Dans un voisinage donné, ne conserve que la valeur maximale.
» Average-pooling. Dans un voisinage donné, calcule la moyenne.

e Min-pooling. Dans un voisinage donné, ne conserve que la valeur minimale.

4 19 |2]|5
51624 9|5 6 |3 4
2|45 ] 4 6| 8 415 4
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Max-pooling  Average-pooling  Min-pooling
Image

FIGURE 2.15 — Schéma illustrant le principe du pooling avec une taille de 2 pixels et un pas de 2 pixels.

En pratique, le Max-pooling tend a étre privilégié du fait de sa rapidité et car il permet de
conserver les éléments avec les intensités les plus élevées, souvent percus comme étant les plus
saillants.

Normalisation

Afin d’améliorer I'apprentissage des parametres d'un réseau de neurones a convolutions, I'uti-
lisation de normalisation est régulierement utilisée. On distinguera ici deux types principaux de
normalisation, a savoir la normalisation par batch et la normalisation par instance, mais d’autres
approches telles que la normalisation par couche [BKH16] existent.

o Normalisation par batch [IS15]. L'idée est ici de remplacer la moyenne et la variance d'un
batchal’aide de deux parametres a apprendre (y, B) afin de régulariser et d’accélérer I'entrai-
nement des réseaux de neurones profonds a convolutions [IS15]. Soit un batchB = {x;__;;} de

m échantillons. On calcule la moyenne pp = % Z;’i | Xi etla variance 0% = % Zlf’i (X = up)?
du batch. On normalise chaque échantillon du batch &; = <=2, 1 >> ¢ > 0. Enfin, on multi-
O'B+€

plie le résultat centré réduit par y (i.e., on modifie la variance), et on ajoute f (i.e., on modifie
la moyenne) : YX; + . En pratique, la normalisation par batch est appliquée sur les cartes de
caractéristiques extraites par les couches convolutives, éventuellement apres 'application
d’'une fonction d’activation.

¢ Normalisation par instance [UVL16]. Il s’agit ici de normaliser chaque canal de chaque
carte de caractéristiques de facon indépendante. Le but est ici de rendre le réseau a convo-
lutions indépendant du contraste des images d’origine. Cette approche a montré son intérét
pour le transfert de style et la génération d’images, permettant d’obtenir des résultats plus
vraisemblables que la normalisation par batch.

2.4.2 Application des réseaux de neurones a convolutions en télédétection

Nous allons ici aborder les applications principales des réseaux de neurones a convolutions
utilisés pour les images aériennes et satellites.

Dans une méta-analyse de la littérature réalisée en 2019 par Ma et al. [MGS* 19] mettaient en
avant une quantité exponentiellement croissante de travaux contenant les mots clefs "deep lear-
ning" (apprentissage profond) et "remote sensing" (télédétection), avec une forte prédominance
des approches basée sur les réseaux de neurones a convolutions. Les auteurs distinguent plusieurs
applications principales, a savoir la reconnaissance des classes d’occupation du sol (Land Use
Land Cover classification, LULC classification), la détection d’objets, la reconnaissance de scénes,
la fusion d’informations ou encore la segmentation. En 2016, Masi ef al. [MCVS16] proposaient
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ainsi de fusionner des images multispectrales de basse résolution avec des images panchroma-
tiques de haute résolution (pansharpening) a I'aide d'un CNN. Pour cela, Masi et al. ont utilisé
un réseau de neurones entierement convolutif prévu pour la super-résolution (i.e., 'agrandisse-
ment des images en minimisant les pertes) qu’ils ont conditionné a la fois sur les images pan-
chromatiques et sur les images multispectrales. Audebert et al. [ALSL16] proposaient I'utilisation
d’'un réseau entierement convolutif suivant une architecture encodeur-decodeur pour segmenter
des images multispectrale acquises en environnement urbain. Pour cela, les auteurs proposaient
une approche multi-échelle en combinant les sorties générées par trois convolutions transpo-
sées de tailles différentes. Encore en 2016, Maggiori et al. [MTCA16] utilisaient un réseau entie-
rement convolutif pour détecter des batiments a partir d'images aériennes de haute résolution
(=1 m). Laméme année, Chen er al. [CJL*16] proposaient 'utilisation de réseaux de neurones a
convolutions pour extraire et classifier des caractéristiques a partir d'images hyperspectrales. En
2017, Wang et al. INLH"17] étudiaient la possibilité d’affiner les poids de réseaux de neurones a
convolutions pré-entrainés pour classifier des images aériennes [YN10] et satellites [PNDS15]. En
2018, Kellenberger er al. [KMT18] s’'intéressaient a 'utilisation des réseaux de neurones a convo-
lutions pour la détection de mammiféres a partir d'images acquises par drone. Lin et al. [LFW'17]
s'intéressaient quant a eux a 'apprentissage non supervisé de caractéristiques pour classifier des
images de télédétection. IIs ont pour cela utilisé un réseau de neurones adversaire afin d’entrainer
un réseau de neurones discriminant a reconnaitre de vraies images aériennes d’'images aériennes
générées. Les parametres du réseau discriminant sont ensuite fixés, et celui-ci est utilisé pour ex-
traire des vecteurs de caractéristiques afin de décrire des images aériennes et de les classifier en
plusieurs classes d’occupation du sol. En 2018 encore, Maltezos et al. [MPD™* 18] s’intéressaient a
l'utilisation des réseaux de neurones a convolutions pour détecter les ombres et les batiments a
partir d’'images aériennes.

2.5 Conclusion et positionnement

Nous avons introduit plusieurs blocs de base de la littérature pour I'extraction de caractéris-
tiques, la classification, la sur-segmentation et I'apprentissage automatique d’approches "bout
en bout". Cependant, ces approches n’ont que trés peu été appliquées sur des images aériennes
historiques panchromatiques. Dans le cadre de nos travaux, nous avons dans un premier temps
cherché a générer des cartes d’occupation du sol en nous basant sur la classification de textures
et les réseaux de neurones profonds a convolutions. Notre but était d’obtenir rapidement des ré-
sultats vraisemblables. Pour cela, nous avons notamment réalisé une étude comparative des ap-
proches existantes de type LBP et de DCNN, auxquelles nous avons pu proposer deux nouvelles
variantes de filtres de type LBP (chapitre 3). Dans un second temps, nous avons cherché a exploi-
ter et a développer des réseaux de neurones entierement convolutifs pour la colorisation d'images
aériennes historiques, et ce dans le but de proposer une visualisation alternative de ces données et
d’améliorer les résultats obtenus par classification (chapitre 4). Pour cela, nous nous sommes tout
particulierement intéressés aux approches non-supervisées, permettant d’optimiser les DCNN a
I'aide de données dont la vérité terrain (la couleur des images historiques dans notre cas) n'est
pas connue. Enfin, nous avons cherché a améliorer les cartes d’occupation du sol obtenues par
classification dans un contexte de post-traitement a ’aide de sur-segmentations que nous avons
intégrées au sein d'un champs aléatoire conditionnel (chapitre 5). En particulier, nous avons pro-
posé 'utilisation d’'une représentation intermédiaire pour la génération de superpixels a I'aide
d’'un DCNN optimisé pour I'estimation de bords sémantiquement intéressants.
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Chapitre 3

Classification de textures

Ce chapitre présente les travaux que nous avons réalisés concernant la classification automatique
de textures, principalement appliquée aux images aériennes historiques. Pour réaliser ces travaux,
nous avons dans un premier temps constitué un jeu de données annotées, que nous avons nommé
HistAerial. Ce jeu de données nous a permis de comparer |'utilisation de plusieurs méthodes d’ex-
traction de caractéristiques et de classification, ainsi que des réseaux de neurones a convolutions.
Nous avons ensuite étendu nos travaux a I'analyse d’images couleur extraites d’écorces d’arbres
dans le cadre d’une collaboration avec une autre doctorante. Le but était ici de vérifier la possibi-
lité de combiner des caractéristiques issues d'images en niveaux de gris avec des caractéristiques
de couleur afin d’améliorer le pouvoir discriminant des représentations obtenues. Ces expériences
nous ont par la suite menées a réaliser des travaux sur la colorisation automatique, présentés dans

le chapitre suivant.
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3.1 Introduction

La reconstruction de I'occupation du sol est une tache particulierement populaire en télédé-
tection. De nombreux travaux se sont ainsi intéressés a segmenter et a classifier automatiquement
les sols observés par des dispositifs aériens et satellites. A titre d’exemple, Kussul et al. [KLSS17]
ont proposé de classifier les champs cultivés a 'aide de réseaux de neurones profonds. Albert
et al. [AKG17] ont utilisé ce méme type d’outil pour analyser I'environnement urbain a partir
d’images satellites. Slimene et al. [SCB*17] ont mis au point une approche d’apprentissage actif
pour segmenter les parcelles cultivées a I'aide d’'indices de végétations extraits d'images satellites
multi-spectrales. L'extraction de caractéristiques de textures pour analyser les sols a également été
beaucoup étudiée (voir chapitre 2). En 2018, Wegner et al. [WTYM18] ont ainsi présenté un apercu
des algorithmes de vision par ordinateur utilisés dans la littérature pour analyser les images aé-
riennes et satellites de trés hautes résolutions.

Cependant, il semblerait que tres peu de travaux se soient a ce jour intéressés a 'utilisation
des images aériennes historiques panchromatiques. Ce point peut s’expliquer par la mise a dispo-
sition relativement tardive de ces données face a I'abondance d'images multi-spectrales actuelles
(voir chapitre 1). Néanmoins, les données historiques tendent a gagner de I'importance dans le
cadre d’études rétrospectives appliquées a I’environnement, la santé, ou I'urbanisme. C’est en
particulier le cas des études épidémiologiques s’intéressant aux maladies dont le développement
peut étre long. Dans notre cadre de travail, I'étude TESTIS [BPB*14] vise (entre autres) a utiliser
I'occupation du sol historique pour estimer un score d’exposition aux pesticides d’origine agricole
afin de comprendre les déterminants du développement du cancer du testicule. D’autres travaux
proches de TESTIS, tels que ceux de Brouwer et al. [BHvdM *17], proposent de raffiner les occupa-
tions du sol historiques (annotées manuellement, 3 classes) a l’aide d’occupations du sol actuelles
(9 classes) et d'un modéle statistique, et ce dans le but d’analyser I'impact de I'exposition aux
pesticides sur la maladie de Parkinson. Dans notre cas, nous supposons que I'’occupation du sol
historique n’est généralement pas connue, car cotliteuse a obtenir en termes de temps (voir cha-
pitre 1). Par ailleurs, le territoire francais vu du ciel est particulierement difficile a analyser : les
zones naturelles comme artificielles ne sont pas symétriques et n'ont pas de formes représenta-
tives ou répétitives comparées a d’autres territoires, tels que ceux analysés par Yan et al. [YR14]
aux Etats-Unis. De plus, durant la période d’intérét de I’étude TESTIS (aprés 1970), la France a
connu des changements démographiques qui ont modifié les paysages urbains et ruraux, ce qui
augmente la variabilité des représentations potentielles. Tout ’enjeu est alors de déterminer I'ef-
ficacité des algorithmes de vision par ordinateur existants pour reconnaitre I’'occupation du sol
a partir de ces données, et d’explorer des alternatives éventuellement plus performantes. A titre
illustratif, la figure 3.1 présente deux exemples d’'images aériennes historiques et leurs occupa-
tions du sol dans un rayon de 1.5 km (cas de I'étude TESTIS). Les occupations du sol ont ici été
annotées manuellement par des géomaticiens. Elles représentent le résultat que 1'on souhaiterait,
dans 'absolu, obtenir.

M Forét
M Prairie
M cau
M Urbain
M Vigne
Arable

M Verger

(b) (©) (d)

FIGURE 3.1 — Deux exemples d'images aériennes historiques acquises en France (a)(c) et leurs occupations
du sol annotées manuellement par des géomaticiens (b)(d).
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Pour cela, nous nous intéressons ici a la classification d'images aériennes historiques comme
substitut pour la génération de cartes d’occupation du sol. Le choix de nous intéresser a la classi-
fication a été fait afin de pouvoir comparer sur une base commune des chaines de traitements
classiques basées sur 'extraction de caractéristiques de textures et des réseaux de neurones a
convolutions (voir chapitre 2). Afin de réaliser cette étude, nous avons dans un premier temps
construit un jeu de données que nous avons nommeé HistAerial, composé de plusieurs millions
d’imagettes annotées. Nous présentons ce jeu de données dans la section 3.2. Nous avons ensuite
sélectionné et comparé des algorithmes d’extraction de caractéristiques et de classification (filtres
de type LBP + classifieur, réseaux de neurones a convolutions). Nos travaux ont été intégrés dans le
logiciel Gouramic, présenté en Annexe A. Enfin, nous avons collaboré avec une autre doctorante,
travaillant sur la reconnaissance des végétaux, pour étendre nos résultats a des images texturées
en couleurs (écorces d’arbres), et ce dans le but de déterminer si la couleur pouvait permettre
d’améliorer les résultats obtenus en classification.

3.2 HistAerial, un nouveau jeu de données

Cette section présente le jeu de données HistAerial, que nous avons créé en collaboration avec
les géomaticiens du département Cancer et Environnement du Centre Léon Bérard afin d’évaluer
des chaines de traitements pour la classification des images aériennes historiques. Ce jeu de don-
nées a été mis gratuitement et publiquement a la disposition de la communauté afin d’encourager
les efforts de développements pour 'analyse automatique de ce type d'images (voir
http://eidolon.univ-1lyon2.fr/"remil/HistAerialDataset/).

3.2.1 Images sources

HistAerial a été concu a partir d'images aériennes historiques panchromatiques acquises en
France entre les années 1970 et 1990. Elles ont été téléchargées via le service remonterletemps
de I'IGN [IGN20]. Ces images sont disponibles sans annotations de I'occupation du sol. De par la
faible quantité de données disponibles en infrarouge et en couleurs dans les années 1970 et 1980,
seules des images panchromatiques ont été ici utilisées (voir chapitre 1). Une fois les images télé-
chargées, elles ont été géoréférencées manuellement par les géomaticiens du Centre Léon Bérard
via le logiciel ArcGis. Pour cela, 7 points d’ancrage en moyenne ont été utilisés pour projeter les
images dans un repere géographique (Lambert 93). Le Lambert 93 est le systeme de projection en
vigueur en France. Le choix des images a télécharger a ici été fait afin d’obtenir des zones de rayon
1.5 km a partir de I'adresse des sujets recrutés pour une précédente étude au Centre Léon Bérard
(TESTEPERA, en région Rhones-Alpes, France), les sujets de I'étude TESTIS n’ayant pas tous été
recrutés et géocodés lorsque nous avons démarré nos travaux. A ces données se sont ajoutées des
images d’autres zones géographiques en France qui ont été sélectionnées afin de combler la pré-
sence relativement faible de certains types d’occupations du sol sur les premiéres images. Au total,
81 images annotées ont été utilisées (ordre de grandeur de la taille des images : 6000 x 6000 pixels).
Les détails liés a 'annotation de ces images sont présentés en Section 3.2.3.

3.2.2 Propriétés des images sources

Avant de détailler la construction du jeu de données HistAerial a proprement parler, nous al-
lons d’abord nous intéresser aux propriétés des images aériennes historiques utilisées. Ces pro-
priétés ayant déja été partiellement introduites dans le chapitre 1, il s’agit ici de mettre en avant
les difficultés que ces images représentent d'un point de vue traitement d’image.

Les images utilisées pour constituer HistAerial ont les propriétés suivantes :

¢ Elles sont monochromatiques.

53



CHAPITRE 3. CLASSIFICATION DE TEXTURES

« Elles sont de hautes résolutions. Il a été estimé sur un sous échantillon de 25 images que
la résolution des images utilisées varie de 0.17 a 1.4 metres, pour une résolution moyenne
estimée a 0.5 metres.

» Elles ont été acquises durant les périodes estivales, lorsque le soleil était haut dans le ciel
et que peu de nuages étaient présents. Ces conditions permettent de limiter 'apparition
d’ombres portées par les batiments et les arbres, et de limiter également I'apparition de
nuages sur les clichés photographiques.

« Elles sont géolocalisées suite au géoréférencement réalisé. Cela signifie qu’il est potentiel-
lement possible d’exploiter des méta-données géographiques en plus des images. Ce point
constitue une perspective potentielle a nos travaux.

¢ Pour une coordonnée géographique donnée (un sujet), plusieurs images aériennes peuvent
avoir été acquises dans le temps. Dans le cadre de nos travaux, les géomaticiens ont estimé
qu’il y avait peu de chance d’obtenir plus d'une zone d’intérét par an (une zone d’intérét
pouvant étre constituée de plusieurs images).

o La qualité exacte des images est supposée inconnue et variable. Ce point est d au fait que
les systémes d’acquisition et de numérisation (non connus pour nous) ont pu évoluer avec
le temps, et que les conditions d’acquisitions extérieures sont incontrolables (e.g., présence
de vent, de poussiere, etc.).

» Les images ont été acquises dans un passé lointain, ce qui empéche 'acquisition de nou-
velles données pour les périodes étudiées.

Ces propriétés induisent une variabilité intra-classe élevée (i.e., une méme classe d’occupa-
tion du sol peut étre représentée a I'aide d’images trés différentes), ainsi qu'une variabilité inter-
classe faible (i.e., des images de classes d’occupation du sol différentes se ressemblent). Cette re-
marque est valable a la fois dans I'espace et dans le temps (e.g., les cultures et les prairies n’ont
pas une représentation statique, et ces représentations varient d'une région a une autre). Il n’est
par ailleurs pas possible de se baser sur des informations telles que I'index NDVI ou les distribu-
tions multispectrales [HLZ14] pour distinguer les différentes classes d’occupation du sol car seul
le canal panchromatique est disponible. Enfin, 'écart temporel important entre deux images pour
une localisation géographique donnée associé aux modifications du territoire dans le temps com-
pliquent I'utilisation de séries temporelles pour produire des résultats plus robustes, tels que ceux
obtenus par Kussul et al. [KLSY16].

3.2.3 Génération du jeu de données
Annotations

Les annotations manuelles ont été réalisées a I’échelle de la parcelle de terrain a I'aide de
7 classes d’occupation du sol, a savoir : Verger, Terres Arable (abrégé Arable par la suite), Prai-
rie, Vigne, Urbain, Forét, Eau. Ces annotations ont été réalisées densément (i.e., tous les pixels
de 'image ont été annotés), avec I’ensemble des classes disponibles, pour 56 des 81 images aé-
riennes. Les autres annotations ont été réalisées de facon ciblée (i.e., seules certaines parcelles
ont été annotées) afin de combler le manque en données pour certaines classes. Ainsi, 15 images
aériennes ont été partiellement annotées avec uniquement la classe Verger, et 10 images ont été
partiellement annotées avec uniquement la classe Vigne. Les annotations partielles ont été réa-
lisées car les classes Vergers et Vignes était sous-représentées dans les 56 premieres images. Par
ailleurs, compte tenu de la résolution moyenne des images (0.5 metres) et la taille des zones étu-
diées (rayon 1.5 km), les annotations denses correspondent a des zones composées de tres nom-
breux pixels (= 6000 x 6000 pixels, voir Figure 3.1).
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Extraction d’imagettes pour la classification

Nous nous sommes ensuite inspirés des approches basées sur l'utilisation d’imagettes (i.e.,
sous-image) proposées par Gonzalo et al. [GGLM16] et Porebski et al. [PVMH14] pour la classifi-
cation. A partir des images aériennes annotées, nous avons extrait des imagettes carrées de trois
tailles arbitraires (i.e., 25 pixels x 25 pixels; 50 pixels x 50 pixels; 100 pixels x 100 pixels). Au-
cune imagette de taille supérieure a 100 pixels x 100 pixels n’a été extraite afin de conserver une
quantité suffisante de données pour l'utilisation d’algorithmes d’apprentissage profond. Comme
toutes les imagettes ont été extraites de la méme base d’images initiales, les imagettes de tailles
différentes représentent les mémes zones géographiques avec un contexte spatial plus ou moins
étendu : plus I'imagette est de grande taille, plus elle integre des informations liées a son contexte
spatial. En pratique, nous avons uniquement considéré des imagettes sans recouvrement pour
une taille d'imagette donnée (i.e., le pas entre deux imagettes est égal a la taille de 'imagette).
Seules les imagettes correspondant a une seule et unique classe ont été retenues (i.e., tous les
pixels de I'imagette ont la méme étiquette sur 'annotation manuelle) afin de limiter I'introduc-
tion d’informations contradictoires dans I’évaluation des chaines de traitements. Les imagettes
ainsi obtenues ont été sauvegardées selon leur taille et leur classe (voir figure 3.2). Nous rappelons
que ce jeu de données complet a été nommé HistAerial (voir tableau 3.1).

On constate que le nombre d'imagettes par taille et par classe n’est pas équilibré dans HistAe-
rial. Ce fait est limitant pour I’évaluation d’algorithmes différents dans un cadre de classification.
Les méthodes permettant de réduire I'effet d'un déséquilibre de classe, lorsqu’elles existent, ne
sont en effet pas les mémes pour tous les algorithmes. Afin de palier ce probleme, nous avons
choisi de créer deux sous-ensembles du jeu de données HistAerial par échantillonnage aléatoire
(voir tableau 3.2 et tableau 3.3). Nous avons par la suite considéré ces deux jeux de données indé-
pendamment I'un de 'autre.

Le premier sous-ensemble de données (voir tableau 3.2) contient le méme nombre d’images
pour chaque taille et pour chaque classe, de telle sorte que les disproportions en termes de quan-
tité de données en fonction de la taille n'ont pas d’effet direct sur la comparaison des filtres et
des classifieurs (i.e., on travaille a quantité de données fixée). Ce sous-ensemble est dit équili-
bré en taille (size-balanced). On remarque cependant que celui-ci ne permet de tenir compte de
la variabilité des représentations qui sont présentes entre les imagettes d'une méme taille. A titre
d’exemple, échantillonner aléatoirement 6000 imagettes a partir 43 000 imagettes (100 pixels x 100
pixels, classe urbain) devrait induire une variabilité plus faible qu'un échantillonnage de 6000 ima-
gettes a partir de 891 000 imagettes (25 pixels x 25 pixels, classe urbain). Le second sous-ensemble

Prairie Vigne

Verger Arable Urbain

(a) (b) (c)

FIGURE 3.2 — Processus d’extraction d’imagettes pour la création de HistAerial. Les imagettes sur ce schéma
sont de taille 100 pixels x 100 pixels. Seules les imagettes représentant une seule et unique classe sont
considérées. Il n'y a pas de recouvrement entre les imagettes de méme taille. (a) Image et occupation du
sol manuelle / vérité terrain. (b) Visualisation des imagettes extraites, correspondant a une seule classe. Les
carrés noirs représentent ici les imagettes exclues du jeu de données. (c) Exemples d’'imagettes extraites.
Limagette de la classe Eau provient d'une image aérienne différente de celle présentée sur cette figure.
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(voir tableau 3.3) a été créé afin de tenir compte de cette observation. Pour chaque taille, des ima-
gettes ont été échantillonnées en se basant sur le nombre le plus faible d'imagettes par classe. Ce
processus permet d’avoir, de facon approximative, la méme proportion d’'imagettes pour chaque
taille disponible tout en ayant le méme nombre d’imagettes par classe (class-balanced). Ces deux
sous-ensembles de données ont été échantillonnés une fois pour toute, de telle sorte que les expé-
riences détaillées dans la Section 3.4 ont toutes été réalisées sur les méme données. Des exemples
d’imagettes sont présentés sur la figure 3.3 pour chacune des classes et chacune des tailles consi-
dérées dans HistAerial.

TABLEAU 3.1 - Le jeu de données HistAerial complet.

Nombre d’'imagettes par taille (en pixels)
Classe 25 x 25 50 x 50 100 x 100
319 804 76 866 17 888
631015 | 145097 30 754
348 349 71334 11984
174 288 40528 8 889
891500 | 204 746 43 254
443 760 95945 18 554
121294 28173 6207
Total 2930010 | 662689 137 530

TABLEAU 3.2 — Le sous ensemble équilibré en taille du jeu de données HistAerial.

Nombre d’imagettes par taille (en pixels)
Classe | 25 x 25 | 50 x 50 100 x 100
6 000 6 000 6 000
6 000 6 000 6 000
6 000 6 000 6 000
6 000 6 000 6 000
6 000 6 000 6 000
6 000 6 000 6 000
6 000 6 000 6 000
42000 | 42000 42 000

TABLEAU 3.3 — Le sous ensemble équilibré en classe du jeu de données HistAerial.

Nombre d’imagettes par taille (en pixels)
Classe | 25 x 25 | 50 x 50 100 x 100
120 000 | 28 000 6 000
120 000 | 28 000 6 000
120 000 | 28000 6 000
120 000 | 28 000 6 000
120 000 | 28 000 6 000
120 000 | 28 000 6 000
120 000 | 28 000 6 000
840 000 | 196 000 42 000
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FIGURE 3.3 — Exemples d’'imagettes de différentes tailles dans HistAerial. Ces imagettes mettent en avant les
variabilités inter- et intra-classe présentes dans le jeu de données HistAerial.

Avantages et inconvénients des imagettes dans HistAerial

o (+) Toutes les imagettes sont carrées et de méme taille. Toute opération de redimensionne-
ment linéaire sur le jeu de données devrait conserver |'aspect relatif des images entre elles.
Ce point est particuliéerement intéressant pour I’analyse des textures a 'aide des réseaux de
neurones a convolutions ayant des couches entierement connectées : celles-ci possédent un
nombre de neurones fixe, ce qui nécessite des images de taille fixe a 'entrée du réseau. Les
imagettes sont adaptées a la comparaison d’algorithmes d’extraction de caractéristiques et
de classification (avec ou sans réseaux de neurones a convolutions).

e (+) Les imagettes dans HistAerial ont été obtenues sans recouvrement. Elles peuvent étre
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CHAPITRE 3. CLASSIFICATION DE TEXTURES

considérées comme étant des instances spatialement indépendantes, de facon similaire au
jeu de données d’écorces d’arbres proposé par Porebski et al. [PVMH14]. Elles sont de fait
aptes a capturer les variabilités inter-classes et intra-classes sans incorporer de corrélation
explicite entre deux imagettes (voir figure 3.3). Il est cependant a noter que des imagettes
issues d'une méme parcelles auront plus de chances de se ressembler que des imagettes de
parcelles différentes (i.e., méme capteur, méme résolution, méme structure de la parcelle).

* (+) Les imagettes permettent de réaliser une étude a plusieurs échelles. Seule la taille des
imagettes nécessite d’étre modifiée lors de leur extraction afin d’acquérir des données de
tailles différentes. Il est également possible de relaxer les contraintes liées a la présence de
plusieurs classes au sein d'une méme imagette.

¢ (-) Le nombre d’imagettes par classe dépend d’image aériennes annotées de tailles fixes.
Elles ne permettent pas de représenter chaque classe disponible de facon équilibrée. Les
sous-ensembles de HistAerial visent a résoudre ce probleme pour comparer différents algo-
rithmes.

¢ (-) Par choix, chaque imagette ne représente qu'une seule et unique classe, ce qui empéche
toute acquisition d’imagettes a la frontiére entre deux parcelles / éléments sémantiques.
Ainsi, plus les imagettes sont grandes, moins la quantité d’'imagettes extraite est importante
(voir tableau 3.1). Lutilisation d’imagettes avec recouvrement permettrait de résoudre ce
probleme. Cependant, a 'image de Porebski et al. [PVMH14], nous avons préféré éviter toute
redondance spatiale entre les imagettes d une méme taille et provenant d’'une méme image.

¢ (-) Laforme carrée des imagettes a été choisie de facon arbitraire afin de comparer différents
algorithmes. Elle ne tient pas compte de la nature hiérarchique des classes d’occupation du
sol qui possedent des caractéristiques a plusieurs échelles sémantiques (i.e., notion d’ob-
jets, tels que des parcelles / des superpixels). La représentation de chacune des classes dans
HistAerial est, de fait, moins précise que si nous avions acceés a la géométrie des parcelles
auxquels ils appartiennent. Ce probléme est abordé dans un cadre de post-traitement dans
le chapitre 5 de ce manuscrit.

3.3 Algorithmes évalués sur HistAerial

Cette section présente les algorithmes évalués sur HistAerial. Le but est ici de trouver des ap-
proches performantes pour la classification des images aériennes historiques, tout en ayant le
volonté de limiter les temps d’exécution et la taille des vecteurs de caractéristiques extraits. Cette
volonté est guidée par le besoin de pouvoir appliquer ces algorithmes en un temps raisonnable
sur des machines non dédiées aux calculs scientifiques, telles que les ordinateurs utilisés par les
praticiens / géomaticiens.

3.3.1 Algorithmes d’extraction de caractéristiques de la littérature

Les algorithmes d’extraction de caractéristiques "artisanaux" (handcrafted) qui ont été étudiés
dans nos travaux ont été principalement introduits pour la classification de textures. L'utilisation
de filtres de textures a déja été appréciée dans des travaux antérieurs sur des images aériennes
et satellites (voir chapitre 2). Nous rappelons en effet que les images aériennes représentent des
zones a grande échelle constituées d’objets spatialement proches observés a partir d'un point
d’observation élevé et généralement perpendiculaire au sol. De ce point de vue, la surface de
la terre est représentée avec des motifs structurels spécifiques et presque répétitifs, qui corres-
pondent implicitement a la définition des textures inhomogénes en vision par ordinateur. Sur la
base de ces observations, nous avons comparé plusieurs filtres de textures artisanaux de la littéra-
ture basés sur les motifs binaires locaux (LBP) [OPMO00] sur le jeu de données HistAerial. Ils sont
présentés ci-dessous pour des images en niveaux de gris. D’autres filtres plus classiques tels que
la matrice de cooccurrence de niveau de gris (GLCM) [HSD73] et les filtres de Gabor [Mar11] n’ont
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FIGURE 3.4 — Exemples de filtres et de voisinages utilisés avec les filtres de type LBP. (a) voisinage géné-
rique avec deux rayons, (b) différence centre-voisins (LBP, CLBP, LTP), (c) différence radiale (ELBP_RD,
MRELBP_RD), (d) TPLBP, (e) FPLBB, (f) CSLBP, (g) XCSLBP. Les traits noirs représentent les différences si-
gnées. Les traits colorés représentent l'utilisation de métriques intermédiaires. Les traits noirs en points
tillés indiquent que la différence se fait entre les éléments positionnés a chaque extrémité du trait a partir
de métriques intermédiaires.

(8)

pas été inclus dans nos travaux. Des études antérieures ont déja évalué I'efficacité de ces filtres sur
des images de télédétection [AFA™ 16] [HLZ14], ainsi que sur des jeux de données de textures plus
classiques [FAB13], mettant en avant la supériorité des filtres de type LBP pour la classification. La
figure 3.4 met en avant différents types de filtres LBP, basés sur différents voisinages.

Local Binary Pattern (LBP) [OPMO00]

Le filtre LBP de base [OPMO00] a été introduit dans le chapitre précédent. Nous rappelons ici
I'équation principale (3.1) de ce filtre sans réintroduire la notion de mapping (voir chapitre 2).
Nous rappelons également que ce type de filtre est défini sur un voisinage (B, R), avec P le nombre
de pixels voisins g;, au pixel central du voisinage g. (voir figures 3.4 (a) et (b)). Les P pixels voisins
sont situés sur le cercle de rayon R. Dans 'ensemble de ce chapitre, le voisinage est considéré
comme étant continu (i.e., les valeurs des pixels g, sont obtenues par interpolation bilinéaire).

P-1
1, x=0
= — p -7
LBPpr pgos(gp 802", s(x) {O,KO 3.1)

Variance Local Binary Pattern (VAR-LBP) [OPMO01]

Le filtre VAR-LBP [OPMO01] consiste en un filtre LBP combiné avec les informations de contraste
locales représentées par la variance (VAR) du voisinage circulaire (BR) (voir équation (3.2)). Etant
donné que le filtre LBP est invariant en niveaux de gris, il n'intégre pas les informations de contraste.
Le filtre VAR et le filtre LBP sont considérés comme étant complémentaires.

1 P-1 )
VARppR = > Y (gp— 1) 3.2)
p=0

Dans I'équation (3.2), s(x) =1 si x >0, s(x) = 0 sinon, et y; est la moyenne des pixels du voisinage
définie par I'équation (3.3).

1 P-1
=Y 8 (3.3)
p=0
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Une fois la variance locale calculée pour chaque pixel du voisinage circulaire, un histogramme
de 128 bins représentant la variance globale de 'image filtrée est calculé. Cet histogramme de
variance est concaténé a 'histogramme LBP [OPMO0O0]. Le filtre VAR-LBP géneére ainsi un histo-
gramme de 2 + 128 bins en supposant que aucun mapping n'est appliqué.

Center Symmetric Local Binary Pattern (CSLBP) [HPS06]

le filtre CSLBP [HPS06] tient compte uniquement de 'information portée par les pixels du
voisinage gp. Il utilise la symétrie du voisinage pour calculer le signe de la différence entre les
pixels opposés par g, (symétrie centrale, voir (voir figure 3.4 (f)). Cette opération est représentée
par I'équation (3.4). La valeur du pixel central n’est pas utilisée ici. Le filtre CSLBP produit un code
binaire de g bits par voisinage, résultant en un histogramme 2% bins.

|
2

CSLBPpr = }_ $(gp— 8, 2)2" (3.4)
p=0

avec s(x) défini par I’équation (3.5).

L,x=
s(x) = { =T 3.5)
0,sinon

ol T est une valeur faible (e.g. T =0.01).

Extended Center Symmetric Local Binary Pattern (XCSLBP) [SBF15]

Le filtre XCSLBP [SBF15] a été introduit comme une amélioration du filtre CSLBP dans un
contexte de soustraction d’arriére-plan. Il a été concu pour étre plus robuste au bruit que le CSLBP
tout en conservant un pouvoir discriminant équivalent. Il utilise des métriques intermédiaires
g1(p,c) et g2(p, c) pour calculer le code binaire a partir des pixels du voisinage opposés par sy-
métrie centrale en tenant comme de la valeur du pixel central g, (voir équations (3.6) et (3.7), et
figure 3.4 (g)). On remarquera ici que ces métriques intermédiaires integrent la valeur de g., qui
est absente du filtre CSLBP.

Pa
2

XCSLBPpr = ) s(g1(p,¢) + &2(p, 0)2?, (3.6)
p=0

avec s(x) défini par I'équation (3.5) et
gl(prc) = gp _gp+2 + gC
2 3.7
g2(p,c)=(gp—&c) x (g,ﬁg - &)

Tout comme le CSLBP, le XCSLBP résulte en un histogramme de 2% bins.

Three Patch Local Binary Pattern (TPLBP) [WHTO08]

Pour définir le TPLBP [WHTO08], on considere un patch C comme étant représenté par une fe-
nétre de w pixels x w pixels centrée sur un pixel du voisinage (P, R). Le code binaire du filtre TPLBP
est obtenu en calculant la différence entre deux distances euclidiennes, elles méme calculées entre
le patch central C. et deux de ses patchs voisins C,, et Cpq (voir équation (3.8)). Ces patchs sont
présents sur le méme rayon R et radialement espacés d'un angle de valeur a. Dans [WHTO08], o
est égal a 2, résultant en un angle de 90 degrés entre C,, et Cp.q lorsque le nombre de voisins P
est égal a 8. Le filtre TPLBP appliqué sur une image en niveaux de gris génére un histogramme de
2P bins si aucun mapping n'est utilisé. Dans nos travaux, nos avons utilisé utilisé w =1 (i.e., un
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patch est un pixel) et a = 2 afin de limiter le nombre de parametres de la méthode (illustration sur
la figure 3.4 (d)).

