Thèse soutenue

Une alternative aux modèles neuronaux séquence-à-séquence pour la traduction automatique

FR  |  
EN
Auteur / Autrice : Maha Elbayad
Direction : Laurent BesacierJakob Verbeek
Type : Thèse de doctorat
Discipline(s) : Mathématiques et informatique
Date : Soutenance le 22/06/2020
Etablissement(s) : Université Grenoble Alpes
Ecole(s) doctorale(s) : École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de Grenoble
Jury : Président / Présidente : François Yvon
Examinateurs / Examinatrices : Marine Carpuat
Rapporteurs / Rapporteuses : Holger Schwenk, Hermann Ney

Résumé

FR  |  
EN

L'apprentissage profond a permis des avancées significatives dans le domaine de la traduction automatique.La traduction automatique neuronale (NMT) s'appuie sur l'entrainement de réseaux de neurones avec un grand nombre de paramètres sur une grand quantité de données parallèles pour apprendre à traduire d'une langue à une autre.Un facteur primordial dans le succès des systèmes NMT est la capacité de concevoir des architectures puissantes et efficaces. Les systèmes de pointe sont des modèles encodeur-décodeurs qui, d'abord, encodent une séquence source sous forme de vecteurs de caractéristiques, puis décodent de façon conditionne la séquence cible.Dans cette thèse, nous remettons en question le paradigme encodeur-décodeur et préconisons de conjointement encoder la source et la cible afin que les deux séquences interagissent à des niveaux d'abstraction croissants. À cette fin, nous introduisons Pervasive Attention, un modèle basé sur des convolutions bidimensionnelles qui encodent conjointement les séquences source et cible avec des interactions qui sont omniprésentes dans le réseau neuronal.Pour améliorer l'efficacité des systèmes NMT, nous étudions la traduction automatique simultanée où la source est lue de manière incrémentielle et le décodeur est alimenté en contextes partiels afin que le modèle puisse alterner entre lecture et écriture. Nous améliorons les agents déterministes qui guident l'alternance lecture / écriture à travers un chemin de décodage rigide et introduisons de nouveaux agents dynamiques pour estimer un chemin de décodage adapté au cas-par-cas.Nous abordons également l'efficacité computationnelle des modèles NMT et affirmons qu'ajouter plus de couches à un réseau de neurones n'est pas requis pour tous les cas.Nous concevons des décodeurs Transformer qui peuvent émettre des prédictions à tout moment dotés de mécanismes d'arrêt adaptatifs pour allouer des ressources en fonction de la complexité de l'instance.