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Chapitre 1

Introduction

En 2007 une crise �nancière est survenue dans le monde déclenchée par la chute
des prêts hypothécaires aux Etats Unis, appelée crise des �subprimes�. Cet événe-
ment majeur a créé une instabilitée sans précédente dans les marchés �nanciers et a
remis en cause tout le systéme �nancier. En e�et, certaines institutions �nancières
qui étaient considérées comme �trop grand pour faire faillite� ont subi des pertes
�nancières tellement importantes qu'elles ont dû déclarer faillite. Cela a causé des
pertes �nancières importantes pour leurs clients et par un e�et domino atteint tout le
système �nancier mondial. La faillite de la banque Lehman Brothers le 15 septembre
2008 est sans doute l'exemple qui illustre le mieux cette crise et ses conséquences.

Une analyse des causes de cette crise a permis de relever d'importantes failles du
système �nancier. L'une d'entre elles est que le risque de défaut des contreparties
n'était pas pris en compte dans la valorisation des produits dérivés dans les transac-
tions de gré à gré (OTC). L'exposition des banques à ce risque de défaut est appelée
risque de contrepartie. De plus les transactions OTC avaient une part de marché très
importante dans la �nance (voir Figure 1.1). Par ailleurs, la survenue d'évènements
extrêmes tels qu'une crise �nancière n'était pas en adéquation avec les méthodolo-
gies de mesure de risque et de calcul de fonds propres utilisés. En e�et, les mesures
de risques n'étaient pas �ables en période de stress des marchés. La complexité des
modèles mathématiques utilisés dans la valorisation des produits dérivés a elle aussi
était pointée du doigt.

Figure 1.1 � Evolution marché OTC en milliard de dollars US (source BIS
https ://www.bis.org)

D'autre part la crise �nancière a entrainé un décalage des taux Libor 1, jusque

1. Taux interbancaire
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là considérés comme sans risque, par rapport au taux OIS 2. Ce décalage est dû
essentiellement à une crise de con�ance sur le marché interbancaire. La �gure 1.2
montre l'impact de la crise sur le spread Libor/OIS.

Figure 1.2 � Cours du spread Libor/OIS (Source : Federal Reserve Bank of St.
Louis)

Dès lors les régulateurs du systéme �nancier ont mis en place un nouveau cadre
réglementaire 3 a�n d'éliminer les failles du système et de réduire les risques de crise
�nancière dans le futur. Les principales propositions sont les suivantes :

1 - La centralisation des transactions OTC au sein de chambres de compensa-
tion (CCP 4). Ces instituts permettent de réduire considérablement le risque
de contrepartie. En e�et les chambres de compensation se placent comme
interface au milieu de toutes les transactions (voir Figure 1.3 ). Cela permet
non seulement d'organiser le marché OTC, mais aussi de réduire les e�ets de
contagion de défaut entre les banques participantes (clearing members).

2 - La mise en place d'un système d'échange de collatéral et d'appels de marges
entre les contreparties des transactions OTC. Ces échanges de collatéral per-
mettent de réduire la perte potentielle dû au risque de contrepartie dans le
cadre des transactions OTC.

Les banques ont réagi à ces évolutions réglementaires par l'introdution d'ajustements
sur la valorisation des produits dérivés. Ces ajustements permettent de prendre
en compte non seulement le coût du risque de contrepartie mais aussi le coût de
�nancement du collatéral et le coût du capital. L'ensemble de ces ajustements est
appelé XVA, où VA renvoie à ajustement de valorisation, et X peut être : C pour
le crédit, D pour le débit, F pour le �nancement de la marge dite de variation, M
pour le �nancement de la marge dite initiale, et K pour le capital.

2. Overnight Indexed Swap
3. FRTB, Bâle II, Bâle III, ISDA, ...
4. Central Counterparty
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Figure 1.3 � Transaction bilateral vs transaction en CPP (Source : Reserve bank
of Australia, 2011).

Cette thése traite des problèmatiques de calcul posées par les XVAs. Ces indica-
teurs ont un rôle clé pour la gestion du risque de contrepartie. Ils constituent un nou-
veau paradigme dans la �nance de marché tant par leur dé�nition, leur modélisation
que leur calcul numérique. Dans la section 1.1 nous introduisons et modélisons ces
indicateurs dans un cadre général. Dans la section 1.2 nous présentons les méthodes
de calculs de XVAs basées sur la régression. Dans la section 1.3 nous présenterons
les méthodes de calcul par Monte Carlo emboîté explorées dans cette thése.

1.1 Introduction sur les XVAs

Nous considérons la base de pricing stochastique (Ω,G,P) avec une �ltration G
et une mesure de probabilité risque neutre P, tous les processus sont G adaptés. Nous
notons r le taux sans risque et β = e−

∫ ·
0 rsds le facteur d'actualisation correspondant.

L'espérance conditionnelle est notée Et.
Une banque B rentre en transaction avec un client C. Cette transaction est une

portefeuille de produits dérivés. Nous notons par Vt la valeur du portefeuille (hors
risque de contrepartie) à l'instant t de maturité �nale T. B et C ont des temps de
défaut τB et τC . Nous notons VM, PIM, RIM la marge de variation échangée entre
la banque et le client, la marge initiale postée par la banque et la marge initiale
reçue par la banque. Nous supposons que la VM est positive si elle est reçue par la
banque et négative si elle est postée par la banque.

1.1.1 Credit Valuation Adjustment (CVA)

La CVA est la perte attendue de B sur le portefeuille en cas de défaut de C. Pour
gérer ce risque la banque va ajuster le prix de la transaction en facturant au client

13



la valeur de la CVA. Il est de ce fait important de bien modéliser la CVA.
Cette CVA se dé�nit comme suit, à toute date t > 0 :

CVAt = (1−R)Et
[
1t<τC<Tβ

−1
t βτC (VτC − VMτC − RIMτC)+

]
, (1.1.1)

où R est le taux de recouvrement du client, et on note x+ = max(0, x).
La présence de R dans la formulation de la CVA s'explique par le fait que si le
client fait défaut la banque recevra un recouvrement d'un taux R de son exposition
à l'instant de défaut du client. Cela explique que la CVA n'estime que l'exposition
sur la partie non recouvré 1−R. Dans les calculs de CVA le taux de recouvrement
est en pratique pris égal à 40%.

Cette formulation de la CVA se simpli�e si le taux risque neutre r est déterministe
et que le défaut τB est indépendant de l'exposition du portefeuille. Dans ce cadre la
CVA peut s'écrire à l'instant t = 0 comme suit :

CVA0 = (1−R)

∫ T

0

βtEPE(t)P(τC ∈ dt), (1.1.2)

où EPE(t) = E(Vt − VMt − RIMt)
+.

Mais sur certains portefeuilles il existe une corrélation adverse entre l'exposition et
le défaut, appelée wrong way risk (WWR).

1.1.2 Debit Valuation Adjustment (DVA)

La DVA représente la CVA du point de vue du client. Elle correspond à la perte
potentielle à laquelle la banque expose celui ci si la banque elle même fait défaut.
Cette perte représente un gain pour la banque mais un gain purement comptable
qui n'est donc pas pris en compte dans le pricing.

1.1.3 Funding Valuation Adjustment (FVA)

La FVA correspond aux coûts des emprunts de la banque pour �nancer sa marge
de variation. La banque facture au client sa FVA.
La FVA est modélisée comme suit :

FVAt = Et
∫ T∧τC

t

β−1
t βsλs(Vs − VMs − CVAs − FVAs)

+ds, (1.1.3)

où λs est le spread de �nancement de la banque.
La prise en compte de la FVA a été remise en question par Hull et White [77].
Cependant la plupart des praticiens s'accordent à dire que la FVA doit être prise en
compte dans la valorisation.

1.1.4 Margin Valuation Adjusmtent (MVA)

La MVA est le coût de �nancement de la marge initiale (IM) posté par la banque
pour faire face à la perte potentielle sur le portefeuille durant la période de liquida-
tion après un défaut de la banque.
Elle est modélisée comme suit :

MVAt = Et
∫ T∧τC

t

β−1
t βsλsPIMsds, (1.1.4)
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où PIM est la marge initiale postée par la banque. L'ISDA a mis en place un modèle
appelé Standard Initial Margin Method (SIMM) qui permet de standardiser le calcul
des marges initiales dans le cadre des transactions bilatérales.

1.1.5 Capital Valuation Adjustment (KVA)

La KVA est le coût du capital mis à risque par les actionnaires de la banque
pour faire face à des pertes exceptionnelles.
Une première étape est de modéliser le capital économique (EC 5). Ce capital est
dé�ni comme une moyenne des pires scénarios de perte sur une année. On le modélise
par un expected shortfall (ES) qui s'écrit comme suit :

ECt = ESat (
∫ t+1

t

β−1
t βsdLs), (1.1.5)

où a est le niveau de quantile de l'expected shortfall et L est la perte de trading de
la banque. L'expected shortfall au seuil a est dé�ni par la perte de trading :

ESat (X) =
1

(1− a)

∫ 1

a

VaRα
t (X)dα

où VaRα
t (X) = inf{x ∈ R : P(X ≤ x | Gt) ≥ α}. Partant de cette dé�nition de l'EC

il est dès lors possible de dé�nir la KVA, pour un taux de rendement noté h, par

KVAt = hEt
(∫ T

t

e
∫ s
t (ru+h)duECsds

)
. (1.1.6)

1.2 Calcul des XVAs par méthode de régression

Après avoir dé�ni les XVAs nous allons nous intéresser à leur calcul.
La méthode traditionnelle des banques pour calculer les XVAs est d'utiliser le
Least Square Monte Carlo (LSM). Cette méthode a été introduite par Longsta�
et Schwartz [90] pour le calcul d'options américaines. Elle se base sur l'approxima-
tion d'espérance conditionnelle par régression. Beaucoup de travaux en �nance se
sont inspirés de cette approche (voir [113]). D'autres travaux se sont intéressés à la
stabilité numérique de cet algorithme notamment celui de Clément, Lamberton et
Protter [42].

L'adaptation du LSM aux calculs des XVAs a été introduite par Cesari et. al [23].
D'autres travaux sur le calcul des XVAs se sont inspirés de cette méthode (voir [34],
[71], [70]). C'est notamment l'approche de référence pour le calcul de l'exposition
sous jacente aux XVAs lorsque celle-ci ne peut être calculée par formule analytique :
L'exposition, qui peut être dé�nie comme une espérance conditionnelle, est alors
approchée numériquement par régression.

1.2.1 Le LSM revu pour le calculs des XVAs

Une approche du LSM revue et adaptée aux problématiques de calcul des XVAs
est introduite par Huge et Savine [76]. Cette approche est appelée Proxies Only in

5. Economic capital
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Indicators (POI). Elle est basée sur la série de travaux de Andreasen [16], [17], [19],
[20], [18].
Pour une présentation simple de cette méthode nous nous focalisons sur le calcul
de la CVA sans collatéral ni marge et recouvrement, avec un facteur d'actualisation
égale à 1. Nous considérons ainsi l'équation suivante :

CVA0 = E
[
10<τC<T (VτC )+

]
, (1.2.1)

où τC est le temps de défaut d'un client de la banque, et Vt = Et
(∫ T

t
dXs

)
avec Xs

le processus des �ux du portefeuille entre la banque et le client.
L'idée principale de cette approche est de faire non pas une LSM classique sur V ,
mais d'utiliser une approximation de la nonlinéarité de la CVA représentée par 1V >0.
Pour cela l'équation (1.2.1) est réécrite comme suit :

CVA0 = E0

[
10<τC<TVτC1VτC>0

]
= E0

[
10<τC<TEτC

(∫ T

τC

dXs

)
1VτC>0

]
= E0

[∫ T

0

10<τC<T1VτC>0dXs

]
.

Ensuite nous approximons 1VτC>0 par 1ṼτC>0 où Ṽ est une approximation de V
obtenue par régression. Nous obtenons l'approximation suivante de la CVA :

CVA0 ≈ E
[∫ T

0

10<τC<T1ṼτC>0dXs

]
. (1.2.2)

Elle se veut plus précise que le LSM classique. En e�et dans ce dernier, qui corres-
pondrait à la formule alternative suivante

CVA0 ≈ E
[
10<τC<T Ṽ

+
τC

]
,

on utilise un proxy biaisé du prix, ce qui peut créer un problème de précision, alors
que dans l'approche POI on utilise les payo�s dans le calcul des XVA (avec un
temps d'exercice biaisé), ce qui numériquement donne une meilleure précision : voir
Figure 1.4.
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Figure 1.4 � Erreur LSM classique vs erreur POI (source Huge et Savine)

Considérons par analogie, l'exemple de calcul d'une option call sur Ṽ (variable
aléatoire) avec un strike K. Supposons que l'approximation biaisée de V est dé�nie
par Ṽ = V + µ avec µ le biais. En prenant Ṽ comme approximation du sous-jaçent
nous utilisons un strike faux : max(0, Ṽ −K) = max(0, V − (K−µ)). Dans un cadre
gaussien ceci implique une erreur de l'ordre de ∆µ = µΦ

[
V−K
σ

]
où Φ est la fonction

de répartition gaussienne standard et σ est l'écart-type de V.
A contrario, avec le POI, nous utilisons le bon stike et le biais est transféré

sur l'estimation de la date d'exercice. Dans ce cas on a : 1Ṽ >K max(0, V − K) =
max(0, V −K)1V >K−µ et l'erreur dans un cadre gaussien est de l'ordre de

µ
(
Φ
[
V−K
σ

]
− Φ

[
V−K−µ

σ

])
' µ2 φ(V−K

σ
)

σ
où φ est la densité gaussienne.

1.2.2 Application de la POI au calcul de la FVA

Nous notons Φ le collatéral, modélisé comme une fonction de la valeur du por-
tefeuille de la banque. Nous notons rC pour le taux de rémunération du collatéral
posté, rF le taux de �nancement de la banque, et βFt , β

C
t les taux d'actualisation

correspondants. Nous posons sF = r− rF et sC = r− rC les spreads de �nancement
et de rémunération du collateral. Nous considérons dans la suite que les spreads sF

et sC sont déterministes et bornés.
En partant de Elouerkhaoui [54], Proposition 1 ; nous obtenons la formulation de la
FVA dé�nie comme suit :

FVA0 = E
[∫ T

0

βts
CΦ(V F

t )dt+

∫ T

0

βts
F (V F

t − Φ(V F
t ))dt

]
, (1.2.3)

avec V F
t = Et

[∫ T
t
βFs

dXs
βFt

]
.

Partant de cette formulation nous obtenons une représentation de la FVA comme
di�érence d'un prix �nancé au taux rF , V F , et du prix �nancé au taux r, Vt =

Et
[∫ T

t
βs

dXs
βt

]
.
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Dans une première étape nous allons considérer que le colléral Φ dans l'équa-
tion (1.2.3) est nul. Dans ce cas (1.2.3) se réduit à :

FVA0 = E
[∫ T

0

βt(rt − rFt )V F
t dt

]
, (1.2.4)

Proposition 1.2.1 Si Φ = 0, alors (sous des hypothéses techniques précisées dans
la preuve)

FVA0 = V F
0 − V0. (1.2.5)

Preuve D'abord nous remplaçons V F
t par sa formule dans l'equation (1.2.4),

FVA0 = E


∫ T

0

βts
F
t Et

[∫ T

t

βFs
dXu

βFt

]
︸ ︷︷ ︸

ft

dt

 .
En supposant que E

[∫ T
0
| ft | dt

]
< ∞, on peut appliquer le théorème de Fubini-

Tonelli pour inverser l'espérance et l'intégrale extérieures. On obtient

FVA0 =

∫ T

0

E

sFt βtβFt︸ ︷︷ ︸
U

Et

∫ T

0

1u>tβ
F
u dXu︸ ︷︷ ︸

V


 dt.

Comme U est Gt mesurable et bornée, E [UEt [V ]] = E [UV ], ce qui donne,

FVA0 = E
[∫ T

0

sFt
βt
βFt

∫ T

0

1u>tβ
F
u dXudt

]

= E


∫ T

0

∫ T

0

sFt
βt
βFt

1u>tβ
F
u︸ ︷︷ ︸

γ((u,t)

dXudt


Supposons que

∫ T
0

(∫ T
0
| γ(u, t) |2 du

) 1
2
dt < ∞ presque-sûrement et que X est un

semimartingale, on peut appliquer le théorème de Fubini stochastique pour inverser
l'intégrale de Lesbesgue et l'intégrale stochastique. On obtient

FVA0 = E
[∫ T

0

∫ T

0

sFt
βt
βFt

1u>tdtβ
F
u dXu

]
= E

[∫ T

0

∫ u

0

sFt e
−
∫ t
0 s

F
r drdtβFu dXu

]
= E

[∫ T

0

(
1− e−

∫ u
0 sFr dr

)
βFu dXu

]
= E

[∫ T

0

βFu dXu

]
− E

[∫ T

0

e−
∫ u
0 sFr drβFu dXu

]
= E

[∫ T

0

βFu dXu

]
− E

[∫ T

0

βudXu

]
.
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Nous allons maintenant généraliser le résultat de la Proposition 1.2.1 dans un cadre
où il y a échange de collatéral 6, dé�ni comme Φ(V F

t ). Nous réécrivons l'équa-
tion (1.2.3) comme suit :

FVA0 = E
[∫ T

0

βt(rt − rFt )V F
t dt

]
︸ ︷︷ ︸

I

−E
[∫ T

0

βt(r
C
t − rFt )Φ(V F

t )dt

]
︸ ︷︷ ︸

II

. (1.2.6)

Proposition 1.2.2 Dans le cas avec collatéral Φ(V F
t ), on a (sous des hypothèses

techniques analogues à celles précisés dans la preuve de la Propostion 1.2.1)

FVA0 = E
[∫ T

0

β̂udXu

]
− V0 (1.2.7)

où β̂u = βFu

(
1−

∫ u

0

(rCt − rFt )e−
∫ t
0 (rCw−rFw )dw 1Vt>0

e
∫ t
0 s

C
wdw

dt

)
.

Preuve Par la Proposition 1.2.1 on a

I = V F
0 − V0.

De même on a

II = E
[∫ T

0

βt(r
C
t − rFt )1Vt>0

∫ T

0

1u>tβ
F
u

dXu

βFt
dt

]
= E

[∫ T

0

∫ u

0

(rCt − rFt )e−
∫ t
0 (rCw−rFw )dwe−

∫ t
0 s

C
wdw1Vt>0dtβ

F
u dXu

]
.

D'où

FVA0 = I − II = E
[∫ T

0

(
1−

∫ u

0

(rCt − rFt )e−
∫ t
0 (rCw−rFw )dwe−

∫ t
0 s

C
wdw1Vt>0dt

)
βFu dXu

]
− V0.

1.2.3 Exemples numériques

Nous présentons maintenant quelques exemples numériques. Nous considérons
l'achat d'un portefeuille de call spread sur des indices FX ij, où i est la monnaie
domestique et j une monnaie étrangère. Nous nous intéressons à calculer la valeur
de la FVA dans cette transaction.
Nous considérons un modèle HJM multifacteur pour modéliser la dynamique des
taux et des changes. Pour deux économies i, j, la dynamique du taux de change
FX ij est donnée, pour t > 0, par :

dFXji(t)

FXji(t)
= (rit − r

j
t )dt+ 〈ΓFXji , dW i

t 〉, (1.2.8)

où rit, r
j
t sont les taux spot des économies i et j, ΓFXji est un vecteur de volatilité

déterministe et W i est un vecteur Brownien sous la mesure Pi associé au numéraire
(βi)−1.
Le taux spot ri est associé au taux forward f i par la relation rit = f i(t, t), où

df i(t, T ) = 〈σi(t, T ),Γi(t, T )〉dt+ 〈σi(t, T ), dW i
t 〉, (1.2.9)

6. Cette partie est inspirée par Moez Mrad, Head XVA desk, CACIB
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avec σi(t, T ) et Γi(t, T ) des vecteurs déterministiques etW i un vecteur Brownien sous
Pi. Pour exprimer la dynamique de rjt sous l'économie domestique i nous considérons
un ajustement de convexité du type suivant :

dW j
t = dW i

t − Γji(t)dt.

Nous introduisons par ailleurs les taux utilisé pour l'actualisation (ou discount d) :
le taux risque neutre r, le taux de �nancement rF et le taux de rémunération du
collatéral posté rC . Nous modélisons ces taux par des modèle de Vasicek de la forme :

drdt = α(θ − rdt )dt+ 〈Γdt , dW d
t 〉. (1.2.10)

Nous dé�nissons également les spreads de �nancement et de rémunération du colla-
téral sF = r − rF et sC = r − rC que nous supposons constants.
La valeur du portefeuille de call spreads multidevises actualisés au taux rd est donnée
à l'instant t par :

V d
t =

N∑
j=1

(
−Et

[
e−

∫ T
t rdudu

(
FX ij

T −K1

)+
]

+ Et
[
e−

∫ T
t rdudu

(
K2 − FX ij

T

)+
])
,(1.2.11)

avec N le nombre de monnaie, i la devise domestique, K1 et K2 les strikes de l'op-
tion, T la maturité.

Comme tous les processus sont modélisés dans un cadre gaussien nous pouvons
calculer V d

t par formule analytique. Nous rappelons la formulation (1.2.4)-(1.2.5) de
la FVA d'un call spread de change FX ij dans un cadre sans collatéral :

FVA0 = E
[∫ T

0

βt(rt − rFt )V F
t dt

]
= V F

0 − V0,

où V correspond à V d pour rd = r dans (1.2.11).

La �gure 1.5 montre l'évolution de l'erreur relative de la FVA (sans collatéral)
calculer par (1.2.4) et (1.2.5) sur di�érentes maturités du portefeuille. Cette erreur
est donnée en fonction du nombre de trajectoires de MC. Nous constatons que la
maturité du portefeuille joue un rôle important sur la convergence de la méthode
MC. Pour une maturité courte (T = 0.2) on a une erreur relative de l'ordre de 0.01 en
générant 103 scénarios de MC alors que pour une maturité plus longue (T = 1) nous
obtenons une erreur relative de l'ordre de 0.2 pour le même nombre de scénarios.
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Figure 1.5 � Erreur relative de la FVA (sans collateral) en fonction du nombre de
trajectoire de MC : N = 2, FX0 = 1, r0 = 0.1, sF = 0.001, K1 = 0.95, K2 = 1.2.

La �gure 1.6 montre l'évolution de l'erreur relative de la FVA (sans collatéral)
calculer par (1.2.4) et (1.2.5) sur des portefeuilles avec di�érents nombres de devises.
Cette erreur est donnée en fonction du nombre de trajectoires de MC. On observe
que le nombre de devises a�ecte la convergence de l'algorithme.

Figure 1.6 � Erreur relative de la FVA (sans collateral) en fonction du nombre de
trajectoire MC. FX0 = 1, r0 = 0.1, sF = 0.001, K1 = 0.95, K2 = 1.2, T = 0.2.

Nous considérons dans la suite un portefeuille call spreads de deux devises. Dans
un cadre avec collateral, la FVA s'écrit alors comme suit :

FVA0 = E
[∫ T

0

βt(rt − rFt )V F
t − βt(rCt − rFt )Φ(V F

t )dt

]
,

= E

[
β̂

N∑
j=1

(
−
(
FX ij

T −K1

)+
+
(
K2 − FX ij

T

)+
)]
− V0,

où

β̂ = βFT

(
1−

∫ T

0

(rCt − rFt )e−
∫ t
0 (rCw−rFw )dw 1Vt>0

e
∫ t
0 s

C
wdw

dt

)
.
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Nous utilisons la méthode POI, approximant l'indicatrice 1Vt>0 qui apparait
dans β̂ par 1Ṽt>0 où Ṽ est une approximation de V par régression. Ainsi la FVA est
approximée par :

FVA0 ≈ E

[
β̂

N∑
j=1

(
−
(
FX ij

T −K1

)+
+
(
K2 − FX ij

T

)+
)]
− V0, (1.2.12)

où β̂ ≈ βFT

(
1−

∫ T

0

(rCt − rFt )e−
∫ t
0 (rCw−rFw )dw

1Ṽt>0

e
∫ t
0 s

C
wdw

dt

)
.

La Figure 1.7 montre l'erreur relative de la FVA avec collateral calculer en utili-
sant la méthode POI (Figure de Gauche) et en utilisant la méthode LSM (Figure de
Droite). Cette erreur est donnée en fonction du nombre de trajectoires de MC. Nous
utlisons l'ensemble des facteurs de risque et leur carré comme base de régression.
On observe que la méthode POI a une erreur relative plus petite que celle par LSM.
Cependant cette méthode sou�re du problème de grande dimension et de longues
maturités.

Figure 1.7 � Erreur relative de la FVA (avec collateral) en fonction du nombre de
trajectoire MC : FX0 = 1, r0 = 0.1, K1 = 0.95, K2 = 1.2, sF = 10bps, sC = 5bps.
Gauche : Régression par POI ; Droite : Régression classique.

Les méthodes numériques basées sur la régression (LSM, POI) sont bien adap-
tées pour le calcul des XVAs de première génération (CVA, FVA). Cependant, les
XVAs de seconde génération (MVA, KVA) impliquant le calcul de mesures de risque
conditionnelles dans le futur nécessitent d'explorer d'autres méthodes. Cette thèse
traite de méthodes numériques basées sur le Nested Monte Carlo (NMC) pour le
calcul des XVAs.

1.3 Contribution de cette thèse

Dans un premier travail nous considérons le problème pour une banque (ou
une assurance) du calcul numérique de son capital économique sous forme d'une
value − at − risk , ou d'une expected shortfall , de sa perte sur un horizon de temps
donné. Cette perte inclut l'appréciation du modèle d'évaluation du passif de l'entité,
que nous estimons par un Monte Carlo imbriquée à la Gordy et Juneja [68] ou par
une régression à la Broadie, Du, et Moallemi [37]. En utilisant une approche d'ap-
proximation stochastique sur la value-at-risk ou l'expected shortfall, nous établissons
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la convergence des schémas résultant de la simulation du capital économique, sous
des hypothèses modérées ne portant que sur le problème de limite théorique, par
opposition aux hypothèses sur les problèmes d'approximation faites dans [68] et [37].
Nos estimations de capital économique peuvent ensuite être considérées condition-
nellement dans un cadre Markovien et intégrées dans une simulation de Monte
Carlo externe, a�n de générer une market value margin (MVM) en assurance ou
un capital valuation adjustment (KVA) dans le langage bancaire. Ceci est illustré
numériquement par une étude de cas de calcul de KVA mis en oeuvre sur des GPU 7.

Dans un second travail, nous présentons une application du NMC au calcul des
XVAs par un algorithme parallèle adapté au GPU. Le calcul global des XVA peut
impliquer jusqu'à cinq niveaux de couche de Monte Carlo. Les couches les plus
hautes sont d'abord lancées et déclenchent si nécessaire des simulations imbriquées
pour calculer un élément à une couche inférieure. Si l'utilisateur n'est intéressé que
par certaines composantes de XVAs, seul le sous-arbre correspondant au XVA le
plus externe doit être calculé numériquement. De plus les couches internes n'ont
besoin que d'un nombre racine carrée de simulations par rapport à la couche la
plus externe. En�n, certaines des couches présentent des constantes de variance plus
faible. En conséquence, avec les GPU, de tels calculs NMC XVA sont réalisables et
garantissent un contrôle de l'erreur commise. Cependant, bien que le NMC soit en
principe adapté à la parallélisation, une implémentation GPU e�cace des calculs
NMC XVA nécessite diverses optimisations. Ceci est illustré dans des exemples de
calculs de couches de XVAs impliquant des dérivés actions, taux d'intérêt et crédit.

Dans un troixième travail, nous présentons un nouvel algorithme basé sur un
Monte Carlo imbriqué à une couche (1NMC) pour simuler les fonctions U d'un pro-
cessus de Markov X. La principale originalité de la méthode proposée provient du
fait qu'elle fournit une recette pour simuler Ut≥s conditionnellement à Xs. Cette mé-
thode peut être utilisée pour un grand nombre de problèmes, notamment : les équa-
tions di�érentielles stochastiques inversées (BSDE), les ré�échies BSDE (RBSDE),
les mesures de risque et au-delà. La généralité, la stabilité et le caractère itératif
de cet algorithme, même en haute dimension, en font sa force. Il est bien sûr plus
lourd qu'un Monte Carlo (MC), mais il est beaucoup plus précis de simuler des
quantités presque impossibles à simuler avec MC. De plus, l'adéquation parallèle de
1NMC le rend possible dans un temps de calcul raisonnable. Nous expliquons cet
algorithme, étudions sa convergence ainsi que sa stabilité et sa complexité. Nous
fournissons également divers exemples numériques de grandes dimensions (100) exé-
cutés en quelques minutes sur un processeur graphique (GPU).

Nous allons dans la suite de l'introduction présenter les principales contributions
de ce travail.

1.3.1 Algorithme Stochastique pour le calcul du capital éco-
nomique

Le calcul de la KVA pour une banque (où de la MVM pour une assurance)
nécessite l'évaluation de son capital économique future. Nous modélisons le capital

7. Graphics Process Unit
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économique future comme une expected shortfall ESt conditionnelle à un instant t
de la perte de la banque L sur un horizon de risque futur.

Etant donnée l'évolution d'un facteur de risque (Zt), nous dé�nissons la perte
comme une variable aléatoire de la forme

L = φ+ β E0 [ψ|Z1]− E0 [ψ′] , (1.3.1)

avec (β, φ, ψ, ψ′) des variables aléatoires. Nous notons par P(z, ·) et Q(z, ·) la distri-
bution de Z1 et L conditionnellement à Z0 = z. Les deux derniers termes de (1.3.1)
modélisent les passifs futurs et présents, alors que le premier terme correspond à la
perte de trading réalisée par la banque sur l'intervalle [0,1].

Comme établi par Rockafellar et Uryasev [109], [110], la value-at-risk ξ? au seuil
α de L est caractérisée par l'équation :

1− 1

1− α
P0 (L > ξ?) = E0 [H1(ξ?, L)] = 0, (1.3.2)

où

H1(ξ, x) = 1− 1

1− α
1x>ξ.

Etant donnée une solution ξ? de (1.3.2), l'expected shortfall χ? correspondant est la
solution de l'équation

χ? − ξ? −
1

1− α
E0

[
(L− ξ?)+

]
= E0 [H2(ξ?, χ?, L)] = 0 (1.3.3)

où

H2(ξ, χ, x) = χ− ξ − 1

1− α
(x− ξ)+ .

Notre capital économique est dé�ni comme χ?.

L'algorithme stochastique est une procédure itérative introduite par Robbins et
Monro [107] et Kiefer et Wolfowitz [82] permettant de trouver la racine d'équations
telles que (1.3.2)-(1.3.3) fonction non connue H.

Soit une suite de vecteurs aléatoires (θn)n>1 à valeurs dans un espace euclidien
de dimension �nie, l'agorithme stochastique pour résoudre E0(H(θ, ε)) = 0 est la
procédure dé�nie récursivement par,

θk+1 = θk + γk+1H(θk, εk), (1.3.4)

où (γk)k>1 est le pas de l'algorithme et εk une variable aléatoire indépendant de
même loi que ε. Les résultats classiques classique de l'algorithme stochastique (voir
[51], [83], [32]) permettent d'établir la convergence et la vitesse de convergence de
l'algorithme.

Pour la résolution numérique des équations (1.3.2), (1.3.3), Bardou, Pagès et
Frikha [28] proposent une procèdure basée sur une combinaison de deux algorithmes
stochastiques pour le calcul du couple (VaR,ES) dans un cadre où L est i.i.d. Cette
procédure est dé�nie par :{

ξk+1 = ξk − γk+1H1(ξk, Lk+1),
χk+1 = χk − γk+1H2(ξk, χk, Lk+1).

(1.3.5)
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avec une séquence déterministique de pas de l'algorithme {γk, k ≥ 1} et une séquence
de variables aléatoires i.i.d {Lk, k ≥ 1} de loi Q(z, ·). L'étude de l'algorithme permet
d'établir une convergence presque sûre et une convergence en loi sous des hypothèses
sur les séquences de pas de l'algorithme (γk)k>1 et sur les fonctions H1 et H2. Plus
précisément, ces convergences sont établies sous les hypothéses suivantes :

H1 {γk, k ≥ 1} est un séquence deterministe de (0, 1)-valeur, tels que sur κ ∈ (0, 1],∑
k

γk = +∞,
∑
k

γ1+κ
k < +∞.

H2 a) Sous P0, L = φ ∼ Q(Z0 = z, ·) a une distribution continue.

b) E0 [L2] =
∫
x2Q(z, dx) < +∞.

Theorem 1.3.1 Supposons H1 and H2. Alors il existe une variable aléatoire bornée
ξ? et un nombre réel χ? solutions de (1.3.2)-(1.3.3) tel que, pour tout p ∈ (0, 2),
presque sûrement,

P0

(
lim
k→∞

(ξk, χk) = (ξ∞, χ∞)
)

= 1, lim
k→∞

E0 [|ξk − ξ∞|p] = 0.

Une des contributions de cette partie est d'étendre l'algorithme 1.3.5 dans un cadre
où L est dé�nie par l'équation 1.3.1. En e�et pour le calcul du deuxième terme de
(1.3.1) nous appliquons deux approches :

M1 - Calculer E0 [ψ|Z1] en regénérant des trajectoires à partir du temps 1
(NMC). Cette méthode est l'approche de Gordy et Juneja [68].

M2 - Calculer E0 [ψ|Z1] par une régression empirique à l'instant 1. Cette mé-
thode est l'approche de Broadie, Du et Moallemi [37].

Le calcul de E0 [ψ′] peut se faire par un Monte Carlo standard.
Nous établissons ainsi les hypothèses nécessaires pour étendre les résultats du théo-
rème 1.3.1 aux cas M1 et M2. Au �nal, cette procédure sera conditionnée à des
simulations extérieures de MC a�n de calculer la KVA.

1.3.2 XVA, NMC et GPU optimisation

Dans cette partie nous proposons une méthode numérique basée sur le NMC
pour le calcul des XVAs.
La simulation imbriquée se pésente sur des problèmes impliquant l'approximation
d'une fonction conditionnelle tel que la valorisation d'un portefeuile à une date future
(Gordy et Juneja [68]).

Nous voulons calculer numériquement I donné par :

I = E [f(y, g(y))] , (1.3.6)

où f est une fonction quelconque, y une variable aléatoire suivant la loi µ(y) et

g(y) = E [Φ(y, Z)] ,

dans lequel Φ une fonction quelconque et Z suit la loi µ(z|y).
Une méthode de MC classique ne permet pas d'avoir une approximation de

(1.3.6) à cause de l'espérance conditionnelle. Le NMC résoud cela en estimant l'es-
pérance conditionnelle interne par une moyenne arithmétique : Une première couche
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de trajectoires de MC est utilisée pour estimer l'espérance de (1.3.6) et une deuxième
couche imbriquée (conditionnelle à la première) est générée pour estimer l'espérence
conditionnelle. Ainsi nous estimons (1.3.6) par :

I ≈ 1

M

M∑
i=1

[
f(yi,

1

N

N∑
n=1

Φ(yi, z
n
i ))

]
, (1.3.7)

où M est le nombre de trajectoires extérieures et N le nombre de trajectoires inté-
rieures avec yi et zni des variables aléatoires suivant respectivement les lois µ(y) et
µ(z|y). Dans Gordy et Juneja [68] une relation est donnée entre le nombre de trajec-
toire extérieur et intérieur a�n de minimiser le biais et la variance de cet estimateur.

Dans ce travail nous proposons un arbre de NMC pour le calcul des XVAs (voir
Figure 3.1 (en Sect. 3.3.2)). L'ensemble des XVAs pourrait ainsi être calculé par
NMC avec un nombre de couches dépendant du niveau d'imbrication de la XVA
correspondant.

Nous proposons ainsi l'algorithme XVA NMC suivant :

1 Input : Le portefeuille de la banque, les courbes de crédit de la
banque et des clients, et, possiblement, une nouvelle transaction ;

2 Choisir les couches dans le sous-arbre de la Figure 3.1 (de
Sect. 3.3.2), avec les nombres de simulation correspondant, notés
M(0), . . . ,M(i), pour 1 ≤ i ≤ 5 (nous supposons au moins un niveau
de simulation imbriqué) ;

3 Par dichotomie sur M(0), atteindre une erreur acceptable (dans le
sens de l'intervalle de con�ance extérieur) pour
M(0) ⊗M(1) . . .⊗M(i) NMC avec M(1) = . . . = M(i) =

√
M(0) ;

4 Pour chaque j décroissant de i à 1, atteindre par dichotomie M(j)

un biais ciblé (dans le sens de l'intervalle de con�ance extérieur)
pour M(0) ⊗M(1) ⊗ . . .⊗M(j) ⊗ . . .⊗M(i) NMCs ;

5 Return(Les métriques au temps 0 relatives au portefeuille de la banque, et
le cas échéant, les métriques incrémentales liés à une transaction
provisoire.)

Algorithm 0: XVA NMC algorithm.
Une partie importante de ce travail est de proposer une implémentation parallèle

optimale de l'algorithme 0. Pour cela nous proposons les di�érentes optimisations
parallèles nécessaire dans le cadre des XVAs et nous testons ces algorithmes sur
GPU grâce à la programmation CUDA.

1.3.3 Apprentissage de Monte Carlo conditionel pour les dif-
fusions

La simulation Monte Carlo est largement considérée comme la méthode de réfé-
rence pour résoudre les problèmes paraboliques linéaires à haute dimension. Dans le
cas non-linéaire, le Monte Carlo (à une seule couche de trajectoires tout au moins)
sou�re de la malédiction de la dimension. Tout ou presque tout a été dit sur les
astuces numériques à une seule couche nécessaires pour forcer la convergence de
Monte Carlo dans les cas non-linéaires.
Soient (Xt)t∈[0,T ] un processus Gt-Markov à valeurs dans Rd1 et la discrétisation tem-
porelle {t0, ..., t2L} =

{
0, T/2L, ..., T

}
. Nous présentons un nouvel algorithme basé
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sur une simulation à une imbrication (One-layered Nested) de MC à deux couches
pour approximer la fonctionnelle U de X dé�nie, pour tout s ∈ {t0, ..., t2L}, par

(f) Us =Es

 2L∑
tk≥s

f(tk, Xtk , Xtk+1
)

=E

 2L∑
tk≥s

f(tk, Xtk , Xtk+1
)
∣∣∣Gs

 ,

où Es (·) = E
(
·
∣∣∣Gs

)
est l'espérance sous la mesure P , chaque fonction déterministe

f(tk, ·, ·) est B(Rd1)⊗B(Rd1)-mesurable et satisfait la condition de carré intégrabilité
E(f 2(tk, Xtk , Xtk+1

)) < ∞ avec la convention f(t2L , Xt
2L
, Xt

2L+1
) = f(t2L , Xt

2L
).

Plusieurs problèmes numériques fondés sur la résolution d'équation di�érentielle
stochastique rétrograde (EDSR) et exercice optimal (EO) peuvent s'écrire sous la
forme donnée dans (f). De ce fait, nous allons expliquer l'ensemble de la méthode
pour la simulation de U puis expliquer l'étendue des applications pour EDSR, EO
et mesures de risques.

Lorsque la majorité des contributions actuelles ciblent l'estimation de Utk pour
k = 0, ..., 2L connaissant la réalisation {Xtj}0≤j≤k, notre objectif est de simuler
des approximations {Um0,m1

s }s≥tk+1
, avec (m0 = 1, ...,M0) et (m1 = 1, ...,M1), de

{Us}s≥tk+1
conditionnellement à la réalisation {Xm0

tj }0≤j≤k. Cette tâche requiert la
simulation et la sauvegarde en mémoire d'une première couche (Xm0)m0=1,...,M0 de
trajectoires, puis une seconde (Xm0,m1)m1=1,...,M1 couche de trajectoires non sauve-
gardées utilisées à l'apprentissage des approximations {Um0,m1

s }s≥tk+1
. Malgré qu'elle

soit plus complexe, cette procédure procure beaucoup plus de possibilités. En par-
ticulier, elle permet la simulation de Utk en calculant la moyenne

1

M1

M1∑
m1=1

(
f(tk, X

m0
tk
, Xm0,m1

tk+1
) + Um0,m1

tk+1

)
.

Connaissant aussi des réalisations Um0,m1
s , il est possible de calculer des quantiles

ou, plus remarquable encore, de simuler un processus Ũ dé�ni par (f̃) (f̃ remplace
f dans l'équation (f)) avec une fonction f̃ dépendante de U comme par exemple
f̃(tk, x, y) = f(tk, Utk(x), Utk+1

(y)). Ce dernier cas de �gure est très souvent rencontré
dans la simulation de la X-Valuation Adjustment.

Bien que nous ne soyons pas les premiers à proposer l'apprentissage pour les
EDSR et EO, nous sommes les premiers à le faire via un Monte Carlo imbriqué.
Sur cette base de Monte Carlo imbriqué, nous proposons aussi une méthode ité-
rative permettant d'augmenter la précision en ajoutant plus d'étapes et donc en
augmentant la profondeur de l'apprentissage. Utilisant l'égalité

E(Us) = E

Us′ + s′∑
tl+1>s

f(tl, Xtl , Xtl+1
)


vraie pour s′ > s et sa forme localisée pour chaque intervalle [a, b]

E
(
Us1{Us∈[a,b]}

)
= E

1{Us∈[a,b]}

Us′ + s′∑
tl+1>s

f(tl, Xtl , Xtl+1
)

 ,

nous présentons aussi une méthode non-paramétrique d'estimation et de contrôle
e�cace du biais. De la même manière, nous détaillons une méthode d'ajustement
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de variance fondée sur l'égalité

E (Vars(Us′)) = E
(
Es
(
[Us′ − Es(Us′)]2

))
= E

(
[Us′ − Es(Us′)]2

)
.

vraie pour s′ > s et sa forme localisée pour chaque intervalle [a, b]

E
(
Vars(Us′)1{Vars(Us′′ )∈[a,b]}

)
= E

(
1{Vars(Us′′ )∈[a,b]}[Us′ − Es(Us′)]2

)
vraie pour s′ > s et s′′ > s. L'ajustement de variance proposé permet une simulation
imbriquée des queues de distribution sans faire appel à des méthodes d'échantillon-
nage préférentiel. La bonne représentation des queues, via cet ajustement, devient
incontournable pour certains problèmes non-linéaires comme par exemple l'EO.
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Chapitre 2

Stochastic approximation schemes

for economic capital and risk margin

computations

This chapter is based on Barrera, et al., [30].

2.1 Introduction

The current �nancial and insurance regulatory trends incentivize investment
banks and insurance companies to charge to their clients, on top of a risk-neutral
expectation of contractual cash �ows, a suitable risk margin (see [96], [97]), meant to
be gradually released to shareholders as return for their capital at risk in the future.
This risk margin, sometimes called market value margin (MVM) in insurance and
corresponding in banking to a capital valuation adjustment (KVA, see [12]), can be
modeled as an expectation of the future economic capital of the �rm. Future econo-
mic capital is modeled in our paper as the conditional expected shortfall (ES) 1 of
the losses of the �rm over a one-year horizon. These losses are assessed on a mark-to-
model basis, which includes, at any future time point where the conditional expected
shortfall is computed, the valuation one year later of the liabilities of the �rm, such
as variable annuities (VA) in the insurance case or a credit valuation adjustment
(CVA) in the banking case, i.e. an expectation, conditionally on the information
available one year later, of the future cash �ows that the liability is pricing.

As such complex liabilities are typically intractable analytically and because
the losses of the �rm are speci�ed through dynamic models of the underlying risk
factors, in principle, the computation of the risk margin involves a nested and, in
fact, a doubly nested simulation, whereby an outer Monte Carlo simulation gathers
inner estimates of conditional expected shortfalls at future time points, themselves
calling for recursive valuation one year later of the embedded liability. This makes it
a challenging problem, both from a practical and from a convergence analysis point
of view. In particular, on realistically heavy applications, such computations can
only be implemented in parallel, with GPUs as a current hardware paradigm, which
poses nontrivial programming optimization issues.

The assumptions made in Gordy and Juneja [68] for establishing the convergence
of the simulation-and-sort value-at-risk and expected shortfall nested Monte Carlo
estimates are hard to check (and might actually be violated) in practice, especially
when considered dynamically in the context of risk margin computations. As the
value-at-risk and expected shortfall of a given loss random variable can jointly be
represented as zeros of suitable functions that can be written as expectations, an
alternative is stochastic approximation (SA). In the base case without embedded

1. In the context of this paper where we are considering conditional ES, we avoid the alternative
terminology of conditional value-at-risk for (unconditional) ES.
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liability of the �rm, the convergence of the value-at-risk and expected shortfall SA
estimates is established in Bardou, Frikha, and Pagès [28], [29]. In the present paper
this convergence is extended to the case of dependent noise, corresponding to the
presence of the nested future liability of the �rm in our loss variable. This is then
applied to risk margin computations by embedding the resulting inner conditional
ES estimates into an outer sample mean.