P-1
TPLBPP,R,w,(x = Zos(d(cp» Ceo) — d(cp+ou Cc))zp (3.8)
p:

avec s(.) définie par 'équation (3.5) et d(.) la distance euclidienne.

Four Patch Local Binary Pattern (FPLBP) [WHTO08]

Le filtre FPLBP [WHTO08] calcule la différence entre deux distances euclidiennes obtenues de
maniére symétrique par rapport au pixel central en comparant deux patchs espacés radialement
avec un angle de a degrés et présents sur deux rayons différents R; et R, (voir équation (3.9)). La

180

valeur de « est généralement choisie comme étant égale a -5-. La différence entre les distances

euclidiennes est comparée a zéro pour produire un code binaire de g bits, résultant en un histo-

gramme de 2% bins. 1l est illustré sur la figure 3.4 (e).

Pa

2
FPLBPpR, Ry, w,a = pX::O $(d(Cr,,p> Cry,p+a) — d(CRl,p+§’CRg,p+g+cx))2p (3.9)

Completed Local Binary Pattern (CLBP) [GZZ10]

Le filtre CLBP [GZZ10] combine trois filtres complémentaires de type LBP, tous définis avec le
méme voisinage (P, R) que le filtre LBP d’origine (voir figure 3.4 (b)). Le premier est le filtre LBP
classique, renommé CLBP_S (voir équation (3.1)). Les autres filtres sont CLBP_M et CLBP_C, ouM
représente la magnitude et C le niveau de gris central correspondant a la valeur de g.. Lamplitude
correspond a la valeur absolue de la différence entre g, et un pixel voisin g,. Elle représente une
information complémentaire au signe qui est par définition indépendant de I'intensité. Celle-ci est
encodée a I'aide d'un code binaire défini par I'équation (3.10), ol m, et T,, sont respectivement
la magnitude de la différence entre g, et g. et la moyenne de toutes les magnitudes dans I'image.
La fonction s(.) est ici définie comme étant la fonction signe classique.

P-1
CLBP_Mpg = ) s(m, —1,,)2" (3.10)
p=0
Le code binaire du CLBP_C est quant a lui obtenu en comparant g, avec le niveau de gris
moyen | de I'image entiére [GZZ10] (voir équation (3.11)). La fonction s(.) est la aussi définie
comme étant la fonction signe classique.

CLBP_Cpr = s(gc— W) (3.11)

Le filtre CLBP permet d’obtenir un histogramme concaténé de 2" +2 bins lorsque aucun map-
ping n’'est utilisé.

Local Ternary Patterns (LTP) [TT10]

Le filtre LTP [TT10] est une extension du filtre LBP (méme voisnage, voir figure 3.4 (b)). Il génére
un code ternaire au lieu d'un code binaire. Les valeurs ternaires sont obtenues en appliquant deux
seuils opposés (1,— 1) et choisis arbitrairements. Afin de simplifier sa représentation et de le rendre
moins coliteux en calculs, le code LTP peut étre séparé en deux codes LBP : un pour la partie
positive et un pour la partie négative [TT10]. La partie positive est obtenue en mettant toutes les
valeurs positives a 1 et les autres a 0 tandis que la partie négative est obtenue en mettant toutes les
valeurs négatives a 1 et les autres a 0. En fin de compte, le filtre LTP géneére soit un histogramme de
3P bins, soit deux histogrammes de 2° bins pouvant étre concaténés pour former un histogramme
unique de 2P bins. La génération d’un code ternaire est montrée par une fonction signe telle que
définie par I’équation (3.12).
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+lL,x=+71
s(x) = 0,|x| <+t (3.12)
-l,x<-7

Robust Local Ternary Patterns (RLTP) [WSFW15]

Le filtre RLTP [WSFW15] est défini comme étant une version robuste au bruit du filtre LTP. Pour
chaque voisinage (B, R) incluant le pixel central g, la valeur moyenne du voisinage . est calculée
(voir équation (3.13)).

1 P-1
e = m(gc + p;o gp) (3.13)
Les seuils positifs et négatifs sont alors définis comme des fractions de . (voir équations (3.14)
et (3.15)). La constante a dans ’équation (3.14) est égale a 1 par défaut. Cette valeur n’a pas été
modifiée dans nos travaux. Il a cependant été montré que régler la valeur o par recherche exhaus-
tive pouvait permettre d’obtenir des caractéristiques plus robustes aux variations d’illuminations
avec le filtre RLTP [WSFW15].

Te=0X e (3.14)
+l,x=+1,

s(x) =< 0,|x]<+T1, (3.15)
-lL,x<-71,

Le filtre RLTP géneére des histogrammes de méme dimension que le filtre LTP.

Soft Concave-Convex Orthogonal Combination of Robust Local Ternary Patterns (SCCOCRLTP)
[WSFW15]

Le filtre SCCOCRLTP [WSFW15] est basé sur le filtre RLTP. Il propose d’augmenter le nombre
de motifs discriminants tout en réduisant leur empreinte mémoire grace aux concepts de combi-
naison orthogonale [ZBC13] et de discrimination concave-convexe [SFYW14]. L'idée derriere la
combinaison orthogonale est qu'une concaténation de K histogrammes obtenus a partir de K
filtres de type LBP orthogonaux entre eux sur un voisinage (P R) devrait permettre de représen-
ter la méme information qu'un histogramme unique obtenu a partir d'un filtre LBP complet, tout
en étant plus compacte (i.e., K x 2P’K bins vs 2P bins). Une illustration de ce principe est présenté
sur la figure 3.5. La discrimination concave-convexe d'un voisinage LBP est quant a elle basée sur
une comparaison entre la moyenne locale du voisinage LBP avec la moyenne globale de I'image
entiere (voir (3.16)). Dans I’équation (3.16), |, est la moyenne locale définie par I'équation (3.13),
H est la moyenne globale et f§ est une petite valeur égale a 0 par défaut.

concave, Si He < (1 =P

convexe, si  pc=(1+P)u (3.16)

8. est {

Extended Local Binary Pattern (ELBP) [LZL"12]

Le filtre ELBP est une combinaison de trois filtres de type LBP nommés respectivement ELBP_-

CIL, ELBP_NI et ELBP_RD. Le filtre ELBP_CI représente 'intensité du pixel central g.. Cette inten-

sité est comparée a la valeur moyenne de I'image entiere p pour obtenir un code binaire a 1 bit

(voir équation (3.17)), soit un histogramme de 2 bins. Il correspond au filtre CLBP_C utilisé par le
CLBP.

ELBP_Clpg = s(gc — 1) 3.17)

Le filtre ELBP_NI représente les intensités des P pixels g, voisins de g, d'une maniere robuste
au bruit additif gaussien [LZL*12]. De facon similaire a I'approche employée par le RLTP, pour
chaque voisinage (P R), la moyenne locale p; g de I'intensité des P pixels voisins est calculée (voir
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équation (3.18)). Cette moyenne locale est ensuite comparée a chaque pixel voisin g; pour générer
un code binaire (voir équation (3.19)).

1 P-1
MR =5 Y. &R (3.18)
p=0
P-1
ELBP_NIpg = Y s(gpR — H1r)2" 3.19)
p=0

Le filtre ELBP_RD représente la différence radiale entre deux pixels voisins a la méme position
angulaire p, mais localisés sur deux rayons R; et R, différents tels que R; < Ry. Le signe de la diffé-
rence entre g, r, et gp R, est utilisé pour créer le code binaire. Il est schématisé sur la figure 3.4 (c).

P-1
ELBP_RDpgr = )_ s(8p,r, — &pr)2" (3.20)
p=0

FEtant donné que le filtre ELBP_RD et le filtre ELBP_NI résultent tous deux en un histogramme de
2P bins et que le filtre ELBP_CI donne un histogramme de 2 bins, le filtre ELBP se traduit par un
histogramme de 2°*! + 2 bins sans utiliser de mapping.

Median Robust Extended Local Binary Pattern MRELBP) [LLF"16]

Le filtre MRELBP [LLF*16] a été présenté comme une mise a jour du filtre ELBP dédié a la
classification des textures bruitées. Les auteurs proposent ici d’appliquer un filtre passe-bas y(x),
centré sur le pixel x, avant le calcul des caractéristiques décrites par le filtre ELBP. Le choix d'un
filtre médian a ici été fait a travers une comparaison qualitative avec les filtres gaussiens et moyens
[LLF*16]. Le filtre MRELBP fonctionne particulierement bien sur les jeux de données de textures
bruitées. Dans nos travaux, nous avons suivit Liu et al. [LLF'16] en fixant la taille du filtre médian
appliqué au pixel central g, a 3 pixels par 3 pixels. La taille du filtre médian pour les P pixels voisins
gp de différents rayons (R1, Rz, R3), avec Rg > R > Ry, a été fixée a (3, 3, 5).

3.3.2 Proposition de nouveaux filtres pour la texture

La plupart des filtres présentés ci-dessus générent des vecteurs de caractéristiques de hautes
dimensions (i.e. 2F bins) pour un seul ensemble de parametres défini par le voisinage (P, R). Nous
rappelons par ailleurs que 'utilisation de mapping dans un contexte inadéquat peut diminuer
le pouvoir discriminant de ces filtres (voir chapitre 2). Leur utilisation peut donc résulter soit en
des résultats moins précis, soit en des étapes d’apprentissage (optimisation d’'un classifieur) et de
classification plus lentes di au nombre de caractéristiques a traiter. Cette deuxieéme situation n’est
a priori pas souhaitée dans le cadre d'un apprentissage en ligne (online) a partir de données four-
nies par un utilisateur (e.g., les traces dans le logiciel Gouramic, voir Annexe A). Cela est particu-
lierement vrai sur des ordinateurs avec des capacités de calculs limitées (par exemple, sans GPU)
comme ceux utilisés par les praticiens. Afin de trouver un compromis approprié entre le pouvoir
discriminant et la taille du vecteur de caractéristiques, tout en proposant des approches complé-
mentaires a I'état de ’art actuel, nous avons proposé deux nouveaux filtres permettant d’obtenir
des vecteurs de caractéristiques de faibles dimensions.

Rotated-CorneR Local Binary Pattern (R-CRLBP)

Le filtre R-CRLBP est un nouveau filtre que nous avons introduit dans le cadre de nos travaux.
Il a été inspiré par le filtre Binary Gradient Contours (BGC) [FAB13] et par la combinaison orthogo-
nale [ZBC13]. Il considere le signe des différences successives entre les pixels voisins présents sur
un méme rayon R. La différence successive entre deux pixels voisins consécutifs est définie par la
relation suivante : (g, — gp-1). Cette opération peut étre opposée a la différence symétrique cen-
trale utilisée dans le filtre CSLBP [HPS06] et a la différence classique centre-voisins utilisée dans
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FIGURE 3.5 - Différents types de filtres LBP et leurs codes binaires obtenus sur un méme voisinage (P, R). Ces
filtres sont complémentaires afin de classifier des motifs qui seraient potentiellement confondus avec un
seul code binaire. (a) Le filtre LBP originel utilisant une différence centre-voisins (g, — gp) etla combinaison
orthogonale, (b) le filtre R-CRLBP utilisant une différence successive (g, — gp-1) avec deux rotations, (c) le
filtre CSLBP avec une différence entre pixels symétriques par g.. Les fleches orange indiquent des sous-
tractions. Les fleches bleues indiquent la position du bit correspondant. Les codes binaires sont générés en
traversant le voisinage dans le sens des aiguilles d'une montre en partant de go.

le filtre LBP [OPMO1] : ici, les pixels voisins ne sont ni comparés symétriquement ni comparés au
pixel central. D’'un point de vue du motif de textures, le filtre CRLBP (notez I'absence du préfixe
Rotated, "R-") va chercher a représenter les motifs du gradient circulaire d'un voisinage (P, R). Pour
P =8 et R fixés, on a va échantillonner les 4 voisins formant des angles de +/— 45 degrés avec les
axes horizontaux et verticaux du plan, et présents sur le cercle de méme rayon R. Le signe de la
différence successive des voisins échantillonnés est alors utilisé pour générer le code binaire local
(voir figure 3.5). Le résultat de ce filtre est ensuite stocké dans un histogramme de 2* bins. Le pixel
central n'est pas utilisé dans le filtre CRLBP. Inspiré par la combinaison orthogonale [ZBC13], on
remarque ici que des rotations peuvent étre appliquées au centre du filtre CRLBP afin de considé-
rer les autres pixels voisins présents sur le cercle de rayon R. Grace a ces rotations, un total de %
histogrammes peuvent étre obtenus en supposant que le nombre de pixels voisins P est un mul-
tiple de 8 (cas usuel avec les filtres de type LBP). Chacune des rotations CRLBP est calculée avec
un quaternion unique de voisins qui n’est pas pris en compte dans les autres rotations (voir la
figure 3.5). On parle alors de R-CRLBP (ajout du préfixe Rotated). Notez que pour P = 8, le filtre
R-CRLBP est équivalent a I'un des motifs utilisés dans le filtre BGC [FAB13]. La concaténation des
histogrammes obtenus permet de produire un histogramme unique composé de % x 2% bins. Le
R-CRLBP est défini par I'équation (3.21), olt nous supposons que le nombre de pixels voisins P est

un multiple de 8.
3xP

a+2E
R-CRLBPpr= Y  s(gp—g, )2
paps=t P& (3.21)
avec i=5% et a=(0,1,.,5-1)
4

Light Combination of Local Binary Patterns (LCoLBP)

LCoLBP est une combinaison empirique de filtres de type LBP similaire aux CLBP [GZZ10], SC-
CORLTP [WSFW15] et ELBP [LZL*12], que nous avons également introduite dans le cadre de nos
travaux. Son développement a été motivé par la volonté de fournir une représentation complétée
des motifs de textures grace a un vecteur de caractéristiques discriminant de faible dimension. En
pratique, le résultat du filtre LCoLBP consiste en une concaténation de quatre histogrammes obte-
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&) () () (o) (&)

FIGURE 3.6 — Représentation schématique des filtres utilisés dans le LCoLBP. De gauche a droite :
CSLBP [HPS06], XCSLBP [SBF15], R-CRLBP; (rotation numéro 1), R-CRLBP, (rotation numéro 2),
FPLBP [WHTO08]. Les points colorés représentent les pixels considérés sur deux rayons différents. Les traits
noirs représentent les différences signées. Les traits colorés représentent I'utilisation de métriques inter-
meédiaires. Les traits noirs en points tillés indiquent que la différence se fait entre les éléments positionnés
a chaque extrémité du trait a partir de métriques intermédiaires (cas du FPLBP). On visualise ici la complé-
mentarité des motifs recherchés sur un voisinage (P, R).

nus avec des filtres de type LBP, a savoir les FPLBP, XCSLBP, CSLBP et R-CRLBBP présentés ci-dessus.
Ces filtres ont la particularité de mettre en évidence I'utilisation des pixels voisins d'un voisinage
(BR). Seul XCSLBP utilise le pixel central. Ces filtres calculent des caractéristiques basées sur dif-
férentes topologies d'une maniere qui les rend complémentaires (voir figure 3.6). En particulier,
pour un voisinage (P, R) donné, les histogrammes CSLBP et XCSLBP représentent respectivement
les motifs de gradient internes au voisinage et leur variante robuste au bruit. Lhistogramme ob-
tenu avec le FPLBP représente les motifs de gradient externes au voisinage. Lhistogramme du
R-CRLBP représente quant a lui des motifs circulaires, en périphérie du voisinage. De plus, cha-
cun de ces filtres génere un histogramme de faible dimension, tous contenant un nombre de bins
équivalent (égal pour P = 8) en considérant les rotations du R-CRLBP comme étant indépendantes.
La concaténation de ces histogrammes pour un voisinage (B R) donné permet d’obtenir histo-
gramme final de % x 21+ 3 x 2%/2 bins. Dans I'équation (3.22), la fonction concat(.) représente une
concaténation d’histogramme 1D, tandis que la fonction histomap(.) représente le calcul de I'his-
togramme appliqué sur chacun des éléments d'une liste. Lhistogramme obtenu avec le LCoLBP
est représenté sur la figure 3.7 avec P = 8 pour trois rayons différents R = {1, 2, 3}.

histo(LCOLBP) = concat(histomap([FPLBP, R — CRLBP XCSLBP, CSLBP))) (3.22)

1 1
LCoLBP
—_—
P=38
. R={123)
: &
\ %
N o B e— o

1
16 48 64 80 0 16 32 48 64 80

TN (= 240 bins)

XCSLBP

FIGURE 3.7 — Schéma de la génération d'un histogramme de textures avec le LCOLBP appliqué sur un voisi-
nage (BR) = (8,{1,2,3}).

3.3.3 Classifieurs utilisés avec les descripteurs de textures

Les classifieurs utilisés ici ont été présentés dans le chapitre 2. Ils incluent les K plus proches
voisins (KNN), les machines a vecteurs de support multi-classes (SVM), les perceptrons multi-
couches (MLP) et les foréts aléatoires d’arbres décisionnels (RFOREST).

3.3.4 Réseaux de neurones profonds a convolutions évalués
Dans cette étude comparative menée sur HistAerial, nous avons également intégré des réseaux

de neurones profonds a convolutions "bout en bout" (DCNN). Ces méthodes ont déja été appli-
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quées avec succes sur des images satellite [MTCA16]. Les DCNN ont, de maniére générale, ten-
dance a surpasser les extracteurs de caractéristiques classiques dans les taches de classification.
Des banques de filtres issus des réseaux de neurones a convolutions ont également pu démon-
ter leur efficacité pour la segmentation (classification au pixel pres) d’objets texturés (i.e., un élé-
ment visuel dans une scéne dont la texture est discriminante) [CMV15]. Néanmoins, des études
théoriques [BKD*16] et expérimentales [LFG*17] ont pu montrer que les DCNN peuvent ne pas
étre aussi performants qu’attendu sur des images de textures (i.e., gains faibles par rapport aux
méthodes plus classiques). Ils seraient en revanche aptes a générer des caractéristiques complé-
mentaires aux descripteurs de textures artisanaux [QZS*16]. Il n’y a cependant pas eu, a notre
connaissance, d’études antérieure sur l'efficacité des DCNN pour la classification des images aé-
riennes historiques. Nous avons de fait choisit d’évaluer les performances de méthodes existantes
sur HistAerial. Les DCNN présentés dans cette section ont été sélectionnés sur la base d’études
antérieures notables, avec I'idée que les architectures les moins profondes (i.e., avec moins de
couches, et moins de filtres) devraient étre capables de reproduire au moins les performances des
filtres de textures présentés dans les sections précédentes.

LeNet [LBBH98]

Le modele LeNet [LBBH98] est un pionnier parmi les réseaux de neurones profonds a convo-
lutions. Il a d’abord été appliqué pour la classification de chiffres manuscrits via le jeu de données
MNIST [LBBH98]. 1l a permis d’'introduire les concepts de base des couches de convolutions, des
couches de pooling et des couches entiérement connectées présentées dans le chapitre 2. Dans
LeNet, chaque couche de convolutions est suivie d'une couche de pooling moyen. Lorsqu’il est
utilisé comme un extracteur de caractéristiques (i.e., lorsque 'on retire les couches entierement
connectées), LeNet permet de générer un vecteur de 500 caractéristiques.

AlexNet [KSH12]

AlexNet [KSH12] est le premier modele publié publiquement a avoir obtenu un taux d’erreur
en classification (top-5) inférieur a 20% sur le jeu de données ImageNet [KSH12; RDS*15], consti-
tué de plus de 1000 classes différentes. AlexNet étend I’architecture de LeNet en rajoutant plusieurs
couches de convolutions afin d’extraire des caractéristiques plus profondes, et remplace le pooling
moyen par un pooling max (plus rapide). Pour nos travaux, nous avons utilisé la version d’AlexNet
proposée par la librairie Caffe. Cette implémentation exploite la technique du dropout afin d’in-
hiber aléatoirement des neurones durant 'entrainement et ainsi minimiser le sur-apprentissage.
Lorsqu’'utilisé en tant qu’extracteur de caractéristiques, AlexNet permet de générer un vecteur de
4096 caractéristiques.

VGG-16 [SZ14]

VGG-16 [SZ14] empile plusieurs couches de convolutions avec des filtres de petite taille 3 x
3 pixels, par rapport aux filtres d’AlexNet qui diminuent en taille 2 mesure que 'on ajoute des
couches (e.g,, 11 x 11, 5 x 5, etc.). Larchitecture de VGG-16 se base sur I'idée qu’en empilant plu-
sieurs petits filtres, on peut obtenir la méme précision qu’'avec des filtres moins nombreux mais
plus larges. Ce point permet de réduire le nombre de parametres dans le réseau. De plus, VGG-16
applique un pooling uniquement apreés deux ou trois convolutions, tandis que LeNet et AlexNet
appliquent cette opération apres chaque couche de convolutions. Au final, VGG-16 contient plus
de couches qu’AlexNet, ce qui devrait I'aider a apprendre une représentation plus significative des
données. Comme AlexNet, 'implémentation utilisée pour VGG-16 utilise des couches de dropout.
Il génere également un vecteur de 4096 caractéristiques lorsqu’il est utilisé comme extracteur de
caractéristiques.
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identité

FIGURE 3.8 — Schéma simplifié d'un block résiduel.

ResNet-18 [HZRS16]

ResNet-18 [HZRS16] est un réseau résiduel dont la profondeur est comparable a VGG-16.
ResNet-18 est constitué de blocs résiduels. Un bloc résiduel (voir figure 3.8) pourrait étre défini
comme suit. Etant donné les couches successives [;_», I;_1 et I;, un bloc résiduel intégre la sortie
O;_» (apres ReLU) de /;_, et la sortie O; (avant ReLU) de [; tel que O; := O; + O;_,. Lidée derriere
cette formulation est qu'un réseau profond devrait toujours avoir la possibilité de fonctionner au
moins aussi bien que des réseaux moins profonds en apprenant a ignorer les couches intermé-
diaires qui pourraient apprendre I'identité. Cette propriété permet généralement d’apprendre des
modeles plus profonds en propageant le gradient via les connexions ignorées (connexion entre
O; et les poids de [;_»). Un effet secondaire de ces connexions est que les caractéristiques moins
profondes, souvent assimilées a de la texture, ont plus de chances d’étre préservées par le réseau.
En tant qu’extracteur de caractéristiques, ResNet-18 génére un vecteur de 512 caractéristiques,
quantité inférieure aux autres DCNN de tailles comparables (LeNet exclu).

SqueezeNet [[HM*16]

SqueezeNet [ITHM*16] est un réseau entierement convolutif. Il remplace les couches entiere-
ment connectées par un vecteur de probabilité issu de filtres de convolutions. Il a initialement
été présenté comme étant une architecture compacte capable d’obtenir des résultats similaires
a AlexNet. Il utilise largement les convolutions 1 x 1 pour réduire le nombre de canaux dans les
cartes de caractéristiques intermédiaires, ce qui conduit a un modéle globalement plus rapide.
Cependant, selon les auteurs de [[HM*16], le vecteur de caractéristiques de sortie recommandé !
contient 86528 caractéristiques, quantité bien supérieure aux autres réseaux lorsqu’utilisés en tant
qu’extracteurs de caractéristiques.

3.4 Résultats et discussions

Les résultats obtenus pour le probleme de la classification top-1 (i.e., pourcentage de prédic-
tion correcte ne tenant compte que de la prédiction avec la probabilité la plus élevée) ont été
calculés pour les deux sous-ensembles du jeu de données HistAerial en utilisant les algorithmes
présentés dans la section précédente. Pour ces deux sous-ensembles, les données ont été divi-
sées aléatoirement en ensemble d’entrainement, de validation et de test, comme indiqué sur les
figures 3.9 et 3.10. Les expériences réalisées et les résultats obtenus sont discutés ci-dessous.

3.4.1 Mise en place des expériences
Parametres des filtres de textures

Les filtres artisanaux présentés dans les sections précédentes ont été implémentés en C++ avec
la version 3.2 de la bibliotheque OpenCV [Bra00]. Dans cette étude, les filtres basés sur le LBP ont
été mis en place en considérant un voisinage circulaire continu (voir chapitre 2). Guidés par les
considérations sur la complexité des calculs présentées dans [LYF*13], les valeurs pour le rayon R

1. https ://github.com/DeepScale/SqueezeNet/issues/13 (acces : (09/2018)
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et le nombre de voisins P ont été définies telles que R = (1,2,3) et P = (8) respectivement. Les his-
togrammes obtenus avec les trois combinaisons (P, R) ont été concaténés pour produire un histo-
gramme 1D. Le mapping riu? a été appliqué de facon systématique pour les filtres et sous-filtres
produisant un histogramme de plus de 2° bins afin de les rendre moins cofiteux d’'un point de
vue algorithmique. Le mapping riu? n'a pas été appliqué sur I'histogramme final résultant d'une
combinaison de filtres LBP s’il était déja appliqué sur les sous-filtres utilisés dans cette combinai-
son. Lutilisation du mapping riu? est a priori cohérente pour les données de HistAerial car les
images aériennes ont été acquises a des années différentes et dans des conditions incontro6lables
impliquant éventuellement des rotations entre les images. Comme inconvénient, il peut cepen-
dant en résulter des caractéristiques moins discriminantes. Aucun mapping n'a été appliqué avec
les autres filtres (ceux générant des histogrammes de moins de 2P bins). Le filtre LBP d’origine a
néanmoins été évalué avec et sans le mapping riu? afin de vérifier I'efficacité du mapping sur les
images aériennes historiques. Aucun pré-traitement n’a été appliqué sur les images avant I’extrac-
tion des caractéristiques. Les vecteurs de caractéristiques (i.e., histogrammes) ont été normalisés
avant |'étape de classification.

Hyperparametres des classifieurs

Les classifieurs présentés dans la section 3.3.3 ont été entrainés pour chaque filtre sur le sous-
ensemble équilibré en taille du jeu de données HistAerial (voir tableau 3.2). Seuls les meilleures
pipelines de traitement (i.e. filtre puis application d'un classifieur sur le vecteur de caractéris-
tiques résultant) ont été appliqués sur le sous-ensemble équilibré par classe (voir tableau 3.3).
Les hyperparameétres des classifieurs ont été automatiquement obtenus a ’aide d'une recherche
sur grille des parametres pour chaque filtre a 'aide du jeu de validation. Les étapes d’entraine-
ment et de test ont toutes deux été effectuées a I'aide de la bibliotheque Scikit-Learn [PVG'11]
(version v.0.19.1) en Python. Pour le KNN, K a été choisi dans la plage (1,..,19) avec un pas de 2
entre deux K, et la distance euclidienne a été utilisée. Le SVM a été entrainé en utilisant le noyau
RBF (voir chapitre 2). Les autres parametres du SVM ont été automatiquement sélectionnés pen-
dant la phase d’entrainement a I’aide du jeu de validation, avec les valeurs de C dans la gamme de
(1,10,100,1000) et de y dans la gamme de (0,01, 0.001, 0.0001, 0.00001). Pour le classifieur MLP, le
nombre de couches cachées a été automatiquement choisi dans la plage (1, 2, 3). Le nombre de
neurones pour la premiére couche cachée a été sélectionné comme le maximum entre le nombre
de classes N¢ et 0,75 % de la taille S, du vecteur de caractéristiques. Pour la deuxiéme couche, il
a été choisi comme le maximum entre N¢ et 0,5% de S,,.. Pour la troisieme couche cachée, il a été
choisi comme le maximum entre N¢ et 0,25 % de S,. Le choix d’utiliser un pourcentage décrois-
sant de S, a été fait pour éviter le cofit de calcul élevé qu'une validation croisée exigerait sur les
3 tailles de chaque sous-ensemble de HistAerial, et ce pour chacun des filtres considérés. L'algo-
rithme d’optimisation utilisé avec le MLP était la descente de gradient stochastique (SGD). Son
meilleur taux d’apprentissage a été automatiquement sélectionné entre (0.01, 0.001, 0.0001). Les

Données L . .
dlentrainement (63%] Optimisation des DCNN (finetuning)

Données de Extraction de Optimisation des

validation (27%) cractéristiques classifieurs
Extraction de Evaluation des
i ‘ cractéristiques classifieurs
Données de
test (10%) ‘
Evaluation des DCNN -

FIGURE 3.9 — Processus générique d’évaluation sur le jeu de données HistAerial.
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FIGURE 3.10 — Composition des jeux d’entrainement, de validation et de test pour (a) le sous ensemble
équilibré en taille et (b) le sous ensemble équilibré en classe du jeu de données HistAerial. Les nombres in-
diquent le nombre d’'imagettes. Chaque jeu contient le méme nombre d'imagettes par classe. Ces imagettes
ont été échantillonnées aléatoirement a partir de HistAerial.

parameétres de la forét aléatoire ont été définis a 100 pour le nombre d’arbres, 2 pour le nombre mi-
nimal d’échantillons requis au niveau d'un nceud, v/Ns, avec Ns comme nombre d’échantillons,
pour le nombre maximal d’échantillons a considérer pour diviser un nceud, et dans la plage de (5,
10, v/Ns) pour le nombre minimal d’échantillons requis pour diviser un nceud. Le critére de qua-
lité de partage a été choisi entre I'impureté de Gini et le gain d’'informations comme décrit dans le
chapitre 2. Toutes les expériences effectuées avec ces classifieurs ont été réalisées sur une machine
utilisant un processeur Intel i7 cadencé a 1,7 GHz avec 16 Go de mémoire disponible.

Hyperparametres des réseaux de neurones profonds

Les DCNN présentés dans la section 3.3.4 ont été pré-entrainés sur le jeu de données MNIST
(LeNet) [LBBH98] ou sur ImageNet (AlexNet, VGG-16, ResNet-18, SqueezeNet) [RDS*15]. Ils ont
ensuite été raffinés sur une version redimensionnée bilinéairement des sous-ensembles du jeu de
données HistAerial (voir tableau 3.2 et tableau 3.3) pendant 40 epochs (i.e., le réseau a été optimisé
sur le jeu de données d’entrainement complet 40 fois de suite). Aucune amélioration significative
n’'a été observée apres 40 épochs d’entrainement. Les opérations de redimensionnement ont été
effectuées pour rendre les tailles des imagettes cohérentes par rapport aux entrées des DCNN. Des
images a trois canaux (i.e., équivalent Rouge-Vert-Bleu, RVB) ont été obtenues pour les modeles
basés sur ImageNet en empilant les mémes valeurs de niveaux de gris sur chacun des trois ca-
naux. Comme exposé dans la section 3.2, 'opération de redimensionnement est supposée ne pas
modifier la représentation relative des imagettes de HistAerial car ce sont des imagettes carrées.
Les algorithmes de descente de gradient stochastique (SGD) et de propagation moyenne quadra-
tique de 'erreur (RMSPROP) ont été explorés comme algorithmes d’optimisation pour la partie
d’apprentissage. La valeur du taux d’apprentissage initial a également été étudiée dans la plage de
(0.01, 0.001, 0.0001, 0.00001) pour déterminer le meilleur taux d’apprentissage initial, et ce pour
chaque modeéle et expérience. La décroissance du taux d’apprentissage durant I'entrainement a
été fixée a 0.1 et appliquée toutes les 10 epochs afin d’éviter le sur-apprentissage. Lentrainement
et les tests des DCNN ont été effectués a I'aide de la bibliotheque Caffe [JSD*14] via I'application
DIGITS dans sa version 4 [Nvil9] a 'aide de trois GPU NVIDIA GeForce GTX 1080 Ti.

3.4.2 Comparaison globale

Les filtres de textures ont d’abord été comparés sur I'ensemble de données Outex TC_10_-
000 [OMP™*02] pour évaluer les implémentations utilisées. Ce jeu de données est constitué d'images
de textures acquises en laboratoire, avec des rotations entre chaque image. Un classifieur KNN
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TABLEAU 3.4 — Meilleurs résultats obtenus sur le sous ensemble équilibré en taille du jeu de données His-
tAerial pour des imagettes de 25 pixels x 25 pixels. Les valeurs manquantes correspondent a des arréts
prématurés de I'entrainement des DCNN (optimisation divergente).

Filtres de textures et classifieurs

Filtre ‘ Paramatre (PR) ‘ mapping ‘ Nomb.re.de ‘ Classifieur - Accuracy (%) ‘ Rang
\ \ \ | KNN | SVM | RFOREST | MLP | Best | \
LBP (8,{1,2,3}) riu? 30 65.5 62.6 67.5 64.3 67.5 9
LBP (8 {1,2,3}) none 768 63.2 66.7 66.1 63.7 66.7 11
VAR-LBP 8,{1,2,3}) riv? 414 54.3 67.9 69.6 65.0 69.6 8
CSLBP (8 {1,2,3}) none 48 50.4 49.3 60.8 53.1 60.8 15
XCSLBP (8 {1,2,3}) none 48 62.5 59.1 65.9 59.0 65.9 12
TPLBP 8,{1,2,3}) riv? 30 61.6 56.7 62.3 59.6 62.3 14
FPLBP (8 {1,2,3}) none 48 58.4 58.4 59.8 59.9 59.9 17
CLBP (8 {1,2,3}) riv? 66 69.4 69.0 721 68.9 72.1
LTP 8,{1,2,3}) riv? 60 66.9 65.9 69.1 69.2 69.2 7
RLTP (8 {1,2,3}) riu® 60 60.5 53.4 63.8 54.1 63.8 13
SCCOCRLTP (8,{1,2,3}) none 384 52.2 54.5 54.5 50.2 54.5 20
ELBP (8,{1,2,3}) riv? 66 56.3 45.9 57.2 40.0 57.2 19
MRELBP (8,{1,2,3}) riu? 66 49.4 49.2 57.4 49.4 57.4 18
R-CRLBP (8,{1,2,3}) none 96 63.0 65.6 65.8 66.9 66.9 10
LCOLBP (8,{1,2,3}) none 240 68.6 71.0 71.2 72.9 72.9 3
Réseaux de neurones profonds a convolutions
. . e e Nombre de Accuracy (%) par taux d’apprentissage

Modele | Algorithme doptimisation | Epochs | . crictiques | 0.01 \ 0.(%1 \ l[)0.0001 l(3)1.300001 gBest Rang
LeNet RMSPROP 40 500 60.0 55.3 60.2 51.7 60.2 16
AlexNet SGD 40 4096 73.0 73.6 68.6 59.1 73.6 1
VGG-16 SGD 40 4096 — 70.3 69.9 65.8 70.3 6
SqueezeNet RMSPROP 40 86528 — 72.6 73.1 65.2 73.1 2
ResNet-18 SGD 40 512 71.6  66.71 42.9 32.8 71.6 5

avec la distance chi2 (adaptée aux histogrammes) et K = 1 a été utilisé. Des résultats comparables
a ceux de la littérature ont pu étre observés, indiquant que nos implémentations semblaient co-
hérentes. A titre d’exemple, le filtre MRELBP combiné au mapping riu?, considéré comme une
référence sur cet ensemble de données [LFG*17], a permis d’obtenir un taux de bonne classifica-
tion moyen de 97.6% avec P =8 et R = (1,2, 3). En comparaison, le filtre LCoLBP a permis d’obtenir
un score de seulement 51.7% avec les mémes parametres. Le score obtenu avec le filtre LCoLBP
peut étre expliqué par sa définition non invariante a la rotation, tandis que I’ensemble de don-
nées Outex TC_10_000 représente des images de textures orientées pour lesquelles l'utilisation du

mapping riu? est particuliérement justifiée.

