Thèse soutenue

Optimisation de la liaison montante pour un réseau de capteurs sans fil avec la contrainte d'énergie

FR  |  
EN
Auteur / Autrice : Manel Kortas
Direction : Vahid Meghdadi NeyshabouriTahar Ezzedine
Type : Thèse de doctorat
Discipline(s) : Sciences et technologies de l'information et de la communication
Date : Soutenance le 18/07/2020
Etablissement(s) : Limoges en cotutelle avec Systèmes de Communications (Tunis)
Ecole(s) doctorale(s) : École doctorale Sciences et Ingénierie des Systèmes, Mathématiques, Informatique (Limoges ; 2018-2022)
Partenaire(s) de recherche : Laboratoire : XLIM
Jury : Président / Présidente : Taoufik Aguili
Examinateurs / Examinatrices : Vahid Meghdadi Neyshabouri, Tahar Ezzedine, Rabah Attia, Ammar Bouallegue, Oussama Habachi
Rapporteurs / Rapporteuses : Samir Saoudi, Ridha Bouallegue

Résumé

FR  |  
EN

Dans cette thèse, nous nous intéressons à la collecte de données avec la contrainte d'énergie pour les réseaux de capteurs sans fil (RCSFs). En effet, il existe plusieurs défis qui peuvent perturber le bon fonctionnement de ce type de réseaux. Par exemple, les applications des RCSFs doivent faire face aux capacités très limitées en termes d’énergie, de mémoire et de traitement des nœuds de capteurs. De plus, à mesure que la taille de ces réseaux continue de croître, la quantité de données à traiter et à transmettre devient énorme. Dans de nombreux cas pratiques, les capteurs sans fil sont répartis sur un champ physique afin de surveiller les phénomènes physiques à forte corrélation spatio-temporelle. Par conséquent, l'objectif principal de cette thèse est de réduire la quantité de données traitées et transmises dans le scénario de collecte de données. Dans la première partie de cette thèse, nous utilisons le Compressive Sensing (CS), une technique prometteuse pour exploiter cette corrélation afin de limiter le nombre de transmissions et ainsi augmenter la durée de vie du réseau. En règle générale, nous nous intéressons à la topologie de réseau maillé, où le point de collecte de données n'est pas situé dans le rayon de communication du capteur transmetteur et des schémas de routage doivent être alors appliqués. Nous proposons le Space-Time Compressive Sensing (STCS) en exploitant conjointement la dépendance de données inter-capteurs et intra-capteur. De plus, comme le routage et le nombre de retransmissions affectent de manière significative la consommation totale d’énergie, nous introduisons le routage dans notre fonction de coût afin d’optimiser la sélection des capteurs de transmission. Les simulations montrent que cette méthode surpasse les méthodes existantes et confirment la validité de notre approche. Dans la deuxième partie de cette thèse, nous tentons de traiter un désign d’économie d’énergie presque similaire à celui proposé dans la première partie avec l’utilisation de la méthodologie de Matrix Completion (MC). Précisément, nous supposons qu'un nombre limité de nœuds de capteurs sont sélectionnés pour être actifs et représenter l'ensemble du réseau, tandis que les autres nœuds restent inactifs et ne participent pas du tout à la détection et à la transmission de leurs données. Bien que l'application d'un taux de compression des données élevé réduit considérablement la consommation d'énergie globale du réseau, la durée de vie du réseau n'est pas nécessairement prolongée en raison de l'épuisement inégal des batteries des nœuds de capteurs. A cette fin, dans la troisième partie de cette thèse, nous développons l'approche de collecte de données Energy-Aware Matrix Completion (EAMC), qui désigne les nœuds actifs en fonction de leurs niveaux d'énergies résiduelles. De plus, étant donné que nous sommes principalement intéressés par les scénarios de perte de données élevées, la quantité limitée de données fournies doit être suffisante en termes de qualité informative qu'elle détient afin d'atteindre une précision de récupération bonne et satisfaisante pour l'ensemble des données du réseau. Pour cette raison, l'EAMC sélectionne les nœuds qui peuvent représenter le mieux le réseau en fonction de leur inter-corrélation ainsi que de l'efficacité énergétique du réseau, avec l'utilisation d'une métrique combinée qui est éco-énergétique et basée sur la corrélation. Cette fonction de coût, qu'on a introduit, change avec le type d'application que l'on veut effectuer, dans le but d'atteindre une durée de vie plus longue pour le réseau.