Moreover we analyze a variant of this approach where the future liabilities are
regressed as in Broadie, Du, and Moallemi [37], rather than re-simulated in a nested
fashion, resulting in a simply nested procedure for the overall risk margin computa-
tion.

The di�erent variants of the method are tested numerically, using GPU program-
ming so that the inner conditional risk measures can be computed in parallel and
then averaged out for yielding the outer risk margin estimate.

Beyond the extension of the base result of [28, 29] to dependent noise and its
economical capital and risk margin application, we refer the reader to the concluding
section of the paper regarding the technical contributions of our approach with
respect to [68] and [37].

The paper is organized as follows. Section 2.2 presents our stochastic approxi-
mation value-at-risk and expected shortfall algorithms in the presence of dependent
noise, with nested Monte Carlo versus regression estimates of the latter in the respec-
tive cases of Algorithms 2 and 3 (whereas Algorithm 1 corresponds to the base case
without dependent noise). Sections 2.3 and 2.4 deal with the convergence analyses
of the respective Algorithms 2 and 3. Section 2.5 casts such estimates in a dyna-
mic setup, integrating out the estimated conditional economic capital in the context
of an outer simulation for the corresponding risk margin ; this is then illustrated
numerically in the context of a KVA case study. Section 2.6 concludes.

Remark 2.1.1 In the motivating discussion above and in our application Section
2.5, for concreteness, we focus on economic capital, modeled as expected shorfall,
and on the ensuing risk margin. However, the results of Sections 2.3 and 2.4 cover
both expected shorfall and value-at-risk (establishing convergence for the latter is in
fact a prerequisite for the former). Hence, our results also cover the cases of value-
at-risk, conditional value-at-risks, and integration of the latter in the context of an
outer expectation. Again this can be relevant together for bank and for insurance,
noting that :

� In the insurance case, Solvency capital is determined as the 99.5%-value-at-
risk of the one year loss of the �rm for Solvency II (see [96]), and as the
99%-expected shortfall for the Swiss Solvency Test (see [97]) ;

� In the banking case, Basel II Pillar II de�nes economic capital as the 99%
value-at-risk of the depletion over a one-year period of core equity tier I ca-
pital (CET1) (where the latter corresponds the one year trading loss of the
bank as detailed in [12, Section A.2]) ; But the FRTB required a shift from
99% value-at-risk to 97.5% expected shortfall as the reference risk measure in
capital calculations. Moreover, value-at-risk is relevant to banks for the com-
putation of their initial margin (with a time horizon of one or two weeks, as
opposed to one year conventionally in the paper) and, in turn, of their dyna-
mic (conditional) initial margin (see [21]) in the context of the computation
of their margin valuation adjustment (MVA).
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2.2 Stochastic Algorithms for Economic Capital Cal-
culations

On some probability space (Ω,A,P), our �nancial loss L is de�ned as a real
valued random variable of the form

L = φ+ β E0 [ψ|Z1]− E0 [ψ′] , (2.2.1)

where (β, φ, ψ, ψ′) are four real valued random variables and (Z0, Z1) are two Rq

valued random variables such that under P0, the conditional probability measure P̂
given Z0 (with related expectation and variance denoted by E0 and Var0) :

� i.i.d. samples from (φ, β, Z1) given Z0 are available ;
� i.i.d. samples from the conditional distribution of ψ given Z1, denoted by

Π(Z1, ·), are available ;
� i.i.d. samples from the conditional distribution of ψ′ given {Z0 = z}, denoted

by Π′(z, ·), are available ;
� the discount factor β is bounded : there exists a positive constant cβ such

that |β| ≤ cβ.
We denote by P(z, ·) and Q(z, ·) the distributions of Z1 and L conditionally on
Z0 = z. We also write

Ψ(Z1) := E0[ψ|Z1] and Ψ′(z) := E0[ψ′], so that L = φ+ βΨ(Z1)−Ψ′(z). (2.2.2)

In the �nancial application the second and third terms in (2.2.1) will be used for
modeling the future (conventionally taken as 1, i.e. one year) and present (time 0)
liability valuations, whereas the �rst term corresponds to the realized loss of the �rm
on the time interval [0, 1]. The above-listed assumptions allow recovering E0 [ψ|Z1]
by nested Monte Carlo simulation restarting from time 1 (which is the approach
in [68]) or by empirical regression at time 1 (which is the approach in [37]), whereas
E0 [ψ′] can be obtained by a standard Monte Carlo simulation rooted at (0, z).

Let

H1(ξ, x) := 1− 1

1− α
1x>ξ, H2(ξ, χ, x) := χ− ξ − 1

1− α
(x− ξ)+ . (2.2.3)

A value-at-risk ξ? at level α of the random variable (loss) L solves the equation

1− 1

1− α
P0 (L > ξ?) = E0 [H1(ξ?, L)] = 0; (2.2.4)

it is uniquely de�ned if L has an increasing P0 c.d.f F e.g. if it has a nonvanishing P0

density f . Given a solution ξ? to (2.2.4), the expected shortfall χ? at level α solves
the equation

χ? − ξ? −
1

1− α
E0

[
(L− ξ?)+

]
= E0 [H2(ξ?, χ?, L)] = 0 (2.2.5)

(noting that any solution ξ? to (2.2.4) yields the same equation (2.2.5) for χ? ; see
e.g. Lemma 2.7.1 in Appendix 2.7.3). Equivalently, ξ? and χ? satisfy∫ +∞

ξ?

Q(z, dx) = 1− α, χ? = ξ? +
1

1− α

∫
(x− ξ?)+Q(z, dx). (2.2.6)
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We model economic capital (EC) at time 0 (known in the insurance regulation as
the Solvency capital requirement, SCR) as the expected shortfall of level α ∈

(
1
2
, 1
)

of the distribution of L given Z0 = z, i.e.

ES(z) := (1− α)−1

∫ 1

α

VaRa
0[L] da. (2.2.7)

In (2.2.7), VaRa
0[L] is a corresponding value-at-risk at level a. Throughout the paper,

α is �xed, so the dependence of ES(z) upon α is omitted. Likewise we introduce the
notation VaR(z) for the value-at-risk at the (�xed) level α of l.

2.2.1 Stochastic Approximation (SA) With Dependent Noise

We propose two approaches for computing ES(z). Both estimates ÊS(z) are de-
�ned as the output of a stochastic approximation (SA) algorithm with K iterations.
However, in the applications targeted in this paper, the expectations in (2.2.4) and
(2.2.5) are not known analytically, so that the quantities (ξ?, χ?) are roots of intrac-
table functions. SA algorithms provide a numerical solution to (2.2.4)-(2.2.5) (see
e.g. [32], [83]) : given a deterministic stepsize sequence {γk, k ≥ 1} and a sequence
{Lk, k ≥ 1} of random variables i.i.d. with distribution Q(z, ·), we de�ne iteratively,
starting from (ξ0, χ0),{

ξk+1 = ξk − γk+1H1(ξk, Lk+1)
χk+1 = χk − γk+1H2(ξk, χk, Lk+1).

(2.2.8)

Remark 2.2.1 In the case where γk = 1
k
, the �rst line in (2.2.8), for the value-at-

risk speci�cation of H1 in (2.2.3), is equivalent to

1

k

k∑
l=1

ξl−1

ξk
1Ll>ξl−1

= 1− α, k ≥ 1,

to be compared with the following empirical quantile ξ′k speci�cation :

1

k

k∑
l=1

1Ll>ξ′k ≈ 1− α.

The (almost-sure) limit (ξ∞, χ∞) of any convergent sequence {(ξk, χk, k ≥ 0} is
a solution to

(ξ, χ) 7→
{

E0 [H1(ξ, L)] = 0,
E0 [H2(ξ, χ, L)] = 0.

Therefore, any limit is a pair of solutions to (2.2.4)�(2.2.5). In particular, χ∞ =
ES(z).

However, in our case, i.i.d. samples from the law of L are not available, because of
the quantities E1 [ψ] and E0 [ψ′] in L, which are not explicit. Therefore, we propose to
replace exact sampling of L by approximate sampling. Toward this aim, we introduce
two strategies.

Introducing i.i.d. {(φk, βk, Zk
1 ), k ≥ 1} with the same distribution as (φ, β, Z1)

conditionally on Z0 = z, the �rst strategy consists in replacing the draws {Lk, k ≥ 1}
in (2.2.8) by

φk +
βk
Mk

Mk∑
m=1

ψm,k −
1

M ′
k

M ′k∑
m=1

ψ′m, (2.2.9)
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where, conditionally on Zk
1 , {ψm,k,m ≥ 1} are i.i.d. with distribution Π(Zk

1 , ·) ;
conditionally on Z0 = z, {ψ′m,m ≥ 1} are i.i.d. with distribution Π′(z, ·) ; Mk, M ′

k

are positive integers.
Of course, conditionally on Z0 = z, the second average in (2.2.9) can be updated

at each step k using only the corresponding partial sum at step k−1 and the samples
{ψ′m,M ′

k−1 < m ≤M ′
k}.

The second strategy consists in replacing the draws {Lk, k ≥ 1} in (2.2.8) by

φk + βkΨ̂(Zk
1 )− 1

M ′
k

M ′k∑
m=1

ψ′m,

where the �rst and last terms are as before and where Ψ̂(·) is a regression-based
estimator, computed prior and independently from the Zk

1 , of the function Ψ(·),
such that

Ψ(Z1) = E0 [ψ|Z1] , P(z, ·)-a.s (2.2.10)

(recall that P(z, ·) denotes the conditional distribution of Z1 given Z0 = z).

The advantage of the �rst approach is that, under su�ciently good convergence
hypotheses for the nested averages (see the assumptions of Theorem 2.3.1), the
approximation of ES(z) can be made asymptotically as good as desired. On the
other side, the approach based on the regression requires a previous knowledge of
the global behavior of Ψ (as an element of a certain function space) in order to
give approximations with small bias (see Theorem 2.4.1), which is essential to have
good asymptotics in our error analysis. Nevertheless, the second strategy has a small
computational cost compared with the �rst one (at least for large values of the Mk

in (2.2.9)). This can be a signi�cant advantage if we indeed know which function
space can serve to build a good predictor of the function Ψ.

Algorithmic summaries of these two strategies are given in the respective Sec-
tions 2.2.3 and 2.2.4. In Section 2.2.2, for pedagogical purposes, we start by recalling
essentially known results in the base case where ψ = ψ′ = 0.

2.2.2 Base-case Without Present and Future Liabilities

1 Input : A positive sequence {γk, k ≥ 1}, K ∈ N∗, ξ0 ∈ R, χ0 ∈ R, and
z ∈ Rq.

2 for k = 1 to K, do
3 /* Sampling step */

4 Sample φk with the same distribution as φ conditionally on
Z0 = z, independently from the past draws ;

5 Set Lk := φk ;
6 /* Update the conditional VaR and ES estimates */

7 ξk = ξk−1 − γkH1(ξk−1, Lk) ;
8 χk = χk−1 − γkH2(ξk−1, χk−1, Lk).

9 Return(The sequences {χk, 1 ≤ k ≤ K} and {ξk, 1 ≤ k ≤ K})
Algorithm 1: Estimates of VaR(z) and ES(z) in the base case without
present and future liabilities (ψ = ψ′ = 0).
Note that, when ψ ≡ ψ′ = 0, the random variables {Lk, k ≥ 1} are i.i.d. with

distribution Q(z, ·). Therefore, su�cient conditions on this distribution and on the
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sequence {γk, k ≥ 1} for the almost-sure convergence of {ξk, k ≥ 0} to VaR(z) and
{χk, k ≥ 0} to ES(z) can be proven by application of standard results for stochastic
approximation algorithms : By application of Theorem 2.7.1 and Lemma 2.7.2 in
Appendix 2.7.2, we prove in Theorem 2.2.1 that the algorithm produces a sequence
{(ξk, χk), k ≥ 1} converging to a pair solution of (2.2.4)-(2.2.5) where L ∼ Q(z, ·).
Hence, ξK is a strongly consistent estimator of a value-at-risk of level α of the
distribution Q(z, ·), while χK is a (strongly) consistent estimator of the associated
expected shortfall.

More precisely, these convergences are established under the following assump-
tions.

H3 {γk, k ≥ 1} is a (0, 1)-valued deterministic sequence, such that for some κ ∈
(0, 1], ∑

k

γk = +∞,
∑
k

γ1+κ
k < +∞.

H4 a) Under P0, L = φ ∼ Q(Z0 = z, ·) has a continuous cumulative distribution
function.

b) E0 [L2] =
∫
x2Q(z, dx) < +∞.

H3 is standard in stochastic approximation, and is satis�ed for example with γn ∼
γ?/n

c and c ∈ (1/2, 1]. The condition H4 essentially allows to characterize the set of
the limiting points of the algorithm and to prove that the stochastic approximation
algorithm is a perturbation of a discretized ODE with a controlled noise.

Theorem 2.2.1 Let {(ξk, χk), k ≥ 1} be the output of Algorithm 1. Assume H3 and
H4. Then there exist a bounded random variable ξ∞ and a real number χ∞ satisfying
(2.2.6) P0-a.s. and such that, for any p ∈ (0, 2),

P0

(
lim
k→∞

(ξk, χk) = (ξ∞, χ∞)
)

= 1, lim
k→∞

E0 [|ξk − ξ∞|p] = 0.

The proof of this result, which is very close to [28, Theorem 1], is detailed in Ap-
pendix 2.7.3. The proof consists in �rst proving the almost-sure convergence of the
sequence {ξk, k ≥ 0} toward the set of solutions of (2.2.4) by applying classical
results on the convergence of stochastic approximation scheme ; for the sake of com-
pleteness these results are stated and proved as Theorem 2.7.1 in Appendix 2.7.2.
We then deduce the convergence of the sequence {χk, k ≥ 0} by using the fact
that χk can be written as a weighted sum of the samples {Lj, ξj, 0 ≤ j ≤ k} (see
Lemma 2.7.2 in Appendix 2.7.1).

Remember that although the set of solutions to the equation ξ : 1 − α =∫∞
ξ

Q(z, dx) might not be a singleton (when VaR(z) is not unique), ES(z) is unique
- see Lemma 2.7.1 in Appendix 2.7.3.
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2.2.3 With Future Liability Estimated by Nested Monte Carlo

1 Input : A positive sequence {γk, k ≥ 1}, N∗-valued sequences
{Mk,M

′
k, k ≥ 1}, ξ0 ∈ R, χ0 ∈ R, S ′0 = 0, M ′

0 = 0 and z ∈ Rq.
2 for k = 1 to K, do
3 /* Sampling step */

4 Sample (φk, βk, Zk
1 ) with the same distribution as (φ, β, Z1)

conditionally on Z0 = z, independently from the past draws ;
5 Sample (M ′

k −M ′
k−1) independent copies {ψ′m, M ′

k−1 < m ≤M ′
k}

with the distribution Π′(z, ·), independently from the past
draws;

6 Given Zk
1 , sample Mk independent copies {ψm,k, 1 ≤ m ≤Mk}

with the distribution Π(Zk
1 , ·);

7 Compute

8 S ′k := S ′k−1 +
∑M ′k

m=M ′k−1+1 ψ
′
m;

9 Lk := φk + βk 1
Mk

∑Mk

m=1 ψm,k −
1
M ′k
S ′k ;

10 /* Update the conditional VaR and ES estimates */

11 ξk = ξk−1 − γkH1(ξk−1, Lk) ;
12 χk = χk−1 − γkH2(ξk−1, χk−1, Lk).

13 Return(The sequences {χk, 1 ≤ k ≤ K} and {ξk, 1 ≤ k ≤ K})
Algorithm 2: Estimates of VaR(z) and ES(z) with future liability estimated
by nested Monte Carlo.
Note that the random variables {Lk, k ≥ 1} have the same distribution, but this

distribution is not Q(z, ·), the distribution of L given by (2.2.1) : there is a bias
which, roughly speaking, can be made as small as possible by choosingMk,M

′
k large

enough.
We provide in Section 2.3.1 su�cient conditions on Q(z, ·) and on the sequences

{γk, k ≥ 1}, {Mk, k ≥ 1}, {M ′
k, k ≥ 1} for the P0-a.s. convergence of {ξk, k ≥

0} to VaR(z) and {χk, k ≥ 0} to ES(z). We also provide convergence rates in
Section 2.3.2 and show the bene�t of considering the averaged outputs K−1

∑K
k=1 ξk

and K−1
∑K

k=1 χk as estimators of VaR(z) and ES(z).

2.2.4 With Future Liability Estimated by Regression

The regression approach relies on the following observation : The function Ψ in
(2.2.10) satis�es

Ψ = argminh∈H

∫
Rq

∫
R

(w − h(z1))2 Π(z1, dw)P(z, dz1), (2.2.11)

where H denotes the set of Borel measurable, P(z, ·)-square integrable functions
from Rq to R. Since the integral in (2.2.11) is not explicit but sampling from the
conditional distribution of (ψ,Z1) given Z0 = z is possible, we de�ne the estimate
Ψ̂(·) as the solution of the empirical criterion associated with (2.2.11), replacing this
integral by a Monte Carlo sum with i.i.d. samples.

If furthermore we replace the `complex' functional space H by a space Ĥ suitable
to least squares estimation, typically a �nite-dimensional vector space of functions
(but not necessarily, possibly also e.g. a neural network), we obtain a version of
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(2.2.11) in which Ψ is approximated by the solution to a least squares regression
problem. The best choice for Ĥ will depend on the speci�c problem at hand, typically
on regularity assumptions regarding Ψ.

In order to make use of the distribution-free theory of non-parametric regres-
sion (as explained, for instance, in [84]), it is better to deal with bounded random
variables to get nice statistical error estimates (through appropriate measure concen-
tration inequalities). For this reason we consider the projection of the real-valued
random variable ψ on the interval [−B,B] :

ψB := ψ1[|ψ|≤B] +B sign(ψ)1[|ψ|>B], (2.2.12)

where B is a large threshold assumed to be known by the user, and we write
ΨB(Z1) := E0[ψB|Z1].

This gives rise to the following Algorithm 3 for the estimation of ES(z), using
the embedded regression Algorithm 4.

1 Input : B > 0, M,M ′ ∈ N∗, K ∈ N∗, a �nite dimensional vector space

Ĥ of Borel measurable functions from Rq to R, a positive
sequence {γk, k ≥ 1}, ξ0 ∈ R, χ0 ∈ R and z ∈ Rq.

2 /* Regression step */

3 Compute an approximation Ψ̂B(·) of Ψ(·) by Algorithm 4 with

inputs B,M and Ĥ.
4 /* stochastic approximation step */

5 Sample M ′ independent copies {ψ′m, 1 ≤ m ≤M ′} with the
distribution Π′(z, ·);

6 for k = 1 to K, do
7 Sample (φk, βk, Zk

1 ) from the conditional distribution of (φ, β, Z1)
given Z0 = z, independently from the past draws ; Compute

Lk := φk + βk Ψ̂B(Zk
1 )− 1

M ′

∑M ′

m=1 ψ
′
m ;

8 /* Update the conditional VaR and ES estimates */

9 ξk = ξk−1 − γkH1(ξk−1, Lk) ;
10 χk = χk−1 − γkH2(ξk−1, χk−1, Lk).

11 Return(The sequences {χk, 1 ≤ k ≤ K} and {ξk, 1 ≤ k ≤ K})
Algorithm 3: Estimates of VaR(z) and ES(z) with future liability estimated
by regression.

1 Input : B > 0, M ∈ N∗, a function space Ĥ of Borel measurable
functions from Rq to R,

2 Sample M independent copies D = {(ψm, Zm
1 ),m = 1, · · · ,M} from

the conditional distribution of (ψ,Z1) given Z0 = z ;
3 Compute

h̃ := arg min
h∈Ĥ

1

M

M∑
m=1

(
ψBm − h(Zm

1 )
)2

and set
Ψ̂B(·) := sign(h̃(·))

(
|h̃(·)| ∧B

)
;

Return(The function Ψ̂B(·))
Algorithm 4: Approximation of Ψ in (2.2.10) by empirical regression.
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The analysis of Algorithm 3 is established in Section 2.4. Theorem 2.4.1 gives a
control of the deviation in the L1

P0
−norm of the respective limits |ξ∞−VaR(z)| and

|χ∞ − ES(z)], where (ξ∞, χ∞) is the (almost-sure) limit of (ξK , χK) as K goes to
in�nity, from biases (or�deterministic errors�) given, up to multiplicative constants,
as the respective square and cube roots of

inf
h∈Ĥ

E0|h(Z1)−ΨB(Z1)|2 + E0[((|ψ| −B)+)2]. (2.2.13)

The control of (2.2.13) depends on analytic features of the problem at hand, typically
on the regularity of Ψ for the choice of Ĥ and on the distribution of ψ for the choice
of B (see [84, Chapter 10] for a general discussion). 2 Putting everything together,
these results are telling us how we should choose the inputs (Ĥ, B,M,M ′) in order
to make the limit (χ∞, ξ∞) of the (χK , ξK) as close as desired from the target values
(χ?, ξ?).

2.3 Convergence Analysis of the Economic Capital
SA Algorithm 2 (Future Liabilities Estimated
by Nested Monte Carlo)

Section 2.3.1 deals with the almost-sure convergence of Algorithm 2. Section 2.3.2
addresses the rate of convergence of Algorithm 2 along a converging sequence : a
central limit theorem is established as well as the rate of convergence when an
averaging technique is applied to the output of Algorithm 2.

2.3.1 Almost-sure Convergence

The di�erence between Algorithm 1 and Algorithm 2 is that βE0 [ψ|Z1]−E0 [ψ′|Z0]
in the de�nition of L (see (2.2.1)) is non zero. The expectations are untractable
and they are approximated by Monte Carlo sums. Hence, the random variables
{Lk, k ≥ 1} in Algorithm 2 are no more i.i.d. under the distribution Q(z, ·). Never-
theless, when the number of Monte Carlo points tends to in�nity, the Monte Carlo
error vanishes, and it is expected that Algorithm 2 inherits the same asymptotic be-
havior as the one of Algorithm 1, in which the Lk are i.i.d. with distribution Q(z, ·).
We provide su�cient conditions for this intuition to hold. H7 strenghtens H3 by
showing how the stepsize γk and the number of Monte Carlo points Mk,M

′
k have to

be balanced ; H5 is in echo to H4. H6 (see also H8) is introduced to control the bias
between the distributions of the Lk and Q(z, ·).

We assume

H5 Under P0, L := φ + βE0 [ψ|Z1] − E0 [ψ′|Z0 = z] ∼ Q(z, ·) and it has a density
with respect to the Lebesgue measure on R, bounded by C0(z) > 0. In addition,

E0

[
|L|2

]
=

∫
x2Q(z, dx) < +∞.

2. Note also that the term E0[((|ψ|−B)+)2] controls the truncation error E0|Ψ(Z1)−ΨB(Z1)|2
by Jensen's inequality :

E0|Ψ(Z1)−ΨB(Z1)|2 = E0|E0[(ψ − ψB)|Z1]|2 ≤ E0|ψ − ψB |2 = E0[((|ψ| −B)+)2].
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H6 There exists p? ≥ 2 such that

Cp?(z) := E0

[∫ ∣∣∣∣w − ∫ uΠ(Z1, du)

∣∣∣∣p? Π(Z1, dw)

]
+

∫ ∣∣∣∣w − ∫ uΠ′(z, du)

∣∣∣∣p? Π′(z, dw)

is �nite.

H7 The sequences {Mk, k ≥ 1} and {M ′
k, k ≥ 1} are N?-valued, {γk, k ≥ 1} is a

(0, 1)-valued sequence, and there exists κ ∈ (0, 1] such that∑
k

γk = +∞,
∑
k

γ1+κ
k < +∞, (2.3.1)∑

k≥1

γ1−κ
k (Mk ∧M ′

k)
−p?/(1+p?)

< +∞,
∑
k≥1

γk (Mk ∧M ′
k)
−1/2

< +∞. (2.3.2)

Let us discuss the condition H7 in the case γk ∼ γ?k
−c(ln k)−c̄ and (Mk ∧M ′

k) ∼
m?k

µ(ln k)µ̄ when k → +∞ (for some c, µ ≥ 0). Then (2.3.1) in H7 implies that
c ∈ [1/2, 1] (the case c = 1/2 implies κ = 1 and c̄ > 1).

When c = 1, we have to choose c̄ ≤ 1 and µ > 0 (note that the last condition in
(2.3.2) does not allow µ = 0). Therefore, the number of Monte Carlo points has to
increase, even slowly, along the iterations ; this comes from the fact that the Monte
Carlo bias has to vanish along iterations to force Algorithm 2 to have the same
behavior as Algorithm 1.

When c = 1/2, the slowest rate for Mk ∧M ′
k is µ = 1 + 1/p?, and in that case,

µ̄ > 1+1/p? and c̄ > 1. Therefore, the number of Monte Carlo points has to increase
more than linearly with k.

When c ∈ (1/2, 1), the slowest rate for Mk ∧M ′
k is µ = 2(1 − c)(1 + 1/p?), and

in that case, c̄ > 1/c and µ̄ > (1 + 1/p?)(1− c̄(2− 1/c)).
The above discussion makes it apparent that either we choose a rapidly decaying

stepsize sequence, and we have the weakest Monte Carlo cost ; or we choose a slowly
decaying stepsize sequence, but the number of Monte Carlo points has to increase
more than linearly. It is known that for implementation e�ciency, a slow decaying
rate for γk is better during the burn-in phase of the algorithm (while it has not
reached its asymptotic convergence rate).

If H6 is strenghtened into

H8 There exists C∞(z) > 0 such that for any δ > 0 and any integer M ,

P0

(∣∣∣∣∣ 1

M

M∑
m=1

ψm − E0 [ψ|Z1]

∣∣∣∣∣ > δ

)
∨ P0

(∣∣∣∣∣ 1

M

M∑
m=1

ψ′m − E0 [ψ′|Z0]

∣∣∣∣∣ > δ

)
≤ e−C∞(z)M δ2

,

where conditionally to (Z0, Z1), {ψm,m ≥ 1} are i.i.d. with distribution Π(Z1, dw),
and {ψ′m,m ≥ 1} are i.i.d. with distribution Π′(z, dw).

then the condition (2.3.2) in H7 is weakened into∑
k≥1

γ1−κ
k

ln(Mk ∧M ′
k)

(Mk ∧M ′
k)

< +∞,
∑
k≥1

γk (Mk ∧M ′
k)
−1/2

< +∞.

The above discussion on the choice of (c, µ) is essentially modi�ed as follows (the
choice of the logarithmic terms c̄, µ̄ is not detailed) : either c = 1 and µ > 0, or
c ∈ [1/2, 1) and µ = 2(1− c).
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The following proposition is fundamental in the proof of Theorem 2.3.1. It allows
to control the error induced by drawing samples Lk under a distribution approxi-
mating Q(z, ·) instead of sampling from Q(z, ·). Its proof is postponed to Appen-
dix 2.7.4.

Lemma 2.3.1 Assume H5 and H6. Let L′ be a random variable such that

|L− L′| ≤ cβ

∣∣∣∣∣ 1

M

M∑
m=1

ψm −
∫
wΠ(z1, dw)

∣∣∣∣∣+

∣∣∣∣∣ 1

M ′

M ′∑
m=1

ψ′m −
∫
wΠ′(z, dw)

∣∣∣∣∣ ,
where conditionally on (Z1, Z0), {ψm,m ≥ 1} (resp. {ψ′m,m ≥ 1}) are i.i.d. with
distribution Π(Z1, ·) (resp. Π′(z, ·)). Then,

sup
ξ∈R

E0 [|1L>ξ − 1L′>ξ|] ≤ (1 ∨ cβ)p?
2p? (C0(z) + cp?Cp?(z))

(M ∧M ′)p?/(2(1+p?))
, (2.3.3)

sup
ξ∈R

E0

[∣∣(L− ξ)+ − (L′ − ξ)+
∣∣p?] ≤ (1 ∨ cβ)p?

cp? Cp?(z)

(M ∧M ′)p?/2
, (2.3.4)

where cp? is a universal constant depending only on p?. When H6 is replaced with
H8, then for any M,M ′ ≥ 3,

sup
ξ∈R

E0 [|1L>ξ − 1L′>ξ|] ≤ 2

(
1 +

C0(z)√
2C∞(z)

) √
ln(M ∧M ′)

(M ∧M ′)
. (2.3.5)

We can now prove that the output of Algorithm 2 provides strongly consistent
estimators of VaR(z) and ES(z). The proof of the next theorem is postponed to
Appendix 2.7.4.

Theorem 2.3.1 Let {(ξk, χk), k ≥ 1} be the output of Algorithm 2. Assume H5, H6,
and H7. Then there exists a bounded random variable ξ∞ and a real χ∞ satisfying
P0-a.s. (2.2.6) and such that for any p ∈ (0, 2)

P0

(
lim
k→∞

(ξk, χk) = (ξ∞, χ∞)
)

= 1, lim
k→∞

E0 [|ξk − ξ∞|p] = 0.

2.3.2 Rates of Convergence of Algorithm 2

We establish a rate of convergence in L2 and a central limit theorem, along
a sequence {(ξk, χk), k ≥ 1} converging to (ξ?, χ?), where (ξ?, χ?) is a solution to
(2.2.6) ; this solution is �xed throughout this section. These results are derived under
the following conditions.

H9 (ξ?, χ?) solves (2.2.6). H5 holds and is strenghtened as follows : under P0, the
density of L := φ+βE0 [ψ|Z1]−E0 [ψ′|Z0 = z] ∼ Q(z, ·) w.r.t. the Lebesgue measure
on R, denoted by f(z, ·), is continuously di�erentiable in a neighborhood of ξ? and
strictly positive at ξ?. In addition, there exists ν? > 0 such that

E0

[
|L|2+ν?

]
=

∫
|x|2+ν?Q(z, ·) < +∞.

H6 is strenghtened as follows : there exists p? > 2 such that

Cp?(z) := E0

[∫ ∣∣∣∣w − ∫ uΠ(Z1, du)

∣∣∣∣p? Π(Z1, dw)

]
+

∫ ∣∣∣∣w − ∫ uΠ′(z, du)

∣∣∣∣p? Π′(z, dw)

(2.3.6)
is �nite.
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To make the assumptions simpler, we consider the case where the stepsize sequence
{γk, k ≥ 1} is polynomially decreasing.

H10 When k → ∞, γk ∼ γ?k
−c where c ∈ (1/2, 1] and γ? > 0 ; in the case c = 1,

2γ? > (1 ∧ (f(z, ξ?)/(1− α)))−1. In addition, c,Mk,M
′
k satisfy

lim
k
kc/2 (Mk ∧M ′

k)
−p?/(2(1+p?))

= 0, (2.3.7)

where p? is given by H9.

When Mk ∧M ′
k ∼ m?k

µ when k → ∞, the condition (2.3.7) is satis�ed with µ >
c(1 + 1/p?). In the case the condition (2.3.6) is replaced with H8, the condition
(2.3.7) gets into

lim
k
kc/2

√
ln(Mk ∧M ′

k)

Mk ∧M ′
k

= 0,

which is satis�ed with µ > c.
Set θk := (ξk, χk) and θ? := (ξ?, χ?). Lemma 2.3.2 shows that θk− θ? is bounded,

in some sense, by
√
γk. Theorem 2.3.2 provides a central limit theorem, proving that,

along converging paths, the normalized error γ−1/2
k (θk − θ?) behaves asymptotically

as a Gaussian distribution.

Lemma 2.3.2 Assume H9 and H10. Then, there exist positive random variables
Xk, Yk such that P0(supk |Xk| <∞) = 1, supk E0 [|Yk|] <∞ and

γ−1
k |θk − θ?|

2 1limq θq=θ? ≤ Xk Yk.

Set

Γc :=
1

2

α(1− α)2 (f(z, ξ?))
−1 2α

(
1 + f(z,ξ?)

1−α

)−1

2α
(

1 + f(z,ξ?)
1−α

)−1

Var0

[
(L− ξ?)+]


and

Γ1 :=

 (1− α)
(

2γ?
f(z,ξ?)

1−α − 1
)−1

E0

[
(L− ξ?)+] (γ?(1 + f(z,ξ?)

1−α )− 1
)−1

E0

[
(L− ξ?)+] (γ?(1 + f(z,ξ?)

1−α )− 1
)−1

Var0

[
(L− ξ?)+] (2γ? − 1)−1 (αγ?)

−1 .


Theorem 2.3.2 Assume H9 and H10. Let {θk, k ≥ 1} be the output of Algorithm 2.

Then, under the conditional probability P0 (·| limq θq = θ?), the sequence {γ−1/2
k (θk−

θ?), k ≥ 1} converges in distribution to the centered bivariate normal distribution
with covariance matrix (1− α)−2Γc in the case c ∈ (1/2, 1), and (1− α)−2αγ?Γ1 in
the case c = 1 (where c is given by H10).

The proof of Theorem 2.3.2 is postponed to Appendix 2.7.6. Lemma 2.3.2 is a
consequence of [57, Lemma 3.1.], applied to the same decomposition of θk− θ? as in
the proof of Theorem 2.3.2 ; details are omitted.

Theorem 2.3.2 shows that (i) the maximal rate of convergence is reached with
a stepsize γk decaying at a rate 1/k as soon as γ? is large enough (see H10 in the
case c = 1) ; (ii) the limiting variance depends on γ?. In practice, the condition on
γ? is di�cult to check since the quantity f(z, ξ?) is unknown in many applications ;
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in addition, it is known (see e.g. [32, Lemma 4, Chapter 3, Part I] or [57, Section 3])
that the optimal variance for an SA algorithm targeting the roots of the function

θ = (ξ, χ) 7→
[

1− (1− α)−1P0(L > ξ)

χ− ξ − (1− α)−1E0

[
(L− ξ)+]]

is given by

Γ? :=

 α(1−α)
f2(z,ξ?)

α
1−α

E0[(L−ξ?)+]
f(z,ξ?)

α
1−α

E0[(L−ξ?)+]
f(z,ξ?)

Var0[(L−ξ?)+]
(1−α)2

 .
We prove in Theorem 2.3.3 that the optimal rate O(1/k) and this optimal limiting
variance Γ? can be obtained by a simple post-processing of the output of Algorithm 2
run with γk ∼ γ?k

−c for some c ∈ (1/2, 1). The proof of Theorem 2.3.3 is postponed
to Appendix 2.7.6. This post-processing technique is known in the literature as the
Polyak-Ruppert averaging (see [101,102]). Set

θ̄k :=
1

k

k∑
`=1

[
ξ`
χ`

]
Theorem 2.3.3 Let {θk, k ≥ 1} be the output of Algorithm 2. Assume H9, γk ∼
γ?k

−c with c ∈ (1/2, 1) and γ? > 0, and

lim
k
kc (Mk ∧M ′

k)
−p?/(2(1+p?))

= 0, lim
k
k−1/2

k∑
l=1

(Ml ∧M ′
l )
−p?/(2(1+p?))

= 0.

(2.3.8)
Then, under the conditional probability P0 (·| limq θq = θ?), the sequence {k1/2 (θ̄k −
θ?), k ≥ 1} converges in distribution to the centered bivariate normal distribution
with covariance matrix Γ?.

When Mk ∧M ′
k ∼ m?k

µ, (2.3.8) is satis�ed with µ > 2c(1 + 1/p?). In the case where
the condition (2.3.6) is replaced with H8 in Theorem 2.3.3, then the condition (2.3.8)
becomes

lim
k
kc

ln(Mk ∧M ′
k)

(Mk ∧M ′
k)

1/2
= 0, k−1/2

k∑
l=1

ln(Ml ∧M ′
l ) (Ml ∧M ′

l )
−1/2 = 0;

it is satis�ed if µ > 2c. Note that these conditions on µ are slightly more restrictive
than what we obtained for the convergence of the sequence {θk, k ≥ 1} in the case
c ∈ (1/2, 1).

2.4 Convergence Analysis of the Economic Capital
SA Algorithm 3 (Future Liabilities Estimated
by Regression)

In order to properly de�ne Ψ̂B(Z1) in L̂B as a random variable, we assume that
the function space Ĥ is pointwise measurable. 3 We introduce the following object

3. I.e. there exists a countable subfamily of Ĥ with the property that every function in Ĥ is
a pointwise limit of these functions. It includes �nite dimensional vector spaces, neural networks
with continuous activation function,. . .
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(cf. (2.4.1)) :

ΨB := E0[ψB|Z1], LB:= φ+ βΨB(Z1)−Ψ′(z). (2.4.1)

For any �xed g ∈ Ĥ, we de�ne

LgB := φ+ β gB(Z1)− 1

M ′

M ′∑
m=1

ψ′m, (2.4.2)

where gB : Rq → R is the truncation of g by B : gB := sign(g)(|g| ∧ B). Last, for
the approximation of ΨB obtained by regression (see Algorithm 4), we write

L̂B := φ+ β Ψ̂B(Z1)− 1

M ′

M ′∑
m=1

ψ′m. (2.4.3)

2.4.1 Existence of a Limit

H11 φ, β, Z1 are independent from the regression sample D (de�ned in Algorithm 4)
and {ψ′m : 1 ≤ m ≤ M ′} are i.i.d. with distribution P0. They are independent from
the ψm. In addition we have the square integrability conditions : E0 [|φ|2 + |ψ′|2] <
+∞.

Observe that the above assumption ensures in particular that, for any g ∈ Ĥ,

E0

[
|LgB |2

]
< +∞.

We require an additional condition on LgB .

H12 For every g ∈ Ĥ, LgB in (2.4.2) has a continuous cumulative distribution
function under P0.

Lemma 2.4.1 Assume H3, H11, and H12. Let {(ξk, χk), k ≥ 1} be the ouput of
Algorithm 3. Then, conditionally on D, there exist random variables (ξ∞, χ∞), �nite

a.s. which are a solution of (2.2.4)-(2.2.5) for L = L̂B under P0( · | D), and such
that P0 (limk(ξk, χk) = (ξ∞, χ∞) | D) = 1.

Proof Given g ∈ Ĥ, H3, H11 and H12 imply that the hypotheses of Theorem 2.2.1
are veri�ed for every LgB as in (2.4.2) under the distribution P0. Hence, for �xed

D, the same is true for L̂B in (2.4.3) under the conditional distribution P0( · | D).
The conclusion follows by application of Theorem 2.2.1.

2.4.2 Error Analysis With a Given Approximate Model for
the Regression Function

The next step is to bound the error between the initial model for L and the
truncated and approximate model LgB , where we use the function gB (for a given
g ∈ Ĥ) as a model of Ψ. For this we need Assumption 4 a) on the cumulative
distribution function of L in (2.2.2) and its stronger version
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Assumption 2.4.1 Assume Assumption H4 a). Denote by (ξ?, χ?) a solution to
(2.2.4)-(2.2.5) with L = φ+βΨ(Z1)−Ψ′(z). The distribution of L, with P0 c.d.f. F ,
admits a density f under P0 bounded by Cf , this density is positive and continuous
on a neighborhood of the interval

[ξ? − ζ, ξ? + ζ], (2.4.4)

where

ζ := 21/3(2Cf + 1)

(
E0|βgB(Z1)− βΨ(Z1)|2 +

Var0(ψ)

M ′

)1/3

.

Lemma 2.4.2 Assume H11-H12 and H4 a), let g ∈ Ĥ be given and let (ξgB ,?, χgB ,?)
be a solution to (2.2.4)-(2.2.5) for L there de�ned by LgB in (2.4.2), then

|χgB ,? − χ?| ≤
1

1− α

(
E0|βgB(Z1)− βΨ(Z1)|+

(
Var0(ψ)

M ′

)1/2
)
. (2.4.5)

If the stronger condition H2.4.1 holds (for g), then

|ξgB ,? − ξ?| ≤ 21/3 (2Cf + 1) sup
x∈[ξ?−ζ,ξ?+ζ]

|f(F−1(x))|−1

(
E0|βgB(Z1)− βΨ(Z1)|2 +

Var0(ψ)

M ′

)1/3

.

(2.4.6)

Proof We begin by proving (2.4.6), by an application of Corollary 2.7.1. For this,
we �rst estimate the Kolmogorov distance dkol(LgB , L) : actually Corollary 2.7.2 with
p = 2 gives

dkol(LgB , L) ≤ (2Cf + 1)(E0|LgB − L|2)1/3. (2.4.7)

The di�erence in the expectation (2.4.7) is bounded as (see de�nitions (2.2.2) and
(2.4.2))

|LgB − L|2 ≤ 2
∣∣βgB(Z1)− βΨ(Z1)

∣∣2 + 2

(
1

M ′

M ′∑
m=1

(ψm −Ψ′(z))

)2

.

Therefore, we deduce

dkol(LgB , L) ≤ 21/3(2Cf + 1)

(
E0|βgB(Z1)− βΨ(Z1)|2 +

Var0(ψ)

M ′

)1/3

= ζ. (2.4.8)

Consequently, we can apply Corollary 2.7.1 with r = s = ζ, to get (2.4.6).
The inequality (2.4.5) follows in an easier way via (2.7.20) in Lemma 2.7.6.

2.4.3 Error Analysis for the Randomly Optimal Regression
Function

Observe that by taking formally gB = Ψ̂B, we obtain, as a corollary of the
previous proposition, a pathwise control between (ξ∞, χ∞) (associated to L̂B) and
(ξ?, χ?) (associated to L), for a given regression sample D. By reintegrating over the
learning sample D, we shall obtain an estimate about the corresponding mean L1
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error. This strategy works nicely, in particular if we allow Assumption H2.4.1 to be
valid with a

ζ = 21/3(2Cf + 1)

(
E0|βgB(Z1)− βΨ(Z1)|2 +

Var0(ψ)

M ′

)1/3

uniform in the learning sample D. For this, set

ζ∞ := 21/3(2Cf + 1)

(
C2
βE0

[
max
ε=±1
|εB −Ψ(Z1)|2

]
+

Var0(ψ)

M ′

)1/3

(2.4.9)

which stands for a (rough) upper bound for ζ. This explains the following new
assumption.

H13 Assume Assumption H2.4.1 with ζ = ζ∞ de�ned in (2.4.9).

Regarding the error analysis about the limits of Algorithm 3 (given by Lemma
2.4.1), our main result is now the following.

Theorem 2.4.1 Assume H3, H11, H12, and H13. Let B > 0 and let Ĥ be a point-
wise measurable function space with �nite Vapnik-Chervonenkis dimension 4 VCĤ.
Set

E(Ĥ,M,B) := C?B
2VCĤ

(1 + ln(M))

M
+ 4 inf

h∈Ĥ
E0[|h(Z1)−ΨB(Z1)|2] + 4E0[((|ψ| −B)+)2],

(2.4.10)

where C? is the constant that appears in (2.7.26). We have

E0|χ∞ − χ?| ≤
1

1− α

(
Cβ(E(Ĥ,M,B))1/2 +

(Var0(ψ)

M ′

)1/2
)

(2.4.11)

E0|ξ∞ − ξ?| ≤ 21/3 (2Cf + 1) sup
x∈[ξ?−ζ∞,ξ?+ζ∞]

|f(F−1(x))|−1

(
|β|2∞E(Ĥ,M,B) +

Var0(ψ)

M ′

)1/3

.

(2.4.12)

Theorem 2.4.1 gives a precise and useful guide for tuning the parameters all together.
Namely, to make the (asymptotic) errors E0|χ∞−χ?| and E0|ξ∞−ξ?| less than some
tolerance ε, we can choose Ĥ and B such that the �bias� given by the second line in
(2.4.10) is su�ciently small ; then one can choose M and M ′ large enough so that
the right hand sides in (2.4.11) are less than ε. Unsurprisingly, when the complexity
of Ĥ increases, the bias term (infh∈Ĥ . . . ) goes to 0 and the variance term explodes
(VCĤ → +∞), hence one has to �nd a trade-o� between those types of error. When
one increases the threshold B, the bias decreases E0[((|ψ| −B)+)2] but the variance
increases (factor C?B2 . . . ).

Proof First, by H3, H11, H12 and Lemma 2.4.1, the limits

ξ∞ = lim
k
ξk, χ∞ = lim

k
χk

4. See [84, Section 9.4].
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indeed exist for every �xed D and they correspond to solutions of (2.2.4)-(2.2.5) for

L = L̂B (see (2.2.2)) under P0( · | D). Now apply Lemma 2.4.2, valid for any D
since H4 a) holds for all gB owing to the choice ζ = ζ∞. As β is bounded, we obtain

|χ∞ − χ?| ≤
1

1− α

(
Cβ

(
E0

(
|Ψ̂B(Z1)−Ψ(Z1)|2 | D

))1/2

+

(
Var0(ψ)

M ′

)1/2
)
,

(2.4.13)

|ξ∞ − ξ?| ≤ 21/3 (2Cf + 1) sup
x∈[ξ?−ζ∞,ξ?+ζ∞]

|f(F−1(x))|−1 (2.4.14)

×
(
C2
βE0

(
|Ψ̂B(Z1)−Ψ(Z1)|2 | D

)
+

Var0(ψ)

M ′

)1/3

.