Ensuite, les méthodes ont été comparées sur le sous-ensemble équilibré en taille du jeu de
données HistAerial (voir tableau 3.2). La métrique utilisée est le taux de bonne classification (ac-
curacy) en pourcentage. Les meilleurs résultats obtenus pour ces comparaisons sont visibles sur
les tableaux 3.4, 3.5 et 3.6. Pour les imagettes de 25 pixels x 25 pixels, le filtre LCOLBP a permis
d’obtenir le score le plus élevé entre les filtres de textures, avec un taux de bonne classification
de 72.9% en utilisant un MLP. Le filtre CLBP appliqué avec le mapping riu? combiné a une fo-
rét aléatoire d’arbres décisionnels s’est classé deuxieme parmi les filtres de textures, avec un taux
de bonne classification de 72.1%. En comparaison, AlexNet a permis d’atteindre le score le plus
élevé (73.6%) avec un taux d’apprentissage initial de 0.001, une décroissance du taux d’appren-
tissage de 0.1 appliquée toutes les 10 époques et un I'algorithme d’optimisation SGD. Il a généré
un vecteur caractéristique de 4096 valeurs, a comparer aux 240 bins du LCoLBP et aux 66 bins du
CLBP. Pour la méme taille de vecteur de caractéristiques, VGG-16 a permis d’atteindre un taux
de bonne classification de seulement 70.3% avec un taux d’apprentissage initial de 0.0001 et I'al-
gorithme d’optimisation SGD. Toutes les combinaisons filtre-classifieur et DCNN ont obtenu des
taux de classification plus élevés avec les imagettes de plus grandes tailles. En particulier, le filtre
LCoLBP combiné a une forét aléatoire d’arbres décisionnels s’est classé premier, au-dessus des
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TABLEAU 3.5 — Meilleurs résultats obtenus sur le sous ensemble équilibré en taille du jeu de données His-
tAerial pour des imagettes de 50 pixels x 50 pixels. Les valeurs manquantes correspondent a des arréts
prématurés de 'entrainement des DCNN (optimisation divergente).

Filtres de textures et classifieurs
) . . Nombre de Classifieur - Accuracy (%)
Filtre Parametre (E R) "MAPPIE | caractéristiques | KNN | SVM | RFOREST | WMLP [ Best Rang
LBP (8,{1,2,3}) riu® 30 78.9 72.1 79.0 75.8 79.0 10
LBP (8,{1,2,3}) none 768 80.5 77.9 78.9 78.5 80.5 6
VAR-LBP (8,{1,2,3}) riu® 414 67.1 77.6 80.3 78.1 80.3 8
CSLBP (8,{1,2,3}) none 48 63.4  56.2 68.6 63.5 68.6 19
XCSLBP (8,{1,2,3}) none 48 76.3 70.6 78.3 70.9 78.3 12
TPLBP (8,{1,2,3}) riu® 30 68.9 65.7 73.6 70.1 73.6 17
FPLBP (8,{1,2,3}) none 48 72.8 70.5 74.0 71.9 74.0 16
CLBP (8,{1,2,3}) riu? 66 79.5 77.8 80.9 77.1 80.9 5
LTP (8,{1,2,3}) riu® 60 79.1 76.1 80.4 79.0 80.4 7
RLTP (8,{1,2,3}) riu® 60 74.4 64.2 76.6 70.8 76.6 15
SCCOCRLTP (8,{1,2,3}) none 384 76.3 68.3 76.8 66.8 76.8 14
ELBP (8,{1,2,3}) riu® 66 69.1 73.7 77.9 75.0 77.9 13
MRELBP (8,{1,2,3}) riu® 66 65.7 61.5 71.8 65.4 71.8 18
R-CRLBP (8,{1,2,3}) none 96 76.1 747 78.8 77.2 78.8 11
LCOLBP (8,{1,2,3}) none 240 80.4 80.6 82.9 81.6 82.9 1
Réseaux de neurones profonds a convolutions
. . e e . Nombre de Accuracy (%) par taux d’apprentissage
Modele | Algorithme doptimisation | - Bpochs | ., tgristiques [ 0.01 | 0.001 | 00001 | 0.00001 | Best | "*"8
LeNet RMSPROP 40 500 68.3 61.8 65.8 56.6 68.3 20
AlexNet SGD 40 4096 82.0 82.5 78.4 68.7 82.5 2
VGG-16 SGD 40 4096 — 79.0 80.0 77.7 80.0 9
SqueezeNet RMSPROP 40 86528 — 79.2 82.4 75.5 82.4 4
ResNet-18 SGD 40 512 824 745 60.7 37.4 82.4 3

DCNN, sur les imagettes de 50 pixels x 50 pixels avec un taux de bonne classification de 82.9%. Le
meilleur DCNN a permis d’obtenir un taux de bonne classification de 82.5 % sur ces données. Le
filtre LCoLBP s’est classé deuxieme sur les imagettes de 100 pixels x 100 pixels avec un score de
89.3%. AlexNet s’est classé premier sur ces données avec un score de 90.4%.

Pour I'ensemble des méthodes, nous nous sommes également intéressés au temps nécessaire
pour l'extraction des caractéristiques. Pour cela, nous nous sommes placés dans des conditions
équivalentes a celle d'un praticien, et nous avons utilisé un ordinateur avec un processeur cadencé
a 1.7 GhZ sans carte graphique. Nous avons utilisé les implémentations optimisées de OpenCV 3.4
pour les DCNN, et nos propres implémentations pour les filtres de textures. De plus, nous avons
considéré uniquement les imagettes de 100 x 100 pixels, ces derniéres étant les plus longues a
traiter pour les filtres de textures. Pour les DCNN utilisés, I'imagette est redimensionnée pour cor-
respondre a la taille attendue a I'’entrée de chaque réseau. Le temps d’exécution pour 'extraction
de caractéristiques a ’aide de I'un de ces DCNN est donc constant quelque soit la taille de 'ima-
gette considérée dans HistAerial. Les résultats sont reportés dans le tableau 3.6. On y observe que,
dans ces conditions, le filtre LCoLBP est approximativement 33 fois plus rapide que AlexNet pour
I'extraction de caractéristiques, mais moins rapide que le CLBP. Concernant les étapes de classifi-
cation, a classifieur constant, un vecteur de caractéristiques plus petit nécessitera moins d’opéra-
tions, donnant ici un avantage aux filtres de textures. Ces résultats sont cependant a nuancer : les
temps d’exécution varient linéairement avec la taille de 'image pour les filtres artisanaux utilisés
ici (ils seraient moins rapides sur des images plus grandes).

Du point de vue des performances de classification globales, les filtres de textures semblent
donc permettre d’obtenir des résultats similaires aux DCNN sur le sous-ensemble équilibré en
taille de HistAerial, tout en étant moins gourmands en calculs aux étapes d’extraction et de clas-
sification des caractéristiques. En particulier, le filtre LCoLBP proposé a atteint des résultats au
niveau de I'état de I'art lorsque combiné avec une forét aléatoire d’arbres décisionnels.
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TABLEAU 3.6 — Meilleurs résultats obtenus sur le sous ensemble équilibré en taille du jeu de données His-
tAerial pour des imagettes de 100 pixels x 100 pixels. Les valeurs manquantes correspondent a des arréts
prématurés de I'entrainement des DCNN (optimisation divergente). Les temps moyens d’extraction de ca-
ractéristiques obtenus sur un CPU cadencé a 1.7 Ghz avant classification sont donnés en millisecondes.

Filtres de textures et classifieurs
. N . Nombre de Classifieur - Accura Temps moyen
Filtre Pramétres (B R) ‘ mapptng ‘ Caractéristiques } KNN ‘ SVM ‘ RFOREST ‘ I\?ILP ‘ Best ‘| Rang d'exlr:cliony(ms)
LBP (8,{1,2,3}) riu? 30 87.4 81.1 87.3 83.0 87.4 9 1.047
LBP (8,{1,2,3}) none 768 89.1 85.6 86.8 84.2 89.1 5 0.964
VAR-LBP (8,{1,2,3}) riu? 414 73.6 80.8 84.5 81.9 84.5 17 1.800
CSLBP (8,{1,2,3}) none 48 75.7 63.2 80.3 72.8 80.3 18 0.624
XCSLBP (8,{1,2,3}) none 48 84.4 78.2 86.0 77.5 86.0 11 0.8124
TPLBP (8,{1,2,3}) riu? 30 72.5 71.0 80.1 73.7 80.1 19 1.310
FPLBP (8,{1,2,3}) none 48 84.7 79.7 85.2 81.3 85.2 15 1.023
CLBP (8,{1,2,3}) riu? 66 85.8 85.4 88.1 84.9 88.1 6 2.701
LTP (8,{1,2,3}) riu? 60 87.6 83.6 88.0 83.5 88.0 7 3.891
RLTP (8,{1,2,3}) riu? 60 83.6 69.3 85.3 78.1 85.3 14 2.338
SCCOCRLTP (8,{1,2,3}) none 384 84.6 73.7 85.5 67.0 85.5 13 8.589
ELBP (8,{1,2,3}) riu® 66 73.9 81.8 84.8 80.5 84.8 16 3.180
MRELBP (8,{1,2,3}) riu® 66 74.8 82.2 85.9 79.6 85.9 12 3.528
R-CRLBP (8,{1,2,3}) none 96 85.6 822 86.7 84.6 86.7 10 1.053
LCOLBP (8,{1,2,3}) none 240 88.4 86.8 89.3 85.8 89.3 2 3.491
Réseaux de neurones profonds a convolutions
. e e . Nombre de Accuracy (%) par taux d’apprentissage Temps moyen
Modele | Algorithme d'optimisation | - Epochs caractéristiques } 0.01 [ 0.001 [ 0.0001 | 0.00001 | Best } 8 | dextraction (ms)
LeNet RMSPROP 40 500 723 69.2 72.1 64.4 723 20 0.675
AlexNet RMSPROP 40 4096 — 86.9 90.4 89.7 90.4 1 99.610
VGG-16 RMSPROP 40 4096 — — 87.8 89.1 89.1 4 1256.500
SqueezeNet RMSPROP 40 86528 — 86.0 89.2 84.3 89.2 3 60.772
ResNet-18 SGD 40 512 87.8 829 72.0 45.7 87.8 8 144.633

Le filtre MRELBP ne semble pas permettre d’obtenir des taux de classification au niveau des
autres algorithmes sur 'ensemble de données HistAerial par rapport a 'ensemble de données Ou-
tex TC_10_000. Cela pourrait s’expliquer par I'effet de lissage du filtre médian appliqué avec le filtre
MRELBP Ce filtre non-linéaire réduit le nombre possible de motifs que la méthode peut extraire,
ce qui peut conduire a des représentations moins discriminantes. Son impact négatif est parti-
culierement visible sur les petites imagettes, qui sont susceptibles de contenir moins de hautes
fréquences que les plus grandes. Cette hypothése est renforcée par les résultats obtenus avec le
filtre LTP et sa version robuste au bruit, le filtre RLTP. Elle n’est pas vérifiée pour le XCSLBP com-
paré au CSLBP. Cela peut s’expliquer par I’absence de filtre passe-bas explicite dans la formulation
du XCSLBP afin d’étre plus robuste au bruit.

Le mapping riu® appliqué sur le filtre LBP n’a quant a lui apporté aucune amélioration ni
perte significative sur le sous-ensemble équilibré en taille de HistAerial. Son utilisation semble
donc étre indiquée sur ce jeu de données afin de réduire le cotit de calcul des filtres de type LBP
de la littérature.

Par ailleurs, comme indiqué dans le paragraphe précédent, les résultats obtenus par VGG-16,
ResNet-18 et SqueezeNet sur le sous-ensemble équilibré en taille de HistAerial sont inférieurs aux
résultats obtenus par AlexNet, et ce pour chaque taille. Ces résultats relatifs sont inattendus, les
réseaux comparés a AlexNet étant plus profonds et donc plus a méme d’extraire des caractéris-
tiques représentatives. Ils nécessiteraient probablement d’autres expériences pour étre étudiés de
maniere approfondie, ce qui n’est pas le but de nos travaux. Cependant, sur la base des travaux
des auteurs de [UVL18], nous pouvons faire I'hypothese que les DCNN se comporteraient naturel-
lement comme des filtres passe-bas résultant en une efficacité réduite sur les données de textures.
Par conséquent, un réseau plus profond générerait des cartes de caractéristiques plus lisses que
des réseaux moins profonds, ce qui entrainerait une baisse des performances sur les jeux de don-
nées de textures.
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FIGURE 3.11 — Matrices de confusion normalisées pour le filtre LCoLBP sur le jeu de données équilibré en
taille. a) 25 pixels x 25 pixels; b) 50 pixels x 50 pixels; c) 100 pixels x 100 pixels.

Enfin, on a pu observer sur les figures 3.11 et 3.12 que le filtre LCoLBP et AlexNet ont permis
d’obtenir des résultats différents par classe. AlexNet semble avoir optimisé la représentation des
classes Arable, Forét, Eau et Urbain, tandis que le filtre LCoLBP a fourni des taux de bonnes clas-
sification plus élevés pour les imagettes de Vignes et de Vergers. Ces résultats donnent un indice
quant aux caractéristique apprises par le DCNN par rapport au LCoLBP. Ils mettent en avant le
fait que ces méthodes génerent des représentations qui seraient éventuellement complémentaires
aux filtres binaires. Ces observations concordent avec les résultats obtenus par Qi et al. [QZS*16],
abordés dans la section 3.3.4. Cependant, il semble que les deux représentations (i.e., DCNN et
textures) ont des difficultés a différencier les classe Prairies et Arable. Ce point peut s’expliquer
par la similitude (i.e., faible variabilité inter-classe) des textures représentées par ces deux types
de sols en 'absence de couleur discriminante sur 'ensemble de données HistAerial. De manieére
générale, durant les périodes ensoleillées (e.g., au printemps), une prairie est souvent représentée
avec des couleurs vertes et un champ cultivé (terre arable) avec des variations de bruns, de vert et
de jaune sur les images RVB.

3.4.3 Importance du contexte spatial

Les résultats obtenus sur le sous-ensemble équilibré en taille du jeu de données HistAerial (ta-
bleaux 3.4, 3.5, 3.6) fournissent déja des informations sur les performances de chaque méthode sur
différentes tailles d’'imagettes. Cependant, comme décrit dans la section 3.2.3, le sous-ensemble

73



CHAPITRE 3. CLASSIFICATION DE TEXTURES

Matrice de confusion normalisée

Matrice de confusion normalisée

Arable 007 004 017 012 000 002 Arable JEEEN 004 001 017 007 000 002
0.8
0.8
Fau 001 002 002 000 000 Eau
o Forét 008 002 [GREM 008 007 002 000 06 o Forét o
© o :
e L o »
 Prairie 020 007 013 046 013 000 0.0 g Prairie
a -
g 04 g 04
T  Urbain { 007 001 010 o005 [EREM 002 001 T Urbain
= =
Verger { 000 000 002 001 002 02 Verger 0
Vigne 007 000 001 003 002 Vigne
T T T 0.0 0.0
N Ny oo .(\Q' X
) > & N <3
< < N
XS G Q@
Etiquette prédite Etiquette prédite
(a) (b)

Matrice de confusion normalisée

001 001 012 003 000 001

Arable

Eau

Forét

Prairie

Urbain

Etiquette réelle

Verger

Vigne

0.0

Etiquette prédite

(c)

FIGURE 3.12 — Matrices de confusion normalisées pour AlexNet sur le jeu de données équilibré en taille. a)
25 pixels x 25 pixels; b) 50 pixels x 50 pixels; c) 100 pixels x 100 pixels.

équilibré en taille ne permet pas a lui seul de donner une indication sur 'importance du contexte
spatial pour la classification des images aériennes historiques contenues au sein de HistAerial.
Une autre expérience a donc été menée sur le sous-ensemble équilibré en classe. Seules les mé-
thodes qui ont permis d’obtenir les scores les plus élevés sur le sous-ensemble équilibré en taille
ont été évaluées sur le sous-ensemble équilibré en classe, a savoir LCOLBP combiné avec une forét
aléatoire d’arbres décisionnels et AlexNet. Leurs résultats sont présentés sur le tableau 3.7.

On observe des taux de classification similaires sur le sous-ensemble a équilibré en classe et le
sous-ensemble équilibré taille. Le filtre LCOLBP et AlexNet, respectivement, ont permis d’obtenir
des scores de classification de 75.0% et 73.4% sur des imagettes de 25 pixels x 25 pixels (120 000
imagettes par classe), et 84.1% et 85.6% sur les imagettes de 50 pixels x 50 pixels (28 000 imagettes
par classe). Ces résultats montrent qu'une variabilité représentative de 'ensemble de données
HistAerial a déja été capturée dans le sous-ensemble équilibré en taille.

Deuxiemement, on remarque que le filtre LCOLBP a permis d’obtenir des résultats étonnam-
ment meilleurs qu’AlexNet sur les imagettes de 25 pixels x 25 pixels. Nous nous attendions a que
ce sous-ensemble favorise le réseau de neurones profond en raison de la grande quantité de don-
nées disponibles, censée permettre une optimisation plus efficace des poids du réseau. AlexNet
n’'a pas donné les résultats escomptés. Nous pouvons seulement supposer que cette observation
résulte de I'utilisation de filtres de convolutions sur des données représentant un petit contexte
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TABLEAU 3.7 — Meilleurs résultats obtenus sur le sous ensemble de HistAerial équilibré en classe (i.e. méme
proportion d’imagettes par taille).

Meilleurs résultats obtenus pour chaque méthode

. . . Nombre de Accuracy (%) par taille d’'imagette (pixels)
Filtre Parameétres (5 &) mapping caractéristiques | 25 x Zg 50 xp50 ‘ 10(;5 x 100p
LCoLBP + Random Forest (8,{1,2,3}) none 240 75.0 84.1 89.3
AlexNet + SGD learning rate :0.001 * 4096 73.4 85.6 *
AlexNet + RMSPROP learning rate :0.0001 * 4096 * * 90.4

spatial, bien que cette hypothése soit en désaccord avec les résultats observés sur le tableau 3.4.
Cette architecture a obtenu des scores légerement plus élevés sur les autres tailles d’'imagettes que
le filtre LCoLBP avec des gain 1.5% sur les imagettes de 50 pixels x 50 pixels et 1.1% sur les ima-
gettes de 100 pixels x 100 pixels. Ces résultats sont conformes a I’hypothése présentée par Basu
et al. [BKD*16] : les réseaux de neurones a convolutions semblent ne pas étre aussi performants
sur les données de textures (non spatialisées) que sur des images plus classiques (représentant des
entités dans leur contexte, des objets).

On constate enfin que le contexte spatial semble fournir une amélioration significative (+15%
de taux de bonne classification entre les plus petites et les plus grandes imagettes). Ce point est en
accord avec ce qui était observé sur le sous-ensemble équilibré en taille.

3.4.4 Conclusion partielle

Dans ces travaux, un nouveau de jeu de données a été proposé pour 'analyse d'images aé-
riennes historiques panchromatiques. Il est composé de plusieurs millions d’imagettes annotées
a trois niveaux d’échelle spatiale. Une comparaison des méthodes d’extraction de caractéristiques
et de classification de la littérature a été réalisée sur ce jeu de données. Deux nouveaux filtres ont
également été proposés. Parmi eux, le LCoOLBP combiné a une forét aléatoire d’arbres décision-
nels a permis d’obtenir des résultats similaires (Iégerement inférieurs) aux réseaux de neurones
profonds a convolution, et ce pour un vecteur de caractéristiques 17 fois plus petit et un temps
d’exécution bien inférieur. De maniére générale, nous n’avons pas décelé de contre-indications
a l'utilisation des filtres basés sur la texture. Ces derniers semblent étre particulierement adap-
tés pour des applications sur des ordinateurs peu puissants. On notera néanmoins que les DCNN
tendent a obtenir des taux de classification plus élevés, et ce quelle que soit I'architecture utilisée.
La principale limitation des DCNN dans notre cadre de travail est liée aux ressources matérielles
qu'ils nécessitent, les rendant peu praticables sans carte graphique pour des applications interac-
tives (e.g., Gouramic, voir Annexe A). IIs semblent cependant indiqués pour des applications hors
ligne (i.e., l'utilisateur n’attendant pas devant I’écran).

3.5 Extension aux images en couleurs : cas des écorces d’arbres

Nous avons vu dans les sections précédentes que la texture est un facteur discriminant viable
pour I'analyse automatique d’images aériennes historiques. Nous avons cependant fait la remarque
que 'absence d’informations sur la couleur pouvait avoir un impact sur les taux atteignables de
bonne classification. Afin de vérifier cette hypothése avant de nous lancer dans des travaux sur la
colorisation automatique d’images aériennes historiques (voir chapitre 4), nous avons collaboré
une autre doctorante du LIRIS travaillant sur la classification d’écorces d’arbres dans un environ-
nement mobile (i.e., identifier un arbre par son écorce sur smartphone). D’'un point de vue appli-
cation, les images d’écorces d’arbres représentent des éléments sur lesquels les filtres de textures
ont tendance a étre particulierement efficaces.

Ainsi, en 2004, Wan et al. WDH™" 04] ont proposé de comparer plusieurs approches statistiques
pour reconnaitre des textures, dont les GLCM (voir chapitre 2). Afin de conserver 'information
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portée par la couleur, Wan et al. ont appliqué leur approche sur chaque canal couleur (espace RVB)
avant de concaténer les caractéristiques obtenues. Huang et al. [HHD*06] ont pour leur part ex-
ploréI'utilisation d'une banque de filtres de Gabor (voir chapitre 2) pour la classification d’écorces.
Bakic et al. [BMOL*13] ont quant a eux exploré I'utilisation de plusieurs espaces couleur (RVB,
HSV) pour représenter les écorces d’arbres. Bertrand et al. [BCT17] ont cherché a combiner des
caractéristiques orientées, obtenues a l'aide de filtres de Gabor, avec une représentation éparse de
la texture représentée a ’aide du détecteur de contours de Canny et d'un échantillonnage linéaire
éparse en deux dimensions. Linformation de couleur a ici été ajoutée par les auteurs en conca-
ténant I’histogramme de teinte (espace couleur HSV) aux caractéristiques précédentes. Parmi les
approches basées sur les filtres des type LBP, Boudra et al. [BYB18] ont proposé un descripteur de
textures nommé Statistical Macro Binary Pattern (SMBP). SMBP encode 'information entre dif-
férentes "macro-structures" a 'aide d'une représentation statistique de chaque échelle. Porebski
et al. [PVMH14] ont quant a eux appliqué des filtres de type LBP sur plusieurs espaces couleur en
cherchant a concaténer de maniere optimale les histogrammes obtenus (e.g., concaténation des
histogrammes RVB et HSV). Les auteurs ont réussi a obtenir des taux de classification supérieurs
al’état de I’art, au prix de vecteurs de caractéristiques de tres hautes dimensions.

Ici, nous nous sommes intéressés au cas particulier de la reconnaissance des écorces dans un
environnement contraint (sur mobile). Nous avons de fait cherché a minimiser les ressources né-
cessaires, avec un focus particulier sur la mémoire utilisée (taille des vecteurs de caractéristiques).

3.5.1 Jeuxde données

FIGURE 3.13 — Exemples d’'images d’écorces d’arbres du jeu de données Bark-101 [RBCJT19].

Nous avons travaillé sur plusieurs jeux de données de la littérature auxquels nous avons ajouté
Bark-101 (voirhttp://eidolon.univ-1yon2.fr/ remil/Bark-101/). Bark-101 est un nouveau
jeu de données créé par Sarah Bertrand dans le cadre de sa these et présenté dans le cadre de nos
travaux joints [RBCJT19]. Les caractéristiques des jeux de données que nous avons utilisés sont
résumés sur le tableau 3.8. On remarquera que la plupart de ces jeux de données sont consti-
tués d'une faible quantité d’images, pour un faible nombre de classes. Le jeu de données Bark-
101 propose quant a lui une quantité de données relativement faible, mais un nombre de classes
conséquent (101 classes). Il a été concu a partir des images du défi PlantCLEE Ces images ont
été acquises en milieu naturel dans des conditions non controllées afin de permettre le dévelop-
pement d’algorithmes de reconnaissance des végétaux. Ici, seules les images correspondant a des
troncs d’arbres ont été utilisées pour créer Bark-101. Ces dernieres ont été manuellement segmen-
tées afin de supprimer 'information contenue dans le fond et ne conserver que les écorces. Afin
de simuler des conditions réelles d’utilisation, nous avons choisi de suivre Wendel et al. [WSG11]
en n'imposant pas de contraintes sur la taille des images segmentées. De par la méthode d’ac-
quisition des images originelles, Bark-101 posseéde une forte variabilité intra-classe. De plus, le
grand nombre de classes dans ce jeu de données induit une variabilité inter-classe relativement
faible (plus on augmente le nombre d’especes, plus les chances d’avoir des images similaires entre
classes différentes sont élevées).
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l by, [(by,) = argmin(1(b)) ‘ D1, I(by1) = min(I (by, — 1),1(b,, + 1)) ‘ bz, [(byyz) = max(I(by, — 1),1(by, + 1))
b

Résultat
N-3 bins

iy

FIGURE 3.14 — Schéma de I'algorithme de réduction de I'histogramme de teintes appliqué pour 3 itérations.
Le nombre de bins dans I'histogramme est réduit de 1 apres chaque itération. La réduction est réalisée a
partir du bin b d’intensité la plus faible.

Itération 3
N-2 to N-3 bins

Itération 2
N-1 to N-2 bins

Itération 1
N to N-1 bins

o

agjout & décalage ajout & décalage -~ ajout & décalage

3.5.2 Méthodes

Afin de classifier automatiquement les écorces d’arbres, nous nous sommes donc attachés a
combiner les informations de couleur représentées par 'histogramme de teintes dans 'espace
HSV a celles extraites a partir des filtres de type LBP. Cependant, la combinaison de ces deux infor-
mations peut générer des vecteurs de caractéristiques de grandes dimensions. Nous avons donc
cherché a réduire la taille des vecteurs de caractéristiques de chacune des informations.

Réduction de I'histogramme de couleur

L'approche proposée par Sarah Bertrand afin de réduire la taille de I'histogramme couleur se
base sur I'observation que certaines couleurs, telles que le bleu ou le violet, n’'ont pas une contri-
bution significative a la signature des images d’écorces (couleurs sous-représentées). Cependant,
supprimer completement I'information portée par ces couleurs pourrait résulter en des histo-
grammes moins discriminants, rendant par la méme occasion le processus de classification des
écorces moins performant. Afin de réduire la taille de I'histogramme de teinte, 'approche propo-
sée ici consiste a fusionner les effectifs des bins couleur les moins représentés via un processus
itératif.

Soit X un jeu de données constitué de k images en couleurs, séparées en un jeu d’entrainement
Xyrain €t unjeu de test X,.5;. On commence par calculer I'histogramme de teinte de chaque image
de X;;4in, que 'on accumule (somme) bin a bin dans un histogramme sommée H;. Lhistogramme
sommeé H; est ici supposé représenter |'a priori sur la teinte du jeu de données. Afin de réduire
le nombre de bins que possede cet histogramme, nous allons ajouter itérativement 'effectif du
bin b ayant I'effectif le plus faible de Hg, a 'un de ses bins voisins b+ 1 ou b — 1. Le bin voisin
sélectionné est celui qui a le plus faible effectif parmi les deux. Une fois cette opération réalisée,
I'histogramme est décalé vers la gauche afin de réduire sa dimension. Ce processus itératif est
arrété lorsque le nombre de bins désiré, fixé par I'utilisateur, est atteint. Il a été fixé a 30 bins, par
validation croisée, dans le cadre des expériences menées sur les écorces [RBCJT19]. L'ordre et la
position des opérations d’ajout et de décalage sont stockés dans une table de correspondances M.

TABLEAU 3.8 — Caractéristiques de différents jeux de données d’écorces d’arbres considérés.

Caractéristiques BarkTex [Lak98] | NewBarkTex [PVMH14] | Trunkl2 [$14] AFF [WSG11] Bark-101 [RBCJT19]
Nombre de classes 6 6 12 11 101
Nombre d’'images 408 1632 393 1082 2587
Nombre d’images par classe 68 272 30-45 16-213 2-138
Taille des images 256x384 64x64 1000x1334 1000x(478-1812) | (69-800)x(112-804)
Différentes illuminations v v X v v
Différentes échelles v v X v v
Perturbations (ombres, lichen) X X X v v
Séparation entrainement / test X 50/50 X X 50/50
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FIGURE 3.15 — Schéma représentant I'extraction de N = 7 statistiques tardives a partir de '’histogramme du
filtre LCoLBP calculé sur un voisinage composé de 3 rayons (R = 3) avec 8 pixels voisins P par rayon. Les
points colorés représentent les statistiques (couleur extérieure du point) obtenues pour les Nj, = 5 sous-
histogrammes du LCoLBP (couleur intérieure du point).

Cette table de correspondances M, associée aux opérations décrites ci-dessus, est ensuite utilisée
sur chaque histogramme de teinte du jeu de test X; afin de calculer un histogramme réduit pour
chaque image. Les opérations d’ajout et de décalage sont illustrées sur la figure 3.14.

Réduction de ’histogramme de LBP

Afin de réduire la taille des histogrammes issus de filtres de type LBP, nous avons étudié I'in-
térét de 'extraction de statistiques a partir de leurs histogrammes. Nous avons nommé les carac-
téristiques ainsi extraites les "statistiques tardives" (late statistics, LS), par opposition aux statis-
tiques utilisées par Boudra et al. [BYB18] qui sont obtenues avant la génération des codes binaires.
On remarquera que les statistiques tardives sont, par construction, similaires a celles générées par
les GLCM (voir chapitre 2).

Soit H; un histogramme obtenu a I'aide d’un filtre de type LBP lui méme constitué d'une
concaténation ordonnée de Ny, sous-histogrammes {h1, hy, ..., hy, } de tailles connues. Pour chaque
sous histogramme h;,i € {1,...,,Np}, on calcule N; statistiques tardives. Les statistiques ainsi ob-
tenues sont concaténées dans le méme ordre que les sous-histogrammes afin de constituer un
vecteur de caractéristiques de dimension réduite. En supposant un unique histogramme H; par
voisinage (B R), ce processus permet d’obtenir Rs x Ny x Ny, caractéristiques avec R le nombre de
rayons. Un exemple avec N = 7 statistiques et R; = 3 rayons est présenté sur la figure 3.15 pour le
filtre LCoLBP. On considere ici chaque rotation du R-CRLBP comme étant indépendante.

Les statistiques tardives ont plusieurs avantages. D'une part, elles ne nécessitent pas un nouvel
échantillonnage des motifs binaires, contrairement a I'approche proposée par [BYB18], car elles se
basent uniquement sur des histogrammes déja générés. D’autre part, elles ne nécessitent pas laré-
implémentation des descripteurs de textures. Enfin, ces statistiques sont supposées agir comme
un algorithme de normalisation spatiale, au sens ou1 chaque sous histogramme sera résumé par
un nombre N; fixé de statistiques, quelque soit le nombre de bins qu’il contient et quelque soit le
voisinage (P, R) surlequel il a été généré. Cette propriété est particulierement intéressante pour gé-
nérer des vecteurs de caractéristiques contenant une quantité équilibrée de caractéristiques pour
des motifs de textures différents. Cependant, les statistiques vont significativement réduire (résu-
mer) 'information portée par 'histogramme. A I'image des mapping classiquement utilisés avec
les filtres de type LBP cette approche est donc susceptible de diminuer le pouvoir discriminant
des filtres utilisés.
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3.5.3 Expériences et résultats

Nous avons réalisé une étude comparative avec et sans réduction d’histogrammes sur les jeux
de données d’écorces présentés précédemment. Pour cela, nous avons considéré le filtres LCOLBP
et le filtre CLBP avec mapping riu® afin d’étudier l'intérét des statistiques tardives avec et sans

mapping.

Stratégies d’évaluation

On distingue ici deux stratégies d’évaluation en fonction des jeux de données et des approches
utilisées dans la littérature.

e Evaluation standard : on entraine un classifieur sur le jeu de données d’entrainement, et on
utilise le jeu de test pour évaluer la performance de ’approche. Cette approche est appliquée
sur NewBarkTex et Bark-101, tous deux proposant une séparation claire du jeu de données.
Aucun ensemble de validation n’est ici inclu. Les parameétres des classifieurs sont de fait
optimisés, si nécessaire, par validation croisée sur le jeu d’entrainement.

o Evaluation en leave-one-out : il s'agit ici d'une approche particulierement utilisée sur les
petits ensembles de données. Soit S un ensemble de N échantillons. On réalise alors N itéra-
tions. A chaque itération, i € {1,...,N}, 'échantillon s(i) € S est réservé pour le test, et tous les
autres échantillons S — {s(i)} sont utilisés pour I'entrainement. Si s(i) est correctement clas-
sifié, le résultat de 'itération i est positif, sinon il est négatif. Le taux de bonne classification
(accuracy) est obtenu en moyennant les résultats obtenus pour toutes les itérations. Cette
approche a été appliquée sur les jeux de données BarkTex, Trunk12 and AFFE en accord avec
les travaux réalisés par Boudra et al. [BYB18].

Pour les deux types d’évaluation, la métrique utilisée est le taux de bonne classification en top-
1. Le classifieurs KNN K = 1 avec la distance L1 a été utilisé comme référence, celui-ci étant le
plus utilisé dans le contexte de la classifcation d’écorces. Pour la stratégie d’évaluation standard,
nous avons également utilisé un SVM multi-classes avec un noyau RBE en accord avec Porebski et
al. [PHVH18]. Les parameétres du SVM ont été obtenus par validation croisée pour chaque filtre et
chaque jeu de données indépendamment.

Choix des statistiques tardives

Nous avons considéré 7 statistiques dans nos expériences : la moyenne, la variance, I'entro-
pie, le minimum, le maximum, la valeur médiane et I'aplatissement (kurtosis). Afin de déterminer
les meilleures combinaisons de statistique pour chacun des filtres, nous avons mené une étude
par ablation sur le jeu de données BarkTex. Les résultats de cette étude sont présentés sur le ta-
bleau 3.9. On y observe qu’ajouter naivement des statistiques (7 premieres lignes) peut réduire
les taux de bonne classification. Ainsi le choix des statistiques tardives doit étre fait de facon judi-
cieuse pour chacun des filtres, ce qui représente une faiblesse pour la méthode. En nous basant
sur ces résultats, le nombre de statistiques N a été fixé a 6 pour le LCoLBP et a 4 pour le CLBP.
Nous n’avons pas calculé de statistiques pour le sous-histogramme obtenu a I'aide du CLBP_C, ce
dernier ne contenant que deux bins. Ainsi, les statistiques tardives du LCoLBP (LS — LCoLBP) gé-
nerent des vecteurs de R x 5 x 6 caractéristiques, ol 5 est le nombre de sous filtres et 6 le nombre
de statistiques. Les statistiques tardives du CLBP génerent des vecteurs de R x (2 + 2 x 4) caracté-
ristiques.

