In silico screening of NRas protein oncogenic mutations : new structural and physico-chemical insights into the catalytic activity

par Ruth Elena Tichauer

Thèse de doctorat en Physique de la matière

Sous la direction de Marie Brut.

  • Titre traduit

    Criblage in silico des mutations oncogéniques des protéines NRAS : nouvelles données structurales et physico-chimiques sur l'activité catalytique


  • Résumé

    Les protéines Ras jouent un rôle majeur dans le développement cellulaire. Faisant partie de la catégorie de petites GTPases, elles sont dotées d'un mécanisme fonctionnant tel un interrupteur moléculaire qui, dans leur cas, contrôle la transmission de signaux de croissance cellulaire. Liées au GTP, ces protéines adoptent une conformation leur permettant d'interagir avec des effecteurs en aval et, ainsi, activer la réplication et différenciation cellulaires. La réaction d'hydrolyse du GTP qui se déroule en leur centre, est accompagnée d'un changement conformationnel qui met fin à ces interactions, conduisant ainsi à l'état inactif de Ras, lié au GDP. Des mutations spécifiques de résidus bien déterminés entraînent une baisse du taux d'hydrolyse, laissant ainsi Ras liée au GTP. Or, de fortes concentrations de cette forme active de Ras ont été associées à une prolifération cellulaire anormale, caractéristique de la dissémination de tissus cancéreux. Il apparaît alors que l'élucidation des mécanismes employés par Ras pour accélérer le clivage du GTP constitue une étape majeure dans le développement de thérapies ciblées contre le cancer. Elles consisteraient à rétablir, au sein des mutants oncogéniques, un taux d'hydrolyse proche à celui mesuré au sein du type sauvage. Dans le but de mieux comprendre au niveau atomique les propriétés catalytiques de Ras, nous avons mené des simulations de dynamique moléculaire (MD) en décrivant le domaine G à différents niveaux de théorie (Mécanique Moléculaire (MM), Semi-empirique et Théorie de la Fonctionnelle de la Densité (DFT)). Ces calculs ont été réalisés pour les formes sauvage et mutées au niveau du résidu 61 de NRas. Ils ont été couplées à des caractérisations biomécaniques des complexes protéine-ligand étudiés, en utilisant la méthode des modes statiques. Cette méthode permet d'identifier des points chauds, réactifs, de la biomolécule et qui, suivant le critère de contrainte choisi, ont une influence mécanique sur la fonction GTPase de la protéine. Par conséquent, ils pourraient servir en temps que sites appropriés pour héberger des molécules médicamenteuses contenant des groupes chimiques spécifiques qui faciliteraient l'hydrolyse du GTP. Tout d'abord, les résultats obtenus montrent que le positionnement des molécules d'eau dans le cite actif est crucial pour catalyser efficacement la réaction. En effet, la répartition précise du solvant, observée dans le type sauvage, est perdue au sein des mutants de NRas considérés ici. Cette distribution différente des molécules d'eau ainsi que les modifications structurales du site actif engendrées par les substitutions du résidu Gln 61, ont un impact direct sur la densité électronique du GTP. Cette dernière présente un profil de type GDP au sein de la protéine de type sauvage uniquement, comme déterminé expérimentalement dans des études précédentes. Il apparaît donc que les mutations oncogéniques de Gln 61 perturbent cet effet catalytique majeur de NRas. Parmi trois propositions faites au cours de cette thèse sur des modifications à apporter à la forme mutée Q61R de NRas, une est présentée pendant la soutenance tandis que toutes les trois sont décrites dans le manuscript. Les groupes chimiques insérés au niveau du site identifié permettent de rétablir une distribution de l'eau comme celle observée dans le type sauvage. Pour terminer, lors de la soutenance uniquement, un chemin réactionnel alternatif de l'hydrolyse enzymatique du GTP est proposé.


  • Résumé

    Ras subfamily of small GTPase proteins holds a key position in cell proliferation pathways. Indeed, the transmission of cell growth signals is controlled by proteins belonging to it. In their GTP-bound conformation, these proteins interact and activate downstream effectors of cell replication and differentiation. The hydrolysis reaction that takes place in their center, terminates these interactions, thereby leading to the GDP-bound inactive state. Point mutations of key residues lead to a hydrolysis rate drop that keeps Ras in a GTP-bound active state. Now, high concentrations of active Ras have been associated to abnormal cell proliferation, emblematic of cancerous tissues dissemination. With this into consideration, the elucidation of Ras mechanisms for accelerating GTP cleavage appears as a major step in the development of cancer targeted therapies that would consist in restoring the hydrolysing capabilities within oncogenic Ras to a wild-type rate. In an attempt to gain insight into Ras catalysing properties at the atomic level, unconstrained Molecular Dynamics (MD) simulations describing the G domain at different levels of theory (Molecular Mechanics (MM), Semi-empirical and Density Functional Theory (DFT)) were carried out for NRas member in its wild-type and Gln 61 mutated forms. These simulations were coupled to biomechanic characterisations of the complexes under inspection employing the static modes approach. The latter method, allows the identification of hot spots {\it i.e.} responsive residues of the biomolecule, that have a mechanical influence on the GTPase function of the protein. Hence, they could serve as suitable sites to host drug-like molecules containing specific chemical groups that would facilitate GTP hydrolysis. The obtained results show that water molecules positioning is crucial for efficiently catalysing the reaction that takes place in NRas center. Indeed, the precise positioning observed within the wild-type is lost within the mutants studied here. Furthermore, the active site structural modifications undergone upon Gln 61 substitutions, together with solvent distribution in it, impact directly GTP electronic density. The latter is accommodated to a GDP-like state within the wild-type protein only, as experimentally determined in previous investigations. Thus, oncogenic Gln 61 mutations impair this major catalysing effect. Among three engineered NRas proteins of the Q61R mutated form, proposed during this thesis, one is presented during the defence while the three are described in the manuscript. The chemical groups inserted at the identified site enable the recovery of water distribution as within the wild-type. To end, during the defence only, an alternative reaction pathway of the enzymatic reaction is proposed.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2019 par Université Toulouse 3 à Toulouse

In silico screening of NRas protein oncogenic mutations : new structural and physico-chemical insights into the catalytic activity


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2019 par Université Toulouse 3 à Toulouse

Informations

  • Sous le titre : In silico screening of NRas protein oncogenic mutations : new structural and physico-chemical insights into the catalytic activity
  • Détails : 1 vol. (125 p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.