Now, write

E0

(
|Ψ̂B(Z1)−Ψ(Z1)|2 | D

)
≤2E0

(
|Ψ̂B(Z1)−ΨB(Z1)|2 | D

)
+ 2E0

(
|ΨB(Z1)−Ψ(Z1)|2

)
.

Note that the �rst expectation of the right hand side is exactly controlled using Theo-
rem 2.7.4. For the second term, write

|ΨB(Z1)−Ψ(Z1)| ≤ E0(| −B ∨ ψ ∧B − ψ| | Z1) ≤ E0((|ψ| −B)+ | Z1). (2.4.15)

We now easily obtain the desired estimates by taking the expectation in (2.4.13)-
(2.4.14), applying Theorem 2.7.4 and using (2.4.15), together with E(|Z|1/p) ≤ (E(|Z|))1/p

for any p ≥ 1.

2.5 Risk Margin

2.5.1 Dynamization of the Setup

Let there be given an Rq valued process Z = {Zt, t ≥ 0}, with Z0 = z, non-
homogeneous Markov in its own �ltration on our probability space (Ω,A,P). The
process Z plays the role of observable risk factors. Conditional probabilities, expec-
tations, value-at-risks and expected shortfalls at a level a ∈ (0, 1), given Zt, are
denoted by Pt, Et, VaRa

t , and ESat . Other sources of randomness arising in (Ω,A,P)
may be unobservable factors (like hidden �nancial variables, private information).
We assume that Z can be simulated exactly (in other words, we ignore for the sake
of simplicity a vanishing time discretization bias regarding Z, which could be consi-
dered without major di�culty). We denote by Z̄t = (t, Zt) the time-homogenized
Markov extension of Z. We write Z[s,t] and Z̄[s,t] for the paths of Z and Z̄ on the
interval [s, t]. We de�ne the discount factor

β(Z̄[0,t]) := e−
∫ t
0 r(Z̄s)ds,

for some bounded from below, continuous interest rate function r (hence, in parti-
cular, a bounded discount factor). We may then consider the following speci�cation
of (2.2.1) :

L := φ(Z̄[0,1]) + β(Z̄[0,1])E1

[
ψ(Z̄[1,T ])

]
− E0

[
ψ′(Z̄[0,T ])

]
, (2.5.1)

where φ and ψ are real valued measurable functions.
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Remark 2.5.1 The functions φ and ψ could depend on variables other than Z, it
would not have any signi�cant impact on the analysis.

For instance, we could consider a Euro Median Term Note (EMTN), issued by
a bank, with a performance linked to the 1 year Euribor rate denoted by Z ; then the
cash�ow for the bank may take the form ϕ(Z1)1τ≥1 = ψ′(Z̄[0,1], τ), where τ is the
default time for the bank (assumed independent from Z for simplicity).

In the regression setup of Algorithm 3, this �exibility of using �Z smaller than
an underlying high-dimensional factor process� allows embedding in our framework
the common industry practice of �partial regressions� with respect to reduced sets of
factors.

More broadly, let, for t ≥ 0 (cf. (2.5.1) for t = 0),

Ltt+1 := φ(Z̄[t,t+1]) + β(Z̄[t,t+1])Et+1[ψ(Z̄[t+1,T ])]− Et[ψ(Z̄[t,T ])]. (2.5.2)

Let VaRa
t [L

t
t+1] denote a value-at-risk at level a ∈

(
1
2
, 1
)
of Ltt+1 for the conditional

distribution 5 of Ltt+1 given Ft, i.e.

Pt
(
Ltt+1 > VaRa

t [L
t
t+1]
)

= 1− a.

Let

ES(Z̄t) := (1− α)−1

∫ 1

α

VaRa
t [L

t
t+1] da (2.5.3)

denote the corresponding expected shortfall of (�xed) level α ∈
(

1
2
, 1
)
.

2.5.2 Theoretical Risk Margin Estimate

The risk margin RM (called KVA in banking parlance) estimates how much it
would cost the �rm (bank or insurance) to remunerate its shareholders at the hurdle
rate h > 0 (e.g. 10%) for their capital at risk ES(Z̄t) at any future time t (see Section
2.1). Given the �nal maturity T of the portfolio, the corresponding formula in [12]
reads as

RM = hE
[∫ T

0

e−htβtES(Z̄t)dt

]
= E

[
βζES(Z̄ζ)1ζ≤T

]
, (2.5.4)

where the second equality follows by randomization of the integral with an inde-
pendent exponential time ζ of parameter h.

Accordingly, we propose the risk margin estimator

E
[
βζES(Z̄ζ) 1ζ≤T

]
≈ 1

N

N∑
n=1

βζnÊS(Z̄n
ζn)1ζn≤T , (2.5.5)

where {Z̄n
ζn , n ≥ 1} are independent random variables with the same distribution

as Z̄ζ and where ÊS(·) is one of the estimators of ES(·) considered in the previous
sections, now made conditional on Zt.

The convergence of the ensuing estimator to the risk margin obtained by sam-
pling an outer expectation of inner conditional expected shortfall estimates could
be established by taking an outer expectation of the errors for ÊS(Z̄n

ζn) estimates of

5. assumed atomless, cf. Assumptions 4.a), 5, and 4 a) again in the basic, nested, and regressed
setups of Algorithms 1, 2, and 3, respectively.
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the ES(Z̄n
ζn) in (2.5.5), errors obtained from the conditional version of the results of

Sections 2.3 and 2.4 (or, more precisely, of the awaited but technical developments
of these results in terms of convergence rates). By contrast, how to �make conditio-
nal� the convergence arguments of [68] or [37] and �aggregate them� to establish the
convergence of an outer risk margin estimate is far from clear.

2.5.3 KVA Case Study

Our case study is based on the setup of Armenti and Crépey [24], Section 4 (see
also Section 4.4 in [2]), which we recall as a starting point. We consider a clearing
house (or central counterparty, CCP for short) with a �nite number (≥ 2) of clearing
members labeled by i. We denote by :

� T : an upper bound on the maturity of all claims in the CCP portfolio, also
accounting for a constant time δ > 0 of liquidating the positions of defaulting
clearing members ;

� Di
t : The cumulative contractual cash �ow process of the CCP portfolio of

the member i, cash �ows being counted positively when they �ow from the
clearing member to the CCP ;

� MtMi
t = Et[

∫ T
t
β−1
t βsdD

i
s] : The mark-to-market of the CCP portfolio of the

member i ;
� τi, τ δi = τi + δ and δτδi (dt) : The default and liquidation times of the member

i, a Dirac measure at time τ δi ;
� ∆i

τδi
=
∫

[τi,τδi ]
β−1
t βsdD

i
s : The cumulative contractual cash �ows of the member

i, accrued at the OIS rate, over the liquidation period of the clearing member
i ;

� IMi
t : The initial margin (IM) posted by the member i as a guarantee in case

it defaults, given at time t as a conditional value-at-risk (at a given con�dence
level ama) of β

−1
t

(
βt+δ(MtMi

t+δ + ∆i
t+δ)−MtMi

t

)+
.

Beyond the �rst ring of defense provided by initial margin (and, of course, variation
margin, which we assume equal to the process MtMi

t stopped at time τi), a CCP
maintains an additional resource, known as the default fund, against extreme and
systemic risk. The current EMIR regulation sizes the default fund of a CCP by the
Cover 2 rule, i.e. enough to cover the joint default of the two clearing members with
the greatest CCP exposures, which purely relies on market risk. By contrast, we
consider in the setup of this case study a broader risk-based speci�cation, in the
form of an economic capital of the CCP, which would be de�ned as a conditional
expected shortfall, at some con�dence level adf , of its one-year ahead loss-and-pro�t
if there was no default fund, as it results from the combination of the credit risk of
the clearing members and of the market risk of their portfolios. As developed in [24],
such a speci�cation can be used for allocating the default fund between the clearing
members, after calibration of the quantile level adf to the Cover 2 regulatory rule at
time 0.

Speci�cally, we de�ne the loss process of a CCP that would be in charge of
dealing with member counterparty default losses through a CVAccp account (earning
the risk-free rate r) as, for t ∈ (0, T ] (starting from some arbitrary initial value, since
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it is only the �uctuations of Lccp that matter in what follows),

βtdL
ccp
t =

∑
i

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(MtMi

τi
+ IMi

τi
)
)+

δτδi (dt)

+ βt(dCVAccp
t − rtCVAccp

t )dt,

(2.5.6)

where the CVA of the CCP is given as

CVAccp
t = Et

∑
t<τδi <T

β−1
t

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(MtMi

τi
+ IMi

τi
)
)+
, 0 ≤ t ≤ T

(2.5.7)
(in particular, Lccp is constant from time T onward).

We de�ne the corresponding economic capital process of the CCP as

ECccp
t = ESadft

(∫ t+1

t

β−1
t βsdL

ccp
s

)
, (2.5.8)

where, by (3.4.10),

β−1
t

∫ t+1

t

βsdL
ccp
s = β−1

t

∑
t<τδi ≤t+1

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(MtMi

τi
+ IMi

τi
)
)+

+ (β−1
t βt+1CVAccp

t+1 − CVAccp
t ).

(2.5.9)
The KVA (or risk margin) of the CCP estimates how much it would cost the CCP
to remunerate all clearing members at some hurdle rate h for their capital at risk
in the default fund from time 0 onward, namely, assuming a constant interest rate
r (cf. (2.5.4), (3.4.11), and [24]) :

KVAccp = hE
[∫ T

0

e−(r+h)sECccp
s ds

]
. (2.5.10)

For our numerics we consider the CCP toy model of Section 4 in [24] and Sec-
tion 4.4 in [2], where nine members are clearing (interest rate or foreign exchange)
swaps on a Black�Scholes underlying rate process X, with all the numerical para-
meters used there. The default times of the clearing members are de�ned through
the common shock model or dynamic Marshall-Olkin copula (DMO) model of [34],
Chapt. 8�10 and [49] (see also [52,55]).

Mapping with the General Setup

This model, where defaults can happen simultaneously with positive probabili-
ties, results in a Markovian pair Z = (X, Y ) made of, on the one hand, the underlying
Black�Scholes rate X and, on the other hand, the vector Y of the default indicator
processes of the clearing members. As a consequence, all conditional expectations,
value-at-risks (embedded in the IMi numbers), and expected shortfalls (embedded
in the ECccp numbers) are functions of the pair (t, Z), so that, with Z = (X, Y ) as
above, we can identify

Ltt+1 ←
∫ t+1

t

β−1
t βsdL

ccp
s ,

ES(t, z)← ESadf
(∫ t+1

t

β−1
t βsdL

ccp
s

∣∣∣Zt = z

)
.
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The ensuing KVA can be computed by Algorithms 1 (for validation purposes, buil-
ding on the explicit CVAccp formulas that are available in our stylized setup, cf. [24,
Section A]), 2, or 3 for the inner ECccp computations, which are then aggregated as
explained above. However, for GPU optimization reasons developed in [2, Appen-
dices A and B], we do not rely on the randomized version (given by the right-hand
side formulation) of the risk margin in (2.5.4), i.e. we do not use the unbiased esti-
mator (2.5.5), resorting instead on a Riemann sum approximation of step six months
of the time integral that is visible in the left-hand side in (2.5.4).

Depending on the algorithm that is used, we can identify further β(Z̄[s,u]) =
e−r(u−s) and :

� In the case of Algorithm 1 :

φ(Z̄[t, t+ 1])← Ltt+1, ψ ← 0;

� In the case of Algorithms 2 or 3 :

φ(Z̄[s, u]) = ψ(Z̄[s,u])← β−1
s

∑
s<τδi ≤u

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(MtMi

τi
+ IMi

τi
)
)+
.

(2.5.11)

With respect to the general setup of previous sections, the methodological as-
sumptions, such as the ones on the sequences γk of the SA parameters or the re-
quirement made in H11 of using a regression sample independent from the rest of
the simulation in the context of Algorithm 3, can always be met at implementation
stage.

Regarding now the abstract assumptions there, we only make a general comment
that they should all hold in our lognormal model for X combined with randomized
sampling at the times of defaults of the counterparties, which are all times with an
intensity, recalling the corresponding modeling assumptions related to Algorithms
1 (SA scheme for the basic case without liabilities), 2 (SA scheme with nested
simulation of future liabilities) and Algorithm 3 (SA scheme with regression of future
liabilities), respectively :

� H4 a) [continuous cdf of the loss L], H4 b) [second moment of L],
� H5 [density and second moment of the loss] (the density part should follow

from Malliavin calculus considerations), H6 [moments of order ≥ 2 of the
(present and future) liabilities in L], H8 [concentration inequalities related
to (and implying exponential moments of) the present and future liabilities
in L], H9 [second moment of L, moments of order > 2 of the (present and
future) liabilities in L] ;

� H4 a) again, H11 [square integrability of future loss components], H12 [conti-
nuous cdf of the loss where one replaces the future liability function Ψ by
an arbitrary regression basis function g ∈ Ĥ], H2.4.1 [bounded density of L,
positive and continuous on an interval (speci�ed further in H13) around ξ?].

Regarding the regression algorithm for CVAccp
t+1 that is required in the context

of Algorithm 3, we apply to CVAccp
t+1 = Et+1ψ(Z̄[t+1,T ]) the approach that is used

for computing the �CA process� in Section 4.4 of [2], using as a regression basis 1,
Xt+1, X2

t+1 (recall X is the underlying Black�Scholes rate) and the default indicator
processes at time (t+ 1) of the clearing members. In the present case of CVAccp

t+1 the
situation is in fact a bit simpler as no time-stepping is required, i.e. we just need
one regression for each time (t+ 1) that occurs via the discretization times t of the
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integral visible in (2.5.4), because CVAccp
t+1 is a conditional expectation, as opposed

to the above-mentioned CA process, which only solves a semi-linear BSDE.
For an SA scheme launched at time t of the outer KVA simulation, we use

γk = γ0

(100+k0.75)
× (T−t)

T
, starting from the initial condition ξ0 = χ0 = 0.

Numerical Results

All our simulations are run on a laptop that has an Intel i7-7700HQ CPU and
a single GeForce GTX 1060 GPU programmed with the CUDA/C application pro-
gramming interface (API).

Table 2.1 shows the time 0 (unconditional) expected shortfalls over the �rst year,
obtained by four variants of the SA scheme and for three levels of the quantile adf .

K adf ES(a) ES(b) ES(c) ES(d)

85% 311.23 248.05 253.11 259.13
104 95.5% 924.72 924.72 924.72 924.72

99% 2406.77 2406.77 2406.77 2406.77
85% 296.24 202.27 207.81 211.32

105 95.5% 858.72 858.72 858.72 858.72
99% 2347.83 2347.83 2347.83 2347.83
85% 287.85 200.12 206.05 209.37

5× 105 95.5% 849.12 849.12 849.12 849.12
99% 2327.45 2327.45 2327.45 2327.45

Table 2.1 � Time 0 unconditional expected shortfalls, computed : [ES(a)] by Al-
gorithm 1 without the CVA terms, i.e. forgetting about the second line in (3.4.12),
in order to assess, by comparison with the other results, the impact of these CVA
terms on economical capital, depending on the con�dence level adf ; [ES(b)] by Algo-
rithm 1 with the CVA terms computed by the explicit formulas that are available
in the lognormal market model of this case study ; [ES(c)] by Algorithm 2 with
the CVA1 terms computed by nested Monte Carlo (and CVA0 computed by outer
Monte Carlo) ; [ES(d)] by Algorithm 3 with the CVA1 terms computed by regression
against X1 and the default indicators of the clearing members at time 1 (and CVA0

computed by outer Monte Carlo).

In the case adf = 85%, Figure 2.1 shows the corresponding (time discretized) ES
processes obtained after K = 104 and K = 5× 105 iterations of the SA schemes ;

K KVA(a) KVA(b) KVA(c) KVA(d)

104 66.70 32.62 34.71 37.31
105 57.54 24.09 26. 85 29.11

5× 105 54.89 23.57 25.08 28.76

Table 2.2 � KVA for adf = 85% and N = 1024 outer trajectories.

2.6 Conclusion and Perspectives

In this paper we propose convergent stochastic approximation estimators for the
economic capital of a loss random variable L that entails a future liability (conditio-
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Figure 2.1 � ES(a),ES(b),ES(c), and ES(d) processes (top to bottom) for adf = 85%
and N = 1024 outer trajectories. Left : K = 104. Right : K = 5× 105.
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Figure 2.2 � ES benchmark process obtain by tri method for adf = 85%, N = 1024
outer trajectories and Mec = 32 ∗ 100 inner trajectorires. Left : case without CVA
terms. Right : case with CVA terms computed by the explicit formulas.

nal expectation). The latter is estimated either by nested Monte Carlo as in Gordy
and Juneja [68], or by regression as in Broadie, Du, and Moallemi [37]. Then we
embed conditional versions of the above into outer risk margin (or KVA) computa-
tions.

From a practical point of view, an incremental SA scheme uses a limited amount
of memory but, being a loop, is less easy to parallelize than a simulation-and-sort
algorithm, on which several processors can fruitfully be used (see [2, Appendix C]).
On the other hand SA schemes can be e�ciently combined with importance sampling
as studied in [28,29], whereas [68] and [37] introduce respective jacknife and weighted
regression acceleration procedures for the simulation-and-sort schemes.

From a theoretical point of view, the stochastic approximation viewpoint leads to
stronger convergence results under considerably smoother assumptions than together
[68] and [37]. In particular, our assumptions (recalled in Section 2.5.3) only bear on
the limiting problem, as opposed to unveri�able (not to say implausible) assumptions
on the perturbed approximating problems in [68] and [37] :

� Assumptions on the density of the nested Monte Carlo surrogate of the loss
in [68] ;

� Invertibility of the empirical covariance matrix of the regressors and an ortho-
normal basis of empirical regressors in [37]. By contrast, we do not even need
to assume a vector space of theoretical regressors ; for instance, our space of
theoretical regressors could be given in the form of a neural network.

About now the results :
� [68] only shows mean square convergence, whereas we show almost sure

convergence ;
� [37] considers a very stylized proxy of expected shorfall in the form of

E(L − ξ)+, for a known and �xed ξ, instead of the value-at-risk of L that
needs to be estimated in the �rst place in a genuine expected shorfall pers-
pective. Moreover, their study is asymptotic in the number of simulations for
a �xed number of basis functions, they do not address the global convergence
problem when the size of the regression basis and the number of simulations
jointly go to in�nity.

Last, regarding the comparison between the stochastic approximation schemes
with nested versus regressed estimation of future liabilities, the assumptions that
allow establishing the convergence of either approach are discussed and compared
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along the paper. In order to compare the �ne convergence properties of each ap-
proach, it would be useful to push the computations to obtain the L2 errors in both
cases, which we leave for further research.

2.7 Technical Developments

We denote by |x| the (Euclidean) norm of x ∈ Rd and by 〈x, y〉 the inner product
of two vectors x, y ∈ Rd. Vectors x ∈ Rd are column-vectors, and AT denotes the
transpose of a matrix A.

Some of the results are general (not speci�c to the setup of the main body of
the paper) and therefore stated in terms of an abstract probability measure Q, with
related expectation denoted by E.

2.7.1 Two Identities

Lemma 2.7.1 Let α ∈ (0, 1) and µ be a probability distribution on R having a �rst
order moment. If ξ∞ 6= ξ′∞ are two solutions of ξ : 1− α =

∫∞
ξ
µ(dx) then

ξ∞ +
1

1− α

∫
(x− ξ∞)+µ(dx) = ξ′∞ +

1

1− α

∫
(x− ξ′∞)+µ(dx).

Proof We can assume that ξ∞ < ξ′∞. Since∫ +∞

ξ∞

µ(dx) =

∫ +∞

ξ′∞

µ(dx) = 1− α,

then
∫ ξ′∞
ξ∞

µ(dx) = 0. Upon noting that

ξ∞ +
1

1− α

∫
(x− ξ∞)+µ(dx) =

1

1− α

∫ +∞

ξ∞

xµ(dx)

we obtain

ξ∞ +
1

1− α

∫
(x− ξ∞)+µ(dx) = ξ′∞ +

1

1− α

∫
(x− ξ′∞)+µ(dx).

Lemma 2.7.2 Let {γk, k ≥ 1} be a positive sequence such that
∑

k γk = +∞ and
limk γk = 0. Given a Rd-valued sequence {Vk, k ≥ 1} and θ0 ∈ Rd, de�ne the sequence
{θk, k ≥ 0} by

θk+1 = (1− γk+1)θk + γk+1Vk+1.

Set S0 = 1 and Sk :=
∏k

j=1(1− γj)−1 for any k ≥ 1. Then limk Sk = +∞ and when
it exists,

lim
k
θk = lim

k

1

Sk

k∑
j=1

SjγjVj.

Proof The proof is adapted from [28]. Note that Sk+1(1 − γk+1) = Sk, hence, for
all k large enough such that γk → 0, lnSk+1 + ln(1− γk+1) = lnSk, i.e.

lnSk+1 − lnSk = − ln(1− γk+1) ≥ γk+1.
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Since
∑

k γk =∞, then limk Sk = +∞.
We write

Sk+1θk+1 = Sk+1(1− γk+1)θk + Sk+1γk+1Vk+1 = Skθk + Sk+1γk+1Vk+1.

Hence, by induction, Sk+1θk+1 = S0θ0 +
∑k+1

j=1 SjγjVj, which implies the result and
the conclusion follows from this.

2.7.2 A General Convergence Result for Stochastic Approxi-
mation Algorithms

Let H : Rd×Rq → Rd be a measurable function and let {γk, k ≥ 1} be a sequence
of positive numbers. Let Rq-valued random variables {Vk, k ≥ 0} and θ0 ∈ Rd be
de�ned on a probability space (Ω,A,P). Theorem 2.7.1 provides su�cient conditions
for the almost-sure convergence and the Lp-convergence, p ∈ (0, 2), of the sequence
{θk, k ≥ 0} given by

θk+1 = θk − γk+1 H(θk, Vk+1). (2.7.1)

These conditions are general enough to cover the case when the r.v. {Vk, k ≥ 1} are
not i.i.d. but have a distribution converging, in some sense, to the distribution of a
r.v. V?.

We write
H(θk, Vk+1) = h(θk) + ek+1 + rk+1, (2.7.2)

where

h(θ) := E [H(θ, V?)] ,

ek+1 := H(θk, Vk+1)− E [H(θk, Vk+1)|Gk] ,
rk+1 := E [H(θk, Vk+1)|Gk]− h(θk),

and where the �ltration {Gk, k ≥ 1} is de�ned by Gk := σ {V1, · · · , Vk}.

Theorem 2.7.1 Suppose that

(i) {γk, k ≥ 1} is a deterministic positive sequence such that
∑

k γk = +∞ and
there exists κ ∈ (0, 1] such that

∑
k≥1 γ

1+κ
k <∞,

(ii) H : Rd × Rq → Rd is measurable and h : Rd → Rd is continuous,

(iii) the set L := {h = 0} is a non-empty compact subset of Rd and for any θ∗ ∈ L
and θ /∈ L, we have 〈θ − θ∗, h(θ)〉 > 0.

Let {θk, k ≥ 0} be given by (2.7.1) where the r.v. {Vk, k ≥ 0} satifsy
(iv)

∑
k≥1 γ

1−κ
k |rk|2 < +∞ P-a.s.

(v) There exist non-negative constants CH,1, CH,2 such that, for any θ ∈ Rd,

sup
k≥1

E
[
|H|2(θ, Vk)

]
≤ CH,1 + CH,2|θ|2.

Then there exists a L-valued random variable θ∞ such that P(limk θk = θ∞) = 1. If,
in addition,

(vi)
∑

k≥1 γ
1−κ
k E[|rk|2] < +∞ ,

then supk≥0 E[|θk − θ∞|2] < +∞ and for any p ∈ (0, 2), limk E [|θk − θ∞|p] = 0.
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Proof Step 1. Almost-sure boundedness and convergence. Let θ∗ ∈ L. We
have, by (2.7.2),

|θk+1 − θ∗|2 = |θk − θ∗ − γk+1 (h(θk) + ek+1 + rk+1)|2

= |θk − θ∗|2 − 2γk+1〈θk − θ∗, h(θk)〉
− 2γk+1〈θk − θ∗, ek+1〉 − 2γk+1〈θk − θ∗, rk+1〉+ γ2

k+1|H|2(θk, Vk+1).

Since {ek, k ≥ 1} is a martingale-increment w.r.t. the �ltration {Gk, k ≥ 1} and θk
is Gk-measurable, we have for any k,

E
[
|θk+1 − θ∗|2|Gk

]
≤ |θk − θ∗|2 − 2γk+1〈θk − θ∗, h(θk)〉+ γ1+κ

k+1 |θk − θ
∗|2 + γ1−κ

k+1 |rk+1|2

+γ2
k+1CH,1 + γ2

k+1CH,2|θk|2,

where we used the inequality −2γ〈a, b〉 ≤ γ1+κ|a|2+γ1−κ|b|2, the equality E[rk+1|Gk] =
rk+1 and the assumption (v). Hence, by using |θk|2 ≤ 2|θk − θ∗|2 + 2|θ∗|2,

E
[
|θk+1 − θ∗|2|Gk

]
≤
(
1 + 2γ2

k+1CH,2 + γ1+κ
k+1

)
|θk − θ∗|2 (2.7.3)

− 2γk+1〈θk − θ∗, h(θk)〉+ γ1−κ
k+1 |rk+1|2 + γ2

k+1C
′, (2.7.4)

where C ′ := CH,1 + 2CH,2|θ∗|2. From the assumptions (i), (iii), and (iv), we have
that, P-a.s.,

∀k ≥ 0 γk+1〈θk − θ∗, h(θk)〉 ≥ 0,
∑
k≥0

(γ1−κ
k+1 |rk+1|2 + γ2

k+1 + γ1+κ
k+1 ) < +∞.

By the Robbins-Siegmund lemma (see [108]), P-a.s. (for an almost-sure set depending
upon θ∗)

lim
k
|θk − θ∗| exists,

∑
k≥0

γk+1〈θk − θ∗, h(θk)〉 < +∞.

Since L is bounded and θ∗ ∈ L, this implies that the sequence {θk, k ≥ 0} is bounded
with probability one. Using the separability of Rd and since θ′ 7→ limk |θk − θ′| is
continuous, we have P-a.s. :

∀ θ′ ∈ L, the limit lim
k
|θk − θ′| exists. (2.7.5)

Set ς := lim infk→+∞〈θk − θ∗, h(θk)〉. By (iii), ς ≥ 0. As
∑

k≥0 γk = +∞, we have

{ς > 0} ⊆
∑
k≥0

γk+1〈θk − θ∗, h(θk)〉 = +∞;

the probability of the second event is zero. Hence P(ς = 0) = 1.
Therefore, with probability one, there exists a subsequence {nk, k ≥ 1} such that

limk〈θnk−θ∗, h(θnk)〉 = 0. Since the sequence {θnk , k ≥ 1} is bounded a.s., we can still
assume (up to extraction of another subsequence) that {θnk , k ≥ 1} converges to some
limit θ∞. By assumption (ii), we have 〈θ∞−θ∗, h(θ∞)〉 = 0, and by assumption (iii),
this implies that θ∞ ∈ L. But using (2.7.5) we get limk |θk−θ∞| = limk |θnk−θ∞| = 0.
This implies that limk θk = θ∞.

Step2. Uniform boundedness in L2. Let a (deterministic) point θ∗ ∈ L be
given. By taking expectation in (2.7.3), we have

E
[
|θk+1 − θ∗|2

]
≤
(
1 + 2γ2

k+1CH,2 + γ1+κ
k+1

)
E
[
|θk − θ∗|2

]
+ γ1−κ

k+1E[|rk+1|2] + C ′γ2
k+1.
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Applying again the Robbins-Siegmund lemma with the assumptions (i) and (vi), we
deduce that the sequence limk E [|θk − θ∗|2] exists and thus supk E [|θk|2] <∞ since L
is bounded. This implies supk E [|θk − θ∞|2] < +∞ for any L-valued random variable
θ∞, using again that L is bounded.

Step 3. Convergence in Lp. Let C > 0 and p ∈ (0, 2). We write

E [|θk − θ∞|p] = E
[
|θk − θ∞|p 1|θk−θ∞|<C

]
+ E

[
|θk − θ∞|p 1|θk−θ∞|≥C

]
.

The �rst term converges to zero by the dominated convergence theorem. For the
second term, Hölder's and Markov's inequalities give that

E[|θk − θ∞|p1|θk−θ∞|≥C ] ≤ E[|θk − θ∞|2]

C2−p ≤
supl≥0 E[|θl − θ∞|2]

C2−p ;

which is lower than ε > 0 for some C large enough. This holds true for any ε, thus
concluding the proof.

2.7.3 Proof of Theorem 2.2.1

For the study of the sequence {ξk, k ≥ 1}, we check the assumptions of Theo-
rem 2.7.1, applied to θk ← ξk (so that d = 1), Q ← Q0, Vk ← Lk, the distribution
of V? is Q(z, ·) and

H(θ, V )← H1(ξ, L) = 1− 1

1− α
1L>ξ

(cf. (2.2.3)). By H3, the condition (i) is satis�ed. In addition, by H4a, the function

ξ 7→ h(ξ) := 1− 1

1− α

∫ +∞

ξ

Q(z, dx)

is continuous on R, so that (ii) holds. The set L := {h = 0} is the set of the points
ξ? satisfying Q0(L > ξ?) = 1−α : under H4a, this set is non empty and compact and
for any ξ < ξ? (resp. ξ > ξ?) such that h(ξ) 6= 0, h(ξ) < 0 (resp. h(ξ) > 0). Hence,
(iii) is satis�ed. In this algorithm, we have rk = 0 since h(·) = E0 [H(·, L)] and
Lk+1 is independent of ξk. Hence, (iv) and (vi) hold. Finally, supξ∈R,L∈R |H(ξ, L)|2 ≤
CH,1 := (1− α)−2 so that (v) holds with CH,2 = 0.

For the results on the sequence {χk, k ≥ 1}, we check the assumptions of
Lemma 2.7.2 with θk ← χk (so that d = 1) and Vk+1 ← ξk + (1− α)−1(Lk+1 − ξk)+.
We write

Vk+1 = ξk + (1− α)−1

∫
(x− ξk)+Q(z, dx) + ẽk+1, (2.7.6)

ẽk+1 := (1− α)−1

(
(Lk+1 − ξk)+ −

∫
(x− ξk)+Q(z, dx)

)
.

Set S0 := 1 and Sk :=
∏k

j=1(1− γj)−1 for any k ≥ 1, so that Sk(1− γk) = Sk−1 and
Sk − Sk−1 = γkSk. By H3 and Lemma 2.7.2, limk Sk = +∞ so that from the above
almost-sure convergence on {ξk, k ≥ 1} and from the Cesaro lemma,

lim
k→∞

1

Sk

k∑
j=1

Sjγjξj = lim
k→∞

1

Sk

k∑
j=1

(Sj − Sj−1)ξj = ξ∞ Q0 − a.s.
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By H4a, the second term in the RHS of (2.7.6) is a continuous function of ξk.
Therefore, by similar arguments,

lim
k→∞

1

Sk

k∑
j=1

Sjγj

∫
(x− ξj)+Q(z, dx) =

∫
(x− ξ∞)+Q(z, dx) Q0 − a.s.

Finally, {ẽk, k ≥ 1} is a Gk-martingale increment ; by using |(a − c)+ − (b − c)+| ≤
|a|+ |b| and (|a|+ |b|)2 ≤ 2a2 + 2b2, and since {Lk, k ≥ 1} are i.i.d. with distribution
Q(z, ·), we have

E0

[∣∣∣∣(Lj+1 − ξj)+ −
∫

(x− ξj)+Q(z, dx)

∣∣∣∣2
]
≤ 2

∫
x2Q(z, dx)+2

(∫
|x|Q(z, dx)

)2

;

by H4b, the RHS is �nite. Therefore, H3, [74, Corollary 2.2.] and the Kronecker
Lemma (see e.g. [74, Section 2.6, page 31]) imply that

lim
k→+∞

1

Sk

k∑
j=1

Sjγj

(
(Lj+1 − ξj)+ −

∫
(x− ξj)+Q(z, dx)

)
= 0, Q0 − a.s.

By Lemma 2.7.2, we obtain that Q0-a.s., limk χk exists and solves

lim
k
χk = ξ∞ +

1

1− α

∫
(x− ξ∞)+Q(z, dx).

2.7.4 Proofs of the Results of Section 2.3.1

We start the proof with two preliminary lemmas.

Lemma 2.7.3 Let {ϕm,m ≥ 1} be R-valued random variable de�ned on (Ω,A,P),
i.i.d. with distribution µ. Assume that µ has a �nite moment of order p? > 1 and
set Cp? :=

∫
|w −

∫
wµ(dw)|p? µ(dw). Then for any M ≥ 1,

E

[∣∣∣∣∣ 1

M

M∑
m=1

ϕm −
∫
w µ(dw)

∣∣∣∣∣
p?]
≤ cp? Cp?
M (p?/2)∧(p?−1)

, (2.7.7)

where cp := (18p
√
q)p and q is the Hölder conjugate of p.

Proof Set µ[1] :=
∫
wµ(dw). The Burkholder inequality (see e.g. [74, Theorem

2.10]) applied to the sequence 1
M

(ϕm − µ[1]),m = 1, . . . ,M, yields

E

[∣∣∣∣∣ 1

M

M∑
m=1

ϕm − µ[1]

∣∣∣∣∣
p?]
≤ cp?
Mp?

E

∣∣∣∣∣
M∑
m=1

(ϕm − µ[1])2

∣∣∣∣∣
p?/2
 .

If p? ≥ 2, we obtain by the Minkowsky inequality,

E

∣∣∣∣∣
M∑
m=1

(ϕm − µ[1])2

∣∣∣∣∣
p?/2
 ≤ ( M∑

m=1

(E [|ϕm − µ[1]|p? ])2/p?

)p?/2

≤ Cp?M
p?/2.
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If p? < 2, by using (x+ y)p?/2 ≤ xp?/2 + yp?/2 for any x, y ≥ 0, we have

E

∣∣∣∣∣
M∑
m=1

(ϕm − µ[1])2

∣∣∣∣∣
p?/2
 ≤ E

[
M∑
m=1

|ϕm − µ[1]|p?
]

= Cp?M.

This concludes the proof.

Lemma 2.7.4 Let V, V ′, {ϕm,m ≥ 1} and {ϕ′m,m ≥ 1} be R-valued random va-
riables de�ned on (Ω,A,P) and B ⊂ A be a σ-�eld on Ω such that conditionally on
B, {ϕm,m ≥ 1} are i.i.d. and {ϕ′m,m ≥ 1}) are i.i.d. Assume
(i) the distribution of V admits a density with respect to the Lebesgue measure on

R, which is upper bounded by C0 > 0 ;

(ii) there exists p? > 1 such that ϕ1 and ϕ′1 have �nite p?-moments ; set

Cp? := E [|ϕ1 − E[ϕ1 | B]|p? ] ∨ E [|ϕ′1 − E[ϕ′1 | B]|p? ] .

(iii) there exists a constant C > 0 such that

|V − V ′| ≤ C

M

∣∣∣∣∣
M∑
m=1

(ϕm − E [ϕ1|B])

∣∣∣∣∣+
1

M ′

∣∣∣∣∣
M ′∑
m=1

(ϕ′m − E [ϕ′1|B])

∣∣∣∣∣ .
Then for any positive integer M ,

sup
ξ∈R

E [|1V >ξ − 1V ′>ξ|] ≤ 2p?(1 ∨ C)p? (C0 + cp? Cp?) (M ∧M ′)−
(p?/2)∧(p?−1)

1+p? , (2.7.8)

where cp only depends on p (see its de�nition in Lemma 2.7.3). If, in addition,

(iv) there exists C∞ > 0 such that for any δ > 0 and any positive integer M ,

P

(∣∣∣∣∣ 1

M

M∑
m=1

ϕm − E [ϕ1|B]

∣∣∣∣∣ ≥ δ

)
∨ P

(∣∣∣∣∣ 1

M

M∑
m=1

ϕ′m − E [ϕ′1|B]

∣∣∣∣∣ ≥ δ

)
≤ e−C∞Mδ2

,

then, for any integers M,M ′ ≥ 3,

sup
ξ∈R

E [|1V >ξ − 1V ′>ξ|] ≤ 2

(
1 +

C0√
2C∞

) (
log(M ∧M ′)

(M ∧M ′)

)1/2

. (2.7.9)

Proof We have |1V >ξ − 1V ′>ξ| = 1V >ξ≥V ′ + 1V ′>ξ≥V . Let δ > 0. On the set {|V −
V ′| < δ}, it holds

{V > ξ ≥ V ′} ⊂ {V > ξ > V − δ}, {V ′ > ξ ≥ V } ⊂ {V + δ > ξ ≥ V },

so that

E
[
|1V >ξ − 1V ′>ξ|1|V−V ′|<δ

]
≤ E

[
1|V−ξ|<δ1|V−V ′|<δ

]
≤ P (|V − ξ| < δ) .

By using (i), it holds

E[|1V >ξ − 1V ′>ξ|] ≤ P[|V − ξ| < δ] + P (|V − V ′| ≥ δ) ≤ 2C0δ + P (|V − V ′| ≥ δ) .
(2.7.10)
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By (ii), (iii) and Lemma 2.7.3, and by using (x + y)p? ≤ 2p?−1(xp? + yp?) for any
x, y ≥ 0,

E
[
|V − V ′|p?

]
= E

[
E
[
|V − V ′|p? | B

]]
≤ 2p? (1 ∨ C)p? cp? Cp?

(M ∧M ′)(p?/2)∧(p?−1)
.

The Chebyshev inequality implies

P(|V − V ′| ≥ δ) ≤ 2p? (1 ∨ C)p? cp? Cp?
δp? (M ∧M ′)(p?/2)∧(p?−1)

. (2.7.11)

We then obtain (2.7.8) from (2.7.10) and (2.7.11) applied to δ ← (M ∧M ′)−p̃?/(1+p?)

with p̃? := (p?/2) ∧ (p? − 1).
Under (iv), the second term in (2.7.10) is upper bounded by

exp
(
−C∞M δ2/(4C2)

)
+ exp

(
−C∞M ′ δ2/4

)
≤ 2 exp

(
− C∞

4(1 ∨ C)2
δ2(M ∧M ′)

)
.

Hence we have, by setting C̃∞ := C∞/(4(1 ∨ C)2) and M := M ∧M ′,

E[|1V >ξ − 1V ′>ξ|] ≤ 2C0δ + 2e−C̃∞ δ2M ≤
√

2
C0√
C̃∞

√
lnM

M
+

2√
M
,

where the last inequality is obtained by choosing δ ←
√

(logM)/(2C̃∞M). This

concludes the proof since
√

lnM ≥ 1 for M ≥ 3.

Proof of Lemma 2.3.1. We apply Lemma 2.7.4 with P ← P0, B ← σ(Z0, Z1),
Ci ← Ci(z) for i ∈ {0, p?,∞}, C ← cβ and p? ≥ 2. This yields the inequalities
(2.3.3) and (2.3.5). Since |a+ − b+| ≤ |a− b| and p? ≥ 1, we have

E0

[∣∣(L− ξ)+ − (L′ − ξ)+
∣∣] ≤ (E0

[∣∣(L− ξ)+ − (L′ − ξ)+
∣∣p?])1/p? ≤

(
E0

[
|L− L′|p?

])1/p?
.

We conclude the proof of (2.3.4) by Lemma 2.7.3.

Proof of Theorem 2.3.1. As in the proof of Theorem 2.2.1, we �rst establish
the results on the sequence {ξk, k ≥ 0} by application of Theorem 2.7.1. We then
prove the results on the sequence {χk, k ≥ 0} by application of Lemma 2.7.2.

We check the assumptions of Theorem 2.7.1 with θk ← ξk (so that d = 1),
P← P0, Vk ← Lk, the distribution of V? is Q(z, ·), Gk ← σ(Lj, j ≤ k) and

H(θ, V )← 1− 1

1− α
1V >θ, h(θ)← 1− 1

1− α
P0(L > θ).

Under H7 and H5, the conditions (i), (ii), (iii) and (v) hold ; the proof is on the same
lines as in the proof of Theorem 2.2.1 and is omitted. We establish the condition
(vi) (which also implies the condition (iv)) with

rk+1 ← E0 [H(ξk, Lk+1)|Gk]− E0

[
H(ξk, L̃k+1)|Gk

]
where

L̃k+1 := φk+1 + βk+1Ψ(Zk+1
1 )−Ψ′(z).
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Note that since the r.v. (φk+1, βk+1, Zk+1
1 ) are independent from Gk and, condi-

tionnally to Gk, have the same distribution as the processes (φ, β, Z1), then the
distribution of L̃k+1 given Gk is Q(z, ·). Hence,

E0

[
H(ξk, L̃k+1)|Gk

]
= h(ξk). (2.7.12)

We write

rk+1 = E0

[
H(ξk, Lk+1)−H(ξk, L̃k+1)

∣∣∣Gk] =
1

1− α
E0

[(
1L̃k+1>ξk

− 1Lk+1>ξk

) ∣∣∣Gk]
so that, by Lemma 2.3.1, there exists a constant c such that for any k ≥ 1, P0-a.s.

|rk+1| ≤ c
(
Mk+1 ∧M ′

k+1

)−p?/(2(1+p?))
;

this implies, by H7,
∑

k≥1 γ
1−κ
k E0[|rk|2] < +∞, thus proving (vi). This concludes the

proof of the results on the sequence {ξk, k ≥ 1}.
For the results on the sequence {χk, k ≥ 1}, we check the assumptions of

Lemma 2.7.2 with θk ← χk (so that d = 1) and Uk+1 ← ξk + (1− α)−1(Lk+1 − ξk)+.
We write

Uk+1 = ξk + (1− α)−1

∫
(x− ξk)+Q(z, dx) + ẽk+1 + r̃k+1 (2.7.13)

r̃k+1 := (1− α)−1
(
(Lk+1 − ξk)+ − (L′k+1 − ξk)+

)
ẽk+1 := (1− α)−1

(
(L′k+1 − ξk)+ −

∫
(x− ξk)+Q(z, dx)

)
.

As in the proof of Theorem 2.2.1, we prove by using H7, H5, that

lim
k→∞

1

Sk

k∑
j=1

Sjγjξj = ξ∞ P0 − a.s.,

lim
k→∞

1

Sk

k∑
j=1

Sjγj

∫
(x− ξj)+Q(z, dx) =

∫
(x− ξ∞)+Q(z, dx) P0 − a.s.

lim
k→+∞

1

Sk

k∑
j=1

Sjγj ẽj+1 = 0, P0 − a.s.

By Lemma 2.3.1 and H7,
∑

k γkE0 [|r̃j+1|] <∞ so that by the Kronecker Lemma,

lim
k→+∞

1

Sk

k∑
j=1

Sjγj r̃j+1 = 0, P0 − a.s.

By Lemma 2.7.2, we obtain that P0-a.s., limk χk exists and solves

lim
k
χk = ξ∞ +

1

1− α

∫
(x− ξ∞)+Q(z, dx).
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2.7.5 A Central Limit Theorem for Stochastic Approxima-
tion Algorithms

We recall in this section su�cient conditions for a central limit theorem (CLT) to
hold for random variables {θk, k ≥ 0} de�ned through a stochastic approximation
algorithm : given a deterministic sequence {γk, k ≥ 1}, a function h : Rd → R,
θ0 ∈ Rd and Rd-valued random variables {ek, k ≥ 1} and {rk, k ≥ 1} de�ned on
(Ω,A,P), de�ne for k ≥ 0,

θk+1 = θk + h(θk) + γk+1ek+1 + γk+1rk+1. (2.7.14)

Theorem 2.7.2 corresponds to [57, Theorem 2.1.]. It provides su�cient conditions
for a CLT along a converging sequence {limq θq = θ?} where θ? ∈ Rd is �xed (deter-
ministic). On the mean �eld h and the limit point θ?, it is assumed

C1 a) The mean �eld h : Rd → Rd is measurable and twice continuously di�eren-
tiable in a neighborhood of θ?, where h(θ?) = 0.

b) The gradient ∇h(θ?) is a Hurwitz matrix. Denote by −`, (` > 0), the largest real
part of its eigenvalues.

The sequence {ek, k ≥ 1} satis�es

C2 a) {ek, k ≥ 1} is a Gk-adapted P-martingale increment sequence : E [ek|Gk−1] =
0 Q-a.s. for any k ≥ 1.

b) For some C > 0, there exists τ > 0, such that

sup
k

E
[
|ek+1|2+τ 1|θk−θ?|≤C

]
<∞.

c) There exists a symmetric positive de�nite matrix D? and a sequence {Dk, k ≥ 1}
of Rd-valued random variables, such that P-a.s.