Résultats

Les résultats que nous avons obtenus sont reportés sur les tableaux 3.10 et 3.11. Les taux de
bonne classification d’études précédentes ont été reportés et indiqués a 'aide d’'une étoile (*).
Pour les jeux de données AFE Trunk12 et BarkTex, nous avons reporté les résultat obtenus avec
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les méthodes MSLBP* et SLBP* de [BYB18]. Pour le jeu de données NewBarkTex, nous avons re-
porté les résultats obtenus par les méthodes de Wangl 7* [JW17], de Sandid16* [SD16], et de Po-
rebskil8* [PHVH18]. Nous avons également considéré les résultats des méthodes proposées par
[BCT17], que nous avons renommées GWs et GWs/H180 (concaténation avec I’histogramme de
teintes complet). Tous les résultats non reportés correspondent a nos propres implémentations
en C++ pour les filtres de type LBP et les histogrammes de couleur, et Python avec la librairie
Scikit-learn pour le calcul des statistiques tardives et I'utilisation des classifieurs. Nous discutons
les résultats obtenus ci-apres.

Apport de la couleur. Nous pouvons observer que les filtres de textures permettent d’obtenir
des taux de classification plus élevés lorsqu’ils sont combinés avec les histogrammes de couleur
réduits (H30) ou non (H180). Pour rappel, les histogrammes de couleur sont obtenus a partir du
canal de teinte dans I'espace couleur HSV. Lorsqu'’il est utilisé seul, H180 permet d’obtenir des
taux de classification supérieurs a ceux obtenus avec H30 de 3.3% en moyenne sur AFE Trunk12
et BarkTex. Cependant, lorsqu’ils sont combinés aux histogrammes issus des filtres de type LBP,
leurs contributions apparaissent équivalentes. Ces résultats montrent I'intérét de ’algorithme de
réduction d’histogramme présenté précédemment. De plus, ils confirment que la couleur est un
indice visuel non négligeable a priori pour la classification d’images texturées, et en particulier
pour la classification d’écorces. Cette observation est en accord avec les travaux de [JW17].

Apport des statistiques tardives. Les statistiques tardives permettent de diminuer la taille des
vecteurs des caractéristiques d'un facteur 2.7 pour le filtre LCoLBP et 2.2 pour le CLBP, avec une
diminution des taux de bonne classification de seulement 5.5% en moyenne. Ce chiffre est néan-
moins a nuancer en fonction des jeux de données et des stratégies d’évaluation utilisées. Les statis-
tiques tardives semblent ainsi particulierement efficaces dans le cadre d'un stratégie de type leave-
one-out (voir tableau 3.10). Elles semblent cependant moins intéressantes dans le cadre d'une
stratégie standard (voir tableau 3.11). A noter que ces résultats peuvent partiellement s’expliquer
par la faible quantité de données d’entrainement disponible comparé a I’'approche leave-one-out.

3.5.4 Conclusion partielle

Nous avons évalué I'intérét de combiner des filtres de textures avec la couleur, représentées ici
par des histogrammes de teintes. Les résultats obtenus sur 5 jeux de données d’écorces d’arbres
nous ont montré une complémentarité entre ces deux types d’informations. Par ailleurs, nous
avons évalué deux approches permettant respectivement de réduire la taille des vecteurs de ca-
ractéristiques obtenus par les filtres de LBP et la taille des histogrammes de teintes. Nous avons
ainsi pu mettre en avant I'intérét de ces algorithmes pour réduire la quantité d’'information né-
cessaire pour classifier des images d’écorces. Cependant, ces statistiques réduisent les taux de

TABLEAU 3.9 — Etude par ablation des statistiques tardives appliquées aux filtres LCoLBP et CLBP sur le jeu
de données BarkTex.

Late Statistics Accuracy (%)
moyenne variance entropie minimum maximum médiane aplatissement | LS-LCOLBP LS-CLBP
v - - - - - - 81.9 71.8
v v - - - - - 82.8 59.6
v v v - - - - 78.4 64.7
v v v v - - - 82.8 63.2
v v v v 4 - - 83.1 69.4
v v v v v v - 86.3 72.1
v v v v 4 4 v 89.5 62.8
v v - v 4 v 4 88.2 60.1
v - v v v v v 89.5 62.5
v - - v 4 4 v 88.2 59.6
v - - v 4 v - 88.2 75.3
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TABLEAU 3.10 — Résultats obtenus avec un 1-NN sur les jeux de données BarkTex, AFF et Trunk12. En bleu :
Résultats les plus élevés reportés dans la littérature. En vert : résultats les plus élevés dans cette comparai-
son. En rouge : résultats les plus élevés avec les statistiques tardives.

. s Accuracy | Jeu de données (%)
Filtre Nombre de caractéristiques AFF ‘ Trunki2 ‘ BarkTex
MSLBP* 2816 63.3 63.3 86.8
SMBP* 10 240 71.7 71.0 84.3
H30 30 50.5 64.4 55.4
H180 180 55.6 69.0 61.3
LCoLBP 240 75.3 77.1 92.1
LCoLBP/H30 270 80.7 84.2 92.4
LCoLBP/HI180 420 80.7 84.2 91.7
CLBP 66 68.1 70.0 78.7
CLBP/H30 96 72.9 77.4 83.8
CLBP/HI180 246 73.5 78.1 84.3
GWs 121 48.2 39.9 56.1
GWs/H30 151 64.7 74.3 66.2
GWs/HI180 301 66.5 76.1 69.6
LS-LCoLBP 90 69.4 746 89.5
LS-LCoLBP/ H30 120 76.9  80.7 90.2
LS-LCoLBP/H180 270 769 807 91.2
LS-CLBP 30 59.1  70.0 75.3
LS-CLBP/H30 60 654  77.4 78.2
LS-CLBP/H180 210 679  78.1 79.4

TABLEAU 3.11 — Résultats obtenus sur les jeux de données NewBarkTex et Bark-101.

Accuracy / Jeu de données (%)
NewBarkTex Bark-101

Filtre Nombre de caractéristiques | KNN | SVM | KNN [ SVM
Porebskil8* 10752 - 92.6 - -
Wangl7* 267 84.3 - - -
Sandidl6* 3072 - 82.1 - -
H30 30 48.0 50.6 19.1 20.4
HI180 180 48.5 53.6 222 20.9
LCoLBP 240 78.8 89.3 34.2 41.9
LCoLBP/H30 270 - - - 44.0
LS-LCoLBP 90 66.5 794 283 30.1
LS-LCoLBP / H30 120 719 820 276 32.1
LS-LCoLBP/H180 270 72.3 822 27.8 31.0
GWs/H30 151 60.4 74.1 28.2 31.7
GWs/HI180 301 54.1 63.6 318 32.2

classification obtenus, et ce particulierement dans un contexte ol relativement peu de données
d’entrainement sont disponibles par rapport aux données évaluées. Face a cette observation, nous
ne les avons pas appliquées sur les histogrammes issus de HistAerial, les gains obtenus en termes
de mémoire ne compensant pas la perte de précision (accuracy) dans un environnement moins
contraint que les applications mobiles.

3.6 Conclusion

Résumé des travaux réalisés. Nous avons présenté HistAerial, un jeu de données contenant
plusieurs millions d’imagettes a plusieurs échelles pour 7 classes d’occupation du sol. Au travers
de ce jeu de données, nous nous sommes intéressés a la classification des images aériennes his-
toriques panchromatiques a 'aide de filtres de textures, de classifieurs classiques et de réseaux de
neurones profonds a convolutions. Ces travaux comparatifs nous ont permit de montrer I'intérét
des filtres de textures pour cette tache. Les caractéristiques extraites par ces derniers permettent
d’obtenir des résultats équivalents aux réseaux de neurones profonds sur HistAerial, et ce pour
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des temps de traitement et des besoins en mémoire (taille des vecteurs de caractéristiques) moins
importants. Nous avons par la suite étendu nos travaux a la classification d’'images en couleurs en
concaténant les caractéristiques extraites par les filtres de textures et des histogrammes de teintes.
Nous avons pu montrer la complémentarité de ces deux types d’informations. Nous avons égale-
ment proposé une approche pour réduire la taille des vecteurs de caractéristiques, avec des résul-
tats que nous qualifierons de contrastés : la taille des histogrammes est effectivement réduite de
moitié (cas du LCoLBP), mais des pertes plus ou moins conséquentes de taux de bonne classifica-
tion (accuracy) ont pu étre observées en fonction des jeux de données (e.g., 7.1% sur NewBarkTex).

Vision critique sur les travaux réalisés. Le jeu de données HistAerial que nous avons pro-
posé est principalement localisé sur la région Rhone-Alpes. Malgré la quantité de données qu’il
contient, il n'est probablement pas représentatif du cas général associé au territoire francais. De
plus, il ne représente que le cas oll une seule et unique classe est supposée présente sur les ima-
gettes (aux erreurs d’annotations pres). Il y a ici la nécessité de collecter des données sur l'en-
semble du territoire. Pour cela, nous avons développé le logiciel Gouramic, présenté en Annexe A,
qui permet non seulement d’obtenir des cartes d’occupation du sol de fagon interactive, mais éga-
lement de sauvegarder les annotations partielles fournies par I'utilisateur. L'application de ce logi-
ciel dans le cadre de TESTIS permet la génération de carte d’occupation du sol et de données an-
notées manuellement. Concernant les méthodes proposées, le choix de la combinaison des filtres
utilisés dans le LCoLBP a été réalisée de facon empirique, en se basant sur les types de motifs
représentés. D’autres filtres, et d’autres combinaisons de filtres de type LBP mériteraient d’étre
étudiées (e.g., ajout de I'histogramme du LBP avec mapping riu?). De plus, bien que le LCOLBP
soit relativement performant sur le jeu de données HistAerial, sa formulation non-invariante a la
rotation est peut-étre moins intéressante que celle des filtres existants associés au mapping riu?
dans le cas général (e.g, le CLBP). En pratique, nous ne pouvons ici que recommander |'évalua-
tion des méthodes sur les jeux de données d’intéréts. Le R-CRLBP permet quant a lui d’obtenir
des résultats au niveau de nombreux algorithmes de la littérature, mais il est moins performant
que les meilleures méthodes existantes. Celui-ci permet principalement de compléter la repré-
sentation du LCoLBP. Enfin, nous n’avons pas cherché a étudier I'intérét d'un voisinage différent
de (BR) = (8,{1,2,3}) dans ces travaux afin de limiter 'espace des parametres et le cott algorith-
mique associé a un P > 8. Il pourrait néanmoins étre intéressant de faire varier P et R afin d’obtenir
des résultats plus approfondis. Par ailleurs, les statistiques extraites des histogrammes générés
par des filtres de type LBP ne permettent pas d’obtenir des taux de classifications au niveau de
ceux provenant de 'utilisation de filtres seuls. Le gain en termes de complexité spatiale qu’ils per-
mettent d’obtenir reste quant a lui limité. Nous ne recommandons pas leur usage dans des envi-
ronnements ol les contraintes matérielles ne seraient pas fortes (e.g., les ordinateurs ont moins
de contraintes que les mobiles).
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Chapitre 4

Colorisation automatique

Ce chapitre présente les travaux réalisés portant sur la colorisation automatique des images aé-
riennes historiques. Notre but était ici double : (1) proposer une visualisation alternative des images
historiques aux géomaticiens afin de les aider dans le processus d’annotation, et (2) évaluer I'in-
térét des couleurs générées pour la classification. Nous nous sommes particulierement intéressés
al'utilisation de réseaux de neurones profonds a convolutions non-supervisés. Le choix d'une ap-
proche non-supervisée a été fait afin de pouvoir optimiser les réseaux de neurones d’'une part a
I'aide des images historiques, uniquement disponibles en niveaux de gris, et d’autre part en utili-
sant des images récentes en couleurs. Nous avons également étendu nos travaux a d’autres types
d’images afin d’évaluer une nouvelle méthode de colorisation que nous avons proposée.
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CHAPITRE 4. COLORISATION AUTOMATIQUE

4.1 Introduction

La colorisation automatique consiste a générer des images en couleurs a partir d'images pan-
chromatiques (voir figure 4.1). Le développement d’algorithmes de colorisation est un probléme
considéré comme étant mal posé (ill-posed) du fait de la non injectivité de la transformation re-
cherchée. En effet, les intensités des pixels sur les images en niveaux de gris représentent une
moyenne pondérée des couleurs. Il existe de fait une multitude de mélanges de couleur possibles
pour un niveau de gris donné. Pour les images numériques, si nous considérons un espace couleur
cible de type RVB, c’est a dire que chaque pixel couleur est représenté par 3 valeurs différentes, la
colorisation consiste alors a estimer 3 valeurs a partir d'une seule : I'intensité du pixel en niveaux
de gris. En pratique, il s’agit de réaliser cette estimation pour tous les pixels de I'image en se basant
sur des caractéristiques représentatives de son contenu, de telle sorte que I'image colorisée puisse
étre considérée comme étant réaliste. Ce critére étant subjectif, les algorithmes de colorisation
sont généralement évalués ou bien a 'aide d’'un questionnaire portant sur les images générées,
ou bien a 'aide de métriques quantitatives usuellement utilisées pour la génération de données
continues (régression). Des méthodes d’évaluations basées sur I'estimation d’'un score de qualité a
I'aide de réseaux de neurones profonds a convolutions ont également vu le jour. Celles-ci peuvent
cependant souffrir d'un biais d’apprentissage lié aux jeux de données sur lesquels les parametres
des réseaux ont été optimisés.

De nombreux travaux se sont ainsi intéressés a la problématique de la colorisation, que ce soit
a l'aide d’approches guidées par I'utilisateur (i.e., l'utilisateur indique la couleur attendue pour
certains pixels), d’approches automatiques [ISSI16; LMS16], ou d’approches hybrides [ZZI*17].
Parmi les approches existantes, 1'utilisation de réseaux de neurones entierement convolutifs est
devenue particulierement populaire pour la génération d’images colorisées. Ces approches se
basent en général sur la disponibilité d’images en couleurs réelles appariées a leur équivalent en
niveaux de gris. Dans le cas qui nous intéresse, les images aériennes historiques ne sont dispo-
nibles qu’en niveaux de gris, et elles ont été acquises a des dates et résolutions variées. Afin de tenir
compte de ce probléme, nous avons choisi d’explorer I'utilisation de méthodes non-supervisées
développées pour la translation d'image a image et 'adaptation de domaines (e.g.,, donner un
rendu photo-réaliste a des images de jeux vidéo). Pour la colorisation, tache qui nous intéresse
ici, ces approches permettent d’optimiser un DCNN de type encodeur-décodeur a I’aide d'images
non appariées en exploitant a la fois des images historiques disponibles en niveaux de gris, et
des images plus récentes disponibles en couleurs. Cela permet de tenir compte implicitement de
la variabilité des représentations disponibles au sein des données que 1'on cherche a coloriser
(échelles, lieux, dates, capteurs) lors de 'optimisation du réseau : les parametres du réseau sont
directement entrainés a partir de ces données.

FIGURE 4.1 - Exemples de peintures, de paysages et d’'images aériennes colorisées avec SpyncoGan.
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4.2 Travaux connexes et notions spécifiques

Cette section présente les travaux connexes aux méthodes que nous avons étudiées pour la
colorisation. Nous allons ici introduire les notions de réseaux de neurones adversaires génératifs
et de réseaux de neurones cycliques. Nous présenterons ensuite des travaux récents sur la colori-
sation d’images.

4.2.1 Réseaux de neurones adversaires génératifs (GAN)

Les réseaux de neurones adversaires génératifs (GAN) [GPAM™*14], ainsi que leurs variantes a
convolutions (DCGAN) [RMC15], sont composés de deux éléments :

« unréseau de neurones générateur G, qui va chercher a convertir un signal (vecteur) z, échan-
tillonné aléatoirement a partir d'une distribution connue (e.g., distribution gaussienne), en
une donnée cible réaliste G(z) par rapport a un ensemble de données réelles (une distribu-
tion).

¢ unréseau de neurones discriminateur D, qui va avoir pour tache de différencier les données
réelles et les données générées artificiellement par G (les fausses données).

Une fonction de coft est calculée a partir de la sortie du discriminateur. Elle permet de contraindre
le générateur afin qu’il génere des images de plus en plus réalistes; aptes a tromper le discrimina-
teur; et de contraindre le discriminateur a étre de plus en plus performant. Pour cela, on attribue
une étiquette positive (= 1) a chaque donnée réelle x et une étiquette nulle (= 0) a chaque don-
née générée G(z). La fonction de cotlit va comparer ces étiquettes aux prédictions réalisées par
D (D(x) avec 1, et D(G(z)) avec 0). La fonction de cott peut alors s’exprimer a I'aide de 1'équa-
tion (4.1) [GPAM™14], ou G cherche 2 maximiser I'erreur de classification commise par D, et D a
la minimiser. Cette fonction de cofit est calculée comme étant la moyenne statistique (espérance
E[.]) sur un batch de données.

ZeaN = m(}z'nmlgzx[[E[log(D(x))] +E[log(1-D(G(2))]] 4.1)

Le but final est ici d’atteindre un état proche de I'équilibre de Nash, ou le générateur et le
discriminateur obtiendraient tous deux des résultats satisfaisants. A noter que l'utilisation de la
fonction de cofit en sortie du discriminateur est communément nommée fonction de cotit adver-
saire (adversarial loss, ou GAN loss). Cette fonction de cofit peut étre utilisée pour contraindre des
réseaux de neurones de type encodeur-décodeur, les caractéristiques encodées remplacant alors
le signal échantillonné aléatoirement z. Par souci de clarté, nous exclurons les fonctions min et
max dans les notations des fonctions de cott par la suite.

4.2.2 Réseaux de neurones cycliques

Les réseaux de neurones cycliques [IZZE17; ZPIE17] ont fortement contribué a populariser les
méthodes de translation d'image a image. IlIs ont initialement été développés pour convertir des
images entre deux espaces de représentations (deux domaines), A et B, a I'aide d'un réseau de
neurones générateur de type encodeur-décodeur pour chaque translation (i.e., un réseau G pour
réaliser la translation de A vers B, et un réseau F pour réaliser la translation de B vers A).

Parmi les méthodes les plus populaires, le réseau de neurones Pix2Pix, proposé par Isola et
al. [IZZE17], requiert 'existence de données appariées (i.e., correspondance 1 : 1 entre une image
du domaine A et une image du domaine B) pour contraindre de facon supervisée la génération
d’images réalistes dans chacun des domaines. Afin de considérer un cas plus général, I'utilisation
de réseaux de neurones cycliques non-supervisés tels que CycleGan [ZPIE17] et MartaGan [LFW*17]
ont été proposés en exploitant une fonction de cotit adversaire permettant de contraindre 1'opti-
misation de chaque générateur. On parle alors de réseaux de neurones adversaires cycliques. En

85



CHAPITRE 4. COLORISATION AUTOMATIQUE

particulier, CycleGan a mis en avant l'utilisation d'un critere lié a la consistance cyclique (cycle-
consistency), qui consiste a contraindre 'optimisation des réseaux sous ’hypothése qu'une image
I € A convertie du domaine A vers B puis de nouveau vers A devrait étre égale a elle-méme (et vice
versa pour une image I € B). Ce principe est illustré par la figure 4.2. Afin d’améliorer la qualité des
résultats générés par ces réseaux, Liu et al. [LGCL18] ont proposé 'utilisation d’architectures im-
briquées, impliquant plusieurs générateurs par translation. Ma et al. [MFWCM18] se sont quant
a eux intéressés a I'amélioration de la translation d’'images représentants des instances d’objets
(i.e, un objet dans son contexte) en se basant sur le mécanisme d’attention (i.e., apprendre une
carte de caractéristiques complémentaires par multiplication afin de donner plus d’'importance a
certains éléments dans la scene). De facon similaire aux réseaux de neurones cycliques, 'utilisa-
tion de réseaux inter-domaines [LBK17; GGvdWB18] visant a apprendre un espace latent (enco-
dage) commun a deux domaines; ou plus [YXW18; CCK*18]; a également été étudiée. Dans nos
travaux, nous nous sommes particulierement intéressés aux réseaux de neurones cycliques non-
supervisés [ZPIE17] pour la colorisation. Cette approche présente 1'avantage de ne pas nécessiter
d’images appariées et ne contraint pas la génération d'un encodage identique pour les images de
chaque domaine, ce qui lui permet d’étre particulierement générique. De plus, de nombreuses
implémentations sont disponibles pour ce type de méthode dans les frameworks d’apprentissage
profond les plus utilisés a ce jour (e.g., Pytorch, Tensorflow). Ce dernier point a facilité la mise en
place de nos travaux par rapport a I'existant. Nous revenons plus en détail sur ce type de réseau
dans la section 4.3.

Dg Dy
G A A G
D D /\ = ~ " /\ -
A B Iy Ip N~ Iy Ip N Iy Ip
A S 3 F
- A | B A B

A B i cycle-consistency
\_/ H 1 ist ./ “.\. forr loss
cycle-consistency et
F loss ' .&.. _/.

(a) | (b) (e)

FIGURE 4.2 - [llustration du principe d'un réseau de neurones cyclique non-supervisé basé sur deux GAN
(a) exploitant la consistance cyclique (b)(c). Schéma adapté de [ZPIE17].

4.2.3 Approches pour la colorisation

La colorisation est une forme particuliere de translation d’'image a image, visant a convertir
une image en niveaux de gris en une image en couleurs (i.e., on souhaite halluciner les canaux
couleur a partir de la texture). Les plus récentes avancées en colorisation ont été réalisées a ’aide
de réseaux de neurones profonds entierement convolutifs.

Approches supervisées

Zhang et al. [ZIE16] ont proposé de raffiner (finetuning) un réseau de neurones entierement
convolutif afin de générer les canaux couleur AB (de I'espace couleur LAB) a partir de I'image d’in-
tensité (luminance, L) représentée en niveaux de gris. Pour cela, les auteurs ont cherché a quanti-
fier 'espace couleur LAB afin de traiter le probleme de la colorisation comme une tache de classifi-
cation au pixel pres, ol1 chaque classe correspondrait a une valeur de I'espace LAB quantifié. Cette
approche basée sur un espace couleur quantifié a été aussi utilisée par Larsson et al. [LMS16]. Lars-
son et al. ont également choisi de concaténer les caractéristiques extraites par différentes couches
d'un DCNN (VGG-16 pré-entrainé sur ImageNet) pour générer des canaux de teintes et de sa-
turation a partir d'une image en niveaux de gris. lizuka et al. [ISSI16] ont quant a eux présenté
une méthode combinant des caractéristiques extraites a plusieurs échelles a partir d'un réseau de
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FIGURE 4.3 - Illustration des méthodes de colorisation proposées par (a) Zhang et al. [ZIE16] et (b) lizuka et
al. [ISSI16].

neurones de type encodeur-décodeur. Ils utilisaient I'encodeur pour générer des caractéristiques
pour la colorisation et la classification. Les auteurs indiquent dans leurs travaux que I'intégration
jointe de caractéristiques liées a la fois a la classification et a la colorisation permet de guider I'op-
timisation du réseau en tenant compte de la sémantique contenue dans les images. Cette idée a
ensuite été reprise par Vitoria et al. [VRB20], ol les auteurs ajouteérent un discriminateur a un ré-
seau quasiment identique a celui de lizuka et al. afin d’exploiter la fonction de cotit adversaire, et
ainsi améliorer la génération d'images colorisées. Nazeri et al. [NNE18] ont quant a eux proposé
une approche exploitant la fonction de cott adversaire pour générer des images en couleurs, régu-
larisée par la comparaison de 'image générée et de celle réellement en couleurs. Les méthodes de
Zhang et al. [ZIE16] et de lizuka et al. [ISSI16], probablement les plus marquantes de ces derniéres
années, sont illustrées sur la figure 4.3.

Approches hybrides

Nous définissons ici les approches hybrides comme étant des méthodes exploitant des réseaux
de neurones profonds combinés a des informations fournies par un utilisateur afin de guider le
processus de colorisation. Sangkloy et al. [SLF*17] se sont intéressés a I'utilisation d’un réseau de
neurones de type encodeur-décodeur combiné a une fonction de cotit adversaire et a des traces
utilisateurs pour coloriser automatiquement des dessins et des images. Zhang et al. [ZZ1*17] ont
proposé d’intégrer aléatoirement des informations locales (traces utilisateurs) et globales (histo-
gramme couleur) au sein d'un réseau de type encodeur-décodeur afin de guider la colorisation.
Lintégration aléatoire de ces informations permet d’envisager plusieurs stratégies de colorisations
une fois le réseau entrainé, a savoir : réseau seul, réseau avec informations locales, réseau avec in-
formations globales (histogramme extrait d'une autre image), réseaux avec informations locales et
globales. He et al. [HDL* 18] ont étudié I'intégration d’informations globales issues d'une image de
référence en couleurs au travers d'un réseau de neurones supplémentaire. Pour cela, les auteurs
ont cherché a calculer des cartes de similarité entre I'image a coloriser et I'image de référence.
Cette information est ensuite intégrée en entrée d'un réseau encodeur-décodeur en concaténant
laluminance de I'image a coloriser avec les cartes de similarité et les canaux couleur de I'image de
référence.
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Approches non-supervisées

Les approches présentées ci-dessus sont principalement supervisées, au sens ot chaque image
en niveau de gris est appariée a une image en couleurs. Cela permet d’introduire des contraintes
fortes quant aux couleurs que I'on souhaite générer, mais rend difficile I'intégration d’images uni-
quement disponibles en niveaux de gris. Malgré tout, il semblerait que les approches supervisées
donnent des résultats satisfaisants sur des images historiques trés proches des jeux de données
sur lesquelles elles ont été entrainées (voir [ZIE16; ISSI16]). Des chercheurs se sont néanmoins in-
téressés a I'utilisation d’approches non-supervisées pour la colorisation afin de pouvoir entrainer
des réseaux de neurones a convolutions directement a partir d'images non appariées. C’est par
exemple le cas de Cao et al. [CZZY17], qui ont proposé de guider I'entrainement d'un réseau gé-
nérateur de type encodeur-décodeur a 'aide d'un réseau discriminateur. En plus d’'une GAN Ioss,
les auteurs ont suggéré de contraindre la génération d’images colorisées spatialement réalistes en
convertissant les images générées vers une représentation en niveaux de gris et en les comparant
aux images initiales. Dans nos travaux, nous avons repris cette contrainte en la formulant dans un
réseau de neurones cyclique (voir section 4.4).

4.3 Versune colorisation automatique des images aériennes historiques

Nous présentons ici nos travaux sur la colorisation automatique des images aériennes his-
toriques. Notre but était d’évaluer 'intérét des réseaux de neurones cycliques pour coloriser de
facon non-supervisée ces données. Il s’agit, a notre connaissance, des premiers travaux réalisés
sur ce sujet. Notre approche est décrite dans cette section et résumée sur la figure 4.4 : (1) création
d’'un jeu de données constitué d’imagettes extraites d'images aériennes historiques et d'images
aériennes récentes, (2) entrainement d’'un réseau de neurones générateur adversaire cyclique, (3)
colorisation a 'aide du réseau entrainé, et (4) reconstruction des images aériennes et remplace-
ment de la texture générée par le réseau (fleches sur la figure 4.4). Sur cette figure, les images en
niveaux de gris et les images en couleurs n'ont pas été appariées (acquisitions a différentes dates
et coordonnées géographiques). On remarquera également que nous avons choisi de travailler par
imagettes de 1024 x 1024 pixels afin de tenir compte des contraintes matérielles liées a l'utilisation
de DCNN (mémoire disponible lors de I'inférence). Nous détaillons les données que nous avons
utilisées en section 4.3.3.

Outre les données, la méthode de colorisation d’'images aériennes historiques développée est
formée de deux composants principaux. Le premier est Col-Cycle, un réseau de neurones a convo-

2 — Entrainement de Col-Cycle 1024 x 1024 pixels

Images aériennes historiques

Images récentes en couleurs

1~ Création d’un jeu de données non appariées 4 — Amélioration de la colorisation des images VHR par remplacement de texture

FIGURE 4.4 - Méthode de colorisation non-supervisée d’'images aériennes historiques proposée.
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lutions basé sur des représentations cycliques consistantes, similaire a CycleGan [ZPIE17]. Le se-
cond est une approche simple mais efficace de remplacement de textures, que nous avons utilisée
afin d’améliorer la visualisation des images de tres hautes résolutions constituées d'une mosaique
d’imagettes colorisées indépendamment les unes des autres. Nous décrivons ces deux compo-
sants ci-apres.

4.3.1 Col-Cycle
Description du réseau

Col-Cycle est un réseau de neurones entierement convolutif. Il est directement inspiré de Cy-
cleGan [ZPIE17]. Comme ce dernier, Col-Cycle est basé sur deux GAN qui vont chercher a colla-
borer afin de générer des images réalistes entre deux domaines (niveaux de gris et couleur). Les
deux GAN ont la méme architecture (hyperparametres identiques), mais leurs parameétres (poids)
ne sont pas partagés.

Soit A le domaine des images en niveaux de gris, et B le domaine des images en couleurs.
Dans notre cas, les images en couleurs sont représentées dans I’espace couleur RVB afin d’outre-
passer I'absence de relations linéaires entre les canaux couleur et l'intensité dans 1'espace LAB,
classiquement utilisé en colorisation supervisée. Nous supposons en effet qu'il est plus aisé d’ap-
prendre une translation linéaire de B vers A qu’une translation non linéaire. Nous définissons les
deux GAN chargés de réaliser la translation de A vers B et la translation de B vers A de la manieére
suivante : GANp—g = {G, Dp} et GANg— A = {E Da}. Ici, G et F sont les réseaux générateurs, et D et
Dg sont les réseaux discriminateurs associés aux images des domaines A et B respectivement.

L'architecture des réseaux générateurs G et F de Col-Cycle prend une forme encodeur-décodeur
(voir figure 4.5). IIs possedent une couche de convolutions dite d’entrée, qui va étre chargée de
transformer 'image en une représentation intermédiaire. Celle-ci préserve la taille de I'image.
Cette couche d’entrée est suivie de deux couches de sous-échantillonnages, qui vont permettre
d’encoder 'information en augmentant le nombre de caractéristiques. Viennent ensuite 3 couches
résiduelles, telles que définies dans le chapitre précédent (voir ResNet). Les couches résiduelles
vont encoder I'information sous-échantillonnée en préservant les informations nécessaires pour
le décodage. Elles vont également permettre de rétropropager le gradient plus en amont dans le
réseau, ce qui devrait a priori améliorer I'optimisation de I’encodeur. Les couches résiduelles sont
suivies de deux couches de sur-échantillonnage, et d'une couche de sortie qui va convertir la re-
présentation profonde en une image du domaine cible. Dans notre cas, la couche d’entrée est
composée de 64 filtres de 7 x 7 pixels. Elle génere ainsi une représentation intermédiaire de 64 ca-
nauy, 1 par filtre. La couche de sortie génére des images avec 3 canaux, en utilisant des filtres de 7
x 7 pixels. Toutes les autres couches sont constituées de filtres de 3 x 3 pixels. Tous les filtres sont
appliqués avec du zéro padding (i.e., ajout de pixels a 0 au bord de I'image) afin de préserver la
taille des images qu’ils prennent en entrée. Le sous-échantillonnage est ici réalisé a 'aide de la va-
leur du pas (stride value égale a 2) des filtres de convolutions. Les couches de sur-échantillonnage
vont réaliser I'opération opposée des couches de sous-échantillonnage. En pratique, nous avons
choisi d’utiliser un sur-échantillonnage classique (e.g., interpolation bilinéaire) suivi de filtres de
convolutions a la place de convolutions transposées afin de limiter les artefacts visuels de type
damier (checkerboard artifacts) [ODO16]. Des opérations de normalisation par instance (instance
norm, IN) sont par ailleurs utilisées afin d’améliorer la qualité des images générées [UVL16].

Le discriminateur est un réseau de neurones entierement convolutif dont I'architecture est
décrite sur la Figure 4.5. Seule particularité de ce réseau : un pooling global (i.e., dont la taille est
égale a 'image qu’il prend en entrée) est appliqué sur la derniere couche de caractéristiques afin
de pouvoir obtenir une valeur unique indiquant si I'image est réelle ou fausse.
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FIGURE 4.5 — Architecture des générateurs et des discriminateurs utilisés dans Col-Cycle. (a) Générateurs F
et G. (b) Discriminateurs Dy et Dg. Les poids de chaque réseau ne sont pas partagés. Le parameétre n indique
le nombre de filtres, k la taille du filtre, et s la valeur de pas (stride).

Fonctions de cofits

Les fonctions de cofits utilisées ici sont similaires a celles utilisées par [ZPIE17].

GAN losses. Le générateur et le discriminateur de chaque GAN sont entrainés a 'aide de la GAN
loss (voir équation (4.1)), que nous reformulons ici sous forme quadratique. Cette reformulation
est inspirée des travaux de [MLX"17]. L'équation (4.2) est associée au GAN,— g, et I’équation (4.3)
est associée au GANp—. 5. Cette formulation, dite minimax, reprend celle de de I'équation 4.1.

Loan,—s = EplIDe(p)I3] + Eallll—Dg(GU)I3] 4.2)
LoaNg—, = EallDan)I3] + Eglll—Da(F(Ig)I3] 4.3)

En pratique, la GAN loss que nous avons re-définie ci dessus est implémentée en cherchant
a minimiser des fonctions de cots différentes pour le générateur et le discriminateur [MLX*17].
Pour la minimisation, on considére les images réelles étiquetées par un 1, et les images générée
étiquetées par un 0. Loptimal pour le générateur G est alors obtenu en minimisant I'équation
(4.4), et celui pour le discriminateur Dg en minimisant ’équation (4.5). Ces équations sont aussi
valables pour GANg— 4 en intervertissant les indices A et B, et en remplacant G par F. A noter que
I'objectif pour le discriminateur est alors un minimum, et non un maximum comme représenté
par la fonction minimax. Par abus de langage, on pourrait ici parler d'une fonction de cofit "duale"
pour le discriminateur.
ZL6 = EallDp(Gx) - 113] (4.4)

%, = EgllIDg(Ig) — 1115] + Ea[ID(G(A)lI3] (4.5)

Cycle-consistency loss. Nous exploitons également la fonction de cofit liée a la consistance cy-
clique afin de contraindre le réseau a générer des images dont la représentation dans le domaine
cible se rapproche des images réelles [ZPIE17]. Les réseaux générateurs sont en effet capable de
générer plusieurs images différentes qui permettront de satisfaire les fonctions de cofit de type
GAN. Afin d’ajouter une contrainte supplémentaire qui va guider les représentations que I'on veut
obtenir, nous allons considérer le fait que I'image translatée du domaine A vers B puis de nouveau
vers A devrait étre égale a elle-méme. Cela permet d’utiliser directement les images de chaque do-
maine afin de guider '’entrainement de chacun des réseaux générateurs, et ce sans avoir d'images
appariées. On remarquera ici que les fonctions G(F(.)) et F(G(.)) forment alors des auto-encodeurs.
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Pour cela, la fonction de cofit liée a la consistance cyclique est définie a I'aide de la norme L1 (voir
équation (4.6)). Les auteurs de [ZPIE17] ont également essayé d’utiliser la norme L2 pour cette
fonction de coft, sans observer d’amélioration particuliere.

