Thèse soutenue

Spectroscopies infrarouge et Raman de microalgues : étude des interactions avec des micro et nanoparticules
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Maureen Déniel-Babin
Direction : Fabienne LagardeAurore CarusoNicolas Errien
Type : Thèse de doctorat
Discipline(s) : Physique. Environnement et biologie
Date : Soutenance le 05/06/2020
Etablissement(s) : Le Mans
Ecole(s) doctorale(s) : École doctorale Matière, Molécules Matériaux et Géosciences (Le Mans)
Partenaire(s) de recherche : Laboratoire : Institut des Molécules et Matériaux du Mans (Le Mans ; 2012-....) - Institut des Molécules et Matériaux du Mans / IMMM

Résumé

FR  |  
EN

Dans un contexte de contamination des eaux naturelles par des micro et nanoparticules anthropogéniques (plastiques, métaux, oxydes…), l'étude de leurs interactions avec les microalgues d’eau douce, premier maillon de la chaîne trophique, est primordiale. Pour cela, des techniques comme les spectroscopies vibrationnelles (Raman et infrarouge) permettant des analyses sensibles, rapides et sans préparation d’échantillon, peuvent avoir un intérêt. Elles ont ici été testées sur une microalgue modèle Chlamydomonas reinhardtii pour détecter rapidement les effets de stress environnementaux (diminution absence de lumière et nutriment et présence de métaux). La spectroscopie infrarouge s’est révélée être un bon outil, permettant l’obtention rapide de la variation de composition macromoléculaire, aidant à discriminer facilement les différents types de stress subis par la microalgue. Cette technique a ensuite été utilisée pour évaluer les impacts de la présence de polluants particulaires (nanoparticules métalliques et nanoplastiques en particulier). L’impact des nanoparticules à court et moyen termes sur des microalgues d’eau douce a été caractérisé en parallèle avec un autre stress connu (carence en nutriment azoté) afin de comparer les effets des différents types de "stress". Les principaux résultats de l'exposition aux nanoparticules montrent globalement la non-toxicité immédiate des nanoparticules aux concentrations testées. Cependant, une perte d’intégrité membranaire au contact des nanoparticules de polystyrène suggère une plus forte interaction des microalgues étudiées avec les nanoplastiques qu'avec les nanoparticules d’or de tailles proches. Les spectres infrarouges de C. reinhardtii ont montré une modification des bandes des protéines et des polysaccharides suite aux changements d’environnement. Afin de comprendre les variations observées au niveau des polysaccharides, composants de la structure de la microalgue et représentant une part importante et complexe du spectre infrarouge, une étude approfondie de cette zone a été réalisée par déconvolution des spectres infrarouges. Dans le but de mieux comprendre les mécanismes de réponse impliqués, une étude de l’expression des gènes (RT-QPCR) liés au stress et à la production de polysaccharides a été réalisée en parallèle de la spectroscopie infrarouge. Les résultats ainsi obtenus ont montré que les interactions entre nanoparticules de polystyrène et C. reinhardtii entrainaient une réponse génétique et macromoléculaire au niveau des sucres. Ainsi l’effet « type de nanoparticules » a pu être confirmé notamment par l’expression du gène lié à la biosynthèse du galactose. Dans cette dynamique, la compréhension du rôle de la paroi dans l’interaction avec les nanoparticules, dans le cas des polymères notamment, a été étudiée par la comparaison de deux souches de C. reinhardtii (avec et sans paroi). Enfin, la réponse des microalgues en fonction du temps d’interaction avec les nanoparticules a été étudiée afin de tenter de comprendre si à moyen terme, les effets observés sur les microalgues présentaient une variation temporelle. Par ailleurs, afin de mieux comprendre l’effet des particules de plastiques à un niveau trophique supérieur, des travaux complémentaires sur l’impact de microplastiques sur des daphnies ont été menés.