Nanofabrication de nanocomposites magnétiques dur-doux

par Isabelle Gomes de Moraes

Thèse de doctorat en Physique appliquée

Sous la direction de Nora Dempsey et de Thibaut Devillers.

Soutenue le 06-11-2020

à l'Université Grenoble Alpes , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Institut Néel (Grenoble) (laboratoire) .

Le président du jury était Olivier Isnard.

Le jury était composé de Lise-Marie Lacroix.

Les rapporteurs étaient Volker Neu, Michel Hehn.


  • Résumé

    Cette thèse présente le développement et la caractérisation d'échantillons modèles pour l'étude des nanocomposites (NC) magnétiques dur-doux. Ces matériaux sont d'un grand intérêt, compte tenu de leurs applications potentielles en tant qu'aimants haute performance. Cependant, malgré ce grand potentiel, les propriétés des NC dur-doux rapportées dans la littérature sont modestes par rapport à celles prédites par les modèles micromagnétiques. Dans ce travail, nous utilisons des outils avancés de nanofabrication et de caractérisation pour développer des échantillons modèles, susceptibles de faire le lien de entre les simulations et les expériences. Quatre réseaux différents de nano-bâtonnets magnétiques doux allongés (FeCo ou Co) (épaisseur = 10 nm) ont été produits par lithographie électronique et évaporation. Pour étudier l'influence du contenu et des dimensions des nano-bâtonnets, la largeur (w) a été modifiée entre 25 et 120 nm, la longueur (l) entre 200 et 400 nm et la distance inter-bâtonnets (d) entre 50 et 200 nm. Le rapport volumique de la phase douce varie de 2 à 11%. Tous les nano-bâtonnets ont été couverts d'une couche de 3 nm d'Au afin d'éviter l'oxydation lors du transfert de l'échantillon de la lithographie vers les chambres de dépôt. La couche d’or a été gravée dans la chambre de pulvérisation juste avant le dépôt de la couche magnétique dure (FePt-25 ou 50 nm) au-dessus des nano-bâtonnets. Une seconde étape de lithographie a été développée pour limiter la localisation de la phase magnétique dure à l'endroit où se trouvent les réseaux de nano-bâtonnets. Une cellule élémentaire du NC a une surface d'environ 5x5 µm2, et cette cellule est répétée pour avoir une surface d'échantillon globale de quelques mm2, dont le signal magnétique est suffisant pour les mesures de magnétométrie globale. Un processus de recuit post-croissance favorise la formation de la phase magnétique dure L10 FePt . Plus la fraction volumique de nano-bâtonnets est élevée, plus la coercivité est faible et plus la rémanence est élevée. Des courbes de retournement du premier ordre (FORC) ont été obtenues pour les échantillons avec une fraction volumique comparable de phase magnétique douce, mais avec une taille de nano-bâtonnets différente. Bien que les échantillons aient des cycles d'hystérésis similaires, les diagrammes FORC montrent que les distributions de champ de retournement sont assez distinctes. La fabrication et l'analyse d'un échantillon de référence avec des nano-bâtonnets non magnétiques de Pt n'indiquent aucune influence de la topographie globale de l'échantillon sur les propriétés de la matrice dure. L'imagerie TEM et la cartographie chimique des coupes transversales préparées par FIB ont révélé une diffusion de type Kirkendall dans les NC avec les plus petits nano-bâtonnets. Une étude MFM sur la même cellule élémentaire de NC dans différents états rémanents , a été réalisée sur des réseaux de NC (dur / doux et dur / non magnétique) et un film de micro-motifs durs (.i.e. pas de nano-bâtonnets). L'évolution des motifs magnétiques a été corrélée avec les champs de fuite produits par la matrice magnétique dure et les nano-bâtonnets intégrés. Les résultats obtenus avec des méthodes de caractérisation magnétique globale (cycles d'hystérésis et FORC) et locale (MFM), combinés à une caractérisation structurale détaillée obtenue par TEM, ont permis d'analyser l'impact des dimensions, de la périodicité, de la concentration et du matériau constitutif des nano-bâtonnets intégrés dans la matrice magnétique dure. Le compromis entre réduire les dimensions de la phase douce pour favoriser le couplage d'échange et les augmenter pour minimiser la diffusion pendant le recuit pour former la formation de phase dure, est un point critique pour le développement de ces matériaux modèles.

  • Titre traduit

    Nanofabrication of hard-soft magnetic nanocomposites


  • Résumé

    This thesis presents the development and characterization of model samples for the study of hard-soft magnetic nanocomposites. These materials are of great interest, considering their potential applications as high performance magnets. However, even with this great potential, the properties of hard-soft nanocomposites reported in the literature are modest compared to those predicted by micromagnetic models. In this work, we use advanced nanofabrication and characterization tools to develop model samples, capable of bridging the understanding between models and experiments. Four different arrays with elongated soft magnetic nano-rods (FeCo or Co) (thickness = 10 nm) were produced by e-beam lithography and evaporation. To study the influence of the content and the dimensions of the nano-rods, the width (w) was varied between 25 and 120 nm, the length (l) between 200 and 400 nm and the inter-rod distance (d) between 50 and 200 nm. The volume content of the soft phase ranged from 2 to 11%. All the nano-rods were capped with a 3 nm layer of Au in order to prevent oxidation during sample transfer from the lithography to the deposition chambers. The Au layer was etched in the sputtering chamber just prior to deposition of the hard magnetic layer (FePt- 25 or 50 nm) on top of the nano-rods. A second lithography step was developed to limit the location of the hard magnetic phase to where the nano-rods arrays are positioned. A unit piece of the nanocomposite has a surface area of roughly 5x5 µm2, and the unit was repeated to have an overall sample surface area of a few mm2 , to have sufficient magnetic signal for global magnetometry measurements. A post-annealing process promotes the formation of the L10 FePt hard magnetic phase. The higher the volume content of nano-rods, the lower the coercivity and the higher the remanence. First Order Reversal Curves (FORC) were obtained for the samples with comparable volume content of soft magnetic phase, but with different nano-rod size. Although the samples have similar hysteresis cycles, the FORC diagrams show that the switching field distributions are quite distinct. The sample with nano-rod width = 120 nm shows switching fields extending up to 250 mT and a single peak around µ0HC = 0 T, while the sample with nano-rod width = 25 nm has two peaks in switching field, centred at µ0HC = 0 T and µ0HC = 500 mT. Fabrication and analysis of a reference sample with Pt non-magnetic nano-rods indicates no influence of the overall sample topography on the hard matrix properties. TEM imaging and chemical mapping of FIB-prepared cross sections revealed Kirkendall-like diffusion in the nanocomposites with the smallest nano-rods. An MFM study which involved probing the same nanocomposite unit in different remnant states, was carried out on nanocomposites arrays (hard/soft and hard/non-magnetic) and a micro-patterned hard film (.i.e. no nano-rods). The experimental setup included a homemade in-situ in-plane pulsed magnetic field source. The evolution in magnetic patterns was correlated with the stray fields produced by the hard magnetic matrix and the embedded nano-rods. The results obtained with global (hysteresis loops and FORC) and local (MFM) magnetic characterization methods, combined with detailed structural characterization obtained by TEM, made it possible to analyze the impact of dimensions, periodicity, concentration, and the constituent material of the nano-rods embedded in the hard magnetic matrix. A trade-off between reducing the dimensions of the soft phase to favour exchange coupling and increasing them to minimize diffusion during annealing to form the hard phase formation, is a bottleneck for the development of these model materials.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Grenoble Alpes. Bibliothèque et Appui à la Science Ouverte. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.