Leycle =EpllIGFIR)) —Igll1]  + EalllIF(GUA)) —Iall1] (4.6)

Identity loss. Enfin, nous utilisons la fonction de cott identité afin d’aider a préserver les infor-
mations liées au domaine cible. Pour cela, les réseaux G et F doivent générer des images proches
de la réalité lorsqu'ils translatent des images du domaine cible, vers le méme domaine cible (e.g.,
avec J € B, on cherche a obtenir G(J) = J). Cette fonction de cofit est définie par I'équation (4.7).
En pratique, cette fonction permet de réduire les cas ou une seule couleur prédominante serait
prédite.

Lidentiry = EllIGUB) —Igllhi]  + EalllF(Ia) —Ialli] (4.7)

La fonction de cofit totale est alors définie comme une somme des fonctions de cotit ci-dessus
(voir equation (4.8).
&L = L6ANy—p + LGANg—p + Leycle + Lidentity (4.8)

Différences avec CycleGan

Les différences entre Col-Cycle et CycleGan sont ici mineures d'un point de vue conceptuel.
Elles résident principalement dans la quantité de couches résiduelles utilisées. Nous avons fait
le choix d’en utiliser 3, contre 9 pour CycleGan. Cela nous permet de réduire significativement la
quantité de parametres a optimiser, mais également de réduire le nombre de cartes de caractéris-
tiques intermédiaires stockées en mémoire sur les cartes graphiques lors de 'inférence. De fait,
nous avons pu travailler avec des imagettes de tailles relativement grandes par rapport au réseau
originel (1024 x 1024 contre 256 x 256). Travailler avec des images plus grandes lors de 'inférence
est utile pour diminuer I'effet mosaique observé lors de la "reconstruction" des images aériennes
historiques colorisées (voir section suivante).

4.3.2 Reconstruction des images colorisées

La seconde étape de notre approche vise a reconstituer les images de trés hautes résolutions
(VHR) a l'aide des imagettes colorisées avec Col-Cycle. Des exemples de résultats sont proposés
ici:http://eidolon.univ-1lyon2.fr/“remil/Col-Cycle-Res/.

Reconstitution et effet mosaique

Nous commencons par extraire toutes les imagettes de taille 1024 x 1024 pixels sans recouvre-
ment a partir des images VHR, et nous stockons les coordonnées correspondantes. Nous utilisons
ensuite Col-Cycle pour coloriser chacune de ces imagettes indépendamment les unes des autres.
Enfin, nous reconstituons I'image VHR en concaténant spatialement les imagettes colorisées a
I'aide de leurs coordonnées initiales. Ce processus est particulierement simple a implémenter et
efficace d'un point de vue computationnel (le fait de ne pas avoir de recouvrement entre les ima-
gettes évite la redondance lors des traitements).

Cependant, nous pouvons observer sur la figure 4.6 que les imagettes colorisées puis concaté-
nées semblent produire, par endroits, des discontinuités locales faisant ressortir la structure des
imagettes dans I'image. Nous nommons cet effet non désiré "effet mosaique", par analogie avec
les mosaiques d’images. En télédétection, de telles mosaiques apparaissent régulierement, a plus
grande échelle, lors de la visualisation d’images aériennes et satellites acquises a des dates diffé-
rentes.

Les convolutions étant par définition invariantes a la translation spatiale dans I'image, nous
pouvons supposer que cet effet mosaique est lié a I'utilisation d’opérations de normalisation par
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instance dans le réseau. Celles-ci vont modifier I'échelle des valeurs possibles pour chaque ima-
gette par rapport a elle-méme, sans tenir compte des imagettes qui lui sont adjacentes. Retirer
les opérations de normalisation n’est cependant pas désiré : leur ajout dans la littérature avait
été suggéré afin d’améliorer I'optimisation des réseaux de neurones profonds a convolutions (voir
chapitre 2). Nous remarquons néanmoins que I'effet mosaique que nous observons peut-étre in-
duit par les couleurs générées, mais aussi par la luminosité des pixels (i.e., la texture en niveaux
de gris) qui est elle-méme modifiée par le réseau (I’espace couleur cible étant ici le RVB). En effet,
malgré la contrainte introduite par la fonction de cofit cyclique, il est possible que le réseau ait
inventé des structures qui n’existent pas dans les images initiales en niveaux de gris.

Remplacement de textures

Afin de trouver une solution efficace au probléme posé par 'effet mosaique, nous proposons
de séparer les composants liés a la texture et a la couleur des images RVB générées avec Col-Cycle.
Pour cela, nous convertissons les images VHR colorisées dans I’espace LAB. Observons que les
canaux représentant la couleur dans I'espace LAB (canaux A et B) ont une représentation spatiale
plus lisse (moins de hautes fréquences) que la texture (canal de luminance L), rendant la texture
plus prompte a représenter des hautes fréquences non désirées. Cette observation est a la base
d’algorithmes d’encodage tels que le JPEG, ou les canaux couleur sont sous-échantillonnés par
rapport a 'information de luminance. Dans notre cas, nous proposons de remplacer le canal de
luminance généré par Col-Cycle a I'aide de I'image VHR initiale en niveaux de gris (i.e., L:= IXHR),
avant de reformer 'image LAB en concaténant les canaux correspondants. L'image LAB est en-
suite reconvertie dans I'’espace RVB a des fins de visualisation. Par abus de langage, nous avons
nommé cette approche "remplacement de textures" (texture replacement). Cette idée est inspirée
par les travaux de colorisation supervisée qui visent a générer directement les canaux AB de 'es-
pace LAB, en considérant I'image en niveaux de gris [ comme étant la luminance.

On observe sur la figure 4.6 que le remplacement de textures permet effectivement d’améliorer

Remplacement de texture

™.

FIGURE 4.6 — Résultats visuels mettant en avant I'effet mosaique (ellipsoides oranges). Avant (a gauche) et
apres (a droite) le remplacement de textures. Les ellipsoides vertes indiquent les corrections réalisées. Les
ellipsoides bleues mettent en avant la contribution des composants couleur a I'effet mosaique.
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la qualité de la visualisation des images VHR générées en réduisant 'effet mosaique (ellipsoide
vertes sur la figure 4.6). Cependant, cette approche seule ne permet pas de supprimer l'intégralité
des incohérences de couleur visibles (ellipsoide bleues sur la figure 4.6). Lutilisation d’algorithmes
de transferts de couleur (e.g., mise en correspondance d’histogrammes) inter-imagettes est une
piste possible a I'amélioration des résultats obtenus, mais il faudrait alors choisir quelle serait
I'imagette source dont nous souhaiterions préserver la couleur.

4.3.3 Données et entrainement
Données

Nous avons travaillé avec 10 images aériennes en couleurs de trés hautes résolutions acquises
en France, et avec les 81 images aériennes présentent au sein de HistAerial (voir chapitre 3). Ces
images ont été découpées en imagettes de 1024 x 1024 pixels pour un total de 1702 imagettes en
couleurs (recouvrement de 50% entre deux imagettes) et de 572 imagettes en niveaux de gris (pas
de recouvrement). Des exemples d’'imagettes utilisées pour I’entrainement de Col-Cycle sont pré-
sentées sur la figure 4.7. On constate la diversité des représentations de couleur possibles.

Entrainement de Col-Cycle

A Tl'aide de ces données, nous avons entrainé Col-Cycle durant 200 epochs via la librairie Py-
torch (version 0.4) et deux cartes graphiques NVidia GTX 1080 Ti. Le taux d’apprentissage a été
fixé a 0.0002, avec une taille de batch de 2 (1 image par GPU avec un découpage aléatoire d’aires
de 512 x 512 pixels avec retournements verticaux et horizontaux aléatoires pour "augmenter" les
données lors de 'entrainement - ces augmentations n’ont pas lieu lors de I'inférence). Apres 100
epochs d’entrainement, nous diminuons linéairement le taux d’apprentissage vers zéro afin d’ai-
der a la convergence du réseau. Le remplacement de textures n’est pas utilisé lors de I’entraine-
ment, mais uniquement lors de I'inférence.

4.3.4 Résultats et discussions

Nous avons mis en place deux expériences pour évaluer I'intérét de la colorisation pour I’ana-
lyse des images aériennes historiques.

FIGURE 4.7 — Exemples d’'imagettes utilisées pour 'entrainement de Col-Cycle.
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FIGURE 4.8 — Résultats de I'évaluation par note moyenne d’opinions visant a déterminer la qualité de la
couleur des images générées. Plus la valeur est élevée, meilleure est la qualité.

Evaluation par note moyenne d’opinions

Nous avons réalisé une évaluation par note moyenne d’opinions afin d’évaluer la qualité des
imagettes colorisées apres 60 epochs d’entrainement de Col-Cycle. Les études d’opinions sont ré-
gulierement utilisées lorsque I’évaluation d'une quantité est subjective. Dans notre cas, nous cher-
chons a faire évaluer par des étres humains la qualité de la couleur d’images générées. Le choix de
prendre les images générées apres 60 epochs a été fait de facon arbitraire.

Afin de réaliser cette évaluation, nous avons élaboré un questionnaire et demandé a des per-
sonnes anonymes d'y répondre sur la base du volontariat (répondants). Le questionnaire avait
pour but de donner un score subjectif a la qualité de la couleur de 50 imagettes de 1024x1024
pixels sélectionnées aléatoirement. Parmi ces imagettes, 15 étaient des images réelles, et 35 étaient
des images colorisées. Les répondants avaient connaissance de ce fait, mais ne savaient pas quelles
étaient les images réelles et les images colorisées a I’aide de Col-Cycle. Pour chaque image, chaque
répondant devait fournir un score de qualité entre 1 et 5, la note la plus élevée étant la meilleure. 11
n’était pas demandé aux répondants de classer les images selon leur type (image réelle ou colori-
sée). Les répondants devaient également indiquer s'ils avaient de I'expérience quant a I'utilisation
d’images aériennes ou satellites dans leur activité professionnelle. Les répondants avec une telle
expérience ont été catégorisés en tant que "experts" (i.e., individus ayant '’habitude des données
visualisées), et les autres en tant que "non-experts".

Un total de 44 répondants (a date du 06/2020) a rempli notre questionnaire, dont 38.64% d’ex-
perts et 61.36% de non-experts. Les notes moyennes d’opinions obtenues sont résumées sur la
Figure 4.8. D’un point de vue global, les images colorisées ont obtenus des notes presque égales
aux images réellement en couleurs, que ce soit pour les experts ou les non-experts. Une 1égere
différence en faveur des images en couleurs est cependant visible (0.1 point). Au final, nous avons
conclu de ce questionnaire que les images colorisées proposées semblent relativement réalistes.

Nous pouvons envisager 'utilisation de Col-Cycle afin de proposer une visualisation alterna-
tive aux images aériennes historiques panchromatiques. Cette visualisation devrait permettre de
simplifier la tiche d’annotation dans le cadre de TESTIS. Les images en couleurs sont en effet
considérées comme étant plus faciles a interpréter que les images en niveaux de gris. Cette ap-
proche devrait également étre utile afin de proposer des visualisations intéressantes du territoire
dans le passé, dans un but d’archivage et de compréhension de I'environnement.

4.3.5 Application ala classification

Afin d’évaluer I'apport de la colorisation pour la classification des images aériennes histo-
riques, nous avons appliqué Col-Cycle avec remplacement de textures a 'ensemble des images
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Beaurepaire, France, 1979 Caluire et cuire, France, 1981

FIGURE 4.9 — Exemples d’'images aériennes VHR colorisée avec Col-Cycle. En haut, images panchroma-
tiques. Au milieu, résultats avant remplacement de textures. En bas, résultats aprés remplacement de tex-
tures. La bande noire a droite correspond aux bordure des images aériennes historiques scannées. Tailles
originelles = 8800 x 7000 pixels et 8300 x 7000 pixels. Nous invitons le lecteur a zoomer sur la version élec-
tronique pour mieux percevoir les différences.

aériennes VHR de HistAerial. Des exemples de telles colorisations sont présentés sur la figure 4.9.
Nous avons ensuite régénéré le sous-ensemble de données composé d'imagettes de 100 x 100
pixels pour les 7 classes d’occupation du sol, résultant une version colorisée de ces imagettes. Pour
chaque imagette considérée dans 'espace couleur LAB, nous avons extrait les caractéristiques de
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FIGURE 4.10 — Taux de bonne classification sur le jeu de données HistAerial (7 classes d’occupation du sol) a
I'aide de filtres de textures et de statistiques couleur. Les résultats sont présentés pour des images colorisées
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avec Col-Cycle considéré a différentes epochs.

textures a 'aide de filtres de textures sur le canal de luminance (L, qui est ici égal a I'image en
niveaux de gris initiale), et nous avons extrait des statistiques représentatives de la couleur a par-
tir des canaux AB. Les filtres de textures considérés ici sont le LCoLBP, le CLBP le XCSLBP et le
LBP avec mapping riu?, tels que décrits dans le chapitre 3. Pour les statistiques couleur, nous
avons calculé la moyenne et la déviation standard des valeurs des canaux A et B séparément. Nous
avons également calculé les histogrammes de ces canaux, a partir desquels nous avons calculé 4
statistiques (aplatissement, asymétrie, variance, maximum). Au total, nous avons donc ajouté 12
caractéristiques de couleur aux caractéristiques de texture. A I'aide de ces vecteurs de caractéris-
tiques, nous avons entrainé une forét aléatoire d’arbres décisionnels dont les parameétres ont été
obtenus en suivant le processus décrit dans le chapitre 3. Le choix d’utiliser des filtres de textures
combiné a des statistiques liées a la couleur nous permet de déterminer explicitement I"apport
des couleurs générées par rapport aux caractéristiques extraites des filtres de type LBP.

Les résultats obtenus sont présentés sur la figure 4.10 en considérant les images colorisées
a différentes epochs de 'entrainement de Col-Cycle. Nous pouvons observer que I'ajout de ca-
ractéristiques extraites des canaux couleur générés tend a améliorer les taux de bonne classifi-
cation sur HistAerial pour I'ensemble des filtres de textures considérés, avec un gain de 1.3% en
moyenne. Nous observons également qu’entrainer le réseau plus longtemps ne génére pas néces-
sairement de gain trés important en classification. Ce phénomene peut s’expliquer par le manque
de contréle que nous avons sur 'entrainement de réseau de neurones de type GAN. Par opposi-
tion aux réseaux de neurones classiques, utilisés pour la classification par exemple, il est difficile
de déterminer si (et quand) les parametres du réseau ont atteint un état optimal ou non. Ce point
s’explique également par I'absence de contraintes explicites quant a la classification, que nous au-
rions pu inclure afin de guider le réseau vers la génération d'un domaine couleur adapté a cette
tache. Ici, nous avons plutdt cherché a évaluer 'intérét implicite de la colorisation pour la classifi-
cation des images aériennes historiques.

4.3.6 Conclusion partielle

Nous avons présenté une approche non-supervisée pour la colorisation automatique d'images
aériennes historiques de trés hautes résolutions. Les colorisations générées apres 60 epochs d’en-
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tralnement ont été jugées correctes (note moyenne d’opinions) par deux groupes d’humains com-
posés de personnes ayant déja travaillé avec des données aériennes et satellites, et des personnes
inexpérimentées. Cela nous permet d’envisager I'utilisation de la colorisation pour aider les géo-
maticiens a annoter les images aériennes historiques, les images en couleurs étant communément
jugées plus faciles a interpréter que les images panchromatiques. Nous avons également montré
que les couleurs générées a différentes epochs permettaient d’améliorer légerement les taux de
bonne classification par rapport a l'utilisation de la texture seule, ce qui laisse envisager 'inté-
gration d'une étape de colorisation préalable a la classification. Nous avons cependant remarqué
I'apparition d'un effet mosaique sur les images VHR colorisées que nous avons supposé lié a I'utili-
sation d’opérations de normalisations au sein du réseau. Afin de lutter contre cet effet indésirable,
nous avons proposé une approche simple et efficace dite de remplacement de textures. Cepen-
dant, certaines aberrations liées a la couleur persistent, et un traitement automatique a posteriori
ne nous parait pas trivial. Il serait par exemple possible de considérer des imagettes avec recouvre-
ment durant 'entrainement, et de contraindre la représentation des histogrammes couleur calcu-
lés sur les zones qui se superposent.

4.4 Vers une amélioration de la colorisation

Encouragés par nos travaux sur la colorisation non-supervisée des images aériennes histo-
riques, nous nous sommes intéressés au développement d’'un nouveau réseau de neurones pro-
fond a convolutions afin d’obtenir des colorisations encore plus proches des images réelles. Pour
cela, nous avons proposé une architecture dite pseudo-cyclique, basée sur des a priori empiriques.
Ces a priori ont été explicitement introduits sous la forme d’'une translation "artisanale" (Hand-
crafted Translation, H;). Nous avons également utilisé une pyramide spatiale de sortie (Output
Spatial Pyramids, OSP) afin de contraindre la génération de caractéristiques a plusieurs échelles.
Nous avons observé expérimentalement que la Handcrafted Translation pouvait étre une solution
viable pour supprimer I'un des deux GAN utilisés par les approches cycliques telles que Col-Cycle
ou CycleGan (voir figure 4.11). Nous présentons ces éléments dans les paragraphes suivants.

N A
A B
~1,, Wl

(a) (b)

FIGURE 4.11 — Schéma d’un réseau de neurones cyclique [ZPIE17] (a) et d'un réseau de neurones pseudo-
cyclique. G et F sont des réseaux générateurs, D et Dg des réseaux discriminateurs, et {H,} représente une
Handcrafted Translation du domaine B vers A. On remarquera I’absence de Dy sur la sous-figure (b).

4.4.1 Blocsdebase
Handcrafted Translation

Le terme de Handcrafted Translation est ici utilisé dans le contexte de translation d'image a
image, auquel appartiennent les méthodes que nous utilisons. Par opposition aux translations ap-
prises a I’aide d'un réseau de neurones a convolutions, les Handcrafted Translation sont définies a
I'aide d’un a priori que nous avons sur le probleme a résoudre (i.e., ce sont des filtres "classiques").
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Dans un contexte de colorisation, nous rappelons que notre but est d’optimiser un réseau gé-
nérateur G qui va générer une image en couleurs Iz € B = R3*W*H 3 partir d’'une image en niveaux
de gris I € A = RU"W*H, Nous définissons alors la Handcrafted Translation H, comme étant une
fonction capable d’effectuer la translation inverse, de B vers A. Afin d’étudier I'intérét d'une H;
pour contraindre la colorisation d’images a 'aide d’'un réseau générateur, et non pas l'inverse,
nous avons souhaité utiliser une fonction H; aussi simple que possible. Nous avons pour cela uti-
lisé I'une des premiéres représentations de I'intensité en niveaux de gris : 1a somme pondérée des
canaux RVB. Pour un pixel x’/ positionné sur la i’" ligne et la j'* colonne d’une image numé-
rique I € R¥*W*H J'opération correspondant 2 H; est alors exprimée a I'aide de I’équation (4.9).
Dans cette équation, les poids ont été fixés afin de mimer la vision biologique humaine, plus sen-
sible aux teintes vertes, que rouges, que bleu. A noter que H; est alors définie comme la fonction
Gray utilisée par Cao et al. [CZZY17].

x =0.299 x xp! +0.587 x x! +0.114 x x’ (4.9)

gris

Comme cette fonction représente une somme pondérée des canaux RVB avec des poids cons-
tants, elle peut étre facilement implémentée a 1'aide d'une convolution 1x1 dont les poids sont
fixés. Lutilisation d’'une convolution 1x1 présente comme avantage de préserver la majorité des
structures spatiales présentent au sein des images en entrée, telles les formes, les contours ou les
textures. Elle permet également l'intégration de cette fonction au sein des librairies d’apprentis-
sage profond déja en place, ce qui permet de rétropropager le gradient via H; (cycle-consistency).
Par conséquent, formuler la translation H; a I’aide d'une convolution 1x1 permet de directement
contraindre les propriétés spatiales des images couleur générées par G. En pratique, H; a pour but
de remplacer GANg—a = (EDj) : F est directement remplacé par Hy, et Dy ne devient plus néces-
saire étant donné que H; est une fonction déterministe (i.e., si G(I5) est correctement colorisée,
H; donnera un résultat proche de celui espéré). Le terme pseudo-cyclique se comprend ici par le
remplacement de I'un des deux GAN par une transformation fixée (le cycle existe bien, mais seule
la moitié de celui-ci est apprise).

Lopération H; définie a I'aide d’un filtre 1x1 est par ailleurs a opposer aux translations ap-
prises a 'aide de filtres de convolutions, qui ne permettent pas de garantir la préservation des
propriétés spatiales et des hautes fréquences des images traitées. En effet, d'une part, les convolu-
tions spatiales tendent a lisser les images [UVL18]. D’autre part, les réseaux générateurs cycliques
(e.g., G et F avec Col-Cycle et CycleGan) peuvent apprendre a satisfaire un critére d’optimisation
sans chercher a préserver les structures spatiales entre les domaines concernés par la translation,
hallucinant alors des structures qui n’existent pas [IZZE17]. Le fait de pouvoir modifier les struc-
tures spatiales est une propriété particulierement intéressante pour des applications telles que le
débruitage [XXC12], la segmentation sémantique [BKC17], ou la modification d’objets [RRVB17],
mais elle n'est pas désirée lorsque 1'on souhaite que I'image dans le domaine cible partage ses
hautes fréquences avec I'image dans le domaine source (cas de la colorisation).

Enfin, I'utilisation de Hy, telle que définie ci-dessus contraint la génération d’'images dans 'es-
pace couleur RVB, et ce malgré le fait que plusieurs études ont montré I'intérét des espaces couleur
LAB et HCL afin de découpler luminance, teinte et intensité [LMS16; ISSI16]. Nous rappelons que
le choix de travailler avec ’espace RVB a été fait afin de nous assurer de I'existence d'une transla-
tion linéaire entre I’espace couleur cible (RVB) et celui des intensités (niveaux de gris), ce qui n’est
pas possible avec ’espace LAB (non-linéarité entre AB et L).

Output Spatial Pyramids

Afin de tenter d’améliorer les résultats que I'on peut espérer obtenir en colorisation a I'aide
d’un réseau générateur, nous nous sommes également intéressés a l'utilisation de représentations
multi-échelles. Ces représentations sont également nommeées pyramides spatiales dans la littéra-
ture. Elles consistent soit a considérer un ensemble d'images représentant le méme contenu mais
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FIGURE 4.12 — Schéma d’'une pyramide spatiale de sortie (OSP). S indique ici I’échelle de I'image d’entrée
(W x H).Le sur-échantillonnage est réalisé a 'aide d'une fonction d’interpolation classique. Le filtrage cor-
respond a la transformation des caractéristiques profondes en une image dans les domaine cible. Elle est
réalisée a I'aide d’'une unique couche de convolutions.

dont on aurait tronqué les hautes fréquences de facon itérative (filtre passe-bas, ou masque bi-
naire dans I'espace de Fourrier), soit a considérer un ensemble d'images représentant le méme
contenu mais redimensionnées les unes par rapport aux autres. L'utilisation de plusieurs échelles
d’images a depuis longtemps trouvé des applications allant de la détection d’objets a la mise en
correspondance de caractéristiques [Low04; ZYS09]. Plus récemment, le terme de pyramide a été
introduit dans le cadre de l'utilisation des réseaux de neurones profonds, définissant 'utilisa-
tion jointe de cartes de caractéristiques obtenues entre deux couches de sous-échantillonnage
ou de sur-échantillonnage. La fonction de cott perceptuelle [GEB16] a ainsi été proposée afin de
contraindre 'entrailnement de réseaux de neurones générateurs par la comparaison des cartes de
caractéristiques de deux images extraites a partir de plusieurs couches d’'un réseau de neurones
pré-entrainé. En parallele, les pyramides spatiales de caractéristiques (Feature Spatial Pyramids,
FSP) ont été développées afin de combiner les prédictions réalisées sur des cartes de caractéris-
tiques a plusieurs échelles [LDG*17]. Pour cela, Lin et al. [LDG"17] proposaient I'utilisation de
couches de convolutions supplémentaires afin de passer de I'espace latent (espace des caractéris-
tiques profondes) a ’espace de sortie. Les hypercolonnes [HAGM15] ont quant a elles été propo-
sées pour représenter une image en concaténant dans la dimension des canaux (i.e., dimension
des caractéristiques) les cartes de caractéristiques issues de plusieurs couches différentes et re-
dimenssionnées a la méme taille. Elles ont ensuite été utilisées avec succes dans un contexte de
colorisation [LMS16].

Dans le cadre de nos travaux, nous avons étudié l'utilisation de ce que nous avons nommé
"pyramides spatiales de sorties" (Output Spatial Pyramids, OSP). Celles-ci se rapprochent des FSP
et des hypercolonnes, au sens ou elles permettent de contraindre I'optimisation d'un réseau de
neurones en utilisant des caractéristiques a plusieurs échelles. Cependant, les OSP ne nécessitent
pas de concaténer les caractéristiques profondes (contrairement aux hypercolonnes), et ne se re-
posent pas sur des convolutions intermédiaires pour projeter les caractéristiques profondes vers
I'espace de sortie (domaine cible). Elles sont ici formulées en supposant que toutes les cartes de
caractéristiques profondes du décodeur auront le méme nombre de canaux, et ce afin de pouvoir
projeter toutes les caractéristiques, individuellement, vers I'espace de sortie a I'aide d'une unique
couche de convolutions (voir figure 4.12).

Nous rappelons que G est un réseau de neurones entierement convolutif de type encodeur-
décodeur qui va translater les images du domaine A vers le domaine B. Notons S I'échelle d'une
image Ij € A, telle que S = W x H, avec W la largeur de I'image (width) et H sa hauteur (height).
Nous définissons la sortie finale de G telle que O,4 = G(Ia), dont I'’échelle est égale a S (i.e., Ia et
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Og, font la méme taille). D’'un point de vue notation, Oy, est générée par la couche [ 4 de G (qui
est la couche de sortie ici). Elle est supposée étre représentée dans le domaine B. L'optimisation
usuelle de G se fait alors en calculant une ou plusieurs fonctions de cofit en se basant unique-
ment sur la sortie finale O,4;. Cependant, nous remarquons qu’atteindre un état optimal pour 'en-
semble des couches internes du décodeur {I%, ..., 19N} est complexe lorsqu’'une grande quantité de
parametres est impliquée. Afin de faciliter I’entrainement de G, et ainsi améliorer la génération
d’images en couleurs réalistes, nous avons intégré les cartes de caractéristiques / sorties intermé-
diaires du décodeur {Og,,...,O4,} dans le calcul de la fonction de coft (voir section 4.4.2). Pour
cela, on remarque que deux sorties successives Oy, et Odj, avec i€ {l,.,N—-1},j =i+1, different
d’un facteur d’échelle. On suppose que ce facteur d’échelle est égal a deux (cas classique). Afin
de pouvoir calculer une fonction de cott identique pour chaque Og,, celles-ci sont redimension-
nées afin d’avoir la méme échelle spatiale que I, avant d’étre translatées dans I’espace de sortie.
Pour toutes les sorties, cela permet de n’avoir qu'un seul discriminateur par opposition aux tra-
vaux de [WLZ*18; GGY" 18], et de pouvoir se baser sur les images I, € A a pleine résolution pour le
calcul des fonctions de cott cycliques (pas de perte d'information liée a un sous-échantillonnage
de I,). Cette opération de sur-échantillonnage peut étre exprimée a 1'aide de I’équation (4.10),
ol up(.) transforme une image d’échelle % en une image d’échelle S (e.g., interpolation, super-
résolution). La notation upk(.) indique la composition de la fonction up(.) avec elle-méme k fois
(on sur-échantillonne k fois I'image).

oYM =up™(0g),i€11,..,N} (4.10)

Une fois que 'opération de ré-échantillonnage est appliquée sur les sorties du décodeur, il est
nécessaire de les projeter dans le domaine cible B afin de pouvoir calculer les fonctions de cotit
et rétropropager le gradient associé a chacune des sorties. Pour cela, il est possible d’utiliser une
couche de convolutions par sortie [HAGM15]. Cependant, cette approche ne permet pas de nous
assurer que les représentations profondes obtenues a partir des différentes sorties seront simi-
laires les unes des autres (elles auront été filtrées par des filtres a priori différents). Par extension,
nous ne pouvons pas nous assurer que les cartes de caractéristiques intermédiaires vont s’opti-
miser vers le méme objectif simplement en observant les sorties projetées dans le domaine B (i.e,
deux sorties peuvent étre réalistes sans que les caractéristiques se ressemblent). Dans le but de
contraindre la génération de cartes de caractéristiques intermédiaires plausibles pour la colori-
sation a plusieurs échelles, nous avons proposé l'utilisation d’'une unique couche de sortie dont
les poids sont partagés pour toutes les O‘(Z*H. Cette idée est en partie empruntée des travaux de
[LDG™17], mais a la place d’utiliser des convolutions 1x1 pour gérer des cartes de caractéristiques
avec un nombre de caractéristiques différent, nous avons proposé de garder le nombre de caracté-
ristiques n constant dans tout le décodeur. Ce choix nous permet de nous assurer que les caracté-
ristiques intermédiaires sont des représentations adaptées, proches les unes des autres, et ce pour
une tache donnée (la colorisation dans notre cas). Il nous est également possible de les visualiser
a travers une couche de sortie, celle-ci faisant alors office de "lentille d’observation". D’un point
de vue intuitif, si les caractéristiques intermédiaires (e.g., O4,) permettent d’obtenir des images
parfaitement générées, du point de vue du discriminateur, les couches de convolutions suivantes
n‘auront qu’a améliorer la résolution des cartes de caractéristiques (i.e., les derniéres couches du
décodeur n'ont plus besoin d’apprendre a extraire des caractéristiques pour la colorisation et le
sur-échantillonnage, mais uniquement pour le sur-échantillonnage).

4.4.2 SpyncoGan

Pour évaluer l'intérét des composants présentés précédemment, nous avons introduit Spyn-
coGan (Spynco pour Spatial PYramids and haNdcrafted translation COmbined). SpyncoGan est
un réseau pseudo-cyclique qui se base sur Col-Cycle, mais qui intégre la Handcrafted Translation
etla OSP. Son architecture est présentée sur la Figure 4.13.
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FIGURE 4.13 — Schéma de SpyncoGan avec N = 3 sortie dans 'OSP et une Handcrafted Translation H; entre
le domaine des images en couleurs RVB et celui des images en niveaux de gris. (a) Générateur avec H;. (b)
Discriminateur. Le parametre n indique le nombre de filtres, k la taille du filtre, et s la valeur de pas (stride).

Architecture de SpyncoGan

Comme Col-Cycle, SpyncoGan est composé de couches de convolutions et de normalisations
par instance. L'utilisation de padding est systématique. Le sous-échantillonnage est réalisé a 'aide
de la valeur de pas des filtres de convolutions. Le sur-échantillonnage est réalisé a ’'aide d'une in-
terpolation avant I’application d’un filtre de convolutions afin d’éviter certains artefacts visuels
[ODO16].

Contrairement a Col-Cycle, SpyncoGan se base sur les OSP. Afin de réduire le nombre d’hy-
perparametres a étudier, nous avons fixé le nombre N de sorties de 'OSP a N = 3. Nous utilisons
un nombre constant de filtres de convolutions (n = 256) dans le décodeur afin de générer des
cartes de caractéristiques ayant le méme nombre de canaux. Ce nombre de filtres est identique
a celui des couches résiduelles. Cela nous permet projeter les cartes de caractéristiques dans le
domaine cible B a I'aide d’'une unique couche de convolutions, dont les poids sont utilisés / par-
tagés entre toutes les sorties de I'OSP. SpyncoGan n'utilise qu'un seul réseau générateur G et un
seul réseau discriminateur Dp, le second GAN étant remplacé par H,. De plus, SpyncoGan utilise
des convolutions séparables afin de réduire la quantité de parametres a optimiser [MG12] dans
I'encodeur, le décodeur et le discriminateur, pour un total de = 7.063 millions de parametres a
optimiser, dont = 4.978 millions de parametres pour le générateur et = 2.085 millions. A titre com-
paratif, chaque générateur de Col-Cycle posséde = 4.126 millions de parametres (moins de filtres
dans le décodeur) - mais Col-Cycle a deux générateurs. Les discriminateurs sont ici identiques
pour les deux réseaux, si ce n'est pour l'usage des convolutions séparables avec SpyncoGan. La
Handcrafted Translation H; est quant a elle composée de 3 parametres fixés, a savoir les poids as-
sociés a chacun des canaux RVB.

Notons une nouvelle fois que nous utilisons un nombre de filtres n fixé dans le décodeur, ce
qui est une nécessité pour l'utilisation d’'une unique couche de convolutions de sortie avec 'OSP.
Par construction, cette approche requiert plus de mémoire pour 'entrainement du générateur
que l'utilisation d'un décodeur classique, ol1 le nombre de filtres est inversement proportionnel
al’échelle (e.g., Col-Cycle). En particulier, les cartes de caractéristiques intermédiaires possedent
des volumes beaucoup plus importants que celles utilisées avec Col-Cycle, et pour lesquelles de
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multiples gradients seront calculés (fonctions de cotit liées a toutes les sorties de 'OSP, voir sous-
section suivante). Malgré le fait que 1'utilisation de convolutions séparables permette de réduire
substantiellement le nombre de parametres du réseau, et que H; ait une empreinte mémoire
faible, ce point est une contrainte pratique forte quant a I’entrainement de réseaux tres profonds
basés sur les OSP (nécessité d’avoir beaucoup de mémoire disponible).

Fonctions de coiit

Cette section définit les fonctions de cofit utilisées pour optimiser SpyncoGan a l’aide des sor-
tie de 'OSP.

Notations. Nous rappelons que I € A and I € B sont deux images d’échelle S =W x H. LOSP
nous permet d’obtenir N sorties O‘(ZXH telles que définies par I’équation (4.11). Par souci de sim-
plicité, nous confondons ici les sorties avant et apres projection dans le domaine cible B. Aprés
redimensionnement, ces sorties ont toutes la méme échelle, égale a celle de 15. Celles-ci vont per-
mettre d’optimiser G en les intégrant dans le calcul des fonctions de cofit.

O M, ., 0% = (G ™M), ..., G @Y M} = Gy M) (4.11)

avec Vi €11,..,N},0*H € B, et G; représentant la sortie i de 'OSP de G (i.e., 0*1).
Par souci de concision, nous omettrons I'indice W x H par la suite, et nous utiliserons la nota-
tion G;(.) ala place de O‘(;‘("H lorsque nous jugerons que cela facilite la compréhension.

