Thèse soutenue

Modèles réduits : convergence entre calcul et données pour la mécanique des fluides
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Sébastien Riffaud
Direction : Angelo Iollo
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et calcul scientifique
Date : Soutenance le 18/12/2020
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Bordeaux
Jury : Président / Présidente : Rémi Abgrall
Examinateurs / Examinatrices : Angelo Iollo, Karen Veroy-Grepl, Pierre Sagaut, Damiano Lombardi
Rapporteurs / Rapporteuses : Rémi Abgrall, Karen Veroy-Grepl

Résumé

FR  |  
EN

L'objectif de cette thèse est de réduire significativement le coût de calcul associé aux simulations numériques gouvernées par des équations aux dérivées partielles. Dans ce but, nous considérons des modèles dits "réduits", dont la construction consiste typiquement en une phase d'apprentissage, au cours de laquelle des solutions haute-fidélité sont collectées pour définir un sous-espace d'approximation de faible dimension, et une étape de prédiction, qui exploite ensuite ce sous-espace d'approximation conduit par les données afin d'obtenir des simulations rapides voire en temps réel. La première contribution de cette thèse concerne la modélisation d'écoulements gazeux dans les régimes hydrodynamiques et raréfiés. Dans ce travail, nous développons une nouvelle approximation d'ordre réduite de l'équation de Boltzmann-BGK, basée sur la décomposition orthogonale aux valeurs propres dans la phase d'apprentissage et sur la méthode de Galerkin dans l'étape de prédiction. Nous évaluons la simulation d'écoulements instationnaires contenant des ondes de choc, des couches limites et des vortex en 1D et 2D. Les résultats démontrent la stabilité, la précision et le gain significatif des performances de calcul fourni par le modèle réduit par rapport au modèle haute-fidélité. Le second sujet de cette thèse porte sur les applications du problème de transport optimal pour la réduction de modèles. Nous proposons notamment d'employer la théorie du transport optimal afin d'analyser et d'enrichir la base de données contenant les solutions haute-fidélité utilisées pour l'entraînement du modèle réduit. Les tests de reproduction et de prédiction d'écoulements instationnaires, gouvernés par l'équation de Boltzmann-BGK en 1D, montrent l'amélioration de la précision et de la fiabilité du modèle réduit résultant de ces deux applications. Finalement, la dernière contribution de cette thèse concerne le développement d'une méthode de décomposition de domaine basée sur la méthode de Galerkin discontinue. Dans cette approche, le modèle haute-fidélité décrit la solution où un certain degré de précision est requis, tandis que le modèle réduit est employé dans le reste du domaine. La méthode de Galerkin discontinue pour le modèle réduit offre une manière simple de reconstruire la solution globale en raccordant les solutions locales à travers les flux numériques aux interfaces des cellules. La méthode proposée est évaluée pour des problèmes paramétriques gouvernés par les équations d'Euler en 1D et 2D. Les résultats démontrent la précision de la méthode proposée et la réduction significative du coût de calcul par rapport aux simulations haute-fidélité.