E
[
ek+1e

T
k+1|Gk

]
= D? +Dk, lim

k
Dk1limq θq=θ? = 0.

The sequences {rk, k ≥ 1} and {γk, k ≥ 1} satisfy

C3 rk is Gk-adapted and γ
−1/2
k |rk|1limq θq=θ? ≤ Xk Yk where P(supk |Xk| < ∞) = 1

and and limk E[|Yk|] = 0.

C4 One of the following condition holds

a) γk ∼ γ?/k and γ? > 1/(2`).

b) γk ∼ γ?/k
c where c ∈ (1/2, 1).

Theorem 2.7.2 [57, Theorem 2.1.] Let {θk, k ≥ 1} be the sequence given by
(2.7.14) for some θ0 ∈ Rd. Assume C1, C2, C3 and C4. Let Γ be the positive de�nite
matrix satisfying Q-a.s. on the set {limq θq = θ?}

Γ(Id + 2γ?∇h(θ?)
T ) + (Id + 2γ?∇h(θ?))Γ = −2γ?D? under C4a,

Γ∇h(θ?)
T +∇h(θ?)Γ = −D? under C4b.

Then under the conditional probability Q(. | limq θq = θ?) the sequence {γ−1/2
k (θk −

θ?), k ≥ 1} converges in distribution to a random variable with the characteristic
function

1

Q(. | limq θq = θ?)
E0

[
1limq θq=θ? exp(−1

2
tTΓt)

]
.
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Theorem 2.7.3 corresponds to [57, Theorem 3.2.] ; it provides su�cient conditions
for a CLT for the averaged sequence

θ̄k :=
1

k

k∑
l=1

θl,

along a converging sequence {limq θq = θ?} where θ? ∈ Rd is �xed (deterministic).
It is established under essentially the same assumptions as in Theorem 2.7.2 that,
if C3 is strenghtened into

C5 rk is Gk-adapted and γ
−1/2
k |rk|1limq θq=θ? ≤ XkYk where P(supk |Xk| < ∞) = 1

and limk E [|Yk|2] = 0. In addition, k−1/2
∑k

l=1 rl1limq θq=θ? converges to 0 in probabi-
lity,

then :

Theorem 2.7.3 [57, Theorem 3.2.] Assume C 1, C2, C4b, and C5. Then for any
t ∈ Rd,

lim
k

E
[
exp(i

√
ktT (θ̄k − θ?))| lim

q
θq = θ?

]
= exp

(
−1

2
tT∇h(θ?)

−1D?(∇h(θ?)
−1)T t

)
,

where D? is introduced in C2.

2.7.6 Proofs of the Results of Section 2.3.2

Throughout this section, set θ := (ξ, χ), and

h(θ) := −
[

1− 1
1−αP0 (L > ξ)

χ− ξ − 1
1−αE0

[
(L− ξ)+]] , H(θ,X) := −

[
1− 1

1−α1X>ξ
χ− ξ − 1

1−α (X − ξ)+

]
.

(2.7.15)
We start with a preliminary lemma.

Lemma 2.7.5 Assume H9. Then

E0

[
(H(θ, L)− h(θ)) (H(θ, L)− h(θ))T

]
= D? +D(θ), (2.7.16)

where

D? :=
1

(1− α)2

[
α(1− α) αE0 [(L− ξ?)+]

αE0 [(L− ξ?)+] Var0 [(L− ξ?)+]

]
(2.7.17)

and limkD(θk)1limq θq=θ? = 0 P0-a.s

Proof By H9, L ∼ Q(z, ·) under P0 so E0 [H(θ, L)] = h(θ). We have

E0

[
(H(θ, L)− h(θ)) (H(θ, L)− h(θ))T

]
= E0

[
H(θ, L)H(θ, L)T

]
− h(θ)h(θ)T .

Denote by H(θ) the �rst 2× 2 symmetric matrix on the RHS. Then

H(θ)1,1 = 1 +
P0 (L > ξ)

(1− α)2
− 2

1− α
P0 (L > ξ)

H(θ)1,2 = χ− ξ − 1

1− α
E0

[
(L− ξ)+

]
− 1

1− α
P0 (L > ξ) (χ− ξ) +

1

(1− α)2
E0

[
(L− ξ)+

]
H(θ)2,2 = (χ− ξ)2 +

1

(1− α)2
E0

[(
(L− ξ)+

)2
]
− 2

1− α
(χ− ξ)E0

[
(L− ξ)+

]
.
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Under H9, θ 7→ h(θ) and θ 7→ H(θ) are continuous at θ?. This implies (2.7.16),
where the expression (2.7.17) for

D? = H(θ?)− h(θ?)h(θ?)
T .

follows by using that θ? satis�es (2.2.6) (which implies that h(θ?) = 0).

Proof of Theorem 2.3.2 The proof consists in applying Theorem 2.7.2. We check
its assumptions with Q ← P0, θk ← (ξk, χk), θ? ← (ξ?, χ?), the function h given by
(2.7.15). The random variables ek, rk are set equal to

ek+1 ← H(θk, L̃k+1)− h(θk) rk+1 ← H(θk, Lk+1)−H(θk, L
′
k+1)

where h and H are given by (2.7.15) and

L̃k+1 := φk+1 + βk+1Ψ(Zk+1
1 )−Ψ′(z).

With these de�nitions, note that Algorithm 2 updates the parameter θk+1 by

θk+1 = θk + γk+1H(θk, Lk+1).

Since θ? satis�es (2.2.6), we have h(θ?) = 0. By H9, the function h is twice
continuously di�erentiable in a neighborhood of θ? and the gradient is given by

∇h(θ?) = − 1

1− α

[
f(z, ξ?) 0

−(1− α) + P0(L > ξ?) 1− α

]
= −

[
1

1−αf(z, ξ?) 0

0 1

]
(2.7.18)

where we used (2.2.6) in the last equality. Hence, by H9, the condition C1 is veri�ed.

Set Gk := σ (Lj, j ≤ k) ; note that h(θk) = E0

[
H(θk, L̃k+1)|Gk

]
� see (2.7.12) in

the proof of Theorem 2.3.1. Hence, {ek, k ≥ 1} is a Gk-adapted P0-martingale incre-
ment sequence. Since θ 7→ h(θ) is continuous at θ? and θ? is �xed (deterministic), for
�xed C > 0, there exists a constant C ′ such that P0-a.s., supk |h(θk)|1|θk−θ?|≤C ≤ C ′.
In addition

|H(θ,X)| ≤ (1 + 1/(1− α)) + 2|θ|+ (1− α)−1(X − ξ)+.

By H9, since L̃k+1 has the same distribution as L under P0, there exists a constant
C ′′ (depending upon C) such that

sup
k

E0

[
|H(θk, L̃k+1)|2+τ?1|θk−θ?|≤C

]
≤ C ′′.

Hence, the conditions C2a-b are veri�ed. The condition C2c follows from Lemma 2.7.5.
We write

E0 [|rk+1|] = E0 [E0 [|rk+1| |Gk]]

≤ 1

1− α

(
sup
ξ∈R

E0

[∣∣∣1Lk+1>ξ − 1L̃k+1>ξ

∣∣∣]+ sup
ξ∈R

E0

[∣∣∣∣(Lk+1 − ξ)+ −
(
L̃k+1 − ξ

)+
∣∣∣∣]) .

By Lemma 2.3.1, under H9, the LHS is upper bounded by

O
(

(Mk ∧M ′
k)
−p?/(2(1+p?))

+ (Mk ∧M ′
k)
−1/2

)
= O

(
(Mk ∧M ′

k)
−p?/(2(1+p?))

)
.

Hence, by H10, the condition C3 is veri�ed. Finally, the condition C4 holds by H10
and (2.7.18). This concludes the proof of the theorem.
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Proof of Theorem 2.3.3 The proof consist in an application of Theorem 2.7.3.
We use the same notations as in the proof of Theorem 2.3.2 ; it was already proved
that C1 and C2 hold. We check C5 : we have

E0

[
|rk+1|2

]
≤ 1

(1− α)2
sup
ξ∈R

(
E0

[∣∣∣1Lk+1>ξ − 1L̃k+1>ξ

∣∣∣]+ E0

[∣∣∣(Lk+1 − ξ)+ − (L̃k+1 − ξ)+
∣∣∣2]) .

By Lemma 2.3.1, there exists a constant C such that for any k ≥ 0,

E0

[
|rk+1|2

]
≤ C

(Mk ∧M ′
k)
p?/(2(1+p?))

.

Therefore, the condition on γ−1/2
k rk is satis�ed by (2.3.8). In addition, by Lemma 2.3.1

again, there exists a constant C ′ such that for any δ > 0,

P0

(
k−1/2

∣∣∣∣∣
k∑
l=1

rl

∣∣∣∣∣ > δ

)
≤ k−1/2δ−1E0

[∣∣∣∣∣
k∑
l=1

rl

∣∣∣∣∣
]
≤ C ′k−1/2δ−1

(
k∑
l=1

1

(Ml ∧M ′
l )
p?/(2(1+p?))

)
.

Therefore, the condition C5 holds by (2.3.8).

2.7.7 Sensitivities of Value-at-Risk and Expected Shortfall to
Perturbations of the Input Distribution

We develop in this section some estimates relative to the perturbation of the
value-at-risk and expected shortfall that arise when we use di�erent distributions
for the underlying loss variable Z. We use the notation VaRα(Z) and ESα(Z) for
the Q value-at-risk and expected shortfall of Z

Q(Z > VaRα(Z)) := 1− α, ESα(Z) :=
1

1− α

∫ 1

α

VaRa(Z) da,

where VaRα(Z) de�ned on the left is the in�mum of such values.

De�nition 2.7.1 The Kolmogorov distance dkol(X, Y ) between two scalar random
variables X and Y is the sup norm between their cumulative distribution functions :

dkol(X, Y ) := sup
ξ∈R
|Q[X ≤ ξ]−Q[Y ≤ ξ]|.

We show that if X, Y are integrable scalar random variables with a continuous
density, then for any α > 0 �xed, the di�erence |[VaRα(X),ESα(X)]−[VaRα(Y ),ESα(Y )]|
is bounded, up to a multiplicative constant depending of α and the density of X,
by the L1 and the Kolmogorov distances between X and Y .

Our �rst proposition has to do with the relationship between the Kolmogorov
distance and the behavior of VaRβ(·) as a function of β.

Lemma 2.7.6 Let X and Y be scalar random variables having a continuous cu-
mulative distribution function. Then for any α ∈ (0, 1) and every VaRα(Y ) we have

VaRα−dkol(X,Y )(X) ≤ VaRα(Y ) ≤ VaRα+dkol(X,Y )(X). (2.7.19)

for some elements from the respective VaRα(X) sets and with the convention VaRβ =
−∞ (respectively VaRβ =∞) if β < 0 (respectively β > 1).

If X and Y are also integrable then

|ESα(X)− ESα(Y )| ≤ 1

1− α
E|X − Y |. (2.7.20)
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Proof Let α ∈ (0, 1) be given, and let d := dkol(X, Y ). From the de�nition of the
Kolmogorov distance it follows that for every ξ ∈ R

Q[X ≤ ξ]− d ≤ Q[Y ≤ ξ] ≤ Q[X ≤ ξ] + d,

so that for every ξα such that Q[Y ≤ ξα] = α (i.e. for every VaRα element of Y )
we have

|Q[X ≤ ξα]− α| ≤ d,

thus showing that VaRα−d(X) ≤ ξα ≤ VaRα+d(X) for some elements in the respec-
tive VaR sets.

For the second equality note that, by the characterization in [28, Section 2.1]-
[109, Theorem 1] of ESα(Z), for Z = X or Z = Y (under the assumptions of
continuous c.d.f.),

ESα(Z) = inf
x

(
x+

1

1− α
E
[
(Z − x)+]) . (2.7.21)

Now consider the function

G(x, z) := x+
1

1− α
(z − x)+

and note that, for �xed x, the function G(x, ·) is a uniformly Lipschitz function of z
with Lipschitz constant 1/(1− α). This implies in particular, by taking Z = X and
Z = Y , that for every x

E [G(x,X)]− E [G(x, Y )] | ≤ 1

1− α
E|X − Y |. (2.7.22)

Taking the inf in x in the above and using (2.7.21), we get (2.7.20) as desired.

Inspired from [26] , we develop further estimates on the Kolmogorov distance
between X and Y that might depend on higher moments for the di�erence between
these random variables. We apply these estimates to the error analysis of Algorithm
3, in which the bias due to �xing an approximation procedure for the samplings of Ψ
has to be controlled in order to have useful criteria for the choice of the parameters
of the algorithm.

Corollary 2.7.1 Assume that the scalar random variable X has a c.d.f. F which
is continuously di�erentiable and strictly increasing in a neighborhood of VaRα(X),
let f := dF/dλ be the respective density (where it exists), and let δ be such that the
inverse F−1 of F exists in an δ−neighborhood of α. Then for any scalar random
variable Y and any 0 < r, s < δ, the condition

VaRα−r(X) ≤ VaRα(Y ) ≤ VaRα+s(X)

implies that

|VaRα(X)− VaRα(Y )| ≤ sup
x∈[α−r,α+s]

|f(F−1(x))|−1dkol(X, Y ). (2.7.23)
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Proof This follows from the fact that, under the given hypotheses

VaRβ(X) = F−1(β)

whenever |β − α| < δ. The hypotheses on r and s imply now that

|VaRα(X)− VaRα(Y )| ≤ max
(
VaRα(X)− VaRα−r(X),VaRα+s(X)− VaRα(X)

)
(2.7.24)

= max
(
F−1(α)− F−1(α− r), F−1(α + s)− F−1(α)

)
.

It follows from the mean value theorem and the inverse function theorem that

|VaRα(X)− VaRα(Y )| ≤ sup
x∈[α−r,α+s]

|f(F−1(x))|−1 max(r, s)

which implies the desired conclusion if max(r, s) < dkol(X, Y ).
If this is not the case, for instance if r ≤ dkol(X, Y ) < s, a similar argument

using (2.7.19) (available since X has a continuous c.d.f.) to replace the second term
in the maximum (2.7.24) gives

|VaRα(X)− VaRα(Y )| ≤ sup
x∈[α−r,α+dkol(X,Y )]

|f(F−1(x))|−1max(r, dkol(X, Y ))

≤ sup
x∈[α−r,α+s]

|f(F−1(x))|−1dkol(X, Y ).

The other cases are treated similarly.

In order to pass to controls that depend only on the L1 distance, we present now
two estimates of dkol(X, Y ) that are related to the actual di�erence between X and
Y . These will be combined to estimate the expected error induced by the application
of the stochastic approximation procedure to the sequence of samplings produced
via regression.

Lemma 2.7.7 Assume that the scalar random variable X admits a density which
is bounded by C0. Then for any scalar random variable Y and any δ > 0

dkol(X, Y ) ≤ 2C0δ + P [|X − Y | > δ] . (2.7.25)

Proof The following argument was presented already in the proof of Lemma 2.7.4,
thus we give here a summarized version : for δ > 0 given and any ξ ∈ R, we have

|P [X ≤ ξ]− P [Y ≤ ξ] | ≤ E
[
|1[X≤ξ] − 1[Y≤ξ]|

]
= E

[
1[X≤ξ<Y ] + 1[Y≤ξ<X]

]
≤ E

[
1[−δ+X≤ξ≤X+δ]

]
+ E

[
1[|X−Y |>δ]

]
≤ 2C0δ + P [|X − Y | > δ] ,

using the hypothesis.

Corollary 2.7.2 Assume that the scalar random variable X admits a density which
is bounded by C0. Then for any scalar random variable Y and any p > 0 we have

dkol(X, Y ) ≤ (2C0 + 1)(E|X − Y |p)1/(1+p).

Proof For the case in which E|X −Y |p = +∞ the conclusion is trivially true. For
the p−integrable case, take δ = (E|X − Y |p)1/(1+p) in equation (2.7.25) and apply
Markov's inequality.
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2.7.8 A Nonasymptotic Estimate for Regressions

The following result is used to control the error due to the introduction of a
regression procedure in Algorithm 3 :

Theorem 2.7.4 ( [84, Theorem 11.5]) Let (X, Y ) be a random vector in Rd×R,
let F be a pointwise measurable set of functions f : Rd → R, with �nite Vapnik-
Chervonenkis dimension VCF ≥ 1. Assume that the random variable Y is bounded
by B > 0. If Dn = ((Xk, Yk))

n
k=1 is any vector of independent copies of (X, Y ) and

if we de�ne the random function fDn by

fDn := f̂Dn1|f̂Dn |≤B
+B1f̂Dn>B

−B1f̂Dn<−B
where

f̂Dn := arg min
f∈F

1

n

n∑
k=1

|f(Xk)− Yk|2,

then there exists a universal constant C? such that for any copy (X ′, Y ′) of (X, Y )
independent of Dn,

E
[
|fDn(X ′)− E[Y ′ | X ′]|2

]
≤ C?B

2VCF
(1 + ln(n))

n
+ 2 inf

f∈F
E
[
|f(X)− E[Y | X]|2

]
.

(2.7.26)

Remark 2.7.1 It may be useful to recall the meaning of (2.7.26) : if µX = QX−1 is
the law of X, then for any Dn−measurable nonnegative (random) function g = gDn
and any copy X ′ of X independent of Dn,

E
[
gDn (X ′) | Dn

]
=

∫
Rd
gDn (x)dµX(x). (2.7.27)

Now, if m is a (deterministic) function with the property that

m(X) = E[Y | X], Q− a.s.

(and therefore m(X ′) = E [Y ′ | X ′] because (X, Y ) ∼ (X ′, Y ′)), and if we apply
(2.7.27) to gDn := |fDn −m|2, we get that

E
[
|fDn(X ′)− E [Y ′ | X ′] |2|Dn

]
≥ inf

f∈F
E
[
|f ◦X ′ −m ◦X ′|2

]
= inf

f∈F
E
[
|f(X)− E [Y | X] |2

]
,

and therefore (2.7.26) tells us that, up to a factor of 2 (which can be improved by
looking carefully at the proofs), the accuracy of fDn as a predictor constructed from
F of Y as a function of X deviates from the optimal L2−accuracy

inf
f∈F

E
[
|f(X)− E [Y | X] |2

]
for no more than

CB2VCF
(1 + ln(n))

n

units, on L2
Q− expectation.

About estimating the Vapnik-Chervonenkis dimension of a neural network, see for
instance [22] . When F is a vector space, we can replace the factor VCF by the
dimension of the vector space plus one.
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Chapitre 3

XVA Principles, Nested Monte Carlo

Strategies, and GPU Optimizations

This chapter is based on Abbas-Turki, Crépey and Diallo [2].

3.1 Introduction

Since the 2008 �nancial crisis, investment banks charge to their clients, in the
form of rebates with respect to the counterparty-risk-free value of �nancial deriva-
tives, various add-ons meant to account for counterparty risk and its capital and
funding implications. These add-ons are dubbed XVAs, where VA stands for valua-
tion adjustment and X is a catch-all letter to be replaced by C for credit, D for debt,
F for funding, M for margin, or K for capital.

XVAs greatly complicate the derivative pricing equations by making them glo-
bal, nonlinear, and entity-dependent. However, in order to avoid or defer major IT
changes, many banks (but not all) tend to content themselves with the following
exposure-based approach (see e.g. [39]) : First, they compute the mark-to-market
cube of the counterparty-risk free valuation of all their contracts in any scenario
and future time point. Then they integrate in time the ensuing expected positive
exposure (EPE) pro�le against the hazard function of the client implied from its
credit default swap (CDS) CDS curve. Similar approaches are applied to DVA and
FVA computations (using the bank own CDS or funding curves instead of the client
CDS curve in the CVA case).

However, exposure-based approaches are purely static, whereas a dynamic pers-
pective is required for (at least rigorous dynamic) XVA hedging purposes and for
properly accounting for the feedback e�ects between di�erent XVAs (e.g. from the
CVA into the FVA). Moreover, an exposure-based XVA approach primarily assumes
independence between the market and credit sides of the problem : Beyond more or
less elaborate patches such as the ones proposed in [104], [78], [88], or [79], it is hard
to extend rigorously to wrong-way risk, which is the risk of adverse dependence
between the credit risk of the counterparty and the underlying market exposure.
Last but not least, an exposure-based XVA approach comes without error control,
at least whenever the exposure is computed by global regression involving uncondi-
tional approximations. Instead, in this paper, we explore a full simulation, nested

Monte Carlo XVA computational approach granting a O(M
− 1

2

(0) ) mean square error,
where M(0) is the outer number of trajectories, optimally implemented on graphic
programming units (GPUs).

[10] advocate a supercomputer XVA implementation, whereby risk factors are
simulated forward, whereas the backward pricing task is performed by fast matrix
exponentiation. Although extremely fast and accurate whenever applicable, this ap-
proach is restricted to models written as piecewise time homogeneous Markov chains
(for applicability of the matrix exponentiation formula) with at most three factors
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(unless advanced techniques are used for circumventing the curse of dimensionality),
Malliavin calculus can be used for extending such an approach to space continuous
models (see [1]), but the curse of dimensionality issue remains.

The outline of the paper is as follows. Section 4.3 sets the XVA stage. Section
3.3 presents the multi-layered dependence between the di�erent XVA metrics and
discusses their nested Monte Carlo (NMC) implementation from a high-level pers-
pective. Section 3.4 illustrates the above by three case studies. Section 3.5 discusses
future perspectives. Sections A through D detail the related GPU programming
optimization techniques.

The contributions of this work are the following : (a) from a high-level perspec-
tive, the conceptual view of Sect. 3.3 on the dependence between the XVA metrics,
and its algorithmic counterpart in the form of the nested Monte Carlo Algorithm
5 ; (b) from a technical point of view, the XVA NMC GPU programming optimi-
zation techniques detailed in the appendix, including the innovative Algorithm 6
for e�cient value-at-risk and expected shortfall computations ; and (c) the proof of
concept, by the numerical case studies of Sect. 3.4, that nested Monte Carlo XVA
computations are within reach if GPU power is properly used (cf. Table 3.9).

3.2 XVA Guidelines

In this section we recall the XVA principles of [12], to which we refer the reader
for more details. See also the companion papers by [11] and [24] for applications in
respective bilateral and centrally cleared trading setups. For other XVA frameworks,
see for instance [36] or [33] (without KVA) or, with a KVA meant as an additional
contra-asset like the CVA and the FVA (as opposed to a risk premium in our case),
[69], [72], or [53].

We consider a pricing stochastic basis (Ω,F,P), for a reference market �ltration
(ignoring the default of the bank itself) F = (Ft)t∈R+ and a risk-neutral pricing
measure P calibrated to vanilla market quotes, such that all the processes of interest
are F adapted and all the random times of interest are F stopping times. This holds
at least after so-called reduction of all the data to F starting from a larger �ltration
G including the default of the bank itself as a stopping time, supposing immersion
from F into G for simplicity in this work.

Remark 3.2.1 [12] explicitly introduce the larger �ltration G and show how to deal
with the XVA equations, which are natively stated in G, by reduction to F (denoting
the reduced data with a ·′). Here we directly state the reduced equations in F (and
we do not use the ·′ notation).

The P expectation and (Ft,P) conditional expectation are denoted by E and Et.
We denote by r an F progressive OIS (overnight indexed swap) rate process, which
is together the best market proxy for a risk-free rate and the reference rate for
the remuneration of the collateral. We write β = e−

∫ ·
0 rsds for the corresponding

risk-neutral discount factor.
We consider a bank trading, in a bilateral and/or centrally cleared setup, with

risky counterparties. The bank is also default prone, with default intensity γ and
recovery rate R. We denote by T an upper bound on the maturity of all claims in
the bank portfolio, also accounting for the time of liquidating the position between
the bank and any of its clients in case of default.
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By mark-to-market of a contract (or portfolio), we mean the (trade additive)
risk-neutral conditional expectation of its future discounted promised cash �ows D,
ignoring counterparty risk and its capital and funding implications, i.e. without any
XVAs. In particular, we denote by MtM the mark-to-market of the overall derivative
client portfolio of the bank.

3.2.1 Counterparty Exposure Cash Flows

To mitigate counterparty risk, the bank and its counterparties post variation and
initial margin as well as, in a centrally cleared setup, default fund contributions. The
variation margin (VM) of each party tracks the mark-to-market of their portfolio
at variation margin call times, as long as both parties do not default. However,
there is a liquidation period, usually a few days, between the default of a party and
the liquidation of its portfolio. Even in the case of a perfectly variation-margined
portfolio, the gap risk of slippage of the mark-to-market of the portfolio of a defaulted
party and of unpaid contractual cash �ows during its liquidation period justi�es the
need for initial margin (IM). The IM of each party is dynamically set as a risk
measure, such as value-at-risk (VaR) at some con�dence level aim, of their loss-
and-pro�t at the time horizon of the liquidation period (sensitivity VaR in bilateral
SIMM, which is the standard initial margin model for non-cleared derivatives, and
historical VaR for centrally cleared trading). In case a party defaults, its IM provides
a bu�er to absorb the losses that may arise on the portfolio from adverse scenarios,
exacerbated by wrong-way risk, during the liquidation period.

On top of the variation and initial margins that are used in bilateral transactions,
a central counterparty (CCP) deals with extreme and systemic risk on a mutualiza-
tion basis, through an additional layer of protection, called the default fund (DF),
which is pooled between the clearing members. The default fund is used when the
losses exceed the sum between the VM and the IM of the defaulted member. The
default fund contribution of the defaulted member is used �rst. If it does not su�ce,
the default fund contributions of the other clearing members are used in turn. Under
the current European EMIR regulation, the Cover 2 rule requires to size the default
fund as, at least, the maximum of the largest exposure and of the sum of the second
and third largest exposures of the CCP to its clearing members, updated periodi-
cally (e.g. monthly) based on �extreme but plausible� scenarios. The corresponding
amount is allocated between the clearing members, typically proportionally to their
losses over IM (or to their IM itself).

3.2.2 Funding Cash Flows

Variation margin typically consists of cash that is re-hypothecable, meaning that
received VM can be used for funding purposes and is remunerated OIS by the re-
ceiving party. Initial margin, as well as default fund contributions in a CCP setup,
typically consist of liquid assets deposited in a segregated account, such as govern-
ment bonds, which pay coupons or otherwise accrue in value. We assume that the
bank can invest at the OIS rate r and obtain unsecured funding for borrowing VM
at the rate (r+λ), where the unsecured funding spread λ = (1−R)γ can be interpre-
ted as an instantaneous CDS spread of the bank. Initial margin is funded separately
from variation margin (see the third paragraph of Section 3.2 in [11]) at a blended
spread λ̄ that depends on the IM funding policy of the bank (see Section 4.3 in [11]).
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3.2.3 Cost of Capital Pricing Approach in Incomplete Coun-
terparty Credit Risk Markets

In theory, a bank may want to setup an XVA hedge. But, as (especially own)
jump-to-default exposures are hard to hedge in pratice, such a hedge can only be very
imperfect. In the context of XVA computations, we assume a perfectly collateralized
back to back market hedge of its client portfolio by the bank (i.e. the bank posts
MtM as variation margin on its hedge), but we conservatively assume no XVA hedge.

To deal with the corresponding market incompleteness issue, we follow a cost
of capital XVA pricing approach, in two steps. First, the so-called contra-assets are
valued as the expected costs of the counterparty default losses and risky funding
expenses. Second, on top of these expected costs, a KVA risk premium (capital
valuation adjustment) is computed as the cost of a sustainable remuneration of the
shareholder capital at risk which is earmarked by the bank to absorb its exceptional
(beyond expected) losses.

More precisely, the contra-asset value process (CA) corresponds to the expected
discounted future counterparty default losses and funding expenditures. Incremental
CA amounts are charged by the bank to its clients at every new deal and put in a
reserve capital account, which is then depleted by counterparty default losses and
funding expenditures as they occur.

In addition, bank shareholders require a remuneration at some hurdle rate h,
commonly estimated by �nancial economists in a range varying from 6% to 13%,
for the risk on their capital. Accordingly, an incremental risk margin (or KVA) is
sourced from clients at every new trade in view of being gradually distributed to
bank shareholders as remuneration for their capital at risk at rate h as time goes
on.

Remark 3.2.2 In practice, target return on equities are �xed by the management
of the bank every year. In the context of our XVA computations, we take h as an
exogenous constant for simplicity.

Cost of capital calculations involve projections over decades in the future. The
historical probability measure is hardly estimable on such time frames. As a conse-
quence, we do all our price and risk computations under the risk-neutral measure
P.

The uncertainty on the hurdle rate or on the historical probability measure are
left to model risk.

3.2.4 Contra-Assets Valuation

We work under the modeling assumption that every bank account is continuously
reset to its theoretical target value, any discrepancy between the two being instan-
taneously realized as loss or earning by the bank.

In particular, the reserve capital account of the bank is continuously reset to
its theoretical target CA level so that, much like with futures, the trading position
of the bank is reset to zero at all times, but it generates a trading loss-and-pro�t
process L. Our equation for the contra-assets value process CA is then derived from
a risk-neutral martingale condition on the trading loss process L of the bank, along
with a terminal condition CAT = 0. This martingale condition on L corresponds to
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a bank shareholder no arbitrage condition. It results in

CA = CVA + FVA + MVA, (3.2.1)

for setup-dependent, but always nonnegative, CVA, FVA, and MVA processes. The
FVA corresponds to the cost of funding cash collateral for variation margin, whereas
the MVA is the cost of funding segregated collateral posted as initial margin.

We emphasize that we ignore the DVA and we only deal with nonnegative XVA
numbers, in accordance with a shareholder-centric perspective where shareholders
need be at least indi�erent to a deal at a certain price for the deal to occur at
that price. In case a DVA is needed (e.g. for regulatory accounting purposes), it
can be computed much like the CVA. Regarding the funding issue, we consider
an asymmetric, nonnegative FVA, which is part of an FVA/FDA (where FDA sits
for funding debt adjustment) accounting framework, as opposed to an FCA/FBA
(funding cost adjustment/funding bene�t adjustment) accounting framework where
it is (unduly) assumed that the bank earns its credit spread when it invests excess
cash generated from trading (see [7]).

Example 3.2.1 We consider a bank engaged into bilateral trading with a single
client, with �nal maturity of the portfolio T . Let Rc denote the recovery rate of the
client in case it defaults at time τc. Let PIM and RIM denote the initial margins
posted and received by the bank on its client portfolio. Then, assuming for simplicity
an instantaneous liquidation of the bank portfolio in case the client defaults, we have,
for 0 ≤ t ≤ T (counting the VM positively when received by the bank) :

CVAt = Et1{t<τc≤T}β−1
t βτc(1−Rc)

(
MtMτc +Dτc −Dτc− − VMτc − RIMτc

)+

,
(3.2.2)

FVAt = Et
∫ τc∧T

t

β−1
t βsλs

(
MtMs − VMs − CVAs − FVAs −MVAs

)+

ds, (3.2.3)

MVAt = Et
∫ τc∧T

t

β−1
t βsλ̄sPIMsds. (3.2.4)

See [11] for the extension of these equations to the case of a bank engaged into
bilateral trade portfolios with several counterparties.

Note that the jump process (Dτc−Dτc−) of the contractually promised cash �ows
contributes to the CVA exposure of the bank

Q =
(
MtM +D −D− − VM− RIM

)
(3.2.5)

that appears in (3.2.2), because (Dτc − Dτc−) fails to be paid by the client if it
defaults. In most cases, however (with the notable exception of credit derivatives
exposed in Sect. 4.5), this is immaterial because Dτc = Dτc−.

Remark 3.2.3 In the special case of a single counterparty, we also have the follo-
wing equation for the CA = CVA + FVA + MVA process :

CAt = Et
[
1{t<τc≤T}β

−1
t βτc(1−Rc)

(
MtMτc +Dτc −Dτc− − VMτc − RIMτc

)+

+

∫ τc∧T

t

β−1
t βs

(
λs(MtMs − VMs − CAs)

+ + λ̄sPIMs

)
ds
]
, t ≤ t ≤ T.

(3.2.6)

From the nested Monte Carlo perspective developed in Sect. 3.3, compared with
(3.2.2), this equation �spares� the CVA and MVA Monte Carlo layer in the com-
putation of the FVA.
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At the valuation time 0, assuming deterministic interest rates, the CVA (3.2.2)
can be rewritten as

CVA0 = (1−Rc)

∫ T

0

βtEPE(t)P(τc ∈ dt), (3.2.7)

where the expected positive exposure (EPE) is de�ned as

EPE(t) = E(Q+
s |s = τc)|τc=t.

As explained in Sect. 4.2, this identity is popular with practitioners as it decouples
the credit and the market sides of the problem. But it is speci�c to the valuation
time 0 and is only practical when the market and credit sides of the problem are
independent, so that EPE(t) = E(Q+

t ). It can hardly be extended rigorously to
wrong-way risk (cf. [49]). A similar approach is commonly applied to FVA (and
DVA) computations, with analogous pitfalls.

3.2.5 Economic Capital and Capital Valuation Adjustment

On top of no arbitrage in the sense of risk-neutral CA valuation, bank sharehol-
ders need be remunerated at some hurdle rate h for their capital at risk.

The economic capital (EC) of the bank is dynamically modeled as the conditional
expected shortfall (ES) at some quantile level a of the one-year-ahead loss of the
bank, i.e., also accounting for discounting :

ECt = ESat (
∫ t+1

t

β−1
t βsdLs). (3.2.8)

As established in [12], Section 5.3, assuming a constant hurdle rate h, the amount
needed by the bank to remunerate its shareholders for their capital at risk in the
future is

KVAt = hEt
∫ T

t

e−
∫ s
t (ru+h)duECsds, t ∈ [0, T ]. (3.2.9)

This formula yields the size of a risk margin account such that, if the bank gradually
releases from this account to its shareholders an average amount

h(ECt −KVAt)dt, (3.2.10)

then there is nothing left on the account at time T (if T < the bank default time τ ,
whereas, if τ < T , anything left on the risk margin account of the bank is instanta-
neously transferred to the creditors of the bank).

The �−KVAt� in (3.2.10) or the �+h� in the discount factor in (3.2.9) re�ect the
fact that the risk margin is itself loss-absorbing and as such it is part of economic
capital. Hence, shareholder capital at risk, which needs be remunerated at the hurdle
rate h, only corresponds to the di�erence (EC−KVA).

Remark 3.2.4 For simplicity we are skipping here the constraint that capital at
risk is greater than the KVA (as the risk margin is loss-absorbing). This can be
formally achieved in our model by de�ning capital at risk as the maximum between
economic capital (in the sense of the risk measure 3.2.8) and the KVA, which results
in a semilinear KVA BSDE. However, due to the tendency of economic capital to
decrease with time (because of the amortization of the bank portfolio modeled on run-
of basis, cf. Sect. 3.2.6), taking this maximum or not typically makes no di�erence
in practice (cf. [12], Sections 5.4 and 7.2�7.3).
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Remark 3.2.5 An alternative to economic capital in KVA computations is regula-
tory capital. Regulatory capital however is less consistent, as it looses the connection
with other XVAs, whereby the input to EC and in turn KVA computations should be
the loss and pro�t process L generated by the CVA, FVA, and MVA trading of the
bank (a martingale part of the CA process in (3.2.2)).

3.2.6 Funds Transfer Price

The total (or risk-adjusted) XVA is the sum of the risk-neutral CA and of the
KVA risk premium. In the context of XVA computations, derivative portfolios are
typically modeled on a run-o� basis, i.e. assuming that no new trades will enter the
portfolio in the future. Otherwise the bank could be led into snowball Ponzi schemes,
whereby always more deals are entered for the sole purpose of funding previously
entered ones. Moreover, the trade-�ow of a bank, which is a price-maker, does not
have a stationarity property that could allow the bank forecasting future trades.

Of course in reality a bank deals with incremental portfolios, where trades are
added or removed as time goes on. In practice, incremental XVAs are computed
at every new (or tentative) trade, as the di�erences between the portfolio XVAs
with and without the new trade, the portfolio being assumed held on a run-o� basis
in both cases. The ensuing pricing, accounting, and dividend policy ensures the
possibility for the bank to go into run-o�, while staying in line with shareholder
interest, from any point in time onward if wished.

3.3 Multi-layered NMC for XVA Computations

In this section we present the multi-layered dependence between the di�erent
XVA metrics and we discuss their nested Monte Carlo (NMC) implementation from
a high-level perspective, referring the reader to the appendix for more technical GPU
implementation and optimization developments.

3.3.1 NMC XVA Simulation Tree

The EC (3.2.8) and the IM are conditional risk measures. The KVA (3.2.9)
and the MVA (3.2.4) are expectations of the latter integrated forward in time (or
randomized, i.e. sampled at a random future time point). The FVA (3.2.3) is the
solution of a backward stochastic di�erential equation (BSDE). The CVA (3.2.2)
and MtM are conditional expectations.

In view of Remark 3.2.5 regarding the dependence of L with respect to the CVA,
the MVA, and the FVA, a full Monte Carlo simulation of all XVAs would require
a �ve layered NMC (six layers of Monte Carlo) : The �rst and most inner layer
would be dedicated to the simulation of MtM, then would come the IM, over which
one would simulate the CVA and the MVA that are needed before simulating the
FVA. The FVA layer must be run iteratively in time for solving the corresponding
BSDE on a coarse time grid. All previous quantities are used in the computation of
the economic capital process involved in the most outer layer that approximates the
KVA.

Figure 3.1 schematizes this interdependence between the simulation of MtM and
of the di�erent XVAs. The numbers of independent trajectories that have to be re-
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simulated at each level are denoted by Mkva, Mec, Mfva, Mcva, Mim, and Mmtm. For
computational feasability, MtM and all XVAs should be functions of time t and of a
Markovian risk factor vector process Z, which can generically be taken as a Markov
chain H modulated by a jump-di�usion X, where the Markov chain component H
encodes the default times τi of all the �nancial entities involved : cf. the model of
Section 12.2.1 in [44] (see also Section 4.2.1 there for a review of applications).

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

  , MtMt=s,...,s+1

Depth

Mcva

Mfva

Mkva

Mec

KVA0

ECs, 0<s<T

Mim

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

  , MtMu=t,...,T

CVAu, MVAu

IMv=u,...,T

  , MtMv=u,...,T

IMv

  , MtMw=v,...,v+

  , MtMw

Mmtm

. . . . .

. . . .

. . . .

. . .

. . .

. .

Figure 3.1 � XVA NMC simulation tree, from the most outer layer to the most
inner one. The sub-tree rooted at the left-most node (on the solid path) on each line
should be duplicated starting from each node on the right (on the dashed paths) on
the same line. Brute force processing of the full tree would correspond to a quintuply
nested Monte Carlo.

Figure 3.1 yields the overall MtM and XVAs intra-dependency structure. Howe-
ver : (a) if the user is only interested in some of the XVA components, then only the
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sub-tree corresponding to the highest XVA of interest in the �gure needs be proces-
sed computationally ; (b) if one or several layers can be computed by explicit (exact
or approximate) formulas instead of Monte Carlo simulation, then the corresponding
layers drop out of the picture.

3.3.2 Recursive Nested vs. Iterative Proxies

The second bullet point above touches to the trade-o� between iterative and
recursive XVA computations, where some layers of the computation can either be
recursively simulated in an NMC fashion, or iteratively pre-computed o�-line and
stored for further use in higher layers.

In an NMC perspective (see [68] for a seminal reference), higher layers are laun-
ched �rst and trigger nested simulations on-the-�y whenever required in order to
compute an item from a lower layer. At the other extreme, in a purely iterative
regression approach, the various layers are computed iteratively from bottom to top
everywhere in time space�but with a non controllable error, as regression schemes
only yield error control at the point where the regression paths are initiated. This
is due to the unconditional approximations involved in regressions (unless advanced
local regression basis techniques can be applied, cf. [65]). Things get even worse
with wrong-way risk extensions of such an approach or with its leveraging to higher
order XVAs, when several regression layers are stacked one above the other, e.g.
using a one-stage simulation with the same set of trajectories for regressing globally
both MtM and some XVAs. The corresponding biases can then amplify each other,
resulting in quite unpredictable numerical behavior.

Beyond the XVA area, such iterative vs. recursive trade-o�s are an important
NMC issue. Naive parametric approximations stacked one above the other as higher
order XVAs are considered can only result in uncontrollable biases. Inner simulation
in nested Monte Carlo instead creates variance, which is more manageable. Another
alternative is the use of deterministic pricing schemes based on probability transition
matrices as in [13] and [10]. These can be very e�cient and do not create any other
than discretization bias, but they are restricted to certain models as discussed in
Sect. 4.2.

In practice, as of today, playing with the two bullet points above, banks tend
to put themselves in a position where at most one nested layer of Monte Carlo
is required. For instance, 90% at least of their trading book consists of products
with mark-to-market analytics, which spares the lowest layer in Figure 3.1. So far
banks mostly rely on a risk weighted assets (RWA) or a regulatory capital based
KVA instead of an economic capital based one (see [72]). In the context of MVA
simulations, they develop various tricks such as so-called dynamic IM mapping in
order to avoid resimulating for computing the IM at every future node (see [71]
or [21]). They avoid the BSDE feature of an asymmetric FVA by switching to a
symmetric FVA corresponding to a conditional expectation for a suitably modi�ed
discount factor, which spares the iterated regressions in FVA computations (see [11,
Remark 5.1], [7], [8], [9], and [15]). Above all, most banks are using an exposure-
based XVA approach, described Sect. 4.2 and in the last paragraph of Sect. 3.2.4,
where it is at most the determination of the mark-to-market cube that involves
(simply layered) Monte Carlo simulation(/regression).
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3.3.3 XVA NMC Design Parameterization

Based on su�cient regularity as well as a non-exploding moments condition ex-
pressed by their Assumption 1, [68] show that, for balancing the outer variance and
square bias components of the mean square error (MSE) in a one-layered NMC, the
number of inner trajectories M(1) must be asymptotically of the order of the square
root of the number of outer trajectories M(0). This is because, by a classical cancel-
lation of the �rst order term in the related Taylor formula, the variance produced
in the inner stage of a one-layered NMC is transformed into a bias in the outer
stage. Hence, assuming that the variance of the outer random quantity is of the
same order of magnitude as the conditional variances produced by the inner random

quantities, an M(0) ⊗M(1) = M(0) ⊗
√
M(0) NMC has the same O(M

− 1
2

(0) ) accuracy
as an M(0) ⊗M(1) = M(0) ⊗M(0) NMC.

To illustrate this in an XVA setup, denoting unbiased Monte Carlo estimators
of the (time 0) XVAs and of the MtM by ·̂ and referring to the dependence between
XVAs or MtM in functional form, e.g. CVA(MtM), we compute :

MSE2
cva = E(ĈVA(M̂tM)− CVA(MtM))2

= E(ĈVA(M̂tM)− E(ĈVA(M̂tM)))2 + [E(ĈVA(M̂tM))− CVA(MtM)]2.

In the context of an outer CVA Monte Carlo, the �rst term is a variance like O( 1
Mcva

).
The second term is the square of a bias that can be Taylor expanded as follows (as
E(ĈVA(M̂tM)) = E(CVA(M̂tM))) :

E[ĈVA(M̂tM)]− CVA(MtM) = ∂MtMCVA× (EM̂tM−MtM)

+
1

2
∂2

MtM2CVA× E(M̂tM−MtM)2,

where the �rst line vanishes, because M̂tM estimates without bias MtM, whereas
E(M̂tM−MtM)2 is a variance like O( 1

Mmtm
). In conclusion, we obtain

MSE2
cva = O(

1

Mcva

+
1

M2
mtm

).

Leveraging this idea for a two-layered NMC with homogeneous variances, nested
Taylor expansions yield that an M(0) ⊗ M(0) ⊗ M(0) NMC has the same order of
accuracy as an M(0)⊗M(0)⊗

√
M(0) NMC, itself as accurate as an M(0)⊗

√
M(0)⊗√

M(0) NMC.
For instance, in the case of an outer FVA Monte Carlo, we have :

MSE2
fva = E(F̂VA(ĈVA(M̂tM))− FVA(CVA(MtM)))2

= E(F̂VA(ĈVA(M̂tM))− E(F̂VAĈVA(M̂tM))))2

+ [E(F̂VA(ĈVA(M̂tM)))− FVA(CVA(MtM))]2.

The term in the second line is a variance like O( 1
Mfva

). The third line is the square of a

bias that can be Taylor expanded as follows (as E(F̂VA(ĈVA(M̂tM))) = E(FVA(ĈVA(M̂tM)))) :

E(F̂VA(ĈVA(M̂tM)))− FVA(CVA(MtM)) =

∂CVAFVA× (E(ĈVA(M̂tM))− CVA(MtM))

+
1

2
∂2

CVA2FVA× E(ĈVA(M̂tM)− CVA(MtM))2,
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where E(ĈVA(M̂tM))−CVA(MtM) was seen before to be O( 1
Mmtm

), whereas E(ĈVA(M̂tM)−
CVA(MtM))2 is MSE2

cva. Hence

MSE2
fva = O(

1

Mfva

+
1

M2
cva

+
1

M2
mtm

).

