Thèse soutenue

Colonnes dans les automates cellulaires et suites généralisées de Rudin-Shapiro
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Pierre-Adrien Tahay
Direction : Thomas StollIrène Marcovici
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 17/12/2020
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine
Partenaire(s) de recherche : Laboratoire : Institut Élie Cartan de Lorraine (2013-.... ; Vandoeuvre-lès-Nancy, Metz)
Jury : Président / Présidente : Emmanuel Jeandel
Examinateurs / Examinatrices : Thomas Stoll, Irène Marcovici, Mathieu Sablik, Jean-Paul Allouche, Nathalie Aubrun, Cécile Dartyge, Élise Janvresse
Rapporteurs / Rapporteuses : Mathieu Sablik, Jean-Paul Allouche

Résumé

FR  |  
EN

Cette thèse se situe à la frontière entre mathématiques et informatique théorique. Nous nous intéressons dans un premier temps aux automates finis et aux automates cellulaires. Bien qu’ils s’agissent de deux objets mathématiques assez différents, il est possible de les relier par des constructions explicites, en regardant la réalisation des suites automatiques dans les diagrammes espace-temps des automates cellulaires. Dans un second temps, nous étudions les corrélations discrètes de certaines suites automatiques, appelées suites généralisées de Rudin–Shapiro, qui se comportent comme des suites aléatoires pour la corrélation discrète d’ordre 2, bien qu’elles soient déterministes. Après une introduction des objets d’étude, que nous illustrons par plusieurs exemples, nous rappelons le résultat de Rowland et Yassawi, qui ont montré en 2015 qu’il était possible de construire de manière explicite toute suite p-automatique, dans le cas où p est un nombre premier, en colonne d’un automate cellulaire linéaire, à partir d’une configuration initiale finie. En utilisant leur méthode, nous obtenons différentes constructions de suites automatiques de référence, puis nous établissons un moyen explicite de construire toute une famille de suites p-automatiques, appelées suites généralisées de Rudin–Shapiro, que nous étudions dans la deuxième partie de la thèse, dans un cadre plus général. Nous nous intéressons également au cas de certaines suites non-automatiques, telles que l’indicatrice des polynômes et le mot de Fibonacci, que nous réussissons à construire en colonne d’automates cellulaires non-linéaires. Puis nous obtenons des résultats sur des recodages binaires, permettant de réduire le nombre de symboles dans les automates cellulaires. Grâce à un recodage binaire, nous avons également construit explicitement une suite 3-automatique sur un alphabet binaire, en colonne d’un automate cellulaire à 2 états, non-périodique à partir d’un certain rang, ce qui répond à une question posée par Rowland et Yassawi. Dans la deuxième partie de cette thèse, nous reprenons les travaux de Grant, Shallit et Stoll, qui ont établi en 2009 des résultats sur les corrélations discrètes de suites infinies sur des alphabets finis. En exploitant les propriétés de récursivité de la suite classique de Rudin–Shapiro, ils construisent une famille de suites déterministes sur des alphabets plus grands, pour lesquelles ils montrent que dans le cas où la taille de l’alphabet est sans facteur carré, la moyenne empirique des coefficients de corrélation d’ordre 2 a la même limite que dans le cas de suites où les lettres sont tirées aléatoirement, de manière uniforme et indépendamment. De plus, ils arrivent à quantifier explicitement le terme d’erreur. En généralisant leur construction à l’aide de la théorie des matrices de différence, nous arrivons à établir un résultat similaire pour des alphabets de taille quelconque ainsi qu’une amélioration du terme d’erreur dans certains cas. Tout comme Grant et al., nous nous servons de la théorie des sommes d’exponentielles pour démontrer notre résultat sur les corrélations discrètes d’ordre 2 de nos suites généralisées de Rudin–Shapiro. Dans la troisième partie, nous terminons par une approche combinatoire de ces questions, qui nous a permis d’obtenir une amélioration du terme d’erreur dans le cas où la taille de l’alphabet est un produit d’au moins deux nombres premiers distincts, et de généraliser certains de nos résultats.