Modeling and numerical simulation of implantable cardiovascular devices - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Modeling and numerical simulation of implantable cardiovascular devices

Modélisation et simulation numérique de dispositifs cardiovasculaires implantables

Résumé

This thesis, taking place in the context of the Mivana project, is devoted to the modeling and to the numerical simulation of implantable cardiovascular devices. This project is led by the start-up companies Kephalios and Epygon, conceptors of minimally invasive surgical solutions for the treatment of mitral regurgitation. The design and the simulation of such devices call for efficient and accurate numerical methods able to correctly compute cardiac hemodynamics. This is the main purpose of this thesis. In the first part, we describe the cardiovascular system and the cardiac valves before presenting some standard material for the mathematical modeling of cardiac hemodynamics. Based on the degree of complexity adopted for the modeling of the valve leaflets, two approaches are identified: the resistive immersed surfaces model and the complete fluidstructure interaction model. In the second part, we investigate the first approach which consists in combining a reduced modeling of the valves dynamics with a kinematic uncoupling of cardiac hemodynamics and electromechanics. We enhance it with external physiological data for the correct simulation of isovolumetric phases, cornerstones of the heartbeat, resulting in a relatively accurate model which avoids the complexity of fully coupled problems. Then, a series of numerical tests on 3D physiological geometries, involving mitral regurgitation and several configurations of immersed valves, illustrates the performance of the proposed model. In the third and final part, complete fluid-structure interaction models are considered. This type of modeling is necessary when investigating more complex problems where the previous approach is no longer satisfactory, such as mitral valve prolapse or the closing of a mechanical valve. From the numerical point of view, the development of accurate and efficient methods is mandatory to be able to compute such physiological cases. We then consider a complete numerical study in which several unfitted meshes methods are compared. Next, we present a new explicit coupling scheme in the context of the fictitious domain method for which the unconditional stability in the energy norm is proved. Several 2D numerical examples are provided to illustrate the properties and the performance of this scheme. Last, this method is finally used for 2D and 3D numerical simulation of implantable cardiovascular devices in a complete fluid-structure interaction framework.
Cette thèse, réalisée dans le cadre du projet Mivana, est consacrée à la modélisation et à la simulation numérique de dispositifs cardiaques implantables. Ce projet est mené par les start-up Kephalios et Epygon, concepteurs de solutions chirurgicales non invasives pour le traitement de la régurgitation mitrale. La conception et la simulation de tels dispositifs nécessitent des méthodes numériques efficaces et précises capables de calculer correctement l’hémodynamique cardiaque. C’est le but principal de cette thèse. Dans la première partie, nous décrivons le système cardiovasculaire et les valves cardiaques avant de présenter quelques éléments de théorie concernant la modélisation mathématique de l’hémodynamique cardiaque. En fonction du degré de complexité adopté pour la modélisation des feuillets de la valve, deux approches sont identifiées : le modèle de surfaces résistives immergées et le modèle complet d’interaction fluide-structure. Dans la deuxième partie, nous étudions la première approche qui consiste à combiner une modélisation réduite de la dynamique des valves avec un découplage cinématique de l’hémodynamique cardiaque et de l’électromécanique. Nous l’enrichissons de données physiologiques externes pour la simulation correcte des phases isovolumétriques, pierres angulaires du battement cardiaque, permettant d’obtenir un modèle relativement précis qui évite la complexité des problèmes entièrement couplés. Ensuite, une série d’essais numériques sur des géométries 3D physiologiques, impliquant la régurgitation mitrale et plusieurs configurations de valves immergées, illustre la performance du modèle proposé. Dans la troisième et dernière partie, des modèles complets d’interaction fluide-structure sont considérés. Ce type de modélisation est nécessaire pour étudier des problèmes plus complexes où la précédente approche n’est plus satisfaisante, comme par exemple le prolapsus de la valve mitrale ou la fermeture d’une valve mécanique. D’un point de vue numérique, le développement de méthodes précises et efficaces est indispensable pour pouvoir simuler de tels cas physiologiques. Nous considérons alors une étude numérique complète dans laquelle plusieurs méthodes de maillages non compatibles sont comparées. Puis, nous présentons un nouveau schéma de couplage explicite dans le cadre d’une méthode de type domaine fictif pour lequel la stabilité inconditionnelle au sens de la norme en énergie est démontrée. Plusieurs exemples numériques en 2D sont proposés afin d’illustrer les propriétés et les performances de ce schéma. Enfin, cette méthode est finalement utilisée pour la simulation numérique 2D et 3D de dispositifs cardiovasculaires implantables dans un modèle complet d’interaction fluide-structure.
Fichier principal
Vignette du fichier
these_boilevin_kayl_ludovic_2019.pdf (418.45 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-02217259 , version 1 (31-07-2019)
tel-02217259 , version 2 (10-09-2020)

Identifiants

  • HAL Id : tel-02217259 , version 2

Citer

Ludovic Boilevin-Kayl. Modeling and numerical simulation of implantable cardiovascular devices. Numerical Analysis [math.NA]. Sorbonne Université, 2019. English. ⟨NNT : 2019SORUS039⟩. ⟨tel-02217259v2⟩
657 Consultations
262 Téléchargements

Partager

Gmail Facebook X LinkedIn More