As established in [105], in the general case of an i ≥ 1-layered NMC (e.g. i = 5
for the overall simulation of Figure 3.1) and assuming the same variance created
through the di�erent stages, M(0)⊗M(1)⊗ . . .⊗M(i) = M(0)⊗

√
M(0)⊗ . . .⊗

√
M(0)

has the same O(M
− 1

2

(0) ) accuracy as M(0) ⊗M(0) ⊗ . . .⊗M(0).
Moreover, in practice, the variance is not homogeneous with respect to the

stages : For the VaR and ES of con�dence level a that correspond to the IM and
EC layers, the asymptotic rate of convergence is still given by the square root of
the corresponding number of simulations (as in the case of an expectation), but this
may come with larger constants (proportional to (1 − α)−1 in particular, see [50]
and [56]). For inner layers involving time iterated conditional averaging (space regres-
sions), such as with inner FVA or Bermudan MtM computations, one may use only
O(
√
M(0)/

√
Nb) or even O(

√
M(0)/Nb) paths (depending on the regularity of the

underlying cash �ows, see [1]) without compromising the overall O(M
− 1

2

(0) ) accuracy.
In view of the above, we propose an XVA NMC algorithm with the following design :

1 Input : The endowment of the bank, the credit curves of the bank
and its clients, and, possibly, a new tentative client trade ;

2 Select layers of choice in a sub-tree of choice in Figure 3.1 (cf.
Sect. 3.3.2), with corresponding tentative number of simulations
denoted by M(0), . . . ,M(i), for some 1 ≤ i ≤ 5 (we assume at least
one level of nested simulation) ;

3 By dichotomy on M(0), reach a target relative error (in the sense
of the outer con�dence interval) for M(0) ⊗M(1) . . .⊗M(i) NMCs
with M(1) = . . . = M(i) =

√
M(0) ;

4 For each j decreasing from i to 1, reach by dichotomy on M(j) a
target bias (in the sense of the impact on the outer con�dence
interval) for M(0) ⊗M(1) ⊗ . . .⊗M(j) ⊗ . . .⊗M(i) NMCs ;

5 Return(The time 0 XVAs of interest pertaining to the bank portfolio and,
if relevant, the incremental XVAs pertaining to a tentative trade)

Algorithm 5: XVA NMC algorithm.

Example 3.3.1 Considering the overall 5-layered NMC of Figure 3.1, in order to
ensure a 5% relative error (in the sense of the corresponding con�dence interval)
at a 95% con�dence level, which we can take as a benchmark order of accuracy
for XVA computations in banks, the above approach may lead to Mmtm, Mim, and
Mcva between 102 and 103. As the FVA is obtained from the resolution of a BSDE
that involves multiple (conditional) averaging, Mfva can be even smaller than 102

without compromising the accuracy. Due to the approximation of the conditional
expected shortfall risk measure involved in economic capital computations, for Mkva

of the order of 103, Mec has to be bigger than 103 but usually can be smaller than
104.
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3.3.4 Coarse and Fine Parallelization Strategies

Because of the wide exposure of a bank to a great number of counterparties, it
would be very complicated and ine�cient to divide the overall XVA computation into
small pieces associated to local deals. In other words, it is unsuitable to distribute
XVA computations : in the interest of data locality it is more appropriate to process
the overall task in parallel. In fact, unless special cases (with a great deal of analytical
tractability) are considered or crude and ad-hoc approximations without control
error are used, the XVA NMC algorithm 5 can only be run on high performance
concurrent computing architectures. Currently the most powerful ones involve GPUs
(see Figure 3.4 in Section D.2). As of today, a state of the art GPU comprises
roughly 4000 streaming processors operating at 2GHz each, versus 20 physical cores
operating at 4GHz on a state of the art CPU (central processing unit). Hence a
GPU implementation means a potential ∼ 100 speedup with respect to a CPU
implementation.

However, execution time is an output not only of the number and nature of
computations (boiling down to bitsize operations, e.g. additions), but also of the
number and nature of memory accesses (depending on the technology of the related
physical storage capacities as well as on the distances that separate them from the
computing units on the motherboard). In practice, the main bottleneck with GPU
programming is memory and, more precisely, memory bandwidth (i.e. volume of
data retrievable per second from the memory).

For XVA applications this advocates the use of supercomputers with fewer and
fewer but bigger and bigger computing nodes (i.e., basically, motherboards with 1 or
2 CPUs and 1 to 8 GPUs, see e.g. www.olcf.ornl.gov/summit/), equipped with a very
large memory and several GPUs. However, thanks to the NVLink technology that
improves the communications between GPUs (cf. [95]), scaling NMC from one GPU
to various GPUs on a given node has become straightforward and very e�cient.
Moreover, NMC can be very well parallelized on di�erent nodes with respect to
outer trajectories, using the message passing interface (MPI) as explained in [3],
[4], who compare the performances of optimized CPU and GPU implementations.
Hence, nowadays, a single GPU implementation of NMC XVA computations is easily
scalable to a supercomputer.

Regarding the parallelization strategy, from a GPU locality programming prin-
ciple (see [94], [93]) : (a) if only one GPU is available, then the paths should be
allocated between its streaming processors from the most inner nested layer of si-
mulation to the most outer one, in a �ne grain strati�cation approach ; (b) if several
GPUs on one single node are available, then one should allocate between the dif-
ferent GPUs the most outer paths of the simulation, using a �ne grain strati�cation
approach on each of them for the allocation of the computational task between its
streaming processors ; (c) if even several computing nodes (each equipped with seve-
ral GPUs) are available, then one should allocate between them the most outer paths
of the simulation and, for each of them, allocate between the corresponding GPUs
the intermediary levels of the simulation, using on each of them a �ne grain strati-
�cation approach for allocating more inner computations between their respective
streaming processors.

Remark 3.3.1 The �rst supporters of such a global procedure were [10], in the
context, at that time, of CVA computations. With the advent of second generation
XVAs in particular (MVA and KVA involving not only conditional expectations, but
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also conditional risk measures), data locality is even more stringent, but also much
more accessible than before thanks to the large high bandwidth memories (HBM)
available on GPUs and to the non-volatile memory architecture recently proposed
by Intel. This favors the use of large memory computing nodes with a huge GPU
computing throughput. As compared with [10] where backwardation pricing stages
are treated by matrix exponentiation (in suitable models), the full NMC strategy of
this paper is more complex, but it also more scalable to the above technology leaps.

3.4 Case Studies

In this section we illustrate the above by (mostly simply) nested Monte Carlo
XVA computations in various markets and setups. The corresponding GPU pro-
gramming optimization techniques are detailed in the Appendix. All the models,
data, and values of the numerical parameters that are used in our experiments are
explicitly provided in the text or in the quoted references. Hence all these experi-
ments are fully reproducible.

All our simulations are run on a laptop that has an Intel i7-7700HQ CPU and
a single GeForce GTX 1060 GPU programmed with the CUDA/C application pro-
gramming interface (API). Applying an XVA NMC computational approach to a
real-life banking portfolio would require to leverage the calculations on a supercom-
puter with several nodes, each equipped with several CPUs and GPUs, following the
strategy exposed in Sect. 3.3.4. We refer the reader to [11, Section 5] for numerical
results on a real banking portfolio.

3.4.1 Common Shock Model of Default Times

Under our approach in this paper, we favor a granular simulation of all defaults
other than the default of the bank (which is treated by reduction of �ltration as
explained in Remark 3.2.1), as opposed to working with default intensities simply.

Regarding the default times τi, i = 1, . . . , n, of the �nancial entities (other than
the bank) involved, we use the �common shock� or dynamic Marshall-Olkin copula
(DMO) model of [34], Chapt. 8�10 and [49] (see also [52], [55]). In this model defaults
can happen simultaneously with positive probabilities.

First, we de�ne shocks as pre-speci�ed subsets of the credit names, i.e. the single-
tons {1}, {2}, . . . , {n}, for idiosyncratic defaults, and a small number of groups repre-
senting names susceptible to default simultaneously. For instance, a shock {1, 2, 4, 5}
represents the event that all the (non-defaulted entities among the) names 1, 2, 4,
and 5 default at that time.

Given the family Y of shocks, the times τY of the shocks Y ∈ Y are modeled as
independent Cox times with intensity processes γY (posibly dependent on the factor
process X). For each credit name i = 1, . . . , n, we then set

τi = min
{Y ∈Y; i∈Y }

τY , (3.4.1)

i.e. the default time of the name i is the �rst time of a shock Y that contains i. We
write J i = 1[0,τi).

As demonstrated numerically Section 8.4 in [34], a few common shocks (beyond
the idiosyncratic ones) are typically enough to ensure a good calibration of the model
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to market data regarding the credit risk of the �nancial entities and their default
dependence (or to expert views about these).

The default model is then made dynamic, as required for XVA computations, by
the introduction of the �ltration of the indicator processes of the τi.

As detailed in Section A, we use a �ne time discretization {t0 = 0, . . . , tNf = T}
for the forwardation of the market risk factors and a coarse discretization {s0 =
0, . . . , sNb = T} embedded in the latter for prices backwardation. In practice banks
use adaptative time step, e.g. hk+1 = sk+1−sk, re�ecting the density of the underlying
cash �ows. In our case studies we just use uniform grids, �xing the number of
time steps Nf used for a �ne discretization of the factor process X (and then in
turn of the Cox times used for generating the τY ) as a multiple of some coarse
discretization parameter Nb. We simulate M(0) outer stage trajectories from t0 = 0

to tNf = T . From each simulated value X̂k, on the coarse time grid k ∈ {1, . . . , Nb},
we simulate on the �ne grid M(1) inner trajectories starting at sk = tkNf/Nb and

ending at tNf = T , the �nal maturity of the portfolio. We denote by (Ŷk) any

discretization on the coarse time grid (sk) of a continuous time process (Yt), by (Ŷ j
k )

independent simulations of the latter, and by Ê the empirical mean.

3.4.2 CVA on Early Exercise Derivatives

First we deal with CVA and the embedded MtM computations regarding a Ber-
mudan option on a trivariate Black�Scholes process X.

We consider a Bermudan derivative, with mark-to-market MtMt = P (t,Xt) for
some pricing function P = P (t, x) such that, at each pricing / exercise time sk,

P (sk, Xsk) = sup
θ∈T k

E
(
β−1
sk
βθφ(Xθ)|Xsk

)
, (3.4.2)

where φ is the payo� function and T k is the set of stopping times valued in the
coarse time subgrid {sk, . . . , sNb}.

For k = 0, . . . , Nb − 1, let

Ak =
{
βskφ(Xsk) > E

(
βsk+1

P (sk+1, Xsk+1
)
∣∣∣Xsk

)}
.

As detailed in [42], we have P (0, x) = E
(
βτ∗0 φ(Xτ∗0

)|X0 = x
)
, where τ ∗0 is de�ned

through the iteration τ ∗Nb = T and, for k decreasing from (Nb − 1) to 0,

τ ∗k = sk1Ak + τ ∗k+11Ack . (3.4.3)

The computation of MtM0 = P (0, X0 = x) can then be performed by a simula-
tion/regression/projection á la Longsta� and Schwartz [90], consisting in approxi-
mating the conditional expectation involved in Ak by regression on a basis of mono-
mial functions. Moreover, in an NMC setup, this can be extended to the estimation
of any MtMsk+1

= P (sk+1, Xsk+1
) in the obvious way, by nested simulation rooted

at (sk+1, Xsk+1
= x).

Let τ1 = τc represent the default time of a client of the bank with default intensity
equal to γc = 100bp and recovery Rc = 0 (here n = 1, i.e. there is only one credit
name involved). The process X is a three dimensional Black & Scholes model with
common volatilities σi=1,2,3 = 0.2 and pairwise correlations = 50%. The spot value
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X i=1,2,3
0 = 100 = K, where K is the strike of a Bermudan put on the average with

maturity T = 1. We assume no (variation or initial) margins.
By (3.2.2), the time 0 CVA of the option is approximated as

CVA0 ≈
Nb−1∑
k=0

E
(
1{τc∈(sk,sk+1]}βsk+1

(1−Rc)MtM+
sk+1

)
,

which we estimate by

ĈVA0 =
1

Mcva

Mcva∑
j=1

Nb−1∑
k=0

1{τ jc∈(sk,sk+1]}β̂
j
k+1(M̂tM

j

k+1)+, (3.4.4)

where the M̂tM
j

k+1 are computed by nested Longsta�-Schwartz algorithms as ex-
plained above.

Using the GPU optimizations presented in Sections A, B.2, and D.1 , within less
than a tenth of a second, this procedure yields the results presented in Table 3.1
for the computation of ĈVA0. According to Table 3.1 (note that all indications of
computation times are deferred to Table 3.9), for Mcva = 4096, it is not necessary
to simulate more than Mmtm = 128 inner trajectories if one targets an (absolute)
error of ±5, as the corresponding estimates for Mmtm = 128 and 512 only di�er by
1.

Mmtm CVA0 value Exec. time (sec)
32 348 0.027
128 334 0.084
512 333 0.306

Table 3.1 � CVA0 for an Bermudan put of payo� (K−1
3
(x1+x2+x3))+ :Mcva = 4096

and con�dence interval 95% of ±5.

3.4.3 CVA and FVA on Defaultable Claims

Next we deal with CVA, FVA, and the embedded MtM computations relative to
a CDS portfolio.

In this case, τ1 = τc represents the default time of a single �nancial counterparty
(client) of the bank, with default intensity γc =

∑
{Y ∈Y; 1∈Y } γ

c and recovery rate Rc,
and τ2, . . . , τn are the default times of reference �nancial entities in credit default
swaps between the bank and its client.

We consider stylized CDS contracts corresponding to cash �ow processes of the
form, for i ≥ 2 and 0 ≤ t ≤ T :

Di
t = Nomi ×

(
(1−Ri)1t≥τi − Si(t ∧ τi)

)
, (3.4.5)

where all recoveries Ri are set to 40% and all nominals Nomi are set to 100.
A portfolio of 70 payer CDS contracts and 30 receiver CDS contracts, as well as

all the numerical parameters for the simulations, are taken as in [34], Section 10.1.2,
in the case of a client with CDS spread equal to 100bp. In particular, no variation
or initial margins are assumed.
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We denote by MtMi = Et[
∫ T
t
β−1
t βsdD

i
s] the mark-to-market of a fees-payer CDS

on name i, so that the mark-to-market of the overall portfolio is

MtM =

(∑
i pay

−
∑
i rec

)
MtMi. (3.4.6)

We also consider the pre-default pricing functions P i(t, x) such that MtMi
t = J itP

i(t,Xt)
(cf. Proposition 13.4.1 in [34]).

The contractual spreads Si are such that the CDS contracts break even at time 0,
i.e MtMi

0 = 0. Setting LGDi = (1−Ri)Nomi (the loss on the bond of the reference
name i in case it defaults, in the �nancial interpretation), we denote

∆t =
( ∑
i pay

−
∑
i rec

)
(Di

t −Di
t−) =

( ∑
i pay

−
∑
i rec

)
1τi=t<TLGDi,

the jump process of the cash �ows priced by MtM (as explained after (3.2.5), the
process ∆ belongs to the CVA exposure).

In order to realistically mimic the randomness of the CDS credit spreads, we
use the a�ne intensity framework of [34], Section 10.1.1, for the intensities γY

in the common shocks model, based on a multivariate Cox-Ingersoll-Ross (CIR,
component-wise) factor process X = (X1, X2, X3).

CVA

We have the following representation for the time 0 CVA (cf. (3.2.2)) :

CVA0≈
Nb−1∑
k=0

E
(
1{τc∈(sk,sk+1]}βsk+1

(1−Rc)×[
(
∑
i pay

−
∑
i rec

)1{τi>sk+1}P
i(sk+1, Xsk+1

) + (
∑
i pay

−
∑
i rec

)1{τi∈(sk,sk+1]}LGDi

]+)
,

Denoting by (P̂ i,j
k , τ̂ ji ) simulated values of the P i(sk, Xsk), estimated using inner

trajectories, and of the τi, our estimator ĈVA0 of (3.4.3) is given by (recall τ1 = τc)

ĈVA0 =
1

Mcva

Mcva∑
j=1

Nb−1∑
k=0

1{τ̂ j1∈(sk,sk+1]}β̂k+1(1−Rc)×[
(
∑
i pay

−
∑
i rec

)1{τ̂ ji >sk+1}P̂
i,j
k+1 + (

∑
i pay

−
∑
i rec

)1{τ̂ ji ∈(sk,sk+1]}LGDi

]+

.

Table 3.2 shows the results of a GPU implementation of the above bene�ting from
the optimizations presented in Sections A and B.2. We see that, forMcva = 1024∗100
paths, taking Mmtm = 128 is already enough : The gain in bias that results from
taking Mmtm greater is negligible with respect to the uncertainty of the simulation
(size of the con�dence interval).

Mmtm CVA value CI 95% Rel. err. Exec. time (sec)
128 2358.92 ±76.47 3.24% 5.96
256 2358.46 ±76.45 3.24% 11.54
512 2367.90 ±76.49 3.23% 23.18
1024 2373.83 ±76.51 3.22% 46.12

86



Table 3.2 � CVA : Mcva = 1024 ∗ 100, counterparty spread = 100bp.

CA BSDE

We now move to FVA computations.
Assuming no margins on client trades (i.e. VM = PIM = RIM = 0) and an

instantaneous liquidation of defaulted names, the BSDE (3.2.6) for the CA = CVA+
FVA process reads as

βtCAt = Et
[
βτc1{t<τc<T}(1−Rc)(MtMτc + ∆τc)

+

+

∫ τc∧T

t

βsλ(MtMs − CAs)
+ds
]
, t ∈ [0, T ].

(3.4.7)

For t ∈ [0, T ], let

cvat = (1−Rc)
∑

Y ∈Y;1∈Y

γYt

(( ∑
i pay,i/∈Y

−
∑

i rec,i/∈Y

)
(MtMi

t + 1τi=t<TLGDi)
)+

ft(y) = cvat + λ(MtMt − y)+ − (rt + γct )y.

Remark 3.4.1 Estimating ft(y) requires a Monte Carlo simulation for evaluating
the embedded MtMi

t. Hence, in an outer simulation context, obtaining an estimate

f̂k(y) of fsk(y) requires nested simulation.

Following the approach detailed in [49], the original CA BSDE (3.4.7) on [0, τc ∧ T ]
is equivalent to the reduced BSDE on [0, T ] given by

CAt = Et
∫ T

t

fs(CAs)ds, t ∈ [0, T ] , (3.4.8)

i.e. the solutions to (3.4.7) and (3.4.8) (both well-posed under mild technical condi-
tions) coincide before the client default time τc = τ1 and, in particular, at the
valuation time 0.

The reduced CA BSDE (3.4.8) is approximated on the coarse time grid, with
time steps denoted by hk+1 (a constant in our numerics), by CAT = 0 and, for k
decreasing from (Nb − 1) to 0,

CAsk ≈ Esk
(
CAsk+1

+ hk+1fsk+1
(CAsk+1

)
)
, (3.4.9)

where the conditional expectation is estimated by regression.

Remark 3.4.2 For dealing with FVA semilinearity, alternatives to time iterated
regressions in space are the marked branching di�usion approach of [75] or (modulo
the regularity issue related to Lipchitz only coe�cients as discussed in [66]) the
expansion technique of [58], [59] : see [47] for a comparison between these approaches
in a single layer, non nested Monte Carlo setup.

As our forward factor process Z is very high-dimensional (three CIR processes X
plus the default indicator process of each CDS reference credit name), by principal
component analysis (PCA), we �lter out the few eigenvectors associated with the
numerically null eigenvalues, to make the PCA numerically well-posed, and we re-
duce further the dimension of the regression to accelerate it. In practice, keeping
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90% to 95% of the information spectrum (total variance, i.e. sum of the eigenvalues)
is found to require no more than half of the eigenvalues, and even much less when
the time step is getting away from the maturity (cf. the right panel in Figure 3.9).
We denote by Ψ̂k, Λ̂k, and Γ̂k the reduced regression basis, eigenvalues vector, and
eigenvectors matrix that are used at each (coarse) regression time sk. Let

Φsk+1
= CAsk+1

+ hk+1fsk+1
(CAsk+1

)− E
(
CAsk+1

+ hk+1fsk+1
(CAsk+1

)
,

Φ̂k+1 = ĈAk+1 + hk+1f̂k+1(ĈAk+1)− Ê
(
ĈAk+1 + hk+1f̂k+1(ĈAk+1)

)
.

A centered approximation to (3.4.9) is given by

E
(
Φsk+1

|Zsk
)
' B̂T

k Ψ̂k,

where ·T denotes matrix transposition and

B̂k = Λ̂−1
k Γ̂T

k Ê(Φ̂k+1Ẑk), Ψ̂k = Γ̂T
k Ẑk.

The ensuing CA estimator is de�ned by ĈANb = 0 and, for k = Nb − 1, . . . , 2,

ĈAk =
1

Mfva

Mfva∑
j=1

[ĈA
j

k+1 + hk+1f̂
j
k+1(ĈA

j

k+1)] + B̂T
k Ψ̂k,

followed by

ĈA0 =
1

Mfva

Mfva∑
j=1

(
ĈA

j

1 + h1f̂
j
1 (ĈA

j

1)
)
,

where each f̂ jk+1(ĈA
j

k+1) requires a nested simulation for evaluating the embedded
MtMsk+1

(cf. Remark 3.4.1).
Tables 3.3 and 3.4 show the results of a GPU implementation of the above using

the optimizations of Sections A and D.2.

Mmtm FVA value CI 95% Rel. err. Exec. time (sec)
128 1861.66 ±52.03 2.79% 81.21
256 1861.96 ±52.03 2.79% 162.12
512 1861.83 ±52.03 2.79% 324.67

Table 3.3 � FVA : Mfva = 128 ∗ 100, λ = 50bp, keeping 90% of the information in
the regressions for the conditional expectations.

Mmtm FVA value CI 95% Rel. err. Exec. time (sec)
128 1886.60 ±53.75 2.87% 81.41
256 1886.73 ±53.75 2.87% 162.52
512 1886.91 ±53.75 2.87% 324.97

Table 3.4 � FVA : Mfva = 128 ∗ 100, λ = 50bp, keeping 95% of the information in
the regressions for the conditional expectations.

The third and fourth columns in Table 3.3 show that, when 90% of the spectrum
is kept in the regressions for the conditional expectations, Mfva = 128 ∗ 100 outer
simulations are enough to ensure a reasonable accuracy. The second column shows
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that the FVA values are then already stabilized after a low number Mmtm = 128 of
inner simulations.

Table 3.4 shows the analogous results when 95% of the information is kept in the
regressions. As the con�dence interval in the previous 90% case is far greater than
the impact on the FVA estimate of switching from 90% to 95%, we conclude that
keeping 90% of the spectrum is su�cient.

3.4.4 KVA on Swaps

Finally we consider the time 0 KVA and the embedded EC computations in
the context of the sizing and allocation of the default fund of a CCP (see the last
paragraph in Sect. 3.2.1). All the lower layers in Figure 3.1 are analytical in the
considered (Black-Scholes) model, so that the computation can be simply nested.
However we also show doubly nested Monte Carlo simulations, for illustrative pur-
poses. The GPU implementation involves the optimizations presented in Sections
A, B.1, and C.

We consider a CCP with (n+ 1) clearing members, labeled by i = 0, 1, 2, . . . , n.
We denote by (a) T : an upper bound on the maturity of all claims in the CCP port-
folio, also accounting for a constant time δ > 0 of liquidating the position between
the bank and any of its counterparty in case of default ; (b) Di

t : the cumulative
contractual cash �ow process of the CCP portfolio of the member i, cash �ows
being counted positively when they �ow from the clearing member to the CCP ; (c)
MtMi

t = Et[
∫ T
t
β−1
t βsdD

i
s] : the mark-to-market of the CCP portfolio of the member

i ; (d) τi and τ δi = τi + δ : the default and liquidation times of the member i, with
nondefault indicator process J i = 1[0,τi) ; (e) ∆i

τδi
=
∫

[τi,τδi ]
β−1
t βsdD

i
s : the cumulative

contractual cash �ows of the member i, accrued at the OIS rate, over the liquida-
tion period of the clearing member i ; (f) VMi

t, IM
i
t ≥ 0 : VM and IM posted by the

member i at time t.
By contrast with the Cover 2 rule, which is purely market risk based, [24] study

a broader risk-based speci�cation for the sizing of the default fund, in the form of
a risk measure of the one-year ahead loss-and-pro�t of the CCP if there was no
default fund�loss-and-pro�t as it results from the combination of the credit risk of
the clearing members and of the market risk of their portfolios. Such a speci�cation
can be used for allocating the default fund between the clearing members, after
calibration of the quantile level adf below to the Cover 2 regulatory size at time 0.

Speci�cally, we de�ne the loss process of a CCP that would be in charge of dealing
with member counterparty default losses through a CVAccp account (earning OIS)
and capital at risk at the aggregated CCP level as, for t ∈ (0, T ] (starting from
some arbitrary initial value, since it is only the �uctuations of Lccp that matter, and
denoting by δτδi a Dirac measure at time τ δi ),

βtdL
ccp
t =

∑
i

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(VMi

τi
+ IMi

τi
)
)+

δτδi (dt)

+ βt(dCVAccp
t − rtCVAccp

t )dt

(3.4.10)

(and Lccp constant from time T onward), where the CVA of the CCP is given as

CVAccp
t = Et

∑
t<τδi <T

β−1
t

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(VMi

τi
+ IMi

τi
)
)+
, 0 ≤ t ≤ T.
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The ensuing economic capital process of the CCP is (cf. (3.2.8))

ECccp
t = ESadft

(∫ t+1

t

β−1
t βsdL

ccp
s

)
, (3.4.11)

which yields the size of an overall risk based default fund at the con�dence quantile
level adf . In view of (3.4.10), we have in (3.4.11) :∫ t+1

t

βsdL
ccp
s =

∑
t<τδi ≤t+1

(
βτδi (MtMi

τδi
+ ∆i

τδi
)− βτi(VMi

τi
+ IMi

τi
)
)+

− (βtCVAccp
t − βt+1CVAccp

t+1).

(3.4.12)

The KVA of the CCP estimates how much it would cost the CCP to remunerate
all clearing members at some hurdle rate h for their capital at risk in the default
fund, namely, for t ≤ T (cf. (3.2.9)),

KVAccp
t = hEt

[∫ T

t

βse
−hsECccp

s ds

]
, (3.4.13)

which we estimate at time 0 by

K̂VA
ccp

0 =
h

Mkva

Mkva∑
j=1

Nb−1∑
k=0

β̂k+1e
−hsk+1ÊC

ccp

k+1hk+1. (3.4.14)

For our simulations we consider the CCP toy model of [24], Section 4, where
n+ 1 = 9 members are clearing swaps on a Black underlying, with all the numerical
parameters used there (in particular, adf = 99%).

Simply layered NMC

The time 0 KVAccp in (3.4.14) is computed in two alternative ways : (a) by a
non-nested proxy approach where ESadft is replaced by ESadf0 in (3.4.11) and ÊC

ccp

k+1

is replaced by the corresponding (deterministic) term structure, which we denote by
ẼC

ccp

k+1, in (3.4.14) ; (b) by a GPU nested Monte Carlo procedure (one layered NMC)

using the optimized sorting procedure of Section C for the inner ÊC
ccp

k+1 computa-
tions.

We refer the reader to Equation (33) and the ensuing discussion in [11] for the
detail of the second procedure, motivated by the fact that, for the computation of the
KVA, an outer (unconditional) expectation will be applied anyway : The comparison
between Tables 3.5 and 3.6�3.7 shows that the ensuing bias on the resulting time 0
KVA estimate, denoted by K̃VA

ccp

0 , may be acceptable, bearing in mind the model
risk intrinsic to such quantities.

Regarding the nested computation, Table 3.6 shows that the variance is accep-
table already for a low number, such as Mkva = 512, of outer simulations. Table 3.7
shows that this is not speci�c to the relatively high number Mec = 1024 × 100 of
inner simulations used in Table 3.6 : as we can see from Table 3.7, for Mkva = 1024,
the KVA value is already stabilized for Mec = 128× 100.
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Figure 3.2 � Economic capital processes for adf = 99%. The `- -' curves correspond

to a term structure approximation (cf. (3.4.11)) ECccp
t = ESadft

(∫ t+1

t
β−1
t βsdL

ccp
s

)
≈

ESadf0

(∫ t+1

t
β−1
t βsdL

ccp
s

)
, 0 ≤ t ≤ T . The `· · · ∗', `�' , and `· · · •' curves respectively

correspond to the 1% quantile, mean, and 99% quantile functions of the random
process ECccp. Left : Mkva = 256 and Mec = 32 ∗ 100. Right : Mkva = 1024 and
Mec = 32 ∗ 100.

Mkva K̃VA
ccp

0 Exec. time (sec)
128 ∗ 100 518.44 1.42
256 ∗ 100 515.49 2.94
512 ∗ 100 512.94 5.88
1024 ∗ 100 508.96 11.74

Table 3.5 � KVA0 estimated by deterministic projections of economic capital, wi-
thout nested simulation.

Mkva K̂VA
ccp

0 CI 95% Rel. err. Exec. time (sec)
256 493.68 ± 11.80 2.39% 0.09
512 487.53 ± 8.82 1.80% 0.17
1024 489.03 ± 6.07 1.24% 0.34
2048 490.33 ± 4.19 0.85% 0.73
4096 491.55 ± 3.01 0.61% 1.24

Table 3.6 � KVA0 estimated by nested simulation : Mec = 32 ∗ 100.

Mec K̂VA
ccp

0 value Exec. time (sec)
8 ∗ 100 479.89 0.09
16 ∗ 100 485.81 0.21
32 ∗ 100 489.03 0.46
64 ∗ 100 490.39 1.09
128 ∗ 100 491.32 3.14

Table 3.7 � KVA0 estimated by nested simulation : Mkva = 1024.

Doubly layered NMC

Instead of using the explicit formulas that are available in our CCP setup, we
can use second layers of NMC for estimating the CVA terms in the second line of

91



(3.4.12). Figure 3.3 shows the impact of the CVA terms on ECccp computed in these
alternative ways when adf = 85% (for adf = 99% as before, the impact of the CVA
�uctuations is negligible in (3.4.12)). The corresponding time 0 KVA computations
are reported in Table 3.8.

Figure 3.3 � ForMkva = 1024 andMec = 32∗100 : Mean and 1% and 99% quantile
functions of the ECccp process for adf = 85%, computed [top] by simple NMC, using
the explicit formula for the embedded CVA computations, [middle] by double NMC,
using simulation with Mcva = 32 for the embedded CVA computations, [bottom] by
simple NMC ignoring the CVA terms, i.e. ignoring the second line in Eq (3.4.12).

3.4.5 Speedup Table

GPU optimizations, regarding a proper use of the di�erent available memory
layers in particular, are important for e�ectively bene�ting from the target ∼ 100
speedup factor when compared with an optimized CPU implementation. Table 3.9
summarizes the speedups obtained in our case studies thanks to the various GPU
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K̂VA
a,ccp

0 K̂VA
b,ccp

0 K̂VA
c,ccp

0

Mkva Value CI 95% Time(sec) Value CI 95% Time(sec) Value CI 95% Time(sec)
256 54.55 1.50 0.13 20.12 0.70 0.15 22.60 0.95 4.16
512 54.30 1.07 0.27 20.12 0.51 0.28 21.25 0.63 8.64
1024 54.10 0.75 0.53 20.12 0.31 0.6 20.31 0.42 16.9

Table 3.8 � KVA0 computed by nested simulation for adf = 85%, Mkva = 1024,

and Mec = 32 ∗ 100 : [K̂VA
a,ccp

0 ] without the CVA term ; [K̂VA
b,ccp

0 ] with the CVA

terms computed by explicit formula ; [K̂VA
c,ccp

0 ] with the CVA terms computed by
MC with Mcva = 32.

optimizations detailed in the appendix. The rows of the table are labeled as the
corresponding sections in the appendix.

First, the computation times also displayed in the table show that NMC compu-
tations are within reach provided GPU and the related optimizations are used, even
for computations involving portfolios of one hundred credit names, time backwar-
dation of nonlinearities, or conditional risk measure computations : Although the
corresponding two-stage Monte Carlos would be quite heavy to implement on a CPU,
the GPU implementations, suitably optimized, are quite fast. Additional speedups
would readily follow from the use of several GPUs as explained in Sect. 3.3.4.

CVA FVA KVA
Time Speedup Time Speedup Time Speedup

A. Nested simulation 5.80 3.5 80.51 3.5 0.96 3.5
B.1. Sorting defaults 0.22 1.2
B.2. Listing defaults 0.06 1.4
C. VaR and ES 0.12 20

D.1. Inner regressions 0.06 2
D.2. Outer regressions 0.05 3

Other 0.1 0.64 0.11

Table 3.9 � Execution times (in seconds) and GPU optimization speedups in the
NMC case studies of Sect. 3.4.2 through 3.4.4 : CVA for Mcva = 1024 ∗ 100 and
Mmtm = 128 ; FVA for Mfva = 128 ∗ 100 and Mmtm = 128 ; KVA for Mkva = 128
and Mec = 1024 ∗ 100.

The second take-away message is that the optimization speedups are quite si-
gni�cant, as expected. We emphasize that we are only considering here speedups
internal to a GPU implementation more or less optimized in a way or another as
detailed in the appendix, we do not report on any CPU implementation execution
times (that would be much slower) or GPU versus CPU speedups (as an optimized
GPU implemetation obviously dominates an optimized CPU implementation).

Last, one should not overdue the conclusions that can be drawn from such table.
The observations, for instance, that defaults' listing and sorting would be less useful
than the other optimizations, or that the inner regression phase is much faster than
the nested simulation of paths, are model dependent and restricted to the setup and
implementation of the case studies that underlie all numbers in Table 3.9. Thus,
a careful reading of Section B shows that the relative importance of the defaults'
listing and sorting optimizations strongly depends on the default structure of the
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considered model. Likewise, a numerically more robust implementation of the inner
regressions on few paths (hence prone to ill-conditioning, numerical instabilities and
sensitivity to roundo� errors), based on a spectral decomposition of the covariance
matrices that are repeatedly generated along inner simulation/regression stages (see
the end of Section D.1 and cf. also Sect. 3.4.3), could easily be 10 to 20 times slower
than Cholesky that was used in the inner regression case study of Sect. 3.4.2. Etc..

3.5 Perspectives

Due to the number of market input data involved in the calibration of a real-life
XVA engine, the consideration not only of the XVAs themselves, but also of all
the corresponding bump sensitivities, may easily increase the XVA computational
burden by a factor of ∼ 1000. Hence, another interesting topic left aside in this paper
for length sake is XVA Greeks and their GPU acceleration, whether performed by
the maximum likelihood method (see [13]), by (hard to handle memory-wise though)
adjoint di�erentiation (see [106]), or through various regression techniques. As initial
margins, at least in a bilateral SIMM setup, involve a sensitivity VaR, this is also
the reason why we did not show any MVA computations in our case studies (MVA
in a centrally cleared setup however can be tackled by similar tokens as the KVA of
Sect. 3.4.4).

By their nature, XVA computations appeal naturally to nested Monte Carlo
computations. However, whenever non- (or less-)nested Monte Carlo schemes are
available without bias, they should be preferred to a nested alternative. In parti-
cular, the parameterized stochastic approximation or �quasi-regression� algorithm
(borrowing the terminology from [14]) of [46], initially conceived for dealing with
model uncertainty, could also be used for reconstructing a conditional risk measure
such as VaR (for IM computations) or ES (for EC computations) as a function of
the risk factors (provided their number can be kept reasonable), with global error
control (cf. Sect. 3.3.1). To reduce further the complexity of the NMC structure, one
might also think of multi-level techniques à la [61].

Banks can use their economic capital as variation margin. Accounting for this
feature results in the following modi�ed FVA formula, instead of (3.2.3) :

FVAt = Et
∫ T

t

β−1
t βsλs

(
MtMs − VMs − CVAs − FVAs −MVAs − ECs(L)

)+

ds,

where we recall from Sect. 3.2.4 that the trading loss process L is a martingale
component of the CA = CVA+FVA+MVA process. The ensuing XVA equations �of
the McKean type� are shown to be well-posed in [45]. To solve them numerically, [11]
resort to a Picard iterative scheme, where each iteration is similar in nature to
Figure 3.1 (or part of it, cf. Sect. 3.3.2), combined with a proxy approach for the
ECs(L) process, replaced by its unconditioned version as considered in Sect. 3.4.4.
An unbiased approach to these equations would be another topic of future research.

APPENDIX. XVA NMC GPU Programming Opti-
mization Techniques

Although XVA NMC computations seem naively suited to parallel architectures
like graphic programming units (GPUs), a XVA NMC GPU implementation requires

94



various computational complexity and memory storage optimizations, which are
essential to achieve the potential ∼ 100 speedup with respect to an optimized CPU
implementation. These XVA NMC GPU programming optimization techniques are
detailed in the remaining sections of the paper.

First, we need to provide some details on the GPU hardware/software aspects,
referring the reader to [94] for a detailed documentation. Originally developed for
gaming, beginning from around 2007, GPUs became extensively used for simulation.
The most important speci�cations that make GPU architecture highly suited to
NMC are (see Figure 3.4) : (a) A very large number of processing units grouped in
streaming multiprocessors (SM). These units provide the su�cient computational
power to process in parallel independent tasks ; (b) A large bandwidth to read/write
data on the GPU random access memory (RAM) known as global memory. An
important bandwidth is crucial to Monte Carlo since the performed operations are
generally light when compared to the time spent to access to the memory ; (c) A
cached memory space shared between (the 128) processors of the same streaming
multiprocessor. This allows a very fast memory storage of arrays shared by various
processors and makes possible the communication between them.

Streaming
Multiprocessor

Registers
L1VC

ache

Constant

Texture

Shared

...
L2VCache

{
{
{

GlobalVMemory{
V

V

V

V

V

V...

MemoryVclockedVatV
theVprocessingVrate

ProcessingVunits

CachedVmemory

GPUVRAM

Streaming
Multiprocessor

Registers

L1VC
ache

Constant

Texture

Shared

Streaming
Multiprocessor

Registers

L1VC
ache

Constant

Texture

Shared

Figure 3.4 � Simpli�ed presentation of the Nvidia GPU architecture.

From the computational point of view, the streaming multiprocessors (SMs)
execute blocks of (less than 1024) successive tasks known as threads. Once a block
is associated to an SM, each streaming processor performs the required computations
of various threads from the block. Within a block, the threads are organized in warps
of 32 threads executed at the same time. Threads of the same warp are synchronized
automatically at the hardware level, which is together convenient (in the sense that
the programmer does not need care about it) and e�cient. However, because of this
intrinsic synchronization among threads of the same warp, the programmer has to
ensure that the number of threads in a waiting state is as small as possible. Waiting
states can be caused by conditional sentences like if clauses.

From the storage point of view, the global memory plays the role of the GPU
RAM. Because it is the largest memory space on the GPU (from 1GB to 16GB),
global memory is generally used by default. However, in order to reduce the time of
reading/writing values, instead of the global memory, one should use registers and
shared memory as much as possible. As opposed to the global memory, shared
memory and registers can only be accessed by their own streaming multiprocessors.
Registers are the fastest and they are generally used for local variables. Although
slower than registers, shared memory stores arrays that can be handled by all threads
of the same block.
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These are the main features that have made GPUs suitable, for more than a de-
cade, to parallel computing and deep learning algorithms, resulting in their extensive
use for arti�cial intelligence (see [43]). We refer the reader to [94] regarding further
generic bene�ts of GPUs architecture in terms of concurrent execution, asynchro-
nous data transfer between GPU and CPU, mapping the CPU memory, shu�es,
tensor cores (introduced recently), etc..

There are many optimizations that must be considered in GPU programming
but are not speci�c to NMC for XVA. The three most common ones consist in (a)
ensuring that access to the RAM is as coalescing as possible, (b) reducing divergence
in the code, and (c) using the constant memory (cf. Figure 3.4), very fast as read-
only, for model parameters.

RAM access coalescence and divergence management are as important as in
a standard parallel implementation on CPU and we refer to [94], [93] for further
details. As for the constant memory requirement, it is not so important when the
model is relatively simple so that the time spent in operations dominates the time
spent to read the parameters. However, it becomes essential when the model involves
a lot of parameters, e.g. with a local volatility model based on spline interpolation.
In such cases, storing the parameters in a read-only memory considerably reduces
the time spent to read the parameters and the execution time as a consequence.

In the developments that follow we mostly focus on the use of warps, registers,
shared and global memories. For each optimization, we evaluate the speedup =
Tsimp/Topti, where Topti is the execution time of the optimized part of the code and
Tsimp is the execution time of the same part of the code but without the considered
optimization.

3.6 Optimizations Related to the Time Grids Used
in Factors Forwardations and Prices Backwar-
dations

In this section, we present straightforward but very important optimizations
needed for the nested simulation of any stochastic process on GPUs. Without loss
of generality, let X be the univariate di�usion (local volatility model)

dXt = Xt(b(t,Xt)dt+ σ(t,Xt)dWt), X0 = x, (3.6.1)

whereW is a Brownian motion. To compute a derivative price Y driven byX, we �rst
have to discretize several paths of the stochastic di�erential equation (SDE) (3.6.1)
on a �ne forwardation grid {0 = t0, . . . , tNf = T}. Then, given a backwardation
subset {0 = s0, . . . , sNb} of {t0, . . . , tNf}, one has to approximate

Ysk = E
(
φ(XsNb

)|Xsk

)
, for every 0 ≤ k < Nb, (3.6.2)

for a number of payo� functions φ.
In practice, the �ne discretization {t0, . . . , tNf} used for the forwardation of the

underlying risk factors can be of the order of 100 time points per year in order to
ensure an acceptable time discretization error to the underlying SDEs, whereas, in
order to spare computational time and avoid an exploding accumulation of regression
errors in case of FVA computations (or MtM computations for American claims),
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the coarse discretization {s0, . . . , sNb} used for prices backwardation can be of the
order of 10 time points per year. Hence the coarse discretization {s0, . . . , sNb} is
Nf/Nb ∼ 10 times smaller than {t0, . . . , tNf}.

Be it for computing the European derivative price (3.6.2), its American version,
or even risk measures conditional on the value of Xsk , 0 ≤ k < Nb, one has �rst to
store various realizations {Xsk}0≤k<Nb on the GPU RAM (or even on the CPU RAM
if the GPU RAM is not su�cient). All the discretized intermediate realizations of
{Xt}t∈{t0,...,tNf }\{s0,...,sNb} should only be stored temporarily in the shared memory.
We use shared memory that is faster than global memory. Morever, it is generally
impossible to use only registers for this purpose, since one needs to store arrays of
values in the case of multidimensional models. Registers, however, contain the state
vector of the random number generator (RNG) used for simulating these temporary
realizations.

More precisely, between each successive values {Xt}t=sk=tk′ ,sk+1=tk′′
stored in the

global memory, one simulates temporarily {Xt}t∈{tk′+1,...,tk′′−1} stored in shared me-
mory, which supposes the generation of various uniformly distributed random num-
bers stored in a register as the RNG state vector. Even though the RNG state is
given by a vector, its size is �xed and thus does not have to be stored in an array.
The RNG that we use is a CMRG which is a combination, presented in [85], of two
multiple recursive generators (MRGs). The �rst adaptation of CMRG to GPUs was
proposed in [1, 3].

Figure 3.5 � The speedup, bene�ting to all case studies (here in the context of
the CVA and FVA case studies of Sect. 3.4.3), from using registers and shared
memory during the nested simulation of the factor process X as a function of Nf/Nb

increasing from 1 to 128, for Nf �xed to 128 (i.e. for Nb decreasing from 128 to 1).

For Nf = 128, Figure 3.5 shows the speedup obtained from this strategy when
Nf/Nb = 1, . . . , 128 (i.e.Nb = 128, . . . , 1). In the right part of Figure 3.5, the speedup
tanks, since the application becomes less memory bound than compute bound. In
the standard situation where Nf/Nb ∼ 10, the speedup is generally greater than 3.5.
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3.7 Optimizations Related to Default Times

Be it introduced by the XVA itself or by defaultable claims involved in the un-
derlying market exposure, indicator functions on default events {τi ∈ A} increase
the complexity of an e�cient parallel implementation. For the �rst situation, pre-
sented in Section B.1, we aim at reducing the GPU memory occupation for limiting
memory access and thus accelerating the execution. The optimization studied in
Section B.2 shows how to reduce thread divergence in order to take advantage of
the maximum computing power of GPUs. The situation faced in both cases is∑

i∈S

1τi∈AY
i, (3.7.1)

where S is a set of obligors and τi can be simulated before Y i. We keep using registers
and shared memory as often as possible for both τi and Y i simulations.