ATaide de ces notations, nous pouvons alors redéfinir les fonctions de cott utilisées avec Col-
Cycle. Pour cela, nous avons recours a une somme pondérée des cotits calculés pour chaque sortie
de I'OSP (voir équations (4.12), (4.18), (4.15)). La pondération associée a chaque sortie (indice i)
est gérée par de nouveaux parametres «;, B;, Y; et {;, dont les valeurs sont explicitées dans la sous-
section suivante.

GAN loss. La fonction de cotit (formulation minimax) liée au GAN peut-étre re-définie par
I'équation (4.12) en se basant sur un objectif quadratique, inspiré par les travaux de [MLX*17].

N
Lo (G,Dp) =Y YiEllll -Dp(G;(1a)) 3] +Eg[IDg(Ip) 3] (4.12)
i=1
En pratique, lors de 'implémentation, on reformule cette contrainte d’'une facon similaire aux
fonctions de cofit utilisées pour Col-Cycle. Ces fonctions, (4.13) et (4.14), sont toutes deux a mi-
nimiser. On remarquera que I'équation (4.14) est une formulation "duale" du probléme posé par
la fonction minimax, au sens o1 I’on chercherait & maximiser pour Dy plutét que de minimiser. A
noter que dans nos expériences, nous nous sommes restreints a G; (Ia) pour entrainer le discrimi-
nateur a I’aide de ’équation (4.14) afin d’éviter que son entrainement ne soit biaisé par les sorties
intermédiaires de I’OSP, plus @ méme de contenir des artefacts visuels.

N
%= YiEllDB(G;(I4) - 11I3] 4.13)
i=1

N
%, =EslIDp(B) — 1151 + Y YiElIDB(G; (Ia) 3] (4.14)
i=1
Par ailleurs, comme nous utilisons une Handcrafted Translation pour réaliser la translation du do-
maine B vers le domaine A, cette équation n’est définie que pour GAN— 5 : si les images générées
par G sont capables de tromper le discriminateur Dy, nous supposons a priori que H; arrivera a
translater correctement 'image générée vers le domaine A.
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Cycle-consistency loss. Similairement, la fonction de cofit cyclique est redéfinie a 'aide de
I'équation (4.15), somme des équations (4.16) et (4.17) (décomposition réalisée par souci de clarté).
Elle permet d’ajouter une contrainte cyclique pour chacune des sorties de 'OSP.

1,...,N _ 1,...,N 1,...,.N
gcycle @)= gcyCleBAB G)+ szCleABA © (4.15)
1,..,.N N
Leyeiens @) = l_:ZIﬁi[EB[H(Gi(HtaB)) ~Tplll1] (4.16)
1,...,.N N
L ronn (G = 2 BiEAlIH(Gi(1a) ~ Tall1] 4.17)

i=1

Identity loss. La fonction de cott identité est redéfinie a 'aide de I'’équation (4.18). Son utilité
reste identique a celle utilisée avec Col-Cycle, si ce n’est qu’elle va ici apporter une contrainte sup-
plémentaire sur les couches cachées du générateur. Par définition de H;, elle n’a pas lieu d’étre
définie pour la translation de B vers A.

N
LG = _Zla,-EB[nG,-(IB) ~ Tzl (4.18)
i=

Contours loss. Enfin, nous ajoutons ici une fonction de cotit supplémentaire visant a contrain-
dre la génération d'une image colorisée G;(I5) dont les hautes fréquences seraient proches de
celles de I'image en niveaux de gris I5. Pour cela, nous nous basons sur I'existence d'une relation
spatiale directe entre les images des deux domaines telle que permise par la Handcrafted Transla-
tion, et nous comparons les hautes fréquences de I et H;(G;(I4)) vues par un filtre de Sobel S (.)
(voir équation (4.19)). Le filtre de Sobel est aisément applicable avec des convolutions, et sa défi-
nition symétrique permet de donner plus d’importance au pixel qui se trouve au centre du filtre.
Ce dernier point permet d’obtenir des hautes fréquences mieux localisées qu’avec une fonction
de cofit liée a un gradient local par exemple (i.e., comparaison directe des pixels adjacents).

N
Ll es(@) = Y GEALISk(H (G (1a) = Sk ()] (4.19)
i=1

La fonction de coft totale est alors définie comme étant la somme des fonctions de cofit pré-
cédentes (voir équation (4.20)).

xl,...,N :xl ..... N +$1 ..... N+$1 ..... N +$1 ..... N (4.20)

GANp— cycle identity contours

Choix des parametres des fonctions de cofit

Les parameétres des fonctions de cotit de SpyncoGan (a;, f;, Yi, (;) ont été fixés empiriquement
afin de donner plus d’'importance a la sortie finale du réseau. Ce choix a été fait afin de contreba-
lancer la contribution multiple des cartes de caractéristique intermédiaires pour lesquelles le gra-
dient est rétropropagé plusieurs fois a cause de 'OSP. Ils ont été fixés en considérant N = 3, comme
décrit précédemment. En pratique : a;eq1,2,31 = {5,3,2}, Biep12,30 = {10,6,4}, Yienn 23 = {1,1,1} et
Cien1,2,31 = {1,0,0}, avec i 'indice de la sortie de 'OSP (pour rappel, ici, plus i est petit, plus on
se rapproche de la couche de sortie). On remarquera qu’a cause de la valeur de {;, seule la sor-
tie finale permet ici de contraindre les hautes fréquences. Ce choix a été fait afin de ne pas tenir
compte explicitement des hautes fréquences liées aux sorties intermédiaires, celles-ci ayant plus
de chance de contenir des artefacts visuels (moins de filtres de convolutions appliqués, mais plus
d’opérations de redimensionnements).
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4.4.3 Mise en place des expériences

Nous avons cherché a évaluer I'intérét de la Handcrafted Translation comme remplacement
d’'un des deux GAN pour la colorisation non-supervisée. Nous nous sommes également intéressés
a l'intérét des contraintes imposées via les différentes sorties de I'OSP. Nos expériences ont été
réalisées a 'aide de 2 cartes graphiques NVIDIA GeForce GTX 1080 Ti et des librairies Pytorch,
Scikit, Caffe et OpenCV.

Jeux de données

Afin d’évaluer la qualité des colorisations générées, nous nous sommes placés dans un cadre
plus générique que celui du traitement des images aériennes historiques. Nous souhaitions avoir
acces a un panel d’'images ayant des vérités terrains en couleurs et représentant des scenes diffé-
rentes afin de pouvoir calculer des métriques de similarité. Nous avons pour cela adapté des jeux
de données classiquement utilisés pour la classification, a savoir : Cifar-10 [Kri09] et UCMerced
Land Use [YN10]. Le jeu de données Cifar-10 est constitué de 60 000 images en couleurs regrou-
pées en 10 classes communes (e.g., avion, chat, bateau, etc.). Chaque image a une résolution tres
faible (thumbnails, 32 x 32 pixels). UCMerced Land Use contient quant a lui des images couleur
d’occupation du sol regroupées en 24 classes (e.g., zone résidentielle, plage, riviere). Ces images
ont une résolution proche des images aériennes historiques, et font chacune 256 x 256 pixels. En
complément, nous avons aussi utilisé des images de peintures de Cézanne (580 images) et des
images de paysages (Landscape, 7038 images) qui avaient déja été utilisées dans un contexte de
transfert de domaine (pas de classes, images de 256 x 256 pixels).

Cesjeux de données étant composés d’images en couleurs, nous les convertissons tout d’abord
en niveaux de gris afin d’avoir deux ensembles d'images. Cependant, nos approches étant non-
supervisées, ces images ne sont pas appariées explicitement durant I'entrainement afin de simuler
un entrainement non-supervisé (i.e., les images de A et B sont échantillonnées aléatoirement, sans
mise en correspondance). En pratique, I'entrainement est réalisé en utilisant un sous-ensemble
d’entrainement, et I'évaluation est réalisée avec un sous-ensemble de test. Pour les jeux de don-
nées Cifar-10, Cézanne et Landscape, nous utilisons les sous-ensembles proposés par les auteurs.
Pour UCMerced Land Use, aucun sous-ensemble par défaut n’est proposé. Nous avons, de fait,
échantillonné aléatoirement 80% des images pour I’entrainement, et 20% pour I'évaluation.

Métriques

L'évaluation de la qualité de la colorisation est effectuée toutes les 10 epochs pour quantifier
I'évolution des métriques durant 'entrainement. Nous calculons I'erreur quadratique moyenne
(MSE) et le score de similarité structurelle (SSIM) entres les images colorisées et les images en
couleurs réelles (mesures calculées pour chaque canal couleur, puis moyennées par le nombre de
canaux). La MSE permet de déterminer grossierement la différence entre deux images (plus la va-
leur est basse, plus les deux images sont proches). Cette métrique est couramment utilisée pour
évaluer les résultats des algorithmes de régression, et sa variante monotone (racine MSE, RMSE) a
déja été appliquée pour évaluer les algorithmes de colorisation [LMS16]. La SSIM indique la qua-
lité d'une image par rapport a une autre (plus sa valeur est élevée, plus les images comparées sont
proches), en mettant I'accent sur les différences structurelles. Ces deux mesures fournissent un
apercu de la qualité de la colorisation lorsque des images en couleurs réelles sont disponibles (cas
de nos ensembles de données). Le choix d’utiliser ces mesures quantitatives de la qualité de la co-
lorisation nous permet de comparer plusieurs approches sans a avoir recours a un questionnaire
(long et complexe a mettre en place lorsque plusieurs méthodes et plusieurs jeux de données sont
utilisés).
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FIGURE 4.14 - Résultats qualitatifs obtenus durant I'entrainement de SpyncoGan sur le jeu de données
Cifar-10.

4.4.4 Résultats et discussions
Résultats qualitatifs

La figure 4.1 présente des exemples de résultats qualitatifs obtenus sur des peintures de Cé-
zanne, des photos de paysages et des images aériennes de UCMerced Land Use. Visuellement,
nous trouvons que ces résultats semblent plut6t réalistes pour une approche non-supervisée. Plus
de résultats sont disponibles dans la section 4.6. Ces résultats incluent des cas limites ou le réseau
n’a pas réussi a coloriser correctement les images en fonction des epochs. Néanmoins, ’ensemble
des représentations obtenues semblent indiquer que l'utilisation de H; a la place de I'un des deux
GAN utilisé par certains réseaux cycliques est une piste viable dans un contexte de colorisation.

La figure 4.14 montre les résultats qualitatifs obtenus avec SpyncoGan sur trois échantillons
d’images de Cifar-10. De haut en bas, les images sont représentées en niveaux de gris (domaine
A), en fausses couleurs (images colorisées) et en couleurs réelles (domaine B). Les images colori-
sées sur différentes lignes ont été générées a différentes epochs de I'entrainement de SpyncoGan
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TABLEAU 4.1 — Résultat de I'ablation des sorties. Métriques calculées toutes les 10 epochs (entrainement de
50 epochs) puis moyennées (Avg.).

Données Fonction de coit Avg. MSE| Avg. SSIM (%) 1
Cézanne Lt 92.9 82
Cézanne P23 91.5 82
Landscape &£t 85.7 83
Landscape P23 85.1 83
UCMerced Land Use L1 85.5 86
UCMerced Land Use P23 83.1 85
Cifar-10 &t 87.2 89
Cifar-10 P23 86.8 89

(de 10 a 100 avec un pas de 10). De gauche a droite, les résultats obtenus sont présentés pour
les différentes sorties de I'OSP a savoir G3(I4), G2(Ia) et G (Ia). D'un point de vue global, nous
observons des artefacts en damier sur les images G3(I5) (image la plus a gauche) qui semblent
perdurer durant I’entrainement. IIs semblent néanmoins avoir été filtrés par les couches plus pro-
fondes, ce qui est le comportement attendu pour notre réseau. Cependant, puisque G3(I5) a été
directement obtenu a partir des couches résiduelles apres ré-échantillonnage et convolution spa-
tiale; dont les poids sont partagés entre toutes les sorties; nous pensons que les couches rési-
duelles n'ont pas pu apprendre une représentation suffisante pour éliminer les artefacts causés
par le ré-échantillonnage, ou ont causé les artefacts eux-mémes. On constate également que les
représentations obtenues avec G, (.) et G3(.) semblent parfois trés proches, ce qui met en avant les
contraintes imposées par 'OSP.

Par ailleurs, nous observons sur cette figure la diversité des représentations possibles au cours
de I'entrainement. Cette diversité met en avant I'exploration de I'espace des parametres pour gé-
nérer des images en couleurs vraisemblables. Ce point est particulierement intéressant dans un
contexte de colorisation car il permet de créer des représentations couleur variées uniquement en
chargeant les poids du réseau optimisés a une epoch différente, et ce sans modifier son architec-
ture.

Evaluation quantitative par ablations

Ablation des sorties. Nous avons commencé par étudier I'intérét de ’OSP en considérant
N = 1 sortie pour I'entrainement de SpyncoGan. Nous avons nommé cette étude "ablation des
sorties". Pour cela, nous considérons I'architecture de SpyncoGan présentée en section 4.4.2, ce
qui signifie que les trois sorties de 'OSP sont disponibles mais que seule G (I) est utilisée dans le
calcul des fonctions de cott durant 'entrainement (N = 1). Dans un but comparatif, on distingue
donc les fonctions de cofit avec N = 1 et N = 3 (SpyncoGan sans ablation), a savoir & Lot 123,
Le tableau 4.1 présente les scores de MSE et de SSIM calculés toutes les 10 epochs puis moyennés
entre les epochs 10 et 50. Nous observons qu'utiliser toutes les sorties (N = 3) pour 'optimisation
de SpyncoGan permet d’obtenir une diminution moyenne de 1.2 points pour la MSE, mais une
diminution de 0.25% de la SSIM. Il semblerait qu'utiliser plus de contraintes pour I'optimisation
des couches cachées a travers 'OSP permette d’obtenir des couleurs plus consistantes par rap-
port aux images réelles (MSE plus faible), mais tende a diminuer le réalisme relatif des structures
générées. Le gain apporté par I'inclusion des sorties de 'OSP dans le calcul des fonctions de cofit
semble donc limité sur ces données.

Ablation de la fonction de coiit. Pour les deux cas de figures Z! et 2?3, nous avons égale-

e s A . L ) 1,...N .
ment étudié I'intérét de la fonction de cott liée aux hautes fréquences £, . .. Les résultats ob-
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TABLEAU 4.2 — Résultats de ’ablation de la fonction de cofit liée aux hautes fréquences sur les peintures de
Cézanne. Métriques calculées toutes les 10 epochs (entrainement de 50 epochs) puis moyennées (Avg.).

Fonction de cotit  Ablation Avg. MSE| Avg. SSIM (%) 1

1 1
‘% "%contours 926 79
<! / 92.9 82
1,2,3 1,2,3
‘2 ‘zcantours 920 77
P23 / 91.5 82

tenus sont présentés sur le tableau 4.2 pour les peintures de Cézanne. La colonne Ablation sur ce
tableau indique si la fonction de cofit liée aux hautes fréquences a été retirée (nom de la fonction)
ou pas (symbole "/"). Malgré la faible contribution de £%+"N dans le calcul de la fonction de
colt totale, représentée par une petite valeur de (;, on observe que ne pas utiliser cette fonction
réduit significativement I'indice de similarité structurel. Comme attendu, le fait de contraindre
la génération de contours réalistes a travers H; permet de préserver les hautes fréquences, et ce

meéme sans OSP.

Visualization des sorties intermédiaires de I'OSP. Malgré des différences faibles en termes de
scores MSE et SSIM pour G (I4) avec et sans ablation des sorties, nous nous sommes demandé a
quoiressemblaient les caractéristiques profondes des sorties intermédiaires vues par la couche de
sortie, et ce avec et sans ablation des sorties. La figure 4.15 permet de visualiser les sortie G2 (I5) et
G3(Ia) pour des peintures de Cézanne au cours de 'entrainement. On distingue les visualisations
obtenues par SpyncoGan entrainé avec £ et avec £ 1?3, On peut ainsi observer que les sorties in-
termédiaires de SpyncoGan entrainé avec £ sont beaucoup moins réalistes que celles obtenues
lorsque SpyncoGan est entrainé avec £ >3, De plus, ces visualisations nous indiquent que les ca-
ractéristiques profondes extraites de la couche 1% et celles extraites de [z sont trés différentes les
unes des autres lorsque SpyncoGan est entrainé avec .£Z'. Néanmoins, ces visualisations mettent
en avant la capacité des réseaux générateurs a préserver les structures spatiales, et ce méme sans
avoir recours a des contraintes imposées directement sur les cartes de caractéristiques profondes
/ intermédiaires (contrainte que nous imposons a I'aide de 'OSP).

Qualité de la colorisation par rapport a Col-Cycle

Nous avons ensuite comparé la qualité relative des colorisations générées avec SpyncoGan et
Col-Cycle durant 'entrainement de chacun des réseaux, sans remplacement de textures (i.e., on
évalue la sortie "brute"). Les deux réseaux ont été entrainés durant 100 epochs (mais seulement
50 pour les photographies de paysages) avec un taux d’apprentissage de 0.0002 et une diminution
linéaire du taux d’apprentissage vers 0 appliqué apres que la moitié des epochs aient été réalisées.
Les poids des deux réseaux ont été initialisés aléatoirement. L'algorithme d’optimisation utilisé
pour les générateurs comme pour les discriminateurs a été fixé sur la méthode ADAM [KB14], avec
les parametres par défaut (B; = 0.9, = 0.999). La taille du batch a été fixée pour chaque réseau de
facon a pouvoir traiter un maximum d’images en parallele sur les cartes graphiques a notre dis-
position durant I’entrainement. Les résultats obtenus toutes les 10 epochs a I'aide des métriques
MSE et SSIM sont présentés sur la figure 4.16.

On observe que les sorties de SpyncoGan permettent systématiquement d’obtenir des score
MSE plus faibles que ceux de Col-Cycle, et des scores SSIM plus élevés. Cette observation se traduit
par le fait que les colorisations générées par SpyncoGan sont plus réalistes au sens des métriques
utilisées. En particulier, SpyncoGan semble permettre d’obtenir des résultats dont les couleurs
sont plus proches des vérités terrain, et préserve mieux les structures visibles dans les images. Ces
deux points s’expliquent par I'utilisation d'une fonction de cotit dédiée aux hautes fréquences,
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Epoch

Epoch

FIGURE 4.15 - Sorties intermédiaires de SpyncoGan sur des peintures de Cézanne a différentes epochs. Ligne
du haut : G, (). Ligne du bas : G3(I). Colonne de gauche : sorties aprés un entrainement a I'aide de .£"%3.
Colonne de droite : sorties aprés un entrainement a 'aide de £, tel que décrit dans la section 4.4.4.

le nombre accru de caractéristiques utilisées dans le décodeur de SpyncoGan par rapport a Col-
Cycle, et 'utilisation de 'OSP. Comme espéré, on observe que la qualité des sorties G; (1) de 'OSP
évolue de facon proportionnelle a % Cependant, on observe sur les sous-figures 4.16 (a), (c) et (g)
que G2 (I5) permet parfois d’obtenir des résultats en MSE meilleurs que G; (Ia). Nous pensons que
ces résultats sont dus a la nature méme de 'OSP, qui impose des contraintes plus fortes aux ca-
ractéristiques internes du réseau. Aux regards des résultats obtenus en SSIM, ces contraintes ne
semblent cependant pas suffisantes pour permettre la préservation des hautes fréquences sans
utiliser des filtres de convolutions supplémentaires apres ré-échantillonnage.

En nous basant sur ces observations, nous pouvons ici conclure que I'utilisation d’'une Hand-
crafted Translation H, est une solution viable pour remplacer 'un des deux GAN utilisé par les ré-
seaux de neurones cycliques dans un contexte de colorisation. De plus, 'utilisation de pyramides
spatiales de sortie pour contraindre les couches intermédiaires du générateur vers un méme opti-
mal semble permettre 'amélioration graduelle des résultats entre les différentes sorties malgré un
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FIGURE 4.16 — Mean Square Error (MSE) et Structural Similarity Measure (SSIM) entre les images colorisées
et les images réelles des jeux de données Cifar-10 (a,b), UCMerced Land Use (c,d), peintures de Cézanne
(e,f) et Landscape photos (g,h).

gain observé relativement faible.

Comparaisons complémentaires

Nous comparons ici les résultats obtenus par Col-Cycle et SpyncoGan avec ceux de CycleGan
sur les jeux de données Cézanne et UCMerced Land Use. On observe sur le tableau 4.3 que, sur
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ces jeux de données, SpyncoGan tend a obtenir de meilleurs résultats (MSE plus faible, SSIM plus
élevée).

TABLEAU 4.3 — Comparaison des colorisations produites par Col-Cycle, CycleGan (9 couches résiduelles), et
SpyncoGan sur les jeux de données UCMerced Land Use et les peintures de Cézanne (meilleurs résultats
parmi les 50 premiéres epochs).

Métrique Jeu de données Col-Cycle CycleGan SpyncoGan

MSE UCMerced Land Use 92.4 90.3 78.0
SSIM UCMerced Land Use 77.6 77.8 87.3
MSE Cézanne 92.9 91.7 87.9
SSIM Cézanne 68.6 70.4 83.5

4.4.5 Application ala classification

Nous nous sommes demandés si les colorisations générées par SpyncoGan pouvaient alors
permettre d’obtenir des gain en classification.

Classification inter-domaines

Nous souhaitions dans un premier temps étudier la généralisation en classification d'un ré-
seau de neurones a convolutions a des images représentées avec des couleurs légerement diffé-
rentes. Il s’agit ici de répondre a la question : dans quelle mesure est-il possible d’appliquer un
réseau de neurones entrainé sur des images en couleurs pour classifier des images colorisées, et
inversement ? Cette information nous permettrait d’envisager 1'utilisation de jeux de données ré-
cents pour la classification d’images historiques panchromatiques via la colorisation.

Afin d’investiguer cette question, nous avons considéré les images générées par SpyncoGan a
toutes les 10 epochs d’entrainement comme étant représentées avec des couleurs différentes. On

G \U) \&0\

Gy (1) (80)

G () [sg)

FIGURE 4.17 — Diagrammes de cordes pour la classification inter-domaine sur (a) UCMerced Land Use et (b)
Cifar-10 avec G (I). R-G est niveaux de gris (Real-Gray). R-C est pour couleurs réelles (Real-Color). [Nombre]
indique I'epoch de colorisation.
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considére alors que les couleurs générées sont représentatives d'un domaine couleur légerement
différent des images réelles en couleurs, mais aussi de tous les autres domaines couleur générés.
Cette observation se vérifie en pratique, que ce soit sur la figure 4.14, ou sur les figures complé-
mentaires présentées en section 4.6. A 'aide de ces données, nous avons entrainé des réseaux de
neurones a convolutions sur les images colorisées, les vraies images en couleurs, et les images
en niveaux de gris des jeux de données d’entrainement de Cifar-10 et de UCMerced Land Use.
Ainsi, pour un méme jeu de données, un méme réseau a été entrainé séparément sur chacun des
12 domaines couleur (1 domaine couleur généré toutes les 10 epochs, 1 pour les vraies couleurs,
et 1 pour les niveaux de gris). Le but est alors d’évaluer le pouvoir discriminant de ces réseaux
entrainés sur 'ensemble des domaines couleur disponibles (i.e., évaluation inter-domaines) en
utilisant les données de test. En pratique, nous avons utilisé AlexNet [KSH12] avec la normalisa-
tion par batch sur le jeu de données Cifar-10, et VGG-16 [SZ14] sur UCMerced Land Use. Pour
I'entrainement de ces réseaux, toutes les images ont été redimensionnées a 256 x 256 pixels. Le
taux d’apprentissage a été fixé a 0.0001, avec une décroissance d'un facteur 10 a 33% et 66% de
I'entrainement. AlexNet a été entrainé durant 20 epochs, et VGG-16 durant 40 epochs.

Les résultats obtenus en classification inter-domaine pour G; (I4) sont représentés al’aide d'un
diagramme de cordes [KSB*09] sur la figure 4.17. Sur ce diagramme, chaque arc de cercle corres-
pond au méme jeu de données mais représenté dans un domaine couleur différent. Les cordes in-
diquent quant a elles les relations entre les jeux d’entrainement et de test des différents domaines
(i.e., réseau entrainé sur un domaine couleur puis évalué sur un autre). Une corde attachée a un arc
de cercle indique que le domaine correspondant a I’arc de cercle a été utilisé pour I'’entrainement.
Une corde séparée par un blanc de I'arc de cercle indique que le domaine correspondant a I’arc
de cercle a été utilisé pour le test. Seules les cordes correspondant au premier quartile des taux de
bonne classification obtenus (les 25% taux les plus élevés parmi tous) sont en couleur, les autres
étant grisés. Afin d’identifier les domaines couleur qui sont les plus aptes a permettent a un réseau
de neurones a convolutions de généraliser a d’autres domaines couleur, il suffit alors de compter
le nombre de cordes colorées attachées a chaque arc. L'arc ayant le compte le plus grand corres-
pond au domaine couleur qui a permis la meilleure généralisation. On observe ainsi qu’entrainer
VGG-16 sur les images d'UCMerced Land Use colorisées par SpyncoGan a I'epoch 70 permet une
meilleure généralisation qu’avec les autres domaines couleur. Pour Cifar-10, les images colorisées
par SpyncoGan a I’epoch 100 sont celles qui permettent la meilleure généralisation d’AlexNet. Il
semblerait ici qu’entrainer un réseau de neurones classifieur sur des données colorisées permette
d’obtenir des représentations plus robustes aux variations de domaines couleur qu'un entraine-
ment réalisé a 'aide de données réellement en couleurs. Afin d’accompagner ces observations,
nous présentons les résultats moyennés par domaine d’entrainement sur le tableau 4.4. La valeur
moyenne trés faible obtenue sur Cifar-10 par un AlexNet entrainé sur les images en niveaux de gris
et évalué sur I'’ensemble des jeux de données pourrait s’expliquer par la présence d’un fort biais
dans les représentations couleurs. Ce point mériterait cependant la réalisation d’expériences sup-
plémentaires afin de mieux comprendre les tenants et les aboutissants de ce résultat qui nous a
particulierement surpris.

Classification sur HistAerial

Nous reproduisons ici une partie des expériences réalisées avec Col-Cycle a I'aide de Spynco-
Gan afin de voir si les colorisations générées par ce réseau permettent d’améliorer la classification
des images aériennes historiques. Pour cela, nous avons entrainé SpyncoGan sur le méme jeu de
données que Col-Cycle et avec le méme taux d’apprentissage. Comme pour Col-Cycle, nous avons
appliqué le remplacement de textures lors de 'inférence. Les résultats obtenus apres 120 epochs
sont présentés sur le tableau 4.5. Nous présentons également les résultats obtenus avec les sta-
tistiques couleur générées seules (i.e., sans la texture). Les deux réseaux semblent permettre de
générer des couleurs permettant d’améliorer légérement les taux de bonne classification, sans dif-
férence notable lorsque ces couleurs sont combinées aux caractéristiques de texture. Lorsqu’uti-
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TABLEAU 4.4 — Taux de classification (%) inter-domaine moyennés sur tous les domaines couleur. (1) VGG-
16 entrainé pour 40 epochs sur UCMerced Land Use et (2) AlexNet entrainé pour 20 epochs sur Cifar-10.

Ensemble d’entrainement Col. epoch Avg. % (1) Avg. % (2)

SpyncoGan (G (In)) 10 94.7 74.8
SpyncoGan (G (Ip)) 20 95.2 77.0
SpyncoGan (G (Ip)) 30 95.4 78.7
SpyncoGan (G (Ip)) 40 96.2 79.2
SpyncoGan (G; (In)) 50 95.3 79.5
SpyncoGan (G; (I)) 60 96.3 79.9
SpyncoGan (Gj (Ia)) 70 97.0 78.7
SpyncoGan (Gj (Ia)) 80 96.1 79.9
SpyncoGan (Gj (Ia)) 90 95.2 79.5
SpyncoGan (Gj (Ia)) 100 95.1 81.0

Couleurs réelles / 92.4 75.7

Niveaux de gris / 92.5 22.1

lisées seules, les couleurs générées par Col-Cycle semblent cependant avoir un pouvoir discrimi-
nant nettement supérieur, ce qui tend a montrer qu’'une colorisation que I’on pourrait qualifier
de plus grossiére (SSIM plus faible pour Col-Cycle en moyenne) n’est pas un probleme pour amé-
liorer la classification des images aériennes historiques. Dans les deux cas, les couleurs générées
seules permettent d’obtenir des taux de bonne classification beaucoup plus élevés qu'un choix
aléatoire (=~ 14.3% pour 7 classes d’occupation du sol). Ce dernier point indique que les couleurs
générées ne sont pas incohérentes sémantiquement les unes par rapport aux autres. Des exemples
de colorisations d’'images aériennes historiques avec SpyncoGan sont présentées sur la figure 4.18,
montrant que les résultats visuels obtenus semblent aussi intéressants visuellement que ceux ob-
tenus avec Col-Cycle (voir figure 4.9).

TABLEAU 4.5 — Comparaison de 'apport des couleurs générées par Col-Cycle et SpyncoGan a la classification
des images aériennes historiques de HistAerial.

Texture Réseau Col. epoch  Taux de bonne classification (%)

CLBP / / 88.1
CLBP Col-Cycle 120 89.2
CLBP SpyncoGan 120 89.2
LCOLBP / / 89.3
LCOLBP  Col-Cycle 120 89.5
LCOLBP  SpyncoGan 120 89.4
/ Col-Cycle 120 58.6

/ SpyncoGan 120 49.0
Aléatoire / / 14.3

4.4.6 Conclusion partielle

Nous avons développé SpyncoGan, une nouvelle approche non-supervisée combinant réseaux
de neurones profonds a convolutions et méthodes classiques pour la colorisation d’'images pan-
chromatiques. Nous avons appliqué cette méthode sur plusieurs jeux de données différents, ce
qui nous a permis de mettre en avant sa capacité a générer des images relativement réalistes par
rapport a 'existant. Une étude par ablation nous a permis de montrer les forces et les faiblesses
des blocs constituant SpyncoGan. En particulier, le gain procuré par l'utilisation d’'une pyramide
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Arss-sur-Formans, France, 1986 Lissieu, France, 1984

FIGURE 4.18 — Exemples d'images aériennes historiques colorisées avec SpyncoGan apres 120 epochs. Ligne
du haut : images panchromatiques. Ligne du bas : colorisation par imagette avec remplacement de textures.

spatiale de sortie semble limité dans un contexte de colorisation, et ce malgré les contraintes in-
tuitives qu’elle impose sur les représentations internes du réseau. Le fait de remplacer I'un des
deux GAN utilisés dans les réseaux de neurones cycliques par une fonction définie manuellement
(H;) semble étre une alternative viable pour la colorisation non-supervisée. L'utilisation de cette
approche dans le cas général semble néanmoins limitée par la capacité que nous avons a définir
des fonctions "artisanales" pour un ensemble de tiches données (e.g., passer d'une segmentation
sémantique a une image réaliste). Enfin, nous avons évalué I'intérét de la colorisation pour la clas-
sification. Nous avons montré qu’entrainer des réseaux de neurones a convolutions sur des images
colorisées permettait d’obtenir des résultats proches de ceux obtenus avec des images réellement
en couleurs dans un contexte de classification inter-domaines couleur. Ce point permet d’envi-
sager l'utilisation conjointe de données récentes et historiques pour améliorer les résultats que
I'on peut espérer obtenir en classification. Enfin, nous avons montré que SpyncoGan permettait,
comme Col-Cycle, de générer des couleurs adaptées a la classification des images aériennes his-
toriques.
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4.5 Conclusion

Résumé des travaux réalisés. Nous nous sommes intéressés a la colorisation non-supervisée
d’images panchromatiques. Dans un premier temps, nous avons cherché a coloriser les images
aériennes historiques de tres hautes résolutions afin d’améliorer la visualisation de ces données
pour les géomaticiens. Nous avons pu mettre en avant un effet mosaique apparaissant lors de la
colorisation par imagettes, que nous avons partiellement résolu a I'aide d'un remplacement de
textures. Devant les résultats encourageants obtenus, nous nous sommes placés dans un cadre
plus général afin de proposer une nouvelle approche de colorisation non-supervisée basée sur un
a priori empirique et une représentation pyramidale. Nous avons ainsi pu montrer que remplacer
I'un des deux GAN utilisé dans les réseaux de neurones cycliques était possible pour la colorisa-
tion. Nous avons également montré que la représentation pyramidale permettait de contraindre
les représentations internes du réseau de neurones (visualisation réalistes), mais que son gain
quantitatif semble limité. Enfin, nous avons pu évaluer I'intérét de la colorisation pour la classi-
fication. Nous avons ainsi montré qu'un réseau de neurones classifieur entrainé sur des images
colorisées pouvait mieux se généraliser a d’autres domaines couleur que lorsqu’il était entrainé
sur des données en vraies couleurs. Nous avons également montré I'intérét de la colorisation pour
améliorer légérement la classification des images aériennes historiques, les couleurs générées oc-
casionnant de 1égers gains sur HistAerial lorsque combinées avec des caractéristiques de texture.

Vision critique sur les travaux réalisés. L'utilisation de méthodes non-supervisées basées sur
des représentations cycliques est un choix que nous avons fait afin de pouvoir entrainer les ré-
seaux de neurones générateurs a I'aide des images a coloriser elles-mémes. Il aurait cependant
pu étre intéressant de comparer les méthodes développées avec des approches supervisées de la
littérature afin de pouvoir mieux positionner nos méthodes. Par ailleurs, l'utilisation de H; est
ici limitée au cas de la colorisation. Il aurait pu étre intéressant de chercher a développer des
fonctions H; pour différentes taches de translation d’image a image, ce qui représente une pro-
blématique que nous jugeons particulierement complexe. De plus, nous avons ici étudié I'utilisa-
tion de pyramides spatiales de sorties en nous basant sur des observations intuitives, mais nous
n’avons pas comparé cette approche a d’autres formulations multi-échelles. Nous pensons que ce
point mériterait d’étre approfondi. Enfin, les comparaisons réalisées a différentes epochs fixées ne
peuvent qu’étre indicatives : les colorisations générées lors de I'’entrainement de réseaux différents
pris a une méme epoch n’ont pas de raison, a priori, d’étre similaires (i.e., dans tous les cas, nous
comparons des minima locaux). Il est par ailleurs possible que des couleurs générées soient tres
éloignées d'une image réelle en couleurs tout en étant discriminantes sémantiquement et per-
ceptuellement appréciables pour I'étre humain : une image en couleurs parfaite n’existe pas. A ce
titre, nous avons ici uniquement utilisé des métriques par rapport a des images de références. 1l
aurait pu étre intéressant d’évaluer la diversité des couleurs générées afin de déterminer si I'un
des réseaux a tendance a apprendre des représentations plus variées qu’'un autre.

