Thèse soutenue

Modification de fibres de lin par des nanocristaux de cellulose et du xyloglucane pour le développement de composites biosourcés hiérarchiques

FR  |  
EN
Auteur / Autrice : Estelle Doineau
Direction : Jean-Charles Bénézet
Type : Thèse de doctorat
Discipline(s) : Biomatériaux
Date : Soutenance le 10/12/2020
Etablissement(s) : IMT Mines Alès
Ecole(s) doctorale(s) : GAIA (Montpellier ; École Doctorale ; 2015-...)
Partenaire(s) de recherche : Laboratoire : PCH Polymères, composites, hybrides - Polymères Composites et Hybrides / PCH - IMT Mines Alès
Jury : Examinateurs / Examinatrices : Joël Bréard, Jannick Duchet-Rumeau, Tatiana Budtova, Julien Bras, Hélène Angellier, Evelyne Mauret, Nicolas Le Moigne
Rapporteurs / Rapporteuses : Joël Bréard, Jannick Duchet-Rumeau

Résumé

FR  |  
EN

Ce travail de thèse vise à développer un traitement de surface de fibres de lin pour l’amélioration des propriétés mécaniques de biocomposites à matrice polymère et renforts en lin. Cette modification de surface s’inspire des structures hiérarchiques présentes dans les systèmes biologiques (os, nacre ou bois), constitués de nano-objets permettant un meilleur transfert de charges dans ces matériaux. Cette présence d’objets de dimensions nanométriques permet notamment d’atteindre des valeurs de contrainte et ténacité élevées et de limiter la propagation de fissures. Dans ces travaux de recherche, des produits dérivés de la biomasse ligno-cellulosique, à savoir les nanocristaux de cellulose (CNC) et le xyloglucane (XG), ont été choisis pour leurs propriétés et leur affinité mutuelle afin de créer des fibres de lin hiérarchiques. Dans un premier temps, l’adsorption de XG et CNC sur les fibres de lin a pu être localisée et quantifiée grâce à des marqueurs fluorescents. De plus, des mesures de force d’adhésion en microscopie à force atomique ont révélé la création d’un réseau extensible XG/CNC sur la surface de la fibre. Par la suite, deux voies ont été proposées avec l’élaboration de biocomposites thermoplastiques (polypropylène/fibres de lin) et thermodurcissables (résine époxy/tissu de lin) utilisant ces fibres nanostructurées. Dans les deux cas, une augmentation du travail à la rupture a été mesurée en micro-tractions et/ou tractions uniaxiales, permettant une plus grande dissipation de l’énergie lors de la rupture. L’ensemble de ces travaux a permis d’évaluer le potentiel de différents renforts en lin hiérarchiques(tissu unidirectionnel ou fibres courtes)pour le développement de biocomposites structuraux avec un focus fait sur la zone d’interphase fibre / matrice.