3.7.1 Sorting Defaults for Multiple Counterparties

Here S is a set of bank clients with associated counterparty exposures φi =
φi(t, x), the set A is a bounded time interval (sk, sk′) (with k′ > k), and Y i =
φi(τi, Xτi). Hence (3.7.1) can be rewritten as∑

bank clients

1sk<τi≤sk′ φi(τi, Xτi). (3.7.2)

If we had to simulate the process X on the �ne discretization grid and then read
the memory using τi, the quantity of memory needed would be quite signi�cant,
especially with NMC in view. Consequently, it is essential to only store in the global
memory the values taken by the Xτi (such that sk < τi ≤ sk′), which can only be
done after sorting the τi. This method spares the use of the global memory and
reduces the number of writings to it. Due to the reduced number of writings, we
also speed up the execution time, in particular as long as few defaults occurred, i.e.,
given the (low) intensity models that we use for the τi, during the �rst time steps
of the algorithm : see the left panel in Figure 3.6.

Figure 3.6 � The speedup obtained from using : [left] Sorting defaults and res-
tricting some of the computations to already defaulted names whenever applicable,
e.g. in the context of the KVA case study of Sect. 3.4.4 ; [right] Listing defaults and
restricting some of the computations to the surviving names whenever applicable,
e.g. in the context of the CVA case studies of Sect. 3.4.2 and Sect. 3.4.3.
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3.7.2 Listing defaults for defaultable claims

Now S is a set of reference obligors, A = (sk,∞), and Y i = Pi(sk, Xsk) for some
coarse time sk, where Pi = Pi(t, x) is a suitable (pre-default) pricing function. The
expression (3.7.1) reads as ∑

i∈set of obigors

1τi>sk Pi(sk, Xsk), (3.7.3)

where Pi(sk, Xsk) is assumed more di�cult to simulate than τi, e.g. because it re-
quires another Monte Carlo simulation.

If we associate a thread to each realization of {τi}i∈set of obligors, then it is possible
to have some threads returning for obligor i = 1 (say) 1τ1>sk = 1 and other threads
from the same warp returning 1τ1>sk = 0. This situation creates thread divergence
within the same warp, forcing threads/processors with 1τ1>sk = 0 to wait for the
others.

To overcome this divergence, we list for each thread all the surviving obligors in
order to make all threads computing together most of the time (there is always a
small divergence due to the number of surviving obligors which is di�erent between
threads). Thus, the simulation of (3.7.3) is reduced to the simulation of∑

i∈list of surviving obigors

Pi(sk, Xsk). (3.7.4)

The corresponding speedup is demonstrated by the right panel in Figure 3.6. We see
that the bene�t of this strategy increases with the time index. This can be explained
by the accumulated number of defaults that also increases with time, resulting in
more divergence unless the above optimization is in place.

3.8 Optimized Sorting for VaR and ES Computa-
tions

[112] present a survey of the main GPU based sorting algorithms : radix sort,
merge sort, sample sort and quick sort. However, sorting for computing risk measures
such as VaR or ES is reduced to �nding the |Q| largest values from a list of |L| values
with |L|� |Q|, where | · | denotes the cardinality. This problem is less complex than
sorting the whole list L and it shares some similarities with the problem of �nding
the k nearest neighbours discussed, for instance, in [111]. The latter paper is based
on merge sort, with complexity O(|L| log |L|), the parallelization of which is the most
suited to GPUs (see [73]).

Here, we present an original method that allows to �nd the |L̃| largest values from
a list of |L| values in very few computations, of complexity O(|L|). The sublist L̃

satis�es |Q| ≤ |L̃| ≤ 2|Q|≤|L|. It is obtained from L thanks to successive truncations
that discard all the values smaller or equal to some threshold. One can then apply
merge sort on L̃ to get Q with an overall complexity O(|L|+ |L̃| log |L̃|).

Denoting the median, mean, and standard deviation by µ, m, and dev, the main
idea for obtaining at low cost L̃ is based on Mallows inequality |µ−m| ≤ dev, which
allows using the (computationally cheap) m and dev instead of the (sort intensive)
µ in order to pre-sort L : Basically (see Algorithm 6), starting from L, the list is
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truncated successively (4 or 5 times are typically enough in practice) by keeping the
values superior or equal to (m + dev), m, or (m − dev). Because we only need to
compute m and dev, which have a linear complexity, the complexity of pre-sorting
L to obtain L̃ such that |Q| ≤ |L̃| ≤ 2|Q| is O(|L|).

1 Input : A large array L of unordered values, the size |Q| of Q;
2 L̃ = L;

3 while |L̃| > 2|Q| do
4 Compute the mean m and the standard deviation dev of L̃;

5 if the number of values in L̃ that are bigger than m+ dev is ≥ |Q| then
6 New L̃ = values bigger than m+ dev of the previous L̃

7 else if the number of values in L̃ bigger than m is ≥ |Q| then
8 New L̃ = values bigger than m of the previous L̃

9 else if the number of values in L̃ bigger than m− dev is ≥ |Q| then
10 New L̃ = values bigger than m− dev of the previous L̃

11 Use merge sort on L̃ to get Q
12 Return(The array Q.)

Algorithm 6: Optimized sorting algorithm for VaR and ES computations.

When parallelized on GPUs, the operations presented in Algorithm 6 need be
synchronized between threads. As we are performing NMC with a large number of
di�erent lists L on which we need to compute some risk measure, we dedicate one
warp of 32 threads to each list L. This solution is very convenient as threads of
the same warp are automatically synchronized at the hardware level. Moreover, this
approach is not memory intensive, hence it scales well and is not limited by the size
of the shared memory as in [111].

Figure 3.7 shows the speedup obtained by this approach when compared to a
straightforward implementation of complexity O(|Q|×|L|) for �nding the |Q| largest
values among |L| values.

Figure 3.7 � The speedup obtained in the KVA case study of Sect. 3.4.4 by the
application of the optimized sorting and value at risk / expected shortfall compu-
tation strategy based on a preliminary computation of the sublist of the `- -' 1%
largest values, `�' 5% largest values, or `· · ·' 10% largest values of a full sample list
L.
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3.9 Regressions

Simulation/regression methods are widely used in mathematical �nance. They
occur in the context of Longsta�-Schwartz type dynamic programming (DP) algo-
rithms that can be used for time 0 valuation of an early exercise derivative (see
e.g. [1], [42], [90]). Such algorithms can also be used for obtaining a proxy of the to-
tality of a European pricing function (cf. [48]), but we emphasize that, as explained
in Sect. 3.3.1, this comes without global error control.

Simulation/regression schemes are also commonly used for the resolution of non-
linear BSDEs (see [65]), such as the one that appears in asymmetric FVA com-
putations. Other examples in the XVA context (subject to the same �local versus
global error control� reservation as above though) include regression schemes that
may be used for capturing conditional risk measures in the context of MVA or KVA
computations (see e.g. [21, 71,91]).

For a good overview on the kind of convergence associated to regression methods,
we refer the reader to [60]. As explained in [92], when the underlying risk factor
process X has a density bounded away from zero (which can always be achieved
numerically by truncation of X), the asymptotic number of trajectories has to be of
the order of the cube of the cardinality of the regression basis, which we refer to as
the cubic rule below.

3.9.1 Regressions on Inner Trajectories

When the XVA implementation requires a regression on inner NMC trajectories,
this typically means relatively few paths as, on one hand, the computational cost
duplicated on the inner nodes would be too large otherwise and, on the other hand,
a non-negligible inner regression error is acceptable since it will be mitigated by
outer averaging anyway.

The main ingredient relies on the resolution of a large (because of �inner� and of
(even coarse) time stepping) number of small (because few regressors are typically
used in �nance, especially here due to the cubic rule in regard of the (relatively small)
number of (inner) trajectories) random symmetric linear systems. For instance (cf.
Figure 3.8), in a simply nested setup, the implementation of a Longsta�-Schwartz
algorithm on the inner trajectories requires (Nb − k − 1) regressions at each coarse
time sk, k = 1, . . . , Nb − 1, and for each outer trajectory l ∈ {1, . . . ,M(0)}.
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Time steps

M(i-1)

M(i)

M(i)

M(i)

Figure 3.8 � Yellow pavings representing inner regressions that need be performed
iteratively at decreasing coarse grid times, for instance in the context of the Bermu-
dan put CVA case study of Sect. 3.4.2. The �ne blue paths denote inner resimulated
paths.

When the systems are well conditioned, the best solutions remain Cholesky or
LDLT (i.e. Cholesky implementation avoiding the use of square root functions) fac-
torizations. A simple parallelization strategy would be to execute one resolution per
thread. But this is far from optimal. For a system with n unknowns, the most ap-
propriate GPU adaptation of LDLT, presented in [5], involves 1 ≤ n∗ ≤ n threads
that work together to solve each system. In Figure 3.9 (Left), we see a clear bene�t
of using n∗ > 1 threads per system when compared to the straightforward pa-
rallelization that involves only one thread per system. In most Longsta�-Schwartz
applications, the number of regressors is smaller than 20 and the speedup is ∼ 2.

In addition, [5] explain how to �lter out the numerically null eigenvalues of an ill-
conditioned regression covariance matrix, as the ones that arise in nested regressions
based on very few inner trajectories.

3.9.2 Regressions on Outer Trajectories

In contrast to DP on inner trajectories, BSDE simulation on outer trajectories
requires only few resolutions (one per coarse time step) of linear systems arising
from pricing equations of the form

Ysk = E
(
Φ(Zsk+1

)|Zsk
)

(3.9.1)

at coarse times sk, where Z = (X,H) includes both market factors X and default
indicators encoded in the Markov chain component H (see Sect. 3.3.1). Many outer
paths are required for the sake of accuracy, but this is doable without harm provided
the regression covariance matrices are estimated o�-line based on a large number of
outer trajectories. Once the covariance matrices computed, decomposed into eigene-
lements, and stored in the GPU RAM, they can be reused for any BSDE involving
the same model on the outer layer of NMC.

Moreover, once we have the eigenelements of each covariance matrix, principal
component analysis (PCA) can be used to reduce the dimensionality of the com-
putations. Figure 3.9 (right) shows the speedup obtained from keeping only 90%
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to 95% of the spectrum (total variance) in a linear regression involving a common
shock default model driven by three CIR processes (|X| = 3) and specifying the
default of 100 obligors. As time passes, it becomes more di�cult to explain most of
the variance with few eigenvalues, because the structure of the likely default con�-
gurations becomes richer (as default intensities are �small�). However, in the 90%
as in the 95% case, the dimensionality reduction speedup is never below 2, meaning
that it is never necessary to use more than half of the eigenvalues, hence half of the
time of what a full computation would take, to have a regression accounting for 90%
or 95% of the spectrum.
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Figure 3.9 � The speedup obtained from optimized regressions. Left : in the case
of regressions on inner trajectories, such as the ones that appear in the Bermudan
put CVA case study of Sect. 3.4.2, by devoting an optimal number n∗ ≥ 1 of threads
to each linear system�speedup depending on the size of the systems. Right : in the
case of regressions on outer trajectories, such as the ones that appear in the FVA
case study of Sect. 3.4.3, by limiting the number of eigenvalues accounted for in the
regressions�the `- - ' and `�' curve display the speedup as a function of the coarse
time step k when keeping 90%, respectively 95% of the spectrum.
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Chapitre 4

Conditional Monte Carlo Learning

for di�usions

4.1 Introduction

Numerous contributions in numerical methods based on Monte Carlo reached
recently their limits in dealing with the curse of dimensionality [31]. In contrast to
previous works, our method is based on a judicious combination between 1NMC
and the use of regression. This paper is a natural progress of an increasing interest
in NMC started in [63, 68, 86] and used with regression in [2, 37]. Considering a
�ltered probability space (Ω,F ,F0≤t≤T , P ), an Ft-Markov process (Xt)t∈[0,T ] taking
its values on Rd1 and the time discretization {t0, ..., t2L} =

{
0, T/2L, ..., T

}
, let Us

be a functional of X de�ned for s ∈ {t0, ..., t2L} by

(f) Us =Es

 t
2L∑

tk≥s

f(tk, Xtk , Xtk+1
)

=E

(
T∑

tk≥s

f(tk, Xtk , Xtk+1
)
∣∣∣Fs) ,

where Es (·) = E
(
·
∣∣∣Fs), the expectation is always considered under P , each deter-

ministic function f(tk, ·, ·) is B(Rd1)⊗B(Rd1)-measurable and assumed to satisfy the
square integrability E(f 2(tk, Xtk , Xtk+1

)) <∞ with convention f(t2L , Xt
2L
, Xt

2L+1
) =

f(t2L , Xt
2L

). The simulation of U is generic to all BSDEs and RBSDEs examples
presented in this paper. As nested simulations involve heavy notations, it is easier
to present the whole algorithm for the simulation of U then apply it on speci�c
examples.

When previous contributions target estimations of Utk for k = 0, ..., 2L knowing
some realization of {Xtj}0≤j≤k (m0 = 1, ...,M0), our purpose is to simulate approxi-
mations {Um0,m1

tk,s
}s≥tk+1

, with (m0 = 1, ...,M0) and (m1 = 1, ...,M1), of {Us}s≥tk+1

conditionally on the realization {Xm0
tj }0≤j≤k. This task requires the simulation of a

�rst layer (Xm0)m0=1,...,M0 of trajectories that are kept in the machine's memory, then
a second unstored layer (Xm0,m1)m1=1,...,M1 of trajectories, on the top of the �rst layer,
only used to learn how should we perform approximations {Um0,m1

tk,s
}s≥tk+1

.Although
more complex, this procedure provides much more information on the process U .

In particular, we use
1

M1

M1∑
m1=1

(
f(tk, X

m0
tk
, Xm0,m1

tk+1
) + Um0,m1

tk,tk+1

)
to have the �rst layer

approximation Um0
tk

of Utk . Knowing the second layer approximation Um0,m1 , we can

compute quantiles on U or, even more remarkable, can simulate another process Ũ
that satis�es equation (f̃) (Replace f by f̃ in equation (f)) with an f̃ that can be
a function of U like for instance f̃(tk, x, y) = f(tk, Utk(x), Utk+1

(y)). Consequently,
when su�cient assumptions are satis�ed, we can learn how to compute functionals
of functionals of X with the same 1NMC. This latter fact makes possible a straight-
forward simulation of Valuation Adjustments [2] as long as one can write them as
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a composition of functionals then start simulating by the innermost functional till
the most outer composition.

Although we are not the �rst to propose a learning procedure for BSDEs [25], we
are the �rst to do it using nested Monte Carlo instead of a neural network. To the
best of our knowledge, we are also �rst to provide a comprehensive presentation of an
iterative algorithm where the accuracy of the estimator {Um0

tk
}k=0,...,2L improves by

adding more regression steps and thus by increasing the learning depth. Thanks to
our method, one can easily balance between complexity and accuracy. Moreover, it
is possible to improve the accuracy in a parareal fashion [89] which increases further
the parallel scalability of the algorithm. In addition to that, we use equality

E(Us) = E

Us′ + s′∑
tl+1>s

f(tl, Xtl , Xtl+1
)


true for s′ > s, and its localized version for each interval [a, b]

E
(
Us1{Us∈[a,b]}

)
= E

1{Us∈[a,b]}

Us′ + s′∑
tl+1>s

f(tl, Xtl , Xtl+1
)

 ,

to present a nonparametric method to e�ectively estimate and control the bias. In
the same fashion, we detail a variance adjustment procedure based on the equality

E (Vars(Us′)) = E
(
Es
(
[Us′ − Es(Us′)]2

))
= E

(
[Us′ − Es(Us′)]2

)
.

true for s′ > s, and its localized version for each interval [a, b]

E
(
Vars(Us′)1{Vars(Us′′ )∈[a,b]}

)
= E

(
1{Vars(Us′′ )∈[a,b]}[Us′ − Es(Us′)]2

)
,

true for s′ > s and s′′ > s. The proposed variance adjustment strategy makes pos-
sible the nested simulation of distribution tails without requiring an importance
sampling technique [80]. The good representation of tail events, via variance ad-
justment, becomes necessary for some nonlinear problems especially RBSDEs. Both
bias control and variance adjustment shows that : 1NMC makes possible a very �ne
tracking of the bias of the �rst layer �ne estimator Um0 and the variance of the
second layer coarse estimator Um0,m1 .

Focusing on the simulation of U given in (f), Section 4.2 introduces the me-
thod as well as notations. Section 4.2 also presents the iterative procedure, the bias
control and the variance adjustment strategy on the approximation of U . Section
4.3 illustrates the presented method on some standard problems involving BSDEs,
RBSDEs and risk measures. These examples show how the algorithm should be
adapted to di�erent situations, in particular how to set : iterations, bias control and
variance adjustment for BSDEs and optimal stopping problems. Section 4.4 details
the required assumptions in a general di�usion setting. It also provides di�erent error
estimates associated to our method and gives a sense to the overall approximation
procedure. Section 4.5 shows the robustness of our method on highly dimensional
problems beyond what is known to be possible in previous papers.
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4.2 Conditional learning procedure : Notations and
method

In Section 4.2.1, we present the algorithm steps and what should be done to
stabilize it. As needed for any learning method, the initialization is also explained in
Section 4.2.1. This will set the stage to express, in Section 4.2.2, the regression based
approximations as an output of an iterative procedure. Details on the computation
of the regression are provided in Section 4.2.3 that also includes a bias control and
a variance adjustment necessary when targeting the tail events.

4.2.1 Iterative procedure, regression initialization and stabi-
lization

Using a su�ciently �ne discretization {t0, ..., t2L} = {0,∆t, 2∆t, ..., T} with ∆t =
T/2L, one simulates M0 realizations (Xm0

tk
)m0=1,...,M0

k=1,...,2L
of the Markov process X star-

ting at a deterministic point X0 = x0 ∈ Rd1
with the following induction

Xm0
tk

= Etk−1
(Xm0

tk−1
, ξm0
tk

), when k ≥ 1 and Xm0
t0 = x0, (4.2.1)

where (ξm0
tk

)m0=1,...,M0

k=1,...,2L
are independent realizations of an Rd2 random vector ξ and

(Etk)k=0,...,2L−1 : Rd1+d2 → Rd1 are Borel-measurable functions. We use Xm0,1
tk

, ...,
Xm0,d1
tk

to denote the d1 components of the vector Xm0
tk

. The sample (Xm0
tk

)m0=1,...,M0

k=1,...,2L

stays on the machine memory and is supposed to approximate accurately (Xt)t∈[0,T ]

in a sense explained in Section 4.4.
For a decreasing sequence (sj)j=0,...,2L that takes its values in the time discreti-

zation set {t0, ..., t2L}, an extra simulation conditional to the starting Xm0
sj

is needed
for the learning procedure. Introducing independent realizations
(ξm0,m1
tj ,tk

)
(m0,m1)∈{1,...,M0}×{1,...,M1+M ′1}
k∈{j,...,2L},j∈{1,...,2L} of the random vector ξ that are also independent

from (ξm0
tk

)m0=1,...,M0

k=1,...,2L
, we set for tk−1 ≥ sj

Xm0,m1
sj ,tk

= Etk−1
(Xm0,m1

sj ,tk−1
, ξm0,m1
sj ,tk

) and Xm0,m1
sj ,sj

∣∣∣
m1=1,...,M1+M ′1

= Xm0
sj
. (4.2.2)

We use Xm0,m1,1
sj ,tk

, ..., Xm0,m1,d1
sj ,tk

to denote the d1 components of the vector Xm0,m1
sj ,tk

.
For sj ≤ sl ≤ sk, we also introduce the notation Xm0,m1

sj ,sl:sk
and ξm0,m1

sj ,sl:sk
for repectively

(Xm0,m1
sj ,sl

, Xm0,m1

sj ,sl+∆t
, ..., Xm0,m1

sj ,sk−∆t
, Xm0,m1

sj ,sk
) and (ξm0,m1

sj ,sl
, ξm0,m1

sj ,sl+∆t
, ..., ξm0,m1

sj ,sk−∆, ξ
m0,m1
sj ,sk

).
For a positive integer L′ ∈]L/2, L], the value of each term of the sequence

(sj)j=0,...,2L is given by its corresponding term in (T − sij)j=0,...,2L which is de�ned
iteratively for i = 0, ..., L − L′ starting with a homogeneously distributed sequence
where each term is repeated 2L−L

′
times as follows

(s0
j )j=1,...,2L =

{
T

2L′
, ...,

T

2L′
, ...,

(2L
′− 1)T

2L′
, ...,

(2L
′− 1)T

2L′
, T, ..., T

}
, s0

0 = 0. (4.2.3)

We denote S i the set of values taken by (T −sij)j=0,...,2L , for example S0 = {T, (2L′−
1)T/2L

′
, ..., T/2L

′
, 0}.

The goal of iterations is to reduce an error term (eT−sij)
i=0,...,L−L′
j=1,...,2L

to make it smal-
ler than some threshold error ε. The expression of the R-valued random processes e
and ε will be given in de�nitions 4.2.1, 4.3.1 and 4.3.2.

107



We set j∗0 = si0

∣∣∣
i=1,...,L−L′

= max(∅) = 0, for each step i = 1, ..., L− L′ we de�ne

Qi = 2L−L
′−i and (ŝi−1

j )j=0,...,2L
When j ≤ j∗i−1 de�ne ŝ

i−1
j = si−1

j

Otherwise, for j′ > j∗i−1/Qi set ŝij

∣∣∣Qij′
j=Qi(j′−1)+1

=
si−1
Qij′

+ si−1
Qi(j′−1)

2
,

(4.2.4)

and we denote Ŝ i−1 the set of values taken by (T − ŝi−1
j )j=0,...,2L . Then, we consider

the following actualization strategy :

1 Compute
(
eS

i−1

T−si−1
j

)
j>j∗i−1

2 Use j∗i = j∗i−1 ∨max
({
j > j∗i−1; eS

i−1

T−si−1
k

< εS
i−1

T−si−1
k

for k ≤ j
})

with x ∨ y =

max(x, y) to de�ne

sij = si−1
j 1j≤j∗i + ŝi−1

j 1j>j∗i . (4.2.5)

The notation sij

∣∣∣Qij′
j=Qi(j′−1)+1

is used for siQi(j′−1)+1, ..., s
i
Qij′

. In Figure 4.1, we illustrate

how this discretization strategy is implemented, in particular we chose L′ > L/2.

Figure 4.1 � An example for (4.2.5) when i = 0, 1, L = 5 and L′ = 3.

Remark 4.2.1 Expression (4.2.5) ensures that si2L is always equal to T . Thus s2L =
0 which will be involved in de�nitions 4.2.1, 4.3.1 and 4.3.2 to introduce both a
simulated value and an average on learned values at time 0.

In (4.2.2), we simulate M1 + M ′
1 conditional realizations of X in order to keep

those indexed fromm1 = M1+1 tom1 = M1+M ′
1 for the approximation of regression

matrices. Consequently, we made explicit the independence between trajectories used
for the estimation of regression matrices and those used in the backward induction.
To reduce the complexity of the algorithm and memory occupation, trajectories
used for regression matrices can be simulated o�ine then erased from the memory.
Given m0, if an inner trajectory from {Xm0,m1}m1=1,...,M1 is needed α times in the
backward induction, we simulate α independent copies of it and use each copy once.
This reduces further memory occupation as well as any super�uous dependence
structure.

For each ordered couple (j < k) of indices that take their values in {1, ..., 2L},
we introduce a stabilization operator

T m0

tj ,tk,M
′
1

: Rd1 3 x 7→ tΓ̃m0

tj ,tk,M
′
1

(
x−Xm0

tk

)
∈ Rd′1 (d′1 ≤ d1), (4.2.6)
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that performs a linear combination of the components of
(
x−Xm0

tk

)
using Γ̃m0

tj ,tk,M
′
1

that contains some eigenvectors from Γm0

tj ,tk,M
′
1
obtained with the eigenvalue decom-

position

Γm0

tj ,tk,M
′
1
Λm0

tj ,tk,M
′
1

tΓm0

tj ,tk,M
′
1

(4.2.7)

of the regression matrix

1

M ′
1

M1+M ′1∑
m1=M1+1

(
Xm0,m1
tj ,tk

−Xm0
tk

)
t
(
Xm0,m1
tj ,tk

−Xm0
tk

)
(4.2.8)

where t is the transposition operation.
Once factorization (4.2.7)=(4.2.8) is performed, we obtain the diagonal matrix

Λm0

tj ,tk,M
′
1

= diag

({
λm0,l
tj ,tk,M

′
1

}
l=1,...,d1

)
of decreasing positive eigenvalues. Then, we

de�ne Λ̃m0

tj ,tk,M
′
1

= diag

({
λm0,l
tj ,tk,M

′
1

}
l=1,...,d′1

)
as the truncation of Λm0

tj ,tk,M
′
1
with d′1

de�ned by

d′1 = min

k ∈ {1, .., d′′1},
k∑
l=1

λm0,l
tj ,tk,M

′
1
≥ 95%

d′′1∑
l=1

λm0,l
tj ,tk,M

′
1

 , (4.2.9)

where d′′1 keeps only eigenvalues that make the regression problem well-conditioned

i.e. The ratio
λm0,l
tj ,tk,M

′
1

λm0,1
tj ,tk,M

′
1

∣∣∣
l=1,...,d′′1

has to be bigger than 10−6 in single precision or bigger

than 10−15 in double precision �oating representation [103]. In addition to ensuring
a well-conditioned regression problem, equality (4.2.9) also performs a principal
component analysis [103]. At the same time that we set the components of Λ̃m0

tj ,tk,M
′
1
,

we de�ne the matrix Γ̃m0

tj ,tk,M
′
1
that contains only the eigenvectors in Γm0

tj ,tk,M
′
1
that are

associated to Λ̃m0

tj ,tk,M
′
1
.

Regressing with respect to tΓ̃m0

tj ,tk,M
′
1

(
Xm0,m1
tj ,tk

−Xm0
tk

)
∈Rd′1 (d′1 ≤ d1), instead of(

Xm0,m1
tj ,tk

−Xm0
tk

)
∈ Rd1 , involves the inversion of the diagonal matrix Λ̃m0

tj ,tk,M
′
1
which

replaces the whole regression matrix (4.2.8). Since Λ̃ is bounded below away from
zero, its inverse is bounded and the same for the regression procedure. This stabilizes
the computation of the regression estimator whose expression is detailed in Section
4.2.3. Besides, since we have a large number of regression matrices, we can batch
compute these inversions like explained in [5].

For t0 ≤ sj < sk < T and conditionally to Xm0
sj

, we want to keep only �rst/low
order regression terms around Xm0

sk
. We also want to reduce the bias induced by

successive regressions as explained in Section 4.2.3. A natural way to do this is to
make sure that the time distance sk − sj is su�ciently small to neglect the higher
order terms as well as to reduce bias propagation between sk and sj. For this purpose,
we appropriately initialize the value L′ (> L/2) as well as the couple (sj, sj) then
at each iteration i we actualize the value taken by this couple according to (4.2.25)
and (4.2.26).
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When i = 0, for each j = 0, ..., 2L, we de�ne sS0

j (s0
j) as

sS
0

j (s0
j)=max

{
u ∈ S0∩]T− s0

j , δ(T− s0
j)]; (Bias Control) satis�ed at

T − s0
j and (4.2.11) ful�lled for all s ∈ S0∩]T − s0

j , u]

}
(4.2.10)

with δ de�ned in (4.2.14), to simplify the understanding we can start assuming
δ(T− s0

j) = T . The inteval ]T−s0
j , δ(T− s0

j)] will be better speci�ed at each de�nition
4.2.1, 4.3.1 and 4.3.2.

Then J0
j = S0 ∩

]
sj, sS

0

j (s0
j)
]
is a set of strictly decreasing time increments with

the control (Bias Control), speci�ed in de�nitions 4.2.1, 4.3.1 and 4.3.2, that also
satisfy

1

M0

M0∑
m0=1

 d1∑
l=1

1

M ′
1

M1+M ′1∑
m1=M1+1

(
Xm0,m1,l
sj ,s

−Xm0,l
s

)2

 < ε1,sj (4.2.11)

for some tuning positive parameter ε1,sj . We consequently initialize

sS
0

j (s0
j) = max(J0

j ), sS
0

j (s0
j) = min(J0

j ) and J0
j = S0 ∩

]
sj, sS

0

j (s0
j)
]

(4.2.12)

In what follows, if iteration index i is set and there is no confusion on the chosen
set S i, we simplify notations and use sj and sj instead of sSij (sij) and s

Si
j (sij).

By de�nition, J0
j contains di�erent elements and we use |J0

j | to denote its car-
dinal. For any j such that sj < T , we choose the right values for L′ to ensure
that 2L−L

′
< |J0

j | ≤ 2L
′
. Consequently, at the initialization step, one increases pro-

gressively L′ till the latter condition is ful�lled. When i > 0 and j = 0, ..., 2L, we
de�ne

J ij = S i∩]sj, sS
i

j (sij)]. (4.2.13)

Given that (sj)j∈{0,...,2L} is a decreasing, and not strictly decreasing, sequence of
coarse increments, we need to de�ne on S i a new operator δS

i
that associates to

each s ∈ S i the next increment in S i. For a �xed index j ∈ {1, ..., 2L}, we de�ne
δS

i

sj
(·) on (sk)k≤j, taken its values in S i ∩ [sj, sj] (= {sj} ∪ J ij), by

δS
i

sj
(sk) = min

(
sj,min{s ∈ S i; sk < s ≤ sj}

)
(4.2.14)

with min(∅) =∞.
When there is no confusion on the chosen set S i, we use δsj notation instead of

δS
i

sj
. When sk < sj, we use δS

i
notation instead of δS

i

sj
. When there is no confusion

on the chosen set S i and sk < sj, we simplify both indices and use δ instead of δS
i

sj
.

This time operator will be largely used and for a given set S i it has the following
properties

Pr1. (4.2.26) makes sj = δsj(sj) = δ(sj).
Pr2. As long as max(sj1 , sj2) ≤ sk < min(sj1 , sj2), δsj1(sk) = δsj2(sk) = δ(sk).
Pr3. For �xed iteration step i, the nth composition of δsj denoted δ

n
sj

(·) is equal
to sj when n ≥ |J ij |.
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4.2.2 Fine and coarse approximations

Based on what was presented in Section 4.2.1, we detail here the simulation of ap-
proximations of U de�ned by (f). Considering the discretization sequence (sj)j=0,...,2L

that takes its values in the set S ⊂ {t0, ..., t2L}, we use a learning procedure to asso-
ciate to each scenario m0 and each discretization set S a couple of function families
(h̃m0,S , h

m0,S
).

Now, for given indices k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj, for x ∈ Rd1

and s ∈ {sk, sk + ∆t, ..., δ(sk)−∆t}, we de�ne two approximation levels : A coarse
approximation around Xm0

sk
conditionally on Xm0

sj
de�ned by

h
m0,S
sj ,sk

(x) = `
[
h
m0,S
sj ,sk

]
+ tT m0

sj ,sk,M
′
1
(x)Hm0,S

sj ,sk
, (4.2.15)

and a �ne approximation at Xm0
s de�ned by

h̃m0,S
s,sk

=
1

M1

M1∑
m1=1

hm0,S
sk,δ(sk)(X

m0,m1

s,δ(sk) ) +

δ(sk)∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)

 . (4.2.16)

To complete this inductive interconnected backward de�nition of h and h̃, we set
the �nal coarse approximation to

h
m0,S
sj ,sj

(x) =

 f(T, x) if sj = T,

h
m0,S
sj ,sj

(x) = h
m0,S
δ(sj),sj

(x) if sj < T,
(4.2.17)

where sj > sj > sj are speci�ed during the initialization phase (cf. (4.2.12)) then
actualized at each step (cf. (4.2.25) and (4.2.26)). sj and sj are really needed when T
is su�ciently big or the variance produced by X is large enough. Otherwise, (4.2.17)

can be replaced by h
m0,S
sj ,T

(x) = f(t2L , x) = f(T, x).
T involved in (4.2.15) was already de�ned in (4.2.6). The value of the regression

constant `
[
h
m0,S
sj ,sk

]
depends on the variance adjustment procedure presented in section

4.2.3. However, the straight implementation can simply set `
[
h
m0,S
sj ,sk

]
= h̃m0,S

sk,sk
for any

couple (sj, sk) satisfying sj < sk ≤ sj. Regarding the regression vector Hm0,S
sj ,sk

, its

value is obtained from an estimation of the vector a ∈ Rd′1 that minimizes the
quadratic error given by

E
[
H
m0,S,δsj(sk)
sj ,sk (Xm0,m1

sj ,sk:δsj(sk))−
taT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)
]2

(4.2.18)

with Xm0,m1

sj ,sk:δsj(sk) =
(
Xm0,m1
sj ,sk

, Xm0,m1

sj ,sk+∆t
, ..., Xm0,m1

sj ,δsj(sk)−∆t
, Xm0,m1

sj ,δsj(sk)

)
and

H
m0,S,δsj(sk)
sj ,sk (x) = h

m0,S
sj ,δsj(sk)

(
x δsj(sk)−sk

∆t

)
− h̃m0,S

sk,sk
+

δsj(sk)−sk
∆t

−1∑
l=1

f(tksk+l, xl, xl+1) (4.2.19)

where ksk = sk/∆t − 1, x = (x1, ..., x(δsj(sk)−sk)/∆t) with each coordinate of x belon-

ging to Rd1 .
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When sk = δsj(sj) and `
[
h
m0,S
sj ,sk

]
= h̃m0,S

sk,sk
, one can check the coherence of the

previous de�nitions aimed to approximate U de�ned in (f). Indeed, (4.2.16) would
provide for any s ∈ {sj, sj + ∆t, ..., δ(sj)−∆t} = {sj, sj + ∆t, ..., sk −∆t}

h̃m0,S
s,sj

=
1

M1

M1∑
m1=1

hm0,S
sj ,sk

(Xm0,m1
s,sk

) +

sk∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)

 (4.2.20)

where the term h
m0,S
sj ,sk

, de�ned in (4.2.15), is obtained through the projection of
δ(sk)∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)+h
m0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk)), involved in (4.2.30), on T
m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
).

In addition, if we had δ2(sj) = δ(sk) = sj = t2L = T then (4.2.17) would make

h
m0,S
sj ,δ(sk)(·) = f(t2L , ·) and as s ∈ {sj, sj+∆t, ..., sk−∆t} the de�nition of h̃m0,S

s,sj
would

involve
sk∑

tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

) plus the projection of

t
2L∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) +

f(T,Xm0,m1

sj ,T
) as shown on Figure 4.2. h̃m0,S

sk,sk
is equal to

1

M1

M1∑
m1=1

 t
2L∑

tl+1>sk

f(tl, X
m0,m1
sk,tl

, Xm0,m1
sk,tl+1

) + f(T,Xm0,m1

sk,T
)

 because δ(sk) = T .
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Figure 4.2 � An example for (4.2.20) when δ2(sj) = δ(sk) = sj = t2L = T , L = 5
and L′ = 3.

According to equations (4.2.15), (4.2.16), (4.2.18) and (4.2.19), the functions
h and h̃ are de�ned backwardly. When h̃ is a straight Monte Carlo involving h,
the latter is de�ned using a regression around a point at which we expressed h̃.
Consequently, h can be seen as a conditional �rst order Taylor expansion around
the �rst layer of trajectories (Xm0

tk
)m0=1,...,M0

k=1,...,2L
. The term of order zero in this expansion

is played by `[·], where the term tT m0

sj ,sk,M
′
1
(x)Hm0,S

sj ,sk
, deduced from the minimization

of (4.2.18), plays the order one.

Remark 4.2.2 1. Since we do not want to increase further the algorithm com-
plexity by considering higher order terms, the de�nition of h involves only
linear regression around Xm0

sk
.

2. When the dimension d1 is not too high, it is possible to regress the residual of
the �rst regression on higher order terms. These successive regressions do not
increase drastically the complexity when compared to the standard procedure.
Nevertheless, as it separates regression with respect to �rst order terms and
regression with respect to higher order terms, it loses orthogonality between
�rst and higher order terms.
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3. In case X is a martingale, the linearity simpli�es further computations since,
for instance, (4.2.16) can be replaced by

h̃m0,S
s,sk

= h
m0,S
sk,δ(sk)(X

m0
s ) +

1

M1

M1∑
m1=1

δ(sk)∑
tl+1>s

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

).

De�nition 4.2.1 For i∗ = min(min{i = 1, ..., L− L′, j∗i = 2L}, L− L′)
� For k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj < t2L = T , the simu-

lation Um0,m1
sj ,sk

of U around Xm0
sk

conditionally on Xm0
sj

is set to be equal to

h
m0,Si

∗

sj ,sk
(Xm0,m1

sj ,sk
) where h is given in (4.2.15) and (4.2.17).

� For k ∈ {1, ..., 2L} and s ∈ {sk, sk + ∆t, ..., δ(sk)−∆t} − {0}, the simulation
Um0
s of U at Xm0

s is set to be equal to h̃m0,Si
∗

s,sk
with h̃ expressed in (4.2.16).

� The average U lear

0 of learned values on U0 is equal to

U lear

0 =
1

M0

M0∑
m0=1̃

hm0,Si
∗

0,0
(4.2.21)

and the simulated value U sim

0 of U0 is equal to

U sim

0 =
1

M0

M0∑
m0=1

h̃m0,Si
∗

δ(0),δ(0)
+

δ(0)∑
tl+1>0

f(tl, X
m0
tl
, Xm0

tl+1
)

 (4.2.22)

with h̃ expressed in (4.2.16).
� Introduced in (4.2.10), (Bias Control) associated to (f) is de�ned at s ∈ S0

for u ∈ S0∩]s, δ(s)] by∣∣∣∣∣∣ 1

M0

M0∑
m0=1

h̃m0,S0

s,u − h̃m0,S0

δ(s),δ(s)
−

δ(s)∑
tl+1>s

f(tl, X
m0
tl
, Xm0

tl+1
)

∣∣∣∣∣∣ < εS
0

2,s

where for each set S, {εS2,s}s∈S is a family of positive bias tuning parameters.

� For k ∈ {j∗i + 1, ..., 2L}, setting sk = T − sik and noticing that δS
i
(sk) =

δŜ
i
(δŜ

i
(sk)), e

Si
sk

and εS
i

sk
are given by

eS
i

sk
=

1

M0M1

M0∑
m0=1

M1∑
m1=1

[
h
m0,Ŝi

δŜi(sk),δSi(sk)
(Xm0,m1

δŜi(sk),δSi(sk)
)−hm0,Si

sk,δS
i(sk)(X

m0,m1

δŜi(sk),δSi(sk)
)

]
,

εS
i

sk
=

∑
s∈Si,s>sk

εS
i

2,s.

Remark 4.2.3 1. Um0,m1 can be seen as the inner or second layer approxima-
tion of U and Um0 can be seen as the outer or �rst layer approximation of
U .
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2. When Um0,m1 is only de�ned on S i∗, it is remarkable to see that Um0 is de�ned
on the whole �ne discretization set {t0, ..., t2L}.

3. For any S, it is natural to have εS2,s proportional to the value of the estima-

tion 1
M0

∑M0

m0=1 h̃
m0,S
s,s . Used to control the bias, the choice of εS2,s has also to

take into account the con�dence interval of the estimator of the left side of
inequality (Bias Control).

4. Although (Bias Control) is quite su�cient to have almost unbiased estimates,
Section 4.2.3 introduces a more stringent local bias control.

5. eS
i
is de�ned as the average di�erence between the estimation h

m0,Si
that in-

volves the discretization set S i and the estimation h
m0,Ŝi

that involves a �ner
discretization set Ŝ i de�ned below (4.2.4). With actualization (4.2.5), we are
basically saying that the discretization set should be �ner only when the di�e-
rence between approximations is superior to the sum of possible accumulation
of bias εS

i
.

4.2.3 Regression computations : Bias control and variance
adjustment

As a continuation to Section 4.2.1, we explain the (Bias Control) expression and
how the value of (sj, sj) should be actualized. Then, as a continuation to Section
4.2.2, for each couple (scenario/discretization set) = (m0,S) we provide possible

values of the couple
(
`
[
h
m0,S

]
, Hm0,S

)
including a variance adjustment procedure.

We remind that both procedures, explained in this section, are only feasible because
of the nested nature of our simulation and they would not be possible otherwise.

In Section 4.2.1 equation (4.2.12), we de�ned (s, s) on the discretization set
S0. In order to reduce the backward bias propagation, this de�nition used the
double layer Monte Carlo to control the average bias. Indeed, as 1

M0

∑M0

m0=1 h̃
m0,S0

sj ,u

and 1
M0

∑M0

m0=1

(
h̃m0,S0

δ(sj),δ(sj)
+
∑δ(sj)

tl+1>sj
f(tl, X

m0
tl
, Xm0

tl+1
)
)
are both approximations of

E(Usj) = E
(
Uδ(sj) +

∑δ(sj)
tl+1>sj

f(tl, X
m0
tl
, Xm0

tl+1
)
)
, it is natural to have them almost

equal. For large values of M0, the di�erence between these approximations is due to
bias. As explained at the end of Section 4.4.1 and the beginning of Section 4.4.2, a ju-
dicious method to reduce this bias propagation is to adjust the number of successive
regressions through the appropriate choice of u.

The choice of u in (Bias Control) ought to decrease the global average value of
the bias. More local approach can be developed using equality

E
(
Usj1{Usj∈[a,b]}

)
= E

1{Usj∈[a,b]}

Uδ(sj) +

δ(sj)∑
tl+1>sj

f(tl, X
m0
tl
, Xm0

tl+1
)

 (4.2.23)

which is true for any localizing interval [a, b]. When M0 is su�ciently large, one can
sort {h̃m0,S0

sj ,sj
}m0≤M0 and de�ne a subdivision of localizing intervals {[aq, aq+1]}q≥1

then choose sj that does not induce a large di�erence between

1
M0

∑M0

m0=1

(
1{

h̃
m0,S0

sj ,sj
∈[aq ,aq+1]

}[h̃m0,S0

δ(sj),δ(sj)
+
∑δ(sj)

tl+1>sj
f(tl, X

m0
tl
, Xm0

tl+1
)
])

and

1
M0

∑M0

m0=1

(
h̃m0,S0

sj ,sj
1{

h̃
m0,S0

sj ,sj
∈[aq ,aq+1]

}
)

for any q. This local increase of bias can be
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even tracked for any s ∈ S0 ∩ [δ(sj), sj[ using the di�erence

1

M0

M0∑
m0=1

1{
h̃
m0,S0

sj ,sj
∈[aq ,aq+1]

}
̃hm0,S0

sj ,sj
− h̃m0,S0

s,s −
s∑

tl+1>sj

f(tl, X
m0
tl
, Xm0

tl+1
)

 . (4.2.24)

Although the local tracking of bias was not necessary in our simulations, it is quite
remarkable to point out the strength of bias control induced by 1NMC.

For j = 0, ..., 2L and sj = T − sij ∈ S i, the actualization of (sj, sj) is given by

sS
i

j (sij) = sS
i−1

j (si−1
j )1Ii,j + max

(
S i∩]sj, sS

i−1

j (si−1
j )[

)
1Ii,j

c , (4.2.25)

sS
i

j (sij) = sS
i−1

j (si−1
j )1Ii,j + min

(
S i∩]sj, sS

i−1

j (si−1
j )[

)
1Ii,jc (4.2.26)

where the sets of indices Ii,j = {j ≤ j∗i }∪ {sij 6= si−1
j } and Ii,j = Ii,j ∪{sS

i−1

j (si−1
j ) =

T}. In Figure 4.3, we illustrate what happens when j > j∗1 with either s1
j 6= s0

j (j =

25, 26) or s1
j = s0

j (j = 27, 28). Except when {sSi−1

j (si−1
j ) = T}, the actualization

strategy given by equations (4.2.25) and (4.2.26) aims at ensuring sSij1 (sij1) 6= sS
i

j2
(sij2)

and sS
i

j1
(sij1) 6= sS

i

j2
(sij2) as long as sij1 6= sij2 . As mentioned before, if iteration index i

is set and there is no confusion on the chosen set S i, we simplify notations and use
sj and sj instead of sSij (sij) and s

Si
j (sij).

Figure 4.3 � An example for (4.2.12), (4.2.25) and (4.2.26) based on the example
of Figure 4.1.

