Thèse soutenue

Etude expérimentale et modélisation physique des transferts couplés chaleur-humidité dans un isolant bio-sourcé.

FR  |  
EN
Auteur / Autrice : Mohammad Aghahadi
Direction : Saïd AbboudiEssolè PadayodiSeyed Amir Bahrani
Type : Thèse de doctorat
Discipline(s) : Sciences pour l'Ingénieur
Date : Soutenance le 29/05/2019
Etablissement(s) : Bourgogne Franche-Comté
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) (Dijon) - Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] / LICB
Etablissement de préparation : Université de technologie de Belfort-Montbéliard (1999-....)
Jury : Président / Présidente : Laurent Royon
Rapporteurs / Rapporteuses : Zoulikha Maache-Rezzoug, Jean-Félix Durastanti

Résumé

FR  |  
EN

Le caractère fortement hydrophile des isolants thermiques bio-sourcés, a montré que les modèles classiques de transfert thermique ne sont pas suffisamment adaptés pour leur caractérisation thermique. Ce travail de thèse vise à répondre à cette problématique par des approches expérimentale et théorique des transferts couplés chaleur-humidité. Dans l’approche expérimentale, un isolant thermique en feutre de fibres de lin (FFL) a été développé puis caractérisé, dans différents états hygrométriques, au moyen d’un dispositif Plan Chaud asymétrique. Des isothermes d’adsorption de l’humidité corrélés aux modèles théoriques GAB, GDW et Park permettent une caractérisation hydrique de cet isolant. Dans l’approche théorique, un modèle physique, de transfert couplé chaleur-humidité au sein de l’isolant FFL humide, est proposé. Il est résolu numériquement, en configuration 3D transitoire, par la méthode de éléments finis sous COMSOL Multiphysics et par la méthode des différences finies, en configuration 1D transitoire, sous MATLAB. La méthode de Levenberg-Marquardt couplée avec le modèle direct 1D transitoire et les températures mesurées a permis d’estimer la conductivité thermique apparente de l'échantillon étudié avec une erreur relative inférieure à 6% par rapport aux mesures expérimentales, validant ainsi les modèles théoriques.