4.6 Visualisations supplémentaires

Cette section est constituée de visualisations supplémentaires (figures 4.19, 4.20, 4.21 et 4.22)
mettant en avant les différentes colorisations générées au cours de 'entrainement de Spynco-
Gan. On y constate une forte variabilité, ainsi que des représentations beaucoup plus réalistes que
d’autres. Nous recommandons une visualisation électronique pour apprécier les qualités et les dé-
fauts de ces images. Ces visualisations sont également disponibles ici :
http://liris.univ-1yon2.fr/SpyncoGan/files/ratajczak-SpyncoGanl9supp.pdf.
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FIGURE 4.19 — Exemples de peintures de Cézanne colorisées avec SpyncoGan durant l'entrainement
(G1(Ln) = O ™).
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FIGURE 4.20 — Exemples de photographies de paysages colorisées avec SpyncoGan durant I'entrainement
(G1(Ln) = O ™).
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FIGURE 4.21 - Exemples d'images aériennes du jeu de données UCMerced Land Use colorisées avec Spyn-
coGan durant I'entrainement (G (In) = OYXXH)-
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FIGURE 4.22 - Exemples d'images du jeu de données de Cifar-10 colorisées avec SpyncoGan durant I'entrai-
nement (Gi (1) = O *™).
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Chapitre 5

Segmentation sémantique et
post-traitement

Ce chapitre présente nos travaux sur le post-traitement de segmentations d’'images aériennes his-
toriques. Notre but est d’améliorer les cartes d’occupation du sol générées a ’aide d'un logiciel
tel que Gouramic (voir Annexe A). D’une part, nous avons cherché a générer des superpixels qui
prennent en compte les séparations sémantiques entre les parcelles des images aériennes his-
toriques afin d’obtenir des groupes de pixels réalistes. D’autre part, nous avons étudié l'intégra-
tion de I'information portée par ces superpixels au sein d'un champ aléatoire conditionnel afin
de contraindre I'inférence de ces modeles graphiques. Face aux résultats encourageants que nous
avons obtenus, nous nous sommes alors demandé dans quelle mesure la colorisation automa-
tique, étudiée dans le chapitre précédent, pouvait avoir un intérét pour le post-traitement des

données historiques.
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CHAPITRE 5. SEGMENTATION SEMANTIQUE ET POST-TRAITEMENT

5.1 Introduction

La segmentation sémantique est une tache qui consiste a attribuer une étiquette a chaque
pixel d'une image. Elle permet d’obtenir des informations de hauts niveaux (i.e., qui ont un sens
pour '’humain) dans un large éventail d’applications. Par exemple, en télédétection, la segmen-
tation sémantique peut correspondre a la génération automatique de cartes d’occupation du sol.
Elle permet d’accélérer significativement les analyses a moindre coit, en réduisant le nombre d’in-
terventions humaines. Dans d’autres thématiques, telles que la conduite de véhicules autonomes,
les informations de hauts niveaux que I’on aimerait obtenir peuvent correspondre a la localisation
de zones libres, ol le véhicule peut circuler, et d’obstacles. Ces éléments permettent d’envisager
des stratégies avancées dans les prises de décisions pour la conduite du véhicule. Pour le traite-
ment d'images médicales, la segmentation sémantique permet, par exemple, de cibler les zones
d’'intéréts a observer afin de qualifier ou de quantifier certaines pathologies.

De par leurs nombreuses applications, les méthodes de segmentation sémantique ont recu
une attention particuliere au sein de la communauté de vision par ordinateur. Lapparition de
nombreuses méthodes basées sur des réseaux de neurones profonds a convolutions témoigne de
cet engouement. Cependant, les résultats obtenus a I'aide de méthodes de segmentation séman-
tique ne s’attachent pas toujours correctement aux bords des objets présents dans 'image, et ils
peuvent parfois manquer de cohérence spatiale (e.g., pixels isolés mal étiquetés). Ces deux cas de
figures se retrouvent notamment dans les algorithmes de classification au pixel pres (i.e., chaque
pixel est classifié indépendamment de ses voisins). Des observations similaires ont pu étre réali-
sées sur les résultats obtenus a I'aide de DCNN. Afin de tenir compte de ces problématiques, des
méthodes basées sur des superpixels ont été proposées. Elles consistent a calculer puis a classifier
des superpixels plutdt que des pixels (i.e., on attribue une méme étiquette a tous les pixels d'un
groupe homogene de pixels). Pour rappel, ces méthodes sont généralement référencées sous le
terme Object Based Image Analysis (OBIA) en télédétection (voir chapitre 2). Lutilisation d’algo-
rithmes de post-traitement a également été explorée afin d’améliorer les pipelines de segmenta-
tion. Contrairement a 'utilisation de superpixels, ces algorithmes sont utilisés aprés avoir obtenu
un premier résultat. Il s’agit alors de raffiner le résultat obtenu en regardant a la fois la segmen-
tation sémantique initiale et I'image qui a été utilisée pour la générer. En particulier, I'utilisation
de champs aléatoires conditionnels (Conditional Random Fields, CRF) a gagné en popularité en
proposant de représenter une image a 'aide d’'un graphe permettant de moduler une segmenta-
tion préalablement obtenue en exploitant les corrélations entre les pixels. Ces approches de post-
traitement ont 'avantage de pouvoir étre, généralement, appliquées sans avoir connaissance de
I'algorithme de segmentation initial.

Segmentation
grossiere
Deep Edge
Superpixels (DES) ;

FIGURE 5.1 — Schéma générique de 'approche proposée, sans colorisation.

Segmentation
améliorée

CRF
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5.2. TRAVAUX CONNEXES

Dans le cadre nos travaux, nous souhaitions étudier I'intérét de combiner les champs aléa-
toires conditionnels et les superpixels pour améliorer les cartes d’occupation du sol obtenues a
'aide du logiciel Gouramic (voir Annexe A). Nous avons cependant remarqué que les algorithmes
de génération de superpixels sont en général construits a 'aide d’'un nombre non négligeable de
parametres, et ont tendance a générer des superpixels relativement petits (i.e., sur-segmentation)
qui ne tiennent pas forcément compte des bords sémantiques entre les objets présents dans I'image
(e.g., beaucoup de superpixels se retrouvent au sein d'une méme parcelle d’occupation du sol).
Afin de tenir compte de ces potentielles faiblesses, nous avons dans un premier temps cherché a
générer des superpixels a partir de la sortie d'un réseau de neurones a convolutions entrainé pour
détecter des bords sémantiquement intéressants, dits bords profonds (deep edges). Fortement ins-
pirés par les travaux de [SAA18], nous avons ensuite étudié I'intégration de I'information portée
par ces superpixels au sein d'un champ aléatoire conditionnel dense (voir figure 5.1), que nous
décrivons dans ce chapitre. Enfin, nous nous sommes intéressés a I’apport de la colorisation pour
le post-traitement a 'aide de champs aléatoires conditionnels.

5.2 Travaux connexes

Nous présentons ici les travaux connexes a I'utilisation de bords profonds et de champs aléa-
toires conditionnels. Nous reviendrons plus en détails sur les méthodes utilisées dans la section
suivante.

5.2.1 Bords et bords profonds

Un bord représente une séparation spatiale entre deux pixels au sein d'une image. Il est repré-
senté par un gradient d’intensité. Les bords sont a distinguer des contours. D’apres la définition
des contours aux sens de Canny [Can86] : les contours doivent étre binaires (seuillage) et consti-
tués d’'un unique pixel afin de satisfaire un critere de localisation (i.e., un contour ne peut pas étre
plus épais que I'unité de base qu’est le pixel). Les bords n’ont tout simplement pas ces contraintes :
ils ont des valeurs continues et non discretes, et ils peuvent étre épais. En cela, un bord est géné-
ralement considéré comme une représentation grossieére d’'un contour.

Pour détecter les bords, les approches usuelles se basent sur des filtres de convolutions repré-
sentant des dérivées spatiales, tels que le filtre de Sobel ou le Laplacien de la gaussienne. Ces filtres
ont des réponses linéaires en intensité : ils génerent des valeurs identiques pour des changements
d’intensités de méme amplitude, et ce méme si ces changements d’intensités correspondent a
des sémantiques différentes. On peut néanmoins mettre en opposition les bords contenus au sein
d’un objet d’intérét, correspondant a des attributs internes a 'objet (e.g., la texture d’'un champ ou
de I'écorce d'un arbre), et les bords correspondants aux séparations des objets que 1'on souhaite

FIGURE 5.2 — Tllustration de la différence entre contours, bords profonds, et bord profonds seuillés. De
gauche a droite : image d’entrée, filtre de Canny, bords profonds, bords profonds seuillés, vérité terrain.
Image extraite de [BST15].
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détecter (e.g., séparation entre une parcelle de forét et une parcelle de prairie).

Afin de tenir compte de la sémantique des objets et de détecter prioritairement des bords cor-
respondants aux entités que I’on aimerait détourer, des approches combinant traitement d’image
et apprentissage machine ont été proposées [AMFM11]. Dans ce manuscrit, nous nous intéres-
sons particuliérement aux approches exploitant des réseaux de neurones profonds a convolutions.
Ces approches ont permis d’obtenir des résultats compétitifs sur plusieurs jeux de données stan-
dards [XT15]. L'idée derriére I'utilisation de réseaux de neurones a convolutions pour détecter des
bords est qu’ils vont permettre d’apprendre des filtres aptes a donner plus d'importance aux gra-
dients d’intensités ayant une connotation sémantique, et de "gommer" les autres. Pour cela, les
détecteurs de bords sont entrainés a segmenter une image en deux catégories, a savoir les pixels
de fond et les pixels de bords. Une fois entrainé, un détecteur génere une carte de probabilités,
indiquant pour chaque pixel sa probabilité d’appartenir a un bord sémantiquement intéressant
(voir figure 5.2).

Les bords profonds ont a ce jour trouvé moult applications en télédétection. Marmanis et
al. IMSW*18] ont proposé d’intégrer des bords profonds sous forme de canaux supplémentaires
aux images IRGB et RGBD des jeux de données IPSRS Potsdam et Vaihingen. Les images avec
ces canaux supplémentaires ont été utilisées afin d’entrainer des réseaux de neurones entiére-
ment convolutifs tels que SegNet [BKC17] et FCN-8 [LSD15], populairement utilisés pour la seg-
mentation sémantique. Les résultats obtenus ont montré 'intérét d’'intégrer explicitement des
bords profonds afin de contraindre la génération de segmentations sémantiques plus proches de
la vérité terrain. Chen et al. [CBP*16] ont étudié 'intérét de prédire des bords profonds en plus
des cartes de segmentation sémantique a I'aide d'un méme réseau de neurones. Le but était ici
de contraindre 'apprentissage de représentations cohérentes par rapport aux bords afin d’amé-
liorer implicitement les résultats du réseau pour la segmentation. Les bords profonds ont éga-
lement trouvé des applications pour le détourage de parcelles de champs de cultures [MPT20;
GPLSREGM19], la génération automatique de cartes cadastrales [XPK19; CKYV19], ou encore I'es-
timation de réseaux routiers [XXFC18].

Nos travaux se positionnent ici a mi-chemin entre le détourage de parcelles et I'intégration
de bords profonds pour 'amélioration de segmentations sémantiques. Dans notre cas, le détou-
rage de parcelles constitue une étape intermédiaire a 'amélioration de segmentations obtenues a
priori.

5.2.2 Champs aléatoires conditionnels

Les champs aléatoires conditionnels ont été largement étudiés dans la littérature pour le post-
traitement de segmentations sémantiques. Pour cela, une image I est représentée a I'aide d'un
graphe G dont les vertex sont les pixels de 'image. A chaque pixel sont associées des caractéris-
tiques et a une étiquette estimée. L'étiquette estimée est généralement assortie d'une probabilité,
qui peut-étre obtenue soit en sortie d'un algorithme de segmentation, soit fixée manuellement
(cas o1 'algorithme de segmentation n’est pas accessible). Cette probabilité est régulierement ap-
pelée potentiel unaire (i.e., potentiel indépendant pour chaque pixel). Le but des algorithmes de
type CRF est alors de moduler le potentiel unaire en tenant compte des relations d’adjacences
entre les pixels (étape d’'inférence). Celles-ci sont représentées a I’aide de potentiels par paires, qui
indiquent la proximité des pixels dans I'’espace dans caractéristiques (e.g., différence entre I'inten-
sité de deux pixels connexes sur le graphe). En se basant sur ce principe, plusieurs approches ont
vu le jour.

Triggs et Verbeek [TV08] ont cherché a agréger les informations portées par des représenta-

tions a plusieurs échelles afin de tenir compte des observations locales et globales en se basant
sur des sous-ensembles de pixels rectangulaires (imagettes, patch). Krahenbiihl et al. [KK11] ont
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FIGURE 5.3 - Illustration d'un CRF basé sur des relations d’adjacence selon une grille réguliére (a) et d'un
CRF dense (b). Le fait de pouvoir tenir compte des relations entre pixels éloignés permet d’obtenir des
résultats plus réalistes. Images extraites de la présentation de [KK11].

décrit un algorithme efficace pour traiter le cas ol tous les pixels de 'image seraient considérés
comme étant connectés entre eux (voir figure 5.3). Le fait d'utiliser un CRF entierement connecté
(fully-connected CRF), aussi appelé CRF dense (DenseCRF), permet de tenir compte de I'infor-
mation portée par des pixels éloignés les uns des autres, sans se restreindre a un voisinage local.
Cependant, cette représentation est particulierement cotiteuse en ressources puisqu'il faut tenir
compte de I'intégralité des pixels, et ce pour chaque pixel analysé. Afin de réduire ce cott algorith-
mique, I'idée de Krahenbiihl et al. était de se baser sur des filtres gaussiens pour calculer les poten-
tiels par paires, et de réaliser une approximation du processus d’inférence a I’aide de ’algorithme
de champs moyen (mean field approximation). Cela a permis aux auteurs de réduire les temps de
traitement de plusieurs heures a quelques secondes comparé aux méthodes précédentes basées
sur des modeles denses. Kohli et al. [KT09] ont quant & eux poposé le modéle PN Potts, qui modé-
lise un CRF a l'aide de superpixels afin de limiter les calculs a réaliser (il y a moins de superpixels
que de pixels dans une image). Sulimowicz et al. [SAA18] ont formulé I'intégration de superpixels
au sein d’'un CRF dense en attribuant la valeur moyenne de chaque superpixel aux pixels qui le
compose, et en utilisant le résultat obtenu sous la forme d'un potentiel par paires supplémentaire.
L'idée est ici de contraindre les pixels d'un méme superpixel a avoir la méme étiquette (potentiel
nul), et de moduler les différences inter-superpixels. Il a été montré [SAA18] que cette formulation
est équivalente a celle utilisée par le modele PN Potts, mais exprimé avec le formalisme du Den-
seCRE Ce dernier point permet I'intégration ad-hoc de I'information portée par les superpixels au
sein de l'algorithme de [KK11]. Zheng et al. [ZJRP*15] ont quant a eux proposé de formuler I'algo-
rithme d’inférence du DenseCRF al’aide d'un réseau de neurones récurrents (CRFasRNN) afin de
pouvoir optimiser simultanément le réseau de neurones et les parameétres des filtres gaussiens.

Dans nos travaux, nous nous sommes inspirés de la méthode proposée par Sulimowicz et
al. [SAA18] afin d’intégrer I'information portée par les superpixels au sein d'un CRF dense. A la
différence de Sulimowicz et al., les superpixels que nous utilisons sont générés a partir de bords
profonds. Nous montrons I'intérét de ces superpixels sur nos données.

5.3 Méthode
Notre méthode peut se décomposer en deux blocs. Le premier consiste a générer des repré-

sentations issues de superpixels, eux-mémes générés a partir de bords profonds. Le second est le
CRF exploitant ces représentations afin de raffiner les segmentations grossieres.
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FIGURE 5.4 — [llustration du réseau de neurones HED. Image extraite de [XT15]. A partir d'une image source,
des bords profonds sont générés a plusieurs échelles, puis fusionnés a I'aide d'un filtre de convolutions.

5.3.1 Détection de bords profonds et représentations basées superpixels
Détection des bords profonds

Nous avons cherché a générer des bords profonds pour nos images aériennes historiques de
tres haute résolution (VHR) comme étape intermédiaire a la création de superpixels. Pour cela,
nous nous sommes basé sur le modele de détection de bords heuristiques (Holistic Edge Detector,
HED) [XT15]. HED est un réseau de neurones entiérement convolutif [LSD15] basé sur le réseau
VGG16 [SZ14] auquel on aurait retiré les couches entierement connectées. Il permet de générer des
bords profonds a plusieurs échelles (5 échelles) en transformant les cartes d’activations intermé-
diaires obtenues avant chaque couche de pooling vers I'espace de sortie en utilisant des convolu-
tions transposées. Ces bords profonds multi-échelles sont ensuite concaténés dans la dimension
des canaux et fusionnés ensemble par un filtre de convolutions. Cette sortie fusionnée représente
la sortie finale du réseau. Elle est basée sur I'idée que les cartes d’activations plus profondes trans-
portent plus d’'informations sémantiques que les cartes d’activations moins profondes, mais au
prix de représentations plus grossiéres (moins bien localisées). Fusionner ces informations a l'aide
d’'un filtre convolutif devrait permettre de mixer finesse des résultats et aspects sémantiques. Le
réseau HED avec un exemple d’image traitée est présenté sur la figure 5.4.

Dans nos travaux, nous avons suivit [MSW* 18] et utilisé la sortie fusionnée pour représenter
nos bords profonds. Etant donné que les bords que nous aimerions détecter sont naturellement
sous-représentés par rapport a 'arriére-plan, la fonction de cofit utilisée pour entrainer HED est
I'entropie croisée équilibrée par classe (voir équation (5.1)) [XT15]. Elle permet de pondérer I'im-
portance de l'erreur calculée pour les différentes classes afin d’éviter de négliger la génération de
pixels de bords (i.e., empiriquement, le réseau pourrait vouloir tricher en ne prédisant jamais les
pixels de bords car il n'y en a pas beaucoup). Pour I'optimisation, I'algorithme de descente sto-
chastique du gradient est utilisé.

124



5.3. METHODE

FIGURE 5.5 — Résultats obtenus avec HED pour la détection de bords sur une imagette de 1024x1024 pixels
apres 10000 itérations d’entrainement. (a) Imagette, (b) a (f) les sorties intermédiaires du réseau, (g) résultat
de la fusion linéaire apprise par le réseau et appliquée sur les 5 sorties.

L= ) logp(yi=1X;W;w™)

ieY+

—(1-P) Y. log(p(y; = 0IX;W; w™)
ieY—

(5.1)

Dans I'équation (5.1), W représente les poids du réseau de base (VGG-16 ici), w™ représente
les poids associés a une sortie intermédiaire m, Y+ sont les étiquettes de vérité terrain pour le
fond, Y- sont des étiquettes de vérité terrain pour les bords, et p = YT_ etl-pf= YT‘L

Nous présentons des exemples de bords profonds obtenus avec les différentes sorties de HED
apres 10 000 epochs d’entrainement sur la figure 5.5. Ces bords profonds ont été générés pour des
images aériennes historiques. Nous avons ici inversé les valeurs des résultats obtenus pour que
les bords détectés soient plus facilement visibles sur papier blanc. On peut observer que les sor-
ties les moins profondes (b)-(d) préservent effectivement de nombreuses hautes fréquences qui
ont tendance a s’effacer par la suite. On remarque également que les derniéres sorties permettent
d’obtenir une meilleure séparation des classes (bords, non bords). La sortie fusionnée (g) fournie
une représentation lissée de la sortie (f). On distingue en effet que les bords sont moins crénelés
sur (g) que sur (f), mais ils sont plus flous. Comme attendu, cette sortie fusionnée semble égale-
ment intégrer ces informations provenant des sorties précédentes : une image (g) posseéde plus de
pixels sombres qu'une image (f). Ce dernier point permet de préserver des bords ou des bouts de
bords qui auraient autrement été tronqués.

Des bords profonds aux superpixels

Une fois les bords profonds générés, nous avons choisi d’utiliser I’algorithme de partage des
eaux [BM93] afin d’obtenir des superpixels. Pour rappel, cet algorithme va créer des groupes de
pixels en se basant sur une carte de gradients. Cette derniére est ici simplement remplacée par les
bords profonds. Nous supposons que ceux-ci permettent de réduire la prise en compte des hautes
fréquences qui ne correspondent pas a des séparations sémantiquement intéressantes comparés
aux opérateurs de gradients classiques. Ce processus est fortement inspiré des travaux réalisés
par [AMFM11]. Les auteurs proposaient d'utiliser les résultats obtenus en sortie d'un détecteur
de bords afin de générer une hiérarchie de contours a I'aide de la Oriented Watershed Transform.
Pour cela, les auteurs se basaient sur des caractéristiques extraites a ’aide de filtres "artisanaux" et
de techniques d’apprentissage automatique. Cette idée fiit ensuite reprise par [XKP19] afin d’esti-
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Source, image | Bords profonds DES DES-mean

FIGURE 5.6 — Schéma illustrant la génération de représentations lissées a I'aide de superpixels extrait de
bords profonds.

mer des cartes cadastrales a partir de bords profonds. Ici, I'algorithme de partage des eaux permet
d’obtenir des groupes de pixels que nous avons nommeés Deep Edge Superpixels (DES).

Dans notre cas, nous ne nous intéressons pas aux contours des DES générés, mais a l'infor-
mation contenue dans les zones qu’ils représentent. En particulier, nous utilisons les DES pour
générer une représentation lissée de 'image, d’'une facon tout a fait similaire a 'approche propo-
sée par [SAA18] avec des superpixels plus classiques. Pour cela, nous calculons la valeur moyenne
de l'intensité des pixels de chaque superpixel, et nous assignons cette valeur a tous les pixels du
superpixel. Chaque superpixel est alors représenté par sa valeur moyenne, ce qui signifie que la
différence d’intensité entre deux pixels au sein d’'un méme superpixel sur la représentation lis-
sée est nulle. A noter que dans le cadre de nos expériences, nous avons également étudié I'intérét
d’utiliser la valeur médiane a la place de la moyenne. Nous nommons respectivement ces deux
représentations lissées DES-mean et DES-median. Une illustration de ce processus est présentée
sur la figure 5.6 pour la valeur moyenne.

5.3.2 Intégration au sein d’'un champ aléatoire conditionnel

Nous définissons ici la fagcon dont nous avons intégré I'information portée par les DES au sein
d’'un champ aléatoire conditionnel.

Lestimation des étiquettes a I'aide d'un champ aléatoire conditionnel est réalisée en minimi-
sant une énergie de Gibbs, représentée comme la somme d’un potentiel unaire Y, et de potentiels
par paires \,,. D’apres la formulation du CRF dense de [KK11], nous pouvons noter i et j les in-
dices de deux pixels, avec des étiquettes x; et x;. Alors, I'énergie de Gibbs peut-étre définie par
I'équation (5.2).

E(x) =) wulx)+ ) wplx;, X)) (5.2)
i i<j
Pour rappel, le potentiel unaire Y, représente la probabilité qu'une étiquette particuliere soit
associée au pixel i. Afin de moduler cette probabilité, les potentiels par paires prennent une forme
générique donnée par I’équation (5.3), qui représente une combinaison linéaire de N noyau gaus-
siens (un par potentiel) : k?, n € {1,...,N}. Dans cette équation, H(Xi, X7) = 1(x,2x;) (0 sinon) défini
un modele de Potts, et f; et f; sont les vecteurs de caractéristiques associés aux pixels i et j.

k(i f7)

~

"N
W (xi,x)) = ulxi, xj) Y 0Pk, f) (5.3)
n=1

Ici, nous modélisons les potentiels par paires a 'aide de N = 3 noyaux gaussiens, tels que re-
présentés par 'équation (5.4). Les deux premiers noyaux de I'’équation (5.4) modélisent les poten-
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tiels sensibles au contraste (contrast-sensitive), comme définis par [KK11]. Ils permettent d’inté-
grer I'information portée par la couleur (ou I'intensité du niveau de gris dans notre cas) I; et I},
ainsi que I'information portée par la position des pixels P; et P;. L'idée est ici que des pixels spa-
tialement proches avec des couleurs similaires devraient avoir la méme étiquette. Ces deux filtres
ont pour parametres 6y, 84 et Og qui correspondent aux déviations standards du filtre gaussien. En
complément, nous intégrons un troisiéme noyau qui représente I'information portée par les pixels
de I'image DES-mean, dont les intensités sont représentées par DES; et DES ;. Son but est de pé-
naliser deux pixels appartenant a des superpixels différents. Nous avons dans un premier temps
fixé ce noyau sous la forme d’'un potentiel générique (pas de parametres, voir équation (5.4)). Nous
avons ensuite étendu cette formulation a l'utilisation d’'un potentiel bilatéral, similaire au noyau
k@,

P._P.
k(fi,fj) Zw(l)exp(— i . ])
267
IP;—P;> I -1;]?
2 J ]
+w“exp(— - 5.4)
Pl 202 29f3 ) (
—|DES; — DES |2
+oPexp( | 12 ! |

En pratique, les poids w peuvent étre optimisés. Dans notre cas, nous les avons fixés manuel-
lement afin d’étudier I'importance relative des caractéristiques de 'image initiale et de 'image
lissée en tenant compte des bords profonds (voir section 5.4.3).

5.4 Expériences et résultats

Nous présentons dans cette section les expériences que nous avons réalisées, ainsi que les
résultats que nous avons obtenus en post-traitement.

5.4.1 Mise en place
Données initiales

Afin de réaliser nos expériences, nous nous sommes basés sur 17 images aériennes historiques
de tres hautes résolutions annotées manuellement a 'aide de 7 classes d’occupation du sol, plus
une classe supplémentaire représentant la catégorie "autre" (e.g., stade) qui a été ignorée dans
nos traitements. Parmi ces images, nous en avons réservées 9 pour entrainer le détecteur de bords
HED, et 8 que nous avons utilisées pour évaluer les résultats obtenus en segmentation sémantique.
Nous avons nommé ces deux ensembles de données d, (dataset edges) et d; (dataset segmenta-
tion). La distribution des étiquettes pour ces images est donnée sur la figure 5.7. Cette répartition
nous montre que les images possédent, globalement, des répartitions de classes similaires, ce qui
devrait permettre d’améliorer les performances du détecteur de bords lors de I'inférence.

Génération de segmentations sémantiques grossieres

Afin d’obtenir des résultats initiaux de segmentation sémantique, nous avons choisi de mi-
mer le processus d’utilisation du logiciel Gouramic (voir Annexe A). Pour chaque image aérienne
historique de d;, nous échantillonnons aléatoirement 300 pixels par classe. Nous extrayons en-
suite une imagette de 100 x 100 pixels centrée sur chaque pixel échantillonné, a partir de laquelle
nous calculons un histogramme de textures a I’aide du filtre LCoLBP présenté dans le chapitre 3.
Chaque imagette de 100 x 100 pixels est ici considérée comme étant annotée par son pixel cen-
tral. Les histogrammes calculés sont ensuite utilisés pour entrainer une forét aléatoire d’arbres de
décisionnels composée de 100 arbres. Nous entrainons une forét aléatoire d’arbres décisionnels
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FIGURE 5.7 — Distribution des étiquettes/classes dans les jeux de données utilisés.

pour chaque image aérienne (voir chapitre 3). Nous générons ensuite un résultat de classification
sur 'ensemble de 'image a I'aide d'une fenétre glissante parcourant une grille réguliere. La taille
de la fenétre glissante est égale a la taille des imagettes utilisées pour entrainer la forét d’arbres
décisionnels. Le pas entre deux positions de la fenétre est quant a lui fixé a 25 pixels, horizontale-
ment comme verticalement. Le résultat obtenu par classification est ici attribué a tous les pixels
se trouvant dans une aire de 25 x 25 pixels, centrée sur la fenétre glissante (taille d'une cellule). 11
s’agit ici d'une extension au niveau de 'imagette des algorithmes de classification au pixel pres.
Lutilisation d’'une approche a I'imagette pres présente I'avantage d’accélérer significativement les
temps de traitements (e.g,, il y a ici 25 x 25 — 1 fois moins de calculs a réaliser) par rapport a une
approche au pixel pres. En contrepartie, les résultats ont un niveau de finesse moindre, défini par
la taille du pas de la fenétre glissante dans notre cas. Des exemples de segmentations grossiéres
ainsi obtenues sont visibles sur la figure 5.8. On y constate le crénelage occasionné par la classifi-
cation a I'imagette pres, ainsi que la présence d’'imagettes incorrectement classifiées. Ces résultats
grossiers représentent nos segmentations sémantiques de base.

Détection des bords profonds et des DES-mean associées

Afin d’entrainer le détecteur de bords profonds en tenant compte des contraintes mémoires,
nous avons choisi de travailler avec des imagettes de 1024 x 1024 pixels. Pour cela, nous avons ex-
trait 1545 imagettes de 1024 x 1024 pixels de d, avec 75% de recouvrement entre deux imagettes.
Pour chaque imagette, nous avons obtenu des bords vérité terrain en appliquant un filtre de Sobel
sur les annotations manuelles de segmentation sémantique, puis nous avons binarisé le résultat
(seul fixé a 1). Nous avons ensuite entrainé le réseau de neurones HED pour 10000 itération avec
un taux d’apprentissage initiale de 1e~% a I'aide du code fournit par les auteurs.

Une fois le détecteur de bords entrainé, nous découpons des imagettes de 1024 x 1024 pixels
sans recouvrement a partir des images aériennes panchromatiques de d; (130 imagettes), ainsi
que les segmentations sémantiques grossieres correspondantes. Nous appliquons le détecteur de
bords entrainé sur ces imagettes, avant de générer des DES et leurs représentations moyennes /
lissées correspondantes.

Résumé des données

A ce stade, nous avons donc 130 imagettes (d;) de 1024 x 1024 pixels, pour lesquelles nous
avons une segmentation grossiére (et une vérité terrain), des DES et une image de DES-mean.
Notre but va maintenant étre de déterminer quel est I'apport de chacun de ces éléments pour le
post-traitement des segmentations grossieres.
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FIGURE 5.8 - Exemples d'images aériennes segmentées grossierement (taille originale : 4500 x 4500 pixels).
Gauche : images aériennes panchromatiques. Milieu : segmentations grossiéres. Droite : Vérités terrains.

5.4.2 Expériences
Utilisation des Deep Edge Superpixels : vote majoritaire

Nous avons dans premier temps étudié I'intérét des DES par rapport a d’autres algorithmes
de superpixels. Pour cela, nous avons commencé par réaliser une étude par vote majoritaire. Pour
chaque superpixel, nous comptons le nombre de fois qu'une étiquette apparait, et nous associons
I'étiquette la plus fréquente a tous les pixels du superpixel. L'idée est ici de mettre en avant quel
algorithme est le plus prompt a générer des groupes de pixels qui permettent de réduire les écarts
entre étiquettes estimées et étiquettes réelles.

Nous avons ainsi comparé les DES aux algorithmes de SLIC, ETPS et FH présentés dans le
chapitre 2 [ASS*12; YBFU15; FHO04]. Pour cela, nous avons utilisé les implémentations proposées
par Stutz et al. [SHL18] avec les parameétres par défaut des méthodes (ceux de OpenCV pour FH).
Pour les algorithmes SLIC et ETPS, nous avons fait varier le nombre de superpixels entre 300 et
3000 (sur imagettes de 1024 x 1024 pixels) avec un nombre d’itérations fixé a 10 et sans appliquer
d’algorithme de fusion des superpixels. Il va de soi que modifier les parametres des algorithmes,
modifier le nombre d’itérations et tenter de fusionner les superpixels entre eux devrait permettre
d’obtenir des résultats différents. Seuls les meilleurs résultats sont présentés ici pour ne pas pol-
luer la lecture. Nous avons cependant remarqué que moins nous avions de superpixels, meilleurs
étaient les résultats pour un post-traitement de type vote majoritaire. Cela tend a indiquer que nos
données sont particulierement sensibles au phénomeéne de sur-segmentation.

Les résultats obtenus par vote majoritaire sont présentés sur le tableau 5.1, al’aide de plusieurs
métriques usuellement utilisées en segmentation sémantique, a savoir 'intersection sur I'union
moyenne (m-IoU), I'intersection sur I'union pondérée (f-IoU) et le taux de bonne classification
au pixel pres. Pour 'ensemble de ces métriques, plus la valeur est élevée, meilleur est le résultat.
On constate que les résultats obtenus avec les DES sur ds sont supérieurs a ceux obtenus avec les
autres algorithmes (1.6% supérieurs en taux de bonne classification par rapport a FH). On observe
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également que les algorithmes SLIC et ETPS ne permettent pas d’obtenir des résultats au niveau de
la méthode FH. Ces résultats tendent a indiquer que, sur nos données, I'utilisation de superpixels
ayant des tailles variables semble étre a privilégier (FH, DES) afin d’améliorer les résultats grossiers
de segmentations sémantiques.

Intégration des Deep Edge Superpixels dans le CRF

Nous avons étendu notre évaluation a la chaine de traitements compléte présentée sur la fi-
gure 5.1.

Pour cela, nous avons comparé I'utilisation du CRF dense avec et sans intégration de 'infor-
mation portée par les DES-mean. Nous avons aussi évalué 'intérét d'intégrer I'information portée
par des superpixels plus classiques (algorithme SLIC). Pour cela, nous avons fait varier les para-
metres Oy et O (minimum égal a 3) afin de comparer les méthodes a leur meilleur point de fonc-
tionnement. Les poids associés aux noyaux gaussiens ont été fixés de maniere a donner autant
d’importance a 'image initiale qu’a I'information portée par les superpixels : o) = 3, @ =10
and w® = 10. Le taux de confiance (i.e., la probabilité) associée a chaque pixel des résultats gros-
siers a été fixée a 0.55. L'inférence réalisée pour chaque variante de CRF (avec et sans superpixels)
a été réalisée pour 10 itérations a 'aide de l'algorithme de [KK11]. Les résultats que nous avons
obtenus sont présentés sur la figure 5.10. Nous pouvons y observer que le CRF seul permet d’obte-

TABLEAU 5.1 — Résultats obtenus avec un post-traitement par vote majoritaire par superpixel sur d.

Méthode m-IoU{ f-IoU{ Tauxdebonne classification |
Base 59.5 60.6 74.3
Slic [ASS112] 61.2 62.1 75.5
Etps [YBFU15] 61.6 62.6 76.0
FH [FHO04] 65.9 67.2 79.6
DES 68.7 69.4 81.2

@ (b) (c) (d (e) ® ®

FIGURE 5.9 — Exemples de résultats. (a) image aérienne panchromatique, (b) bords profonds, (c) DES-mean,
(d) résultats de segmentation grossiere, (e) post-traitement avec CRF dense, (f) post-traitement avec CRF
dense et DES-mean, (g) vérité terrain.
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FIGURE 5.10 — Résultats obtenus en intégrant I'information portée par les superpixels au sein d'un champ
aléatoire conditionnel dense. (a) CRF dense classique (83.08%), (b) CRF avec superpixels SLIC (82.20%), (c)
CRF avec DES (83.66%).

nir des résultats plus élevés qu’avec un vote majoritaire (voir sous-section précédente). Incorporer
I'information portée par les DES tend a améliorer ces résultats de 0.58%. Des exemples de résul-
tats obtenus sont présentés sur la figure 5.9. Etonnamment, intégrer I'information portée par les
superpixels SLIC semble diminuer I'efficacité du post-traitement sur nos données.