Given two indices k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj, the expression

of (`
[
h
m0,S
sj ,sk

]
, Hm0,S

sj ,sk
) involves the use of an intermediary variable γm0,S

sj ,sk
and an in-

termediary vector Ĥm0,S
sj ,sk

. Given the value of the couple (γm0,S
sj ,sk

, Ĥm0,S
sj ,sk

) speci�ed in
(4.2.29) and (4.2.32), we de�ne

Hm0,S
sj ,sk

= γm0,S
sj ,sk

Ĥm0,S
sj ,sk

(4.2.27)

and

`
[
h
m0,S
sj ,sk

]
= h̃m0,S

sk,sk
+

(1− γm0,S
sj ,sk

)

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Ĥm0,S

sj ,sk
. (4.2.28)

Then, γm0,S
sj ,sk

is used to adjust the variance of h
m0,S
sj ,sk

de�ned in (4.2.15) without chan-

ging its average value. Indeed, the expression of `
[
h
m0,S
sj ,sk

]
makes

∑M1

m1=1 h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)/M1

invariable with respect to γm0,S
sj ,sk

.
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The value of Ĥm0,S
sj ,sk

is given by

Ĥm0,S
sj ,sk

= (Λ̃m0

sj ,sk,M
′
1
)−1 1

M1

M1∑
m1=1

H
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1

sj ,sk:δsj(sk)) (4.2.29)

where Xm0,m1

sj ,sk:δsj(sk) =
(
Xm0,m1
sj ,sk

, Xm0,m1

sj ,sk+∆t
, ..., Xm0,m1

sj ,δsj(sk)−∆t
, Xm0,m1

sj ,δsj(sk)

)
and the function

H
m0,S,δsj(sk)

sj ,sk,M
′
1

: Ω×Rd1(δsj(sk)−sk)/∆t 3 (ν, x1, ..., x(δsj(sk)−sk)/∆t)→ Ω×Rd′1 is Fδsj(sk) ⊗
B(Rd1(δsj(sk)−sk)/∆t)-measurable and de�ned by

H
m0,S,δsj(sk)

sj ,sk,M
′
1

(x) = T m0

sj ,sk,M
′
1
(x1)


h
m0,S
sj ,δsj(sk)

(
x δsj(sk)−sk

∆t

)
− h̃m0,S

sk,δsk(sk)

+

δsj(sk)−sk
∆t

−1∑
l=1

f(tksk+l, xl, xl+1)


︸ ︷︷ ︸

H
m0,S,δsj(sk)
sj ,sk (x)

(4.2.30)

where ksk = sk/∆t − 1 and x = (x1, ..., x(δsj(sk)−sk)/∆t).

Regarding γm0,S
sj ,sk

, various values can be considered. The straight choice is to take
γm0,S
sj ,sk

= 1 which reduces the procedure to a standard regression. However, this is
not the suitable choice for problems that heavily depend on tail distribution. Indeed,
given two arbitrary square integrable random variables χ1 and χ2, consider χ3 to be
the regression of χ1 with respect to χ2. Because generally regression preserves the
mean value, it is reasonable to assume E(χ3) = E(χ1). However, regressions decreases
the second moment i.e. E(χ2

3) < E(χ2
1) and thus V ar(χ3) < V ar(χ1). The latter fact

becomes a real problem for tail distribution when V ar(χ3) << V ar(E(χ1|χ2)). Some
contributions tackle rare event simulation using a change of probability trick [38,62]
and more recent contribution [6] implements reversible shaking transformations.

In (Bias Control), we established strong constraints to make h̃m0,S an almost
unbiased estimator of U . It is then possible to use their values to propose an appro-
priate adjustment of the variance. For sj < s with s = sk, δ(sk), the whole idea is
based on the following equality

E
(
Varsj(Us)

)
= E

(
Esj
([
Us − Esj(Us)

]2))
= E

([
Us − Esj(Us)

]2)
.

De�ning (σS0,sj ,s)
2 = 1

M0

∑M0

m0=1

[
h̃m0,S
s,s − 1

M1

∑M1

m1=1 h
m0,S
sj ,s

(Xm0,m1
sj ,s

)
]2

and (σm0,S
sj ,s

)2 =

1
M1

∑M1

m1=1

[
h
m0,S
sj ,s

(Xm0,m1
sj ,s

)− 1
M1

∑M1

m1=1 h
m0,S
sj ,s

(Xm0,m1
sj ,s

)
]2

as the estimators of

Esj
([
Us − Esj(Us)

]2)
and E

([
Us − Esj(Us)

]2)
respectively, it is then natural to

have for s = sk, δ(sk) as M1 and M0 →∞

(σS0,sj ,s)
2 =

1

M0

M0∑
m0=1

(σm0,S
sj ,s

)2. (4.2.31)

Because of (Bias Control), the estimators 1
M1

∑M1

m1=1 h
m0,S
sj ,s

(Xm0,m1
sj ,s

) and h̃m0,S
s,s have

negligible bias. Starting from δ(sk) = sk, we can reasonably assume inductively
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that (4.2.31) is true for s = δ(sk). Afterwards, we choose the appropriate value of

γm0,S
sj ,sk

, subsequently the value of h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

), that makes σm0,S
sj ,sk

satisfy (4.2.31)
for s = sk. For this task, we introduce an intermediary non-adjusted conditional
variance (σ̂m0,S

sj ,s
)2 de�ned by

(σ̂m0,S
sj ,sk

)2=
1

M1

M1∑
m1=1

̃hm0,S
sk,sk

+tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Ĥm0,S

sj ,sk
−

M1∑
m1=1

h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)

M1

2

.

∑M1

m1=1

h
m0,S
sj ,sk

(X
m0,m1
sj ,sk

)

M1
can be replaced by

∑M1

m1=1

h̃
m0,S
sk,sk

+tT m0
sj ,sk,M

′
1
(X

m0,m1
sj ,sk

)Ĥ
m0,S
sj ,sk

M1
without

changing the value of (σ̂m0,S
sj ,s

)2. For positive tuning value ε3 < 1/3, we set then

γm0,S
sj ,sk

=
σm0,S
sj ,δ(sk)

σ̂m0,S
sj ,sk

(√
sk − sj
δ(sk)− sj

1δ(sk)−sj<ε3 +
σS0,sj ,sk
σS0,sj ,δ(sk)

1δ(sk)−sj≥ε3

)
. (4.2.32)

According to (4.2.32), when δ(sk)−sj is small and a fortiori sk−sj is small then the
conditional variance (σm0,S

sj ,sk
)2 is linear with respect to time increment sk − sj. This

fact can be justi�ed for di�usions using �rst order Taylor expansion of E(φ(t,Wt))
around φ(t, 0), where W is a Brownian motion. Also according to (4.2.32), when
δ(sk) − sj becomes su�ciently big, the conditional variance (σm0,S

sj ,sk
)2 has the same

unconditional decreasing ratio

(
σS0,sj ,sk
σS

0,sj ,δ(sk)

)2

with respect to (σm0,S
sj ,δ(sk))

2. Although

this adjustment works well in our simulations, it can be turned into a more local
approach. In fact, similar to what was proposed for the bias control in (4.2.23), for
sj < s with s = sk, δ(sk), the equality

E
(
Varsj(Us)1{Varsj (Uδ(sk))∈[a,b]}

)
= E

(
1{Varsj (Uδ(sk))∈[a,b]}

[
Us − Esj(Us)

]2)
is true for any localizing interval [a, b]. When M0 is su�ciently large, one can sort
{(σm0,S

sj ,δ(sk))
2}m0≤M0 and de�ne a subdivision of localizing intervals {[aq, aq+1]}q≥1 and

de�ne

(σS,q0,sj ,s
)2 =

1

M0

M0∑
m0=1

1{(σm0,S
sj ,δ(sk)

)2∈[aq ,aq+1]}

[
h̃m0,S
s,s − 1

M1

M1∑
m1=1

h
m0,S
sj ,s

(Xm0,m1
sj ,s

)

]2

.

Condition (4.2.31) can be then replaced by its localized version

(σS,q0,sj ,s
)2 =

1

M0

M0∑
m0=1

1{(σm0,S
sj ,δ(sk)

)2∈[aq ,aq+1]}(σ
m0,S
sj ,s

)2. (4.2.33)

If σm0,S
sj ,δ(sk) ∈ [aq0 , aq0+1] then it makes sense to replace (4.2.32) by

γm0,S
sj ,sk

=
σm0,S
sj ,δ(sk)

σ̂m0,S
sj ,sk

(√
sk − sj
δ(sk)− sj

1δ(sk)−sj<ε3 +
σS,q00,sj ,sk

σS,q00,sj ,δ(sk)

1δ(sk)−sj≥ε3

)
.(4.2.34)

Although the local variance adjustment (4.2.34) was not necessary in our simula-
tions, it is quite remarkable to point out the high �exibility of the multilayer setting
induced by 1NMC. Thus when M0 and M1 are su�ciently large, one sees that this
double layer Monte Carlo makes possible a very �ne tracking of the bias of the
�rst layer �ne estimator Um0 and the variance of the second layer coarse estimator
Um0,m1 .
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4.3 Some applications : Risk measures, BSDEs and
RBSDEs

The simulation procedure presented in the previous section is supposed to be
used for any functional approximated by or solution of (f). In this section, we show
the use of this procedure on standard problems that inspired this work. We �rst
clarify the method on the approximation of a conditional expectation of some FT -
measurable random variable and how to compute a risk measure. We also illustrate
the adaptation to BSDEs then to RBSDEs.

4.3.1 Conditional expectation and risk measures

We consider here the following process

Ut = E
(
f(XT )

∣∣∣Xt

)
,

with a deterministic function f . Thus, we assume that there is no path dependence
through the sum on the realizations of X as done in (f). In this path-independent si-
tuation for the �xed time set (4.2.3), it is clear that one can simulate {UT−s0j}j=0,...,2L

using 1NMC without any need of regression and thus without using our method.
However, we choose to illustrate our method on this simple case and we will see at
the end of this section what are the bene�ts. To simplify further the presentation,
we set the variance adjustment parameter γ, introduced in Section 4.2.3, to 1.

For known values sj′ < sj ∈ {∆t, ..., T} and for a �xed outer trajectory (Xm0
tk

)k=0,...,2L ,
let us assume that we want to simulate Usj′ and Usj . A straight way to do it is to
draw inner trajectories of X, as in Figure 4.4, then average on the realizations of
f(XT ). If sj and sj′ are close to each other in some sense 1, we are able to simulate
Utk for any tk ∈ [sj′ , sj) using

Um0
tk

= h̃m0,Si
∗

tk,T
=

1

M1

M1∑
m1=1

h
m0,Si

∗

sj′ ,sj
(Xm0,m1

tk,sj
).

We point out that h
m0,Si

∗

sj′ ,sj
(x) and Xm0,m1

tk,sj
replace respectively f(x) and Xm0,m1

tk,T

involved in standard Nested simulation. Below, we establish how hsj′ ,sj should be
computed.

First of all, since sj′ and sj are assumed to be �close enough�, the initialization
phase presented in the end of Section 4.2 and the actualization of sj′ , sj′ , sj and sj
are not necessary. Thus, in the light of (4.2.11), one has to take sj = sj′ = t2L = T
and consequently

(hsj′T ) & (hsjT ) h
m0,Si

∗

sj′ ,T
(x) = h

m0,Si
∗

sj ,T
(x) = f(x)

that sets

(h̃sj) Um0
sj

= h̃m0,Si
∗

sj ,T
=

1

M1

M1∑
m1=1

h
m0,Si

∗

sj ,T
(Xm0,m1

sj ,T
).

1. Not necessary an Euclidean distance.
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sj' Tsjsj''sj'''0 sj''''

Figure 4.4 � Given the realization of one outer trajectory (bold), we simulate inner
trajectories to approximate Usj , Usj′ , Usj′′ , Usj′′′ and Usj′′′′ .

As in (4.2.15), we de�ne

(hsj′sj) h
m0,Si

∗

sj′ ,sj
(x) = h̃m0,Si

∗

sj ,T
+tT m0

sj′ ,sj ,M
′
1
(x)Am0,Si

∗

sj′ ,sj
,

where the adaptation of (4.2.27) and (4.2.30) makes

(ATsj′sj) A
m0,Si

∗

sj′ ,sj
=

(
Λ̃m0

sj′ ,sj ,M
′
1

)−1

M1

M1∑
m1=1

T m0

sj′ ,sj ,M
′
1
(Xm0,m1

sj′ ,sj
)

hm0,Si
∗

sj′ ,T

(
Xm0,m1

sj′ ,T

)
−h̃m0,Si

∗

sj ,T

 .
If we add a third increment sj′′ (cf. Figure 4.4) such that sj′′ , sj′ and sj are close

enough, for any tk ∈ [sj′′ , sj′) one can set Um0
tk

= h̃m0,Si
∗

tk,T
. The latter equality requires

the de�nition of h
m0,Si

∗

sj′′ ,sj′
which can be obtained from (hsj′′sj′ ) involving h̃

m0,Si
∗

sj′ ,T
and

Am0,Si
∗

sj′′ ,sj′
that can be computed using (A

sj
sj′′sj′ ). The calculations in (A

sj
sj′′sj′ ) use h̃

m0,Si
∗

sj′ ,T

and h
m0,Si

∗

sj′′ ,sj
whose expression depends on h̃m0,Si

∗

sj ,T
and Am0,Si

∗

sj′′ ,sj
. Finally, Am0,Si

∗

sj′′ ,sj
is

the regression vector of h
m0,Si

∗

sj′′ ,T
around h̃m0,Si

∗

sj ,T
. Subsequently, the computations of

h̃m0,Si
∗

sj′′ ,T
, h̃m0,Si

∗

sj′ ,T
and h̃m0,Si

∗

sj ,T
involve the dependence structure given in (4.3.1).

h̃m0,Si
∗

sj′′ ,T
→ h

m0,Si
∗

sj′′ ,sj′
→ h̃m0,Si

∗

sj′ ,T
→ h

m0,Si
∗

sj′ ,sj
→ h̃m0,Si

∗

sj ,T
→ h

m0,Si
∗

sj ,T
= f

↘ ↑ ↘ ↑
Am0,Si

∗

sj′′ ,sj′
Am0,Si

∗

sj′ ,sj
→ h

m0,Si
∗

sj′ ,T
= f

↘
h
m0,Si

∗

sj′′ ,sj
→ h̃m0,Si

∗

sj ,T
→ h

m0,Si
∗

sj ,T
= f

↘ ↑
Am0,Si

∗

sj′′ ,sj
→ h

m0,Si
∗

sj′′ ,T
= f

(4.3.1)

By adding other increments sj′′′ and sj′′′′ (cf. Figure 4.4), it can happen that sj
can no longer be considered close enough. In this situation, a linear regression around
Xm0
sj

would not be considered su�cient for inner trajectories that start at Xm0
sj′′′

or
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Xm0
sj′′′′

. To deal with this situation, one should introduce (sj′′′ , sj′′′) and (sj′′′′ , sj′′′′)

de�ned in the end of Section 4.2. For instance if sj′′′ = sj and sj′′′ = sj′′ , one
starts the backward induction associated to the increment sj′′′ by the �nal condition

h
m0,Si

∗

sj′′′ ,sj
(x) = h

m0,Si
∗

sj′′ ,sj
(x) instead of h

m0,Si
∗

sj′′′ ,T
(x) = f(x) and (4.3.1) becomes

h̃m0,Si
∗

sj′′′ ,sj
→ h

m0,Si
∗

sj′′′ ,sj′′
→ h̃m0,Si

∗

sj′′ ,T
→h

m0,Si
∗

sj′′ ,sj′
→ h̃m0,Si

∗

sj′ ,T
→ h

m0,Si
∗

sj′ ,sj
→ h̃m0,Si

∗

sj ,T
...f

↘ ↑ ↘ ↑ ↘ ↑
Am0,Si

∗

sj′′′ ,sj′′
Am0,Si

∗

sj′′ ,sj′
Am0,Si

∗

sj′ ,sj
...f

↘ ↘
h
m0,Si

∗

sj′′′ ,sj′
→ h̃m0,Si

∗

sj′′ ,T
→ h

m0,Si
∗

sj′′ ,sj
→ h̃m0,Si

∗

sj ,T
...f

↘ ↑ ↘ ↑
Am0,Si

∗

sj′′′ ,sj′
Am0,Si

∗

sj′′ ,sj
...f

↘
h
m0,Si

∗

sj′′′ ,sj
= h

m0,Si
∗

sj′′ ,sj

(4.3.2)

In Figure 4.4, we also set sj′′′′ = sj′ as well as sj′′′′ = sj′′′ and the tree (4.3.2) can
be further changed to include the dependency structure induced by sj′′′′ . Indeed, we
urge the reader to check that (4.3.2) can be as easily completed as done for (4.3.1)
to include the dependency structure induced by sj′′′′ .

Even with the simple example presented in this subsection, one can show the be-
ne�t of this method. Indeed, in addition to a �ne simulation of U using h̃, this method
de�nes a set of functions h that can be considered as coarse conditional approxima-
tion of U . These conditional approximations can be used as forward components of
another functional. For instance, given the example presented above and illustrated

in Figure 4.4, the simulation of an m0 realization of Vsj′′ = E
(

(Usj − Usj′ )+

∣∣∣Xsj′′

)
can be done with

Ṽ m0
sj′′

=
1

M1

M1∑
m1=1

([
h
m0,Si

∗

sj′′ ,sj
(Xm0,m1

sj′′ ,sj
)− hm0,Si

∗

sj′′ ,sj′
(Xm0,m1

sj′′ ,sj′
)

]
+

)
.

These functions h can be also used for risk measures. For example, the conditional

value at risk VaRα%
[
Usj − Usj′

∣∣∣Xsj′′

]
of level α% can be computed after sorting(

h
m0,Si

∗

sj′′ ,sj
(Xm0,m1

sj′′ ,sj
)− hm0,Si

∗

sj′′ ,sj′
(Xm0,m1

sj′′ ,sj′
)

)
1≤m1≤M1

.

Remark 4.3.1 Referring to Figure 4.4, for any g, when E
(
g(Usj′′′ )

∣∣∣Xsj′′′′

)
,

E
(
g(Usj′′ )

∣∣∣Xsj′′′′

)
and E

(
g(Usj′ )

∣∣∣Xsj′′′′

)
are well de�ned their simulation can be

directly performed using h
m0,Si

∗

sj′′′′ ,sj′′′
, h

m0,Si
∗

sj′′′′ ,sj′′
or h

m0,Si
∗

sj′′′′ ,sj′
. This is not the case for

E
(
g(Usj)

∣∣∣Xsj′′′′

)
since h

m0,Si
∗

sj′′′′ ,sj
were not computed because sj′′′′ = sj′ < sj. If

E
(
g(Usj)

∣∣∣Xsj′′′′

)
is needed, one should be either less conservative for the choice of

ε1,sj′′′′ and ε2,sj′′′′ (cf. (4.2.11) and (Bias Control)) that makes, or use higher order
terms for the regression as presented in Remark 4.2.2.
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The other bene�t of our method is the possibility to have a parareal alike im-
plementation [89] and thus make the algorithm parallel in time in addition to have
it parallel in paths. Indeed, refering to Figure 4.4, if we associate the �nal condi-

tions h
m0,Si

∗

sj′′ ,sj′
and h

m0,Si
∗

sj′ ,sj
respectively to each subinterval [sj′′ , sj′) and [sj′ , sj), we

can perform concurrent calculations on these intervals.

4.3.2 BSDEs with a Markov forward process

In the previous subsection 4.3.1, we saw the implementation of our method on
a simple problem and we showed its bene�ts when one has to simulate functionals
of functionals of a Markov process. BSDEs and RBSDEs are speci�c functionals of
functionals of a forward process assumed Markov in various situations. After [100],
BSDEs became very widely studied, especially in the quantitative �nance community
starting with [81]. Here we consider the One step forward Dynamic Programming
(ODP ) scheme for discrete BSDEs

(ODP ) YT = ζ and for k < 2L
{
Ytk = Etk [Ytk+1

+ ∆tf(tk, Ytk+1
, Ztk)],

Ztk = Etk [Ytk+1
(Wtk+1

−Wtk)/∆t].

(ODP ) was studied for instance in [64, 87]. Here we consider ζ = f(t2L , XT ) to be
some square integrable random variable that depends on XT . Given a discretization
sequence (sj)j=0,...,2L ∈ S and referring to (4.2.1) and (4.2.2), the simulation of X
involves the increments of an Rd2-Brownian motion W with ξm0

tk
= Wm0

tk
− Wm0

tk−1

and ξm0,m1
sj ,tk

= Wm0,m1
sj ,tk

−Wm0,m1
sj ,tk−1

where W 1, ...,WM0 are independent realizations of
W with

Wm0,m1
sj ,tk

= Wm0,m1
sj ,tk−1

+ ∆Wm0,m1
sj ,tk

and Wm0,m1
sj ,sj

∣∣∣
m1=1,...,M1+M ′1

= Wm0
sj
,

(∆Wm0,m1
sj ,tk

)
(m0,m1)∈{1,...,M0}×{1,...,M1+M ′1}
k∈{j,...,2L},j∈{1,...,2L} are independent Brownian motion increments

independent fromW 1, ...,WM0 with E([∆Wm0,m1
sj ,tk

]2) = ∆t. As pointed out below Re-
mark 4.2.1, if an inner trajectory {Xm0,m1} is needed several times in the backward
induction, we simulate independent copies of it and thus independent copies of ξm0,m1

and use each copy once.
For given indices k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj and using δsj(sk)

de�ned in (4.2.14), we also set ∆Wm0,m1

sj ,sk,δsj(sk) = Wm0,m1

sj ,δsj(sk) − Wm0,m1
sj ,sk

. For each k,

the Borel B(R)⊗B(Rd2)-measurable driver f(tk, ·, ·) is assumed to satisfy Lipschitz
condition of Section 4.4.

Given the discretization set S, one can de�ne two coarse approximations around
Xm0
sk

conditionally on Xm0
sj

given by

ym0,S
sj ,sk

(x) = `
[
ym0,S
sj ,sk

]
+ tT m0

sj ,sk,M
′
1
(x)Cm0,S

sj ,sk
, (4.3.3)

tzm0,S
sj ,sk

(x) = tz̃m0,S
sk,sk

+ tT m0

sj ,sk,M
′
1
(x)Dm0,S

sj ,sk
, (4.3.4)

as well as two �ne approximations at Xm0
s , for s ∈ {sk, sk +∆t, ..., δsj(sk)−∆t} with

∆s = δsj(sk)− s and ∆sk = δsj(sk)− sk, given by

ỹm0,S
s,sk

=
1

M1

M1∑
m1=1

 ∆sf(sk, y
m0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk)), z̃
m0,S
s,sk

)

+ ym0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))

 , (4.3.5)
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z̃m0,S
s,sk

=
1

M1∆s

M1∑
m1=1

ym0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))
(
Wm0,m1

s,δsj(sk) −W
m0
s

)
(4.3.6)

and we set the �nal coarse approximation to

ym0,S
sj ,sj

=

 f(t2L , X
m0,m1
sj ,t2L

) if sj = t2L ,

ym0,S
sj ,sj

(Xm0,m1

sj ,sj
) = ym0,S

δsj(sj),sj
(Xm0,m1

sj ,sj
) if sj < t2L ,

(4.3.7)

sj > sj > sj are speci�ed during the initialization phase (cf. (4.2.12)) then actualized
at each step (cf. (4.2.25) and (4.2.26)) where (Bias Control), ε and e are expressed
in De�nition 4.3.1.

Since T was already expressed in (4.2.6), to complete this inductive interconnec-
ted de�nition of (y, ỹ, z, z̃), we set the vector Cm0,S

sj ,sk
= γm0,S

sj ,sk
Ĉm0,S
sj ,sk

and the matrix
Dm0,S
sj ,sk

to be equal to

Ĉm0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

Y
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

, Xm0,m1

sj ,δsj(sk)), (4.3.8)

Dm0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

Z
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

,∆Wm0,m1

sj ,sk,δsj(sk), X
m0,m1

sj ,δsj(sk)),(4.3.9)

with Y
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, x) =T m0

sj ,sk,M
′
1
(x′)Y

m0,S,δsj(sk)
sj ,sk (x′, x) is Fδsj(sk) ⊗ B(R2d1)−

measurable and Z
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, w, x) = T m0

sj ,sk,M
′
1
(x′)tZ

m0,S,δsj(sk)
sj ,sk (w, x) is a vector

function measurable with respect to Fδsj(sk) ⊗ B(R2d1+d2), where

Y
m0,S,δsj(sk)
sj ,sk (x′, x) =

∆skf(sk, y
m0,S
sj ,δsj(sk)(x), zm0,S

sj ,sk
(x′))

+ ym0,S
sj ,δsj(sk)(x)− ỹm0,S

sk,sk

 , (4.3.10)

and

Z
m0,S,δsj(sk)
sj ,sk (w, x) = ym0,S

sj ,δsj(sk)(x)
w

∆sk

− z̃m0,S
sk,sk

. (4.3.11)

Finally, applying similar variance adjustment procedure as the one presented in
Section 4.2.3, we set the value of γm0,S

sj ,sk
and we de�ne

`
[
ym0,S
sj ,sk

]
= ỹm0,S

sk,sk
+

(1− γm0,S
sj ,sk

)

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)Ĉm0,S

sj ,sk
. (4.3.12)

From equations above, one can associate quadratic minimization problems to
Cm0,i
sj ,sk

and to Dm0,i
sj ,sk

, as done for Hm0,i
sj ,sk

in (4.2.18). In the same fashion as in De�nition
4.2.1, we de�ne the double layer approximations (Y m0 , Zm0) and (Y m0,m1 , Zm0,m1)
of functionals Y and Z.

De�nition 4.3.1 For i∗ = min(min{i = 1, ..., L− L′, j∗i = 2L}, L− L′)
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� For k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj < t2L = T , the simulation
Y m0,m1
sj ,sk

and Zm0,m1
sj ,sk

of Y and Z respectively around Xm0
sk

conditionally on Xm0
sj

are set to be equal to ym0,Si∗
sj ,sk

(Xm0,m1
sj ,sk

) and zm0,Si∗
sj ,sk

(Xm0,m1
sj ,sk

) where y and z are
given in (4.3.3), (4.3.4) and (4.3.7).

� For k ∈ {1, ..., 2L} and s ∈ {sk, sk+∆t, ..., δsk(sk)−∆t}−{0}, the simulation
Y m0
s and Zm0

s of Y and Z respectively at Xm0
s are set to be equal to ỹm0,Si

∗

s,sk

and to z̃m0,Si
∗

s,δsk(sk) with ỹ and z̃ expressed in (4.3.5) and (4.3.6).

� The average Y lear

0 and Z lear

0 of learned values on Y0 and Z0 are respectively
equal to

Y lear

0 =
1

M0

M0∑
m0=1

ỹm0,Si
∗

0,0
, Z lear

0 =
1

M0

M0∑
m0=1

z̃m0,Si
∗

0,0
(4.3.13)

and the simulated values Y sim

0 and Zsim

0 of Y0 and Z0 are respectively equal to

Y sim

0 =
1

M0

M0∑
m0=1

[
δ(0)f

(
δ(0), ỹm0,Si

∗

δ(0),δ(0)
, Zsim

0

)
+ ỹm0,Si

∗

δ(0),δ(0)

]
,

Zsim

0 =

M0∑
m0=1

ỹm0,Si
∗

δ(0),δ(0)

Wm0

δ(0)

δ(0)M0

.

(4.3.14)

� Introduced in (4.2.10), (Bias Control) associated to (ODP ) is de�ned at s ∈
S0 for u ∈ S0∩]s, δ(s)] by∣∣∣∣∣ 1

M0

M0∑
m0=1

(
ỹm0,S0

s,u − ỹm0,S0

δ(s),δ(s)
− (δ(s)− s)f(s, ỹm0,S0

δ(s),δ(s)
, z̃m0,S0

s,s )
)∣∣∣∣∣ < εS

0

2,s

where for each set S, {εS2,s}s∈S is a family of positive bias tuning parameters.

� For k ∈ {j∗i + 1, ..., 2L}, setting sk = T − sik and noticing that δS
i
(sk) =

δŜ
i
(δŜ

i
(sk)), e

Si
sk

and εS
i

sk
are given by

eS
i

sk
=

1

M0M1

M0∑
m0=1

M1∑
m1=1

[
ym0,Ŝi

δŜi(sk),δSi(sk)
(Xm0,m1

δŜi(sk),δSi(sk)
)−ym0,Si

sk,δS
i(sk)

(Xm0,m1

δŜi(sk),δSi(sk)
)
]
,

εS
i

sk
=

∑
s∈Si,s>sk

εS
i

2,s.

Remark 4.3.2 0. The di�erent points of Remark 4.2.3 can be highlighted here.
1. Given a discretization set S and sk ∈ S, the choice of sk and on sk is comple-

tely known in De�nition 4.3.1 through the value of e, ε and inequality (Bias
Control).

2. The value of e, ε and inequality (Bias Control) involve mainly the approxi-
mation of Y since using criteria on the approximation of Z would involve
very large number of trajectories, making it impracticable.

3. Although possible, we did not judge necessary to implement a variance ad-
justment method on the Z component.
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4. As a future work, we would like to apply variance reduction methods with
1NMC and provide very accurate double layer estimations of the Z term.

5. With BSDEs, it is possible to use other (Bias Control) inequalities. Indeed,
using rather an MDP scheme (cf. [67]), (Bias Control) of De�nition 4.3.1
can be replaced by∣∣∣∣∣∣ 1

M0

M0∑
m0=1

ỹm0,S0

s,u − ỹ
m0,S0

δ(r),δ(r)
−

r∑
θ∈S0,θ=s

(δ(θ)− θ)f(s, ỹm0,S0

δ(θ),δ(θ)
, z̃m0,S0

θ,θ
)

∣∣∣∣∣∣ < εS
0

2,s,

for any r ∈ S0 ∩ [s, u[.

4.3.3 RBSDEs with a Markov forward process

The generally studied RBSDEs are functionals of a Markov process. Here, we
consider an application to RBSDEs as the one presented in [35] with X simulated
like in Section 4.3.3 and functions g(·) and driver {f(tk, ·)}2L−1

k=0 assumed to satisfy
Lipschitz condition of Section 4.4. We want to propose a double layer approximation
V m0 and V m0,m1 of the Snell envelope V , solution to

(Snl) VT = g(XT ) and for k < 2L : Vtk = g(Xtk)∨Etk [Vtk+1
+∆tf(tk, Vtk+1

)],

that can be done using straightforwardly the recipe of Section 4.2 combined with a
maximization by g. In fact, given a discretization set S and indices k < j ∈ {1, ..., 2L}
that satisfy sj < sk ≤ sj and using δsj(sk) de�ned in (4.2.14), we set the coarse
approximation vsj ,sk around X

m0
sk

conditionally on Xm0
sj

to

vm0,S
sj ,sk

(x) = wm0,S
sj ,sk

(x) ∨ g(x), (4.3.15)

and the �ne approximation ṽs,sk at X
m0
s , s ∈ {sk, sk + ∆t, ..., δsj(sk)−∆t}, to

ṽm0,S
s,sk

= w̃m0,S
s,sk
∨ g(Xm0

s ). (4.3.16)

Denoting ∆s = δsj(sk)− s and ∆sk = δsj(sk)− sk, we de�ne

w̃m0,S
s,sk

=
1

M1

M1∑
m1=1

(
∆sf(sk, v

m0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))) + vm0,S
sk,δsj(sk)(X

m0,m1

s,δsj(sk))
)
, (4.3.17)

wm0,S
sj ,sk

(x) = `
[
wm0,S
sj ,sk

]
+ tT m0

sj ,sk,M
′
1
(x)Bm0,S

sj ,sk
, (4.3.18)

where

`
[
wm0,S
sj ,sk

]
= w̃m0,S

sk,sk
+

(1− γm0,S
sj ,sk

)

M1

M1∑
m1=1

tT m0

sj ,sk,M
′
1
(Xm0,m1

sj ,sk
)B̂m0,S

sj ,sk
, (4.3.19)

Bm0,S
sj ,sk

= γm0,S
sj ,sk

B̂m0,S
sj ,sk

with

B̂m0,S
sj ,sk

=
(Λ̃m0

sj ,sk,M
′
1
)−1

M1

M1∑
m1=1

B
m0,S,δsj(sk)

sj ,sk,M
′
1

(Xm0,m1
sj ,sk

, Xm0,m1

sj ,δsj(sk))
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and B
m0,S,δsj(sk)

sj ,sk,M
′
1

(x′, x) = T m0

sj ,sk,M
′
1
(x′)B

m0,S,δsj(sk)
sj ,sk (x) with

B
m0,S,δsj(sk)
sj ,sk (x) =

 ∆skf(sk, v
m0,S
sj ,δsj(sk)(x))

+ vm0,S
sj ,δsj(sk)(x)− w̃m0,S

sk,sk

 , (4.3.20)

with a �nal coarse approximation given by

vm0,S
sj ,sj

(x) =

{
g(x) if sj = t2L ,

vm0,S
sj ,sj

(x) = vm0,S
δsj(sj),sj

(x) if sj < t2L ,
(4.3.21)

where sj > sj > sj are speci�ed during the initialization phase (cf. (4.2.12)) then
actualized at each step (cf. (4.2.25) and (4.2.26)).

De�nition 4.3.2 For i∗ = min(min{i = 1, ..., L− L′, j∗i = 2L}, L− L′)
� For k < j ∈ {1, ..., 2L} that satisfy sj < sk ≤ sj < t2L = T , the simu-

lation V m0,m1
sj ,sk

of V around Xm0
sk

conditionally on Xm0
sj

is set to be equal to

vm0,Si
∗

sj ,sk
(Xm0,m1

sj ,sk
) where v is given in (4.3.15), (4.3.18) and (4.3.21).

� For k ∈ {1, ..., 2L} and s ∈ {sk, sk+∆t, ..., δsk(sk)−∆t}−{0}, the simulation
V m0
s of V at Xm0

s is set to be equal to ṽm0,Si
∗

s,sk
with ṽ expressed in (4.3.16) and

(4.3.17).
� The average V lear

0 of the learned values on V0 is equal to

V lear

0 =
1

M0

M0∑
m0=1

ṽm0,Si
∗

0,0
, (4.3.22)

and the simulated values V sim

0 of V0 is equal to

V sim

0 = g(x0) ∨ 1

M0

M0∑
m0=1

[
δ(0)f

(
δ(0), ṽm0,Si

∗

δ(0),δ(0)

)
+ ṽm0,Si

∗

δ(0),δ(0)

]
. (4.3.23)

� Introduced in (4.2.10), (Bias Control) associated to (Snl) is de�ned at s ∈ S0

for u ∈ S0∩]s, δ(s)] by∣∣∣∣∣ 1

M0

M0∑
m0=1

(
w̃m0,S0

s,u − ṽm0,S0

δ(s),δ(s)
− (δ(s)− s)f(s, ṽm0,S0

δ(s),δ(s)
)
)∣∣∣∣∣ < εS

0

2,s

where for each set S, {εS2,s}s∈S is a family of positive bias tuning parameters.

� For k ∈ {j∗i + 1, ..., 2L}, setting sk = T − sik and noticing that δS
i
(sk) =

δŜ
i
(δŜ

i
(sk)), e

Si
sk

and εS
i

sk
are given by

eS
i

sk
=

1

M0M1

M0∑
m0=1

M1∑
m1=1

[
wm0,Ŝi

δŜi(sk),δSi(sk)
(Xm0,m1

δŜi(sk),δSi(sk)
)−wm0,Si

sk,δS
i(sk)

(Xm0,m1

δŜi(sk),δSi(sk)
)
]
,

εS
i

sk
=

∑
s∈Si,s>sk

εS
i

2,s.
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Remark 4.3.3 0. The di�erent points of Remark 4.2.3 can be highlighted here.
1. Given a discretization set S and sk ∈ S, the choice of sk and on sk is comple-

tely known in De�nition 4.3.2 through the value of e, ε and inequality (Bias
Control).

2. Unlike BSDEs, it is not possible to use an MDP scheme for (Bias Control)
as explained in Remark 4.3.2.5.

3. Although using an optimal stopping formulation [42] of the dynamic program-
ming is known to provide better numerical results [90], we prefared here to
use NMC on the top of the original algorithm [113] since its error estimates
remains similar to the one presented in Section 4.4 for BSDEs.

4. As a future work, we would like to apply variance reduction methods with
1NMC and provide very accurate double layer estimations of the optimal stop-
ping strategy.

4.4 Error estimates and cutting bias propagation

After expressing error estimates for both coarse and �ne approximations in Sec-
tion 4.4.1, we show how to cut bias propagation using our new judicious trick pre-
sented in Section 4.4.2.

4.4.1 Regression-based NMC and increasing the learning depth

Before presenting the main elements, we point out that we have intentionally
considered only discrete functionals of a Markov process. The approximation due
to discretization of the continuous version of BSDEs is not studied and we refer
to [64, 87] among others that quantify well the resulting error. Moreover, we also
consider the discretized version of the Markov process introduced in (4.2.1) and
(4.2.2) where

Etk(x, ξ) = x+ ∆tb(tk, x) + σ(tk, x)ξ (4.4.1)

with the usual (cf. [98]) Lipschitz continuity condition on the coe�cients b(t, x) and
σ(t, x) uniformly with respect to t ∈ [0, T ]. Similar to what was considered in Section
4.3.2, the noise ξ is given by increments of a vector of independent Brownian motions
i.e. ξm0

tk
= Wm0

tk
−Wm0

tk−1
and ξm0,m1

sj ,tk
= Wm0,m1

sj ,tk
−Wm0,m1

sj ,tk−1
. (4.4.1) can be read as an

Euler scheme of a stochastic di�erential equation that admits a strong solution. In
this paper, when the discretization is needed, we assume that L is su�ciently large
to neglect the discretization error of the forward process X.

Given two arbitrary square integrable random variables χ1 and χ2, consider
{χ3

m1}M1
m1=1 to be the empirical regression of χ1 with respect to χ2, the authors

of [37] established an upper bound error of the regression-based NMC estimator

1

M1

M1∑
m1=1

φ(χ3
m1) of E(φ(E(χ1|χ2))) once we know the representation error κ =

E(χ1|χ2)− tRB(χ2) induced by the projection of E(χ1|χ2) on the basis B(χ2). The
�ne approximations h̃, ỹ and w̃ presented earlier were computed by averaging on
the empirical regressions h, y and v. It is then interesting to see how to control the
error of the �ne approximations through the representation error like in [37].
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First, for sj < sk < sj and Borel measurable Θ function of (Xm0,m1

sj ,sk:δ(sk)) with

Θ(Xm0,m1

sj ,sk:δ(sk)) integrable, we denote E
m0,x
sj ,sk

, Em0,x

sj ,sk
and Êm0,x

sj ,sk
the operators de�ned by

Em0,x
sj ,sk

(Θ(Xm0,m1

sj ,sk:δ(sk))) = Em0
sj

(
Θ(Xm0,m1

sj ,sk:δ(sk))|X
m0,m1
sj ,sk

= x
)
,

Em0,x

sj ,sk
(Θ(Xm0,m1

sj ,sk:δ(sk)))

= tT m0
sj ,sk

(x−Xm0
sk

)

(
Λ
m0

sj ,sk

)−1

M1

M1∑
m1=1

[
T m0
sj ,sk

(
Xm0,m1
sj ,sk

−Xm0
sk

)
Θ(Xm0,m1

sj ,sk:δ(sk))
]

and

Êm0,x
sj ,sk

(Θ(Xm0,m1

sj ,sk:δ(sk))) = tT m0
sj ,sk

(x−Xm0
sk

)Rm0
sj ,sk

[
Θ(Xm0,m1

sj ,sk:δ(sk))
]

with

Rm0
sj ,sk

[
Θ(Xm0,m1

sj ,sk:δ(sk))
]
∈ argmin

r∈Rd1
Em0
sj

[Em0
sj

(
Θ(Xm0,m1

sj ,sk:δ(sk))|Xm0,m1
sj ,sk

)
−tT m0

sj ,sk
(Xm0,m1

sj ,sk
−Xm0

sk
)r

]2


When Esj is the conditional expectation knowing Xm0
sj

, Em0
sj

is the conditional
expectation knowing the trajectory of Xm0 starting from Xm0

sj
. Em0

sj
is used as the re-

gression basis depends on Xm0 . For a given sj ∈ S, in contrast to expressions presen-
ted in sections 4.2.2, 4.3.2 and 4.3.3, we simplify the presentation here and we omit
to center the regressions around h̃m0,S

δ(sj),δ(sj)
, ỹm0,S

δ(sj),δ(sj)
or w̃m0,S

δ(sj),δ(sj)
. Consequently,

the value of h̃m0,S
sj ,sj

, ỹm0,S
sj ,sj

and w̃m0,S
sj ,sj

are obtained through respectively averaging

on h
m0,S
sj ,δ(sj)

(x) = Em0,x

sj ,δ(sj)
(Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
)), ym0,S

sj ,δ(sj)
(x) = Em0,x

sj ,δ(sj)
(Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
))

and on vm0,S
sj ,δ(sj)

(x) = g(x) ∨ Em0,x

sj ,δ(sj)
(Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)), where

Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
) = h

m0,S
sj ,δ2(sj)

(Xm0,m1

sj ,δ2(sj)
) +

δ2(sj)∑
tl≥δ(sj)

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

),

Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
) = ym0,S

sj ,δ2(sj)
(Xm0,m1

sj ,δ2(sj)
)

+∆δ(sj)f(δ(sj), y
m0,S
sj ,δ2(sj)

(Xm0,m1

sj ,δ2(sj)
), zm0,S

sj ,δ(sj)
(Xm0,m1

sj ,δ(sj)
)),

Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
) = vm0,S

sj ,δ2(sj)
(Xm0,m1

sj ,δ2(sj)
)

+∆δ(sj)f(δ(sj), v
m0,S
sj ,δ2(sj)

(Xm0,m1

sj ,δ2(sj)
)).

We assume Lipschitz condition uniformly in time of the driver f involved in
(ODP ) and (Snl) with respect to its Y and Z coordinates or with respect to its
V coordinate. Although this conditions are not necessary to obtain good numerical
results in Section 4.5, they are required to apply Theorem 2 of [37] (cf. Assumption
F2 in [37]) that yield the following asymptotical result.
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Proposition 4.4.1 Given that assumptions A1, A2 and A3 of [37]) are ful�lled and
that both drivers involved in (ODP ) and in (Snl) are [f ]Lip-Lipschitz we have the
following asymptotical inequality

(ρ̃− ρ)2 ≤ [ρ]LipEm0
sj

(κ2(Xm0,m1

sj ,δ(sj)
)) +Op(1/M1) (4.4.2)

as M1 −→ ∞ where (ρ̃, ρ, [ρ]Lip, κ) is either equal to (ρ̃h, ρh, [ρ]hLip, κ
h) for (f),

(ρ̃y, ρy, [ρ]yLip, κ
y) for (ODP ) or equal to (ρ̃v, ρv, [ρ]vLip, κ

v) for (Snl) with ρ̃h = h̃m0,S
sj ,sj

,

ρ̃y = ỹm0,S
sj ,sj

, ρ̃v = w̃m0,S
sj ,sj

,

ρh = Em0
sj

Em0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]

+

δ(sj)∑
tl≥sj

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)

 ,

ρy = Em0
sj

(
E
m0,X

m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]

+∆sjf

(
sj,E

m0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
, z̃m0,S
sj ,sj

))
,

ρv = Em0
sj

(
g(Xm0,m1

sj ,δ(sj)
) ∨ E

m0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]

+∆sjf

(
sj, g(Xm0,m1

sj ,δ(sj)
) ∨ E

m0,X
m0,m1
sj ,δ(sj)

sj ,δ(sj)

[
Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]))

,

[ρ]hLip = 1, [ρ]yLip = 1 + ∆sj [f ]Lip, [ρ]vLip = 1 + ∆sj [f ]Lip and

κh(x) = Em0,x
sj ,δ(sj)

[
Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
− Êm0,x

sj ,δ(sj)

[
Θh(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
,

κy(x) = Em0,x
sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
− Êm0,x

sj ,δ(sj)

[
Θy(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
,

κv(x) = Em0,x
sj ,δ(sj)

[
Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
− Êm0,x

sj ,δ(sj)

[
Θv(Xm0,m1

sj ,δ(sj):δ2(sj)
)
]
.

Proposition 4.4.1 results from Theorem 2 and Remark 2 of [37] ; we expressed
[ρ]Lip associated to each problem and we replaced E by Em0

sj
as the regression basis

depends on Xm0 . Assumptions A1, A2 and A3 of [37] are standard assumptions for
regressions (cf. [114]). Considering the regression basis presented in Section 4.2.1
with E(|Xt|2) < ∞ for any t ∈ [0, T ], these assumptions are ful�lled if : i) the
conditional variance of each regressed quantity is integrable and bounded from below
by v0 > 0, ii) the regression value is unbiased and iii) each component of the
regression basis as well as κ (denoted M in [37]) admit a �nite fourth moment.
When the latter moment assumption iii is needed to establish error control and can
be modi�ed using truncation (cf. [65]), the further i&ii are su�cient to ensure the
existence and uniqueness of the regressed representation.

In Proposition 4.4.1, we provided a control on �ne approximations h̃, ỹ and ṽ.
In Proposition 4.4.2, we rather focus on coarse approximations and decompose the
conditional mean square error Em0

sj

(
[h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)]2
)
into a bias term

W , a variance term V and a regression error term R.
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Proposition 4.4.2 Assuming i and iii introduced above, for sj < s < sk taking
their values in the discretization set S, we de�ne

Wm0,S
sj ,sk

(x) = Em0
sj

(
h
m0,S
sj ,sk

(x)− Um0,S
sj ,sk

(x)
)
,

Rm0,S
sj ,sk

(x) = Em0
sj

(
Um0,S
sj ,sk

(x)− Usk(x)
)
,

Vm0,S
sj ,sk

(x) = Varm0
sj

(
h
m0,S
sj ,sk

(x)
)
,

with

Um0,S
sj ,sk

(x) = Em0,x

sj ,sk

Uδ(sk)(X
m0,m1

sj ,δ(sk)) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)


then

Em0
sj

(
[h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)]2
)

= Em0
sj (Vm0,S

sj ,sk
(Xm0,m1

sj ,sk
))

+Em0
sj

(
[Rm0,S

sj ,sk
(Xm0,m1

sj ,sk
) +Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)

and there exists a positive constant Km0
1,sj ,sk

depending on the regression basis such
that

Em0
sj

(
[Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)
≤ Km0

1,sj ,sk
Em0
sj

(
[h
m0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk))− Uδ(sk)(X
m0,m1

sj ,δ(sk))]
2
)
.

Proof As we simulate several independent copies of Xm0,m1 (cf. the paragraph
under Remark 4.2.1), we make sure that the approximations h are independent from
Xm0,m1 conditionally on Xm0. Then, the expansion of the conditional mean square
error Em0

sj

(
[h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)]2
)
can be obtained when we notice that

Usk(Xm0,m1
sj ,sk

) = E
m0,X

m0,m1
sj,sk

sj ,sk

Uδ(sk)(X
m0,m1

sj ,δ(sk)) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1

sj ,tl
, Xm0,m1

sj ,tl+1
)

 .

An expression for the constant Km0
1,sj ,sk

can be obtained after expanding

Em0
sj

(
[Wm0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)
using

h
m0,S
sj ,sk

(x) = Em0,x

sj ,sk

hm0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk)) +

δ(sk)∑
tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)

 .

Finally, we should point out that one could establish a similar result for (ODP )
and (Snl). Indeed, for instance, using the following coarse discretization to approxi-
mate (ODP ) 

Ŷsk = Esk
(
f̃sk(Ŷδ(sk), Ẑsk)

)
,

Ẑsk = 1
∆sk

Esk
(
Ŷδ(sk)(Wδ(sk) −Wsk)

)
,

(4.4.3)
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with f̃sk(y, z) = y + ∆skfsk(y, z), the bias is then controlled as follows

Em0
sj

(
[W̃m0,S

sj ,sk
(Xm0,m1

sj ,sk
)]2
)
≤K̃m0

1,sj ,sk
Em0
sj


 f̃sk(Ŷsj ,δ(sk)(X

m0,m1

sj ,δ(sk)), Ẑsj ,sk(Xm0,m1
sj ,sk

))

−f̃sk(ym0,S
sj ,δ(sk)(X

m0,m1

sj ,δ(sk)), z
m0,S
sj ,sk

(Xm0,m1
sj ,sk

))

2
 ,

for some positive constant K̃m0
1,sj ,sk

depending on the regression basis. Therefore, the
bias upper bound depends heavily on the driver choice. In the case of (Snl), g also
plays an important role on the nonlinearity and subsequently on bias.

4.4.2 Regression with di�erent starting points

As shown in Proposition 4.4.2, the bias W at time step sk is controlled by the
mean square error at time step δ(sk) decomposed into a variance term V , a regression
error termR and a bias term at time step δ(sk). Thus, increasing the number of time
steps weaken the bias control as it involves more and more terms. In some situations,
this accumulation of errors is a source of a signi�cant bias back propagation. In this
paper, we proposed a new approximation trick to cut this bias back propagation.

In this section, we present a control on this new approximation that is used twice
in the generic presentation of our method in Section 4.2.2. This same approximation
was also adapted in Section 4.3.2 to BSDEs and in Section 4.3.3 to RBSDEs. In the
generic situation, equations (4.2.16) de�nes h̃m0,S

s,sk
for any s ∈ {sk, sk+∆t, ..., δsj(sk)−

∆t} using h
m0,S
sk,δsj(sk)(·) which is deduced from a regression on Xm0,m1

sk,δsj(sk) instead of a

regression on Xm0,m1

s,δsj(sk). Said di�erently, provided that s is su�ciently close to sk
we replaced a regressed function obtained from inner trajectories starting at s by a
regressed function obtained from inner trajectories starting at sk on the same outer
trajectory m0. We did more or less the same thing in (4.2.17) when sj < T as we

de�ned h
m0,S
sj ,sj

to be equal to h
m0,S
δsj(sj),sj

i.e. we replaced a regression on Xm0,m1

sj ,sj
by a

regression on Xm0,m1

δsj(sj),sj
. The adaptations of (4.2.16) yield similar approximations in

(4.3.5), (4.3.6) and (4.3.17). In the same fashion, the adaptations of (4.2.17) yield
similar approximations in (4.3.7) and (4.3.21).

For sj < s < sk, we summarize both situations saying that the regressed function

h
m0,S
sj ,sk

(·) resulting form the projection of
T∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) on Xm0,m1
sj ,sk

is

approximated by the regressed function h
m0,S
sj ,s

(·) resulting form the projection of
T∑

tl+1>sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

) on Xm0,m1
s,sk

and vice versa. This approximation is not

absurd since one can straightforwardly see, from the Markov property, that

Usk(x) = E

(
T∑

tl≥sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

)
∣∣∣Xm0,m1

sj ,sk
= x

)

= E

(
T∑

tl≥sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

)
∣∣∣Xm0,m1

s,sk
= x

)
.

(4.4.4)

To establish a control on Em0
sj

([
h
m0,S
sj ,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2
)
and on
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Figure 4.5 � Comparing regression of
T∑

tl+1>sk

f(tl, X
m0,m1
sj ,tl

, Xm0,m1
sj ,tl+1

) on Xm0,m1
sj ,sk

and of

T∑
tl+1>sk

f(tl, X
m0,m1
s,tl

, Xm0,m1
s,tl+1

) on Xm0,m1
s,sk

with s ∈ {sj + ∆t, ..., sk −∆t}.

Em0
s

([
h
m0,S
s,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2
)
, we de�ne for tl ≥ s two auxilary processes

X and X̃ as
X
m0,m1

sj ,s,s
= Xm0

s , X̃m0,m1
sj ,s,s

= Xm0,m1
sj ,s

and for tl = s+ ∆t, ..., T

X
m0,m1

sj ,s,tl
= Etl−1

(Etl−2
(...Es(Xm0

s , ξm0,m1

sj ,s+∆t
), ...ξm0,m1

sj ,tl−1
), ξm0,m1

sj ,tl
)

X̃m0,m1
sj ,s,tl

= Etl−1
(Etl−2

(...Es(Xm0,m1
sj ,s

, ξm0,m1

s,s+∆t
), ...ξm0,m1

s,tl−1
), ξm0,m1

s,tl
).

(4.4.5)

where E is given in (4.4.1). We remind that Em0
sj

and Em0
s are the conditional ex-

pectations knowing the trajectory of Xm0 starting respectively from Xm0
sj

and from
Xm0
s .
As shown on Figure 4.5 for tl > sk, X

m0,m1

sj ,s,tl
is de�ned using Xm0,m1

s,s = Xm0
s and

increments from the process Xm0,m1
sj ,tl

, in contrast to X̃m0,m1
sj ,s,tl

de�ned using Xm0,m1
sj ,s

and
increments from the process Xm0,m1

s,tl
. Proposition 4.4.3 provides a strong formulation

of a possible compromise between two error terms on the right of each inequality
(4.4.6) and (4.4.7).

Proposition 4.4.3 For any t ∈ {0, T
2L
, ..., T}, we assume Ut is [Ut]Lip-Lipschitz.

For sj < s < sk taking their values in the discretization set S, we de�ne Km0
2,sj ,sk

=

[Usk ]
2
Lip + Em0

sj
(|Hm0,S

sj ,sk
|2d′1) and Km0

2,s,sk
= [Usk ]

2
Lip + Em0

s (|Hm0,S
s,sk
|2d′1) where | · |d′1 is the

Euclidean norm on Rd′1, then

Em0
s

([
h
m0,S
s,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2)
≤Em0

s

([
h
m0,S
s,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2)

+Km0
2,s,sk

Em0
s

(∣∣∣X̃m0,m1
sj ,s,sk

−Xm0,m1
s,sk

∣∣∣2
d′1

) (4.4.6)
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and

Em0
sj

([
h
m0,S
sj ,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2)
≤ Em0

sj

([
h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2)

+Km0
2,sj ,sk

Em0
sj

(∣∣∣Xm0,m1

sj ,s,sk
−Xm0,m1

sj ,sk

∣∣∣2
d′1

)
.

(4.4.7)

Proof As we simulate several independent copies of Xm0,m1 (cf. the paragraph un-
der Remark 4.2.1), we make sure that the approximations h are independent from

Xm0,m1, from X
m0,m1

and from X̃m0,m1 conditionally on Xm0. Moreover, from de�-
nition (4.4.5), (X

m0,m1

sj ,s,tl
)tl≥s has the same law as (Xm0,m1

s,tl
)tl≥s and (X̃m0,m1

sj ,s,tl
)tl≥s has

the same law as (Xm0,m1
sj ,tl

)tl≥s. Then one can write the following

Em0
s

([
h
m0,S
s,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2)

= Em0
s

([
h
m0,S
s,sk

(X̃m0,m1
sj ,s,sk

)− Usk(X̃m0,m1
sj ,s,sk

)
]2)

≤Em0
s

([
h
m0,S
s,sk

(X̃m0,m1
sj ,s,sk

)− hm0,S
s,sk

(Xm0,m1
s,sk

)
]2)

+Em0
s

([
h
m0,S
s,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2)

+Em0
s

([
Usk(X

m0,m1
s,sk

)− Usk(X̃m0,m1
sj ,s,sk

)
]2)

(4.4.8)

as well as

Em0
sj

([
h
m0,S
sj ,sk

(Xm0,m1
s,sk

)− Usk(Xm0,m1
s,sk

)
]2)

= Em0
sj

([
h
m0,S
sj ,sk

(X
m0,m1

sj ,s,sk
)− Usk(X

m0,m1

sj ,s,sk
)
]2)

≤Em0
sj

([
h
m0,S
sj ,sk

(X
m0,m1

sj ,s,sk
)− hm0,S

sj ,sk
(Xm0,m1

sj ,sk
)
]2)

+Em0
sj

([
h
m0,S
sj ,sk

(Xm0,m1
sj ,sk

)− Usk(Xm0,m1
sj ,sk

)
]2)

+Em0
sj

([
Usk(X

m0,m1
sj ,sk

)− Usk(X
m0,m1

sj ,s,sk
)
]2)

(4.4.9)

which yield (4.4.6) and (4.4.7).

Proposition 4.4.3 requires Lipschitz property of U which is ful�lled if f is Lip-
schitz. Using similar steps to the one presented in [99], we show in Lemma 4.4.1
this Lipschitz property for (ODP ). Using similar arguments, one can also show this
property for (Snl) if g is also Lipschitz. We point out that another option is the one
based on di�erentiability assumptions as in [92].

Consider the following extension of (4.4.3) with a driver f that depends also on
X 

Ŷsk = Esk
(
Ŷδ(sk) + ∆skfsk(Xsk , Ŷδ(sk), Ẑsk)

)
Ẑsk = 1

∆sk
Esk

(
Ŷδ(sk)(Wδ(sk) −Wsk)

)
= 1√

∆sk

Esk
(
Ŷδ(sk)θδ(sk)

)
where θδ(sk) ∼ N (0, Id1). Replacing sk by k and using Markov property, Ŷsk =

yk(Xsk) and Ẑsk = zk(Xsk) (cf [67]) with{
yk(x) = E (yk+1(Ek(x, θk+1)) + ∆kfk(x, yk+1(Ek(x, θk+1)), zk(x)))

zk(x) = 1√
∆k

E (yk+1(Ek(x, θk+1))θk+1) .

132



Lemma 4.4.1 Assume that f(t, x, y, z) is [f ]Lip-Lipschitz continuous with respect
to x, y and z uniformly in t ∈ [0, T ], for the particular case f(T, x) we denote by
[fT ]Lip the Lipschitz coe�cient. The coe�cients b(t, x) and σ(t, x) of the Markov
process 4.4.1 are also assumed Lipschitz continuous in x uniformly with respect to
t ∈ [0, T ] with Lipschitz coe�cients denoted [b]Lip and [σ]Lip. Assume that n > n0

(in order to provide sharper constants depending on n0 > 1).

Then for every k ∈ {0, ...., n− 1}, yk is [yk]Lip-Lipschitz continuous with

[yk]Lip 6
(

[yk+1]Lip e
∆kC

′
+ ∆k [f ]Lip

)
where C ′ = [b]Lip + 1

2

(
[σ]2Lip + T

n0
[b]2Lip

)
+ [f ]Lip

(
1 +
√
d1

√
n0

T

)
.

Moreover the functions zk are [zk]Lip-Lipschitz continuous with

[zk]Lip 6
1√
∆k

[yk+1]Lip e
∆kCb,σ,T

√
d1.

If ∆k = h is homogeneous with respect to k, we have

[yk]Lip 6

(
[fT ]Lip + [f ]Lip

T

n0

C ′
)
eC
′(T−tk)

and

[zk]Lip 6
√
d1

√
n0

T

(
[fT ]Lip − C

′ [f ]Lip

)
eC
′(T−tk)e

T
n0
Cb,σ,T .

Proof Assume by backward induction that yk+1 is [yk+1]Lip-Lipschitz continuous.
For every x, x′ ∈ Rd1, we have

yk(x)− yk(x′) = E [yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1))]

+∆kE [fk(x, yk+1(Ek(x, θk+1)), zk(x))− fk(x′, yk+1(Ek(x, θk+1)), zk(x))]

+∆kE [fk(x
′, yk+1(Ek(x, θk+1)), zk(x))− fk(x′, yk+1(Ek(x′, θk+1)), zk(x))]

+∆kE [fk(x
′, yk+1(Ek(x′, θk+1)), zk(x))− fk(x′, yk+1(Ek(x′, θk+1)), zk(x

′))] .

and

zk(x)− zk(x′) =
1√
∆k

E ((yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1)))θk+1) .

We denote

Ax,x′ =
[fk(x, yk+1(Ek(x, θk+1)), zk(x))− fk(x′, yk+1(Ek(x, θk+1), zk(x))] 1{Ax,x′ 6=0}

| x− x′ |d1

Bx,x′ =
[fk(x′, yk+1(Ek(x, θk+1), zk(x))− fk(x′, yk+1(Ek(x′, θk+1), zk(x))] 1{Bx,x′ 6=0}

yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1))

Cx,x′ =
[fk(x, yk+1(Ek(x, θk+1), zk(x))− fk(x′, yk+1(Ek(x, θk+1), zk(x))] 1{Cx,x′ 6=0}

| zk(x)− zk(x′) |d1
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where | x |d1=
√
x2

1 + ....+ x2
d1
, Ax,x =| x − x′ |d1, Bx,x = yk+1(Ek(x, θk+1)) −

yk+1(Ek(x′, θk+1)) and Cx,x =| zk(x)− zk(x′) |d1.

We have

yk(x)− yk(x′) = E [(yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1))) (1 +Bx,x′∆k)]

+∆kE
[

1√
∆k

Cx,x′E (| (yk+1(Ek(x, θk+1))− yk+1(Ek(x′, θk+1))).θk+1 |d1)

]
+∆kE [Ax,x′ | x− x′ |d1 ] .

Using the Lipschitz property of fk and yk+1 we have

| yk(x)− yk(x′) | 6 [yk+1]Lip(1 + [f ]Lip∆k)E [| Ek(x, θk+1)− Ek(x′, θk+1) |]

+∆k[f ]Lip
1√
∆k

[yk+1]Lip

√√√√ d1∑
i=1

E
[
(Ek(x, θk+1)− Ek(x, θk+1))θik+1

]2
+∆k [f ]Lip | x− x

′ |d1 .

By applying Cauchy-Schwarz's inequality and knowing that E((θik+1)2) = 1, for i ∈
{1, ..., d1}, we have

| yk(x)− yk(x′) | 6 [yk+1]Lip

(
1 + ∆k[f ]Lip + ∆k[f ]Lip

1√
∆k

√
d1

)
×

√√√√E
[
(Ek(x, θk+1)− Ek(x′, θk+1))

2
]

︸ ︷︷ ︸
Dx,x′

+ ∆k [f ]Lip | x− x′ |d1 .

As bk(.) and σk(.) are Lipschitz, by elementary computations already carried out
in [27,99], we have

Dx,x′ = E
(
[Ek(x, θk+1)− Ek(x′, θk+1)]2

)
= E

([
x− x′ + ∆k [bk(x)− bk(x′)] +

√
∆kθk+1 [σk(x)− σk(x′)]

]2)
6

(
1 + ∆k(2 [b]Lip + [σ]2Lip + ∆k [b]2Lip)

)
| x− x′ |2d1

6 (1 + ∆kCb,σ,T )2 | x− x′ |2d1

6 e2∆kCb,σ,T | x− x′ |2d1

where Cb,σ,T can be taken equal to [b]Lip + 1
2

(
[σ]2Lip + T

n0
[b]2Lip

)
.

This brings us to,

| yk(x)− yk(x′) | 6

(
∆k [f ]Lip + [yk+1]Lip

(
1 + ∆k[f ]Lip

(
1 +

√
d1

∆k

))
e∆kCb,σ,T

)
| x− x′ |d1

6
(

∆k [f ]Lip + [yk+1]Lipe
∆k(Cb,σ,T+Cf,d1,T )

)
| x− x′ |d1
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where Cf,d1,T is taken equal to [f ]Lip
(
1 +
√
d1

√
n0

T

)
.

We conclude that yk is Lipschitz continuous with coe�cient [yk]Lip satisfying

[yk]Lip 6
(

∆k [f ]Lip + [yk+1]Lip e
∆kC

′
)

where C ′ = Cb,σ,T + Cf,d1,T .
Moreover, using that θk+1 ∼ N (0, Id1), combined with Cauchy-Schwarz's inequality
and Lipschitz property we get

| zk(x)− zk(x′) |d16
1√
∆k

[yk+1]Lip

√√√√ d1∑
i=1

E
[
(Ek(x, θk+1)− Ek(x, θk+1))θik+1

]2
6

1√
∆k

[yk+1]Lip

√√√√ d1∑
i=1

E [(Ek(x, θk+1)− Ek(x, θk+1))]2 E
[
θik+1

]2
6

1√
∆k

[yk+1]Lip
√
d1

√
Dx,x′

6
1√
∆k

[yk+1]Lip
√
d1e

∆kCb,σ,T | x− x′ |d1 .

Thus, zk is Lipschitz continuous with coe�cient [zk]Lip satisfying

[zk]Lip 6
1√
∆k

[yk+1]Lip e
∆kCb,σ,T

√
d1.

Assuming homogeneous time increment ∆k = h, we have

eC
′kh [yk]Lip 6 [yk+1]Lip e

C′(k+1)h + eC
′kh [f ]Lip h.

which yields

eC
′kh [yk]Lip 6 [fT ]Lip e

C′nh + [f ]Lip h
n−1∑
l=k

eC
′lh

6 [fT ]Lip e
C′T + [f ]Lip h

eC
′T − eC′kh

eC′T − 1

6 [fT ]Lip e
C′T + [f ]Lip h

eC
′T

eC′T − 1
6 [fT ]Lip e

C′T + [f ]Lip hC
′eC

′T .

Finally we have

[yk]Lip 6 [fT ]Lip e
C′(T−sk) + [f ]Lip hC

′eC
′(T−sk). (4.4.10)

and

[zk]Lip 6
1√
h

([fT ]Lip − C
′ [f ]Lip)e

C′(T−tk)ehCb,σ,T
√
d1.
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4.5 Some numerical results

In this section we test the above conditional MC learning procedure on various
examples including BSDE, American option and risk measure. The fact that the
driver f depends also on X is not a burden to the use of our method. All simulations
are run on a laptop that has an Intel i7-7700HQ CPU and a single GeForce GTX
1060 GPU programmed with the CUDA/C application programming interface. We
refer the reader to [94] for an introduction to CUDA programming.

4.5.1 Allen-Cahn equation

We consider (ODP ) simulation as presented in Section 4.3.2, we use the following
functions

f(t, x, y, z) = y − y3,

f(T, x) =

[
2 +

2

5
|x|2d1

]−1

and
Etk(x,w) = x+

√
2w, Xt0 = 0.

We would like to approximate the solution u(t, x) of the Allen-Cahn PDE de�ned
as follows, u(T, x) = f(T, x),

∂u

∂t
(t, x) + u(t, x)− [u(t, x)]3 + (∆xu)(t, x) = 0. (4.5.1)

A benchmark approximation ub(0, x) for the solution u(0, x) of the PDE (4.5.1) is
given in [Section 4.2 ; [25]].

Table 4.1 shows the solution u(0, 0) of equation (4.5.1), calculated by learned
and simulated expression, with respect to the number of inner trajectories M1. The
benchmark solution ub(0, 0) is equal to 0.0528 for T = 0.3 and d1 = 100. The
standard deviation of each expression and the runtime in seconds are also given. We
reduce the bias by increasing the number of inner trajectories. Table 4.1 shows that
a relative small number of outer and inner trajectories is su�cient to observe a small
variance and bias for both options. In fact, we show that the standard deviation is
already acceptable for M0 = 24 outer trajectories and the bias is acceptable for
M1 = 26 inner trajectories with an execution time of 56 millisecond.

Table 4.1 � Numerical simulations for PDE (4.5.1) : T = 0.3, M0 = 24, d1 = 100,
L = 4 ; [Benchmarck solution] ub(0, 0) = 0.0528.
M1 Learned Simulated Runtime in sec. (10−3)

Y learn
0 std Y sim

0 std
24 0.0454 (± 0.0093) 0.0455 (± 0.0073) 13
25 0.0513 (± 0.0011) 0.0517 (± 0.0008) 23
26 0.0523 (± 0.0004) 0.0518 (± 0.0006) 56
27 0.0526 (± 0.0003) 0.0515 (± 0.0001) 119
28 0.0525 (± 0.0002) 0.0517 (± 0.0002) 227
29 0.0527 (± 0.0002) 0.0515 (± 0.0002) 414

Table 4.2 shows the solution u(0, 0) of equation (4.5.1), calculated by learned
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and simulated expression, with respect to the number of inner trajectories M1,
for a long time horizon (T = 1). The benchmark solution is equal to 0.0338 for
T = 1, d1 = 100. To achieve a similar level of variance and bias we need more outer
and inner trajectories than in Table 4.1. In fact for M0 = 25 of outer trajectories
and M1 = 26 of inner trajectories we obtained an acceptable bias and standard
deviation in 4 seconds.

Table 4.2 � Numerical simulations for PDE (4.5.1) : T = 1, d1 = 100, M0 = 25,
L = 6 ; [Benchmarck solution] ub(0, 0) = 0.0338.
M1 Learned Simulated Runtime in sec.

Y learn
0 std Y sim

0 std
25 0.0345 (± 0.0008) 0.0350 (± , 0.0021) 2
26 0.0333 (± 0.0003) 0.0326 (± 0.0004) 4
27 0.0334 (± 0.0002) 0.0330 (± 0.0003) 7
28 0.0336 (± 0.0002) 0.0332 (± 0.0002) 12
29 0.0336 (± 0.0001) 0.0331 (± 0.0001) 27

4.5.2 Multidimensional Burgers-type PDEs with explicit so-
lution

We assume the (ODP ) setting presented in Section 4.3.2, we use the following
functions

f(t, x, y, z) =

(
y − 2 + d1

2d1

)( d1∑
i=1

zi

)
,

f(T, x) =

exp

(
T + 1

d1

d1∑
i=1

xi

)

1 + exp

(
T + 1

d1

d1∑
i=1

xi

)
and

Etk(x,w) = x+
d1√

2
w, Xt0 = 0.

We simulate the solution u(t, x) of the multidimensional Burgers-type PDE (cf [40],
Example 4.6) de�ned as follows, u(T, x) = f(T, x),

∂u

∂t
(t, x) +

d1
2

2
(∆xu)(t, x) +

(
u(t, x)− 2 + d1

2d1

)(
d1

d1∑
i=1

∂u

∂xi
(t, x)

)
= 0. (4.5.2)

PDE (4.5.2) admits an explicit solution, we refer the reader to [Lemma 4.3, [25]]
for more details. The value of the solution u(0, 0) is 0.5000 for T = 0.2 and d1 = 100.

Table 4.3 shows the solution u(0, 0) of the equation (4.5.2), calculated by
learned and simulated expression, with respect to the number of inner trajectories
M1. The approximation of the standard deviation of each expression and the
runtime in seconds are also given. We show that the standard deviation of both
results should be reduced by increasing the number of outer trajectories.
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Table 4.3 � Numerical simulations for PDE (4.5.2) : T = 0.2, d1 = 100, M0 = 26,
L = 5 ; [Explicit solution] u(0, 0) = 0.5000.
M1 Learned Simulated Runtime in sec.

Y learn
0 std Y sim

0 std
28 0.4785 (± 0.0428) 0.0517 (± 0.0431) 7
29 0.5113 (± 0.0450) 0.5108 (± 0.0450) 16
210 0.4966 (± 0.0448) 0.4912 (± 0.0447) 27
211 0.5022 (± 0.0421) 0.5012 (± 0.0435) 49

In Table 4.4 we show the computed solution of the equation (4.5.2), calcula-
ted by learned and simulated expression with respect to the number of outer
trajectories M0. The standard deviation of each expression and the runtime in
seconds are also given. We reduce the standard deviation by increasing the number
of outer trajectories.

Table 4.4 � Numerical simulations for PDE (4.5.2) : T = 0.2, d1 = 100, M1 = 211,
L = 5 ; [Explicit solution] u(0, 0) = 0.5000.
M0 Learned Simulated Runtime in sec.

Y learn
0 std Y sim

0 std
25 0.4953 (± 0.0618) 0.4941 (± 0.0615) 24
26 0.5022 (± 0.0424) 0.501284 (± 0.0435) 49
27 0.5079 (± 0.0346) 0.5066 (± 0.0342) 103
28 0.5158 (± 0.0221) 0.5151 (± 0.0221) 194
29 0.5023 (± 0.0164) 0.5029 (± 0.0164) 408

4.5.3 Time-dependent reaction-di�usion-type example PDEs
with oscillating explicit solutions

Let κ = 0.6, λ = 1√
d1
, we use the following functions

f(t, x, y, z) = min

1,

[
y − κ− 1− sin

(
λ

d1∑
i=1

xi

)
exp

(
λ2d1(t− T )

2

)]2
,

f(T, x) = 1 + κ+ sin

(
λ

d1∑
i=1

xi

)
and

Etk(x,w) = x+ w, Xt0 = 0.

We simulate the solution u(t, x) of the time dependent reaction-di�usion-type PDE
(cf [67], Section 6.1) de�ned as follows, u(T, x) = f(T, x),

∂u

∂t
(t, x)+min

1,

[
y − κ− 1− sin

(
λ

d1∑
i=1

xi

)
exp

(
λ2d1(t− T )

2

)]2
+

1

2
(∆xu)(t, x) = 0.

(4.5.3)
The explicit solution of the PDE (4.5.3) is given in [Lemma 4.4 ; [25]].
Table 4.5 shows the approximated solution of the equation (4.5.3), calculated by
learned and simulated expression, with respect to the number of inner trajectories
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M1. The standard deviation of each expression, and the runtime in seconds are also
given. The benchmark solution is equal to 1.6000 for T = 1, d1 = 100.

Table 4.5 � Numerical simulations for PDE (4.5.3) : T = 0.5, d1 = 100, M0 = 210,
L = 3 ; [Benchmark solution] ub(0, 0) = 1.6000.
M1 Learned Simulated Runtime in sec. (10−3)

Y learn
0 std Y sim

0 std
25 1.8197 (± 0.0386) 1.7587 (± 0.0287) 244
26 1.7125 (± 0.0104) 1.6799 (± 0.0116) 311
27 1.6605 (± 0.0037) 1.6376 (± 0.0091) 466
28 1.6458 (± 0.0023) 1.6290 (± 0.0089) 817
29 1.6439 (± 0.0019) 1.6283 (± 0.0061) 1526

4.5.4 A Hamilton-Jacobi-Bellman (HJB) equation

We assume here the driver to be equal to

f(t, x, y, z) = −|z|2d1
,

f(T, x) = ln

(
1

2

[
1 + |x|2d1

])
and

Etk(x,w) = x+
√

2w, Xt0 = 0.

We calculate the solution u(t, x) of the HJB equation (cf [41] Section 4.2) de�ned
by u(T, x) = f(T, x),

∂u

∂t
(t, x) + (∆xu)(t, x)− |(∇xu)(t, x)|2d1

= 0. (4.5.4)

PDE (4.5.4) admits a benchmark solution. We refer the reader to [Lemma 4.2 ; [25]]
for more details.

In Figure 4.6 we show the di�erence between Ysk =
1

M0

M0∑
m0=1

ỹm0,Si
∗

sk,sk
and

1

M0

M0∑
m0=1

(
ỹm0,Si

∗

δ(sk),δ(sk)
+ (δ(sk)− sk)f(sk, ỹ

m0,Si
∗

δ(sk),δ(sk)
, z̃m0,Si

∗

sk,sk
)
)
with respect to the dis-

cretization time steps. On the left, we perform the conditional MC procedure taking
sk = T . On the right, we perform the procedure with the bias control presented in
Section 4.2.3 , taking sk =

(
sk + 3

8

)
∧ T with sk ∈ S i

∗
= {0, 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1}. We

show that the control allows to reduce the bias propagation.
Figure 4.7 shows the convergence of the learned and simulated expression to the
benchmark value with respect to the number of inner trajectories. In particular, we
observe that the both expressions converge to the benchmark solution with a small
variance when M1 = 217.
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Figure 4.6 � Ysk vs.
1

M0

M0∑
m0=1

(
ỹm0,Si

∗

δ(sk),δ(sk)
+ (δ(sk)− sk)f(sk, ỹ

m0,Si
∗

δ(sk),δ(sk)
, z̃m0,Si

∗

sk,sk
)
)

[Left] sk = T without bias control, [Right] sk =
(
sk + 3

8

)
∧ T with bias control :

T = 1, d1 = 100, M0 = 27, M1 = 215, L = 3.

Figure 4.7 � Numerical solution of PDE (4.5.4) calculated by learned and simulated
expression : T = 1, d1 = 100, M0 = 27, L = 3.

4.5.5 Pricing of European �nancial derivatives with di�erent
interest rates for borrowing and lending

Assuming µ = 0.06, σ = 0.2, Rl = 0.04 and Rb = 0.06, we introduce the following
functions

f(t, x, y, z) = −Rly − (µ−Rl)

σ

d1∑
i=1

zi + (Rb −Rl) max {0, 1

σ

d1∑
i=1

zi − y},

f(T, x) = max { max
1≤i≤d1

xi − 120, 0} − 2 max { max
1≤i≤d1

xi − 150, 0}
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and

Etk(x,w) = x exp

(
(µ− σ2

2
)∆t + σw

)
, Xt0 = 100.

Let u de�ned as the solution of the following PDE, u(T, x) = f(T, x),

∂u

∂t
(t, x) +

σ

2

d1∑
i=1

|xi|2
∂2u

∂x2
i

(t, x) (4.5.5)

+max {Rb
(

d1∑
i=1

xi

(
∂u

∂xi
(t, x)

)
− u(t, x)

)
, Rl

(
d1∑
i=1

xi

(
∂u

∂xi
(t, x)

)
− u(t, x)

)
} = 0.

PDE (4.5.5) has a benchmark solution given in [Section 4.4 ; [25]]. This benchmark
solution is equal to 21.299 for T = 0.5 and d1 = 100.

Figure 4.8 shows the approximation of the solution of PDE (4.5.5), calcula-
ted by learned and simulated expression, with respect to the number of inner
trajectories. We show that 27 outer trajectories and 211 inner trajectories are
su�cient to get an accurate approximation of the solution as the obtained values
are in the corridor of the standard deviation of the benchmark solution. No bias
cut is needed here. The runtime with 27 outer trajectories and 211 inner trajectories
is 53 seconds.

Figure 4.8 � Numerical solution of PDE (4.5.5) calculated by learned and simulated
expression : T = 0.5, d1 = 100, M0 = 27, L = 2.

4.5.6 A PDE example with quadratically growing derivatives
and an explicit solution

Assuming the (ODP ) setting presented in Section 4.3.2, let α = 0.4 and ψ(t, x) =
sin
([
T − t+ |x|2d1

]α)
, we introduce the following functions,

f(t, x, y, z) = |z|2d1
− |∇xψ(t, x)|2d1

− ∂ψ

∂t
(t, x)− 1

2
(∆xψ)(t, x),
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f(T, x) = sin
(
|x|2αd1

)
and

Etk(x,w) = x+ w, Xt0 = 0.

Let u de�ned as the solution of the following PDE, u(T, x) = f(T, x),

∂u
∂t

(t, x) + |∇xu(t, x)|2d1
+ 1

2
(∆xu)(t, x) = ∂ψ

∂t
(t, x)

+ |∇xψ(t, x)|2d1
+ 1

2
(∆xψ)(t, x).

(4.5.6)

Straight use of Itô's Lemma shows that PDE (4.5.6) has an explicit solution
u(t, x) = ψ(t, x), we refer the reader to [Section 6.1 ; [67]] for more details.

Figure 4.9 is related to Propostion 4.4.3 that controls the error of regres-
sions with di�erent starting points. Here we prefered to show the distribu-
tions rather than the quadratic error which is small. On the left of Fi-

gure 4.9 we have the �Trained� value Y m0
249
256

= ỹm0,Si
∗

249
256

,T
and the �Tested�

1

M1

M1∑
m1=1

(
ym0,Si

∗

248
256

, 250
256

(
Xm0,m1

249
256

, 250
256

)
+ ∆sf

(
249

256
, ym0,Si

∗

248
256

, 250
256

(
Xm0,m1

249
256

, 250
256

)
, z̃m0,Si

∗

249
256

, 250
256

))
with S i∗ ∈

{0, 1
256
, 2

256
, ..., 1}. On the right we show the �Trained� Y m0

253
256

= ỹm0,Si
∗

253
256

,T
and the �Teste-

d�
1

M1

M1∑
m1=1

(
ym0,Si

∗

252
256

, 254
256

(
Xm0,m1

253
256

, 254
256

)
+ ∆sf

(
253

256
, ym0,Si

∗

252
256

, 254
256

(
Xm0,m1

253
256

, 254
256

)
, z̃m0,Si

∗

253
256

, 254
256

))
at a dif-

ferent time step 254/256. Figure 4.9 shows very similar distributions which streng-
then the bene�t of our trick.

Figure 4.9 � [Left] Distribution of Y m0
249
256

called �Trained� vs. its di�erent starting

point approximation called �Tested� [Right] Y m0
253
256

called �Trained� vs. its di�erent

starting point approximation called �Tested� : T = 1, d = 100, M0 = 27, M1 = 212,
L = 8.

Figure 4.10 shows the numerical solution of PDE (4.5.6), calculated by learned and
simulated expression, with respect to di�erent number of coarse time step. We show
that L = 8 is su�cient to discretize the problem when the time horizon T is equal
to 1. This convergence is achieved in 620 seconds of runtime.
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Figure 4.10 � Numerical solution of PDE (4.5.6) calculated by learned and simu-
lated expression with a bias control : T = 1, d1 = 100, M0 = 27, M1 = 27.

4.5.7 American geometric put option

Given the (Snl) setting of Section 4.3.3 with a driver f = 0, we consider an American
geometric put option with constant interest rate r and a payo�

g(x) =

[
K −

d1∏
i=1

(xi)
1/d1

]+

(4.5.7)

with an asset X given by X i
t = X i

s exp
(

(r − σ2

2
)(t− s) + σ(W i

t −W i
s)
)
, t > s,

1 ≤ i ≤ d1, r = log(1.1), σ = 0.4, K = X i
0 = 100 and d1 = 20.

We approximate the price V0 associated to payo� (4.5.7). We choose the di-
mension d1 = 20 to make sure that the variance of the problem is su�ciently large.
We point out however that it works well for d1 = 100.

In Table 4.6 we show the price of an American geometric put option, calcu-
lated by simulated expression V sim

0 , for di�erent maturities. Indeed, V learn
0 provides

almost the same values. From top to bottom we have : a variance adjustment [VA],
a bias control [BC] and a combination of [BC] and [VA]. We show that the simulated
expression with a combination of [BC] and [VA] gives a good approximation of the
price even for long maturity T = 2. However, one needs to use variance adjustment
that is important for events on the exercise frontier as well as bias control to cut
the propagation of bias.

Table 4.6 � Numerical simulations for American option (4.5.7) simulated formula,
[BC] bias control [VA] variance adjustment : d1 = 20, M0 = 211, M1 = 212.
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L = 2 L = 3 L = 4
(T = 0.5) (T = 1) (T = 2)

[VA] 2.561 4.236 6.363
(± 0.035) (± 0.042) (± 0.054)

[BC] 2.493 3.734 5.130
(± 0.041) (± 0.061) (± 0.089)

[VA] + [BC] 2.291 2.890 3.961
(± 0.035) (± 0.037) (± 0.055)

Real Price 2.153 2.871 3.754

Figure 4.11 shows the di�erence between
1

M0

M0∑
m0=1

e−r(δ(sk)−sk)V m0

δ(sk) =

1

M0

M0∑
m0=1

e−r(δ(sk)−sk)(ṽm0,Si
∗

δ(sk),δ(sk)
) and

1

M0

M0∑
m0=1

(w̃m0,Si
∗

sk,sk
) with respect to the time

discretization. On the left, we perform the conditional MC procedure by taking
sk = T . On the right, we perform the procedure with the bias control presented in
section 4.2.3 by taking sk =

(
sk + 3

8

)
∧ T with sk ∈ S i

∗
= {0, 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1}.

We show that the control allows to reduce the bias propagation.

Figure 4.11 �
1

M0

M0∑
m0=1

e−r(δ(sk)−sk)V m0

δ(sk) vs.
1

M0

M0∑
m0=1

(w̃m0,Si
∗

sk,sk
) ; [Left] sk = T wi-

thout bias control [Right] sk =
(
sk + 3

8

)
∧ T with bias control : d1 = 20, M0 = 211,

M1 = 212, T = 1 and L = 3.

Figure 4.12 shows the approximation of the American geometric put option, cal-
culated by learned and simulated expression, with respect to the number of inner
trajectories for di�erent maturities. Both expressions converge to the benchmark
value for 29 outer trajectories and 212 inner trajectories in 3 seconds.
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Figure 4.12 � Numerical approximation of price V0 : d1 = 20, M0 = 29, T = 1,
L = 3.

4.5.8 Initial Margin

Assume the setting presented in Section 4.3.2, we consider a portfolio of one hundred
put options, the price Vsk of the portfolio at time step sk is given by

Vsk =

d1∑
i=0

e−(T−sk)rEsk
([
K −X i

T

]+)
(4.5.8)

with an asset X given by X i
t = X i

s exp
(

(r − σ2

2
)(t− s) + σ(W i

t −W i
s)
)
, t > s,

1 ≤ i ≤ d1, with r the interest rate, K the strike and T the maturity.

We are interested to calculate the initial margin (IM) of this portfolio. IM is
an amount posted by the counterparty (or the bank) to overcome the loss of the
portfolio during the liquidation period after a default.

IM is formalized here as follows

IMsk = ESask(Lsk,sk+δ) (4.5.9)

where the loss of the portfolio at time t over a period δ is denoted Lsk,sk+δ and is
de�ned here by

Lsk,sk+δ = Vsk+δ − Vsk ,
and the expected shortfall ES is de�ned by

ESask(X) =
1

(1− a)

∫ 1

a

VaRα
sk

(X)dα.

The value-at-risk of some random variable VaRα(X) conditionally to Fsk is de�ned
by

VaRα
sk

(X) = inf{x ∈ R : P(X ≤ x | Fsk) ≥ α}.
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We considered the following parameters : T = 1, d1 = 100, K = X i
0 = 100, r = 0.01,

a = 99%, NI = 32 is the number of time step, δ = 1
32
. A benchmark approximation

of the IM is obtained using Black & Scholes formula for put options.

Figue 4.13 shows some distributions of the loss process. From top to bottom we
show di�erent time steps sk ∈ {29

32
, 19

32
, 9

32
}. On the left, we perform the procedure

without variance adjustment and on the right we perform the variance adjustment
introduced in section 4.2.3. We show that the variance adjustment is necessary to �t
the benchmark distribution of the loss process. Figure 4.14 shows the initial margin

Figure 4.13 � Numerical approximation of the loss distribution [Left] Without
variance adjustment, [Right] With variance adjustment ; [top to bottom] sk ∈
{29

32
, 19

32
, 9

32
} ; M0 = 28, M1 = 28 ∗ 5.

distribution. From top to bottom we show di�erent time steps sk ∈ {29
32
, 19

32
, 9

32
}.

Although we are interested in distribution tails of the loss process we have a fairly
good representation of the distribution of IM. Figure 4.15 shows at the top the mean
of IM with respect to the time horizon of the portfolio and we show the L2 relative
error at the bottom. The relative error is su�ciently small as it is generally less than
8% and does not exceed 11%.
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Figure 4.14 � Numerical approximation of the IM distribution : [top to bottom]
sk ∈ {29

32
, 19

32
, 9

32
} ; M0 = 28, M1 = 28 ∗ 5.
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Figure 4.15 � Initial Margin : [Top] mean of IMsk ; [Bottom] L2 relative error.
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Titre : Calcul de XVAs par simulation imbriquée sur Graphics Processing Units

Mots Clefs : XVA, Simulation imbriquée, Graphics Processing Units

Résumé : Cette thèse traite du calcul des X-valorisations d'ajustement, où X en-
globe C pour le crédit, F pour le �nancement, M pour la marge et K pour le capital.
Nous étudions di�érentes approches basées sur la simulation imbriquée et implé-
mentées sur des unités de traitement graphique (GPU). Nous examinons d'abord le
problème, pour une banque ou une assurance, du calcul numérique de son capital
économique sous la forme d'une �value-at-risk� ou d'une �expected shortfall� de sa
perte sur un horizon de temps donné. En utilisant une approche d'approximation
stochastique pour ces mesures de risque, nous établissons la convergence des sché-
mas résultant de la simulation du capital économique. Ensuite, nous présentons une
approche de Monte Carlo imbriqué (NMC) pour le calcul des XVAs. Nous montrons
que le calcul global des XVAs implique cinq niveaux de dépendance. Les couches les
plus hautes sont d'abord lancées et déclenchent des simulations imbriquées à la volée
si nécessaire pour calculer un élément à partir d'une couche inférieure. En�n, nous
présentons un algorithme basé sur un Monte Carlo imbriqué à une couche (1NMC)
pour simuler les fonctions U d'un processus de Markov X. La principale originalité
de la méthode proposée provient du fait qu'elle fournit une recette pour simuler
Ut≥s conditionnellement à Xs. La généralité, la stabilité et le caractère itératif de
cet algorithme, même en haute dimension, en font la force.

Title : X-Valuation Adjustment Computations by Nested Simulation on Graphics
Processing Units

Keys words : XVA, Nested simulation, Graphics Processing Units

Abstract : This thesis deals with X-valuation adjustment computation, where
X ranges over C for credit, F for funding, M for margin, and K for capital. We
investigate di�erent approaches based on nested simulation and implemented on
graphics processing units (GPU). First, we consider the problem of the numerical
computation of its economic capital by a bank or an insurance, in the form of a value-
at-risk or expected shortfall of its loss over a given time horizon. Using a stochastic
approximation point of view on these risk measures, we establish the convergence of
the resulting economic capital simulation schemes. Then we present a nested Monte
Carlo (NMC) approach for XVA computations. We show that the overal XVA suite
involves �ve compounded layers of dependence. Higher layers are launched �rst and
trigger nested simulations on-the-�y whenever required in order to compute an item
from a lower layer. Finally, we present an algorithm based on a one-layered Nested
Monte Carlo (1NMC) to simulate functionals U of a Markov process X. The main
originality of the proposed method comes from the fact that it provides a recipe
to simulate Ut≥s conditionally on Xs. The generality, the stability and the iterative
nature of this algorithm, even in high dimension, make its strength.
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