Modification du noyau

Nous nous sommes interrogés sur la forme du noyau gaussien utilisé pour représenter les DES.
En particulier, nous avons comparé les résultats obtenus a I’'aide d'un noyau générique, tel qu'uti-
lisé dans la section précédente, et ceux obtenus al’aide d'un noyau bilatéral. L'utilisation du noyau
bilatéral était préconisée par Sulimowicz et al. [SAA18]. En pratique, passer du noyau générique
au noyau bilatéral se traduit par remplacer I'équation (5.4) a I'aide de I'’équation (5.5). Dans cette
configuration, les parametres du filtre gaussien sont fixés pour étre identiques a ceux utilisés pour
le noyau k@,

P;—-P;
k(fi, f) =0oPVexp(-—L
(fi f7) p( 20$)
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FIGURE 5.11 — Comparaison entre le filtre générique (a gauche, 83.66%) et le filtre bilatéral (a droite, 83.95%)
pour I'intégration de I'information portée par les DES.

Les résultats que nous avons obtenus sont présentés sur la figure 5.11. Nous observons un
gain de 0.29% avec 'utilisation du noyau bilatéral par rapport a 'utilisation du noyau générique.
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Le noyau bilatéral semble donc étre a privilégier pour le post-traitement de segmentations séman-
tiques al’aide des DES-mean. L'ensemble des résultats présentés par la suite seront donc basés sur
ce noyau.

Utilisation de la médiane

Nous avons jusqu’a présent utilisé la valeur moyenne des superpixels pour représenter les
DES. Nous nous sommes cependant demandé si 'utilisation d'une autre statistique pouvait avoir
un intérét. En particulier, la valeur médiane est régulierement décrite comme étant plus repré-
sentative d'un ensemble que la valeur moyenne. Nous avons de fait comparé les résultats obte-
nus a l'aide des représentations DES-mean et DES-median intégrées dans un CRF dense a I'aide
d’un filtre bilatéral. D’'un point de vue visualisation, la différence entre DES-mean et DES-median
est visible sur la figure 5.12. A titre indicatif, nous avons également affiché I'image correspon-
dant a la déviation standard sur cette figure (DES-std). On constate que les images DES-mean
et DES-median se ressemblent beaucoup, avec des différences difficilement distinguables a I’ceil
nu. Limage de déviation standard est quant a elle particulierement disparate : de nombreux élé-
ments se retrouvent perceptuellement fusionnés alors qu’ils ne correspondent pas aux mémes
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FIGURE 5.12 — Comparaison visuelle entre DES-mean, DES-median et DES-std.
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FIGURE 5.13 - Comparaison entre I'utilisation de DES-mean (a gauche, 83.95%) et de DES-median (a droite,
83.81%) pour le post-traitement.
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types d’occupation du sol (image du bas).

Les résultats obtenus en utilisant ces deux représentations pour le post-traitement sont pré-
sentés sur la figure 5.13. On y constate que, sur nos données, la représentation DES-mean permet
d’obtenir des taux de bonne classification légerement plus élevés que DES-median. Lutilisation
de la valeur moyenne de chaque superpixel ne semble donc pas contre-indiquée ici.

5.4.3 Apportde la colorisation

Face aux résultats encourageants que nous avons obtenus sur les images en niveaux de gris,
nous avons souhaité étudier I'apport de la colorisation sur le post-traitement (voir figure 5.14).
Il s’agit ici d’étudier I'intérét de coloriser I'image source avant d’en extraire des DES-mean utili-
sables au sein d'un CRF dense. Intuitivement, nous nous disions que I'information portée par la
couleur devrait permettre d’avoir des potentiels par paires plus discriminants. Nous souhaitions
également comparer 'utilisation d’'images colorisées par rapport a I'utilisation d’images en cou-
leurs réelles.

Mise en place

Pour cela, nous avons travaillé sur un jeu de données constitué de 18 images aériennes en
couleurs acquises entre 1991 et 2003. Comme précédemment, ces images ont été annotées ma-
nuellement par un géomaticien du Centre Léon Bérard. La moitié des images a été réservée pour
entrainer le détecteur de bords, et I'autre moitié a été utilisée pour évaluer les pipelines de post-
traitements. Les images aériennes ont ensuite été découpées en imagettes de 1024 x 1024 pixels,
pour un total de 1389 imagettes avec 75% de recouvrement pour entrainer le détecteur de bords,
et de 100 imagettes sans recouvrement pour I'évaluation.

Chaque imagette a ensuite été convertie en niveaux de gris avant d’étre colorisée a I'aide de
Col-Cycle dans sa version entrainée apres 60 epochs (voir chapitre 4). Le choix d’utiliser ce réseau
la pour la colorisation a été fait afin de tenir compte de I'étude par note moyenne d’opinions réa-
lisée dans le chapitre précédent. Empiriquement, nous pensions que si les images colorisées sont
réalistes pour un étre humain, elles devraient également contenir des informations couleur spa-
tialement pertinentes comparées a des images réellement en couleurs. De plus, les taux de bonne
classification obtenus sur les images colorisées a I'aide de Col-Cycle et de SpyncoGan se sont avé-
rés relativement proches lorsque combinés a la texture (voir chapitre 4), ne mettant pas en avant
une colorisation particulierement plus efficace qu'une autre pour discriminer les classes d’occu-
pation du sol. Il est néanmoins a noter que les couleurs générées par Col-Cycle semblaient étre
plus discriminantes que celles de SpyncoGan (tous deux comparés apres 120 epochs d’entraine-
ment) lorsqu’utilisées seules pour la classification.

Segmentation
__________ grossiére
Deep Edge
Superpixels (DES)

o CrF Segmfer\ta?lon
améliorée

colorisation

FIGURE 5.14 — Schéma générique de I'approche proposée, avec colorisation.
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Vers niveaux de gris Colorisation

(]
o
3
5]
(%]
w
o
0
©
[VN}
o wAL
$ b 5
a
Watershed Eu: Watershed Watershed &

Mean Mean Mean

Deep Edge
Superpixels
Mean intensity

FIGURE 5.15 - Schéma illustrant la génération de représentations lissées (DES-mean) al’aide de superpixels
extrait de bords profonds a partir d'images en couleurs, niveaux de gris et colorisées.

Une fois la colorisation réalisée, on se retrouve alors avec les mémes instances d’images, re-
présentées dans trois domaines couleur différents : niveaux de gris, couleurs réelles, et fausses
couleurs.

Pour chacun de ces domaines, nous raffinons 'entrainement du détecteur de bords HED uti-
lisé précédemment, et ce pour 4000 itérations. Le but est ici de profiter d'une initialisation proche
del’optimum souhaité pour chacun des domaines couleur, tout en ayant la méme procédure d’en-
trainement pour chacun d’entre eux. Il est néanmoins possible qu'un biais existe pour les images
en niveaux de gris, domaine couleur sur lequel le réseau a initialement été entrainé (risque de
sur-apprentissage, ou de sous-apprentissage pour les autres domaines). Les détecteurs de bords
raffinés sont ensuite appliqués sur les imagettes de leurs domaines couleur respectifs. Cela nous
permet de générer des représentations de type DES-mean pour chacun des domaines couleur. On
se retrouve alors avec des images, des DES et des DES-mean différents pour les trois domaines
couleur considérés. Ce processus est illustré sur la figure 5.15. On y constate la diversité des repré-
sentations obtenues.

Intérét de la colorisation sans DES-mean

Nous avons dans un premier temps évalué I'intérét de la colorisation pour le post-traitement
al'aide d'un CRF dense sans intégrer I'information portée par les DES-mean (i.e., w'" =3, w® =
10, w® = 0). Les résultats obtenus en faisant varier 0, et Bp sont présentés sur la figure 5.16. On
y observe que le post-traitement a 'aide de potentiels par paires calculés a partir d’'images en
couleurs permet d’obtenir les résultats les plus élevés (82.77% de taux de bonne classification). Les
potentiels colorisés permettent quant a eux d’obtenir des résultats proches des potentiels couleur
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(82.65%), et supérieurs a ceux obtenus a l'aide des potentiels en niveaux de gris (82.04%). Ces
résultats nous indiquent que coloriser les images en niveaux de gris peut permettre d’améliorer
I'efficacité d'un post-traitement a ’aide d’'un CRF dense.
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FIGURE 5.16 — Résultats obtenus en post-traitement avec un CRF dense sans DES-mean. De gauche a droite :
image source en couleurs (82.77%), niveaux de gris (82.04%), et colorisée (82.65%).

Intégration des DES-mean et variation des poids relatifs

Nous avons évalué I'intérét d’intégrer les DES-mean de chaque domaine couleur pour le post-
traitement a 'aide d'un CRF dense. Les potentiels par paires ont été définis a I'aide d'un filtre
bilatéral, en accord avec les observations réalisées dans les sous-sections précédentes. Les poids
w® et w® ont d’abord été fixés pour donner la méme importance a chaque potentiel par paires,
tels que w® = w® = 10. Nous avons ensuite fait varier ces poids de facon relative afin de déter-
miner s’il est préférable de donner plus d’'importance a I'image ou a sa représentation lissée. Les
résultats obtenus sont présentés sur le tableau 5.2. On y remarque que les potentiels en couleurs
et colorisés permettent d’obtenir des résultats plus élevés que les potentiels en niveaux de gris
sur nos données. On remarque également que la configuration permettant d’obtenir les taux de
classification les plus élevés correspond a un équilibre relatif entre les poids attribués a chaque
potentiel par paires (poids identiques). Par ailleurs, donner plus d'importance a 'image source
par rapport a la DES-mean ne diminue que légerement les résultats obtenus. En revanche, don-
ner plus d’'importance a la DES-mean par rapport a 'image source semble diminuer les résultats
de fagon plus importante. Ces observations semblent indiquer que 'information lissée est moins
discriminante que I'information brute (image source). L'utilisation des DES-mean en complément
de I'image source semble étre a préconiser.

TABLEAU 5.2 — Taux de bonne classification (%) obtenus en intégrant les DES-mean au sein d'un CRF dense
et en faisant varier w® et w'®. Les valeurs reportées correspondent aux meilleurs résultats obtenus en
faisant varier O et 0.

Poids (w®, w®)

Domaine couleur | (10,10) | (30,10) | (10,30)
Niveaux de gris 82.68 | 82.16 | 82.12
Couleurs réelles 83.34 83.28 82.36
Fausses couleurs 83.26 83.11 82.42

Superpixels d’'un autre domaine couleur

Nous avons observé des gains pour les taux de bonne classification liés a la colorisation. Ce-
pendant, nous avons jusqu’a présent généré les superpixels a partir de bords profonds détectés
sur des images de domaines différents. Or, les superpixels utilisés sont a priori différents d'un
domaine a l'autre. Afin d’évaluer si les résultats observés sont le fruit de la colorisation ou de la
forme des superpixels, nous avons générés des DES-mean pour chaque domaine couleur a I'aide
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des superpixels des autres domaines (i.e., DES-mean de I'image colorisée en utilisant la forme des
superpixels extraits de 'image en niveaux de gris). Les résultats que nous avons obtenus sont pré-
sentés sur le tableau 5.3. On observe que les meilleurs taux de bonne classification sont obtenus a
I'aide des DES calculés a partir des images en niveaux gris et en couleurs. Ces résultats semblent
cohérents avec notre intuition. Les images colorisées ont en effet été hallucinées par un réseau de
neurones a convolutions a partir des images en niveaux de gris, ce qui implique que les structures
spatiales ont pu étre légerement modifiées (e.g., aberrations chromatiques locales). Néanmoins,
pour chaque type de superpixel, on observe des taux de bonne classification plus élevés en utili-
sant les représentations moyennes en vraies et fausses couleurs. Ce dernier point tend a montrer
que les gains observés sont effectivement dus a la colorisation, et non a la forme des superpixels.

TABLEAU 5.3 — Taux de bonne classification (%) en utilisant les DES-mean obtenus a ’aide de DES de dif-
férents domaines couleur avec w' = 3 and w® = w® = 10. Les valeurs reportées correspondent aux
meilleurs résultats obtenus en faisant varier 0 et 6g.

Superpixels
DES-mean Niveaux de gris | Couleurs réelles | Fausses couleurs
Niveaux de gris 82.68 82.63 82.64
Couleurs réelles 83.32 83.34 83.16
Fausses couleurs 83.52 83.34 83.26

5.5 Conclusion

Résumé des travaux réalisés. Nous nous sommes intéressés a l'utilisation d’algorithmes de
post-traitements pour améliorer les résultats de segmentation sémantique d'images aériennes.
Nous avons montré l'intérét d’extraire des bords profonds afin de générer des superpixels et in-
tégrer I'information qu’ils portent au sein d'un CRF dense. Nous avons également mis en avant
I'intérét de la colorisation pour le post-traitement.

Vision critique sur les travaux réalisés. Nous avons travaillé dans un cadre exploratoire afin de
déterminer I'intérét de certains algorithmes de post-traitement pour améliorer les cartes d’occu-
pation du sol. Nous nous sommes limités au cas de 'inférence al’aide de champs aléatoires condi-
tionnels denses. Nous n'avons pas exploré l'utilisation d’autres algorithmes de post-traitement.
Nous aurions pu, par exemple, remplacer le CRF dense par un réseau de neurones a convolutions.
De la méme maniere, nous n’avons pas cherché a optimiser les poids associés a chaque potentiel
par paires, nous contentant d’'une évaluation de I'importance relative de chacun d’eux. Il aurait
pu étre intéressant d’optimiser ces poids de maniére plus rigoureuse. Enfin, nous n’avons pas ap-
pliqué les algorithmes de post-traitement sur les images aériennes entiéres, mais seulement sur
des imagettes de 1024 x 1024 pixels sans recouvrement. Les relations entre les pixels de deux ima-
gettes connexes n'ont donc pas été prises en compte. La prise en compte de ces relations aurait pu
avoir un impact sur les résultats obtenus.
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Dans ce manuscrit, nous avons abordé l'utilisation d’algorithmes de vision par ordinateur afin
d’analyser automatiquement les images aériennes historiques dans le cadre d’'une étude épidé-
miologique portant sur 'impact sur la santé de I’exposition aux pesticides associée aux cultures
agricoles. Nous avons vu comment classifier, coloriser, et segmenter ces données en plusieurs
classes d’occupation du sol. Nous avons notamment pu mettre en avant la faisabilité de ce type
d’approches pour faciliter le travail de photo-interprétation des géomaticiens. Nos travaux ne sont
cependant encore qu'une esquisse du champ des possibles, que ce soit a cause de la nature com-
plexe des images étudiées (peu de modalités, différences de résolutions, différentes dates, etc.), ou
de I'état actuel des ressources disponibles (peu de données annotées, mise a disposition récente
des images).

Classification de textures

Nous avons étudié l'utilisation de descripteurs de textures et de réseaux de neurones pro-
fonds a convolutions afin de classifier automatiquement les images aériennes historiques en plu-
sieurs classes d’occupation du sol. Nous avons mis en avant I'efficacité des deux types d’approches
pour cette tache, les descripteurs de textures ayant des temps de traitements plus rapides que les
DCNN, pour des taux de bonne classification 1égerement inférieurs sur le jeu de données His-
tAerial. Face a des résultats encourageants, nous avons étendu nos travaux a des images d’écorces
d’arbres dans le cadre d’'une collaboration avec une autre doctorante, mettant en avantl'intérét de
combiner texture et couleur. La rapidité de ces algorithmes basés sur la texture nous a poussé a les
utiliser dans le cadre du projet TESTIS afin qu’ils puissent bénéficier aux géomaticiens du Centre
Léon Bérard, ne disposant pas de cartes graphiques aptes a accélérer I’exécution des DCNN.

Les méthodes développées dans le cadre de cette these, ainsi que le jeu de données HistAe-
rial, peuvent avoir un intérét pour la classification de textures en général. Lutilisation d’autres
combinaisons de filtres et de caractéristiques pourrait également avoir un intérét afin d’amélio-
rer les résultats obtenus, non seulement sur HistAerial, mais aussi sur d’autres jeux de données.
Parmi les pistes possibles, la combinaison de caractéristiques extraites par des descripteurs de
textures et des réseaux de neurones profonds a convolutions nous parait intéressante. En parti-
culier, il pourrait étre pertinent de contraindre I’entrainement d'un DCNN pour la génération de
caractéristiques complémentaires a celles extraites par les filtres classiques. Pour cela, la conca-
ténation des caractéristiques de textures et des caractéristiques profondes durant I’entrainement
est une piste envisagée. Il s’agirait alors d’avoir un ensemble de caractéristiques pré-définies, et
un semble de caractéristiques qui seraient apprises en complément. Nous avons par ailleurs vu
que l'utilisation de modalités générées par un réseau de neurones a convolutions (i.e., la couleur
dans notre cas) permettait d’améliorer légerement les taux de bonne classification sur HistAerial.
Ces résultats nous poussent a croire que la génération d’autres modalités pourrait avoir un intérét
pour I'analyse des images aériennes historiques. En particulier, les informations de profondeur,
qui peuvent étre générée par stéréoscopie, devraient nous donner des indices visuels complémen-
taires pour analyser ces images (e.g., distinction vignes / vergers en fonction des pentes ou de la
hauteur des cultures). La fusion d’informations non issues d'images (e.g., saison de I'acquisition,
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coordonnées géographiques, registres cadastraux, statistiques de recensements) est une piste de
recherche qui nous semble également pertinente pour inclure des a priori supplémentaires quant
aux données observées (e.g., certaines régions ne possédent pas de vignes). En particulier, le fait
de tenir compte des coordonnées géographiques pourrait nous permettre de guider la génération
automatique de cartes d’occupation du sol en adaptant les méthodes en fonction des zones ob-
servées. Enfin, I'utilisation de séries temporelles est une piste que nous avions temporairement
exclue da a la faible période temporelle entre deux acquisitions, et a la volonté de générer des ré-
sultats a un instant donné (étude TESTIS). Il pourrait néanmoins étre intéressant de combiner les
informations d'images multi-temporelles, et éventuellement multi-spectrales, afin d’améliorer les
taux de bonne classification.

Colorisation automatique

Afin d’annoter les images aériennes historiques, que ce soit manuellement ou a I'aide du lo-
giciel Gouramic, les géomaticiens ont besoin de déterminer quel est le contenu des images. Ce
contenu est particulierement difficile a analyser lorsqu’il n’est disponible qu’en niveaux de gris.
Afin de les aider dans cette tache, nous avons étudié I'utilisation de réseaux de neurones généra-
teurs adversaires cycliques afin de coloriser automatiquement les images anciennes. Nous avons
montré que les colorisations générées étaient réalistes pour les étres humains, mais permettaient
aussi d’améliorer légerement les taux de bonne classification par rapport a la texture seule (i.e., les
couleurs générées semblent positivement corrélées aux classes d’occupation du sol). Afin de ten-
ter d’améliorer les colorisations générées, nous avons proposé une méthode dite pseudo-cyclique,
qui consiste a remplacer I'un des deux GAN par une fonction définie empiriquement. Nous avons
montré qu'une telle approche, pseudo-cyclique, permettait d’obtenir des résultats au moins au
niveau des autres méthodes comparées, sans pour autant que les couleurs générées permettent
d’obtenir un gain supplémentaire en classification.

Les travaux que nous avons menés sur la colorisation automatique se cantonnent a 'utilisa-
tion d’approches entierement automatiques, sans tenir compte de la géolocalisation des images ni
de la représentation actuelle des sols des lieux observés. Il serait intéressant d’étudier, d'une part,
I'intérét d’algorithmes supervisés pour coloriser les images aériennes historiques, et, d’autre part,
d’évaluer I'intérét des méthodes utilisées sur des jeux de données plus disparates que ceux avec
lesquels nous avons travaillés. Une autre perspective intéressante, selon nous, serait de guider le
processus de colorisation en appariant les images historiques aux images récentes dans le cadre
d’une approche hybride, a mi-chemin entre le transfert de couleur et la colorisation. De méme,
guider le processus de colorisation en intégrant des contraintes liées a la classification est une
piste relativement populaire dans la littérature, qu’il pourrait étre intéressant de suivre. Al'inverse,
il pourrait étre pertinent de s’inspirer des Auto-Encodeurs pour étudier I'efficacité des caractéris-
tiques profondes générées pour la colorisation afin de réaliser d’autres taches (e.g., segmentation).
A ce propos, nous pourrions aussi nous demander si ces caractéristiques sont tres différentes de
celles obtenues avec un auto-encodeur, et pourquoi? Par ailleurs, 1'utilisation de méthodes plus
avancées pour gérer |'effet mosaique est également une piste envisagée. On pourrait, par exemple,
tenir compte de la cohérence spatiale des colorisations lors de I'’entrainement en utilisant des ima-
gettes avec recouvrement, et en imposant des contraintes pour que les pixels de deux imagettes
qui se recouvrent aient la méme couleur. De plus, I'utilisation d’approches cycliques pour géné-
rer des représentations spectralement plus complétes (e.g., infrarouge, profondeur) est une piste
qui pourrait avoir un intérét pour la visualisation et la classification des images aériennes histo-
riques (i.e., apprentissage d’'une relation entre texture et infrarouge). A noter que l'utilisation de
la colorisation et de la profondeur (élévation du terrain) pour la visualisation est une idée qui a
été mis en place dans le cadre d'une collaboration avec le laboratoire Environnement Ville Société
de Saint-Etienne, France. Enfin, I'utilisation de la colorisation pour I'adaptation de domaines est
une piste qui nous semble prometteuse. Il s’agirait ici de convertir des images acquises avec des
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capteurs différents vers une représentation en niveaux de gris, et de toutes les coloriser a I'aide du
méme algorithme. Les domaines couleur rattachés aux niveaux de gris et aux images colorisées
serviraient alors d’'intermédiaires entre les différents capteurs, sans avoir nécessairement besoin
d’entrainer un algorithme pour chaque type d’images.

Post-traitement

Dansle but d’améliorer les résultats obtenus par segmentation sémantique au pixel ou al'ima-
gette pres, nous avons étudié I'utilisation de méthodes de post-traitement. Nous nous sommes
basés sur des algorithmes de sur-segmentation et des champs aléatoires conditionnels. En parti-
culier, nous avons proposé d’extraire des bords profonds afin de générer des superpixels basés sur
des informations supposées sémantiquement intéressantes. Nous avons montré I'intérét de ces
approches pour améliorer les segmentations obtenues sur des images aériennes historiques et ré-
centes. Nous avons également évalué l'intérét de la colorisation pour le post-traitement, mettant
en avant l'intérét potentiel de générer des représentations colorisées pour cette tache.

Les perspectives liées au post-traitement portent, d'une part, sur I'intégration des algorithmes
de post-traitement au sein des chaines de traitements utilisées par le Centre Léon Bérard via le
logiciel Gouramic. D’autre part, nous nous sommes ici intéressés au post-traitement de segmen-
tations grossieres obtenues par une classification par imagette. Nous n'avons pas étudié l'inté-
rét de segmenter les images aériennes historiques a 'aide de DCNN. Il pourrait étre intéressant
d’étudier I'intérét de ces approches pour la segmentation automatique des images aériennes his-
toriques. De méme, nous n'avons pas appliqués nos algorithmes sur d’autres types d'images que
des images aériennes. Une perspective pourrait étre d’étudier I'intérét des superpixels issus de
bords profonds pour le post-traitement d'images d’autres catégories (e.g., images de vie courante,
image médicales). En particulier, il serait possible d’étendre les approches développées au cas
3D afin d’analyser des volumes complexes. Il serait alors intéressant d’observer dans quelle me-
sure les bords profonds peuvent étre exploités afin de générer des groupes de voxels (pixels vo-
lumiques). Par ailleurs, nous avons ici travaillé uniquement a 'amélioration de segmentations
existantes. Nous n’avons pas cherché a développer d’approches bout en bout, incluant a la fois
I'algorithme de segmentation et celui de post-traitement. L'étude de ce type d’approches, que ce
soit a I'aide d’algorithmes classiques ou de réseaux de neurones profonds a convolutions, pour-
rait avoir un intérét pour I'analyse automatique des images aériennes historiques. De la méme
maniere, il pourrait étre intéressant d’exploiter des réseaux de neurones profonds a convolutions
pour post-traiter les segmentations grossiéres. Une piste qui nous semble intéressante consiste-
rait a entrainer un réseau de neurones pour a la fois raffiner des segmentations et segmenter des
images. Pour cela, il serait possible de donner la segmentation grossiéere et I'image source en en-
trée du réseau, et de remplacer aléatoirement la segmentation grossiere par du bruit blanc lors de
I'entrainement. Ainsi, lorsque la segmentation grossiére sera présente, le réseau pourra s’en servir
pour extraire des informations sémantiques qui vont lui permettre d’améliorer I’existant. Lorsque
du bruit blanc sera présent, il aura alors pour tiche de segmenter 'image source.

Apport pour le projet TESTIS

Nous avons contribué au projet TESTIS en développant Gouramic, un logiciel d’aide a I'an-
notation des images aériennes historiques. Notre logiciel a permis de réduire le temps consacré
par un géomaticien sur chaque image a environ, 20 minutes, contre 6 a 10 heures auparavant.
Ce temps inclut 'ensemble de la chaine de traitements, de I'ouverture du fichier a la sauvegarde
du résultat sur le disque, en passant par 'annotation partielle des images. Afin de fonctionner,
Gouramic nécessite des annotations partielles (des traces) fournies par I'utilisateur. Ce choix a été
fait afin de permettre une vérification et une amélioration des résultats par 'utilisateur : il lui suf-
fit de fournir un plus grand nombre d’annotations en cas de résultat insatisfaisant. La récolte de
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I’ensemble des annotations partielles réalisées sur les images de I’année de naissance des sujets
de I'’étude TESTIS a permis le développement d’'une approche automatique qui est actuellement
en cours d’évaluation. Les résultats générés par I'étude TESTIS a I'aide de Gouramic devraient
permettre de mettre en place des pistes de réflexion sur 'impact sur la santé de 1'exposition aux
pesticides liée a la proximité de résidences aux cultures agricoles, volet intéressant particuliere-
ment I’Agence De 'Environnement et de la Maitrise de I'Energie et le Centre Léon Bérard.

D’un point de vue utilisation, le logiciel Gouramic a été éprouvé par les géomaticiens du Centre
Léon Bérard, ainsi que par un groupe d’étudiants en géomatique de I'Université Jean Monnet de
Saint-Etienne. Ces utilisateurs ont trouvé que le logiciel était ergonomique et facile d’utilisation.
D’un point de vue améliorations, I'intégration d’outils de visualisation supplémentaires et d'un
outil plus performant pour gommer les traces réalisées sont envisagés. D'un point de vue algo-
rithmes, la mise en place d’approches basées sur des superpixels est une piste qui nous semble
prometteuse. Les méthodes de colorisation nous semblent quant a elle pré-destinées a étre utili-
sée en amont de Gouramic. Par ailleurs, I'utilisation préalable d'un algorithme automatique avant
que l'utilisateur ait le besoin de réaliser des traces devrait accélérer les traitements réalisés. L'éva-
luation de I'impact des traces utilisateurs sur les résultats, ainsi que la dépendance des résultats
en fonction de 'utilisateur sont des questions qui sont actuellement a I'étude. De méme, la com-
paraison des résultats générés a I'aide de Gouramic avec d’autres bases d’occupation du sol est en
cours (Corine Land Cover, Hilda, etc.).
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Annexe A

Gouramic

Cette section Annexe contient une description illustrée du logiciel Gouramic.

Interface
#* ProjectGouramic - V0.1.1
Fichiers Methods
Source Images GouTable GouViewer Classes
IGNF_PVA_1-0_ ~ S e
Result Images _
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= - BT
— oWt
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FIGURE A.1 —Illustration de I'interface du logiciel Gouramic.

Linterface de Gouramic a été pensée avec les géomaticiens du Centre Léon Bérard afin d’avoir
un logiciel relativement facile a utiliser. Elle est présentée sur la figure A.1. Celle-ci permet a I'uti-
lisateur d’accéder a un dossier contenant des images aériennes historiques encodées au format
JPEG2000 afin de les visualiser et de les traiter. Ce logiciel offre la possibilité de zoomer et de dé-
zoomer sur les images. Il permet également de modifier les classes d’occupation du sol que 'uti-
lisateur désire détecter. Le lancement des traitements pour I'image courante se fait d'un simple
click sur un bouton .

1. Exemple d’utilisation : https://youtu.be/VI7zR9080xM (2020-07-01)



ANNEXE A. GOURAMIC

Fonctionalités

D’un point de vue fonctionnalités, le logiciel Gouramic a été développé afin d’accélérer I’an-
notation des images aériennes historiques. Il se base sur nos travaux présentés dans le chapitre 3
de ce manuscrit. Gouramic intégre des chaines de traitements basées sur |'extraction et la classifi-
cation de caractéristiques de texture. Le processus d'utilisation générique est résumé sur la figure
A.2 et décrit ci-apres.

Lutilisateur peut commencer par sélectionner une zone d’intérét sur laquelle il aimerait obte-
nir un résultat (par défaut, 'image entiere est la zone d’intérét). On propose ensuite a l'utilisateur
d’annoter partiellement les images aériennes historiques afin d’entrainer un classifieur indépen-
dant pour chaque image. Ces annotations partielles sont représentées par des traces, qui sont tout
simplement des pixels colorés. La couleur de chaque pixel correspond a une classe d’occupation
du sol définie par I'utilisateur.

Une fois que 'utilisateur a fini de réaliser ses traces, il peut sélectionner les parametres des mé-
thodes a utiliser. L'utilisateur a le choix d’utiliser un ou plusieurs filtres de texture (le LCoLBP par
défaut), ainsi qu'un classifieur au choix parmi 4 (SVM, MLPB, Random Forest, KNN). Le SVM est sé-
lectionné par défaut afin de mitiger qualité des résultats et temps d’entrainement. Les parameétres
des classifieurs sont supposés fixés dans le logiciel, mais un utilisateur expérimenté a la possibi-
lité de les modifier via un fichier csv (e.g,, nombre d’arbres dans la forét d’arbres de décisions).
Pour chaque pixel annoté par I'utilisateur, une imagette de taille S x S va étre extraite. Le descrip-
teur de texture va étre appliqué sur chaque imagette annotée, et les vecteurs de caractéristiques
résultants vont permettre d’entrainer le classifieur. Une fois cette étape d’entrainement réalisée,
I'inférence est faite a 'aide d'une fenétre glissante sur la zone d’'intérét préalablement sélection-
née par l'utilisateur. Le pas P, de la fenétre glissante correspond a la finesse du résultat final. En
pratique, on classifie une imagette de taille S x S, et la classe obtenue est affichée sur une surface
de taille P, x P,. Les deux surfaces S x S et P, x P, sont centrées sur le méme pixel. Ce principe
est illustré sur la figure A.3. Si P, = 1, alors on obtient une étiquette pour chaque pixel. Le fait de
considérer P, > 1 permet de mitiger la précision spatiale des résultats et le temps de traitement (il

—b{ Action utilisateur »| Automatique —>| Action utilisateur

| Inspection de I'image | | Extraction caractéristiques | | Inspection du résultat |

v
| Zone d’intérét et Traces | Entrainement classifieur |

| Satisfaisant? =
(a) | Appui sur start | | Inférence I Mw‘
|

Non

Affichage
|

Besoin de plus de traces

(b)

FIGURE A.2 — Schéma illustrant I'utilisation du logiciel Gouramic. (a) Pipeline utilisateur. (b) Traces sché-
matiques a gauche, exemple de résultat au centre, vérité terrain a droite.
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FIGURE A.3 - Schéma illustrant la différence entre S et P, pour un résultat a 'imagette pres.

y amoins de calculs a réaliser). Les résultats obtenus ne sont alors plus au pixel pres, mais a I'ima-
gette pres : une méme étiquette est attribuée a tous les pixels de I'imagette P, x P,. Le choix des
valeurs de S et P, est laissé a I'utilisateur en fonction de ses besoin (par défaut, S = 100 et P, = 50).
Apres avoir obtenu un premier résultat, I'utilisateur peut le visualiser, en zoomant au besoin. Si le
résultat est satisfaisant, il peut le sauvegarder. Sinon, il peut réaliser plus de traces et relancer le
processus afin d’obtenir un résultat de meilleur qualité. Ce processus permet de créer une boucle
de retour pour 'utilisateur, lui permettant de vérifier et d’améliorer les résultats obtenus autant
que de besoin.

Performances qualitatives

Gouramic a été pris en mains par des étudiants en géomatique de I'Université Jean Monet,
Saint-Etienne, France. Ces étudiants devaient dans un premier temps réaliser un retour d’expé-
rience quant a I'utilisation du logiciel pour des novices. Ces derniers ont trouvé I'interface intuitive
et facile a utiliser. IIs n’ont pas tenté de modifier les méthodes sélectionnées par défaut car ils ne
comprenaient pas les différences entre celles-ci. D’'un point de vue fonctionnalités, ils ont trouvé
que le logiciel répondait correctement au besoin. Ils s’accordent sur ce point avec les géomaticiens
plus expérimentés du Centre Léon Bérard. Ils se sont néanmoins interrogés sur I'interprétation des
valeurs RVB représentées sur les images de résultats : ils s’attendaient a ne trouver qu'une seule
valeur. Cela a mis en avant la nécessité de pouvoir encoder les résultats générés pour qu’ils soient
plus facilement utilisables au sein d’autres outils SIG. De plus, les étudiants se sont intéressés a la
variabilité des résultats obtenus lorsque plusieurs utilisateurs réalisent des traces différentes (voir
figure A.4). IIs n'ont cependant pas eu le temps de mener ces expériences préliminaires sur de
vastes ensembles de données ou avec de nombreux utilisateurs. Ce dernier point est actuellement
en cours d’approfondissement dans le cadre du projet GOURAMIC soutenu par le LabEx Institut
des Mondes Urbains (IMU).

Performances quantitatives

Les résultats de Gouramic ont été comparés par Matthieu Dubuis, géomaticien, avec les cartes
d’occupation du sol de Corine Land Cover pour certains sujets de I’étude TESTIS nés autour des
années 1990. Le but était ici d’avoir une idée de comment le logiciel fonctionne par rapport a ce
jeu de données considéré comme étant un standard pour le territoire européen, et ce malgré des
différences notables dans la taille minimale des parcelles générées (P, x P, pixels pour Gouramic,
contre 25 hectares pour Corine Land Cover). Dans ce cas de figure, il s’agit uniquement de vérifier
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ANNEXE A. GOURAMIC
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FIGURE A.4 - Comparaison de deux résultats obtenus avec Gouramic par deux utilisateurs différents.

Taux de correspondance par image entre Gouramic et Corine Land Cover (0.69% en moyenne)
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FIGURE A.5 — Comparaison des résultats issus de Gouramic avec les cartes d’occupation du sol de Corine

Land Cover.

que les deux types d’occupation du sol sont, globalement, en accords. La figure A.5 résume les
résultats obtenus pour 142 images. On constate un taux de concordance de 69%, ce qui indique
un accord positif entre les deux sources de données. Les raisons des divergences entre les deux
jeux de données n’ont pas encore été déterminées (i.e., qui entre CLC et Gouramic a raison ? Quel
est 'impact de la taille des parcelles ?). Une comparaison plus adaptée nécessiterait la génération
entierement manuelle de cartes d’'occupation du sol afin de posséder une vérité terrain adaptée a
I'étude TESTIS. L'utilisation de données plus récentes, telles que le Registre Parcellaire Graphique
qui possede des parcelles annotées de différentes tailles, est également a I'étude pour évaluer le

logiciel Gouramic.
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